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ABBREVIATION  

 

ACF   Aberrant crypt foci  

ALP   Alkaline phosphatase 

Alk-SMase  Alkaline Sphingomyelinase  

A-SMase  Acidic Sphingomyelinase  

BFA Brefeldin A 

BODIPY-C5-Cer N-(4,4-difluoro-5,7-dimethyl-bora-3a,4a-diaza-s-indacene-3-pentanoyl) 

sphingosine) 

CDase   Ceramidase 

Cer   Ceramide  

CRC   Colorectal cancer 

C2-Cer  N-acetyl-D-erythro-sphingosine,  

C6-Cer  N-hexanoyl-D-erythro-sphingosine 

D609   O-Tricyclo[5.2.1.02,6] dec-9-yl dithiocarbonate potassium salt 

ER   Endoplasmic reticulum  

EMEM  Minimum essential medium eagle 

FCS   Fetal Calf serum 

GalCer  Galactosylceramide 

GlcCer  Glucosylceramide 

GSLs   Glycosphingolipids 

Gb3   Globotriaosylceramide 

LacCer  Lactosylceramide  

LU   Luteolin  

LY   LY294002 

MTT   3-[4,5-dimethylthiazol-2-yl] 2,5-diphenyl tetrazolium bromide 

N-SMase  Neutral Sphingomyelinase 

PBS   Phosphate-buffered saline 

PlsEtn   Phosphoethanolamine plasmalogen  

PM   Plasma membrane 

PNPP   p-Nitrophenyl-phosphate  

PNP   p-Nitrophenol 

PI3K   Phosphatidylinositol-3-OH kinase 

SLs   Sphingolipids 

Sph   Sphingosine 

SM   Sphingomyelin 

SMase   Sphingomyelinase 

SPHKI  Sphingosine kinase I  

SPHKII  Sphingosine kinase II  

S1P   Sphingosine-1-phoshate 
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SUMMARY 

 

Colorectal cancer is one of the most common malignancies and a leading cause of cancer death in the 

world. More powerful and safer therapeutic approaches are urgently needed to reduce mortality and 

garner better curative effects. In this regard, dietary supplements capable of preventing carcinogenesis 

and inhibiting the growth of colon carcinoma cells have generated intense interest. Luteolin (LU), a 

common dietary flavonoids, has emerged as a powerful anticancer agents able to sensitize different 

cancer cells, including colon cancer ones, to therapeutic-induced cytotoxicity. However, the 

molecular mechanisms underlying LU effects in colon cancer are largely unknown. 

Sphingolipids have critical functions as signaling molecules. In particular, Ceramide (Cer) and 

Sphingosine-1-phosphate (S1P) are involved as key antagonist mediators in regulating crucial cell 

responses such as proliferation and apoptosis. Cer can act as a second messenger, and, by activating 

a variety of signaling pathways, is able to promote growth arrest, apoptosis, or cell differentiation. To 

the opposite, the sphingoid mediator S1P can act as a potent mitogen and survival factor for a variety 

of cell types. These two lipids together form the “sphingolipid rheostat” regulating the balance 

between cell growth and cell death. 

The objective of our study was to investigate the effects and the molecular mechanisms of LU in 

colon cancer, focusing on the role of the bioactive sphingoid molecules Cer and S1P. To this purpose, 

we used the Caco-2 cell line, obtained from a human colon adenocarcinoma, as cell model of both 

colon cancer cells, and differentiated intestinal enterocytes. Indeed, in long-term culture, these cells 

undergo a spontaneous differentiation into polarized cells, representing so far the best available in 

vitro model of absorptive enterocytes. These two models might thus allow to distinguish the potential 

LU effects on colon cancer cells in comparison to their healthy counterparts. 

At first, we characterized the morphological and biochemical features of both models. We found that 

Caco-2 cell differentiation was accompanied by the formation of “domes” across the monolayer, 
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known as characteristic structures of differentiated cells, and indicative of their property of absorptive 

epithelium. In addition, the activity of the alkaline phosphatase, a membrane-associated hydrolase 

was found significantly increased in differentiated Caco-2 cells compared to the tumoural cancer 

ones. Furthermore, we found that Caco-2 differentiation was associated with a reduction of the 

phospholipids/protein ratio, and whereas phosphatidylcholine was the most abundant phospholipid 

species of tumoural cells, phosphatidylethanolamine prevailed in the differentiated ones. Moreover, 

phosphatidylethanolamine plasmalogen, a quantitative relevant species in the cancer cells, exhibited 

a marked decrease with intestinal differentiation.  

As far as the sphingolipid composition concerns, we first demonstrated that Caco-2 differentiation 

was associated to an increase in the total amount of sphingolipids, including Sphingomyelin (SM), 

the major component and precursor of both Cer and S1P, and above all ceramide. Since the SM 

hydrolysis, triggered by Sphingomyelinases (SMases), has been implicated in colon tumourigenesis, 

we then evaluated whether changes in the activity of the known different SMases (the neutral (N-

SMase) and alkaline (Alk-SMase) enzymes) occur with cell differentiation. We found that the Alk-

SMase activity which was barely detectable in tumoural cancer cells, significantly increased in 

differentiated ones. The high level of this enzyme is consistent with its presence in the apical brush 

border, characteristic of intestinal cells. Interestingly a significant increase in the N-SMase was 

observed in the differentiated Caco-2 cells suggesting a role for this enzyme in intestinal cells. 

Prompted by these data indicating that the SM hydrolytic potential is enhanced in differentiated Caco-

2 cells, we then investigated SM metabolism in both tumoural and differentiated cells. We found that 

the tumoural cells were much more rapid in the production of Cer from SM than the differentiated 

ones, and that Cer turnover was present and rapid in both cell types. Inhibition of N-SMase activity, 

the most abundant enzyme, resulted in no variation of Cer formation in both types of cells, suggesting 

that the lysosomal acid SMase (A-SMase) is involved in SM degradation.  After this characterization, 

we then evaluated the effect of LU on the tumoural and intestinal cells. Interestingly, we found that 
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the flavonoid exhibited a potent cytotoxic effect on tumoural cells, by inducing apoptosis, without 

affecting the viability of differentiated cells.  

Instead, we found that LU induces an increase in intracellular Cer level with a more pronounced trend 

in tumoural cells. Based on these results we examined whether Cer is involved in the mechanism of 

LU-induced apoptosis. Notably we obtained that conditions leading to enhance the Cer content in 

colon cancer cells, as treatment with short-chain Cer analogues and inhibitor of sphingomyelin 

synthase (SM-synthase) were succeeded by inducing apoptosis in tumoural cells, thus mimicking the 

LU effect.  

Furthermore, we evaluated the possible effect of LU on the formation of Cer and S1P in tumoural 

Caco-2 cells. Pulse experiments showed that treatment with LU induced a dose-dependent increase 

in Cer, paralleled by a concomitant decrease of both SM and glycosphingolipids  synthesis. This result 

suggested that LU most probably acts by reducing the availability of Cer as a substrate for both SM-

synthase and glucosylceramide synthase enzymes localized in the Golgi complex, possibly by 

inducing a defect in the common vesicular route responsible for complex SLs biosynthetic process. 

Fluorescent studies using a BODIPY-C5-CER, a ceramide analogue known to mimic the ER-Golgi 

traffic of natural Cer in living cells, supported the presence of an aberrant traffic of Cer during LU 

treatment. Furthermore, pulse experiments using treatment with Brefeldin A, known to induce a 

retrograde merging of Golgi membranes with the ER, demonstrated that LU was not more able to 

exert alterations of Cer metabolism, thus indicating that the ER-Golgi traffic of Cer is the site of LU 

action. 

In parallel, different protein kinases, including Akt have been shown to regulate ER to Golgi traffic. 

In addition, a study in our laboratory reported for the first time a putative role of PI3K /Akt pathway 

in the regulation of the vesicle-mediated movements of Cer in the ER-Golgi district. Prompted by 

these findings, pulse experiments using LY294002, a representative PI3K inhibitor, showed that, 

LY294002 and subsequently the inhibition of PI3K/Akt had the same effect on the Cer metabolism 

observed during LU treatment. Furthermore, we obtained that LU strongly inhibited the Akt 
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phosphorylation as a downstream response to PI3K inhibition. Taken together, it emerges that 

blockade of PI3K by LU and subsequently the downregulation of PI3K/Akt pathway is considered at 

least one of the mechanisms responsible for the effect of this flavonoid on Cer trafficking observed 

in our tumoural cell model 

Further analyses revealed that LU was able to alter not only Cer content but also to decrease the 

endogenous S1P level inducing thereby a shift of the “sphingolipid balance” to the side of death. 

Based on this result, we demonstrated for the first time that LU was able to act as inhibitor of 

Sphingosine kinase (SPHK) activity in tumoural cells, especially SPHKII, the up-regulated isoform 

in our cancer cell model, exhibiting only a modest effect on SPHKI.  

Furthermore, in order to gain deeper insights into the role of the “Sphingolipid rheostat” in mediating 

the effect of LU, we attempted to push the balance towards S1P with addition of exogenous S1P. The 

results demonstrated that S1P conferred a significant resistance of colon cancer cells to the cytotoxic 

effect of LU. The mechanism by which S1P acts as LU-antagonist was proved to be mainly by the 

up-regulation of the PI3K/Akt pathway, which is able to rescue colon cancer cells from the apoptotic 

effect of the LU-induced increase of Cer.  

Taken together, our results demonstrate, for the first time, that the dietary natural flavonoid LU 

induces apoptosis in colon cancer cells by targeting the “sphingolipid rheostat”, and directing the 

balance in favor of Cer. As the balance between Cer and S1P appears to be an important target for 

development of new and effective therapeutic strategies against tumour progression, LU could be a 

novel antitumoural agent not only in colon cancer but possibly in the treatment of other solid tumours.  
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INTRODUCTION 

1. Colorectal Cancer  

1.1. Colorectal cancer features 

Colorectal cancer (CRC) is one of the leading tumours worldwide and it is considered among the big 

killers, together with lung, prostate and breast cancer. In the recent years, many efforts have been 

made to develop a convincing therapy to treat this frequent disease: adjuvant chemotherapy was 

demonstrated to be effective, chiefly in stage III patients, and surgery was optimized in order to 

achieve the best results with a low morbidity. Furthermore, several new target-oriented drugs are 

under evaluation and some of them (cetuximab and bevacizumab) have already exhibited a good 

activity/efficacy, mainly in combination with chemotherapy. The development of updated 

recommendations for the best management of these patients is crucial in order to obtain the best 

results, not only in clinical research but also in every-day practice. 

1.1.1. Epidemiological data: Incidence, mortality and survival 

Cancers of the colon and rectum are the third most common tumour type worldwide and the fourth 

most common cause of death in both sexes [Ferlay et al., 2010]. In term of incidence, cancer of the 

colon is more frequent than rectal cancer: the ratio of colon to rectum cases is 2:1 or more in 

industrialized countries (rather more in females), while in non-industrialized countries rates are 

generally similar. Moreover, the geographic distribution of CRC is different: indeed, more of 63% of 

the cases occur in developed countries with a Western culture and its rates increase with 

industrialization and urbanization. The incidence rate varies up to 10-fold between countries with the 

highest rates and those with the lowest rates. It ranges from more than 40% people in the United 

States, Australia, New Zealand, and Western Europe to less than 5% in Africa and some parts of Asia 

where it remains relatively uncommon [Ferlay., et al 2010] (Fig.1). In Europe around 250,000 new 

colon cases are diagnosed each year, accounting for around 9% of all the malignancies. The incidence 
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is slightly higher in Western and Northern Europe than in Southern and Eastern Europe. In general, 

this incidence increases in countries where the overall risk of large bowel disease is low, while in 

countries with high incidence rates there have been either stabilizations or decreases in incidence, 

particularly in younger age groups. In CRC, the greatest increases in incidence are observed in Asia, 

as well as in countries of Eastern Europe. In Western Europe and Oceania, the overall (age-adjusted) 

rates remain fairly constant. In the USA, since the mid-1980s a decline in CRC incidence was 

observed in both sexes, but not in the black population [Parkin et al., 2001]. In Italy [Grande et al., 

2007], the annual incidence rates were estimated to increase throughout the period 1970-2010 from 

30 to 70 per 100,000 for men, and to stabilize from the end of the 1990s at around 38 per 100,000 for 

women. The estimated numbers of annual new diagnosis and deaths, for the year 2005, were 46,000 

and 16,000 respectively; 58% of both were related to men. About 70% of patients with CRC are over 

65 years of age. CRC is rare under the age of 45 years (2 per 100,000/year). In the age group 45-54 

years CRC incidence is about 20 per 100,000/year and thereafter it increases at a much higher rate 

(55 per 100,000/year for aged 55-64, 150 for aged 65-74 and>250 per 100,000/year for those older 

than 75 years of age) [Parkin et al., 2001]. 

Worldwide mortality attributable to colorectal cancer is approximately half that of the incidence. It 

is estimated that about 600,000 deaths from CRC still occur worldwide annually, making this disease 

the fourth most common cause of death from cancer. As observed for incidence, mortality rates are 

generally lower in women than in men. Less variability in mortality rates was observed worldwide 

(six fold in men, five fold in women), with the highest mortality rates in both sexes estimated in 

Central and Eastern Europe (20.3 per 100,000 for male, 12.1 per 100,000 for female), and the lowest 

in Middle Africa (3.5 and 2.7, respectively) [Ferlay et al., 2010]. However, it is generally difficult to 

interpret temporal changes in mortality as they are influenced by trends over time in incidence and 

survival. The incidence rate may be a more appropriate indicator of trends in disease occurrence. 
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CRC incidence is unaffected by changes in treatment and survival, although it has been shown to be 

influenced by improved diagnostic techniques and screening programs (Fig.1). 

The survival of CRC patients is highly dependent upon stage of disease at diagnosis, and typically 

ranges from a 90% 5-year survival rate for cancers detected at the localized stage, 70% for regional, 

to 10% for people diagnosed for distant metastatic cancer [Ries et al., 2008, Jemal et al., 2004]. In 

general, the earlier the stage at diagnosis, the higher the chance of survival. In addition, 5-year relative 

survival decreased with age from 63% to 49% from the youngest (15-45 years) to the oldest age group 

of patients (75 years and over) [Labianca et al 2010]. Since the 1960s, survival for colon cancer at 

all stages increased substantially. The relative improvement in 5-year survival over this period has 

been better in countries with high life expectancy and good access to modern specialized health care. 

However, enormous disparities in colon cancer survival exist globally and even within regions 

[Jackson-Thompson et al., 2006]. For example, in the USA, the survival of patients diagnosed with 

CRC, in 2000-2002, was 65.5% while in Europe was 56.2% [Verdecchia et al., 2007]. This variation 

is not easily explained, but most of the marked global and regional disparity in survival is likely due 

to differences in access to diagnostic and treatment services. 

1.1.2. Aetiological and risk factors 

Several risk factors are associated with the incidence of colorectal cancer, including those that an 

individual cannot control include age and hereditary factors. In addition, a substantial number of 

environmental and lifestyle risk factors may play an important role in the development of this type of 

cancer. 
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Non-modifiable risk factors 

 Age 

The probability of colorectal cancer diagnosis increases progressively after the age of 40, rising 

sharply after age 50: more than 90% of colorectal cancer cases occur in people aged 50 or older. The 

incidence rate is more than 50 times higher in persons aged 60 to 79 years than in those younger than 

40 years. However, colorectal cancer appears to be increasing among younger persons. In fact, in the 

United States, CRC is now one of the 10 most commonly diagnosed cancers among men and women 

aged 20 to 49 years [Jackson-Thompson et al., 2006]. 

 

Figure 1. Estimated age-standardized incidence and mortality rates for colorectal cancer [Labianca et al., 

2010] 
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 Genetic factors 

Approximately 5 to 10% of colorectal cancers are a consequence of recognized hereditary conditions. 

The most common inherited conditions are familial adenomatous polyposis (FAP) and hereditary 

nonpolyposis colorectal cancer (HNPCC) called Lynch syndrome [Jeter et al., 2006]. Genes 

responsible for these forms of inherited CRC have been identified. 

Familial adenomatous polyposis FAP was the first recognized and best-characterized colonic 

polyposis syndrome. It is a highly penetrant autosomal dominant disorder caused by germline 

mutations of the Adenomatous Polyposis Coli (APC) tumor suppressor gene [Bodmer et al., 1987, 

Kinzler et al., 1991]. FAP accounts for less than 1% of all CRC. Clinically, patients with FAP present 

hundreds to thousands of colorectal adenomatous polyps, usually in the second decade of life. The 

lifetime risk of CRC approaches 100% and patients with FAP present also the risk of extra-colonic 

manifestations such as cutaneous lesions, osteomas, dental anomalies, congenital hypertrophy of the 

retinal pigment epithelium, desmoid tumors, and extracolonic cancers (liver, pancreas, gastric and 

small bowel, thyroid, and central nervous system). 

Attenuated FAP (AFAP) is a less aggressive form of the disease; it is characterized by delayed age 

of onset and fewer colorectal adenomatous polyps. Extra-colonic manifestations are less common in 

attenuated FAP. 

Hereditary Non Polyposis Colorectal Cancer (Lynch syndrome) is an autosomal dominant 

condition caused by germline mutations in DNA mismatch repair (MMR) genes, MLH1 (MutL 

homolog 1), MSH2 (MutS homolog 2), PMS2 (postmeiotic segregation 2) and MSH6 (MutS homolog 

6) genes [Papadopoulos et al., 1994]. Bi-allelic inactivation of any of these MMR genes results in 

defective DNA repair and in the subsequent accumulation of repetitive short nucleotide sequences 

called microsatellites. Recently, germline deletions in the TACSTD1 gene (a gene directly upstream 

of MSH2), which encodes the epithelial cell adhesion molecule (Ep-CAM), has been identified as the 

causative mutation familialHNPCC [Ligtenberg et al., 2009]. The risk of developing cancer in 
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HNPCC patients and families depending on the gene mutation. For example, families with MSH2 

mutations have more extracolonic cancers than MLH1 mutation carriers. Families that harbor MSH6 

mutations develop CRC at a more advanced age, and have a higher risk of developing endometrial 

cancers [Vasen et al., 2007]. HNPCC is the most common hereditary CRC syndrome, accounting for 

2-3% of all CRC cases. The hallmark of HNPCC is the presence of microsatellite instability (MSI). 

Patients with HNPCC develop CRC at a younger age than the general population, have a predilection 

for proximal colon cancers (70-85% of colon cancers are right sided), and are at a higher risk for 

synchronous CRCs. Patients are at a higher risk of developing extra-colonic tumors including 

endometrial, ovarian, gastric, small bowel, pancreatic, hepatobiliary, skin, brain, and urethral tumors. 

The cumulative lifetime risk of an extra-colonic malignancy in females and males is 47% and 27%, 

respectively. 

 Inflammatory Bowel Disease 

Inflammatory bowel disease (IBD) is a term used to describe two diseases: ulcerative colitis and 

Crohn disease. Ulcerative colitis causes inflammation of the mucosa of the colon and rectum; Crohn 

disease causes inflammation of the full thickness of the bowel wall and may involve any part of the 

digestive tract from the mouth to the anus. These conditions increase an individual’s overall risk of 

developing colorectal cancer. The relative risk of colorectal cancer in patients with inflammatory 

bowel disease has been estimated between 4-to 20-fold [Bethesda et al., 2006]. 

 Adenomatous Polyps 

Neoplastic polyps of the colorectum, namely tubular and villous adenomas, are precursor lesions of 

colorectal cancer [Janout et al., 2001]. The lifetime risk of developing a colorectal adenoma is nearly 

19% in the U.S. population. Nearly 95% of sporadic colorectal cancers develop from these adenomas. 

An individual with a history of adenomas has an increased risk of developing colorectal cancer, than 

individuals with no previous history of adenomas. A long latency period, estimated at 5 to 10 years, 

is usually required for the development of malignancy from adenomas. Detection and removal of an 
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adenoma prior to malignant transformation may reduce the risk of colorectal cancer. However, 

complete removal of adenomatous polyps or localized carcinoma is associated with an increased 

likelihood of future development of cancer elsewhere in the colon and rectum [de Jong et al., 2005]. 

 

Modifiable risk factors 

Colorectal cancer is widely considered to be an environmental disease, with ‘‘environmental’’ 

defined broadly to include a wide range of often ill-defined cultural, social, and lifestyle factors. As 

such, colorectal cancer is one of the major cancers for which modifiable causes may be readily 

identified, and a large proportion of cases theoretically preventable [Johnson et al., 2007]. Some of 

the evidence of environmental risk comes from studies of migrants and their offspring, among 

migrants from low-risk to high-risk countries, incidence rates of colorectal cancer tend to increase 

toward those typical of the population of the host country. For example, among offspring of Southern 

Europe migrants to Australia and Japanese migrants to Hawaii, the risk of colorectal cancer is 

increased in comparison with that of populations of the country of origin. In fact, CRC incidence in 

the offspring of Japanese migrants to the United States, approaches or surpasses that in the white 

population, and it is three or four times higher than among the Japanese in Japan. Apart from 

migration, some other geographic factors can influence in the incidence of CRC, one of them is the 

urban residence. The incidence is consistently higher among urban residents. For this reason, current 

residence in an urban area is a stronger predictor of risk than is an urban location of birth [Janout et 

al., 2001]. This excess incidence in urban areas is more apparent among men than women and for 

colon cancer than for rectal cancer.  
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 Cigarette Smoking 

The association between tobacco cigarette smoking and lung cancer is well established, but smoking 

is also extremely harmful to the colon and rectum. Evidence shows that 12% of colorectal cancer 

deaths are attributed to smoking [Zisman et al., 2006]. The carcinogens found in tobacco, increase 

cancer growth in the colon and rectum and increase the risk of being diagnosed with this cancer. 

Cigarette smoking is important for both formation and growth rate of adenomatous polyps, the 

recognized precursor lesions of colorectal cancer [Botteri et al., 2008]. Larger polyps found in the 

colon and rectum are associated with long-term smoking. Evidence also demonstrates an earlier 

average age of onset incidence of colorectal cancer among smokers. 

 Heavy Alcohol Consumption 

As with smoking, the regular consumption of alcohol may be associated with increased risk of 

developing colorectal cancer. Alcohol consumption is a risk factor in the onset of colorectal cancer 

at a younger age [Zisman et al., 2006, Tsong et al., 2007] as well as a disproportionate increase of 

tumors in the distal colon [Bazensky et al., 2007]. Reactive metabolites of alcohol such as 

acetaldehyde can be carcinogenic [Po et al., 2004]. There is also an interaction with smoking [Zisman 

et al., 2006]. Tobacco may induce specific mutations in DNA that are less efficiently repaired in the 

presence of alcohol. Alcohol may also function as a solvent, enhancing penetration of other 

carcinogenic molecules into mucosal cells. Additionally, the effects of alcohol may be mediated 

through the production of prostaglandins, lipid peroxidation, and the generation of free radical oxygen 

species. Lastly, high consumers of alcohol may have diets low in essential nutrients, making tissues 

susceptible to carcinogenesis. 
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 Physical Activity and Obesity 

Several lifestyle-related factors have been linked to colorectal cancer. Two modifiable and 

interrelated risk factors, physical inactivity and excess body weight, are reported to account for about 

a fourth to a third of colorectal cancers. There is abundant evidence that higher overall levels of 

physical activity are associated with a lower risk of colorectal cancer, including evidence of a dose-

response effect, with frequency and intensity of physical activity inversely associated with risk [Lee 

et al., 2007]. Regular physical activity and a healthy diet can help decrease the risk of colorectal 

cancer, although the evidence is stronger for colonic than for rectal disease. The biologic mechanisms 

potentially responsible for the association between reduced physical activity and colorectal cancer 

are beginning to be elucidated. Sustained moderate physical activity raises the metabolic rate and 

increases maximal oxygen uptake. In the long term, regular periods of such activity increase the 

body’s metabolic efficiency and capacity, as well as reducing blood pressure and insulin resistance. 

In addition, physical activity increases gut motility. The lack of physical activity in daily routines also 

can be attributed to the increased incidence of obesity in men and women, another factor associated 

with colorectal cancer [Campbell et al., 2007]. Several biologic correlates of being overweight or 

obese, notably increased circulating estrogens and decreased insulin sensitivity, are believed to 

influence cancer risk, and are particularly associated with excess abdominal adiposity independent of 

overall body adiposity. However, the increased risk associated with overweight and obesity does not 

seem to result merely from increased energy intake; it may reflect differences in metabolic efficiency. 

Studies suggest that individuals who use energy more efficiently may be at a lower risk of colorectal 

cancer. 

 Nutritional practices  

It has been estimated that nutrition could account for more than one third of cancer deaths, and that 

dietary factors are responsible for 70% to 90% of all cases ( for more details see part II: diet in colon 

cancer as a double edged sword).  
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1.1.3. Molecular pathways in colon cancer  

Colorectal cancer is a heterogeneous disease with different molecular pathways leading to different 

phenotypes. Genetic and epigenetic alterations act to deregulate conserved signaling pathways 

involved in cellular metabolism, proliferation, differentiation, survival, and apoptosis. Understanding 

the molecular basis of colorectal carcinogenesis has important ramifications in both prognosis and 

treatment of CRC. To date, three distinct molecular pathways have been recognized. These are the 

Chromosomal Instability (CIN) pathway, Microsatellite Instability (MSI) pathway, and the CpG 

Island Methylator Phenotype (CIMP) pathway. These pathways are not mutually exclusive, with 

some tumors exhibiting features of more than one pathway.  

 

Chromosomal instability pathway 

Chromosomal instability is the most common cause of genomic instability in CRC. It accounts for 

65–70% of sporadic CRC. It is characterized by gain or loss of whole chromosomes or chromosomal 

regions harboring genes integral for the process of colorectal carcinogenesis. CIN results from defects 

in chromosome segregation with subsequent aneuploidy, telomere dysfunction, or defects in the DNA 

damage response mechanisms [Pino et al., 2010]. The consequence is an imbalance in chromosome 

number (aneuploidy), chromosomal genomic amplifications, and a high frequency of LOH. 

A genetic model describing the transition from healthy colonic epithelia through increasingly 

dysplastic adenoma to malignant cancer has been proposed that identifies a number of key oncogenes 

and tumor suppressor genes, the progressive acquisition of activating or loss of function mutations in 

which drives the adenoma to carcinoma transition (Fig.2). Of the genes characterized to date, 

inactivation of the tumor suppressor genes APC and p53 and activation of the oncogene Kirsten-ras 
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(K-ras) are thought to be particularly important determinants of tumor initiation and progression 

[Fearon et al., 1990]. 

 

 The K-ras oncogene  

The K-ras proto-oncogene is mutated in 30-60% of CRC and large adenomas [Wang et al., 2006]. It 

has been proposed that activated K-ras may play an important role in the transition from adenoma to 

carcinoma through activation of downstream targets including BCL-2, H2AFZ, RAP1B, TBX19, 

E2F4, and MMP1. The K-ras gene product, a 21 kDa membrane bound protein involved in signal 

transduction, is activated in response to extracellular signals. The mutated protein is locked in the 

active form due to impaired GTPase activity, which hydrolyses GTP to GDP. Most activating 

mutations are found in codons 12 and 13 of exon 1. Ras activation affects multiple cellular pathways 

that control cellular growth, differentiation, survival, apoptosis, cytoskeleton organization, cell 

motility, proliferation, and inflammation. 

 

Figure 2. A model of the genetic changes required for progression from adenoma to carcinoma 

in the development of colorectal cancer. The proposed order of mutations in APC, K-ras, p53, and 

the DNA MMR genes is illustrated [Al sohaili et al., 2012] 

 

 

 The APC and MCC genes 

Allelic loss of chromosome 5q has been reported in 20-50% of sporadic CRC. Two important genes 

are located on the long arm of chromosome 5; these are the APC and the Mutated in Colorectal Cancer 
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(MCC) genes. Somatic APC mutations are seen in 60-80% of CRC as well as in a large percentage of 

colorectal precursor lesions (adenomas), indicating that APC mutation is an early event in the process 

of colorectal tumourigenesis [Powell et al., 1992]. APC was described as the “gatekeeper” gene 

regulating the entry of epithelial cells into the adenoma-carcinoma progression. It belongs to the 

canonical Wnt/ wingless pathway that plays important role for both initiation and progression of CRC 

and represents a “final common pathway”, as other signaling pathways converge and interact with 

this pathway [Behrens et al., 2005]. The MCC gene is located on 5q21. It is commonly silenced in 

colorectal cancers through promoter hypermethylation [Kohonen-Corish et al., 2007]. MCC has been 

identified as one of the “driver genes” of colorectal carcinogenesis in a mouse model. It is a cell cycle 

regulatory protein that induces cell cycle arrest in response to DNA damage [Pangon et al., 2010]. 

In addition, a recent study suggested that MCC could also inhibit Wnt/-catenin signal transduction 

independent of APC. 

 Mutations in p53  

The p53 is a transcription factor with tumor suppressor activity that binds to a specific DNA sequence 

and activates a number of genes involved in cell cycle arrest, apoptosis, senescence, autophagy, and 

cellular metabolism. In addition, p53 functions as a transcription factor, exerting cell cycle control by 

binding to specific recognition sequences in variety of genes including p21, Bax, and Bcl-2 in 

response to DNA damage or other cellular stress. The p53 facilitates the cellular adaptation in 

response to different cellular stresses including DNA damage by mutagens, oncogenic stimulation, 

hypoxia, and telomere erosion. The p53 gene, localized on the short arm of chromosome 17, is 

mutated in up to 70% of colorectal cancers [Vogelstein et al., 1988]. The p53 are proposed to be 

relatively late events in the development of colorectal tumors, with the loss of p53-mediated pathways 

of apoptosis considered to be an important determinant of progression from adenoma to malignant 

tumor. 
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Microsatellite instability pathway (MSI) 

Microsatellites are short repeat nucleotide sequences that are spread out over the whole genome and 

are prone to errors during replication due to their repetitive manner. The DNA mismatch repair 

(MMR) system recognizes and repairs base-pair mismatches that occur during DNA replication. 

Instability of microsatellites is a reflection of the inability of the MMR system to correct these errors 

and is recognized by frameshift mutations in the microsatellite repeats. The discovery of MSI in 1993, 

its linkage to HNPCC, and the subsequent cloning of MMR genes have led to the recognition of MSI 

as an alternative pathway in colorectal carcinogenesis. Germline mutation in MMR genes results in 

HNPCC, while somatic mutation or hypermethylation silencing of MMR genes accounts for about 

15% of sporadic CRC. Microsatellite instability tumors have fewer mutations in K-Ras and p53 

[Soreide et al., 2006]. 

Mutation in the polyadenine tract of transforming growth factor b type II receptor (TGFbRII) 

inactivates gene function [Markowitz et al., 1995] and has been observed in 90% of CRC with MSI. 

TGFb-II signaling inhibits cellular proliferation, and therefore alterations in the gene function 

represent a possible mechanism in MSI carcinogenesis. There is a large list of genes containing 

coding repeats that are susceptible to mutations in the presence of defective MMR function. It 

includes genes involved in DNA repair (e.g. RAD50, MSH3, MSH6, BLM, MBD4, and MLH3), 

apoptosis (e.g. APAF1, BAX, BCL-10, and Caspase 5), signal transduction (e.g. TGFbRII, ACTRII, 

IGFIIR, and WISP-3), cell cycle (PTEN and RIZ), and the transcription factor TCF-4 [Iacopetta et 

al., 2010]. 
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CpG Island Methylator Phenotype pathway 

CpG Island Methylator Phenotype (CIMP) refers to the presence of concomitant hypermethylation 

of multiple genes. Five markers have been chosen to serve as markers for CIMP, such as CACNA1G, 

IGF2, NEUROG1, RUNX3, and SOCS1. CIMP positivity is defined by methylation of at least three 

markers [Weisenberger et al., 2006] CIMP-high CRC accounts for 15-20% of sporadic CRC and has 

distinct characteristics. It is more common in females, older patients, and proximal location (right 

colon). 
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1.2. Diet in colon cancer as a double-edge sword  

Before the 20th century, colorectal cancer was relatively uncommon, however the incidence has risen 

dramatically especially in the last fifty years. Moreover, the majority of CRC continues to occur in 

industrialized countries. Several risk factors, already discussed above, have been proposed it has 

been estimated that nutrition could account for more than one third of cancer deaths [Doll et al., 

1981], and that dietary factors are responsible for 70% to 90% of all cases. 

 

1.2.1. Western diet as a colon cancer promoter  

Nutritional patterns collectively termed the “Western diet”, including high-fat and cholesterol, high-

protein, high-sugar, and excess salt intake, as well as frequent consumption of processed and ‘fast 

foods’, promote the incidence of colorectal cancer. 

There is evidence from both case-control and cohort studies that consumption of processed or red 

meat, especially when cooked at high temperatures by methods such as frying, grilling or broiling, is 

associated with increased risk of colorectal cancer. Indeed, some studies including the Nurses’ Health 

Study show that colorectal carcinogenesis could involve the secretion of insulin as a response to red 

and processed meats and thus subsequent activation of insulin and insulin growth factor-1 receptors, 

may lead to increased cell proliferation and reduced apoptosis [Giovannucci et al., 1995]. 

Furthermore, cooking meat at high temperatures may lead to the formation of mutagenic and 

carcinogenic heterocyclic amines (Haem) through the interaction of muscle creatinine with amino 

acids [Sugimura et al., 2004] as well as the formation of N-nitroso compounds [Cross et al., 2004]. 

Fish and poultry are alternative sources of protein and have been shown to reduce the risk of CRC 

and adenoma [Willett et al., 1990]. Possible mechanisms may involve more efficient methylation due 

to high methionine content in these foods or the presence of n-3 polyunsaturated fatty acids (PUFA), 

especially from oily fish. 
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Other studies have demonstrated an increase in the risk of colorectal cancer with increased total 

energy intake [Satia-Abouta et al., 2003]. Dietary lipids provide a rich source of energy and diets 

high in lipids, especially animal fat, may increase the risk of colorectal cancer [Hamer et al., 2008]. 

Different types of fats may play different roles in colorectal carcinogenesis via different mechanisms 

such as upregulation of apoptosis, inhibition of interleukin 1 and tumour necrosis factor-α synthesis, 

COX-2 inhibition and modulation of the redox environment in the colonocytes [Vanamala et al., 

2008]. 

 

1.2.2. Dietary components in colon cancer clinical  

Almost 25 centuries ago, Hippocrates, the father of medicine, proclaimed “Let food be thy medicine 

and medicine be thy food”. In fact, exploring the association between diet and health continues until 

our days. The elucidation of some targets for dietary components is fundamental to the development 

of effective prevention strategies and approaches. Accumulating preclinical studies indicate that 

dietary constituents including those involved with differentiation/proliferation and inflammation can 

influence various genetic and epigenetic events associated with colon cancer (Table 1). 

 

Table 1. Colon cancer trials with bioactive dietary components [Young et al., 2007] 
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 Calcium and vitamin D 

Garland et al. proposed that lower levels of vitamin D could account for the increase in mortality 

from colon cancer in higher latitudes and epidemiological studies showed that deaths from colorectal 

cancer have been found to be higher in areas with less sunlight. Populations consuming higher 

amounts of fresh fish, shellfish, calcium and vitamin D have lower incidence of colorectal cancer and 

may even have the lowest incidence of both colon and rectal cancer in Europe and North America. In 

addition, evidence reported that The active form of vitamin D, 1,25-dihydroxyvitamin D3 (Calcitriol) 

which is formed by hydroxylating the pro-vitamins in the liver and kidneys, inhibits the accumulation 

of -catenin by facilitating its degradation. The reduced -catenin causes a decrease in its 

transcriptional activity that stimulates the expression of -catenin/TCF4-responsive oncogenes such 

as c-myc. These findings are further supported by the data demonstrating that Calcitriol significantly 

decreases the expression of c-myc gene in the nucleus of SW837 cells. Thus, it is likely that the active 

form of vitamin D suppresses the oncogenic function of c-myc and thus inhibits the formation of 

ACF. The relation between vitamin D and colorectal cancer risk is also suggested in the Women’s 

Health Initiative. The Women’s Health Initiative was a clinical trial examining the effect of a diet 

low in fat and high in fruit, vegetables, and grains in preventing breast and colorectal cancers and 

heart disease in healthy postmenopausal women. Findings revealed a significant inverse trend with 

lower baseline levels of serum 1,25-dihydroxyvitamin D3 being associated with an increased risk of 

colorectal cancer [Tangpricha et al., 2001]. 

Calcium was found to have protective effect on colorectal cancer risk in some prospective studies 

Data from the HPFS and NHS cohorts showed that total, dietary and supplemented calcium reduced 

the risk of distal colon but not proximal cancer. Most of the risk reduction was achieved by calcium 

intake of 700-800 mg/day. An analysis of 10 cohort studies showed 22% reduction in the risk of 

colorectal cancer in those with higher intake of calcium [McCullough et al., 2003]. 
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 Sodium-butyrate 

Links between inflammation and colorectal cancer have been demonstrated by the increased risk of 

developing colon cancer in patients with inflammatory bowel diseases as well as the effectiveness of 

anti-inflammatory drugs to reduce intestinal tumors. In any case, it is not terribly surprising that 

consumption of dietary components with anti-inflammatory activity has been associated with the 

reduced risk of developing colorectal cancer. The inhibition of inflammatory processes by such 

diverse food components as butyrate is beginning to identify key events that are essential for the 

transformation of normal epithelial colonic cells into a neoplasm. Experimentally, the anti-

tumorigenic properties of fiber, which may include non-digestible oligosaccharides such as inulin and 

oligofructose, appear to relate to butyrate formation by colonic bacteria [Lupton et al., 2004]. The 

preventive and anti-inflammatory activities of butyrate have been associated with its ability to 

modulate transforming growth factor (TGF)-b signaling, IFN--mediated apoptosis, and the 

expression of intestinal muc2 gene that is responsible for mucin synthesis in model systems. 

TGF-b is recognized as an antiinflammatory cytokine that is expressed in the gut epithelium and thus 

serves as an important negative regulator of the proliferation of colonocytes. Recently, Nguyen et al 

[Nguyen et al., 2006] demonstrated that Na-butyrate selectively enhanced TGF-b-induced 

phosphorylation of Smad3 in gut epithelial cells. Smad3 protein is normally maintained in an 

unphosphorylated, inactive state in the cytoplasm, and thus, the response is to change the normal 

regulatory control. When TGF-b binds and activates its receptor complex, Smad3 is activated by 

phosphorylation and forms, a heterodimeric complex with Smad4 and Smad2. This complex 

translocates into nucleus and regulates transcription of tumor suppressor genes such a p27 or 

oncogenes such as myc. This effect is further magnified by the supplementation of Na-butyrate and 

the apoptotic effect of butyrate on colonocytes may be in part explained by the regulation of 

phosphorylation of Smad3 in TGF-b signaling. 
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Butyrate was also shown to sensitize colon cancer cells to apoptosis induced by IFN-, a cytokine 

produced by activated T lymphocytes and natural killer cells. Studies reported that butyrate enhances 

IFN--induced apoptosis through the inactivation of STAT1 transcription factor in colon cancer cells 

[Biswas S et al., 2006]. 

The ability of butyrate to inhibit MUC2 gene expression may be important. MUC2 gene is a 

differentiation marker of the secretory goblet cell lineage that predominantly synthesizes mucins. In 

vitro studies demonstrate that the treatment of HT29 colon cancer cells with Na-butyrate induces a 

marked reduction in MUC2 mRNA levels as a function of time. Perturbations in goblet cell function 

via inactivation of the MUC2 gene may be associated with the decreased development of intestinal 

tumors [Augenlicht et al., 2003]. 

 (n-3) Fatty acids 

Another bioactive food component that produces anti-inflammatory effects is (n-3) Fatty acids ( (n-

3) Fas). Epidemiological and preclinical studies suggest that the consumption of a diet high in (n-3) 

FAs reduces the risk of colon cancer.  The (n-3) FAs existing in foods include a-linolenic acid in 

plants such as olive, walnut, and canola as well as eicosapentaenoic acid (EPA) or docosahexaenoic 

acid (DHA) occurring in some fish. The cancer preventive effects of (n-3) FAs appear to be primarily 

attributed to its anti-inflammatory functions. Inhibition of IL-1 and TNF-a synthesis is a common 

finding when (n-3) FAs are provided. In addition, it has been shown that supplementation of (n-3) 

FAs to healthy humans suppresses the capacity of monocytes to synthesize TNF-. It is likely that 

the (n-3) FA-mediated decrease in TNF- brings about increased activity of caspase-3 as well as a 

decreased activity of NFkB, which induces the apoptosis of colon cancer cells. However, the recent 

observations that (n-3) FAs can suppress the expression of HER-2/neu transgenic mice suggest that 

these fatty acids may have multiple biological effects [Yee et al., 2005]. 
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 Selenium 

An inverse association between Selenium supplementation and the risk of colorectal cancer was 

observed in several studies. Selenium supplementation by way of brewer’s yeast supplementation 

was associated with up to 50% reduction in the incidence of colorectal cancer [Jacobs et al., 2004, 

Reid et al., 2006]. 

 Phytochemicals 

Polyphenols are a class of chemicals known for their numerous benefits especially their antioxidant 

effects inhibition of cellular proliferation, induction of cell cycle arrest, interaction with apoptotic 

pathways and antiangiogenic and antimetastatic properties. The most important dietary sources of 

polyphenols are fruits, vegetables, seeds, and beverages such as fruit juice, green tea, coffee, cocoa 

drinks, red wine, and beer. The chemoprotective role of polyphenols against cancer has been 

extensively studied. Evidence from case-control studies, cell culture and animal studies have shown 

a protective role against colorectal malignancy [Araújo et al., 2011; Johnson et al., 2007]. 

Curcumin. This polyphenol is a curcuminoid found in turmeric spice that has antioxidant, anti-

inflammatory and antitumour properties. A study reported that Curcumin is able to inhibit human 

cancer cell growth by suppressing gene expression of epidermal growth factor receptor through 

reducing the activity of the transcription factor Egr-1 [Chen et al., 2006]. Furthetmore, Curcumin has 

been revealed to possess anti-metastatic properties; Su et al [Su et al., 2006] showed that Curcumin 

is able to inhibit cell migration of human colon cancer colo-205 cells through the inhibition of nuclear 

factor kappa B/p65 and downregulates cyclooxygenase-2 and matrix metalloproteinase-2 

expressions. In addition, it was able to reduce the number and size of ileal and rectal adenomas in 

patients with familial adenomatous polyposis [Cruz-Correa et al., 2006]. 

Resveratol. Resveratol is a natural phenol smaller in size than polyphenols. It is found in the skin of 

grapes and red wine and has been shown to inhibit metastasis by reducing hypoxia inducible factor-
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1α and MMP-9 expression in colonocytes [Wu et al., 2008] as well as inhibiting Wnt signalling and 

β-catenin localisation [Hope et al., 2008]. 
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1.3. Caco-2 cells as tumour and healthy models 

In the 1970s, Caco-2 cell line was established from human colon adenocarcinoma with the aim of 

performing studies on cancer mechanisms [Fogh et al., 1977]. Only a decade later, due to the 

difficulties encountered in obtaining intestinal differentiated cell lines in culture from normal tissue, 

attention was directed to the specific intestinal properties of some gastrointestinal tumour cell lines. 

In most cell lines, only a partial differentiation was induced by cell treatment with synthetic or natural 

factors added to the medium [Pinto et al., 1983]. However, the Caco-2 cell line exhibited spontaneous 

enterocytic differentiation in long-term culture. The first studies on the Caco-2 cell line demonstrated 

that these cells, upon differentiation, express several morphological and biochemical characteristics 

of small intestinal enterocytes [Pinto et al., 1983]. These cells grow in monolayer, show a cylindrical 

polarized morphology, with microvilli on the apical side, tight junctions between adjacent cells, and 

also express disaccharidases and peptidases typically found on the apical membrane in normal small 

intestinal villus cells, (i.e. sucrase-isomaltase, lactase, aminopeptidase N, dipeptidylpeptidase IV).  

The functional polarity of the cell monolayer is further indicated by the fact that, after confluence, 

Caco-2 cells form domes on impermeable substrates, and transport ions and water toward the 

basolateral surface [Pinto et al., 1983]. Among other intestinal properties that were shown to be 

expressed in Caco-2 cells upon differentiation, there is the expression of polarized membrane 

receptors for growth factors as well as several transport activities on both apical and basolateral 

membranes. In fact, it has been shown that Caco-2 cells express the epidermal growth factor (EGF) 

receptor and its affinity, level of expression and related cellular response are strongly modulated by 

the degree of cell differentiation [Kuvada et al., 1999]. It was also shown that the vitamin D receptor 

is present both in undifferentiated and differentiated cells, with 2.6 times more binding sites in the 

latter than in the former [Giuliano et al., 1991].  
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In addition, specific intestinal carriers for sugars, amino acids, di- and tripeptides, vitamins, bile acids, 

micronutrients including heavy metals and nucleosides have been identified and functionally 

characterized in Caco-2 cells [Hidalgo and Li, 1996]. Moreover, the functional activity of the Na+/H+ 

transporter NHE3 gradually increases (up to 80%) from day 3 to day 22 post confluence [Janecki et 

al., 1999]. An additional study by Mailleau and coworkers [Mailleau et al., 1998], showed that the 

expression of the Cl- channel present on the apical membrane domain of epithelial cells (CFTR) and 

known also as a transporter of ATP-binding cassettes (ABC), increased from day 1 up to day 24 of 

culture. In the same study the activity of the Na+/glucose transporter SGLT1, was shown to rapidly 

increase with differentiation [Mailleau et al., 1998]. An increase in SGLT1 expression with time in 

culture had originally been shown to be associated with a parallel increase in the facilitated sugar 

transporters GLUT2 (glucose) and GLUT5 (fructose). Another member of the ABC family is the 

apical efflux pump P-gp, a trans-membrane protein encoded by the multidrug resistance (MDR1) 

gene, responsible for the apical efflux of several substances, including many drugs. Differentiated 

Caco-2 cells have an elevated activity of P-gp, higher than the human intestine in vivo rendering these 

cells able to be used as a model for intestinal bioavailability [Goto et al., 2003]. Furthermore, among 

the amino acid transport systems, the Na-dependent acidic amino acid transporter XAG-, resulting 

from the expression of the EAAT1 protein, has been shown to raise steadily between day 8 and day 

17 from seeding [Mordrelle et al., 2000]. 

The biochemical and functional properties exhibited by the Caco-2 cell line at different times in 

culture, as well as their stability in terms of morphology, growth characteristics and differentiated 

features have been the rationale for the use of these cells as a model of both colon cancer tumor and 

intestinal barrier in a very great number of studies. 
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2. Flavonoids and Luteolin  

Epidemiological studies have shown that a diet rich in plant-derived foods is consistently associated 

with a reduced risk of developing colon cancer. Although the compounds responsible for this 

preventive effect are not fully identify, evidence suggests that flavonoids may be good candidates. In 

fact, for thousands of years several plants and spices containing flavonoid derivatives have found 

application as disease preventive and therapeutic agents in traditional medicine in Asia. In addition, 

the potential health benefits of a particular food plant, plant tissue or herb appears to mirror its 

flavonoid composition. However, the mechanism through which flavonoids mediate their protective 

effects in diets rich in these foodstuffs is not completely understood. 

2.1 Flavonoids 

2.1.1 Structure 

Flavonoids are a large group of polyphenolic compounds, constituted by 5000 structurally unique and 

distinct molecules identified in the plant kingdom. Chemically, the common structure of these low 

molecular weight substances consists of two fused six-membered rings , an aromatic A-ring and a 

heterocyclic C-ring, connected through a carbon-carbon bridge to an aromatic B-ring. Based on their 

molecular backbone structure and hydroxyl group, flavonoids could be further divided into several 

subgroups as shown in Fig.3: flavones (2-phenylchromen-4-one); e.g., apigenin, luteolin, and 

tangeretin; flavonols (3-hydroxy-2-phenylchromen-4-one), e.g., quercetin, kaempferol, myricetin 

and rhamnazin; flavanones (2, 3-dihydro-2-phenylchromen-4-one), e.g., hesperetin, naringenin, and 

eriodictyol; flavanols [2-phenyl-3,4-dihydro-2H-chromen (flavan)-3-ol, flavan-4-ol, flavan-3,4-

diol], e.g., catechins and epicatechins; flavanonols (3-hydroxy-2, 3-dihydro-2-phenylchromen-4-

one), e.g., silibinin, taxifolin, and dihydrokaempferol; isoflavones (3-phenylchromen-4-one), e.g., 

genistein, daidzein, and glycitein, and anthocyanidins (2-phenylchromenylium), e.g., cyanidin, 

delphinidin, and malvidin [Ververidis et al., 2007]. 
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2.1.2. Source and biological activities 

Flavonoids are recognized in plants, primarily, as the pigments responsible for the colors of leaves, 

especially in autumn [Brouillard et al., 1988]. Moreover, as components of edible plants and plant 

foodstuffs, flavonoids constitute an integral part of the human diet [Herrmann et al., 1976, Harborne 

et al., 2000]. Indeed, flavonoids are widely distributed in fruits, vegetables, nuts, seeds, herbs, spices 

flowers, as well as in beverages such as red wine and teas. 

Many efforts have been made to determine the dietary intake of flavonoids, however, the formation 

of flavonoids in plants is influenced by numerous factors including light, plant genetics, 

environmental conditions, germination, degree of ripeness, and processing and storage, as well as 

species variety [Bravo et al., 1998]. For example, cherry tomatoes contain six times more quercetin 

per gram fresh weight than normal size varieties of tomatoes [Duthie et al., 2000]. This is likely due 

to the fact that this flavonol is synthesized and stored in the skin of the tomato, and smaller varieties 

have a higher skin to volume ratio. In addition to factors affecting content, there has been a lack of 

agreement on an appropriate method to analyze the different types of flavonoids. As a consequence, 

information in the literature on content of flavonoids in plant foods is incomplete and often 

contradictory. 

 

Figure 3. Molecular backbone structures of flavonoids and its subgroups [Kanadaswami et al., 2005] 

http://pharmrev.aspetjournals.org/content/52/4/673.long#ref-336
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Therefore, estimation of dietary intake of flavonoids is difficult and only a few data about it are 

available. Investigations in different populations have revealed that mean total flavonoid intake is 

usually in the order of 100-200 mg/day, flavonoles (with quercetin and kaempferol as main 

components) contribute 5-20 mg/day, flavones only about 1 mg; up to 90 % of the flavone fraction 

may be apigenin [Herrmann et al., 1976]. 

Growing evidence highlights flavonoids as compounds with potential biological, pharmacological, 

and medicinal properties [Cody et al., 1986 and 1988]. Indeed, flavonoids are reported, in addition 

to their free radical scavenging activity, to have multiple benefical effects including vasodilatory, 

antiinflammatory, antibacterial, immune-stimulating, antiallergic, antiviral, and estrogenic effects, as 

well as to be inhibitors of phospholipase A2, cyclooxygenase, and lipoxygenase, glutathione 

reductase and xanthine oxidase. 

Furthermore, an impressive body of information suggests that flavonoids could represent promising 

agents in anti-cancer research thanks to their ability to block the cell cycle, to induce apoptosis [Kuntz 

et al.,1999], to disrupt mitotic spindle formation [Beutler et al., 1998], and to inhibit angiogenesis 

[Mojzisa et al., 2008] (Fig.4). However, because the chemistry of the flavonoids seems to critically 

influence their activities, each member of this family must have been individually investigated for its 

potential applications in anti-cancer therapy.  

In our study, we focused on Luteolin (LU); LU structure, properties and functional roles are described 

in the next section. 

 

Figure 4. Anti-tumor activities of flavonoids [Kanadaswami et al., 2005] 

  

http://pharmrev.aspetjournals.org/content/52/4/673.long#ref-336
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2.2. Luteolin  

2.2.1. Structure and derivatives  

Belonging to the flavone group of flavonoids, LU has a C6-C3-C6 backbone and possesses two 

benzene rings, a third, oxygen-containing ring, and a 2−3 carbon double bond. LU also possesses 

hydroxyl groups at carbons 5, 7, 3’, and 4’ positions (Fig. 5) [Ross et al., 2002]. The hydroxyl 

moieties and 2-3 double bond are important structure features in LU that are associated with its 

biochemical and biological activities [Chan et al., 2003]. As for other flavonoids, LU may be present 

in plants as an aglycone (without any sugars bound to it) and as glycosides (with one or several sugars 

bound to it). Most glycosides of LU are O-glycosides, i.e., the sugar moieties are bound to the 

aglycone through one or several free hydroxyl (OH) groups. These glycosides usually have sugar 

moieties at positions 5, 7, 3’ and 4’. Cynaroside (LU-7-O-glucoside) and scolymoside (LU-7-O-

rutinoside) are classical examples of LU-7-O-glycosides. Sugars can also be bound to LU through a 

C-C bond, forming C-glycosides. LU-8-C-glucoside (orientin) and LU-6-C-glucoside (isoorientin) 

are the most common C-glycosides of LU. Glucose is the most frequent sugar found in LU glycosides; 

apiose, rhamnose, rutinose, galactose, arabinose, glucuronic acid and xylose are other sugars 

commonly found in LU glycosides. The glycoside is hydrolyzed to free LU prior to absorption 

[Hempel et al., 1999]. 

 

Figure 5. Chemical structure of Luteolin 

A and B: two aromatic rings with hydroxyl groups at 5, 7,3’and 4’ positions. C: chromenone ring with 2-3 

carbon double bond 
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2.2.2. Sources 

LU and its glycosides have been identified in many edible plants as carrots (Daucus carota), peppers 

(Capsicum annuum), celery (Apium graveolens), olive oil (Olea europaea), peppermint (Mentha x 

piperita), thyme (Thymus vulgaris), rosemary (Rosmarinus officinalis), oregano (Origanum vulgare), 

lettuce (Lactuca sativa), Perilla leaves (Perilla frutescens), pomegranate (Punica granatum), 

artichoke (Cynara scolymus), chocolate (Theobroma cacao), rooibos tea (Aspalathus linearis), turnip 

(Brassica napus), capers (Capparis spinosa) and cucumber (Cucumis sativus). It has also been 

identified in lemon, beets, Brussels sprouts, cabbage, cauliflower, chives, fennel, horseradish, parsley, 

spinach and green tea. It has been reported that the LU intake is about 0.1 mg/day [López-Lázaro et 

al., 2009]. 

 

2.2.3. Biovailability and metabolism 

In order to exert some of its biological activities in an in vivo setting, the bioavailibity of LU needs 

to be sufficiently high and its metabolism sufficiently low. Otherwise, many activities of LU observed 

in vitro will not be relevant in vivo. Since LU is a common dietary constituent and since the oral route 

is the preferred route of administration for most drugs, it is important to know the bioavailability and 

metabolism of this flavonoid after oral ingestion. 

Shimoi et al investigated the intestinal absorption of LU and LU-7-O-beta-glucoside in rats [Shimoi 

et al., 1998]. The absorption analysis demonstrated that LU was converted to glucuronides during 

passing through the intestinal mucosa and that LU-7-O-beta-glucoside was absorbed after hydrolysis 

to LU. Free LU, its conjugates and methylated conjugates were found to be present in plasma. This 

suggests that some molecules of LU can escape the intestinal conjugation and the hepatic 

sulfation/methylation. In agreement, the presence of free LU and its monoglucuronide were observed 

in human serum after ingestion of this flavonoid. Free LU was absorbed more efficiently from the 

duodeno-jejunum than from the ileum, and LU in propyleneglycol was absorbed more rapidly than 

http://www.ncbi.nlm.nih.gov/pubmed?term=L%C3%B3pez-L%C3%A1zaro%20M%5BAuthor%5D&cauthor=true&cauthor_uid=19149659
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that in carboxymethyl cellulose. The plasma concentration of LU and its conjugates reached the 

highest level 15 min and 30 min after dosing with LU in propyleneglycol, respectively. The ratio of 

LU to LU monoglucuronide in plasma of LPS-treated rats increased suggesting that the plasma 

concentrations of free LU can increase in some pathological processes such as inflammation [Shimoi 

et al., 2001]. 

In accordance with the observations reported above, Zhou and coworkers [Zhou et al., 2008] 

demonstrated that LU is absorbed passively in the intestine of rats and that its absorption is more 

efficient in the jejunum and duodenum than in the colon and ileum. The bioavailability of LU in 

peanut hull extract (PHE) was significantly greater than that of pure LU; after oral administration of 

14.3 mg/kg LU or 92.3 mg/kg of PHE (with 14.3 mg/kg LU), they observed that the maximum plasma 

concentration of LU PHE (C max) was about 8-fold higher than pure LU. The time to reach the 

maximum plasma concentration was about 1 hour for LU and 30 minutes for PHE. The half-life of 

LU was about 5 hours for LU and 3 hours for PHE [Zhou et al., 2008]. 

Taken together, these reports firmly indicate that LU can be absorbed after oral administration. 

Although most LU found in plasma is in the form of glucuronide and sulfate conjugates, low 

concentrations of free LU can be achieved in plasma after oral ingestion of this flavonoid. Moreover, 

the plasma concentrations of LU depend on the form in which LU is ingested; the maximum 

concentrations of LU are achieved after 1-2 h, and LU remains in the plasma for several hours [Zhou 

et al., 2008]. 

Intriguingly, Jin-Feng Qiu and colleagues recently created a water-soluble LU to render the use of 

LU clinically available without obstacles, as its poor water solubility. The authors used monomethoxy 

poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles to encapsulate LU by a self-

assembly method. Encapsulation of LU in MPEG-PCL micelles improved the half-life and peak 

concentration of LU when the drug was intravenously administered at a dose of 30 mg/kg in rats. In 

addition, LU/MPEG-PCL micelles could slowly release LU in vitro maintaining its cytotoxicity on 

4T1 breast cancer cells and C-26 colon carcinoma cells [Qiu et al., 2013]. 
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2.2.4 Biological activities 

Preclinical studies have shown that this flavone possesses a variety of pharmacological activities, 

including antioxidant, anti-inflammatory, antimicrobial and anticancer activities (Fig.6)  

 

Figure 6. Biological activities and possible mechanisms of action of luteolin [Lopez-Lazaro et al., 2007]  

 

 Antioxidant, anti-inflammatory and other anti-biological effects 

Previous studies demonstrated a strong relationship between the molecular structures of flavonoids 

and their antioxidant activities [Rice-Evans et al., 1996 and 2001]. In particular, flavonoids display 

two classical antioxidant structural features that are the presence of a B-ring catechol group, which 

serves to donate hydrogen/electron and subsequently to stabilize a radical species and the presence 

of a C2-C3 double bond in conjugation with an oxo-group at C4 which serves to bind transition metal 

ions such as iron and copper. Because LU fulfills these two structural requirements, it is not surprising 

that LU possesses antioxidant properties. Indeed, several studies demonstrated the capacity of LU to 

scavenge reactive oxygen and nitrogen species, in various types of cells as murine leukemia L1210 
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cells [Horváthová et al., 2003], human HMB 2 melanoma cells [Horváthová et al., 2005] and in 

hepG2 hepatic cells [Kanazawa et al., 2006]. Furthermore, LU is able to chelate transition metals that 

may induce oxidative damage by suppressing the Fenton reaction [Mira et al.,2002, Cheng et al., 

2000] and its capable to inhibit/ prooxidant enzymes and to induce the activity of antioxidant enzymes 

[Choi et al., 2008, Sadik et al., 2003]. The antioxidant activity of LU has not only been observed in 

vitro but also in vivo. Indeed, the treatment of heroin-dependent mice with LU and verbascoside 

limited the oxidative stress status and the damage to DNA, proteins and lipids in brain [Qiusheng et 

al., 2005].  

At micromolar concentrations, LU also displays specific anti-inflammatory effects in vitro and in vivo 

that are only partly explained by its antioxidant capacities. The anti-inflammatory activity includes 

suppression of pro-inflammatory cytokines expressions, reduction of various pro-inflammatory 

enzymes activities such as cyclooxygenase (COX) [Harris et al., 2006, Hu et al., 2004], 

lipoxygenases (LOX) [Sadik et al., 2003] and inducible nitric oxide synthase (iNOS) [Kim et al., 

2006, Hu et al., 2004]. LU also exhibited a high inhibitory activity against both thromboxane and 

leukotriene synthesis. Furthermore, several works have shown that LU inhibits NF-kappa B activity, 

causing a subsequent downexpression of pro-inflammatory cytokines, chemokines and enzymes as 

TNF, IL-1, IL-6, IL8, COX-2, iNOS [Kim et al., 2006]. Up to now, LU is the most potent flavonoids 

in the inhibition of TNF-alpha release from macrophages, and is able to block lipopolysaccharide 

(LPS)-induced activation of NF-kappa B, as well as NF-kappa B-driven gene expression [Harris et 

al., 2006]. Another mechanism involved in the anti-inflammatory activity of LU is the inhibition of 

the activator protein 1 (AP-1), a transcriptional regulator composed of members of the Fos and Jun 

families, that controls the expression of the inflammatory cytokine IL-6 together with NF-kappa B 

[Harris et al., 2006].  
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Choi and colleagues have observed that, in mice, the administration of water supplemented with LU 

decreased IL-6 levels in plasma and IL-6 production in hippocampus [Choi et al., 2008] suggesting 

that LU reduced LPS-induced IL-6 production in vitro and in vivo by inhibiting the JNK and AP-1 

signaling pathway.  

An in vivo study reported that LU, after parenteral and oral application, significantly inhibited the 

scratching behavior associated with allergic cutaneous anaphylaxis in animal models of irritant and 

allergic contact dermatitis inflammation [Baolin et al., 2005]. LU has also shown anti-allergic activity 

in vitro and in vivo through different mechanisms including inhibition of histamine release [Ueda et 

al., 2002, Kimata et al., 2000]. Moreover, numerous studies have reported that LU, its glycosides and 

plants containing it, showed antibacterial activity [Lv.et al., 2008, Zhu et al., 2004]; as on the course 

of acute Chlamydia pneumoniae infection in vivo [Törmäkangas et al., 2005], analysis of lung tissue 

revealed that LU histologically suppressed inflammation, the development of C.Pneumoniae-specific 

antibodies and the presence of chlamydia in lung. In addition, LU was reported as influenza virus 

neuraminidase inhibitor playing therefore the role of a natural molecule with antiviral properties 

[Liu.et al., 2008]. An antifungal activity was also attributed to LU by the fact that it showed activity 

against Epidermophyton floccosum, Trichophyton rubrum and Trichophyton mentagrophytes [De 

Campos et al., 2005]. 

Moreover, experimental data indicated that LU may prevent cardiovascular disease by reducing blood 

pressure and cholesterol levels [Ichimura et al., 2006], diabetes by reducing glucose levels [Cunha 

et al., 2008, Zarzuelo et al., 1996] and neurodegenerative disease by reducing oxidative stress, 

inflammation and beta-amyloid production [Rezai-Zadeh et al., 2008]. Due to its protective role, it 

is not surprising that plants rich in Luteolin have been used for many years in traditional medicine to 

treat infectious diseases. 

  

http://www.ncbi.nlm.nih.gov/pubmed?term=T%C3%B6rm%C3%A4kangas%20L%5BAuthor%5D&cauthor=true&cauthor_uid=16139801
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 Anticancer activity 

Cancer preventive activity 

Several in vivo studies suggest that LU has also a cancer preventive potential. In a 20-

methycholanyrene-induced fibrosarcoma rodent model, a LU-rich diet administration significantly 

suppressed tumor incidence by reducing lipid peroxides and cytochrome P450, increasing the activity 

of gluthathione-S-transferase (GST), and suppressing DNA synthesis [Elangovan et al., 1994]. 

Furthermore, in a murine skin carcinogenesis model, topical applications of LU prior to 12-

tetradecanoylphorbol 13-acetate (TPA) treatment resulted in a significant reduction in tumor 

incidence and multiplicity, due to the inhibiting of the inflammatory response and the scavenging 

reactive oxygen radicals by this flavonoid [Ueda et al., 2003]. 

Several mechanisms participate in the cancer preventive activity of LU. Numerous studies have 

shown that LU can prevent the DNA alterations induced by different carcinogenic agents both in vitro 

and in vivo [Cai et al., 1997]. Taj and coworkers studied the chemopreventive activity of LU against 

mutagenicity induced by deep-fried fish and mutton extracts in rats; they found that LU pre-treatment 

efficiently protected bone marrow cells against micronuclei and chromosome aberrations induced by 

these mutagens [Taj et al., 1996]. In addition, a growing body of research suggests that the anti-

inflammatory and antioxidant properties of this flavonoid, play a crucial role in its cancer preventive 

activity, since it is recognized that inflammatory diseases and the high levels of ROS increase the risk 

of developing many types of cancer [Mantovani et al., 2008]. Evidence also associated the cancer 

preventive activity of LU with its capacity to inhibit glycolysis and ATP production in cancer cells 

in vitro, an essential process to both generate energy and proliferate during tumor development [Du 

GJ et al., 2008]. 

  

http://www.ncbi.nlm.nih.gov/pubmed?term=Du%20GJ%5BAuthor%5D&cauthor=true&cauthor_uid=18503759
http://www.ncbi.nlm.nih.gov/pubmed?term=Du%20GJ%5BAuthor%5D&cauthor=true&cauthor_uid=18503759


42 

 

Cancer therapeutic activity 

Besides its cancer preventive effects, accumulating data of research supports the idea that LU could 

be considered as a cancer therapeutic agent. Its anticancer property is associated to multiple 

mechanisms such as inducing apoptosis, suppressing cancer cell proliferation, angiogenesis 

metastasis and chemo-sensitizing also a variety of cancer cells during cancer therapy. 

Inhibition of cancer cell proliferation 

Like many others flavonoids, LU is able to inhibit the proliferation of cancer cells derived from nearly 

all types of cancers mainly through regulating the cell cycle. It was reported that, in human gastric 

and prostate cancer, and in melanoma cells, LU is able to arrest in G1 phase the cell cycle by up-

regulating the cyclin-dependent kinases (CDK) inhibitors or by inhibiting directly the CDK2 activity 

[Kobayashi et al., 2002, Casagrande et al., 2001]. In addition, the inhibitory effect of LU on cancer 

cell proliferation is partly achieved through blocking the proliferation signaling pathways induced by 

several growth factors including epidermal growth factor (EGF), platelet derived growth factor 

(PDGF), insulin-like growth factor (IGF), and fibroblast growth factor (FGF). Indeed, it was reported 

that LU inhibited insulin-like growth factor 1 (IGF-1) induced activation of IGF-1R and AKT in 

prostate cancer PC-3 and DU145 cells. Thus, inhibition of AKT by LU resulted in decreased 

phosphorylation of its downstream targets, including p70S6K1, GSK-3beta and FKHR/FKHRL1. In 

addition, the same study showed that LU was able to suppress prostate tumor growth in vivo through 

suppressing IGF-1R/AKT signaling [Fang et al., 2007]. Similarly, LU inhibits PDGF-induced 

proliferation by inhibiting PDGF receptor phosphorylation in vascular smooth muscle cells [Kim et 

al., 2005]. In addition LU can act, not only by affecting the receptor activity, but also by directly 

targeting the downstream pathways that are involved in cell proliferation. For example, protein kinase 

C, a family of serine/threonine protein kinases that regulates growth factor response and cell 

proliferation, differentiation and apoptosis, can be inhibited in a concentration-dependent manner by 

LU intact cells [Weinstein et al., 1997]. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Kim%20JH%5BAuthor%5D&cauthor=true&cauthor_uid=15935146


43 

 

Induction of apoptosis  

Numerous studies have demonstrated that LU can induce apoptosis in a variety of cancer cells lines. 

Although the mechanisms underlying LU-induced apoptosis are complex, they can be generalized as 

processes either enhancing apoptosis or decreasing the survival signaling in cancer cells. 

In cervical and prostate cancer cells, it has been reported that LU is a potent activator of apoptosis by 

up-regulating the expression of the death receptor 5 (DR5) [Horinaka et al., 2005], a downstream 

gene of the p53 tumor-suppressor family, frequently inactivated to promote tumor growth in vitro and 

in vivo. Moreover LU is able to induce the activation and the accumulation of wild-type p53, 

consequently causing apoptosis, that occurred out of the G2/M phase of the cell cycle [Plaumann.et 

al., 1996]. LU induce apoptosis also cleaving Bcl-2 family members in human leukemia HL-60 cells. 

Indeed, LU could decrease the mitochondrial membrane potential, is able to trigger cytochrome c 

release to cytosol, and subsequently induce the processing of procaspase-9 and procaspase-3, which 

are followed by the cleavage of poly-(ADP-ribose) polymerase (PARP) and DNA fragmentation 

factor (DFF-45). The cleavage of the pro-apoptotic Bcl-2 proteins, such as Bad and Bax to produce 

their truncated and active forms, and the cleavage of the anti-apoptotic Bcl-2 proteins, such as Bcl-2 

and Bcl-XL, into their potent pro-apoptotic fragments were also detected [Cheng et al., 2005]. 

Selvendiran and colleagues reported that LU targeted the signal transducer and activator of 

transcription 3 (STAT3) through dual pathways; the ubiquitin-dependent degradation in Tyr (705)-

phosphorylated STAT3 and the gradual down-regulation in Ser (727)-phosphorylated STAT3 

through inactivation of CDK5, thereby triggering apoptosis via up-regulation of Fas/CD95 in human 

hepatoma cells [Selvendiran et al., 2006]. The possible role of topoisomerases in the putative 

anticancer and carcinogenic properties of LU was discussed and data suggest that topo IIβ has an 

important function in LU-induced cell growth inhibition and cell death.in K562 leukemia cells 

[Lopez-Lazaro et al., 2007].  
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On the other hand, LU shifts the cell survival and death balance to the side of death by suppressing 

cell survival pathways such as PI3K/AKT, NF-kappa B, and MAPKs in different cancer cells 

including epidermoid carcinoma, leukemia and heptoma. 

Anti-angiogenesis  

Accumulating data indicates that LU is a potent angiogenesis inhibitor in vitro and in vivo at 

concentrations in the low micromolar range. It was reported that LU inhibited vascular endothelial 

growth factor (VEGF)-induced angiogenesis in the rabbit corneal assay and in human umbilical vein 

endothelial cells (HUVECs). In the former in vivo model LU was able to inhibit VEGF-induced 

neovascularization whereas in the latter model, it was found that LU exerts anti-survival and 

antimitotic effects. LU was able to inhibit VEGF-induced PI3K activity and to abolish the activation 

of AKT, a downstream target of PI3K, conveying the survival downstream signals. With regard to its 

antimitotic activity, LU inhibited VEGF-induced phosphorylation of p70 S6 kinase (S6K), a 

downstream effector of PI3K responsible for G(1) progression [Bagli et al., 2004]. 

Anti-metastasis 

Evidence suggested that LU may prevent the processes of invasion and metastasis by inhibiting for 

instance, matrix metalloproteinases (MMPs), namely MMP-2 and -9, which are involved in several 

stages of metastasis, and the Focal adhesion kinase (FAK) activity, since it is well known that FAK 

phosphorylation is associated with increased invasive potential [Ende et al., 2004, Huang et al., 

1999]. Additionally, LU blocks critical signal transduction pathways for migration and metastasis in 

cancer cells such as the EGFR-signaling pathway [Lee et al., 2004]. 

Chemosensitizer in cancer therapy 

LU has been tested with other anticancer agents for its anticancer cell properties, and has sensitized 

different drug-induced cytotoxicity in a variety of cancer cells. Shi and coworkers reported, in a 

xenograft mouse model, that LU enhanced the cancer therapeutic activity of cisplatin via p53 
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stabilization and accumulation [Shi et al., 2007]. Moreover, the pretreatment with a non-cytotoxic 

concentration of LU significantly sensitized the apoptosis induced by the TNF-related apoptosis-

inducing ligand (TRAIL), TRAIL, in both TRAIL-sensitive (HeLa) and TRAIL-resistant cancer cells 

(CNE1, HT29, and HepG2). Such sensitization is achieved through enhanced caspase-8 activation 

and caspase-3 maturation. Furthermore, LU sensitizes TRAIL-induced apoptosis through 

ubiquitination and proteasomal degradation of the protein level of X-linked inhibitor of apoptosis 

protein (XIAP), therefore downregulating its expression. Moreover, LU inhibited PKC activity that 

known to stabilize XIAP, and thus sensitizing TRAIL-induced apoptosis [Shi et al., 2005, Horinaka 

et al., 2005]. In other study, Shi and colleagues demonstrated that the  pretreatment with LU greatly 

sensitized TNF alpha-induced apoptotic cell death in a number of human cancer cell lines, including 

colorectal cancer COLO205, HCT116 cells and cervical cancer HeLa cells via the inhibition of 

nuclear transcription factor-kappa B (NF-kappaB) activity and c-Jun N-terminal kinase (JNK), and 

therefore suppressing the expression of NF-kappaB-targeted antiapoptotic genes, including A20 and 

cellular inhibitor of apoptosis protein-1 (c-IAP1) [Shi et al., 2004]. In addition, in nude mice with 

xenografted SKOV3ip1-induced tumors, LU significantly inhibited HER2 expression and tumor 

growth in a dose-dependent manner, and rapamycin further enhanced the effect of LU with a 

concomitant p21 inhibition [Chiang et al., 2007]. 

2.2.5. Luteolin and colon tumorigenesis 

Emerging pieces of evidence recently documented that LU can exert anticancer effects in colon 

cancer. In particular, three studies by Manju et al showed that LU exerts chemopreventive effects 

against 1,2 dimethylhydrazine-induced colon carcinogenesis in rats; this effect was due to unclear 

mechanisms and, LU antioxidant properties have been related to this anticarcinogenic activity [Manju 

et al. 2005 and 2007]. Furthermore, in an in vitro study, Lim. and colleagues revealed that LU 

downregulates the activation of the PI3K/AKT and ERK1/2 pathways via a reduction in IGF-IR 

signaling in HT-29 cells; this may be one of the unclear mechanisms responsible for the LU-induced 
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apoptosis and cell cycle arrest [Lim et al., 2007]. In addition, LU induces growth arrest in HCT-15 

colon cancer cells through involvement of Wnt/β-catenin/GSK-3β signaling. Moreover, a very recent 

study suggests that LU inhibits azoxymethane-induced colorectal cancer through activation of Nrf2 

signaling [Pandurangan et al., 2014]. 

Notwithstanding these studies implicate LU as an anti-cancer effector in colon cancer, but little is 

known about the mechanisms by which LU exerts these effects. 
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3. Sphingolipids  

3.1. Overview on Sphingolipids  

Sphingolipids (SLs) represent a major class of lipids that are ubiquitous constituents of membranes 

in eukaryotes. They were discovered by Thudichum in 1876 as structural constituents of biological 

membrane. However, in the last 20 years growing evidence highlights a pivotal role of SLs, and 

particularly some of them, as bioactive molecules able to regulate different cell properties and 

involved in the modulation of key cell functions. Concerning their chemical stuctures, SLs are 

amphipatic molecules composed by a hydrophilic (or polar head) and a hydrophobic (or tail) portion. 

Ceramide (Cer) is the central building block of all complex SLs and is responsible for their insertion 

into the outer layer of the plasma membrane (PM). Cer is constituted by a long chain amino alcohol 

like the 2-amino-1,3-dihydroxyoctadec-4-ene (Sphingosine, Sph), connected to a fatty acid by an 

amide linkage. Through its primary alcoholic residue, a variety of charged, neutral, phosphorylated, 

or glycosylated moieties, representing the polar head group, are attached to Cer further forming 

complex SLs [Merrill et al., 2007]. In particular, the most abundant mammalian SL called 

sphingomyelin (SM), a phosphorylcholine residue is attached to Cer, whereas in glycosphingolipids 

(GSLs) the polar group is represented by an oligosaccharide chains, that may contain up to 15-20 

saccharidic units, most frequently glucose, galactose, N-acetylglucosamine, N-acetylgalactosamine 

[Yu et al., 2007]. The GSLs containing one or more sialic acid residues in the carbohydrate chain are 

referred as gangliosides. Furthermore, both the sphingoid base, Sph and Cer may exist in the 

phosphorylated form in correspondence with the carbon in position 1 (C-1) giving rise to sphingosine-

1-phosphate (S1P) and ceramide-1-phosphate (C1P), respectively. 

The hydrophilic and hydrophobic moieties result in both polar and non-polar regions giving the 

molecules an amphipathic character which accounts for their tendency to aggregate into membranous 

structures [Feizi et al., 1985]. The hydrophobic portion is embedded in the lipid core of biological 

membranes, whereas the hydrophilic portion is protruding into the extracellular milieu. The Cer 
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backbone confers some physical-chemical properties to the SLs that differs from those of other 

membrane lipids. In fact, the amidic linkage, with the contemporary presence in the same molecule 

of a hydrogen bond donor and an acceptor group (the carbonyl oxygen and the amidic hydrogen), 

allows the formation of a network of hydrogen bonds. The presence of hydrogen linkages 

considerably stabilizes the SL segregation in specific membrane areas, which appear enriched with 

this lipid family and for this reason they have been defined “SL-rich membrane domains” [Pascher 

et al., 1976]. In addition, the numerous hydrogen bonds in these domains confer rigidity and 

resistance to the membrane allowing their differentiation by physical-chemical properties from the 

remaining membrane.They are ubiquitously present in different organelle membranes and 

particularly abundant in the plasma membrane . In particular, SM and GSLs represent the major SLs, 

displaying an asymmetric or polarized distribution, and play important roles in the regulation of 

membrane fluidity and sub-domain structures [Hakomori et al., 1990]. GSLs are clearly significant 

contributors to the structure of the outer leaflet of most eukaryotic cell membranes and show a specific 

distribution on the membrane for each cell type, which can vary with differentiation and neoplastic 

transformation. 

 

3.1.1. Sphingolipid metabolism 

Despite the diversity of structure and function of SLs, common biosynthetic and catabolic pathways 

govern their metabolism and content. Cer constitutes the center of SL metabolism that can be 

produced in at least three distinct ways. First, it can be originated from the de novo pathway, second, 

through the hydrolysis of complex SLs and finally, through the hydrolysis of complex SLs (Fig 7) 

[Adan-Gokbulut et al., 2013]. 
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Figure.7. Schematic representation of sphingolipid metabolism [Adan-Gokbulut et al., 2013]  
SPT, serine-palmitoyl transferase; KSR, ketosphinganine reductase; CS, ceramide synthase; DES, 

dihydroceramide desaturase; GCS, glucosylceramidesynthase; GlcCDase, glucosylceramidase; CGT, 

ceramide galactosyl transferase; GalCDase, galactosylceramidase; C1PP, ceramide-1-phosphate 

phosphatase; CK, ceramide kinase; SMS, sphingomyelin synthase; PC, phosphatidylcholine; DAG, 

diacylglycerol; SMase, spingomyelinase; SK, sphingosine kinase; S1PP, S1P phosphatase. 
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De novo pathway  

The de novo biosynthetic pathway of SLs starts at the cytosolic face of the endoplasmic reticulum 

(ER), and potentially in ER-associated membranes, such as the perinuclear and mitochondria-

associated membranes, where enzyme activities, responsible for the reaction sequence leading to Cer, 

are localized [Michel et al., 1997]. This pathway begins with the condensation of the amino acid L-

serine with a fatty acyl coenzyme A (CoA), usually palmitoyl CoA and in less extent stearoyl CoA, 

catalyzed by serine palmitoyl transferase to generate 3-keto-dihydrosphingosine [Nagiec et al., 1994, 

Weiss et al., 1997]. On its turn, 3-keto-dihydrosphingosine is reduced by a NADPH-dependent 

oxidoreductase, called the 3-ketosphinganine reductase, to form dihydrosphingosine (sphinganine) 

[Stoffel et al., 1968]. Sphinganine is subsequently the substrate of the dihydro(dh)-Cer synthase 

(CerS), which uses an acyl donor (often palmitoyl-CoA, but also stearoyl-CoA) to bind sphinganine 

to a fatty acid forming dh-Cer [Rother et al., 1992, Merrill et al., 1986 ]. It is worth that CerS is able 

to catalyse the N-acylation not only of dh-Sph but also of Sph derived from complex SL catabolism, 

thus being involved in the efficient recycling of this long chain base.  

Six mammalian genes that encode Cer synthase have recently been identified and recognized as 

members of the LASS family (Longevity Assurance Genes). Each of these genes specifically 

synthesize one of the several Cer species that differ in the fatty acyl chain length CoAs. For example, 

LASS1 is involved in the production of C18Cer, LASS2 of C22Cer, LASS3 of C18/C24Cer, LASS4 

of C20Cer, LASS5 and LASS6 of C16Cer and C14/C16Cer respectively [Levy et al., 2010, Pewzner-

Jung et al., 2006]. The major part of the dh-Cer pool is then desaturated by the dihydroCer desaturase 

(DES) generating a 4,5-trans-double bond to form Cer [Geeraert et al., 1997, Michel et al., 1997, 

Mikami et al., 1998]. 

Then, The neo-synthesized Cer and that formed from Sph recycling can either directly reach the PM 

or be used as common precursor in the GSLs and SM biosynthesis. The formation of complex SLs 

requires a mechanism of Cer transport from the ER, site of its biosynthesis, to the Golgi apparatus. 
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The synthesis of SM occurs via addition of phosphocholine group to the hydroxyl group in position 

1 of the sphingoid base of the Cer. This reaction is catalyzed by SM synthase (SMS). To date, several 

studies suggest the existence of two different enzymatic SMS isoforms: SMS1, localized in the 

luminal side of the cis/medial Golgi apparatus and SMS2, primarily localized to the PM [Hannun et 

al., 2008, Huitema et al., 2004]. Experimental evidence has shown that about 90% of the de novo 

synthesis of SM occurs in the cis/medial Golgi, and only a small percentage occurs at the level of the 

PM. The localization of SMS2 at the PM suggests its role as a regulator of SM and Cer levels for 

signalling pathways and signal transduction.  

Regarding the biosynthesis of GSLs, different membrane-bound glycosyltransferases are responsible 

for the sequential addition of sugar residues to the hydroxyl group in position 1 of the Cer, through 

β-glycosidic bond, leading to the growth of the oligosaccharide chain. Glucosylceramide (GlcCer) is 

the first glycosylated product, obtained from Cer and UDP-glucose, through a reaction catalyzed by 

GlcCer synthase (GCS), enzyme localized at the cytosolic leaflet of the Golgi apparatus [Jeckel et 

al., 1992]. Therefore, GlcCer biosynthesis requires an efficient transport mechanism of Cer from the 

cytoplasmic side of the ER to the cytoplasmic side of the cis-Golgi. Once synthesized, GlcCer reach 

directly the PM, presumably transported in a vesicular system, or it can be translocated by a flippase 

enzyme to the luminal side of the Golgi where it is further glycosylated by other glycosyltransferases 

located in this cellular district to generate more complex GSLs such as a gangliosides. In the 

biosynthesis of gangliosides, glycosyltransferases act by associating to GlcCer individual saccharide 

units, following a precise sequential order [Ichikawa et al., 1998, Degroote et al., 2004]. 

Galactosylceramide (GalCer), the common precursor for galacto-series of GSLS found in vertebrates, 

is formed by the addition of a galactose moiety from UDP-Gal to GlcCer catalysed by 

galactosyltransferase. 

Cer can also undergo phosphorylation of the hydroxyl group of the carbon in position 1 by the Cer 

kinase (CK), with the consequent formation of Cer-1-phosphate (C1P) [Hannun et al., 2008]. The 

subcellular localization of this enzyme has not been definitely identified, but it seems to be at the 
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level of the plasma membrane, the Golgi apparatus, and the cytoplasm [Van Overloop et al., 2006]. 

SLs reach their final destination at the plasma membrane mainly following the vesicular flow of 

exocytosis from the ER or the Golgi apparatus to the PM. 

 

Catabolism 

 

Another important point of regulation of SLs composition is the lipidic degradation that occurs mostly 

in the acidic compartments of the cells, the lysosomes, where SLs are transported from the plasma 

membrabe by the endocytic vesicular flow through the early and late endosomal compartment to be 

catabolyzed. 

Lysosomal glycosidases sequentially cleave off the sugar residues from the non-reducing end of their 

glycolipid substrates. The resulting monosaccharides, sialic acids, fatty acids and sphingoid bases can 

leave the lysosome and can be used within recovery processes called “salvage pathway” (discussed 

below) or can be further degraded. 

The intralysosomal degradation of most, if not all, GSLs requires, besides exoglycohydrolases, 

effector protein molecules named “sphingolipid activator proteins (SAPs, or saposines)” [Huwiler et 

al., 2000]. The sequence of sugar removal from gangliosides within the lysosomes is as follows: from 

GM1, galactose is removed by a β-galactosidase, working in the presence of either the GM2-AP or 

SAP-B [Wilkening et al., 2000], to produce GM2. The resulting ganglioside GM2 is cleaved to 

ganglioside GM3 and Nacetyl-galactosamine only by the β-hexosaminidase isoenzymes Hex A which 

requires the GM2-AP, an activator that is essential for the in vivo degradation of the GM2 

gangliosides. In some cells and animals, sialic acid is removed from GM1 and GM2 by a specific 

sialidase (GM1-and GM2-sialidase) producing the corresponding a-sialo derivatives GA1 and GA2, 

that, by the action of β-galactosidase and β-hexosaminidase or only β-hexosaminidase respectively, 

are converted to Lactosylceramide (LacCer). 
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LacCer is produced also directly from GM3 by the action of a sialidase, which cleaves this ganglioside 

into LacCer and sialic acid in a reaction stimulated by SAP-B [Fingerhut et al., 1992]. LacCer is 

then degraded to Cer by the sequential action of a β-galactosidase (in the presence of either SAP-B 

or -C) and β glucosidase [Zschoche et al., 1994]. 

For the non-glycosylated SLs, like Cer and SM, non-lysosomal degradation steps are known which 

apparently do not need the assistance of an activator protein. The SM degradation is catalyzed by 

sphingomyelinase (SMase) that generates Cer and phosphorylcholine from the cleavage of the 

phosphodiester bond. To date, three classes of this enzyme have been described and distinguished 

according to their subcellular localization and the optimum pH, in acidic, neutral, and alkaline SMase. 

The acidic sphingomyelinase (A-SMase) represents multiple enzymatic forms that exist in different 

cellular and extracellular compartments. A common protein precursor (pro-ASMase) is differentially 

trafficked to form lysosomal aSMase (L-SMase) or secretory A-SMase (S-SMase) [Schissel et al., 

1998, Tabas et al., 1999]. While L-SMase resides in the endo-lysosomal compartment, S-SMase is 

an extracellular enzyme. An additional form of A-SMase has been reported in close association with 

the outer leaflet of the PM where it can form Cer-rich platforms [Stancevic and Kolesnick, 2010]. 

The neutral SMase (N-SMase) has various subcellular locations including the inner leaflet of the 

plasma membrane, ER, Golgi, and even the nucleus [Marchesini et al., 2004, Clarke et al., 2006]. 

The alkaline SMase (Alk-SMase) isoform has now been re-named NPP7 because of its similarity to 

the nucleotide-pyrophosphatase/phosphodiesterase (NPP) family of enzymes. In addition to its role 

in SM digestion, a potential implication of this enzyme in cell signaling processes has also been 

suggested. In particular, Alk-SMase has been shown to inhibit cell proliferation in HT-29 colon 

carcinoma cells [Duan et al., 2006].  

Cer is degraded by ceramidases (CDases); three isoforms of CDases have been identified and 

classified by their pH optimal as acidic, neutral and alkaline CDases. These CDases are located at the 

plasma membrane, lysosome, and ER/Golgi complex, respectively [Mao et al 2008]. These enzymes 

hydrolytically cleave Cer in fatty acid and Sph. Cer-derived Sph can be recycled or undergo 

http://www.ncbi.nlm.nih.gov/pubmed?term=Clarke%20CJ%5BAuthor%5D&cauthor=true&cauthor_uid=16981685
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phosphorylation in position C1 with the generation of S1P by SPHK. S1P can be metabolized through 

the irreversible cleavage in position C2-C3, to hexadecenal and phosphoethanolamine in a reaction 

catalyzed by the S1P lyase enzyme, located on the ER cytosolic side [Serra et al., 2010]. Notably, 

this step is the only exit pathway from the SL pathways. S1P can also be dephosphorylated back to 

Sph through a reaction catalyzed by either lipid phosphate, or S1P specific phosphatases [Le Stunff 

et al., 2002 and 2007]. 

The “salvage pathway” is a recovery process by which the products of the SLs catabolism and in 

particular sph can be re-used for a new cycle of SLs metabolism [Hannun et al., 2008]. Cer-derived 

Sph reaches the ER where it is N-acylated to regenerate again the Cer as a precursor for the 

biosynthesis of complex SLs. The Sph recycling process is an energy advantage to cells and, in 

different cell types, may constitute the principal pathway of Cer and complex SLs synthesis 

[Tettamanti et al., 2003]. 

 

3.1.2. Sphingolipids: actors of signalling and regulatory pathways 

SLs were once considered only structural components of the cellular membranes; however, the 

variations found in their chemical structures allow them to play diverse roles in cellular metabolism. 

Indeed, SLs physico-chemical properties enable them to fulfil and regulate a wide spectrum of 

relevant biological functions including molecular sorting, cell-cell interaction and intracellular 

transport. Indeed, membrane SLs through their hydrophilic portion are able to recognize and interact 

with elements of the extracellular microenvironment (protein or oligosaccharide component of other 

cells), allowing the transfer of the information in the intracellular compartment. Furthermore, 

different stimuli applied to the cells (UV radiation, chemotherapy, growth factors, etc.) generate 

metabolic reactions that lead to the production of different intermediate of SL metabolism, Cer, Sph, 

S1P, and C1P acting as chief bioactive mediators involved, as intra- or extra-cellular messengers, in 

the regulation of crucial processes as cell growth, death, migration and senescence. Indeed, the 
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regulatory and signalling functions of individual SLs provide an explanation for the structural 

diversity of this class of molecules and their intricate pathways of metabolism. Cer and S1P are the 

best studied “bioactive” SLs, and they exert opposite effects in many systems, with Cer usually 

inhibiting proliferation and promoting apoptosis, and S1P stimulating growth and suppressing 

apoptosis. 

Ceramide: tumor-suppressor lipid 

Besides its role as the precursor of complex SLs, Cer is a signaling molecule capable of regulating 

many fundamental cellular functions. It is referred to as a ‘’tumor suppressor lipid’’, since it 

powerfully potentiates signaling events that drive apoptosis, cell cycle arrest, and autophagic 

responses. In the typical cancer cell, Cer levels and signaling are usually suppressed by 

overexpression of Cer-metabolizing enzymes or downregulation of Cer-generating enzymes. 

Moreover, chemotherapeutic drugs as well as radiotherapy can increase intracellular Cer levels, and 

exogenously treating cancer cells with short-chain Cer leads to anticancer effects. Evidence strongly 

suggests that the upregulation of Cer levels is a promising anticancer strategy [Ogretmen and 

Hannun, 2004].  

 Ceramide in cell cycle arrest and differentiation  

In the regulatory functions of cellular processes such as cell cycle arrest and differentiation, different 

studies have shown that Cer is upstream of cell cycle regulators. In fact, Cer interacts with protein 

kinases and phosphatases that regulate important signaling pathways in cancer such as Akt, protein 

kinase C (PKC), or MAP kinases [Ogretmen and Hannun, 2004]. 

Accumulating studies showed that Cer could modulate the Ras–Raf–MAPK pathway via specific 

interactions with the kinase suppressor of RAS (KSR) and c-Raf; Cer stimulates the 

autophosphorylation of KSR, resulting in the transactivation of c-Raf, thus regulating the Ras–Raf–

MAPK pathway [Kolch et al., 2000]. More recently, the CA3 domain of KSR was identified as the 
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binding site for Cer [Yin et al., 2009]. Interestingly, inhibition of Cer generation prevented KSR 

translocation to GSLs-enriched plasma membranes and, thus, reduced its activation. Additionally, c-

Raf itself was also identified as a Cer-binding protein. Cer produced via IL-1β stimulation not only 

binds to c-Raf, but also increased the activity of this mitogen-activated protein kinase [Huwiler et al., 

1996]. 

Long-chain Cer activate protein phosphatase-1 (PP1) and protein phosphatase-2A (PP-2A), which 

are known as Cer-activated protein phosphatases (CAPPs) [Chalfant et al., 1999]. The connection 

between PP1 and Cer in regulating the retinoblastoma protein (RB) has been documented [Lee et al., 

2000, Chalfant et al., 2002]. RB plays a critical role in cell cycle regulation, and Cer has been shown 

to dephosphorylate RB, leading to growth arrest in cancer cells. However, whether direct interaction 

between PP1 and Cer is involved in the regulation of PP1 activity is unclear. 

PP2A is a tumor suppressor in cancer, and its activation regulates various downstream oncoproteins 

[Janssens et al., 2005, Westermarck et al., 2008]. In particular, the naturally occurring D-erythro 

isoform of Cer was the most potent at increasing PP2A activity and this effect was demonstrated with 

Cer containing short and long fatty acids chain lengths [Dobrowsky et al., 1993, Wolff et al., 1994]. 

Cer regulates PP2A activity via binding to its biological inhibitor (SET/I2PP2A), which controls 

PP2A activity and its downstream targets, such as proto-oncogene c-Myc, retinoblastoma protein, 

cyclin-dependent kinases (CDKs) and Bcl-2 family members [Ogretmen et al., 2004, Mukhopadhyay 

et al., 2009], thus describing a novel mechanism for regulating PP2A-dependent antiproliferative 

roles of Cer. 

Further studies also indicated that the activation of protein kinase zeta (PKC-zeta, an atypical form 

of PKC) by Cer is involved in the inactivation of Akt within the structured membrane micro-domains, 

leading to growth arrest in vascular smooth muscle cells [Fox et al., 2007]. An important in vivo 

example of Cer-mediated growth arrest was observed with the use of Cer-coated balloon catheters, 

which caused growth arrest of vascular smooth muscle-cells (VSMC) after stretch injury in vivo. 
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Mechanistically, this growth arrest of VSMC was linked to Cer-induced Akt inhibition, which was 

mediated through PKC-zeta [Bourbon et al., 2000]. 

The idea that Cer is a regulator of cell differentiation has been recognized since the discovery that 

vitamin D3-induced differentiation of HL-60 and U037 human leukemia cells. This differentiation 

resulted in a progressive increase in the hydrolysis of SM by N-SMase, resulting in the elevation of 

Cer, which induced monocytic, but not neutrophilic or macrophage-type, differentiation of these cells 

[Okazaki et al., 1989]. In neuronal cell lines, Cer mimics nerve growth factor function, and induces 

differentiation of Purkinje cells, and hippocampal neurons [Dobrowsky et al., 1994]. In addition, Cer 

induces differentiation in Neuro2a cells via upregulation of N-SMase, as previously reported in our 

laboratory [Riboni et al., 1995]. 

 Ceramide in cell death (Apoptosis)  

Apoptosis can be induced by various factors including chemotherapeutic agents, CD95, tumor 

necrosis factor-1, growth factor withdrawal, hypoxia, or DNA damage. Many of these mediators of 

apoptosis are regulators of Cer generation, suggesting a pivotal role of Cer in apoptosis [Pettus et al., 

2002]. Moreover, different studies indicates that endogenous Cer levels increase in cells before 

triggering the apoptotic cascade [Dbaibo et al., 1997].  

Additionally, increasing the endogenous levels of Cer with inhibitors of Cer metabolism enzymes or 

by over-expression of Cer generating enzymes results in apoptosis [Abe et al., 1995; Bielawska et al 

1996]. For example, in leukemia cells, expression of bacterial SMase, which generates Cer from 

intracellular pools of SM, caused a significant increase in Cer levels and induced apoptosis [Zhang 

et al., 1997]. In addition, ionizing radiation activates A-SMase for Cer generation. Importantly, 

human lymphoblasts and mice deficient in SMase are resistant to high doses of radiation, suggesting 

an active role of Cer in apoptosis regulation [Santana et al., 1996]. On the other hand, inhibitors of 

the de novo pathway, such as fumonisin B1 [Plo et al., 1999], prevent apoptosis, providing evidence 

for the role of Cer generation in mediating apoptosis. 
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One of the mechanisms by which Cer regulates apoptosis is through the induction of Fas capping, 

which involves the lateral segregation of cross-linked Fas ligand with its surface receptor at the SM-

enriched plasma membrane of Jurkat T lymphocytes, necessary for its optimal function in cell killing 

[Cremesti et al., 2001]. On the other hand, cells that are resistant to Cer and CD95/Fas-induced 

apoptosis have defective mitochondrial apoptosis [Raisova et al., 2000], indicating that perturbations 

of ceramide-CD95/Fas signaling can result in the development of resistance to cell death in human 

cancer cells. 

Another target for Cer was also identified as cathepsin D, an aspartic protease [Heinrich et al., 1999]. 

Procathepsin D can be secreted into the tumor microenvironment, leading to the degradation of 

extracellular matrix proteins and contributing to tumor metastasis and growth [Abbott et al., 2010]. 

Interestingly, the interaction between Cer and cathepsin D induced autocatalytic proteolysis, leading 

to the enzymatically active form of cathepsin D. Functionally, cathepsin D has been implicated in 

mediating apoptosis via IFN-ϒ, Fas and TNF-α [Deiss et al., 1996] , as well as chemotherapy agents 

[Abbott et al., 2010]. An equally wide array of studies have investigated the relationship between Cer 

and the Bcl-2 proteins family, particularly Bcl-2 itself, Bcl-xL, and Bax. For example, in C6 glioma 

cells, etoposide induces Cer formation by N-SMase activation, which then increases the Bax/Bcl-2 

ratio and in A549 cells, exogenous and endogenous Cer produced from gemcitabine treatment 

enhance the expression of proapoptotic Bcl-x and caspase 9 splice variants, demonstrating regulation 

of Bcl-2 family protein expression levels and splicing patterns by the bioactive lipid. The connection 

between Cer and Bax has also been reported by several studies. One study has shown that Bax 

overexpression does not affect Cer production in response to etoposide, yet Cer treatment in prostate 

and colorectal cancer cell lines induces apoptosis only when Bax is overexpressed suggesting a link 

between the lipid and the protein [Sawada et al., 2000]. 
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 Ceramide in cell senescence  

The relationship between Cer and senescence came with the observation that Cer levels increased 

significantly as human fibroblasts entered the senescent phase [Venable et al., 1995]. This was 

supported by the fact that fibroblasts treated with Cer recapitulated the morphologic and biochemical 

changes of senescence such as activation of retinoblastoma, regulation of cyclin-dependent kinases, 

or inhibition of growth factor signaling. Mechanistically, these changes induced by ceramide occur 

through inhibition of phospholipase D, which leads to the reduction of diacylglycerol (DAG) 

generation, and results in the failure to translocate and activate PKC to the membrane, a critical 

response in transducing mitogenic stimuli. 

Senescence is also regulated by alterations in telomere length, which is maintained by telomerase, 

one of the down-stream targets of Cer signaling. One Studiesshowed that Cer also mediates 

telomerase-independent rapid shortening of telomere length in A549 cells [Sundararaj et al., 2004]. 

Cer-mediated telomere shortening was linked to the inhibition of an unexpected role of a nuclear form 

of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in telomere/binding and protection 

function. Taken together, these results support that Cer play important roles in the regulation of 

senescence and aging. 

 

Sphingosine-1-phosphate: tumor-promoter lipid 

The bioactive SL metabolite S1P is an important lipid mediator that was implicated in many 

biological processes.  S1P was detected in many organisms such as plants, yeast, worms, flies, and 

mammals. More than two decades have elapsed since it was first suggested that S1P can regulate cell 

growth [Zhang et al., 1991]. 
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In addition, different studies, performed in both cell cultures and animals, demonstrated that S1P can 

regulate different physiological and pathological processes strictly related to cancer and 

inflammation, favoring cell survival, migration, and angiogenesis [Spiegel et al., 2002, Hannun et 

al., 2008 ]. S1P can exert its bioactive properties in the intracellular milieu, acting as a second 

messenger, and mainly in the extracellular milieu , where, after secretion from cells, can bind five 

specific cell surface receptors (S1P1-5) coupled to different G-proteins and thereby activating several 

signal transduction pathways that control cell behaviour [Payne et al., 2002]. 

S1P has emerged as an onco-promoter molecule. Interestingly, the administration of S1P was shown 

to promote estrogen-dependent tumorigenesis of MCF-7 human breast cancer cells [Nava et al., 

2002]. Johnson and colleagues using siRNAs to inhibit S1P phosphatase 1 (S1PP1), which converts 

S1P to Sph, observed an increase in the intracellular and extracellular levels of S1P rendering MCF-

7 cells resistant to the cytotoxic actions of TNFα and daunorubicin [Johnson et al., 2003]. In many 

cell types, the administration of S1P results in the inhibition of different forms of cellular apoptosis, 

including the Cer-mediated one [Cuvillier et al., 1996], through the induction of pro-survival proteins 

expression (Bcl-2, MCL1), stimulation of the DNA replication, and inhibition of pro-apoptotic 

proteins expression (Bad, Bax). In addition, exogenous S1P is able to block the translocation of Bax 

to the mitochondria, which is required for the release of mitochondrial cytochrome c and the 

consequent caspase activation [Pyne et al., 2010]. Furthermore, S1P binding to S1P3 receptor 

enhances cell survival by suppression of Bax expression and activation of endothelial NOS, PI3K and 

Akt [Strub et al., 2010]. 

An increasing number of evidence demonstrated that S1P acts as a potent pro-angiogenic factor, 

inducing the migration of endothelial cells and promoting the formation of new blood vessels. The 

mechanisms of S1P-mediated neovascularization involve the migration of endothelial cells through 

the activation of S1P receptors, and downstream regulation of the Rho family of small GTPases, 

which in turn regulate cell motility and remodelling of the cytoskeleton [Kluk et al., 2002]. The main 

S1P receptor involved in the process of vascular maturation is S1P1, which is required for the 
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stabilization of nascent blood vessels during embryonic development, indeed its knockout in mouse 

resulted in a lethal vascular defect [Liu et al., 2000]. As S1P is also secreted extracellularly, 

modulation of SPHK and S1P in tumour cells provides a potential mechanism for recruiting 

endothelial cells and promoting blood-vessel formation/angiogenesis [Ogretmen et al., 2004]. 

Indeed, combining S1P with other pro-angiogenic factors, such as basic fibroblast growth factor or 

VEGF, produced synergistic enhancement of neovascularization in tissue samples of mouse aortic 

rings, an ex vivo model of angiogenesis [Wu et al., 2003]. 

S1P also stimulates the motility of cancer cells through S1P1 or S1P3. By contrast, S1P can inhibit 

cancer cell motility through S1P2-dependent regulation of Rho. Thus, the specific effect of S1P is 

partly determined by the predominance of the receptor subtypes expressed. For example, S1P 

stimulates the migration of gastric tumour cells that exclusively expressing S1P3 and inhibits the 

motility of others that predominantly express S1PR2 [Yamashita et al., 2006]. Similarly, the 

inhibition of melanoma cell migration is through S1P2 and involves the inhibition of Rac, activation 

of Rho, and the subsequent tyrosine phosphorylation of focal adhesion kinase and paxillin as well as 

the increment of stress fiber formation [Arikawa et al., 2003, Yamamura et al., 2000]. On the other 

hand, S1P stimulates the migration of fibrosarcoma cells through a S1P1–Rac1–CDCI dependent 

pathway involving the tyrosine phosphorylation of membrane type matrix metalloproteinase 1 (MT1-

MMP), a zinc-dependent proteolytic enzyme involved in degradation of the extracellular matrix, 

facilitating cell migration [Fisher et al., 2006, Nyalendo et al., 2007]. Furthermore, ovarian cancer 

cell invasion induced by S1P involves S1PR1 or S1PR3 and calcium mobilization [Park et al., 2007]. 

In the context of its extracellular actions, S1P functions as a second messenger in cellular 

proliferation, cell survival and suppression of apoptosis. Furthermore, a variety of growth factors and 

cytokines, including PDGF, EGF, TNF-K, and nerve growth factor, which are well known inducers 

of cellular proliferation and/or differentiation, also activate SPHK and thereby increasing cellular S1P 

levels [Meyer et al., 1999, Xia et al., 1999]. The intracellular targets of S1P remain much more 

elusive. Interestingly, microinjection of S1P into fibroblasts increases calcium mobilization from 

http://www.ncbi.nlm.nih.gov/pubmed?term=Meyer%20zu%20Heringdorf%20D%5BAuthor%5D&cauthor=true&cauthor_uid=10567700
http://www.ncbi.nlm.nih.gov/pubmed?term=Xia%20P%5BAuthor%5D&cauthor=true&cauthor_uid=10567432
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internal stores, and DNA synthesis, thus enhancing proliferation and survival [Van Brocklyn et al., 

1998]. The S1P role as an intracellular messenger has been also suggested by some indirect evidences, 

such as the PDGF-induced translocation of SK to the nuclear membrane with the concomitant 

increase in the nucleus-associated SPHK activity. This implies that S1P may have a role in the 

nucleus, and it was suggested that it may be involved in cell cycle progression, although no direct 

evidence for this has yet appeared. S1P has also been shown to activate ERK and inhibit c-Jun N-

terminal kinase (JNK) activation which is significant, since the balance of ERK and JNK activation 

has been implicated in the control of apoptosis [Payne et al., 2002]. 

Overall, and in contrast to the well-established actions of S1P through its receptors, the intracellular 

roles of S1P are poorly documented, and the identification of its direct intracellular targets remains 

elusive. 

3.1.3. Sphingolipids rheostat  

Since S1P and Cer elicit opposing cellular effects, e.g. proliferation and survival versus growth arrest 

and apoptosis, these two lipids together gave birth to the cellular “sphingolipid rheostat” that has been 

proved to be a critical balance determining the survival or death of mammalian cells [Cuvillier et al., 

1996] (Fig.8). 

 

Figure 8. Sphingolipid Rheostat 

 

The rheostat model is currently based on the assumption that Cer induces apoptosis. This is believed 

to be due to the differential regulation by Cer and S1P of members of the ERK and stress activated 
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protein kinase families and caspase proteases [Cuvillier et al., 1996, Coroneos et al., 1996, Pyne et 

al., 1996]. Importantly, the rheostat model for controlling the Cer/S1P balance and cell fate does not 

rely upon whether S1P acts intracellularly or by binding to its specific receptor  

A key piece of evidence to support the rheostat hypothesis is that Cer-mediated programmed cell 

death is suppressed by the addition of S1P. Indeed, Cer-induced JNK activation and apoptosis were 

prevented by the addition of S1P. Furthermore, the PKC-mediated activation of SPHK and the 

concomitant increase in S1P levels were shown to have a similar inhibitory effect on Cer-mediated 

apoptosis. Subsequently, Fas ligation or C2-ceramide-mediated caspase-3 and -7 activation and 

resulting poly(ADP-ribose) polymerase cleavage were shown to be blocked by PKC activation and 

attenuated by the addition of exogenous S1P [Cuvillier et al., 1998]. 

Further support for the rheostat model comes from studies showing that growth factors and cytokines 

tend to differentially regulate SMase/CDase and SPHK activities and, consequently, Cer and S1P 

levels. For example, alkaline membrane-associated CDase is up-regulated by growth factors, 

including PDGF, FGF, IGF and EGF, in a tyrosine kinase-dependent manner, with a concomitant 

increase in SMase activity [Edsall et al., 1997]. 

Furthermore, manipulation of intracellular S1P levels can also affect the levels of Cer and Sph. For 

example, NIH 3T3 cells transfected with SPHK1a exhibit a substantial decrease in their ceramide 

content [Kohama et al., 1998]. This correlates with increased survival upon serum depletion, which 

usually induces apoptosis [Olivera et al., 1999]. Therefore, the concomitant removal of Cer upon 

SPHK overexpression may prevent Cer-induced apoptosis. Additionally, the subsequently formed 

S1P may promote cell survival by inducing mitogenic signalling pathways that counteract the effects 

of Cer. 
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3.1.4. Sphingolipid Signaling in Cancer Therapy 

Understanding the intrinsic mechanisms of action for Cer and S1P can open doors to new therapies 

to battle cancer. It has been well established that increases in intracellular Cer will promote apoptosis. 

Thus, finding ways to intrinsically elevate Cer in cancer cells is desirous. Conversely, S1P has been 

shown to promote cancer pathogenesis, thus, suppression of its generation/accumulation could 

suppress tumor growth. 

 

Ceramide Metabolism in Cancer Therapeutics  

Increasing endogenous Cer has been suggested as an effective method to regulate cancer cell growth. 

To this end, certain chemotherapeutic agents has been identified to impact Cer metabolism by 

promoting Cer synthesis de novo, by activating SMases and/or by blocking GlcCer formation. In each 

case, the result is an enhanced Cer-governed cytotoxic response. [Futerman and Hannun, 2004; 

Ogretmen and Hannun, 2004]. In this regard, different studies have shown that the effects of 

paclitaxel are linked to the de novo synthesis of Cer in MDA-MB-468 and MCF-7 breast cancer cells 

and that paclitaxel-dependent cytotoxicity was abrogated by blocking Cer production with L-

cycloserine, an inhibitor of Cer synthesis [Charles et al., 2001]. Moreover, the co-administration of 

paclitaxel with exogenous ceramide substantially inhibits cell proliferation and elicits apoptosis in a 

synergistic fashion in Jurkat T cells [Myrick et al., 1999] and Tu138 head and neck squamous cell 

cancer [Mehta et al., 2000]. In addition, triphenylethylene antiestrogens, such as tamoxifen was 

observed to block conversion of Cer to GlcCer and its activity is independent of estrogen receptor 

status [Cabot et al., 1996]. DT388-GM-CSF, a fusion toxin consisting of a truncated diphtheria toxin 

linked to human granulocyte–macrophage colony-stimulating factor (GM-CSF), is toxic to acute 

myeloid leukemia progenitors bearing the GM-CSF receptor but not to normal marrow cell 

progenitors. DT388-GM-CSF also is a potent agonist of Cer formation in vincristine-resistant HL-60 
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cells HL-60/VCR cells. In these cells, Cer is generated via hydrolysis of cellular SM, suggesting a 

SMase-governed response [Frankel AE et al., 1998]. 

Additionally, small molecule inhibitors of the SL pathway able to induce the accumulation of Cer 

were used in some cancers. For example, B13, an inhibitor of acid CDase was used in a metastatic 

colon cancer mouse model and a prostate cancer xenograft model [Selzner et al., 2001]. In both cases, 

B13 caused the accumulation of Cer and resulted in prevention of tumor growth. Another effective 

approach to increase Cer accumulation in cancer cells was the inhibition of SM synthase, or acid 

CDase [Meng et al., 2004]. 

Furthermore, the use of Cer analogues or mimetics could also promote apoptotic pathways in cancer 

cells. In fact, many studies report that exogenous treatment with Cer induces cell death, and/or growth 

arrest [Bielawska et al., 2008]. These findings were supported with in vivo studies, in which treatment 

with recently developed exogenous Cer (ceramidoids) inhibited cancer cell growth, and decreased 

tumor progression in HNSCC and other cancer models [Bielawska et al., 2008]. It should also be 

noted that treatment of cells with exogenous Cer may result in the generation of endogenous long 

chain Cer via the Sph recycling pathway, which can be blocked by FB1, and not by myriocin. This 

alternative pathway for the generation of endogenous Cer seems to be important for the regulation of 

telomerase and c-Myc in A549 cells [Sultan et al., 2006]. Furthermore some dietary compounds has 

been implicated in the alteration of Cer metabolism, and thereby leading to cell death. Indeed, 

treatment of prostate and lung cancer cells with γ–tocopherol (γT), the main dietary form of vitamin 

E, inhibited cell proliferation and induced apoptosis [Jiang et al., 2004], which were concomitant with 

the accumulation of dihydroceramides. 1,25-Dihydroxyvitamin D3 stimulates hydrolysis of SM in 

leukemia cells [Okazaki et al., 1989] and in keratinocytes [Geilen et al., 1996]. It also inhibits the 

growth of prostate adenocarcinoma cells, but it is not known whether Cer is involved in growth 

inhibition [Getzenberg et al., 1996]. 
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S1P as a target for anti Cancer therapeutic 

Accumulating data strongly suggest that S1P may present an important target for anti-cancer 

therapeutics. Indeed, the use of a monoclonal antibody that binds S1P with high affinity and 

specificity was observed to reduce tumor progression effects in various murine xenograft and allograft 

models and to prevent S1P-induced cell proliferation, release of pro-angiogenic cytokines, and 

protection of tumor cells from apoptosis by S1P [Visentin et al., 2006]. 

Furthermore, another anti-cancer therapeutic strategy has been to use inhibitors of SPHK1. In fact, 

preliminary studies in situ and in animal models indicate that SPHK1 inhibitors prevent cancer cell 

proliferation and tumor growth [French et al., 2006] and inhibition of S1PR1 and S1PR3 receptors 

with their antagonists may inhibit cancer cell growth [Davis et al., 2005].  

Additional experimental evidence supporting the pro-survival roles of S1P/S1PR axis was obtained 

by employing the potent immunosuppressive agent FTY720, which is known to engage with S1PRs 

and down-regulate S1P1 [Brinkmann et al., 2004]. FTY20 is phosphorylated in vivo to FTY720-P 

possibly by SPHK2 [Paugh et al., 2003], which then induces sequestration of lymphocytes in lymph 

tissues by engaging S1PRs with high affinity and specificity [Brinkmann et al., 2004]. These data 

implicate that S1PRs play important roles in immunosuppression. More importantly, treatment with 

FTY720 inhibits angiogenesis and tumor vascularization, and mediates cell death, suggesting that it 

might be exploited as an anti-cancer therapeutic agent [LaMontagne et al., 2006]. 
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3.2. Sphingolipids and colon tumorigenesis 

Although sphingolipids contribute only to a small proportion of the total cellular lipid pool, their 

metabolism alteration may be a trigger for pathogenesis of many diseases. Furthermore, 

accumulating evidence suggests that alterations of the sphingolipid metabolism, assumption of 

dietary sphingolipids, or modification of endogenous enzymatic activity could have a significant 

impact on colon carcinogenesis [Koizumi et al., 1981, Van Blitterswijk et al., 1984]. 

3.2.1. Overview of the sphingolipids roles in colon cancer cells 

In this section, I will report the effects of exogenous SLs in colon cancer cells, the effect of specific 

targeting of SL metabolism and the alteration of SL metabolism by chemotherapeutic drugs (Fig.9) 

 

Figure 9. Summary of the sphingolipids effects in colon cancer cells [Hannun et al., 2013] 

 

Effects of adding exogenous sphingolipids 

 Sphingomyelin  

SM metabolism seems to play an important role in response to therapy, such as the chemotherapeutic 

daunorubicin, and to H2O2, heat, and ionizing radiation. All these events induced the formation of 

Cer from SM hydrolysis through the activation of the de novo and the salvage pathways. The resulting 

Cer is responsible for initiating the apoptotic response. Of note, it has been reported that the 

exogenous administration of SM increased 5-fluorouracil (5-FU) and doxorubicin sensitivity by 100-
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300% in HCT15 and MOSER colon cancer cell lines. However, this effect was not achieved in other 

colon cancer cell lines such as HT29, LoVo and WiDr, nor in HUVEC [Modrak et al., 2000], 

suggesting that these different responses may be due to alterations in SM/Cer metabolism in the non-

responsive cells. Indeed, HT29 cells, cultured with gradually increasing concentrations of colchicine 

(an antimitotic agent), displayed an increased resistance to different chemotherapeutic agents, and 

showed higher levels of GlcCer and GalCer, confirming that specific changes in SL levels [Kok et 

al., 2000]. 

 

 Ceramide and its analogs 

It has been previously reported that SL bases and Cer induced apoptosis in colon cancer cells and 

could be potential mediators for the protective role of more complex dietary SLs in CRC 

carcinogenesis [Ahn et al., 2002]. In SW403 cells, it has been demonstrated that the administration 

of two short-chain Cer analogs (C2 and C6-ceramides) and of two inhibitors of CDases (D-MAPP 

and B13) caused cell death, via activation of caspase-3 and cytochrome c release. In addition, C2-

ceramide was able to induce not only apoptosis but also cell cycle arrest at the G2/M phase, causing 

an accumulation of cells in the S phase [Ahn et al., 2002]. Furthermore, C2-ceramide was implicated 

in mediating macroautophagy by increasing proteolysis and accumulation of autophagic vacuoles in 

HT29 cells. Indeed, studies demonstrated that Cer was able to reverse the interleukin 13-dependent 

inhibition of macroautophagy by interfering with the activation of Akt and stimulating the expression 

of the autophagy gene product beclin-1, implicating Cer for the first time in control of a major 

lysosomal pathway [Scarlatti et al., 2004]. In addition, in different colon cancer cells (LoVo, HT29 

and HCT15) the administration of C6-ceramide in combination with P-glycoprotein antagonists 

(tamoxifen, cyclosporine A, VX-170 and verapamil), that inhibit the conversion of Cer to GlcCer,  

increased cytotoxicity via caspase activation, PARP cleavage, DNA fragmentation, cell cycle arrest, 

mitochondrial membrane permeability and expression of p53 [Morad et al., 2013]. Furthermore, it 

has been observed that in HT29 and HCT-116, two colon cancer cell lines, Sph, sphinganine and C2-
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ceramide, but not C2-dihydroceramide, were able to inhibit cell growth and to induce cell death in a 

time and dose-dependent manner [Ahn et al., 2010].  

Of interest, the administration of Sph and its methylated derivative N,N-dimethylsphingosine (DMS), 

a non-specific SK inhibitor, induced apoptosis specifically in colon cancer cells (HT29, HRT18, 

MNK74 and COLO205) but not in primary cultures (HUVEC) [Sweeney et al., 1996]. Moreover, 

treatment of SW403 with a cationic long chain Cer [ω-pyridinium bromide D-erythro-C16-ceramide 

(LCL-30)], targeting negatively charged mitochondria, induced cell death with mitochondrial 

accumulation and subsequent release of cytochrome c and activation of caspase-3 and caspase-9 

[Dindo et al., 2006].  

It is important to remark that colon cancer cells present differential expression of certain proteins in 

response to Cer. In particular, HCT116 cells treated with C6-ceramide showed 43 proteins 

differentially expressed compared to untreated cells, and many of these proteins are implicated in 

different cellular process, such as apoptosis (caspase-8 and caspase-10) and growth arrest (PCNA) 

[Fillet et al., 2005]. In addition, it was reported that resistance to TRAIL (TNF-Related-Apoptosis-

Inducing-Ligand) in colon cancer cells was associated with defects in Cer signalling. In fact, 

analyzing two colon-cancer cell lines, SW480 and SW620, isolated from the same patient (primary 

and subsequent metastasis, respectively) with different sensitivity to this pathway,  it has been 

observed that Cer were comparable in both cell lines. However the TRAIL-responder SW480 cells 

contained a higher percentage of C16 and C18-ceramide and lower C24-ceramide than the TRAIL-

resistant SW620 cells. Only in SW480 cells C16-ceramide levels raised upon TRAIL-treatment, and 

this increase was parallel with caspase-3/-7 activation. Interestingly, combination of C6-ceramide 

with TRAIL resulted in apoptosis in SW620 cells. These results suggest that Cer plays a role in 

promoting TRAIL-mediated apoptosis and that TRAIL-resistant cancer may benefit from 

combination therapy with Cer or agents that enhance Cer accumulation [Voelkel-Johnson et al., 

2005]. Later studies identified CerS6, which preferentially generates C16-ceramide, as a protein able 

to influence susceptibility to TRAIL [White-Gilbertson et al., 2009].  
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 Sphingosine-1-phosphate 

S1P is another SL that has an impact on colorectal carcinogenesis. Thamilselvan and coworkers 

reported that S1P, as in other types of cancer, stimulates proliferation of colon cancer cells by 

activating p38 and ERK/MAP kinases [Thamilselvan et al., 2002]. In particular, S1P activated 

invasion, proliferation and protection from cytotoxic agents in HT29 and interestingly, addition of 

anti-S1P monoclonal antibody reversed all these processes by increasing activation of caspase-3 

[Visentin et al., 2006]. 

These results, together with the effect of S1P antibodies in reducing tumor progression in murine 

xenografts and allografts [Visentin et al., 2006], suggest the bioactive lipid S1P as a target for this 

type of cancer therapy  

 

Effects of targeting sphingolipids metabolism and its enzymes 

Increasing Cer levels by blocking CDases was highly effective in inducing apoptosis and preventing 

growth of colon cancer. Indeed, B13, a CDase inhibitor, appears to be specific for treatment of 

primary and metastatic colon cancer cells, since normal liver cells were resistant to treatment, as no 

increase of ceramide content or apoptosis were observed [Selzner et al., 2001]. Veldman and 

colleagues [Veldman et al., 1998] evaluated the effect of increased Cer levels in HT29rev cells, by 

either incubating the cells with bacterial SMase (b-SMase) or adding C2-ceramide. Treatment with 

C2-ceramide resulted in a rapid accumulation of this compound within the cells and in induction of 

apoptosis, whereas b-SMase treatment did not induce apoptosis despite hydrolyzing cellular SM and 

increasing Cer levels. Indeed, the b-SMase-generated Cer was converted to more complex SLs. Even 

after the use of inhibitors to block this conversion, and thereby inducing an accumulation of Cer in 

the cell, apoptosis was not detected. These results suggested that C2-ceramide is able to reach putative 

intracellular targets involved in the propagation of the apoptotic signal. Moreover, Cer generated by 
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the addition of exogenous A-SMase contributed to tumor necrosis factor alpha (TNFα) mediated 

apoptosis in HT29 [Colell et al., 2002]. In a complementary study, TNFα induced apoptosis in a time 

and dose-dependent manner, but downregulation of A-SMase prevented TNF-stimulated apoptosis 

[Jaiswal et al., 2004]. In addition, it was observed that SPHK and N-SMase contributed to the 

regulation of cell sensitivity upon treatment with oxaliplatin by controlling Cer formation, and 

affecting the Akt pathway; indeed, treatment with oxaliplatin increased C16, C24 and C24:1-

ceramides in sensitive colon cancer cells but not in resistant ones due to the activity of N-SMase 

instead of A-SMase. It was further observed that silencing SPHK isoforms, which already performed 

a high activity and protein expression in resistant cells, upon oxaliplatin treatment, caspase activity 

and cellular Cer formation increased, leading to cell death. Moreover, in these experimental 

conditions the Akt pathway was affected too: Akt phosphorylation decreased and p53 and p21 protein 

levels increased. 

 

Effects of an alteration in sphingolipids metabolism induced by chemotherapeutic 

agents 

It has been reported that Camptothecin a topoisomerase I inhibitor used in first line treatment of solid 

CRC and in second line for 5-FU resistant patients, was able to increase Cer levels, through the 

activation of serine palmitoyltransferase and CerS, which subsequently induced growth inhibition via 

caspase-3 activation in a p53-independent manner [Chauvier et al., 2002]. 

Regarding Fenretinide, a synthetic retinoid, it has been observed that it was able to induce an increase 

of Cer levels in neuroblastoma cells and in colon cancer cell lines (HT29 and LoVo). This increase 

in Cer was associated to an increase of cell death by a combination of apoptosis and necrosis in a p53 

and caspase-independent manner. Importantly, some studies showed that Fenretinide directly inhibits 
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dihydroceramide desaturase in cells, raising the possibility that many of the actions of this compound 

may be mediated by its ability to alter Cer metabolism [Wang et al., 2008, Rahmaniyan et al., 2011]. 

It was reported that CerS6 is a key enzyme implicated in the response to chemotherapy. Treatment of 

HCT116 cells with Celecoxib, which induces apoptosis and inhibits proliferation in cancer cells, led 

to a significant increase in the levels of C16-ceramide, with a concomitant increase of CerS6 activity. 

siRNA against CerS6 showed that this enzyme was responsible for the increase of C16:0-ceramide 

and also partially protected the cells from the cytotoxic effects of Celecoxib [Schiffmann et al., 

2010]. Furthermore, the use of RNAi for CerS6 specifically decreased C16-ceramide and protected 

SW480 cell against TRAIL-mediated apoptosis, while increasing CerS6 expression sensitized 

SW620 cell to TRAIL.  

Another way to circumvent CRC cell resistance to TRAIL-mediated apoptosis is by using COX-2 

inhibitors to manipulate lipid metabolism. COX-2 inhibition sensitizes human colon carcinoma cells 

to TRAIL-induced apoptosis by inducing clustering of the TRAIL receptor DR5 at the cell surface 

and redistribution of the death-inducing signaling complex components into cholesterol-rich and Cer-

rich domains known as caveolae. It is believed that this mechanism enhances the initiation of receptor 

mediated signal transduction. This process requires accumulation of arachidonic acid and sequential 

activation of aSMase for the generation of ceramide within the outer leaflet of the plasma membrane 

[Martin et al., 2005]. 

 

2.2. Overview of dietary sphingolipids roles in colon cancer models 

In this section, I will report the distribution of SLs in the diet and their effects in chemically-induced 

colon cancer models such as 1,2 dimethylhydrazine (DMH) and azoxymethane (AOM), inherited 

models (APCMin/+ mouse) and also colon cancer xenografts.  
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Sphingolipids in the diet  

Sphingolipids form a natural part of a normal diet, indded the daily dietary intake of all SLs in adult 

human is estimated about 300-400mg [Nilsson et al., 2003]. Fruit and vegetable products provide 

only about 50 mg of SLs per day. Especially rich in SLs are dairy products, particularly eggs and 

milk. Some SLs, except SM and gangliosides, are present in fruit and plants (cucumbers, grapes, 

broccoli, black bean, and wheat). Another major source of SLs, mainly SM, are animal-origin tissues 

like poultry (chicken, turkey), beef, pork, and fish (salmon, catfish) [Blank et al., 1992]. Human milk 

is the only source of sphingolipids for neonates and it consists of SM, LacCer, GlcCer, and 

gangliosides (GM1, GM3, and GD3). Even though most of the SLs that enter the gastrointestinal 

system are hydrolyzed in the small intestine, a small percentage also enters the large intestine. In 

particular, SM is digested and absorbed mainly in the small intestine. Animal studies proved that 

consumed SM is digested only partially and it is a slow process [Nyberg et al., 1997]. On the other 

hand, in human, more than 80% of SM can be digested, and the rest is excreted with feces [Ohlsson 

et al., 2010]. SM is resistant to digestion by pancreatic enzymes [Duan et al., 2009]. Other SLs as 

Sph and dihydrosphingosine are quickly absorbed in the small intestine and further metabolized to 

free fatty acids, mainly palmitate, and in the lesser extent to Cer. 

 

1,2 dimethylhydrazine-induced colon cancer model 

It is important to remark that dietary SLs showed both chemotherapeutic and chemopreventive effects 

in DMH-treated animals. As demonstrated by studies performed by Lemonnier and colleagues, 

DMH-treated mice, receiving SM before or after tumour initiation, induced a decrease in the 

formation and proliferation of tumours in the lower half of the colonic crypts, associated with a 

concomitant increase in the number of apoptotic cells [Lemonnier et al., 2003]. Furthermore, 

Dillehay and coworkers showed that CF1 female mice treated with DMH and fed with a diet very 
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low in SL (less than 0.005% weight), when supplemented with milk SM exhibited a significant 

reduction in the number of aberrant crypt foci with respect to the control group. Indeed, tumour 

incidence in the control group was 47% while in mice supplemented with SM was 20% [Dillehay et 

al., 1994]. These data were confirmed subsequently, in a follow up studyin which SM 

supplementation caused a reduction in ACF and in the number of aberrant crypts per focus. 

Unfortunately, after 40 weeks of treatment, any difference in tumor incidence was found [Schmelz et 

al., 1996]. Neverthless, in both studies the mice fed with a diet rich in SL and SM, showed tumour 

with a low grade (adenocarcinoma and adenoma respectively), suggesting that dietary SM may 

suppress the appearance or advancement to more malignant tumors. Moreover, GlcCer, LacCer and 

ganglioside GD3 found in induced at least a 40% decrease in the number of ACF (comparable with 

the reduction accomplished by SM), accompanied by a decrease of proliferation in the colonic crypts, 

but any variation in the apoptotic cell number per crypt was observed [Schmelz et al., 1996]. To better 

understand the effects of dietary SLs in colon cancer, Schmeltz and colleagues [Schmelz et al., 1997] 

studied the effects of chemically synthesized SLs. CF1 female mice treated with DMH were fed with 

a diet low in SL supplemented with either SM from milk, N-palmitoylsphingomyelin, or N-

palmitoyldihydrosphingomyelin for 4 weeks. The number of ACF in the SM-fed groups was 

significantly lower than in the control group by about the 50% for milk SM and synthetic SM and 

70%for synthetic dihydroSM, confirming the role of SM in suppressing ACF formation and 

suggesting that the potency of dihydroSM did not depend on the 4,5-trans bond of the SL backbone. 

Since most SLs are digested in the small intestine, an analog of Cer (Cer-β-glucuronide), was 

specifically designed to be delivered to the colon [Schmelz et al., 1999]. Cer-β-glucuronide induced 

in the lower half of the colonic crypts a decrease in the number of ACF (about 40%) and reduced the 

number of proliferative cells (about 20%).  

Finally, since plant SLs differ structurally from mammals, their effect in colon cancer has also been 

evaluated by one study. It has been reported that soy-GlcCer, added to a diet low in SL, decreased 



75 

 

colonic cell proliferation in the upper half of the crypts by 50%, reduced the number of ACF, and 

also reduced the number of adenomas [Symolon et al., 2004]. 

 

Azoxymethane-induced colon cancer model 

Many studies in AOM-treated animals demonstrated a chemotherapeutic as well as a 

chemopreventive effect of dietary SLs. Rats treated with 35 mg/kg of SM orally during the 6 weeks 

following AOM treatment decreased the number of ACF (specifically in the proximal end of the 

colon) and of proliferative cells in the base of the crypt, without affect immunity system [Exon et al., 

2003]. 

Since a very high percentage of colon cancer tumors present mutations in p53, especially in the 

advanced stages [Baker et al., 1990], the role of p53 in the effects of dietary SLs on colon cancer was 

evaluated. In fact, p53 wild type and p53+/− mice were treated with AOM and fed with a diet 

containing 0.1% SM for 4 weeks. The short-term results indicated that p53 status did not modify the 

effects of SLs on proliferation and apoptosis. Moreover, after 33-38 weeks of treatment, SM 

administration produced no significant effects on either tumour incidence or size in both genotypes. 

However, both tumour incidence and size trended lower with dietary SL, demonstrating that the effect 

of dietary SM in colon cancer was not p53-dependent [Hu et al., 2008]. 

Sprague-Dawley rats treated with AOM were utilized to indirectly evaluate the effects of SLs in colon 

cancer using ursodeoxycholic acid (UDCA). This compound was previously shown to exert an 

antiproliferative and proapoptotic effect in HT29 cells, accompanied by a rapid increase in Alk-

SMase activity. AOM treated rats showed that UDCA administration induced a reduction in the 

number of ACF containing three or more crypts. While AOM treatment by itself reduced mucosal 

Alk-SMase activity, treatment with UDCA increased the activity of both colonic N-SMase and Alk-

SMase [Andersson et al., 2008]. 
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Adenomatus polyposis coli gene APC Min/+ mice colon cancer model 

Orally administered SLs are able not only to decrease of ACF and tumours formation in colon cancer 

models chemically induced with either DHM or AOM, but their effect has also been described in 

inherited models such as the APCMin/+ mouse. APCMin/+ mice treated with Enigmol, a sphingoid base 

analog that cannot be phosphorylated by SK1 and is poorly N-acetylated, showed a decrease of in the 

number of tumours, without effects on body weight and on liver and kidney.[Symolon et al., 2011].  

The APCMin/+ mouse model has been used also to evaluate the effects of plant SLs on colon cancer. 

The data obtained showed that a diet supplemented with 0.1% GlcCer reduced the number of 

adenomas by 70%. In the APCMin/+ mice intestinal mucosal cells, the administration of Soy GlcCer 

was able to affect the expression of at least 96 genes in a dose-dependent manner [Symolon et al., 

2004]. 

Human xenografts 

Human xenografts were mostly used to evaluate in colon cancer the effects of SLs alone or in 

combination with  anti-cancer drugs. Nojiri and colleagues reported in a human colon cancer 

xenograft a drastic decrease in tumour volume after treatment with a drug that increases the levels of 

ganglioside GM3 [Nojiri et al., 2002]. Moreover, it has been demonstrated in human xenografts that 

the administration of SM in presence of 5-fluorouracil or irinotecan treatment strongly reduced 

tumour growth with restect the untreated control. Any toxic effect on hematopoietic, hepatic and renal 

cells was observed [Modrak et al., 2000; Modrak et al., 2002].  

Furthermore, Schiffmann and colleagues have demonstrated in HCT116 human xenograft that 

Celecoxib was able to inhibit tumour growth.  This effect may be probably due to by an increase in 

the levels of C16:0-ceramide in stomach, small intestine, and tumor tissues, with any detectable 

differences in other tissues, such as brain, lung, heart and testes [Schiffmann et al., 2008]. 
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2.3. Sphingolipids enzymes in colon cancer  

Several studies suggest an association between colon carcinoma and changes in SLs enzymes. These 

alterations in enzyme expression and activity suggest that colon cancer may be associated with 

decreased Cer and increased S1P levels. 

 

Alkaline SMase 

It has been shown that in healthy tissue exists a gradient in the expression and activity of Alk-SMase 

from the ascending colon to the rectum. On the other hand, in colon cancer cells Alk-SMase activity 

is strongly reduced and it is almost undetectable in adenoarcinomas [Hertervig et al., 1997]. 

Moreover, it has been observed that the expression of Alk-SMase changed in response to dietary 

factors and to two chemical agents, UDCA and 5-aminosalicylic acid, both showing chemopreventive 

effects against colon cancer. It has been documented that the UDCA treatment increased the activity 

of Alk-SMase in intestinal mucosa and inhibited the development of colon carcinoma [Cheng et al., 

1999]. In an in vitro study it has been observed that the increase in Alk-SMase activity UDCA-

induced is accompanied by a decrease in cell proliferation and caspase activation in HT29 cells 

[Andersson et al., 2003 and 2008]. Furthermore, it has been reported that 5-aminosalicylic acid 

administration is able to increase Alk-SMase levels in the colonic mucosa after ingestion [Rubin et 

al., 2005]. The decrease of Alk-SMase activity detected in untreated colon cancer cells reduces the 

hydrolysis of SM and therefore reduces Cer generation [Duan et al., 2006]. Since Cer can activate 

anti-proliferative and apoptotic pathways, lack of Cer in colon cancer may contribute to colon cancer 

development. 
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Sphingosine kinase  

Sphingosine Kinases 1 and 2 can phosphorylate Sph to form S1P, which in turn exerts proliferative 

effects in different cells models. Regarding intestinal cells, the expression of these two isoforms was 

shown in both small intestine and colon [Fukuda et al., 2003]. Moreover, SPHK1 expression is 

increased in human colon cancer compared to normal colon mucosa [Kawamori et al., 2006]. In 

particular, adenomas show a higher expression of SPHKI with respect to normal mucosa, and 

metastatic colon cancer has higher SPHK1 expression than non-metastatic cancer. Kohno and 

colleagues showed that in APCMin/+ mouse model, SPHKI expression is required for small intestinal 

tumor cell proliferation. Indeed deletion of the SPHKI gene suppressed adenoma size but not their 

incidence. Moreover, in polyps the inhibition of SPHKI expression significantly reduced the 

epithelial cell proliferation, suggesting that SPHKI may regulate adenoma progression [Kohno et al., 

2006]. In addition, Kawamori and coworkers demonstrated that SPHKI and S1P levels were 

significantly elevated in colon cancer tissues compared to healthy mucosa. Additionally, SK1−/− mice 

subjected to AOM/DSS treatment presented not only significantly fewer ACF but also a reduction in 

colon cancer development [Kawamori et al., 2009]. 

 

S1P lyase and S1P phosphatase 

In colon cells S1P levels are controlled not only by SPHKs, but also by enzymes involved in its 

metabolism, such as S1P lyase and S1P phosphatase. In this regard, APCMin/+ mice show not only 

high levels of Sph and S1P in general, but also decreased expression and activity of S1P lyase in 

adenomas when compared to intestinal epithelium [Oskouian et al., 2006]. Furthermore, studies on 

colon cancer patients demonstrated a downexpression of S1P lyase and S1P phosphatase , indicating 

that the breakdown of S1P may be blocked in colon cancer [Oskouian et al., 2007]. 
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Glucosylceramide synthase 

Glucosylceramide synthase catalyzes the formation of GSLs. In vitro studies performed on colon 

cancer cells demonstrated that cells resistant to drug treatment presented higher levels of 

glucosylceramide synthase compared to healthy controls [Kovbasnjuk et al., 2005]. On the other 

hand, in colon cancer cells, the inhibition of glucosylceramide synthase activity resulted in an 

enhanced apoptosis [Uchida et al., 2002]. 
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AIM OF THE WORK 

Colorectal cancer represents a challenging problem in oncology and globally [Ferlay et al., 

2010]. Although surgical resection is curative in early stage diseases, currently used chemotherapies 

for advanced colon cancer are mainly palliative. Unfortunately, drug toxicity and the development of 

resistance to therapeutic agents are also potential obstacles to the successful treatment of this disorder. 

Hence, one of the tasks debated for the management of colorectal cancer is to decline the cytotoxic 

chemotherapy problem by finding novel natural agents that possess cancer-preventive, and/or growth 

inhibitory activity against cancer. 

Almost 25 centuries ago, Hippocrates, the father of medicine, proclaimed “Let food be thy 

medicine and medicine be thy food.” In fact, diet plays a well-recognized key role in the etiology of 

colon cancer [Wiseman et al., 2008], and dietary compounds are receiving increasing attention for 

prevention and/or alternative treatment of this cancer. Long-known preventive effect of plant-based 

diets on tumourigenesis and other chronic diseases is well documented. Indeed, plant materials might 

contain phytochemicals that have been extensively studied for their protective properties as 

antioxidant and anti-inflammatory activities. Moreover, it has been suggested that many of them 

could exert antimitotic and antitumourigenic effects, thereby offering anticancer protection to 

individuals consuming such diets [Thakur et al., 2014]. Importantly, LU, a member of flavonoids 

family, has emerged to possess anticancer properties associated to multiple mechanisms such as 

inducing apoptosis, suppressing cancer cell proliferation, angiogenesis, and metastasis. In vitro 

studies reported that LU arrests the cell cycle at the G1 phase in human gastric cancer cells [Matsuaka 

et al., 1993], and induces apoptosis in human myeloid leukemia cells [Ko et al., 2002]. In addition, a 

potent preventive effect via topical application of LU was also observed for the antitumour promotion 

of skin papillomas in mice [Ueda et al., 2003]. In colon cancer, studies by Manju and coworkers 

[Manju et al. 2005 and 2007] showed that LU exerts preventive effects against 1,2 dimethyl-
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hydrazine-induced colon carcinogenesis in rats. Despite these promising findings, little is known 

about the molecular mechanisms underlying the cancer preventive and therapeutic activities of LU. 

Accumulating literature indicates that the bioactive sphingolipid Cer plays an important role 

in mediating pro-apoptotic responses via various mechanisms in human cancer cells, and that it is a 

major player in the mechanism of action of many chemotherapeutic drugs [Ogretmen et al., 2004]. 

Indeed, a number of clinically important cytotoxic agents appear to be effective because of their 

ability to induce specific changes in sphingolipid levels, especially by promoting an increase in Cer 

content, thus resulting in enhanced Cer-governed cytotoxic responses. 

Therefore, on these premises the identification of natural and, especially, dietary compounds, 

exhibiting antitumour effects by altering SL metabolism, could represent a critical start for new 

approaches that could imply natural molecules as antitumoural agents and/or as chemosensitizer to 

elicit enhanced drug sensitivity and to overcome the problem of drug toxicity. 

On these bases, the aim of this PhD project was to investigate the sensitivity of human colon 

cancer cells and their normal counterpart toward the effect of LU, and to understand its molecular 

mechanism focusing on the ability of LU to target the Cer metabolism as a hallmark of its antitumour 

effect. In parallel, we aimed to extend our attention also to S1P, the physiological antagonist of Cer, 

thus focusing on the cellular “sphingolipid rheostat”, a regulating balance crucial in the survival or 

death of mammalian cells [Cuvillier et al., 1996]. 

As experimental model, we used the Caco-2 cell line. These cells were obtained from a human 

colon adenocarcinoma and can be grown in culture as 1) undifferentiated, representative of a colon 

tumour model, and 2) fully differentiated intestinal cells, differentiated in culture into an enterocyte-

like phenotype, which represents so far the best available in vitro model of absorptive enterocytes 

[Pinto M et al., 1983]. These two models might thus allow to distinguish the potential LU effects on 

colon cancer cells in comparison to their healthy counterparts. 
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MATERIALS AND METHODS 

Materials 

All reagents were of the highest purity available. Chloroform was further distilled before use. EMEM, 

L-glutamine, streptomycin, penicillin, amphotericin-B, sodium pyruvate, aprotinin, leupeptin, 

pepstatin , bestatin, BrefeldinA (BFA), fatty acid free bovine serum albumin (BSA), N-acetyl-D-

erythro-sphingosine (C2-Ceramide), N-hexanoyl-D-erythro-sphingosine (C6-Ceramide), O-

Tricyclo[5.2.1.02,6]dec-9-yl dithiocarbonate potassium salt (D609), Luteolin (LU), 3-[4,5-

dimethylthiazol-2-yl] 2,5-diphenyl tetrazolium bromide (MTT), p-nitrophenyl-phosphate (PNPP), p-

nitrophenol (PNP), Hoechst 33342, bovine brain sphingomyelin, Kodak Biomax film and other 

common chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA). N-(4,4-difluoro-5,7-

dimethyl-bora-3a,4a-diaza-s-indacene-3-pentanoyl) sphingosine (BODIPY-C5-Cer) was from 

Molecular Probes Europe (Leiden, The Netherlands). D-erythro dihydrosphingosine and sphingosine-

1-phosphate (S1P) were purchased from Enzo Life Sciences (Farmingdale, NY, USA). Fetal calf 

serum (FCS) was from EuroClone (Pero, Milan, Italy). D-erythro-[3H]-sphingosine ([3H]-Sph) (20.05 

Ci/mmol) and [Choline-Methyl-14C] bovine brain sphingomyelin ([14C]-SM) (52 mCi/mmol), Ultima 

Gold were from PerkinElmer Life Sciences (Boston, MA, USA). [3H]-dihydrosphingosine, D-erythro 

([3H]-DHSph) (1 mCi/ml) was from American Radiolabeled Chemicals (St Louis, MO, USA). 

LY294002 was from Vinci-Biochem (Firenze, Italy).The Primary antibody recognizing phospho-Akt 

(Ser-473) were from Cell Signaling Technology, Inc. (Danvers, MA). Goat anti-mouse horseradish 

peroxidase-linked secondary antibody was from Thermo Fisher Scientific (Waltham, MA, USA). The 

primary rabbit anti-GAPDH antibody and Goat anti-rabbit horseradish peroxidase-linked secondary 

antibody were from Santa Cruz Biotechnology (Santa Cruz, CA, USA). High performance thin layer 

chromatography (HPTLC) silica gel plates and all solvents were from Merck (Darmstadt, Germany). 

SuperSignal West Pico and West Femto Maximum Sensitivity Chemioluminescent Substrate and 

http://www.jbc.org/cgi/redirect-inline?ad=Cell%20Signaling%20Technology
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bovine serum albumin (BSA) fraction V were purchased from Pierce Chemical Co (Rockford, IL, 

USA). 
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Methods 

4.1. Cell culture 

Caco-2 human colon carcinoma cell line (BS TCL 87) was obtained from the Istituto Zooprofilattico 

Sperimentale della Lombardia e dell’ Emilia (Brescia, Italy), cultured in a humidified atmosphere at 

37° C with 5% CO2 and routinely maintained in EMEM containing: 15% (v/v) heat-inactivated fetal 

calf serum, 1mM sodium pyruvate, 2mM L-glutamine, 100U/ml penicillin, 100μg/ml streptomycin 

and 0.25μg/ml amphotericin B. The culture medium was usually changed every 48 hours. Cells were 

maintained by serial passages in 75 cm2 culture flasks. At reaching confluence, subculture was 

prepared using a 0.025% trypsin–0.01% EDTA solution. Cells were re-suspended in their culture 

medium, counted by trypan blue dye exclusion test using a Neubauer emocytometer, and then re-

plated (16×103 cells/cm2) to allow cell propagation. 

Since Caco-2 cells have the capacity to spontaneously differentiate, in vitro over confluence, into 

cells possessing the morphology and function of enterocytes [Pinto M et al., 1983], we used in our 

experiments: 

 Tumoural Caco-2 cells which resemble to those found in tumour tissues, at 2d day after 

confluence  

 Differentiated Caco-2 cells which lose the tumourigenic phenotype and show characteristics 

of healthy enterocytes, at 10-day after confluence. 

Both cell models were plated for experiments at the opportune density (12500 cells/cm2) in tissue 

plate dishes or in 24 well plates (8 and 1.5 cm2, respectively). 

 



85 

 

4.2. Enzyme assays 

SMases and ALP activity were assayed using as enzyme source cell homogenate prepared as follows: 

cells were washed three times with ice-cold PBS, harvested and centrifuged 10000 x g for 5 minutes, 

at 4°C. After centrifugation, cells were re-suspended in 10 mM Tris-Cl pH 7.4 containing as protease 

inhibitors 0.5 mM EDTA, 0.5 mM DTT, 0.5 mM PMSF, 0.5 g/ml leupeptin and 0.5 g/ml pepstatin, 

in order to obtain 2 g/l of cell protein as a final concentration. The cellular suspension was then 

sonicated 10 seconds at 4°C for three times. Protein concentration was determined by the Lowry 

method [Lowry et al., 1951]. 

4.2.1. ALP activity  

ALP activity assay was based on p-nitrophenol (PNP) production starting from p-nitrophenyl-

phosphate (PNPP) [Messer et al., 1966]. The reaction mixture consisting of 7 mM PNPP, 100 mM 

Tris-Cl pH 7.4 and 5 mM MgCl2 in a volume of 0.5 ml was prepared and added to 30 g of cell 

homogenate. Standard solutions of PNP ranging from 0 to 50 nmoles were prepared and diluted to 

0.5 ml with the reaction mixture without PNPP. After an incubation period of 30 minutes at 37°C in 

the dark, the reaction was stopped by adding 1 ml NaOH 0.1 N. The absorbance was measured at 410 

nm, and enzyme activity was calculated according to a standard curve. Protein content was 

determined according to Lowry [Lowry et al., 1951]. 

4.2.2. Alk-SMase and N-SMase activity 

SMase activities were assayed using experimental conditions known to selectively favour N-SMase 

or Alk-SMase with minor modifications as follows.  

The N-SMase incubation mixture contained 50 mM Tris-Cl pH 7.4, 10 mM MgCl2, 0.1% Triton X-

100, 250 M bovine brain SM, 3.8 M [14C-choline]-SM (0.005Ci) and 20g of cell protein in a 

final volume of 25 l.  
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The Alk-SMase incubation mixture contained 50 mM Tris-Cl pH 9.0, 2 mM EDTA, 10 mM 

taurocholate, 0.15 mM NaCl, 250 M bovine brain SM, 15.4 M [14C-choline]-SM (0.02 Ci) and 

20 g of cell protein in a final volume of 25 l. 

After 30 minutes of incubation at 37°C, the reactions were stopped by adding 375 l of 

chloroform/methanol 2:1 (v/v). After mixture, 50 l distilled H2O were added and phases were 

separated by centrifugation at 1000 x g for 5 minutes, at 4°C. A biphasic solution was obtained, the 

upper aqueous phase rich in labeled choline was counted for radioactivity by liquid scintillation 

counting. 

4.2.3. SPHKs activity 

2d Cells were washed with ice-cold PBS and harvested in SPHK buffer (containing 20 mM Tris-Cl 

pH 7.4, 1 mM EDTA, 0.5 mM deoxypyridoxine, 15 mM NaF, 1 mM β-mercaptoethanol, 1 mM 

sodium orthovanadate (Na3VO4), 40 mM β-glycerophosphate, 0.4 mM phenylmethylsulfonyl 

fluoride (PMSF), 10% glycerol, and complete protease inhibitors as 9.7 M bestatin, 1 M pepstatin, 

10 g/ml aprotinin and 10g/ml tripsin inhibitor) and disrupted by freeze-thawing procedure. Protein 

content was determined according to Lowry [Lowry et al., 1951]. SPHKs activity was assayed using 

experimental conditions known to selectively favor SPHKI or SPHKII activity.  

For the SPHKI activity, 20 g of proteins were incubated in 50 l of reaction mixture containing 

2mM ATP, 20mM MgCl2, 25M D-erytrhro-sphingosine and 0.2 Ci [3H]-D-erytrhro-sphingosine 

as 0.25% triton X-100 micelles and SPHK buffer supplemented with 0.5% Triton X 100 and different 

concentration of LU or vehicle (0,07% DMSO). 

For the SPHKII activity, 20 g of proteins were incubated in 50 l of reaction mixture containing 2 

mM ATP, 20 mM MgCl2, 25 M D-erytrhro-sphingosine and 0.2 Ci [3H]-D-erytrhro-sphingosine 

as BSA-complex and SPHK buffer supplemented with 200 mM KCl and different concentrations of 

LU or vehicle (0,07% DMSO). 
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The mixture was incubated at 37°C for 30 minutes. The reaction was terminated by the addition of 

100 μl of chloroform/methanol 1:2 (v/v). Subsequently, 66 μl of chloroform and 17.3 µl H2O/NH3 

10:3 (v/v) were added, and samples were centrifuged at 8500 × g for 5 minutes at 4°C. 120 μl of the 

aqueous phase was transferred to new glass tube. Subsequently, 100 l of chloroform and 15 l of 

H2O/methanol/HCl were added to the aqueous phase and the two phases were separated by 

centrifugation at 8500 x g for 5 minutes, at 4°C. The organic phase was then transferred to a new 

glass tube whereas the aqueous phase was washed with 100 l chloroform and centrifuged as 

described above. The second organic phase was transferred and added to the first one. The two-

combined phases were dried under nitrogen stream and resuspended in chloroform/methanol/HCl 

100: 200:1 (v/v/v). Lipids of the organic phase were then resolved on HPTLC using 1-butanol/acetic 

acid/water 3:1:1.(v/v/v) as solvent system and visualized by autoradiography. 

 

4.3. Phospholipid content and composition 

2d and 10d Cells were washed three times in ice-cold PBS and harvested with 500 l methanol, and 

1 ml chloroform was then added.  After mixing for 10 minutes, samples were centrifuged at 10.000 

x g for 15 minutes, at 4°C. The supernatant was collected, and the precipitate was re-extracted with 

500 l chloroform/methanol 2:1 (v/v), mixed and centrifuged as described above. The second 

supernatant was added to the first, and the two combined supernatants were used as total lipid extract 

(TLE) [Riboni et al., 2000]. An aliquot of the TLE was used to determine the phospholipid content 

according to the Bartlett assay, a colorimetric assay based on the determination of liberated inorganic 

phosphate [Bartlett et al 1958]. 

To determine the distribution of different phospholipids, an aliquot of the TLE was submitted to two-

dimensional HPTLC using as a solvent systems chloroform/methanol/acetic acid/water 30:20:2:1 

(v/v/v/v), for the first run, and chloroform/methanol/acetone/acetic acid/water 10:2:4:2:1 (v/v) for the 
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second run. The two runs were separated by an exposure of the plate to HCl vapors for 15 minutes. 

At the end of the second run, the HPTLC plate was sprayed with the copper acetate reagent and 

incubated at 120°C for 2-3 minutes. The relative abundance of each spot was quantified by 

densitometric scanning of the HPTLC plate. 

 

4.4. Cell treatments 

Stock solutions were prepared by dissolving molecules as follows: 

LU       : 35 mM in DMSO.  

D609  : 50 mM were prepared in distilled H2O.  

C2-Cer: 5 mM stock solutions were prepared in absolute ethanol.  

C6-Cer: 1 mM stock solutions were used as 1:1 complex with fatty acid-free BSA, due to its 

precipitation from aqueous media, particularly those lacking serum. Briefly, 50 mM C6-cer 

stock solutions in absolute ethanol were diluted with 1 mM fatty acid-free BSA/Tris-Cl pH 

7.4 at 1 mM as a final concentration. 

BFA  : 17.8 mM stock solutions were prepared in absolute ethanol.  

S1P  : 100 M stock solutions were dissolved in fatty acid free bovine serum albumin (4 mg/ml in 

PBS) and incubated for 30 minutes at 37°C with constant stirring before use.  

LY294002 : 32.5mM stock solutions were prepared in DMSO.  

Hoechst 33342: 4mM were prepared in distilled H2O. 

Stock solutions were then diluted in fresh medium at the desired concentrations and administered to 

cells for the indicated period of time. In parallel, untreated cells were also incubated with vehicles as 

controls. In all cases, ethanol and DMSO final concentration never exceeded 0.1 and 0.57 % (v/v) 

respectively, concentrations that do not affect cell survival.  
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4.5. Determination of cell viability: MTT assay 

Caco-2 cells were seeded at 12500 cells/cm2 in 24-well plates. At 2-day or 10-day after confluence, 

Caco-2 cells were treated with different agents for the indicated periods of time. The medium was 

then replaced by MTT dissolved in fresh medium (0.8 mg/ml) for 4 hours. The formazan crystals 

formed in viable cells were then solubilized in iso-propanol/formic acid 95:5 (v/v) for 10 minutes 

with constant stirring to ameliorate the lysis process. The absorbance at 570nm was measured using 

a microplate reader (Wallack Multilabel Counter, Perkin Elmer, Boston, MA, USA). 

 

4.6. Fluorescence studies 

2d or 10d Caco-2 cells were plated on glass coverslips at 12500 cells/cm2 in 35 mm dishes. 

4.6.1. Analysis of cell apoptosis: Hoechst staining 

2d or 10d Caco-2 cells were incubated with 200 M LU or 300 M D609 in culture medium. After 

24 hours of treatment, cells were incubated with 10 M Hoechst 33342 dye in the dark for 15 minutes 

at 37°C. 

4.6.2. Analysis of the intracellular distribution of BODIPY-C5-Cer 

2d Caco-2 cells were treated for 90 minutes at 37°C in culture medium in the presence of vehicle 

(0,57% DMSO) or 20 and 200 M of LU. After treatment, cells were incubated with 2.5 M 

BODIPY-C5-Cer (as 1:1 complex with fatty acid-free BSA) in KRH solution, containing 25 mM 

HEPES, 125 mM NaCl, 5 mM KCl, 1.2 mM KH2PO4, 1.2 mM MgSO4, 6 mM glucose and 2 mM 

CaCl2, at 4°C for 30 minutes as described previously [Pagano et al., 1991]. After loading, cells were 

washed twice in KRH solution and incubated for 30 minutes at 37°C in the appropriate EMEM 

conditioned medium containing 0.17 mg of fatty acid-free BSA/ml. 
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In both cases, cells were then washed three times in PBS for 5 minutes with constant stirring and 

fixed with 0.5% glutaraldehyde solution in PBS for 10 minutes at 4°C. After been fixed, the 

specimens were immediately observed and analyzed by a fluorescence microscope (Olympus BX-

50) equipped with a fast high-resolution CCD camera (Colorview 12) and an image analytical 

software (Analysis from Soft Imaging System GmbH). 

 

4.7. Phospho-Akt immunoblotting  

2d Caco-2 cells were incubated with 20 and 200M LU or 0.5 and 0.2-1M S1P for the indicated 

period of times in culture medium. At the end, cells were washed with ice cold PBS for three times 

and lysed with Akt buffer containing 20 mM Tris-Cl pH 7.4, 150 mM NaCl, 1% Nonidet P-40, 10 

mM NaF, 1 mM Na3VO4, 10 mM sodium pyrophosphate (Na4P2O7), 1 mM PMSF in the presence of 

proteases inhibitors (2 g/ml Pepstatin , 2 g/ml Aprotinin, and 2 g/ml leupeptin). After 20 minutes 

of constant stirring at 4°C, solubilized proteins were centrifuged at 8000 x g for 10 minutes at 4°C. 

A small aliquot of the supernatant was analysed for the protein content with the Comassie Blue-based 

assay [Sedmak et al 1977] and the remaining part was denatured by the addition of Sample Buffer 

4X containing 250 mM Tris-Cl pH 6.8, 40% glycerol (v/v), 8% SDS (w/v), 0.4 M DTT and 0.02% 

bromophenol blue (w/v) and by heating for 5 minutes at 100°C. Supernatants were subjected to SDS-

PAGE on 10% of polyacrylamide gel and transferred onto nitrocellulose membranes. Membranes 

were then blocked, under constant stirring, for 1 hour at room temperature in Tris-buffered saline 

(25mM Tris-Cl pH 7.4, 154 mM NaCl), containing 0.1% Tween 20 and 5% skim milk. Once blocked, 

membranes were incubated overnight at 4 °C with a primary antibody against phospho-Akt (Ser473) 

(1:1000) and then with goat anti-mouse IgG (H+L) peroxidase-conjugated (1:2000) as a secondary 

antibody for 1 hour at room temperature. 
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Signals were detected via the enhanced chemiluminescence method using SuperSignal West Pico 

Maximum sensitivity Chemioluminescent Substrate, and membranes were exposed to Kodak Biomax 

films. The relative abundance of each protein band was analysed via densitometry scanning of the 

exposed films. Immunoblots were probed with an antibody for GAPDH as a protein loading control. 

 

4.8. Pulse/chase experiments with radiolabeled sphingosine 

4.8.1. Pulse/chase protocols 

Metabolic studies were performed on Caco-2 cells plated at 12500 cells/cm2 and grown as a 

monolayer on 35 mm dishes in culture medium. At the time of the experiments, the medium pulse 

was prepared by adding [3H]-Sph to fresh medium containing 15% FCS, to obtain 0.55 μCi/ml as a 

final concentration. Cells were rinsed twice with fresh culture medium and incubated in 0.9 ml of 

medium pulse. 

[3H]-Ssphingosine metabolism: Caco-2 cells were fed with 0.55 μCi/ml of [3H]-Sph in culture 

medium in presence or absence of 20 and 200 M LU or 20 M LY294002. After 2 hours of pulse, 

cells and media were collected and processed as described below. In order to evaluate the effect of 

BFA on Sph metabolism, the cells were pre-incubated for 30 minutes at 37°C with 1 g/ml BFA and 

then pulsed with [3H]-Sph as described above in presence of BFA. After 2 hours of pulse, cells were 

washed twice with PBS at 4 °C, harvested, and total lipids were extracted and processed as described 

below. 

Sphingolipid content Total sphingolipids cells were labeled at equilibrium by incubating cells with 

0.55 μCi/ml of [3H]-Sph in culture medium for 6 hours. At the end of incubation, the plates were 

washed twice with fresh medium and chased for 22 hours culture medium.[3H]-Sph-labeled cells 

were then stimulated with in culture medium in presence or absence of 20 or 200 μM LU, as indicated. 



92 

 

After 24 hours treatment, cells were washed twice with PBS at 4 °C, harvested, and submitted to lipid 

extraction, partitioning and alkaline methanolysis, as described below. 

 

4.8.2. Extraction and partial purification of cellular sphingolipids  

At the end of the pulse or pulse/chase period, cells were rinsed twice with cold PBS, harvested and 

total lipids were extracted with chloroform/methanol as previously reported [Riboni et al., 2000].  

The TLE was partitioned by adding 260 l 0.1 M NH4OH. After mixing for 5 minutes, the two phases 

were separated by centrifugation at 8500 x g for 10 minutes, at 4°C. The upper phase, containing the 

polar sphingoid molecules (including S1P and gangliosides) was evaporated to dryness under a 

nitrogen stream, re-suspended in 100 l chloroform/methanol/HCl 100:100.1 (v/v) and counted for 

radioactivity by liquid scintillation. The lower phase (LP), containing the apolar sphingoid molecules 

(including Cer, Sph, SM and neutral glycosphingolipids) was subjected to a mild alkaline 

methanolysis in order to remove the glycerophospholipids [Riboni et al., 2000]. In particular, after 

evaporation to dryness under a nitrogen stream, the LP was re-dissolved in 50l chloroform. After 

the addition of 50 l 0.2 N methanolic KOH, the sample was vortexed and incubated at 37°C for 1 

hour. The reaction was then stopped by neutralization with 60l 0.2N methanolic HCl. Then, 90 l 

methanol and 350 l chloroform were added. After mixing, the phases were separated by the addition 

of 95 l water and centrifuged at 8500 x g for 5 minutes at 4°C. The aqueous phase was removed and 

the lower phase was evaporated to dryness under a nitrogen stream, re-suspended with 300 l 

chloroform/methanol 2:1 (v/v) and counted for radioactivity by liquid scintillation. 
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4.8.3. Analysis of the pulse medium: identification and quantification of 

extracellular S1P and tritiated water  

Extracellular S1P was extracted from pulse medium under appropriate conditions able to recover 

about 90% of S1P [Anelli V et al 2005]. In particular, a two-step partitioning, in alkaline and acidic 

conditions, respectively, was performed. Briefly, the medium was centrifuged at 8000 x g for 10 

minutes at 4°C to remove dislodged cells. Aliquots (400 l) of the supernatant were added to 750 l 

of cold chloroform/methanol/ HCl 100:200:1 (v/v/v). After mixing at 4°C and after the addition of 

500 l of chloroform and 130 l of 3.5 N NH4OH, the phases were separated by centrifugation at 

10000 x g for 5 minutes at 4°C. The upper aqueous phase, containing volatile metabolites and 

extracellular S1P, was further partitioned by adding 750 l of chloroform and 40 l of 37% HCl. 

After mixing and centrifugation as described above, the acidic organic phase, containing extracellular 

S1P, was evaporated under a nitrogen stream, re-suspended in choloform/methanol/HCl 100:100:1 

(v/v/v.), and analyzed by HPTLC. An aliquot of the alkaline aqueous phase was evaporated under a 

nitrogen stream and analyzed to its [3H]-water content, the product of S1P degradation. 

4.8.4. Protein content 

The final pellet obtained after lipid extraction, containing cellular proteins, was dried under a nitrogen 

stream and digested overnight with 50 l 1 N NaOH. After dilution with 450 l of distilled water and 

vigorous mixing, aliquots were submitted to protein determination using the Lowry method [Lowry 

et al., 1951]. 

4.8.5. Separation and quantification of radiolabeled sphingolipids  

The radiolabeled sphingolipids recovered in the methanolysed organic or aqueous phase were 

subjected to high performance thin layer chromatography (HPTLC) on silica gel plates developed in 

a chromatographic chamber by the use of appropriate solvent systems as follows. 
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Sphingolipids contained in the organic phase were separated using chloroform/methanol/water 

110:40:6 (v/v/v). A standard mix composed of tritiated Cer, GlcCer, LacCer, Sph, and SM was 

chromatographed on the same plate and used as internal standard. 

The fractions containing cellular and extracellular S1P were separated with n-butanol/acetic 

acid/water 3:1:1 (v/v/v) as solvent system. Standard [3H]-S1P was chromatographed on the same 

plate and used as internal standard. 

To detect and quantify incorporation of the radiolabeled into different sphingolipids separated by 

HPTLC, the plates were submitted to digital autoradiography (Beta-Imager 2000, Biospace, Paris, 

FR). The different spots of sphingolipids were quantified by the beta vision analysis software 

(Biospace, Paris, FR). 

 

4.9. Protein assays  

The determination of the protein content was performed using the Comassie blue-based assay 

[Sedmak et al 1977] or the Lowry assay [Lowry et al 1951]. In both cases bovine serum albumin 

(BSA) was used as standard. The protein content was obtained by spectrophotometric reading at 595 

nm for the Bradford method and 750 nm for the Lowry assay. 

 

4.10. Statistical analysis 

Results are expressed as mean value ± SD for at least three independent experiments. Statistical 

analysis of the data was performed by the Student’s t test. A p value < 0.05 was considered significant. 

Data were analyzed using StatMate software, version 4.0 (GraphPad). 
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RESULTS 

5.1. Characterization of tumoural and differentiated CaCo-2 cells 

It has been previously reported that intestinal cell differentiation can be mimicked in vitro using Caco-

2 cell cultures. Although cancerous in origin, these cells undergo a gradual differentiation process 

that takes place spontaneously once confluence has been reached [Pinto et al., 1983]. In these 

conditions Caco-2 cells can be used as a model of the healthy intestinal epithelium. Thus, in the 

present study, we used proliferating Caco-2 cells, at 2-day after confluence as tumoural cells, as well 

as differentiated, 10-day post confluence Caco-2 cells. 

5.1.1. Morphological and biochemical features of differentiation  

In order to assess if a spontaneously differentiation occurred at 10 day after confluence, we analysed 

some morphological and biochemical markers recognised as typical of colonic cell differentiation. 

Images acquired by phase-contrast microscopy showed obvious morphological differences between 

the tumoural and the differentiated Caco-2 cell models. 

 

Figure 10. Morphological features of tumoural and differentiated Caco-2 cells. Representative microscopic 

images of tumoural and differentiated Caco-2 cells are shown. Images were viewed on a contrast phase 

microscope (magnification, 10X; scale bar, 100 µm). 

 

At 2-day after confluence, cells grew as monolayers with a typical epithelial morphology. On the 

other hand, after 10 days of confluence, Caco-2 cells underwent differentiation exhibiting the 

formation of “domes” across the differentiated cell monolayers (Fig.10). Dome formation is a 
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subsequence of cell polarity and an index of the ability to transport fluid from the apical surface to 

the basolateral one. These structures are the result of a fluid accumulation between the lower side of 

the transporting Caco-2 cell monolayer and the plastic of the tissue culture plate [Ramond et al., 

1985].  

In addition, it has reported that upon reaching confluence, Caco-2 cells spontaneously assemble a 

brush border and express brush-border membrane-associated hydrolases, typical of a differentiated 

biochemical phenotype [Chung et al., 1985]. Among these hydrolases, we studied alkaline 

phosphatase (ALP), whose induction is significantly correlated with cell differentiation [Matsumoto 

et al., 1990]. Our results demonstrated that in differentiated Caco-2 cells, ALP specific activity was 

more than twice-fold higher than that of tumoural Caco-2 cells (0.44 ± 0.04 nmol, mg protein-1, hour-

1 and 0.19 ± 0.02 nmol, mg protein-1, hour-1, respectively) (Fig. 11A). 

 

 

Figure 11. Brush-border enzymes activity in tumoural and differentiated Caco-2 cells. The activities of 

alkaline phosphatase (ALP) (A), alkaline sphingomyelinase (Alk-Smase) (B) and neutral sphingomyelinase 

(N-SMase) (C) were assayed in both tumoural (gray) and differentiated cells (blue) using cell homogenates as 

enzyme source. Data are expressed as nmol/mg prot, h. Values are the mean ± SD of at least three independent 

experiments. Asterisks represent significant differences between tumoural (gray) and differentiated cells (blue) 

(** p < 0.01, Student’s t test). 

 

We further investigated the alkaline-sphingomyelinase (Alk-SMase), a brush-border enzyme whose 

activity has been previously found decreased in human colorectal carcinoma with respect to normal 

tissue [Hertervig et al., 1997, 1999]. Based on this data, we hypothesized that Alk-SMase activity 
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may be restored when Caco-2 cells lose their tumourigenic phenotypes once differentiated in vitro. 

Indeed, as shown in Fig. 11B, the Alk-SMase activity markedly increased, about 6.86-fold in 

differentiated Caco-2 cells, when compared to the tumoural ones. 

In addition, we investigated the neutral-sphingomyelinase (N-SMase), taking into account that this 

enzyme is also a plasma-membrane enzyme form and that some studies demonstrated its implication 

during neuroblastoma Neuro2a cell differentiation [Riboni et al., 1995]. Our data in Fig. 11C, show 

that the N-SMase activity significantly increased, about 4-fold, in differentiated Caco2 cells, with 

respect to tumoural Caco-2 cells. 

 

5.1.2. Phospholipid distribution  

Similar to the significant changes occurred in enzyme markers, the differentiation of Caco-2 cells 

was associated with changes of cell phospholipid profiles. We found that the total 

phospholipid/protein ratio exhibited a 27% reduction during differentiation (from 145.9 ± 4.56 nmol 

P, mg protein-1 to 106.8 ± 5.15 nmol P, mg protein-1). The same phospholipid classes were present in 

both models, but with a different pattern. Differentiated Caco-2 cells were richer in PE (+37%), PS 

(+12%), PI (+25%) and SM (+20%) and poorer in PC (-11%) compared with tumoural Caco-2 cells. 

Notably, phosphatidylethanolamine plasmalogen, a quantitative relevant species in the tumoural cells 

[Phipps et al., 1995], exhibited a marked decrease (-60%) during intestinal differentiation (Fig. 12A-

B). 
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Figure 12. Phospholipids content in tumoural and differentiated Caco-2 cells. Tumoural (A) and 

differentiated (B) Caco-2 cells were harvested and submitted to lipid extraction as described in “Material and 

Methods“section. Phospholipids were separated by a two-dimensional HPTLC on silica gel plates. Panels 

show the content of phospholipids in both cell models, and underline the content of phosphoethanolamine 

plasmalogen (PlsEtn). Data are expressed as percentage of at least three independent experiments. experiments 

Asterisks represent significant differences between tumoural (gray) and differentiated cells (blue) (* p < 0.05 

and ** p < 0.01, student’s t  test ). 

 

5.1.3. Sphingolipid profile and ceramide level  

Because previous data in literature showed that colon cancer specimens exhibited approximately half 

the levels of Cer when compared with respective healthy colon mucosa obtained from the same 

patient [Selzner M et al 2001], we wondered if a change in the endogenous level of Cer could be 

present along with Caco-2 cell differentiation. To this purpose, we first evaluated the content of total 

SLs in both cell models. We obtained that this value in tumoural cells is about 15.71 ± 0.50 nmol, mg 

protein-1 and significantly increased in differentiated cells to 22.40 ± 1.21 nmol, mg protein-1. 

Moreover, significant changes in SM and neutral GSLs were observed; as shown in Fig. 13A, their 

content increased with intestinal differentiation. 

Concerning the content of endogenous Cer, its levels were twofold with respect to tumoural cells 

(Fig. 13B). This result indicates that Cer content is inversely associated with malignant progression 

of Caco-2 cells. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Selzner%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11221856
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Figure 13. Sphingolipids content in Caco-2 cell models. Tumoural (gray) and differentiated (blue) Caco-2 

cells were pulsed with 0.55 Ci/ml [3H]-Sphingosine for 6 hours, and then chased for 48 hours. At the end of 

chase, cells were harvested and submitted to lipid extraction and quantification as described in “Material and 

Methods” section. Panel A shows the complex sphingolipids content. Panel B shows the endogenous ceramide 

(Cer) level. Data are expressed as nmol/mg protein. Values are the mean ± S.D. of at least three independent 

experiments. Asterisks represent significant differences between tumoural (gray) and differentiated cells (blue) 

(** p < 0.01, Student’s t test) 

 

5.1.4. Metabolic studies in Caco-2 cell models 

The metabolic fate of radiolabeled Sph and SM were then investigated in our cell models. 

 Metabolism of tritiated Sphingosine in tumoural and differentiated Caco-2 cells 

As shown in Fig. 14, after administration of [3H]-Sph for 60 and 120 minutes, both tumoural and 

differentiated Caco-2 cells rapidly incorporated and metabolized [3H]-Sph in a time-dependent 

fashion. The total incorporated radioactivity, present in the TLE, as well as tritiated water released in 

the culture medium, were slightly higher in differentiated than tumoural Caco-2 cells and markedly 

increased with pulse time in both cell types. Conversely, [3H]-Sph diminished with pulse time and 

represented only a minor portion of total incorporated radioactivity at all the investigated times. 

Infact, at 120 minutes pulse, its amount accounted for less than 3% of the total incorporated 

radioactivity in both cell types. 
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Figure 14. Uptake of [3H]-Sphingosine by Caco-2 cell models. Tumoural and differentiated Caco-2 cells were 

pulsed with 0.55 Ci/ml [3H]-Sphingosine for 60 and 120 minutes, as indicated, in EMEM containing 15% 

FCS. Incorporated radioactivity was calculated as the sum of the radioactivity present in the cell lipid extract 

and the radioactivity present in the culture medium. Data are expressed as nCi/dish. Values are the mean of at 

least three independent experiments. Asterisks represent significant differences between cells at different times 

of pulse (** p < 0.01, Student’s t test). 

 

Most of the [3H]-Sph taken up was metabolically processed, either by degradation (assessed as [3H]-

water released into the culture medium) or by N-acylation, represented by the production of Cer and 

its use for the synthesis of complex SLs (GSLs and SM). Fig. 15A shows that in both cell models the 

radioactivity representative of the Sph N-acylation process increased in a time dependent fashion and 

was higher in tumoural cells with respect to the differentiated ones. With increasing pulse times, both 

cell types were able to rapidly N-acylate exogenous Sph and efficiently produce Cer and to maintain 

its level constant from 60 up to 120 minutes of pulse. Throughout pulse time, Cer utilization for the 

biosynthesis of complex SLs was higher in tumoural cells. 

Concerning the process of Sph phosphorylation, as shown in Fig. 15B, in both cell models, this 

radioactivity increased over pulse time. Of relevance, Sph-phosphorylated radioactivity was higher 

in differentiated Caco-2 cells, accounting for about 45% of the total incorporated radioactivity after 

both 60 and 120 minutes of pulse, whereas in tumoural Caco-2 cells it was about 35%. Moreover, 



101 

 

tritiated water represented the bulk of Sph phosphorylation-associated radioactivity (accounting for 

more than 95%) and raised with the increase of the pulse times suggesting that both cell models are 

able to efficiently synthesize and degrade S1P. Interestingly, at 120 minutes of pulse, the radioactivity 

associated to intracellular S1P was found significantly higher in tumoural cells than that of 

differentiated cells. 

 

 

Figure 15. Incorporation of radioactivity into N-acylation and phosphorylation pathways. Tumoural (gray) 

and differentiated (blue) Caco-2 cells were pulsed with 0.55 Ci/ml [3H]-sphingosine for 60-120 minutes in 

EMEM containing 15% FCS. Panel A shows the radioactivity incorporated into N-acylated compounds, 

represented by Cer, SM and GSLs. Panel B shows the radioactivity incorporated into phosphorylated 

metabolites, represented by S1P and water. Data are expressed as nCi/dish. Values are the mean ± SD of at 

least three independent. 
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 Metabolism of tritiated SM in both tumoural and differentiated Caco-2 cells 

Concerning the feeding experiments with [Sph-3H]-SM, after 2 hours of pulse with 0.625 μM [Sph-

3H]-SM, followed or not by 4 hours chase, we found that both of cell models incorporated the same 

radioactivity and were able to produce [3H]-Cer. Surprisingly, Cer formation was about 10-fold higher 

in the tumoural Caco-2 cells than in the differentiated ones. Conversely, other [3H]-metabolites 

produced during [Sph-3H]-SM metabolism (mainly GlcCer and LacCer) were markedly low in 

differentiated and tumoural CaCo-2 cells. After chase, a pronounced increase in their content were 

observed in tumoural cells when compared to the differentiated ones, suggesting a more rapid Cer 

turnover present in tumoural model (Fig. 16). 

 

 

Figure 16. Metabolism of exogenous SM in Caco-2 cell models. Cells were pulsed with 0.6 μCi/ml of [3H-

Sph] SM for 2 hours followed or not by 4 hours chase. The radioactivity incorporated into Cer, GlcCer, and 

LacCer was measured. Data are expressed as % of incorporated radioactivity. Values are the means ± SD of 

three experiments in duplicate. Asterisks represent significant differences between tumoural (gray) and 

differentiated cells (blue) (** p < 0.01, Student’s t test). 

 

As previously showed, the activity of N-SMase increased was elevated in differentiated cells, we 

administered [Sph-3H]-SM, in presence of GW4869, that blocks the N-Smase activity . We obtained 

that [3H]-Cer formation was not affected by this inhibitor, thus indicating that SM degradation is most 

probably processed in the lysosomes by the A-Smase (data not shown).  
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5.2. Effect of LU on tumoural and differentiated Caco-2 cell viability  

Once characterized, we then assessed the sensitivity of both Caco-2 cell models to LU. Cells were 

treated with different concentrations ranging from 20 to 200 M of LU for 48 hours. As illustrated in 

Fig. 17A, LU induced a dose-dependent reduction in tumoural cells viability. In particular, at 100 and 

200 M, LU exhibited a potent cytotoxic effect, as the cell viability decreased by 58% and 77%, 

respectively. Conversely, cell viability of differentiated Caco-2 did not significantly change with LU 

at doses 20-100 M. The highest LU concentration (200 M) had only a weak effect on differentiated 

cell survival, as a decrease of less than 20% was observed.  

 

 

Figure 17. Effect of Luteolin on the survival of tumoural and differentiated Caco-2- cells. Panel A, tumoural 

and differentiated cells viability was assessed after treatment with different concentrations of Luteolin. Data 

are expressed as % of cell viability with respect to control cells treated with vehicle (0.57% DMSO) (100%). 

Values are mean ± SD of three independent experiments Asterisks represent significant differences between 

LU-treated cells and vehicle treated cells (** p < 0.01, Student’s t test). Panel B, representative images of 

Tumoural and differentiated Caco-2 cells treated with vehicle (0.57% DMSO) or 200 µM Luteolin (LU200) 

and stained with Hoechst 33342  (magnification, 100X; scale bar, 10 µm). 

 

It was reported that LU induces apoptosis in a number of cell types [Wang et al., 2013, George et al., 

2013]. Therefore, in order to ascertain whether the cytotoxic effect of LU was caused by apoptosis, 

we examined chromatin condensation (a hallmark of apoptotic cell death) using Hoechst 33324 dye. 

As shown in Fig. 17B, control cells displayed uniformly light blue nuclei, meanwhile, with 200 M 
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LU treatment, tumoural cells exhibited nuclei with brilliant blue staining, indicating chromatin 

condensation. To the opposite, and of relevance, no significant change in nuclear fluorescence was 

observed in differentiated cells treated with 200 M LU for 48 hours, with respect to the control ones. 

The impressive effect of LU observed in cultured human colon cancer paralleled with its innocuous 

effect on the differentiated model, prompted us to better understand how LU induces apoptosis in 

tumoural cells. 

 

5.3. Role of Cer as mediator of LU toxicity in tumoural Caco-2 cells 

5.3.1. Change in Cer levels during LU treatment in Caco-2 cells 

Accumulating data in literature indicate that Cer plays an important role as a tumour suppressor lipid 

by inducing anti-proliferative and pro-apoptotic responses and, therefore, acting as an endogenous 

mediator in the activity of different chemotherapeutic drugs [Hannun et al., 1996, Pettus et al., 

2002]. On these premises, we investigated the possible involvement of Cer as a mediator for the 

apoptotic activity of LU in tumoural Caco-2 cells. We thus measured intracellular Cer level after 24 

hours of LU treatment (20 and 200 M), when no signs of toxicity was observed (Trypan blue 

analyses revealed that the large majority of treated cells were vital) in tumoural and differentiated 

cells. Fig. 18 shows that in tumoural cells, the endogenous Cer levels at 20 M of LU was similar to 

that of control cells. Instead, we found that 200 M of LU induces an increase in intracellular Cer 

level with a more pronounced trend in tumoural cells. Notably, at 200M of LU an increase 

corresponding to 3- and 1.6-fold with respect to control cells was reached in tumoural and 

differentiated cells, respectively. 
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Figure 18. Effect of Luteolin on Ceramide levels in tumoural and differentiated Caco-2 cells. Both Caco-2 

cell models were pulsed with [3H]-Sphingosine for 6 hours, chased for 22 hours, and treated with 20 µM 

(LU20), or 200 µM (LU200) of Luteolin or vehicle (0.57%DMSO) (CT). Panels show the endogenous 

Ceramide content expressed as % with respect to CT cells in tumoural (A) and differentiated (B) cells. Data 

are the mean ± SD of at least three independent experiments. Asterisks represent significant differences 

between LU-treated cells and vehicle treated cells (** p < 0.01, Student’s t test). 

 

5.3.2. Effect of induced increase of intracellular Cer on tumoural Caco-2 cell 

viability  

To obtain further evidence on the role of Cer in mediating the LU toxicity, we examined if an increase 

in the Cer level was able to mimic the apoptotic effect of LU. To this purpose, tumoural cells were 

incubated with various concentrations of cell-permeable ceramides (C2 and C6-Cer), or D609, an 

inhibitor of sphingomyelin synthase. All these treatments are known to effectively increase the 

cellular Cer level [Milhas D et al 2012]. At the end of treatments, our results revealed that both Cer 

analogues were toxic in a dose-dependent manner (Fig. 19A). Specifically, C2-Cer showed a 

noticeably pronounced toxicity at 50 M associated with a cell survival of 10%, meanwhile, under 

the same conditions, C6-Cer decreased the cell viability by only 47%. This result may be interpreted 

as that the potency of the cytotoxic effect of the different ceramides was inversely related to the length 

http://www.ncbi.nlm.nih.gov/pubmed?term=Milhas%20D%5BAuthor%5D&cauthor=true&cauthor_uid=22942738
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of their N-acyl chain. In addition, the results obtained demonstrated that D609 was able to induce a 

dose-dependent reduction of cell viability too (Fig. 19B). 

 

 

 

Figure 19. Effect of Ceramide and D609 on Tumoural cell viability. Cell viability was assessed after cell 

exposure to different concentrations of C2 and C6 Ceramide (A) or D609 (B) for 24 and 48 hours, respectively. 

Data are expressed as % of cell viability with respect to control cells. Values are the mean ± SD of three 

independent experiments. Asterisks represent significant differences between treated cells and CT cells (* p < 

0.05 and ** p < 0.01, Student’s t test). (C) Representative images of tumoural cells incubated in presence or 

absence (CT) of 0.3 mM D609 (D609) for 24 hours and stained with Hoechst 33342 (magnification, 100X; 

scale bar, 10 µm). 

 

In parallel, Hoechst staining was assessed and showed chromatin condensation indicating that these 

treatments caused cell apoptosis (Fig. 19C). 
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5.4. Effect of LU on Sph metabolism in tumoural Caco-2 cells 

To obtain information on the effect of LU on Cer metabolism, we performed short time pulse 

experiment by feeding cells with [3H]-Sph, as the metabolic precursor of Cer, taking into account that 

tumoural Caco-2 cells are able to rapidly incorporated exogenously administered [3H]-Sph as reported 

above. 

After a 120 minutes pulse, the radioactivity present in TLE, as well as that of tritiated water (produced 

by complete Sph degradation) was found very similar in control and LU-treated cells. Furthermore, 

[3H]-Sph represented a minor portion of the incorporated radioactivity, accounting for less than 5% 

of the total incorporated radioactivity in all cases (Fig. 20). 

 

 

Figure 20. Uptake of [3H]-Sphingosine by Tumoural Caco-2 cells after LU treatment. Cells were pulsed 

with 0.55 Ci/ml [3H]-sphingosine for 2 hours in EMEM supplemented with 15% FCS in the presence of 20 

M (LU20) and 200 M (LU200) of Luteolin, or vehicle (CT, 0.57% DMSO). Incorporated radioactivity is 

the sum of the radioactivity present in the cell lipid extract and present in the culture medium. Data are 

expressed as nCi/dish. Values are the mean ± SD of at least three independent experiments 

 

When analyzing organic metabolites, we first focused on the Sph N-acylation products. As shown in 

Fig. 21A, the radioactivity incorporated into N-acylated compounds (sum of Cer, SM and GSLs) was 

very similar in control and LU-treated cells at the non-toxic dose (20 M LU). Of note, a significant 

increase about 35 ± 2.56 % was observed at the toxic dose of LU with respect to control cells. 
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However, both treatments with LU at 20 and 200 M modified the distribution of radioactivity among 

N-acylated compounds. Indeed, as shown in Fig. 21A, [3H]-Cer level increased in a dose-dependent 

manner after LU treatment, accounting for an increase of about 65 ± 4.7 % and 163 ± 17.5 % in 20 

and 200 M LU concentrations, respectively, with respect to control cells. In parallel, LU induced a 

significant decrease of the radioactivity associated to complex SLs. In fact, the SM radioactivity was 

49 ± 5.4 % and 71 ± 3.3 % less at 20 and 200 M LU, respectively than in control. Concerning the 

GSLs, their content decreased in a dose-dependent fashion, by about 41 ± 4.7% and 67 ± 6.8 %. 

Taken together, these results demonstrate that LU inhibits the utilization of newly synthesized Cer 

for the biosynthesis of complex SLs. 

 

 

Figure 21. Incorporation of radioactivity into N-acylation and phosphorylation pathways. Tumoural Caco-

2 cells were pulsed with 0.55 Ci/ml of [3H]-sphingosine for 2 hours in EMEM supplemented with 15% FCS 

in presence of vehicle (CT), 20 M (LU20), or 200 M (LU200). Panel A shows the radioactivity incorporated 

into N-acylated compounds, represented by Cer, SM and GSLs. Panel B shows the radioactivity incorporated 

into phosphorylated compounds, represented by S1P and water. Data are the mean ± SD of at least three 

independent experiments. Asterisks represent significant differences between LU-treated cells and vehicle 

treated cells (** p < 0.01, Student’s t test) 
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We then analyzed the Sph phosphorylation process, including S1P production and degradation, 

measured as tritiated water. Of relevance, the increase of the N-acylated radioactivity observed at the 

toxic dose of LU (200 M) was accompanied by a marked decrease of Sph-phosphorylation-

associated radioactivity, corresponding to 32 ± 1.7 % of the control. Interestingly, tritiated water 

which represented the bulk of Sph-phosphorylation-associated radioactivity had a similar trend in 

LU-treated cells (20 M) with respect to control cells, whereas it was 31 ± 1.9 % lower in LU-treated 

cells (200 M) than in control ones (Fig. 21B). Moreover, the radioactivity associated to extracellular 

S1P production represented less than 0.3 % of the Sph phosphorylation process in both cell types. 

Interestingly, even if the radioactivity associated to intracellular S1P was markedly lower than 

tritiated water, its content decreased in a dose dependent fashion after LU treatment (Fig. 21B). 

 

5.5. Accumulation of Cer in the endoplasmic reticulum in LU-treated cells: possible 

impairment of Cer trafficking 

The results obtained in our lab that reported a strong link between the PI3K/AKT pathway and the 

Endoplasmic Reticulum (ER) to Golgi Traffic of Cer, [Giussani et al., 2009], coupled with more 

recent data that demonstrated the capacity of LU to inhibit PI3K activity in different cell types [Kim 

et al., 2013, Lim et al., 2012], prompted us to speculate that, in LU treated cells, Cer accumulation in 

the ER might be due to an aberrant export of Cer to the Golgi apparatus. 

5.5.1. Effect of LU on p-AKT expression  

Based on these data, we first investigated the capacity of LU to influence the phosphorylation of Akt 

in tumoural Caco-2 cells, as a downstream effect of an inhibition of PI3K activity. Immunoblot 

analyses demonstrated that LU markedly reduced the Akt activation. Indeed, as shown in Fig. 22, 

phospho-Akt was undetectable, not only at toxic doses, but surprisingly also at 20 M LU. 
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Figure 22. Effect of Luteolin on the expression of p-AKT protein in tumoural Caco-2 cells. Cells were 

treated with vehicle (CT, 0.57% DMSO) or 20 µM (LU20), 200 µM (LU200) Luteolin for 30 minutes. Cells 

were then lysed and aliquots containing 30 µg of proteins were analyzed by immunoblotting with anti-pAKT 

and anti-GAPDH antibodies. The immunoblots shown are representative of one out of three similar 

experiments. 

 

5.5.2. Effect of PI3K/Akt inhibition on [3H]-Sph metabolism  

In light of the efficient inhibition of Akt phosphorylation by LU, we investigate if the inhibition PI3K, 

through LY294002 (LY), could have the similar effect observed after LU treatment on Cer 

metabolism. To this purpose, we performed a short time pulse experiment by feeding cells with [3H]-

Sph in the presence or absence of 20 M LY, a dose used to inhibit efficiently the Akt phosphorylation 

in Caco-2 cells. We first obtained that treatment with LY did not alter the [3H]-Sph uptake: the 

incorporated radioactivity was very similar in both control and treated cells. Furthermore, residual 

intracellular [3H]-Sph represented about only the 3% of the incorporated radioactivity, suggesting 

that cells were able to rapidly metabolize Sph in both cases (Fig. 23A). 

The radioactivity associated to the Sph N-acylated metabolites was very similar in control and LY-

treated cells. Of note, treatment with LY markedly modified the radioactivity distribution among the 

different N-acylated compounds (Fig. 23B). In fact, the [3H]-Cer levels were about 40 ± 1.8 % higher 

in treated cells, whereas the radioactivity associated to SM and GSLs were 24 ± 0.8% and 21 ± 1.7% 

lower than in control cells, respectively. Thus, similar to the effect of LU on the alteration of Cer 

metabolism, the inhibition of the PI3K/Akt pathway promotes a decrease in the metabolic utilization 

of Cer for the biosynthesis of complex SLs in tumoural Caco-2 cells. 
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Figure 23. Incorporation of radioactivity into N-acylated metabolites prior and after treatment with 

LY294002. Tumoural Caco-2 cells were pulsed with 0.55 mCi/ml [3H]-Sphingosine for 2 hours in EMEM 

containing 15% FCS in the presence of 20mM LY294002 (LY, red) or vehicle (CT, 0.57% DMSO). Panel A 

shows the radioactivity incorporated into N-acylated metabolites (sum of Cer, SM and GSLs) and the 

radioactivity associated to intracellular Sph. Panel B shows the distribution of radioactivity into N-acylated 

compounds. Data are expressed as nCi/dish. Values are the mean ± SD of at least three independent 

experiments. Asterisks represent significant differences between LY-treated cells and vehicle treated cells (** 

p < 0.01, Student’s t test). 

 

5.5.3. Effect of LU on the intracellular distribution of BODIPY-C5-Cer  

Prompted by these results, we investigated the effect of LU on the ER-Golgi traffic of Cer. To this 

purpose, we qualitatively examined the transport of Cer using BODIPY-C5-Cer, a Cer analogue 

extensively utilized as a fluorescent tool able to mimic the ER-Golgi traffic of natural Cer in living 

cells [Ktistakis et al., 1995; Pagano et al., 1991]. Indeed, after administration to cells, BODIPY-C5-

Cer is readily incorporated into the plasma membrane even at 4°C and, after movement across the 

plasma membrane, fluorescently labels intracellular membranes, particularly the ER. Upon warming 

the cells at 37°C, a distribution of BODIPY-C5-Cer occurs, as it is efficiently transported from the 

ER to the Golgi. Tumoural Caco-2 cells were treated with 20 and 200 M of LU for 90 minutes prior 

to loading with BODIPY-C5-Cer. Then, the transport of this fluorescent analogue to the Golgi 

apparatus was monitored, the results showed that in control cells, the fluorescence appeared in 

compact perinuclear regions, corresponding to the Golgi apparatus, indicating that BODIPY-C5-Cer 

exited the ER network (Fig. 24).  
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Figure 24. Effect of Luteolin on BODIPY-C5-Cer distribution in Tumoural Caco-2 cells. Cells were 

pretreated with 20 µM (LU20) or 200 µM (LU200) Luteolin or 0.57% DMSO (CT) for 90 minutes. Cells were 

then incubated with 2.5 M of BODIPY-C5-Cer for 30 minutes at 4°C. Then, cells were further incubated, in 

the presence or absence of LU, at 37°C for 30 minutes in order to allow the intracellular distribution of the 

fluorescent ceramide. Cells were fixed and examined by fluorescence microscopy (magnification, 100X; scale 

bar, 10 µm). 

 

In contrast, the LU treatment reduced the accumulation of intracellular fluorescence in the Golgi 

region in a dose-dependent manner. This fluorescence was observed in a diffuse reticular ER network, 

suggesting that the transport to the Golgi apparatus was inhibited. 

 

5.5.4. Effect of LU on complex SLs biosynthesis from [3H]-Sph in BFA-treated cells 

To further confirm the putative role of LU in inhibiting the Cer export from the ER, we next 

investigated the effect BFA treatment on [3H]-Sph metabolism in LU-treated tumoural cells. The 

rationale of this experiment resides in the fact that BFA is a macrolide able to merge the ER and Golgi 

compartments, thus making the ER-accumulated Cer accessible for the biosynthesis of complex SLs 

in the Golgi [Chardin et al., 1999]. As shown in Fig. 25A-B, BFA treatment was found effective in 

reducing the increased Cer levels observed during LU treatment as well as in restoring the 

biosynthesis of complex SLs. Thus, in the presence of BFA, LU was unable to impair the metabolic 

utilization of Cer.  
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Figure 25. Effect of Luteolin on [3H]-Sphingosine metabolism in BFA-treated Caco-2 cells. Tumoural Caco-

2 cells were pretreated for 30minutes at 37°C with 1 µg/ml Brefeldin A (BFA) or not, as indicated and then 

pulsed with 0.55 Ci/ml [3H]-Sphingosine in the absence (CT) or presence of 200 µM Luteolin (LU200) for 2 

hours at 37°C. At the end, cell lipids were extracted and separated by HPTLC. Panel A shows a representative 

autoradiographic image of sphingolipids in the organic phase. Panel B shows the radioactivity incorporated 

into Cer and complex sphingolipids in LU treated cells in the presence (+BFA) or absence (-BFA) of BFA. 

Data are the mean ± SD of at least three independent experiments. Asterisks represent significant differences 

between BFA-treated cells and CT cells (** p < 0.01, Student’s t test) 

  

5.6. Effect of Luteolin on sphingolipids rheostat in tumoural Caco-2 cells 

As reported above, LU induced a decrease of the radioactivity associated to intracellular S1P after 

short pulse time. We therefore analyzed LU-treated cells, for their S1P content. We found that S1P 

level was decreased by about 40 % at 200 M if compared to the control level, whereas no significant 

change was observed at LU 20 M (data not shown). Furthermore, this decrease in S1P content at 

200M of LU, coupled with the concomitant increase of Cer, resulted also in a intracellular Cer/S1P 

ratio significantly higher (about 5-fold) with respect to the control cells. The marked increase of the 

Cer/S1P ratio led us to speculate that this could be a reason of the cytotoxic effect exerted by the 

highest LU dose (200 M) in tumoural Caco-2 cells (Fig. 26). 
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Figure 26. Ceramide and intracellular S1P ratio in tumoural Caco-2 cells. Caco-2 cells were pulsed with 

0.55Ci/ml of [3H]-sphingosine for 6 hours, chased for 22 hours, and treated with 20 µM (LU20), or 200 µM 

(LU200) of Luteolin or vehicle (0.57%DMSO) (CT). At the end of chase, cells were harvested and submitted 

to lipid extraction and quantification as described in “Material and Methods”. Histograms represent the ratio 

between ceramide and intracellular S1P-associated radioactivity. Data are the mean ± SD of at least three 

independent experiments Asterisks represent significant differences between LU-treated cells and CT cells (** 

p < 0.01, Student’s t test).  

 

5.7. Effect of LU on Sphingosine kinases activity in tumoural Caco-2 cells 

The decrease of the S1P content under LU treatment led us to hypothesize that this data could be 

consequent to the inhibition of sphingosine kinases (SPHKs) activity. On this base, we assessed the 

effect of LU on the in vitro enzyme activity of the two SPHKs recognized isoforms (SPHKI and 

SPHKII) by using experimental conditions able to selectively favor the activity of each enzyme. 

Using the homogenate from tumoural cells as control, the measured SPHKI activity was 1.36 ± 0.07 

pmol, mg protein-1, min-1  and that of SPHKII 3.6 ± 0.6 pmol, mg protein -1, min-1  . By adding different 

doses of LU (50 M and 250 M) to the enzyme assay, a dose-dependent inhibition of the SPHKII 

enzyme activity was observed; 50 M of LU yielded 16 % inhibition, whereas at high dose of LU 

(250 M), the activity of SPHKII was strongly reduced, about 79%, with respect to the control cells. 

In parallel, the activity of SPHKI shows a decrease of only 17% with no change at 50 M of LU. 

These results suggested that SPHKII is the active isoform and the important target of LU (Fig. 27). 
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Figure 27. Effect of LU on SPHKs in vitro activities in Caco-2 cells. SPHKI and SPHKII activities were 

assayed using tumoural cell homogenate as enzyme source and under buffer conditions favoring SPHKI or 

SPHKII activity. 50 M (LU50), 250 M (LU250) of Luteolin or vehicle (CT, 0.07% DMSO) were added to 

the appropriate SK Buffer. Data are expressed as pmol/mg protein, h. Values are the mean ± SD of at least 

three independent experiments. Asterisks represent significant differences between LU-treated cells and CT 

cells (** p < 0.01, Student’s t test). 

 

5.8. S1P acts as a Cer antagonist in favouring tumoural Caco-2 cell survival 

against LU toxicity  

5.8.1. Role of S1P in LU-induced toxicity in tumoural Caco-2 cells 

The evidence that LU induces a decrease in the intracellular S1P content stimulated us to analyse 

whether exogenous S1P administration might be able to modulate tumoural Caco-2 cell death by 

preventing the cytotoxic effect of LU. To this purpose, we incubated 200 M LU-treated cells in the 

absence or presence of extracellular S1P (0.5-1 M) for 48 hours. Interestingly, as shown in Fig. 28, 

the co-treatment of S1P and LU rendered tumoural Caco-2 cells resistant to the toxic effect of the 

flavonoid. In fact, exogenous S1P was able to reduce the cytotoxic effect of LU by inducing a 1.5 and 
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2-fold increase in viable cell number at 0.5 and 1 M respectively, compared to cells treated only 

with LU. 

 

Figure 28. Effect of exogenous S1P on LU-induced apoptosis in Caco-2 cells. Tumoural Caco-2 cells were 

exposed to 0.5-1 µM S1P, 200 μM LU, separately or in combination, as indicated. Cell viability was measured 

by MTT assay after 48 hours of treatment. Results are expressed as percentage of viable cells with respect to 

vehicle-treated cells (100%). Data are mean ± SEM of at least three independent experiments. Asterisks 

represent significant differences between S1P-treated cells and LU-treated cells (** p < 0.01, Student’s t test). 
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5.8.2. Effect of S1P on phospho-Akt expression in tumoural Caco-2 cells 

Finally, we investigated the possible mechanism by which S1P elicits a protective effects against LU-

induced apoptosis in tumoural Caco-2 cells. Immunoblot analyses demonstrated that S1P was able to 

stimulate Akt activation. Indeed, as shown in Fig. 29, phospho-Akt level was about 1.5 and 2.5 fold 

higher in 0.2 and 1 M S1P-treated cells, with respect to the control ones. 

 

 

 

Figure 29. Effect of S1P on the expression of p-AKT in Caco-2 cells. Tumoural Caco-2 cells were incubated 

in presence or absence of 0.2 and 1.0 µM S1P for 30 minutes, respectively. Cells were then lysed and aliquots 

containing 30 g of proteins were analyzed by immunoblotting with anti-p-AKT and anti-GAPDH antibodies. 

The immunoblottings shown are representative of one out of three similar experiments. 
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DISCUSSION 

For an antitumoural agent, it is important to efficiently kill cancer cells but not normal ones. 

An understanding of the sensitivity of normal and cancer colon cells toward an antitumoural agent is 

crucial because it represents a determinant factor for its selective biological activities. Thus, one of 

the purposes of this study was to examine the effect of LU on cell toxicity in fully differentiated Caco-

2 cells, spontaneously differentiated to represent the normal enterocytes, and the undifferentiated 

Caco-2 cells, that represent the tumour model. 

Differentiation in our cell model was monitored by a number of morphological and 

biochemical markers. Among which is the development of cell polarity with dome formation 

[Ramond et al., 1985], a result of fluid transport by the cell monolayer, implying an establishment of 

the intercellular junctions, characteristic of epithelial cells. In addition, another well-known 

biochemical marker observed, is the cell-assembling brush border a characteristic of absorptive 

enterocytes related to an increase in the ALP activity a brush border membrane-associated hydrolases 

[Matsumoto et al., 1990, Hauri et al., 1985]. 

We further focused on SMases, a class of Cer-generating enzymes. We identified that the activities 

of both Alk-SMase and N-SMase are differentiation-related; indeed these activities significantly 

increased in differentiated cells, in parallel with alkaline phosphatase. As it concerns the Alk-SMase, 

our results are in agreement with the knowledge that differentiation might be a prerequisite for 

enterocytes to express a functionally active enzyme, due to its localization in the apical surface of the 

cells, and that this activity is reduced when the differentiation of enterocytes is defective, thus in the 

absence of the brush border. In fact, previous studies demonstrated a significant decrease of Alk-

SMase activity in human colorectal adenomas, carcinomas, in familial adenomatous polyposis 

[Hertervig et al., 1996 and 1999], and also in long-standing ulcerative mutation colitis [Sjöqvistet 

al., 2002], thus supporting the increase of its activity in the differentiated healthy model and its lack 

in the tumour one. In addition, Duan and colleagues [Duan et al., 2004] reported a mutation of Alk-
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SMase in HT29 colon cancer cells. Altogether, the Alk-SMase appears as a novel marker of intestinal 

differentiation conferring to the intestinal cells the capacity to hydrolyze, and thus digest, dietary 

sphingomyelin. Furthermore, we found for the first time a significant increase of the N-SMase activity 

in the differentiated Caco-2 cells. This finding prompts us to hypothesize a key role of this enzyme 

in the intestinal differentiation. Despite the role of this enzyme in intestinal cells remains to be 

identified, it is worth noting that a study by our laboratory reported an increase in the activity of the 

N-SMase as a source to a Cer pool, which mediates the differentiation of Neuro2a cells [Riboni et 

al., 1995]. Other studies reporting an increase in the activity of N-SMase enzyme with cell 

differentiation [Spence et al., 1978] support this hypothesis. 

Further experiments focused on the effect of Luteolin in the two cell models. Intriguingly, the 

results of these experiments demonstrated a differential susceptibility to LU-induced cell apoptosis, 

based on the differentiation degree of Caco-2 cells. Indeed, we found that when administered in the 

range 20-200 μM, this polyphenol is able to exert an apoptotic and cytotoxic effect on colon cancer 

cells, but was ineffective in the normal counterpart. Notably, LU was used in the range of the known 

physiological concentrations (≤200 μM), that are those reached by dietary polyphenols in the 

gastrointestinal tract [Scalbert et al., 2000]. In addition, and of interest, we found that LU induces an 

increase of the intracellular Cer level, with a more pronounced trend in undifferentiated cells. 

Intriguingly, the endogenous basal level of Cer in differentiated cell was found two-fold higher than 

that of the cancer ones. This result supports a previous study showing a decrease in Cer content in 

colon cancer specimens with respective to normal colon mucosa obtained in the same patient [Selzner 

et al., 2001]. Overall it appears that the tumour intestinal cells are equipped in maintaining a low Cer 

level, and are particularly sensitive to the apoptotic effect of Cer when an increase of their Cer content 

occurs, as that induced by LU. 

Accumulating literature indicates that the bioactive SL Cer plays an important role in 

mediating apoptotic responses via various mechanisms in human cancer cells and that it is a major 

player in the mechanism of action of many chemotherapeutic drugs [Ogretmen et al., 2004, Reynolds 
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et al., 2004]. As it concerns colon cancer, it was reported that Cer resulting from de novo pathway or 

catabolism modulation acts as a second messenger of the antitumor drugs camptothecin and 

homocamptothecin in HT29 cells [D. Chauvier et al., 2002]. Furthermore, supplementation of SM, 

the well-known Cer precursor, has been shown not only to reduce aberrant colonic crypts and 

adenocarcinomas in CF1 mice [Dillehay et al., 1994, Schmelz, et al., 1996], but also to enhance 5-

fluoricil efficacy in colonic tumor xenografts [Modrak et al., 2002]. Based on these findings, we 

examined whether Cer is involved in the mechanism of LU-induced apoptosis. Notably we obtained 

that conditions leading to enhance the Cer content in colon cancer cells, thus mimicking the effect of 

LU on the endogenous Cer level, were successful in inducing cell apoptosis. In fact, the treatments 

with either exogenous short-chain Cer analogues (C2-Cer and C6-Cer) or an inhibitor of SM synthase 

(D609) were followed by the induction of cell death. This effect was found dose-depend, and 

exhibited characteristic features of apoptosis, including chromatin condensation and nuclear 

fragmentation. These results are consistent with previous findings reporting cell death in SW403 

colon cancer cells, upon treatment with C2- and C6-ceramides and two inhibitors of Cdases, which 

are treatments inducing an accumulation of the intracellular ceramide [Selzner et al., 2001]. 

Altogether, our results point out for the first time the evidence that LU leads to apoptosis in colon 

cancer cells via a mechanism that involves Cer accumulation.  

It is well documented that mechanisms utilized by some anti-cancer drugs result in increased 

generation and/or accumulation of endogenous Cer either via the activation of the de novo pathway, 

or by an increased activity of SMases [Ogretmen et al., 2004]. However, this appears not to be the 

case with LU. In fact, we report that in colon cancer cells, LU actually impairs the vesicular ER to 

Golgi transport of Cer, which results in its accumulation, parallel to the decrease of both SM and 

GSLs. Different lines of evidence supported this conclusion. First, by using short pulse experimental 

approaches with tritiated Sph as Cer precursor, the pathway responsible for the LU-dependent Cer 

increase was found to involve a reduced utilization of Cer for the biosynthesis of complex SLs, i.e. 

SM and GSLs. A crucial step in the biosynthesis of complex SLs is the transport of Cer from ER, 
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where the enzymes of Cer biosynthesis are localized, to the Golgi complex and where consequently 

the biosynthesis of SM and GlcCer occurs. Several piece of evidence, obtained in both mammalian 

cells and yeast [Funato et al., 2001, Viani et al., 2003], support that besides the CERT-mediated 

transport that exclusively acts on SM biosynthetic process, neo-synthesized Cer in the ER appears to 

move to Golgi, through a biosynthetic vesicular route functional to Cer utilization for both SM and 

GlcCer biosynthesis. In agreement, the formation of transport vesicles involved in anterograde, as 

well as retrograde trafficking was extensively studied at the molecular level [Aridor and Balch et al., 

1996, Bednarek et al., 1996]. The concomitant decrease of both SM and GSLs in LU-treated cells 

prompted us to hypothesize that LU most probably acts by reducing the availability of Cer as a 

substrate for both SM-synthase and GlcCer-synthase enzymes in the Golgi complex, possibly by 

inducing a defect in the common vesicular route responsible for complex SL biosynthetic processes. 

Very convincing support to this hypothesis was obtained by the intracellular distribution of BODIPY-

C5-Cer, a fluorescent probe able to mimic the ER-Golgi trafficking of Cer in cells [Ktistakis et al., 

1995, Pagano et al., 2007]. Indeed, a significant ER deposit of fluorescence during LU treatment was 

observed, whereas in control cells BODIPY-C5-CER fluorescence exited from the ER to accumulate 

in the Golgi. Furthermore, the treatment with BFA, a fungal macrocyclic lactone known to induce a 

retrograde merging of the cis-Golgi membranes with the ER [Lippincott et al., 1989; Klausner et al., 

1992], rendered Cer metabolism insensitive to the LU treatment, thus definitely demonstrating that 

LU is able to impair the ER-Golgi translocation of Cer. In addition, the results obtained with BFA 

demonstrated that the Golgi ultrastructure was not altered in LU-treated cells. This is in agreement 

with some findings that reported little perturbation of the Golgi under conditions of Cer accumulation 

[Maceyka et al., 1997], whereas another study suggests that Sph, generated from the hydrolysis of 

ceramide, causes Golgi fragmentation [Hu et al., 2005]. We can also conclude that the cis-Golgi 

represents the major subcellular site for both GlcCer and SM biosynthesis in colon cancer cells, as 

occurs in many cell types [Schweizer et al., 1994]. Taken together, these results demonstrate that LU 

is able to modulate the intracellular traffic of Cer between the ER and the Golgi apparatus. 

http://jcb.rupress.org/content/142/1/25.long#ref-3
http://jcb.rupress.org/content/142/1/25.long#ref-3
http://jcb.rupress.org/content/142/1/25.long#ref-4
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Consequently, newly synthesized Cer accumulates in the ER, and this appears to act as a mediator of 

the apoptotic effect of LU in colon cancer cells. 

Protein phosphorylation, known to modulate many membrane traffic processes throughout the 

cells, has also been implicated in the transport between the ER and Golgi, and different protein 

kinases, including Akt, have been shown to regulate ER to Golgi traffic [Du et al., 2006]. In addition, 

a study in our laboratory reported a putative role of PI3K/Akt pathway in the regulation of the vesicle-

mediated movements of Cer in the ER-Golgi district; in C6 glioma cells. Infact, it was observed that 

inhibition of PI3K, and consequently of Akt, strongly induced Cer accumulation, and this was 

accompanied by a decrease in the biosynthesis of complex SLs [Giussani et al., 2009]. Prompted by 

these findings, and aiming to examine whether PI3K/Akt exhibits the same effects on Cer metabolism 

on colon cancer cells too, LY294002, a well-recognized PI3K inhibitor that blocks ATP binding to 

the p110α PI3K catalytic domain [Vlahos et al., 1994], was administered to Caco2 cells. The results 

demonstrated that LY294002 is able to exert an impairment in the Cer metabolismin tumoural cells, 

thus mimicking the effect observed after LU treatment. Interestingly, we obtained that in our cell 

model LU acts as a potent inhibitor of Akt phosphorylation, as a downstream response of PI3K 

inhibition. In this context it is interesting to note that Quercetin, the lead compound on which 

LY294002 was identified as PI3K inihibitor [Vlahos et al., 1994], possesses the same chemical core 

structure of some flavonoids, including LU, and is able to inhibit PI3K activity by binding to its ATP 

binding pocket [Matter et al., 1992]. This result supports previous studies that showed the inhibition 

of PI3K, and down-regulation of its downstream component pAkt, as the primary target of LU in 

colon cancer cells [Lim et al., 2012]. Thus, from this set of data, it emerges that the inhibition of PI3K 

by LU, and subsequently the down-regulation of the PI3K/Akt pathway, represents one of the 

mechanisms responsible for the effect of this flavonoid on Cer trafficking in our cancer cell model. 

Despite Cer is anti-proliferative, S1P is its well-recognized counter-player. Indeed S1P has 

been implicated in the promotion of cellular proliferation and survival [Spiegel et al., 2002]. 

Importantly, our data showed that the exposure of Caco-2 cancer cell to the toxic dose of LU not only 
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increases the intracellular level of Cer, but also decreases the endogenous S1P level, inducing thereby 

a shift of the “SL balance” to the side of Cer, thus promoting cell death. SPHKs have been reported 

as key regulating factors in the sphingolipid rheostat, able to modulate the balance of proliferative 

and apoptotic signals through the conversion of Cer and Sph to S1P [Hait et al., 2006]. Of relevance, 

we demonstrated for the first time that LU was able to act as inhibitor of SPHK activity in colon 

cancer cells, especially SPHKII, the up-regulated isoform in our cancer cell model, exhibiting only a 

modest effect on SPHKI. Thus, it emerges an additional, relevant effect of LU in Caco-2 cells that is 

a potent inhibition of SPHKII activity, resulting in a decreased S1P content.  

In order to gain deeper insights into the role of the “SL balance” in mediating the effect of 

LU, we attempted to push the balance between Cer and S1P towards S1P by adding S1P to colon 

cancer cells. The results demonstrated that S1P conferred a significant resistance of colon cancer cells 

to the cytotoxic effect of LU. The mechanism by which S1P acts as LU-antagonist was proved to be 

mainly by the up-regulation of the PI3K/Akt pathway, which is able to rescue colon cancer cells from 

the apoptotic effect of the LU-induced increase of Cer.  

To sum up, as shown in Fig. 30, the results of this study provide novel informations about LU 

as an antitumour agent in colon cancer cells, and the mechanisms underlying its apoptotic effect on 

colon cancer cells. These mechanisms involve two major targets that converge on the “SL rheostat” 

shifting it to the side of death. First, our data demonstrate LU as an efficient inhibitor of PI3K. This 

effect leads to a down-regulation of PI3K/Akt activity, which on its turn impairs Cer traffic. As 

consequence, endogenous Cer accumulated, and acts as mediator of the apoptotic effect of LU. 

Furthermore, we identified a further target of LU. Indeed we obtained evidence that LU can act as a 

potent inhibitor of SPHKII, and this results in the decrease of endogenous S1P, favoring the SL 

balance to orient toward the cell death effect. In addition, we revealed that the effect of LU on Cer 

and S1P are strictly interconnected. Indeed, we found that S1P is able to promote cell survival by 

activating the PI3K/Akt signaling pathway, thus antagonizing the LU effect. 
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Figure 30. Schematic representation of the molecular mechanisms underlying the pro-apoptotic action of 

Luteolin in colon cancer cells. 

 

Taken together, the results of this research demonstrate, for the first time, that the dietary 

natural flavonoid LU is able to induce apoptosis in colon cancer cells by targeting the “SL rheostat”, 

and directing the balance in favor of Cer. As the balance between Cer and S1P appears to be an 

important target for development of new and effective therapeutic strategies against tumor 

progression, LU could be a novel antitumoural, natural agent not only in colon cancer but also, 

possibly in the treatment of other solid tumours. 
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