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� Abstract
Dissection of complex molecular-networks in rare cell populations is limited by cur-
rent technologies that do not allow simultaneous quantification, high-resolution loca-
lization, and statistically robust analysis of multiple parameters. We have developed a
novel computational platform (Automated Microscopy for Image CytOmetry,
A.M.I.CO) for quantitative image-analysis of data from confocal or widefield robot-
ized microscopes. We have applied this image-cytometry technology to the study of
checkpoint activation in response to spontaneous DNA damage in nontransformed
mammary cells. Cell-cycle profile and active DNA-replication were correlated to (i)
Ki67, to monitor proliferation; (ii) phosphorylated histone H2AX (cH2AX) and
53BP1, as markers of DNA-damage response (DDR); and (iii) p53 and p21, as check-
point-activation markers. Our data suggest the existence of cell-cycle modulated
mechanisms involving different functions of cH2AX and 53BP1 in DDR, and of p53
and p21 in checkpoint activation and quiescence regulation during the cell-cycle.
Quantitative analysis, event selection, and physical relocalization have been then
employed to correlate protein expression at the population level with interactions
between molecules, measured with Proximity Ligation Analysis, with unprecedented
statistical relevance. ' 2013 International Society for Advancement of Cytometry
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QUANTIFICATION of cellular DNA damage (DD) is a main target in cancer research

(1,2) as genomic instability is a hallmark of most human cancers. Endogenous and

exogenous DNA damaging agents continuously threaten the integrity of our genome,

but cells have evolved a tightly regulated network of molecular mechanisms to pro-

tect it, known as DNA damage response (DDR). Multiple pathways start from the

recognition of a single double-strand break (DSB) by the MRN complex (Mre11-

Rad50-Nbs1). The activated signaling cascade then leads to differential recruitment

of repair effectors according to the type of lesion (3–7).

Localization of damaged sites in the genome is usually based on the detection of

the phosphorylation of the histone isoform H2AX (cH2AX) that extends over a

broad genomic area around the lesion (8–12). However, accumulating evidence is

challenging the notion of a univocal link between serine 139 phosphorylation of

H2AX and DNA-breaks (13–17).

Thanks to the increasing availability of antibodies directed towards the DDR

molecular machinery, new surrogate markers have been proposed. For example,

monitoring of 53BP1 spatial distribution provides a first alternative to cH2AX detec-

tion. 53BP1 rapidly relocalizes to DSB sites, activating the ATM-driven signaling cas-

cade (18,19). It plays a fundamental function in nonhomologous end joining
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(NHEJ) repair, which is mainly active in resting cells and

repressed during the S-phase (20). The 53BP1 fundamental

role in inducing genomic instability through error-prone

repair activation has been recently shown in a mutated BRCA

background (21,22). A specific function in the processing of

damaged DNA fragile sites has been also attributed to 53BP1

(23,24). Both cH2AX and 53BP1 are essential to activate the

cell-cycle checkpoint and to arrest cell cycle progression (25),

and their colocalization might be an effective marker of DSBs

(26,27). However, due to their participation to multiple DDR

and repair pathways, a direct correlation between their expres-

sion, localization, and interaction in the different phases of the

cell cycle is very much required.

Detection of physiological DD is challenging because of

the high sensitivity and spatial resolution required for its

quantification. Flow cytometry, laser-scanning cytometry and

image-streaming cytometry can all provide statistically signifi-

cant measurements and have been employed to quantify

cH2AX and/or other DDR effectors (8,26,28–34). The recogni-

tion and quantification of DD foci by H2AX phosphorylation

and/or 53BP1 relocalization demand an image-based

approach, but they still represent a challenging task for auto-

matic image processing. In particular, detection and quantifi-

cation of endogenous DD foci call for the use of high Numeri-

cal Aperture (NA) objectives to increase the amount of col-

lected photons and to detect small foci with size close to and

below the diffraction limit. Moreover, the molecular crowding

typical of the detected signals requires maximal resolution to

resolve clusters of foci and to evaluate the colocalization of the

involved DDR components. Many efforts have been made to

provide efficient computational tools for foci quantification

and description (9,27,35–40). However, a high-content image-

analysis on a high number of cells is required for results to be

statistically significant to: (i) target specific subpopulations,

(ii) quantitatively describe phenotypes related not only to

DDR but also to checkpoint activation, and (iii) monitor cell-

cycle position and progression.

Here, we present a seven-parameter quantitative image-

based analysis of the cell cycle with unprecedented spatial re-

solution and statistical sampling. Combining the flexibility

offered by the automation of multiple fluorescence micros-

copy platforms with our novel analysis software (A.M.I.CO.,

see the accompanying technical note in this issue), we exam-

ined the connections between DDR and cell-cycle checkpoints

during exponential cell growth, focusing on the effect of pro-

liferation on genome integrity.

For the first time, we provide a detailed kinetics of both

protein content and protein interactions during unperturbed

cell-cycle progression. Our results show correlations between

DDR and cell proliferation, revealing both accumulation of

cH2AX during DNA replication, and colocalization between

cH2AX-foci and replication factories. The spatial proximity

between cH2AX-foci and the newly replicated DNA, shown by

in-situ proximity ligation assay (PLA), indicates the immedi-

ate activation of DDR in response to replication errors. We

detected distinct expression profiles for cH2AX and 53BP1,

together with variable colocalization during the cell-cycle.

DDR and checkpoint-activation markers showed either corre-

lated or independent expression profiles. Finally, we show that

53BP1 and cH2AX interact with p53 independently from each

other, and that these interactions are quantitatively modulated

across the cell cycle.

The data collected contribute to delineate a hierarchy in

DDR, providing a most exhaustive view of the complex molec-

ular network regulating tumor-suppressing mechanisms.

MATERIALS AND METHODS

Cell Culture

MCF10A cells were grown in 50% Dulbecco’s Modified

Eagle Medium 150% Ham’s F12 Medium containing 5% FBS,

2 mM glutamine, 50 ng/ml Penicillin/Streptomycin (all from

Lonza, Switzerland), Choleratoxin (Sigma-Aldrich, MO), 10

lg/ml Insulin (Roche, Switzerland), 100 lg/ml Hydrocortisone

(Sigma-Aldrich), and 20 ng/ml EGF (PeproTech, NJ) at 378C in

5% CO2. Cells were grown on glass coverslips, coated with gela-

tin 0.5% (wt/vol) in PBS, and, at 70% confluence, fixed for 10

min in 4% paraformaldehyde (wt/vol). To detect actively DNA-

replicating cells, Ethinyl-deoxyuridine (EdU) (Life Technolo-

gies, CA) was added to the culture media (final concentration

10 lM) 40 min before fixation. After labeling, cells were washed

twice with PBS and fixed as previously described.

Edu Staining and Immunofluorescence of MCF10A

cells

For the 7-parameter widefield microscopy analysis, cells

(including the cell lines shown in the Supporting Information

Data Section) were permeabilized and processed using the

Click-iTTM EdU Imaging kit (Life-Technologies) plus Pacific-

Blue azide according to the manufacturer instructions.

After blocking (5% BSA in PBS), cells were incubated for 1

h at room temperature (RT) with primary antibodies [rabbit

anti-53BP1 (ab36823 Abcam, UK) and mouse anti-p21 (M7202,

Dako, Denmark)]. After washing (33), they were incubated for

1 h at RTwith anti-rabbit Pacific-Orange-conjugated IgGs (Life-

Technologies) and anti-mouse Cy3-conjugated IgGs (Jackson

Immuno-Research, UK). Cells were then refixed in 4% parafor-

maldehyde, blocked with 5% BSA containing mouse-IgG

(Jackson Immuno-Research) and incubated for 1 h with the fol-

lowing mAbs: anti-KI67 Alexa647-conjugated (558615, BD

Pharmingen, CA), anti-cH2AX Alexa488-conjugated (613406,

Biolegend, CA), and anti-human p53 biotin-conjugated (DO1,

Sigma-Aldrich). Finally, after washings, coverslips were incu-

bated 1 h with CW800-conjugated anti-Biotin (600-132-098,

Rockland, PA). DNA was counterstained with DAPI. Slides were

then mounted in Mowiol-containing mounting media.

For the analysis of p63 expression, a putative stem-cell

marker, the above-described protocol was modified using an

anti-p63 mAb (sc-8431, Santa-Cruz, Germany) and anti-p21

biotin-conjugated antibody (ab79467, Abcam).

In Situ PLA

After EdU reaction (see below for details), samples were pro-

cessed for in situ PLA according to manufacturer’s instructions
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(OLink Bioscience, Sweden) using the DuoLink in situ Orange

detection reagent. Then, for complete detection of the expres-

sion levels of the targeted molecules, coverslips were incubated

with fluorochrome conjugated antibodies (see previous sec-

tion). Primary antibodies employed for PLA were: rabbit anti-

53BP1 (ab36823, Abcam)/mouse anti-pH2AX (613402, Biole-

gend), rabbit anti-53BP1 (ab36823 Abcam)/mouse anti-p53

(sc-126, Santa Cruz), and goat anti-p53 (sc-6243, Santa

Cruz)/mouse anti-pH2AX (613402, Biolegend). Secondary

antibodies: Alexa488 anti-mouse and Alexa647 anti-rabbit or

anti-goat conjugated antibodies.

For the detection of proximity between pH2AX and

newly replicated DNA, EdU was detected by biotin-azide in

place of the Pacific-Blue azide usually employed in the rest of

the work. PLA primary coupled antibodies: rabbit anti-

pH2AX (2212-1, Epitomics)/mouse anti-biotin (200-002-211,

Jackson ImmunoResearch). DNA was counterstained with

Chromomycin A3 (10 lM in PBS/70 mM MgCl2). Slides were

mounted in DABCO-containing glycerol-based mounting

media to preserve cell three-dimensional structures.

To verify the compatibility between the DNA-conjugated

secondary antibodies employed for PLA and the secondary

fluorochrome-conjugated antibodies, we measured the num-

ber of PLA foci before and after addition of fluorochrome-

conjugated antibodies. No statistically significant differences

were detected.

Automated Microscopy and Image Acquisition

Images were collected by a BX61 fully motorized Olym-

pus fluorescence microscope controlled by Scan^R software

(version 2.2.09, Olympus Germany). An oil-immersion 603

1.3 NA objective was employed for acquisition.

The adopted fluorescence filter configuration is reported

in the Supporting Information Table 1. Supporting Informa-

tion Figure 1 reports the fluorescence distribution in the

acquired channels for single-stained samples to demonstrate

the absence of significant crosstalk.

Confocal microscopy data were collected with oil-immer-

sion 403 1.25 NA and 633 1.4 NA objectives by a SP5 laser

scanning spectral confocal microscope, equipped with a reso-

nance scanning unit, and controlled by the Matrix routine for

high content microscopy contained in the LAS software pack-

age (Leica Microsystems). More details on our acquisition

procedure for cell relocalization can be found in this issue

accompanying article.

Cell-Cycle Statistical Analysis

Cell identification was based on segmentation of DAPI

nuclei signals and, thus, the analysis of all acquired parameters

limited to nuclear expression and localization. First, false-cell

events (over-fragmentation due to watershed based separation,

cell aggregation, etc.) were excluded through analysis of physi-

cal (cell area and circularity) and fluorescence (mean and inte-

grated density) parameters. Mitotic cells, identified by mean

Dapi intensity versus cell area (high mean fluorescence due to

DNA condensation and minimal dimension), or by mean flu-

orescence of DAPI versus KI67 (simultaneous high intensity

due to DNA condensation and KI67 over-expression localized

to chromosomes. See accompanying article by Furia et al.)

were grouped into the corresponding DNA content (4N or

2N) populations, when not otherwise defined. Cell cycle

phases were identified according to their DNA versus EdU

integrated fluorescence intensity and EdU negative cells

grouped according to their ploidy: 2N (G0/G1), midN (aneu-

ploid cells), and 4N (G2M and G1 tetraploid) subpopulations.

EdU positive cells were separated according to their EdU mean

intensity level and DNA content in early S (2N and low-inter-

mediate EdU content), S (high EdU intensity, independently

of DNA content), and late S (4N and low-intermediate EdU

content). The values obtained were used to perform cell-cycle

related protein profiling, subdividing low and high expressing

cells according to their spatial molecular density (mean fluo-

rescence intensity per pixel). Evaluation of the mean fluores-

cence intensity (rather than the integrated) allowed exclusion

of any nonspecific increase due to cell-volume growth during

cell-cycle progression. Unlike flow-cytometry, which analyses

global cell fluorescence, this image-related approach limits the

noise generated by antibodies nonspecific binding and/or

autofluorescence (strongly dependent on the cell area).

With the exception of a clear KI67 negative population,

isolated and validated for complete absence of signal, negative

controls (prepared with antibody isotypes, when available, or

with serum, and incubated with the chosen secondary antibo-

dies) systematically showed lower fluorescence values. Out-of-

target primary antibody interactions at saturation and/or very

small amounts of the target molecule challenged classical

approaches for negative threshold settings. Since our goal was

to get an indication on how to separate low and high range of

expression, rather than absolute levels, we set an indicative

threshold level by fitting the lower tail of the distribution in

each channel by a Gaussian curve (Supporting Information

Fig. 2), obtaining an R squared parameter (correlation

between fitting and measured data) [0.9 in all the analyzed

samples. A threshold was then set for each parameter at the

1% upper edge of the calculated distribution.

Low and high expressing cells were then classified according

to the DNA-content reference-intervals previously established

for the DNA versus EdU bivariate distribution (2N, mind, and

4N). All fluorescence values were normalized to the average

value of the 2N low-expressing populations, for example, all the

p21 values reported in the graphs were normalized to the mean

p21 fluorescence of the 2N p21-low-expressing cell population.

Moreover, we employed image-analysis to monitor KI67

nucleolar localization as an additional marker of proliferation

at low level of expression. In the KI67-negative cell population,

KI67 total fluorescence intensity was comparable to the blank

sample, but no nucleolar signal was present. Poorly expressing

cells (KI67 low) showed fluorescence comparable or close to the

blank threshold but with a detectable nucleolar accumulation,

possibly indicating a commitment to proliferation.

For the cH2AX and 53BP1 DDR markers the integral of

the intensities of all the detected foci per nucleus (Supporting

Information Fig. 3) were considered in spite of cH2AX2, or

in addition to 53BP12, mean or integrated intensity per cell.
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The ratio between foci integrated fluorescence and the total

intensity per nucleus was calculated and expressed as percent-

age. Foci were detected by applying a Laplace of Gaussian Fil-

ter to images to create a segmenting mask.

The software is also able to consider foci as statistically

independent events without referring them to the cell of ori-

gin. Physical properties (area and circularity) and fluorescence

related measurements identical to the ones acquired for cells

(mean and integrated intensity) were also determined. Graphs

report average values, and standard deviations were calculated

from three independent experiments.

RESULTS

Automated Microscopy Allows High-Content Protein

Profiling of DDR, Checkpoint Activation, Proliferation

Control, and Cell-Cycle Progression

We employed the high sensitivity and spectral-separation

ability of the fluorescence microscope to set-up a seven-pa-

rameter analysis of some of the major molecular components

involved in DDR and cell-cycle regulation.

Stoichiometric binding of a DNA dye (DAPI, widefield,

or Chromomycin, confocal), allowed the classification of cells

according to their ploidy, providing an indirect measurement

of cell-cycle progression. Then, to separate actively replicating

populations, cells were incubated with the Uridine-analogue

EdU (41), its detection procedure being compatible with si-

multaneous immunostaining of intracellular antigens. Finally,

proliferating and quiescent cells were separated according to

the expression of the KI67 antigen (Fig. 1A). Thus, we were

able to discriminate between cells in G0 (KI67 negative cells

with 2N DNA content), G1 (2N DNA content, KI67 positive,

EdU negative), S phase (EdU positive), and G2 (4N DNA con-

tent, EdU negative). DD evaluation was performed by simulta-

neous assessment of presence and intensity of cH2AX foci

(Fig. 1B) and spatial localization and expression of the 53BP1

protein. For 53BP1, we considered separately the fluorescence

Figure 1. Seven parameter correlated analysis of DNA content, DNA replication, DNA damage response, and checkpoint activation provides

population profiling to uncover cell-cycle specific modulation mechanisms. Exponentially growing MCF10A non-transformed human mam-

mary cells were pulsed with EdU for 40 minutes prior fixation and stained for multiparametric image-cytometry analysis. DNA content (X axis)

was correlated to the analysed parameters (Y axis): KI67 total intensity (A), gammaH2AX foci total intensity (B), 53BP1 foci total intensity(C),

53BP1 mean intensity per pixel (D), p53 mean intensity per pixel (E) and p21 mean intensity per pixel (F). Cell subpopulations (each one coded

with a representative color) were definied according to the different ploidy and level of expression of the molecular marker as described in the

Materials and Methods section, reporting percentage with respect to the total population and average level normalized to the 2N low expres-

sing population in every channel. To analyze cell-cycle distribution for each parameter: i) the previously defined populations were relocated in

the biparametric DNA vs EdU content multicolor plots (second row for each panel) and ii) DNA-profiles were plotted for low and high level

expressing fractions. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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originated from the foci (Fig. 1C) and the nuclear signal (Fig.

1D) to distinguish between DDR-associated relocalization and

total protein expression. Checkpoint activation was estimated

by measuring p53 (Fig. 1E) and p21 (Fig. 1F) protein content.

Measurement of Physiological DNA-Damage in

Relation to Cell Proliferation Unmasks DDR

Independent Regulation of Cell-Cycle Entry/Exit

Absence of proliferation, measured from DNA/ KI67 dis-

tribution (Figs. 1A and 2A), was observed at different DNA

contents ranging from 2N (G0/G1) up to 4N (G2M, tetraploid

cells G0/G1 cells) at very low percentages (Fig. 2A). In the

diploid quiescent population, negative G0 (Fig. 2A, KI67neg,

Magenta) and poorly expressing G1 cells (Fig. 2A low, Red)

were separated according to the complete absence/low pre-

sence of the expected KI67 nucleolar accumulation as

described in the Methods section. Quiescence frequency out-

side the diploid compartment progressively decreased indicat-

ing that exit from the cell-cycle was mainly the result of a

post-mitotic program (Fig. 2A). Indeed, quiescent fractions at

midN and 4N DNA content might represent the G0/G1 phase

of aneuploid populations as suggested by (i) EdU negativity

and cyclin E (a G1 marker) expression in part of the popula-

tion (data not shown) and (ii) the up-regulation of both p21

(Fig. 2D) and p53 (Fig. 2E). Unfortunately, due to the low

number of events statistical analysis was not reliable.

Surprisingly, analysis of DDR and checkpoint markers in

quiescent cells did not show a clear correlation. cH2AX (Fig.

2B) and 53BP1 (Fig. 2C) foci distribution revealed that levels

of DDR activation were low in most quiescent cells (cH2AX

and 53BP1foci intensities were low in 65 and 74% of cells,

respectively). Even if we cannot exclude that the quiescent

fraction was committed to future death, we did not observe

any increase in cH2AX intensity to indicate the activation of

an apoptic process, at least in the diploid compartment of the

quiescent fraction. However, increased p21-expression was

detected in all quiescent fractions (Fig. 2D), compared with

their proliferating counterparts, independent of their DNA

content and DDR response. However, by image-driven analy-

sis, we noticed that p21 content quickly decreased when KI67

accumulation began in the nucleolus of KI67-low-expressing

cells, suggesting the existence of intermediate stages between

exit from the cell-cycle and full commitment to proliferation

(Fig. 2D graph).

Remarkably, p53 activation (in association with high

levels of DDR activation; Fig. 2E) was present in only 25% of

quiescent cells, against p21 over-expression in 97.5% of them.

Independently of its localization in foci, we also detected sig-

nificant 53BP1 up-regulation in the quiescent population (Fig.

2F). Similarly, to p21, its mean content was dramatically

higher in KI67-negative cells, progressively reducing after the

cells began to express the proliferation antigen (Fig. 2F graph,

KI67neg and low).

As previously published, mammary cell lines might con-

tain rare subpopulations with phenotypic (marker expression)

and functional (label retention) properties of stem cells (17).

Since DDR-independent quiescence is a specific stem cell pro-

gram, we analyzed the expression of the putative mammary

stem-cell marker p63 (18) in our MCF10A quiescent (KI67-

negative) subpopulation. Strikingly (Supporting Information

Fig. 4), together with p21 and 53BP1, p63 levels were also sig-

nificantly increased compared with proliferating cells, consist-

ent with the existence of a quiescent program to preserve the

self-renewing cell compartment.

Checkpoint Activation: Expression of Checkpoint

Molecular Mediators in Relation to Cell-Cycle and DDR

Our analysis of quiescent cells suggests differences in the

activation steps of the p53-p21 molecular pathways in the reg-

ulation of proliferative potential. Further analysis of the

expression of these proteins in relation to cell-cycle profile

(Figs. 1 and 3) showed that around 40% of all cells expressed

high p21 levels, almost exclusively during the G1 (32%) and

G2M (7%) phases (Figs. 1 and 3E). Analysis of p21 versus

DNA content and mean EdU content confirmed its almost

complete absence in actively replicating cells (about 5% of the

entire p21 positive population): EdU incorporation immedi-

ately coincided with a significant decrease in p21 average con-

tent per cell (Fig. 3E).

On the contrary, beside the expected peaks in the G1 and

G2 phases of the cell-cycle, p53 expression was partially main-

tained during DNA replication (Fig. 3D). A fraction of p53-

positive cells, in fact, comparable to the one detected in G2,

was maintained through the early and first half of the S-phase

(4% of the entire population, equivalent to about 8% of the

EdU positive fraction and 16% of the p53 high-expressing

cells). We also examined 53BP1, which maintained a steady

(average) level during all cell-cycle phases, with few 53BP1-up-

regulated cells in G1 and G2 (Fig. 3G).

To dissect the underlying network hierarchy, we cross-an-

alyzed phase by phase cell-populations with high levels of p53,

p21, 53BP1, as well as cH2AX and 53BP1 foci (Supporting In-

formation Fig. 5). The relative average protein content and the

fraction of cells simultaneously expressing high-levels of pro-

teins in the different populations were adopted as indicators.

As explained in the ‘‘Material and Methods section,’’ we arbi-

trarily set a threshold to distinguish different level of expres-

sion.

Notably, irrespective of the cell-cycle phase, p53 high-

expression was always associated with DDR, but not always

with p21 induction. Indeed, during the S phase, some of the

cells maintained high p53-levels without concomitant increase

in p21-content, suggesting the existence of mechanisms to

monitor replication-associated damage recognition and/or

processing. On the other hand, we detected a G1-specific p21-

activation that was partially DDR and p53 independent. A

more direct correlation between DDR and p21 was however

observed as the cell-cycle proceeded.

Only a fraction of H2AX highly expressing cells were

found to over-express either p53 or p21, suggesting the exis-

tence of an internal threshold for checkpoint activation.

Finally, a p53-53BP1 circuit seemed to be maintained

throughout the cell-cycle with the 53BP1 fraction consistently

upregulating p53 (and p21).
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Figure 2. Identification and profiling of the proliferation marker KI67 shows the existence of a DDR-independent p21 and 53BP1 mediated quies-

cence program in a non-transformed cell line. Bivariate analysis of DNA and KI67 content per cell (A) was performed to identify different degrees

of proliferating activity and their relation to cell-cycle. Image-guided determination of different KI67 expression levels was used to identify the

resting fraction present in the analyzed exponentially growing population of cells. 2N KI67 negative cells (Magenta) presented undetectable loca-

lization of the antigen according to a fluorescence level comparable to blank reference sample. 2N KI67 low expressing cells (Red) showed

instead a very weak, but discernible, staining in the nucleolar region. Quiescent populations were also identified at intermediate (Blue) and tetra-

ploid (Green) DNA content. Multicolor Dot Plots evidenced the gammaH2AX (B) and 53BP1 (C) foci total intensity per cell, p53 (D), p21 (E), and

53BP1 (F) mean intensity per pixel. The graphs report percentages and fluorescence fold increase (average fluorescence intensity of the target

population divided by the average intensity of the corresponding low-expressing subpopulation, see Materials and Methods) for every identified

sub-population over three different experiments. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]



Figure 3. Correlated analysis of DNA content, replication activity, DDR and checkpoint marker expression during unperturbed cell growth. Bivariate

analysis of DNA and EdU content per cell was performed to identify G1 (Magenta), actively replicating cells (early S, Cyan;Middle S, Violet; late S, Red)

and G2M (Green). A replication inactive fraction with intermediate DNA content (SEdUneg, Blue) was clearly identified despite its low frequency. To

characterize the specific phenotypes for each identified population, the relative distribution of the expression levels of the molecular targets of interest

were calculated and visualized in the corresponding dot plot. The graphs report percentages and fluorescence fold increase (average fluorescence in-

tensity of the target population divided by the average intensity of the corresponding low-expressing subpopulation, see Methods) for every identified

subpopulation over three different experiments. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Cell-Cycle Distribution of the cH2AX and 53BP1 DD

Markers Reflects Their Different Functional Roles in

Damage Recognition and Repair

Correlation of replication activity and DDR showed op-

posite cH2AX- and 53BP1-foci kinetics profiles. As replication

proceeded cH2AX-foci intensity per cell remained constantly

higher than the positivity threshold (Fig. 3B, a), reaching its

maximum during the late stages of the S phase when hetero-

chromatin is replicated (42). This correlates with the hypothe-

sis that the more condensed genomic regions require opening

for DD to be recognized and processed. In G1 and G2M cells

the cH2AX signal covered a wider range of values.

In contrast, the expression profile of the total intensity of

53BP1-foci per cell (Fig. 3C) showed a marked peak during

G1, and a progressive decrease during DNA replication.

Damaged cells in G2M regained, together with high cH2AX,

increased 53BP1 recruitment into foci supporting its putative

role in checkpoint activation (43,44).

To completely unmask differences in the morphology and

composition, we measured the mean intensity and average size

of 53BP1- and cH2AX-foci, confirming the existence of phe-

notypically distinct populations according to the cell-cycle

stage. We then adopted two different approaches for the analy-

sis of foci properties. First, we considered them as cell features

and reported the average ‘‘ensemble’’ properties of all the foci

pertaining to a single nucleus (Fig. 4: first and third columns).

Secondly, we looked at the statistical distribution of the foci,

considered as independent statistical events with their own

physical and fluorescence properties (the cells of origin were

only taken into account for their position in the cell cycle. Fig.

4: second and fourth columns). When examined either

through the cH2AX or the 53BP1 channel, enlarged spots

were observed in G1 cells, with sizes exceeding those reached

in the other phases of the cycle (Fig. 4 G1), but disappearing

as soon as cell replication began (compare G1 and early S

panels). The behavior of the two markers, however, did not

overlap: while cH2AX-foci maintained the same mean inten-

sity, indicating a constant molecular density, enlarged 53BP1-

foci clearly formed a separate population with a marked

increase in the mean-pixel value suggesting a 53BP1-specific

recruitment. To validate further, the hypothesis of different

kinetics in foci formation, we analyzed cH2AX- and 53BP1-

foci as independent statistical ensembles not hierarchically

related to cells. Bivariate distributions showed the existence of

a subset of cH2AX-foci not accumulating 53BP1. On the con-

trary, the entire 53BP1-foci population showed a good linear

correlation between the intensities of the two markers (Sup-

porting Information Fig. 6).

To validate the general nature of the observed cell-cycle

related features of the observed phenotypes, we extended the

analysis to a panel of cell lines (Supporting Information Table

2). Unfortunately, the analysis of p53 distribution is limited by

its genetic and functional heterogeneity. The observed DDR-

related features (cH2AX and 53BP1 foci cell-cycle distribu-

tion) were constantly reproduced in a normal (MRC5), non-

transformed (MCF10A, BJ-Tert, HaCaT) and malignant back-

ground (HCT116, U2OS; Supporting Information Figs. 7 and

8). The p21 cell- cycle distribution and the DDR-independent

increased expression of p21 during G1 was also maintained

(Supporting Information Figs. 9 and 10). Similarly, a consist-

ent fraction of the KI67-negative quiescent population (when

present) did not show increased DDR markers (Supporting

Information Fig. 11). However, in this case, no assumptions

can be made on the presence of a self-renewing compartment.

High-Resolution Analysis of the Molecular

Interactions Between DDR, Checkpoint-Activation,

and DNA-Replication Networks

The observed relationships at cellular and intracellular

level statistically inferred from the population analysis sug-

gested a potential interaction between the analyzed molecular

markers. To define the functional relationship linking DNA

replication, damage induction, and damage recognition we

employed in situ PLA (45), which allows cross-evaluation of

the molecular proximity of replication factories, damage foci,

and p53 spots. To optimize data collection, we designed a

computer-aided acquisition protocol driving a confocal plat-

form. Foci discrimination requires both optical-sectioning

ability and adequate spatial oversampling satisfying the

Nyquist rate in all the three dimensions, requirements not

compatible with the large field of view imposed by the acquisi-

tion of thousands of cells. Consequently, in a first round of ac-

quisition, low-resolution images of targeted channels were

used to identify and isolate DNA replicating and/or p53

expressing cells (Fig. 5A). The corresponding stage coordinates

were then employed to acquire selectively XYZ optimized sin-

gle-cell image stacks to evaluate number and localization of

interacting foci (Fig. 5B).

PLA analysis of the interaction between cH2AX and the

incorporated EdU provided a measurement of the specificity

of the assay: since EdU is not incorporated in G1 and G2M

phases, the detected PLA signals could be attributed to aspeci-

fic interactions between the antibodies. The average number

of non-specific foci was in the order of units or less, 10 times

less than those detected during the S-phase (Fig. 5C: EdU vs.

DNA and number of PLA foci vs. DNA). The proximity

between EdU factories and cH2AX foci suggested a tight tem-

poral correlation between DNA replication and H2AX phos-

phorylation. Correlation between cH2AX and 53BP1 showed

that, despite their cell-cycle related differences in expression

and spatial distribution, their molecular interaction could be

detected at every stage of the cell-cycle. Regardless of its invol-

vement in NHEJ repair activity, which is inhibited in S-phase,

53BP1 is not excluded from DDR during DNA replication.

However, PLA analysis confirmed the existence of a fraction of

visible foci in the cH2AX channel not involved in 53BP1

recruitment. It also revealed that p53 accumulation during the

S-phase was concomitantly linked to damage processing, as

the protein was associated to both the DNA-damage markers

cH2AX and 53BP1. Strikingly, 53BP1-p53 interaction was

clearly detected at different cell-cycle stages in a content-de-

pendent manner, thus validating the correlation observed in

the expression profiles.
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DISCUSSION

Oncogene expression induces a hyperproliferation burst

that causes an enhanced DNA-replication stress. The resulting

DD can induce gene mutations and/or chromosomal aberra-

tions, which may eventually lead to malignant transformation

(46,47). To contrast this event the cells have developed physio-

logical barriers by inducing a replicative senescence process,

which is triggered by checkpoint activation via DDR. The goal

of this study was to carry out a multiparameter analysis of

replication-induced damage, cell-cycle regulation, prolifera-

tion, and DDR. Until now, this kind of high-content analysis

was hindered by the lack of a comprehensive experimental

approach, which could, at the same time, maintain single-cell

resolution, high spatial-resolution, high-content, and statisti-

cal significance with respect to poorly represented phenotypes.

In addition, cell-sorting manipulation and/or enhancement of

specific cell features, usually employed to study DDR, carry

the risk of potentially altering the physiological level of DNA-

damage (29).

Herein, for the first time, we employed an image-cytome-

try computational platform to produce a multi-correlated

quantitative cell-cycle profiling of both content and spatial

Figure 4. gammaH2AX and 53BP1 foci physical size varies according to the cell-cycle phase. Size of gammaH2AX (left panel) or 53BP1

(right panel) foci was analyzed at different stages of the cell-cycle. First column reports the average size of foci per cell while the second

one shows the analysis of the entire foci population (note the difference in the Y-axis scale). Each row reports the distribution in the corre-

sponding cell-cycle stage obtained by gating events according to the definition based on the DNA vs EdU content bivariate graph. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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distribution of DNA-replication (EdU), proliferation (KI67),

DDR (cH2AX, 53BP1) and checkpoint activation (p53, p21)

markers. Multiple cycles of data acquisition-analysis enabled

us to assess the expression levels of these markers in the entire

cell population, and their molecular interactions in single cells

at the tens of nanometers range.

The analysis of cH2AX expression in relation to the cell-

cycle phase and checkpoint activation showed, in an unper-

turbed context, an increased phosphorylation of this histone

isoform during DNA replication. The analysis of different cell

lines confirmed that this increase was not restricted to the

MCF10A mammary cells but also present in other tissues and

Figure 5. Combination of Proximity Ligation and image-analysis driven acquisition allows visualization of molecular interaction in intact cells

subpopulations. Undersampled images (A) were collected with a confocal microscope to identify cell-cycle subpopulations of interest with a par-

allel analysis (Scale Bar: 12 lm). Stage coordinates were recalculated to proceed to a 3D oversampled acquisition extended to all the parameters
of interest (Scale Bar: 5 lm). (B). Stacks were then used to calculate the distribution and average number (reported in the graph) of PLA foci in G1
(Magenta), G2(Blue) and S (Green) subpopulations. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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in a malignant background. The pioneering work by P. Olive’s

group on the flow-cytometry analysis of cH2AX (26,34) had

suggested cell-cycle modulation of H2AX phosphorylation.

Our multiparameter approach has provided, through direct

EdU labeling of S-phase cells, the detailed kinetics underlying

this process: G1-early S and late S-G2 transition showed respec-

tively the lowest and highest average cH2AX content within the

cell-cycle. By scaling down from a cell-population to a molecular

proximity level, we demonstrated that the observed cH2AX

increase was partially responsible for activation of the DDR cas-

cade, since only a fraction of foci exhibited simultaneous recruit-

ment of the DDR-effector 53BP1. This provides further evidence

of the limitations in the applicability of cH2AX as readout of the

occurrence of DNA breaks (13–16).

However, if one considers the simultaneous presence of

cH2AX and 53BP1 as an index of DDR activation following a

DNA break, our results show a number of foci associated to

replication that is very close to the number of endogenous

DSBs expected for a single cell-cycle (about 50), and which

has never been quantified before in-vivo at a single-cell resolu-

tion (48,49). PLA analysis also revealed the proximity of repli-

cation factories and cH2AX foci, thus suggesting that i)

cH2AX S-phase signaling maybe associated to impaired pro-

gression of the replication-fork and that ii) the induced

damage is immediately recognized by the DDR machinery.

This interpretation is consistent with recent works, which, by

laser-scanning cytometry and confocal microscopy, showed an

S-phase specific cH2AX-induction at the replication sites in

response to exogenous-oxidants treatment (32).

We demonstrated that the cell-cycle modulation of DDR,

in the absence of exogenous DNA-damaging agents, cannot be

inferred from the analysis of a single factor, e.g. cH2AX foci.

DDR foci showed a higher level of heterogeneity in compari-

son to ionizing radiation induced foci, which show marked

colocalization of 53BP1 and cH2AX. The comparison of

cH2AX- and 53BP1-foci cell-cycle kinetics showed distinct

profiles. In contrast with cH2AX-foci, no S-phase-induced

increase in 53BP1-foci was detected, but we observed a strong

accumulation of 53BP1-foci with specific properties (i.e., lim-

ited number, large average size, and high mean intensity) in

G1. A detailed statistical analysis of the cH2AX- and 53BP1-

foci as independent statistical entities showed the presence of

distinct subpopulations as cH2AX accumulation was not nec-

essarily accompanied by 53BP1 recruitment. This may be due

to a temporally distinct recruitment of the two factors or to

selective activation of a specific pathway restricted to cH2AX.

Indeed, mitotic regulation of DDR signaling is reported lim-

ited to cH2AX accumulation with no 53BP1 binding to con-

densed chromosomes (50).

The activation of multiple repair modalities and the

interplay with cell-cycle regulation mechanisms may justify

the heterogeneity we observed by PLA in the content and pro-

tein interaction profile. 53BP1 protein is a key element in the

NHEJ repair pathway, which is suppressed during DNA repli-

cation (51). However, the cell-cycle profile of cH2AX-53BP1

proximity showed a consistent number of PLA-foci suggesting

the active participation of a fraction of 53BP1 molecules in

DDR signaling during the S-phase. PLA of p53 provided a fur-

ther confirmation of the complexity of the DDR network,

which generates heterogeneous phenotypes in the cH2AX and

53BP1 response. Our data support p53 involvement in the

replication-stress response in physiological conditions, up to

now only measured under drug-induced replication-fork stal-

ling (52). In fact, by PLA, we detected both p53 spatial prox-

imity to cH2AX and 53BP1 foci and maintenance of high

levels of p53 in a fraction of replicating cells. However, we

observed a consistently higher number of p53-53BP1-foci

than p53-cH2AX foci. This difference suggests that the inter-

action between p53 and 53BP1 may involve other pathway

than the DDR (e.g., transcriptional modulation) and can

extend to the whole cell-cycle. Moreover, measurement of the

p21 content depicted a similar heterogeneous scenario evi-

dencing both a p53-dependent role in the activation of the

checkpoint and a damage independent function. Only a frac-

tion of the cells with high p21 expression showed a simultane-

ous increase in cH2AX- and/or 53BP1-foci. p21 high-expres-

sing cells not enriched in DDR foci could be the result of ei-

ther p21 DNA repair activity or a p21, DDR-independent,

function in cell cycle control. Strikingly, high levels of p21

were detected in a rare diploid cell-population not expressing

the proliferation marker KI67, in the absence of detectable

DDR activation. In this G0 subfraction, we also measured

high levels of the p63 stem-cell marker, suggesting that p21 is

required in these cells for the maintenance of quiescence and

self-renewing capacity. Unexpectedly, as it has never been

reported before, they also showed an increase in the average

level of 53BP1. Since we did not detect any significant foci-

accumulation, the higher concentration of 53BP1 in this qui-

escent population might be representative of a function of this

protein in the maintenance of a stem-cell compartment and

deserves further investigation.

In conclusion, the application of our high-content, high-

resolution, automated Image Cytometry protocol allows the

identification of rare cell subpopulations, such as stem cells,

and can provide an invaluable quantitative tool for cell biology

studies. Importantly, biological heterogeneity can be analyzed

without the introduction of exogenous agents, thus avoiding

any potential interference with the selected molecular targets.

The intrinsic high-content potential of this technique might

also be used to create an unprecedented data-reservoir for in

silico system biology.
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