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1 ABSTRACT 

 
NUMB was initially described as a cell fate determinant involved in neurogenesis. More 

recently, NUMB has been implicated in different types of human cancers, in which it 

has a tumor suppressor role. In particular, data from our laboratory revealed that loss of 

NUMB protein occurred in approximately 50% of breast cancers and 30% of non-small 

cell lung cancers, and leads to increased oncogenic NOTCH activity and decreased p53 

tumor suppressor function.  

Mechanistically, loss of NUMB in human breast cancers is due to its deregulated 

ubiquitination and ensuing proteasomal degradation, as witnessed by the restoration of 

physiological NUMB levels in NUMB-deficient primary breast tumor cells upon 

proteasome inhibition with MG-132. Therefore, the molecular mechanism underlying 

NUMB degradation in cancer most likely involves deregulation of components of the 

cellular machinery normally regulating the ubiquitination/phosphorylation status of the 

NUMB protein, such as E3-ubiquitin ligases/kinases. 

In this thesis, we devised a high-throughput phenotypic screening to identify the 

molecular determinants responsible for NUMB loss among E3 ligase family. The 

screening assay measures restoration of NUMB expression upon siRNA-mediated 

silencing of candidate enzymes, in a NUMB-deficient model-system. We identified the 

breast cancer epithelial cell line MDA-MB-361, as a suitable cell model system for the 

screening assay as it recapitulates the phenotype of NUMB-deficient primary tumor 

cells. Indeed, NUMB protein levels in these cells are restored to physiological levels by 

MG-132 treatment. For the high-throughput phenotypic assay, we developed and 

optimized for a miniaturized format, a NUMB capture ELISA assay.  
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Using the high-throughput screening platform, we assessed the involvement of over 600 

E3 ligases in NUMB downregulation, and identified 21 candidate E3 ligases. We then 

went through the validation of these 21 candidate hits, which is the topic of this thesis. 

Upon validation of the top six candidates of E3 ligases list, we confirmed that the E3 

ligase, RBX1 (RING-Box 1), mediates the downregulation of NUMB in both MDA-MB-

361 cells and human primary NUMB-deficient breast and lung tumor cells. Indeed, we 

demonstrated that silencing RBX1 in these cells restores NUMB protein levels, while no 

effect was observed in NUMB-proficient cell lines or primary tumor cells. Moreover, we 

also established a physical interaction between NUMB and RBX1 in MDA-MB-361 cells 

indicating that RBX1 directly mediates NUMB degradation.  

RBX1 belongs to the tetrameric E3 ligase complex, Skp1/Cullin1/F-box (SCF), in which 

the specificity for substrates is mediated by the F-box protein. Intriguingly, among the 21 

candidates from the high-throughput screening, we identified the F-box protein, FBXW8 

(F-box and WD repeat domain containing 8), which has been described to form a 

complex with RBX1. We, therefore, assessed the role of FBXW8 in NUMB 

donwregulation in high-resolution studies in MDA-MB-361 cells and confirmed its 

involvement. We are currently validating FBXW8 also in primary tumors cells from 

human breast and lung cancers.  

In conclusion, our data indicate that an SCF E3 ligase complex involving RBX1 and 

FBXW8, likely mediates NUMB hyperdegradation in human cancers. This result has 

potential translational ramifications as RBX1 and FBXW8 could represent novel 

molecular targets for therapeutic intervention in NUMB-deficient cancers. 
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2 INTRODUCTION 
 

 
This thesis is concerned with the molecular mechanisms responsible for excessive 

NUMB degradation in human tumors. Here, in the introduction, I will first provide an 

overview of the history of NUMB, from its discovery in Drosophila, to its classification 

over evolution in different model systems and its molecular structure (section 2.1.1). 

Then, I will depict a portrait of the different functions of NUMB in the cell, from: i) a 

physiological point-of-view, starting from the control of asymmetric cell division to the 

control of signaling pathways (section 2.1.2); ii) a pathological point-of-view, going 

through the deregulation of NUMB physiological functions in cancer (section 2.1.3). 

Finally, the last part of the introduction will provide a brief description of the molecular 

players of the Ubiquitin Proteasome System (UPS) (section 2.2) and the rationale 

according to which these players might represent potential therapeutic target(s) in 

NUMB-deficient cancers (section 2.3).  
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2.1 NUMB: AN HISTORICAL AND MOLECULAR PERSPECTIVE 

2.1.1 Classification and structure 
 
NUMB (alias S171; C14orf41; c14_5527) was originally identified as a critical cell fate 

determinant in Drosophila (d-NUMB), in which mutant embryos displayed an alteration 

of sensory organ precursor (SOP) lineage choices 1. In particular, it has been shown that 

loss of d-NUMB function causes neuronal differentiation defects, while its ectopic 

expression causes an increase in neuron differentiation to the disadvantage of other 

differentiated cell types 1-4. 

The relevance of NUMB in vertebrates was demonstrated by studies in mice, which led 

to the identification of two mammalian homologues, mouse NUMB and mouse NUMB-

Like (m-NUMB and m-NUMB-Like, respectively) 5,6,7. The N-terminal portion m-NUMB-

Like (amino acids 42 to 331) shows strong sequence similarity to both m-NUMB and d-

NUMB 6, with 76% and 63.7% identity, respectively (Figure 1). Overall, the similarity 

between m-NUMB-like and m-NUMB is present throughout the protein, while the 

homology between m-NUMB-Like and d-NUMB is primarily confined to the N-terminal 

portion of the protein 6. 

m-NUMB shares with d-NUMB cell functions when expressed in Drosophila 6,7. 

Similarly, the identification of a chicken NUMB homologue able to antagonize NOTCH-

mediated inhibition of differentiation of neuroepithelial cells, suggests that the function 

of vertebrate NUMB is similar to that of d-NUMB 8. 

Structurally, NUMB resembles an adaptor or scaffold protein and is involved in bringing 

together multiple proteins into a functional pathway or unit. It is composed of an amino-

terminal phosphotyrosine binding (PTB) domain 9, a C-terminal proline-rich region (PRR) 
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containing several putative Src homology 3 (SH3) domain-binding sites 5, and an Eps15 

homology (EH) domain binding motif 10. 

 

 

 

Figure 1. Schematic diagram of mouse NUMBlike, Drosophila NUMB and mouse NUMB proteins. 

Amino acid identity between adjacent proteins is represented by percentages written between diagrams; 

homology between mouse NUMBlike and mouse NUMB is represented by percentages in parentheses. 

PTB is a presumptive phosphotyrosine binding domain and Q represents poly-glutamine repeats. Figure 

taken from 6.  

 

The existence of human NUMB (h-NUMB) was documented a decade after the debut of 

d-NUMB, in a study conducted by Verdi et al. The authors identified four NUMB 

isoforms from a human neuronal precursor cDNA library 11. The differences between the 

alternative spliced variants lie within two regions of NUMB: the PTB domain and the 

PRR. Two of the four isoforms, h-NUMB 1 and h-NUMB 2, contain the so-called PTB 

long (PTBL) domain, which differs from the PTB short (PTBS) domain, present in h-

NUMB 3 and h-NUMB 4, due to the inclusion of an 11 amino acid insert 11. The 

isoforms h-NUMB 1 and h-NUMB 3 contain the PRR long (PRRL) domain, while h-

NUMB 2 and h-NUMB 4 harbor the PRR short (PRRS) domain, which lacks a 48 amino 

acid insert present in the long version 11 (Figure 2).

Studies carried out in immortalized mouse neural crest cell lines and in primary cultures 

of rat neural crest stem cells (SCs) with overexpressed h-NUMB isoforms, demonstrated  
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that PRRS- and PRRL-containing h-NUMB isoforms promote either neuronal 

differentiation (PRRS) or proliferation (PRRL), covering distinct functions during 

mammalian neurogenesis 11. The four isoforms have been identified also in mouse by 

Dho et al., in which the authors show that the insert in the PTB domain may be an 

important determinant in the localization of NUMB to the plasma membrane. 

Thus, the different functions of mammalian NUMB, which will be better described in 

section 2.1.2, could be in part explained by the diverse isoforms and the heterogeneity 

of interacting proteins 5,11-13. 

 

 

 

 

Figure 2. Schematic diagram of the four h-NUMB isoforms.  

Human NUMB (h-NUMB) isoforms differ in two domains: the phosphotyrosine binding (PTB) domain and 

the proline-rich region (PRR). The PTB domain can be either short (PTBS) or (PTBL) depending on the 

presence of an 11 amino acid (11AA) insert. Similarly, the PRR is either short (PRRS) or long (PRRL) 

depending on the inclusion of a 48 amino acid (48AA) insert. Figure adapted from 11. 
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2.1.2 The multiple NUMB functions: a physiological point-of-view 
 

2.1.2.1 Asymmetric cell division 
 
NUMB owes its name to the fact that its loss of function in Drosophila mutants causes a 

dramatic loss of sensory neurons, causing flies to become “numb”. NUMB was 

described as the first known determinant of cell fate specification in the fly, more than 

twenty years ago 1; it was also the first time that the possible involvement of an intrinsic 

cellular player in asymmetric cell division (ACD) was rationalized. Indeed, NUMB 

acquires an asymmetric distribution during cytokinesis and is concentrated at one of the 

two spindle poles during mitosis, while it is uniformly distributed around the plasma 

membrane of the SOP during interphase. So, two different fates characterize the 

daughter cell that inherits NUMB, the pIIb cell, and the cell that does not, the pIIa cell 2 

(Figure 3). 

 

Figure 3. NUMB and asymmetric cell division in Drosophila SOP.  

The figure depicts asymmetric cell divisions (ACDs) in Drosophila SOP. The plane of division with 

orientations is indicated. NUMB is shown in green, as a crescent in the dividing SOP. For simplicity, only 

the first ACD is depicted in detail. However, all other divisions of the pIIb are asymmetric and involve 

asymmetric partitioning of NUMB. Figure adapted from 14. 
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At the molecular level, it has been shown that NUMB acts by functionally inhibiting the 

NOTCH pathway 15: the evidence that led to this conclusion came from experiments 

performed in the SOP system, where it was clear that gain-of-function NOTCH 

mutations phenocopied Numb loss-of-function 15. Finally, NUMB and NOTCH were 

shown to interact physically 15. 

Similarly to the SOP system, NUMB also acts as a cell fate determinant in neurons of the 

central nervous system (CNS) in Drosophila 3,4 and in mammals 7. The strongest 

demonstration of this came when the role of NUMB in the development of the CNS in 

mammals was analyzed for the first time in knock-out mice, and it was shown that loss-

of-NUMB led to severe CNS alterations 16, putting NUMB and NOTCH linked to ACD in 

a true SC compartment. 

NUMB localization and subsequent segregation in the Drosophila system requires the 

presence of components of the evolutionarily conserved polarity (PAR) complex: 

Bazooka (PAR3 in mammals)-Par6-aPKC (atypical protein kinase C) 2,17. In mammals, 

there is evidence suggesting that NUMB is similarly asymmetrically partitioned at mitosis 

during ACD through a process controlled by the PAR3–PAR6–aPKC complex; 

mammalian NUMB binds to PAR3 and aPKC 18,19 and is phosphorylated (and 

relocalized) by aPKC 18,20. 

NUMB asymmetric cellular distribution may promote distinct fates in stem/progenitor 

cells by interacting with components of signaling pathways triggered by specific micro-

environmental cues. The identity and function of the micro-environmental key factors 

that crosstalk with NUMB to trigger the cell fate choice are not fully understood as yet. 

Nevertheless, a number of pathways that control stem/progenitor cell development have 

been described to interact with NUMB. For instance, NOTCH or Hedgehog (Hh) 

activation and loss-of-function of p53 promote SC maintenance and expansion 21,22. 
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2.1.2.2 Endocytosis 
 
For many years, the molecular mechanisms through which NUMB functions remained 

unclear. Initial hypotheses and interpretations of data describing NUMB counteraction 

of NOTCH focused predominantly on the NOTCH signaling pathway 15. Then, it 

became increasingly clear that NUMB is present in almost all cells, and that, in the great 

majority of these, cell division and the subsequent NUMB segregation at mitosis, is 

symmetric. But, in some settings, the asymmetric partitioning of NUMB, and 

consequently different cell fate specification, leads to biochemical asymmetry, 

suggesting that NUMB is involved in a basic function in cellular regulation. 

The first indication of how NUMB could function, derived from the study of protein-

protein interactions in the endocytic network 10,23-25. h-NUMB was found to interact with 

the EH domain of two endocytic proteins, epidermal growth factor receptor substrate 15 

(Eps15) and epidermal growth factor receptor pathway substrate 15-like 1 (alias Eps15R, 

Eps15L1) 26-28, suggesting a putative involvement of NUMB in processes connected with 

the transport and sorting of molecules within the cell 10,29. Subsequently, NUMB itself 

was described as an endocytic protein 30, based on its subcellular localization in 

endocytic organelles, its co-trafficking with internalizing receptors, its interaction with 

the major clathrin adaptor AP2 and the ability of dominant negative NUMB mutants to 

inhibit both constitutive and ligand-induced endocytosis 30. In the following years, a 

number of studies pointed to two major levels of involvement of NUMB in 

internalization 31-34 and recycling 35,36, consolidating the role of NUMB in endocytosis. 

However, it should be pointed out that the molecular mechanisms through which 

NUMB affects recycling are only now starting to be addressed. 
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2.1.2.3 Cell adhesion, cell migration and epithelial-mesenchymal transition 
 
The role of NUMB in endosomal trafficking of transmembrane receptor proteins, made 

clear an additional function in the regulation of cell adhesion. Indeed, NUMB has been 

reported to physically interact via its PTB and C-terminal domains 37 with the 

cadherin/catenin complex, which is the association of E-cadherins, alpha-catenins and 

beta-catenins with the actin cytoskeleton. This cadherin/catenin complex is involved in 

the regulation of plasma membrane dynamics, cell migration and cell shape 38. 

Continuous internalization of cadherins and recycling to and from the cell surface via 

the endocytic machinery, is required for the maintenance of adherence junctions 18,37. 

Moreover, a number of proteins involved in cell-cell adhesion have been identified as 

binding partners for NUMB, such as cadherins and integrins 39. Indeed, NUMB has been 

described to bind integrin-βs 18, thus leading to integrin endocytosis and directional cell 

migration toward integrin substrates. 

The fact that NUMB is responsible for establishing cell adhesion suggests that it could 

also be involved in cell migration. Indeed, NUMB is also important in directional 

integrin trafficking in migrating cells, in which NUMB localizes to clathrin-containing 

structures at the leading edge and around focal adhesions 18. Depletion of NUMB results 

in reduced integrin endocytosis and reduced integrin-stimulated cell migration 18. 

NUMB also regulates epithelial polarity and cell-cell adhesion in epithelial–

mesenchymal transition (EMT). EMT is a critical event in embryogenesis and plays a 

fundamental role in cancer progression and metastasis 40. In epithelial cells, under a 

normal physiological condition to stabilize adherens and tight junctions, NUMB binds 

to E-cadherin or the PAR protein complex via PAR3 19. Knockdown of NUMB by shRNA 

in Madin Darby Canine Kidney (MDCK) cells leads to a lateral mislocalization of PAR3 

and aPKC, a decrease in cell-cell adhesion, apical translocation of E-cadherin and beta- 
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catenin, an increase in cell migration and proliferation and active F-actin 

polymerization. These data suggest that NUMB has a role in the regulation of polarity, 

cell-cell adhesion and migration during EMT 19. 

 

2.1.2.4 Role of NUMB in the control of signaling pathways 
  

NOTCH pathway 

 
NUMB was originally identified as an inhibitor of NOTCH signaling in Drosophila 1,41. 

Activation of NOTCH involves cleavage with Delta-like and Jagged ligands (Figure 4), 

which promotes the translocation of the NOTCH intracellular domain (NICD) from the 

membrane to the nucleus, where it converts CSL proteins (acronym derived from 

mammalian CBF1 and Drosophila Su(H) as well as LAG-1) from transcriptional 

repressors into transcriptional activators, thereby turning on the expression of target 

genes 42-45. 

One theory of how NUMB regulates NOTCH is that NUMB acts as an adapter between 

NOTCH and its E3-ubiquitin ligase, Itch 46, thus causing the polyubiquitination and 

degradation of cytoplasmic NICD, but not of a membrane-bound form of NOTCH 47. 

Indeed, NUMB was shown to interact with Itch in same region in which NOTCH binds 

Itch, and the co-expression of NUMB and Itch further enhances the ubiquitination of 

NICD compared with expression of Itch alone 47. 

In addition, to facilitating NOTCH ubiquitination, NUMB may also control the 

intracellular trafficking of NOTCH, thereby suppressing its function. McGill et al. in 

2009 demonstrated that NUMB overexpression in mammalian cells leads to NOTCH 

trafficking, while NUMB deletion leads to NOTCH recycling. These data indicate that 

NUMB regulates NOTCH post-endocytic sorting events leading to NOTCH degradation 

in mammals 35. 
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Figure 4. Canonical NOTCH pathway. 

The NOTCH pathway has been simplified to include only the principal components. The NOTCH-ligands 

interaction leads to the release of the NOTCH intracellular domain (NICD). This fragment of NOTCH 

enters the cell nucleus where it interacts with CSL (CBF-1 in mammals, Suppressor of hairless in 

Drosophila) to modulate transcription. Figure adapted from 48. 

 

Hedgehog pathway  
 
Hh was initially discovered by Christiane Nusslein-Volhard and Eric Wieschaus nearly 

30 years ago as a ‘‘segment-polarity’’ gene that controls Drosophila embryonic cuticle 

pattern 49. Hh is a secreted molecule that undergoes autocatalytic cleavage to give an 

active N-terminal fragment 50, which is modified by addition of a cholesterol moiety at 

its C-terminus 51. While there is only a single Drosophila Hh gene, three vertebrate 

homologues have been identified, Sonic (Shh), Desert (Dhh), and Indian hedgehog (Ihh) 

52-54. The most widely studied of the vertebrate Hh genes is Shh, which is expressed 

throughout the developing CNS, lung, limb, gut, hair-follicle and teeth 55-57. 

The Hh pathway is a master regulator of tissue development 22 and much of what is 

known of the function of this pathway has derived from studies conducted in 

Drosophila, even if many of the key mechanisms of the pathway could be found  

throughout evolution, even in humans; indeed, the Hh pathway has been implicated in 

numerous other cellular processes, beside tissue development: from cell proliferation 
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and differentiation, to migration, to DNA repair 58. It also plays a key role in tissue 

repair/regeneration and in SC self-renewal 59. Not surprisingly, the subversion of the Hh 

pathway has been implicated in a variety of developmental abnormalities, and in 

different types of cancers 22,59. 

Physiologically, Hh has been demonstrated to interact directly with the transmembrane 

protein Patched both in Drosophila and in vertebrates 53,54. In vertebrates, this interaction 

enhanced another transmembrane protein, Smoothened, which activates Gli 

transcription factors (Gli1, Gli2, Gli3) 60,61. Gli1 is a Hh-transcriptional target and is a 

strong constitutive transcriptional activator that enhances its own expression, thus 

reinforcing the signaling strength 22.  

Studies conducted in mouse cerebellar granule cell progenitors (GCPs), demonstrated 

that the Hh expression keeps GCPs proliferating and undifferentiated, while its 

termination leads GCPs to differentiate 62. Interestingly, this transition was associated to 

NUMB expression in developing GCPs and to the NUMB association with Gli1 and the 

recruitment of the E3-ubiquitin ligase Itch, thus causing Gli1 proteasome-dependent 

degradation 62. This leads to the suppression of Hh signaling and consequent GCPs 

differentiation, thus arresting growth and promoting cell differentiation. This novel 

regulatory loop, responsible for subversion of Hh signaling during neural-progenitor 

differentiation, is NUMB-dependent and may be a relevant event in brain tumorigenesis, 

giving a more clear indication of NUMB influence on neurogenesis. 
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p53 pathway 
 
p53 was discovered in 1979 as a 53 kDa protein that formed a complex with the SV40 

tumor-virus oncoprotein, the large T-antigen 63,64. p53 protein was shown to bind to 

specific DNA sequences 65, acting as a transcription factor and promoting the 

transcription of selected genes that contain these sequences 66. Depending on the gene 

type activated, p53 leads to the activation of different downstream pathways (Figure 5), 

such as apoptosis 67, DNA repair, growth arrest 68 and cell cycle arrest 69. p53 protein 

levels and its activity could be induced by a number of different stress signals such as 

DNA damage or UV irradiation 70,71, leading to the prevention of genome instability and 

protection from tumorigenesis 72,73. Indeed, it became evident that p53 acts as a tumor 

suppressor in cancer because 50% of all human cancers were shown to contain 

mutations in both alleles of the p53 gene and p53 was expressed at high levels in many 

tumor types, where its function is disrupted 74-76.  

Another cause of p53 inactivation is oncogene activation and one of the most oncogenic 

protein regulators of p53 is the E3 ubiquitin ligase Mouse double minute 2 (MDM2, also 

called HDM2 in humans). MDM2 is responsible for p53 ubiquitination 77,78 and 

subsequent proteasomal degradation. MDM2 expression is controlled by a regulatory 

feed-back loop in which it is a transcriptional target of p53 that cause increased MDM2 

levels, which in turn lowers p53 levels 79.  

A tumor suppressor gene already described for binding and inhibiting MDM2 is ARF, 

which competes with MDM2 and leads to p53 raising levels and activity 80.  

A similar function was attributed to NUMB, which controls the function of p53 by 

associating and inactivating MDM2, thereby preventing the ubiquitination and 

degradation of p53 in a normal mammary epithelial cell line, MCF10A 81.  

Of note, the downregulatory function of NUMB over MDM2 occurs in the context of a  
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NUMB/p53/MDM2 tri-complex 81. This results in increased p53 levels, activity and p53-

dependent phenotypes (Figure 5). Indeed, the functional ablation of NUMB in MCF10A 

cells results in reduced p53 levels and activity, accompanied by DNA-damage, 

deregulated apoptosis, and cell cycle checkpoint activation response 81.  

 

 
 
Figure 5. The p53 pathway.  

The p53-activated transcriptional and non-transcriptional signaling pathways induced following diverse 

cellular stresses (DNA breaks, UV irradiation, oncogenes), are depicted in figure. p53 regulates the 

transcription activation of MDM2, leading to the formation of an auto-regulatory feed-back loop. Figure 

adapted from 82. 

 

TCTP pathway 
 
Translationally controlled tumor protein (TCTP) was initially identified as a factor 

implicated in cell growth 83,84. This protein was named TCTP because its mRNA is 

controlled at the translational level 85-87. 

TCTP is ubiquitously expressed, suggesting an important role in normal physiological 

functions. Indeed, it has been demonstrated that TCTP is an essential protein in mice 

since knockout mice deficient in this protein die at embryonic stage day E9.5-E10.5 88. 

In cancer, TCTP plays important roles in a number of cell events, such as cell 

proliferation, gene regulation, heat shock response, and stress response 89-92.  
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Since TCTP is overexpressed in many types of cancer cells and silencing of the gene 

decreases the viability of the cells 93, it was postulated that TCTP acts as an oncogene. 

Tuynder et al. developed a system to select cells with a reverted phenotype using H-1 

parvovirus, which preferentially kills tumor cells 94,95. In reverted cells, TCTP was found 

to be downregulated. In addition, silencing of TCTP with siRNA leaded to a reverted 

tumor phenotype, supporting this idea 94-96. These results suggest that TCTP is directly 

involved in malignant transformation. 

One line of evidence indicates that TCTP-dependent transformation could depend on 

TCTP regulation of p53 and vice versa. It is known that TCTP competes with NUMB for 

MDM2 binding. As already described above, NUMB enters in a tricomplex with p53 

and MDM2, thereby preventing the MDM2-mediated p53 ubiquitination 81; in this 

scenario, TCTP competes with NUMB for MDM2 binding, promoting p53 ubiquitination 

and consequently degradation 97. In addition, TCTP increases the MDM2-mediated 

ubiquitination of p53 97. 

 

2.1.3 The multiple consequences of aberrant regulation of NUMB: NUMB and 
cancer 
 

2.1.3.1 NUMB as a tumor suppressor in human cancers  
 
Not surprisingly, considering its role in many critical cellular processes, subversion of 

NUMB has been linked also to important human pathologies, including 

neurodegeneration 98-100 and particularly, cancer. Experimental evidence demonstrated 

that NUMB has a tumor suppressor role in Drosophila 2,15,19, where it was identified as 

negative regulator of NOTCH oncogenic signaling through its direct interaction with 

NOTCH via PTB domain 2,15. In NUMB mutant larval neuroblasts, disruption of 

asymmetric self-renewing divisions results in the overproliferation of neuroblasts and 

ultimately in tumor formation 101. Remarkably, these tumors can be serially propagated 
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for years in the abdomen of new adult healthy animals, showing that transformed cells 

have acquired an immortal phenotype (SC-like phenotype) 101. This is relevant to cancer 

because it establishes that NUMB can act as a tumor suppressor in a model system. In 

mouse, NUMB was also identified as a tumor suppressor in an in vivo RNA screen in a 

model of mouse lymphomagenesis 102.  

In human breast cancer, NUMB expression is lost in about 50% of tumors 103 and 

NUMB-deficient tumors have poor prognosis with respect to NUMB-proficient tumors 81. 

Moreover, NUMB-deficient tumors display a less-differentiated phenotype 81,103,104 and 

expression of CSCs markers; this latter result is interesting, in light of the recent finding 

that poorly differentiated breast tumors harbor a higher CSC-content than well-

differentiated tumors 105. 

When NUMB is lost in breast tumors, this single event leads to the subversion of two 

distinct functional pathways: i) the hyper-activation of the NOTCH-driven oncogenic 

pathway and ii) the downregulation of the p53-induced tumor suppressor pathway 81,103, 

thus inducing a proliferative phenotype. The direct relevance of these findings to human 

breast cancer is seen in the fact that ectopic re-expression of NUMB in NUMB-deficient 

(but not NUMB-proficient) tumors, inhibits proliferation and reverts NOTCH signaling to 

basal levels 103. Moreover, restoration of NUMB levels in NUMB-deficient human 

primary breast tumor cells rescues p53 expression and sensitizes cells to 

chemotherapeutic treatments 81. Conversely, NUMB ablation in NUMB-proficient 

human breast primary tumor cells confers chemoresistance 81. 

Reduced NUMB levels, also correlate with poor prognosis in salivary gland carcinomas, 

although no additional molecular or mechanistic details are currently known for these 

tumors 106. In non-small cell lung carcinomas (NSCLCs), the expression of NUMB is lost 

in about 30% of tumors 107, again with concomitant activation of the NOTCH pathway, 

and addiction to high NOTCH levels.  
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There are also additional NUMB-independent mechanisms leading to NOTCH 

activation in these tumors (10%), such as gain-of-function mutations 107, and activation 

of NOTCH correlates with poor clinical outcomes in NSCLC patients without p53 

mutations 107. In both breast cancers and NSCLCs, loss of NUMB expression is due to its 

exaggerated ubiquitination and ensuing degradation; NUMB protein levels could be 

restored by the proteasome inhibitor MG-132 and the restoration event is coupled by 

hyper-ubiquitination in NUMB-deficient, but not NUMB-proficient, tumors 103,107. Loss 

of NUMB occurs in the absence of genetic alterations of the NUMB locus and in the 

presence of normal levels of its mRNA 103,107. It is likely, therefore, that the 

hyperdegradation of NUMB in cancer is caused by the deregulation of enzymes 

involved in the ubiquitination process and related to the Ubiquitin Proteasome System 

(UPS), such as E3-ubiquitin ligases and deubiquitinases, or possibly of regulators of this 

process, such as kinases or phosphatases. The identification of such enzymes 

responsible for loss-of-NUMB in cancer, therefore, offers new possibilities in the 

development of targeted therapeutic strategies capable of restoring physiological levels 

of NUMB in NUMB-deficient cancers. 

 

2.1.3.2 Mechanisms of action of NUMB in cancer: the cellular level in the control 
of the SC compartment  
 
The tumor suppressor role of NUMB in cancer could be related to its ability to control 

stem/progenitor cell fate. It has been known for many years that only a fraction of the 

cells in a human tumor can give rise to tumors when transplanted in 

immunocompromised mice 108,109. These cells are defined as cancer stem cells (CSCs), 

and the hypothesis contemplates that CSCs are the only cells capable of self-renewal 

(and thus of tumor transplantation) (Figure 6). Thus, it is conceivable that NUMB is the 

target of transformation in the SC compartment.  
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Figure 6. The CSC theory.  

Despite most cancer cells have only limited proliferative potential, a subset of them can form new tumors 

on transplantation and proliferate extensively in clonogenic assays. The model shown predicts that a 

distinct subset of cells is enriched for the ability to form new tumors, whereas most cells are depleted of 

this ability. Figure adapted from 108. 

 

2.1.3.3 Mechanisms of action of NUMB in cancer: the circuitry level  
 
The tumor suppressor function of NUMB is easily explained at the biochemical and 

molecular level by the multiple functions of NUMB connected with growth promoting 

and growth suppressing circuitries (Figure 7). For example, in the absence of NUMB, 

both NOTCH and Hh signaling are augmented, with pro-proliferative and anti-

differentiative effects, while the signaling of the tumor suppressor p53 is attenuated. 

Indeed, hyperactive NOTCH and Hh functions has been described in several tumors, 

such as liver, lung, and breast tumors 22,48. 

In addition, subversion of NUMB is predicted to have a major impact on the entire 

homeostasis of endocytosis, itself proposed as a tumor suppressor mechanism 110-112.  

Finally, the alteration of many polarity functions, connected with the PAR complex 113-

115, could contribute to transformation events, such as the deregulation of PAR complex  
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activity as a key factor for initiation of transformation 19, initiated or sustained by loss-of-

NUMB. From this point of view, the recent implication of NUMB in the control of EMT 

is particularly interesting: loss of NUMB causes a loss of adherent junctions 37, 

comprising a phenotype consistent with the disruption of cadherin function in mouse 

radial glial cells (RGCs) 37. These cellular phenotypes are characteristic of EMT, which – 

in turn – is a strategy adopted by tumor cells to acquire invasive properties, and 

resistance to cell death, senescence, immunosurveillance, immunotherapy and 

chemotherapy 40,116,117, thus confirming the involvement of NUMB in tumor-related 

phenotypes. 

 

 
 

Figure 7. NUMB in cancer.  

The figure depicts a “hypothetical division” of a mammalian SC, with NUMB segregating into one of the 

daughter cells. The pathways that would be present in the daughter that inherits NUMB (on the left), and in 

the daughter that does not inherit it (on the right), are shown. The impact on NUMB in cancer (viewed 

from the perspective of the SC hypothesis of tumorigenesis) would result from loss of NUMB in the cell that 

physiologically inherits it, and on the actual target of transformation. Figure taken from 14. 
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2.2 THE UBIQUITIN PROTEASOME SYSTEM (UPS) 

2.2.1 Polyubiquitination is a multi-step phenomenon: E1, E2 and E3 enzymes are 
the players 
 
Ubiquitin is a 76-residue polypeptide that acts as a small modifier molecule that labels 

proteins in a highly specific manner. Like phosphorylation, ubiquitination is a 

phenomenon relevant both in physiological, as well as pathological, cellular 

mechanisms 118; the progression of cell cycle 119, the induction of inflammatory response 

120 and DNA repair 121 are just a few of the many processes regulated by ubiquitination. 

Substrates could be marked with a polymer of ubiquitin (polyubiquitin chain) or they 

could be marked with one or a few ubiquitins. In the first case they are destined for a 

multisubunit ATP-dependent protease known as the 26 proteasome 118,122,123, while the 

other ones are targeted for endocytosis, to be finally proteolyzed in the lysosomes 124 

(Figure 8). 

Polyubiquitination usually results in the formation of a bond between the C-terminus of 

ubiquitin (G76) and the amino group of a substrate lysine residue. Ubiquitin 

conjiugation could involve seven acceptor lysine residues, which could create ubiquitin 

chains different in terms of topology, length and functional outcomes 125. Indeed, the 

linking between lysine 48 (K48) and G76 leads substrates to be selectively targeted to 

the proteasome 126-128, while the linking between lysine 63 (K63) and G76 to form the 

multichain of ubiquitins leads to non-proteolytical signaling 126-128, such as the enzymes 

activation or inactivation, the protein trafficking regulation or the assembly of protein 

signaling complexes 129-132. 

Substrate targeting by UPS occurs via a two-step process: covalent attachment of 

multiple ubiquitin molecules to the protein substrate (polyubiquitination), followed by  
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substrate degradation by the 26S proteasome 133. The attachment of ubiquitin to a 

substrate requires the consecutive action of three enzymes 118: i) an activating enzyme 

(E1), which activates ubiquitin by the formation of a thioester bond; ii) a conjugating 

enzyme (E2), that transiently carries the activated ubiquitin molecule, and iii) a ligase 

(E3) that transfers the activated ubiquitin from the E2 to a lysine residue in the substrate 

protein 134. A hierarchical organization of the enzymatic conjugating cascade can be 

described: there is one E1; a significant but limited number of E2s, each of which may 

interact with several E3 ligases, and a much larger number of E3 ligases, which can 

recognize more than one substrate, and cooperate with one or a few E2s 118,123. 

 

 

 

 

Figure 8. Overview of signaling by ubiquitin.  

The substrate is represented by the dark gray oval, and the ubiquitin by the light gray circle (with carboxyl 

group of G76). The number of ubiquitins conjugated to the substrate may vary (brackets). Depending on 

the Lys-48/Lys-63 ubiquitin conjiugation, the substrate undergoes different fates, as indicated by arrows. 

Figure taken from 135. 
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2.2.1.1 Ubiquitin-activating enzyme (E1) 
 
From the yeast Saccharomyces cerevisiae to humans, there is only one E1 enzyme 

responsible for the activation of ubiquitin for the entire array of downstream conjugating 

enzymes 136,137. At the beginning of the reaction, a ubiquitin adenylate intermediate 

(formed from the binding of MgATP and then of ubiquitin), serves as the donor of 

ubiquitin to a cysteine in the E1 active site. Each fully loaded E1 molecule carries a 

thiol-linked ubiquitin, which is transferred to the next enzyme in the conjugating 

cascade, the E2, through a transthioesterification reaction, in which an E2 catalytic 

cysteine attacks the backside of the E1-ubiquitin complex 138.  

Throughout this mechanism, the E1 enzyme is bound to two ubiquitin molecules, 

catalyzing also ubiquitin C-terminal acyl adenylation 139. This secondary ubiquitin does 

not form the same thioester complex described previously and its function remains 

largely unknown even if it is believed that it may promote conformational changes of the 

E1 enzyme during the transthioesterification process 140. 

Indeed, E1 has minimal affinity for ubiquitin prior to the binding of ATP 134,138, which 

suggests that an ATP-dependent conformation change may be necessary to increase the 

accessibility of a ubiquitin binding site 141, even if the E1 structure-function relationship 

remains poorly characterized. 

 

2.2.1.2 Ubiquitin conjugating enzyme (E2) 
 
After the activation of ubiquitin by E1, the activated ubiquitin is then transferred to an E2 

cysteine, before binding the E3 for substrate attachment. 

All E2s share a conserved core domain consisting of ∼150 amino acids and they differ 

for N- or C-terminal extensions, which confer the specificity for the interactions with a 

specific E3 ligase. As consequence, even if they share common features among each  
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others, E2 enzymes are responsible for distinct biological functions 142. 

Indeed, E2 enzymes are present in all eukaryotes, underlying the significant impact of 

Ub systems in biology, and genes encoding for E2 proteins are present throughout the 

genome 143,144. 

The protein family has become larger during evolution: lower eukaryotes have fewer E2 

enzymes than higher eukaryotes (16 E2 enzymes in Saccharomyces cerevisae vs 35 

described in humans) 143. A wide range of tissues and cell types have been found to 

contain ESTs, mRNAs, and proteins of E2 enzymes, thus indicating a general 

involvement of these enzymes in ubiquitin conjugation.  

 

2.2.1.3 E3 ubiquitin ligase families: HECT vs. RING ligases 
 
The E3-ubiquitin ligases catalyze the final step of the polyubiquitination cascade, thus 

conferring a high degree of specificity and selectivity towards their target substrates; for 

that reason, they are considered to be the most important components of the UPS. As a 

consequence, they are the most structurally complex and diverse enzymes in the 

pathway, each responsible for the surveillance of a specific set of target proteins 145. 

Based on sequence motifs and the mechanism of ubiquitin conjugation, E3-ubiquitin 

ligases can be divided into three major classes: i) the HECT (Homologous to E6-AP C-

Terminus) E3s; ii) the monomeric (or dimeric) RING (Really Interesting New Gene) E3s; 

iii) the multimeric RING finger E3 complexes (Figure 9).  

 
i) The HECT E3 ligases 

The peculiar feature, from a structural point of view, of this E3 subfamily is the presence 

in the C-terminal region of the HECT domain, that was originally characterized in the 

E6-associated protein (E6-AP) and is the region responsible for the association with the 

E2, and for the catalytic E3 activity, a characteristic which distinguish the HECT from the  
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other types of E3 ligases 146.  

First of all, they act through three steps: i) binding to an E2; ii) forming a ubiquitin-

thioester intermediate with the catalytic Cys residue located at the C-terminus of the 

HECT domain for the loading of ubiquitin; iii) promoting substrate ubiquitination by the 

transfer of ubiquitin to the target protein.  

The HECT-type E3 family can be classified into three further subfamilies, differing for 

their protein-protein interaction domains, which are the part of the protein determing the 

substrate specificity: HECT E3s containing RCC1-like domains (RLDs), C2-WW-HECT E3 

ligases possessing tryptophan-tryptophan (WW) domains, and Single-HECT E3 ligases 

lacking either RLDs or WW domains 147.  

The intrinsic catalytic activity of the HECT family, makes these E3 ligases to be an easy 

target for drug development in anticancer therapy. 

 

ii) The monomeric (or dimeric) RING E3 ligases 

The RING finger E3 ligases bind the E2 through the RING finger motif containing a Zn2+ 

binding domain. While monomeric (or dimeric) RING finger proteins bind both the E2 

and the substrate, the RING finger protein belonging to the multimeric RING finger 

complexes, binds the E2 but not directly the substrate, which is recognized by other 

members of the complex 148,149. 

The classification between mono and dimeric RING E3 ligases is due to the diffferent 

RING-type domains found in many different structural contexts, which can give rise to 

homodimers and heterodimers instead of single-chain enzymes.  

Homodimeric RING-type E3 ligases include cIAP, RNF4, BIRC7, IDOL, and the U-box 

proteins (a new class of E3 ligases containing a 70 amino acid U-box domain) CHIP and 

Prp19 150-156. Examples of well-characterized heterodimeric E3 ligases include BRCA1–

BARD1 or MDM2–MDMX (HDMX/HDM4 in humans).  
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While for homodimeric RING E3 ligases, both RINGs have the intrinsic capacity to  

functionally interact with E2s, this appears not to be the case for some heterodimeric 

RINGs, such as BRCA1–BARD1 or BRCA1–RING1B, in which only one dimer is able to 

interact with E2s 157-159. Usually the RING domain is responsible for dimerization, even if 

some RING-type E3 ligases have been shown to dimerize or form oligomers through 

domains that are structurally distinct and remote from the RING 125,160,161. 

 

iii) The multimeric RING E3 ligases 

There are RING-type E3 ligases that exist as multi-subunit assemblies. The most well-

known example of such complexes are the Cullin-RING Ligases (CRLs) 148,162, which 

contain a small RING protein (in most cases RBX1/ROC1/Hrt1) and a Cullin-family 

scaffold protein (CUL-1,2, 3, 4a, 4b, 5, or 7), which interacts directly with the RING-

domain enzyme (Figure 9) through its C-terminal domain 149.  

At the N-terminus, the Cullin protein is linked to an adaptor protein through cullin-

repeat motifs; this adaptor, in turn, binds another factor, that specifically recognizes the 

substrate to be target for ubiquitination 148,162. 

The prototypical CRLs are exemplified by the Cul1-containing complexes, commonly 

referred to as the Skp1-Cullin1-F-box (SCF) ligases. SCF ligases are composed of the 

small RING protein RBX1, the scaffold protein, Cullin 1, the adaptor protein, Skp1, and 

an F-box substrate-specific factor, of which ~70 members have been identified 148,149,163. 

The ligase activity of SCF is determined by the cullin-RBX complex, which is responsible 

for the transfer of ubiquitin from the E2 to protein substrates 164, while the specificity of 

the SCF is determined by the F-box protein that bridges the ligase complex to its 

substrates. The F-box domain in the F-box protein mediates its interaction with SCF, 

while the WD40 or LRR (Leucin Rich Region) domains mediate interactions with the  
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substrates 165. A single F-box protein can recognize and target multiple substrates (e.g. 

Skp2 targets p27, p21, p57), and different F-box proteins can recognize and target the 

same substrate (e.g. cyclin E is targeted by both Skp2 and Fbxw7). Interestingly, a single 

F-box protein can target the degradation of several substrates with opposite biological 

functions (e.g. Skp2 targets p21/p27, as well as cyclin A/D1/E) 166. Thus, different 

combinations of the SCF components determine distinct substrate specificities and will 

thus be associated with distinct biological functions. 

 

 

 

 

Figure 9. Classification of E3 ligases.  

There are three major classes of ubiquitin ligases: HECT domain proteins, monomeric RING finger E3 

ligases and multisubunit RING E3 complexes. a. HECT domain E3 ligases transfer ubiquitin (Ub) from an E2 

to E3 via transthiolation and then ubiquitin is transferred directly from E3 to a substrate amino group. .b. 

The RING finger E3 ligases bind the E2 through the RING finger motif containing a Zn2+ binding domain. 

Monomeric RING finger proteins bind both the E2 and the substrate. In the multimeric RING finger 

complexes, the RING finger protein binds the E2 while other proteins in the complex bind the substrate. 

Figure adapted from 167. 
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2.3 TARGETING THE UPS SYSTEM IN CANCER TREATMENT  

 
Ubiquitination by UPS system controls many proteins involved in cellular mechanisms 

such as apoptosis, cell cycle progression, and gene transcription, which are all relevant 

to tumorigenesis 168,169. Indeed, many components of the UPS are associated with cancer 

and could be potential targets for therapeutic strategies against the disease 170,171. In 

recent years, substantial progress has been made in understanding the molecular basis of 

ubiquitin action in cancer-relevant processes. (Figure 10). For example, the HECT-type 

E3 ligases were found to have an oncogenic potential after  the identification of a 

number of their substrates with a tumor suppressor activity, as well as the presence of 

genetic aberrations and abnormal expression of some of the family members in human 

cancers. Moreover, the dysregulation of the HECT E3 adaptors could also influence 

cellular transformation, a typical cancer-related feature 147. 

A lot of SCF E3 ligases, through specific degradation of their substrates, are responsible 

for the regulation of many biological processes; this is because these substrates are 

involved in regulation of basic cellular mechanisms, such as DNA replication, cell cycle 

progression, signal transduction and gene transcription 148,149,172. Thus, it is not surprising 

that aberrant regulation of SCF E3 ubiquitin ligases leads to hyperproliferation, genomic 

instability, and cancer 172. Among the components of SCF, some are oncogenes (e.g. 

Skp2) that promote degradation of tumor suppressors and are amplified and/or 

overexpressed in human cancers, whereas others are tumor suppressors (e.g. Fbxw7) that 

target oncoproteins for degradation and are mutated in human cancers. 
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Figure 10. The ubiquitin proteasome system offers several possibilities for therapeutic intervention.  

Known points of intervention and appropriate drugs are shown in red. a, Global changes can be achieved 

by blocking early steps of the conjugation cascade, for example at the level of the E1 and E2 enzymes. b, 

The inhibition of distinct E3 enzyme activities allows for more specific interference. By targeting the E3 

ligase-substrate binding, it is possible to detect a specific substrate (the use of RITA or the Nutlins is a clear 

example). The deubiquitinating enzymes (DUBs) are another example of this mode of action. c, Ubiquitin 

receptors then recognize the ubiquitinated substrate and mediate the cellular response, or DUBs can 

deubiquitinate the substrate. Another highly specific way of interfering with ubiquitination process would 

be to compete with the ubiquitin-binding domains (UBDs) of specific effector proteins. Proteins 

polyubiquitinated in Lys-48 are destined to proteasome degradation. Substances that block enzymatic 

activity of proteasome, such as Bortezomib, NPI-0052, PR-171 and argyrin A, are already available. Figure 

adapted from 170. 
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2.3.1 Targeting the proteasome in tumors: the case of Bortezomib and other drugs 
 
Alterations in the proteasome are associated with several human diseases, such as 

cardiac dysfunction, neurodegenerative disorders, cachexia and rheumatoid diseases 173. 

Initial screening of the National Cancer Institute’s (NCI) tumor cell lines revealed that the 

boronic-acid derivative Bortezomib (Velcade®) is active against a broad range of tumor 

types 174.  

From the molecular point of view, the mechanism of action of Bortezomib involves the 

inhibition of a transcription factor, the  nuclear factor κB (NF-κB) 175. NF-κB is activated 

in response to cell stress induced by cytotoxic agents, radiation, or DNA damage among 

others, thus controlling cell survival. NF-κB is normally bound in the cytosol to the 

inhibitor κB-α (IκBα) and translocates to the nucleus when IκBα is ubiquitinated and 

degraded, activating the transcription of target genes 176. Bortezomib blocks the 

activation of NF-κB by preventing proteasomal degradation of IκBα, thus promoting 

apoptosis of cancer cells, but also sensitizing these cells to chemotherapy 177-179, 

radiation 180, or immunotherapy 181. 

Bortezomib-mediated proteasome inhibition, in certain cell types, promotes cell death, 

not through the inhibition of NF-κB signaling, but by inducing endoplasmic reticulum 

(ER) stress, which in turn promotes cell death 182. 

Indeed, many successful preclinical studies in vivo conducted in multiple myeloma 

(MM), adult T-cell leukemia, as well as in solid tumors such as lung, breast, prostate, 

pancreatic, head and neck, and colon cancer, and melanoma, have shown the benefits 

of Bortezomib in terms of antitumor activity 175,177,181,183-188.  

In particular, in a xenograft model of MM, Bortezomib treatment leaded to inhibition of 

tumor growth, an increase in cells survival, and a decrease in tumor angiogenesis 185; in 

murine xenograft models of prostate 189 and pancreatic cancer 187, after Bortezomib  
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treatment, an inhibition of almost 70% in tumor growth in both cases was observed; in 

murine xenograft models of head and neck 175, colon cancer 177, as well as melanoma 

184, proapoptotic and/or antiangiogenic effects were determined. Finally, an evaluation 

of the effects of Bortezomib in murine xenograft models of both lung and breast cancer 

was also conducted 188, demonstrating that treatment with Bortezomib led to a reduction 

in tumor growth as well as a decrease in the number of metastases and of the surviving 

fraction of breast tumor cells 188. 

A number of clinical studies evaluating the activity and safety of Bortezomib have been 

conducted in patients with MM or with other types of cancer, such as relapsed mantle-

cell lymphoma, colon, ovary, lung, melanoma, head and neck, and prostate 190-193. For 

MM and non-Hodgkin’s lymphoma (NHL), phase III trials have been conducted using 

Bortezomib alone or in combination with other anti-myeloma agents 193. In addition to 

hematologic malignancies, many clinical trials are underway employing Bortezomib in 

combination with other anticancer agents against solid tumors 194.  

After these promising results with Bortezomib, new proteasome inhibitors have been 

developed, such as PR-171 (Carfilzomib), for which a clinical trial is already ongoing, 

NPI-0052 (Marizomib), CEP-18770 (Cephalon) 195-197 and arginin A 198. Importantly, it 

has already been demonstrated, in in vitro studies on cancer cells, that it could be 

possible to combine low doses of proteasome inhibitors, such as NPI-0052 and 

Bortezomib, to obtain synergistic effects 199. The outstanding challenge in the clinic is to 

define appropriate combinations, as well as doses of the different proteasome inhibitors 

described above, which offer therapeutic advantages over Bortezomib. Moreover, 

development of proteasome inhibitors, with distinct substrate selectivity, improved bio-

availability and lower toxicity, may open the door to widespread usage in solid tumors. 
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Overall, considering the remarkable therapeutic results of Bortezomib as a single agent 

or in combination with other anticancer agents 200, the use of proteasome inhibitors 

promises to be one of the most important therapeutic strategies in clinical oncology. 

2.3.2 Targeting the ubiquitin ligase system  
 
Several E3 ligases have been linked to the development of cancer, largely because of 

their ability to trigger the degradation of oncogenes or tumor suppressors 171,172. Well-

studied E3 enzymes with oncogenic capacity are the RING-type E3 enzyme MDM2, a 

crucial negative regulator of the tumor suppressor protein p53 77,78, and the multi-

subunit SCF ligases that regulate cell cycle progression 201, such as Skp2, a substrate-

specific subunit of the SCF ligase complex, whose inactivation in tumors expressing low 

levels of the cell cycle inhibitor p27 is likely to be beneficial. It was initially believed 

that targeting the active site of E3 enzymes or their interaction with substrates would 

create selective drugs with fewer side effects respect to proteasome inhibitors.  

Thus, following the hypothesis that E3 ligases are potential therapeutic targets, in the 

past decade, the biotech and pharmaceutical industries have sought to develop 

inhibitors and agonists of ubiquitin ligases 202-205. The most well-known examples are the 

Nutlins, which inhibit p53/MDM2 binding or small compounds called RITA (2,5-bis(5-

hydroxy- methyl-2-thienyl)furan), which have been shown to bind the amino terminus of 

p53 and to promote growth arrest 206. 

Indeed, given the lack of specificity of proteasome inhibitors, it may be useful taking 

advantage of the enzymatic nature, abundance and specific substrate recognition 

properties of E3 ligases, which could become a more specific and effective therapeutic 

targets with the possibility to limit side effects. 

From a cancer point of view, the substrate specificity of an E3 ligase determine the 

ability of the ligase to behave as either an oncogene or tumor suppressor, because of its  
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control of the ubiquitination status of substrates with tumor suppressor and oncoprotein 

function. For that reason, the inappropriate degradation of these substrates due to 

aberrant expression, dysfunction or deregulated regulation of E3 ligases could be tightly 

linked to malignant transformation and chemoresistance, making E3 ligases attractive 

targets for cancer therapy. 
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3 AIMS AND RATIONALE OF THE STUDY 
 

NUMB has been identified as a tumor suppressor in different types of cancers, such as 

breast, lung and salivary gland carcinomas 103,106,107. In breast and lung cancer, loss of 

NUMB expression was shown to be due to its excessive ubiquitination and ensuing 

proteasomal degradation, as confirmed by the ability of the proteasome inhibitor MG-

132 to restore physiological NUMB levels in NUMB-deficient tumor cells 103,107. Thus, it 

is likely that deregulation of components of the UPS could underlie loss of NUMB in 

cancer. 

Ubiquitination is a post-translational modification that was originally described as a 

tagging mechanism for misfolded and disused proteins, which targets them for 

proteasome-mediated degradation. Now, ubiquitination is implicated in almost all 

cellular processes involved in cell growth and survival. It is therefore not surprising that 

alterations in ubiquitin and UPS have been detected (i.e.: mutations/overactivation of E3 

ligases and so on) in many human pathologies, including cancer, in which it has a role 

in the genesis of different types of tumors 130,172. This is, for instance, the case of some 

HECT-type E3 ligases with oncogenic potential, such as Huwe1, WWP1 or Smurf1, 

whose genetic aberrations and altered expression underpin the dysfunction of a number 

of tumor suppressor molecules comprised among their protein substrates in different 

types of human cancers, influencing also cellular transformation 207-210. 

Moreover, some components of the SCF complex, such as Skp2, have oncogene 

properties and lead to the degradation of tumor suppressors and are amplified and/or 

overexpressed in human cancers, whereas some others behave as tumor-suppressors 
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(e.g. Fbxw7) and, once mutated in human cancers, loose their ability to direct 

degradation of oncoproteins 172. 

 
Based on the accumulated knowledge of the involvement of its deregulation in cancer, 

the UPS has emerged as an attractive target for cancer therapy. In example, Bortezomib 

(originally codenamed PS-341 and marketed as Velcade® or Cytomib®) represents the 

first therapeutic proteasome inhibitor to be tested in humans and it is currently approved 

for the treatment of relapsed multiple myeloma and mantle cell lymphoma 193. 

Bortezomib has also been tested as a single agent in preclinical studies and clinical trials 

for adult T-cell leukemia, lung, breast, ovary, prostate, pancreatic, gastric, head and 

neck, colon cancer, melanoma and multiple myeloma 176,190,193. 

A new generation of proteasome inhibitors has been developed, such as MLN9708, 

CEP-18770, PR-047 and NPI-0052 211, in order to resolve some of the key 

pharmacological issues associated with Bortezomib, such as poor efficacy in solid 

tumors and therapy-associated peripheral neuropathy. Extensive clinical evaluation of 

these second-generation inhibitors is now required. 

Among the UPS players, the E3 ligases are considered to be the most important 

components of the ubiquitin machinery in terms of targetability, as they are responsible 

for substrate specificity. Well known examples of E3 ligases that have been described as 

putative therapeutical targets for cancer treatment are MDM2, Fbxw7 or components of 

the multimeric SCF-β–TrCP complex 202,203,205. 

In line with this rationale, the aim of this PhD thesis was the identification of specific E3 

ligases involved in the regulation of NUMB degradation in NUMB-deficient tumors. The 

long-term aim is the development of targeted therapeutic strategies capable of restoring 

physiological levels of NUMB in NUMB-deficient cancers. 

To reach this goal, we proposed a high-throughput RNA-interference (RNAi)-based  
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screening of all enzymes belonging to human E3 ligase families. To set-up the high-

throughput RNAi screening, it was first necessary to identify a suitable cellular model 

system, which recapitulates the alteration underlying loss of NUMB in NUMB-deficient 

cancer. As the role of NUMB as a tumor suppressor has been best described in breast 

tumors, we focused on cell models of NUMB-deficient breast cancers. A suitable cell 

model system for the RNAi screening would be a breast cancer cell line that expresses 

low basal levels of NUMB, compared to normal breast epithelial cells, which can be 

restored to physiological levels upon proteasome inhibition. To identify such a cell line, 

we screened NUMB levels following MG-132 treatment in a panel of breast cancer cell 

lines (see section 4.2 of Results). The second step in setting up the high-throughput 

screening was to optimize an ELISA-based assay to efficiently detect NUMB protein 

levels in a 384-well format (see sections 4.3 of Results). 

Having set up the high-throughput RNAi screening platform, we automatized the assay 

to perform different rounds of screening, which ultimately yielded a list of candidate E3 

ligases potential regulators of NUMB stability (section 4.4 of Results). We then 

performed a functional validation of selected candidates by investigating the effects of 

their silencing on NUMB levels in amenable NUMB-deficient cell lines as well as in 

primary tumor cells derived from breast and lung cancers (see section 4.5 of Results). 

Then, with the aim to elucidate the molecular mechanisms responsible for NUMB 

degradation in cancer, we investigated the possible interaction of NUMB with its 

putative negative regulators (see section 4.5.7 of Results).  

Finally, to assess the therapeutic value of targeting the UPS in NUMB-deficient breast 

cancers, we developed a pre-clinical model based on the xenograft of NUMB-deficient 

and NUMB-proficient breast tumor cell lines (see section 4.6 of Results), respectively 

MDA-MB-361 and MDA-MB-231 and evaluated the consequences of the treatment with 

the proteasome inhibitor MG-132 on the growth of these cells in xenografted mice. 



	
   45 

 

4 RESULTS 
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4.1 GENERATION OF A SPECIFIC ANTIBODY AGAINST HUMAN 

NUMB 

 
All the analyses performed in this thesis work were performed using a monoclonal anti-

NUMB antibody (moAb21) generated in house, which recognizes all the four different 

NUMB isoforms 81. This antibody has been generated against a peptide corresponding to 

a sequence unique to the NUMB protein (amino acid residues 537-551) and not present 

in NUMB-Like (NUMB-L), a protein that shares colinear topology and extensive 

sequence homology with NUMB 6,10. In this context, it should be borne in mind that, 

while loss of NUMB is a well-established alteration in breast cancer 81,103, this does not 

appear to be the case for the NUMB-L protein 103. Therefore, the moAb21 monoclonal 

antibody represents a tool of paramount importance to avoid the confounding effects 

due to the presence of the NUMB-L protein in the analysis of the ELISA results from the 

siRNA phenotypic screening based on the determination of NUMB levels upon ablation 

of E3 ligases in a model of NUMB-deficient breast tumors (see paragraph 4.3 below) . 

A new batch of the anti-NUMB moAb21 was freshly produced starting from the 

corresponding hybridoma (final concentration: 1.99 µg/µl) and tested for its anti-NUMB 

immunoreactivity in different assays, including immunoblotting (IB), 

immunoprecipitation (IP) and immunofluorescence (IF) (Figure 11). As expected 81, in 

the IB analysis of total cell lysates from MCF10A cells, the moAb21 recognized two 

doublets corresponding to the four described human NUMB isoforms generated by 

alternative splicing of the NUMB mRNA (Figure 11A). The different isoforms result from 

the presence of two sequence inserts within the PTB domain and the central region of 

the protein (isoforms 1-4; MW: 72, 66, 71, 65 kDa, respectively) 5,11. Of note, the two 

bands disappeared in NUMB-silenced human epithelial MCF10A cells, demonstrating 
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that the antibody specifically recognizes all the NUMB isoforms (Figure 11A). We also 

confirmed that the moAb21 antibody recognizes mouse NUMB by performing IB 

analysis on total lysates of cells coming from murine mammary epithelial cells (Figure 

11B). Also in this case, all the four isoforms described for mouse NUMB 12 are 

recognized by the moAb21 antibody.  

We also used the moAb21 to perform IP experiments using total cell lysates from 

MCF10A cells. IB analysis of immunoprecipitates obtained with increasing amounts of 

moAb21 showed that the NUMB protein was efficiently enriched in the IP samples 

compared to the control input, with almost complete immunodepletion of the protein 

from the total cell lysates achieved already at low antibody concentrations (Figure 11C). 

Based on these results, we concluded that the moAb21 antibody is able to efficiently 

recognize the NUMB protein in its native conformation, arguing for its suitability in the 

ELISA assay (see section 4.3 below). In IF experiments, immunostaining of MCF10A cells 

with the moAb21 antibody typically showed a plasma membrane/cytoplasmic signal, 

which is consistent with the expected subcellular localization of NUMB 30 (Figure 11D, 

red signal). This signal was significantly reduced in NUMB-silenced MCF10A cells 

indicating the specificity of the moAb21 antibody also in IF assay (Figure 11D, red ).  

We finally tested the suitability of the moAb21 antibody for immunohistochemistry (IHC) 

analysis of formalin-fixed paraffin-embedded (FFPE) samples. To this aim, we prepared 

FFPE samples of NUMB-silenced MCF10A cells to be compared to scrambled siRNA-

MCF10A cells, as a control. IHC staining of these paired samples with the moAb21 

antibody yielded a signal in control MCF10A cells that disappeared in NUMB-­‐silenced 

cells, indicating that the antibody specifically and efficiently recognizes NUMB in IHC 

experiments (Figure 12). Altogether, these results confirmed that we successfully 

generated a new batch of the NUMB-­‐specific moAb21 antibody that is suitable for use 

in a wide range of techniques including IB, IP, IF and IHC. 
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Figure 11. Characterization of the moAb21 monoclonal antibody.  

A) Immunoblotting (IB) analysis of control vs. NUMB-interfered human MCF10A cells. Total cell lysates (40 

µg) from control (MOCK- and scrambled siRNA, siCTRL) or NUMB-silenced (siNUMB) MCF10A cells were 

immunoblotted with the moAb21 antibody. Vinculin was detected as a loading control. MW markers are 

shown on the left of the blots. B) Immunoblotting (IB) analysis of murine mammary epithelial cells. Total 

cell lysates (40 µg) from scrambled siRNA (siCTRL) or NUMB-silenced (siNUMB) murine mammary 

epithelial cells were immunoblotted with the moAb21 monoclonal antibody. Vinculin was detected as a 

loading control. MW markers are shown on the left of the blots. C) NUMB immunoprecipitation (IP) from 

MCF10A cells. Increasing concentrations of the moAb21 antibody (2, 10, 50 µg) were used to 

immunoprecipitate NUMB from MCF10A total cell lysates (700 µg). The blot shows enrichment of NUMB 

in immunoprecipitates (700 µg) compared to the total cell lysate input (40 µg) and the efficiency of NUMB 

immunodepletion in post-IP supernatants (40 µg). MW markers are shown on the left of the blot. D) 

Analysis of moAb21 immunoreactivity by immunofluorescence (IF). Scrambled (siCTRL) or NUMB-silenced 

(siNUMB) MCF10A cells were fixed and stained with moAb21, followed by anti-mouse Cy3-conjugated 

secondary antibody (red). Nuclei were counterstained with DAPI (blue). Representative overlaid images at 

two different magnifications are shown. Scale bars: left panels, 100 µm; right panels, 50 µm. Blots and 

images are representative of 3 repeats. 
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Figure 12. The moAb21 anti-NUMB antibody specifically recognizes the NUMB protein in FFPE 

samples by IHC analysis.  

IHC analysis of FFPE samples of scrambled (siCTRL) and NUMB-silenced (siNUMB) MCF10A cells. 

Representative images are shown. Magnification 40X. 



	
   50 

 

4.2 IDENTIFICATION OF A CELLULAR MODEL SYSTEM OF NUMB-

DEFICIENT BREAST TUMORS SUITABLE FOR HIGH-THROUGHPUT 

SCREENING. 

 
The overall idea of this thesis work is to identify upstream mechanisms responsible for 

exaggerated NUMB ubiquitination and ensuing degradation in breast cancer. To this aim 

we devised a phenotypic RNAi screening using a commercially available siRNA library 

for E3 ligases (Dharmacon RNAi Technologies), to identify candidate enzyme(s) whose 

functional ablation is able to restore NUMB levels in a model of NUMB-deficient breast 

tumors. The first step towards this aim was therefore the identification of a cell-based 

model system mimicking the alteration of NUMB in breast cancer and suitable for the 

high-throughput analysis of a large number of candidate hits upon siRNA. Primary tumor 

epithelial cells isolated from NUMB-deficient breast tumors would represent the ideal 

cell model for this analysis in that they faithfully recapitulate the molecular alteration of 

naturally occurring human breast cancers. However, a major hurdle in the use of 

primary cell cultures in high-throughput studies is the limited amount of cells that can be 

obtained from human breast biopsy specimens. Therefore, we opted to use an 

established breast cancer cell line that recapitulates the phenotype of NUMB-deficient 

primary tumor cells, i.e., the presence of basally low levels of NUMB protein that can be 

promptly rescued to normal by hindering ubiquitination and consequent UPS-mediate 

degradation of the protein. 
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4.2.1 Screening of breast cell lines for NUMB expression. 
 
We first needed to identify a suitable cellular model system to identify a cell line that 

expresses low basal levels of the NUMB protein, despite the presence of normal levels of 

NUMB mRNA transcripts. We therefore screened a panel of commercially available, 

non-tumorigenic and tumorigenic breast cell lines for their intrinsic NUMB status, both 

at the protein and transcript level, by IB and quantitative RT-PCR (q-RT PCR) analysis, 

respectively. In this screening, we observed that NUMB was expressed to varying 

degrees in the breast tumor cell lines compared with the non-tumorigenic mammary 

epithelial cell line MCF10A, which is a well-established model for normal mammary 

epithelial cells (Figure 13). In particular, MCF10A is a spontaneously immortalized, but 

non-transformed human mammary epithelial cell line derived from the breast tissue of a 

patient with fibrocystic changes. MCF10A cells are commonly recognized as a normal 

breast epithelial cell line because of lack of tumorigenicity in nude mice and lack of 

anchorage-independent growth. However, some genetic abnormalities have been 

characterized, in particular the deletion of the locus containing p16-p14ARF and 

amplification of MYC. MCF10A cells also express wild-type p53 212. Among the breast 

tumor cell lines analyzed, we identified by IB several cell lines with overall low basal 

levels of NUMB protein compared to MCF10A cells, such as MDA-MB-361, MCF7, 

BT474 and MDA-MB-415, although differences were also noted in the behavior of the 

different isoforms across the different cell lines (Figure 13A). All cell lines displayed 

NUMB mRNA levels comparable to those of MCF10A cells, confirming that the low 

level of NUMB observed in some of these cell lines is due to post-transcriptional events 

(Figure 13B).  
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Figure 13. Analysis of NUMB expression levels in a panel of breast cancer cell lines.  

A) Total cell lysates (20 µg) from the indicated cell lines were immunoblotted with the moAb21 antibody. 

The expression level of NUMB in the NUMB-proficient quasi-normal breast cell line MCF10A was used as 

a reference standard for NUMB expression in the normal mammary gland. Actin was detected as a loading 

control. MW markers are reported to the left of the blots. B) NUMB mRNA expression levels in the 

indicated breast cancer cell lines were assessed by q-RT PCR analysis. Results were normalized to NUMB 

mRNA levels detected in MCF10A cells. 
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4.2.2 Analysis of NUMB expression in breast cell lines upon proteasome inhibition 
with MG-132. 
 

Loss of NUMB expression in primary epithelial cells derived from NUMB-deficient 

tumors can be promptly rescued by treatment of these cells with the proteasome 

inhibitor MG-132 103. Based on this notion, we set out to investigate whether a similar 

restoration of NUMB expression could be achieved in the NUMB-deficient breast cell 

lines identified in our preliminary screening.  

To this purpose, we analyzed pre-/post-treatment changes in NUMB expression levels in 

the panel of selected breast cancer cell lines treated with the proteasome inhibitor MG-

132, or with solvent, as a control.  

Based on results of this analysis, we decided to select the MDA-MB-361 and BT474 cell 

lines as models that best recapitulate the alteration of NUMB in NUMB-deficient breast 

cancer by featuring basally low levels of almost all NUMB isoforms followed by 

restoration of the protein to physiological levels upon treatment with MG-132 (Figure 

14).  
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Figure 14. Analysis of NUMB expression in breast cancer cell lines pre-/post- MG-132 treatment.  

The indicated breast cell lines were treated with the proteasome inhibitor MG-132 (10 µM for 10 h), or 

with EtOH (10 µM for 10 hours) as a control, and lysed. Protein lysate (20 µg) was loaded on the gel and 

NUMB protein levels were determined by IB. The expression level of NUMB in the MCF10A cell line was 

used as a reference standard for physiological NUMB status in normal mammary epithelial cells. Protein 

loading was controlled using an anti-actin antibody. MW markers are shown on the left of the blots. 

 

4.2.2.1 Optimization of MG-132 treatment conditions in BT474 and MDA-MB 361 
NUMB-deficient breast tumor cell lines.  
 

To optimize treatment conditions, we tested different concentrations of MG-132 and 

treatment times (Figure 15). In BT474 cells, we observed efficient NUMB restoration 

only after a 6–hour treatment with 20 µM MG-132. In contrast, in MDA-MB-361 cells 

NUMB restoration was most evidence after a 24-hour treatment with 5 µM MG-132. To 

control for the efficiency of proteasome inhibition under the different experimental 

conditions, we analyzed the expression of p53 and beta-catenin, which are known to 

undergo proteasomal degradation 77,78,213. We observed an effect of MG-132 on p53 and 

beta-catenin levels under all conditions confirming the efficacy of the inhibitor. On 

note, MDA-MB-361 cells do not express p53 due to a mutation in the p53 promoter 214.  
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Moreover, we analyzed the expression of clathrin and AP2 as internal controls of 

proteins that, under the experimental conditions used, are insensitive to MG-132 

treatment. 

From the analysis of the kinetics response of MDA-MB-361 and BT474 cells to different 

MG-132 concentrations it is possible to conclude that, while MDA-MB-361 cells seem 

to display a slower rate of degradation of the NUMB protein, evidenced by the fact that 

full rescue of NUMB expression is achieved with a treatment period of 24 h, this cell 

line appears to respond to substantially lower concentrations of MG-132, which 

minimizes the potential toxic and/or off-target effects due to bulk proteasome inhibition. 

Based on these observations, we concluded that MDA-MB-361 cells better suit the 

experimental conditions required for the ELISA-based siRNA phenotypic screening, 

while BT474 might be considered as a tool for subsequent validation of candidate hits 

stemming out of the screening. 

 

 

 
Figure 15. Restoration of NUMB protein levels in BT474 and MDA-MB-361 cells upon proteasome 

inhibition.  

The effect of MG-132 treatment, at the indicated concentrations and time-points, on the levels of NUMB, 

p53, clathrin and AP2 in the NUMB-deficient breast cancer cell lines, BT474 and MDA-MB-361, and in 

the NUMB-proficient normal breast cell line, MCF10A, was determined by IB using the indicated 

antibodies. Protein loading was controlled using an anti-vinculin antibody. MW markers are shown on the 

left of the blots. Results are representative of 3 independent experiments. 
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To further confirm the mechanistic link between basally low NUMB expression and 

aberrant proteasomal degradation in MDA-MB-361 cells, we exposed these cells to 

increasing concentrations (5 to 500 nM for 24 h) of another proteasome inhibitor, the 

compound MG-341 (Bortezomib, Velcade®), observing a remarkable restoration of 

NUMB levels already with low concentrations of this drug (Figure 16). Of note, 

Bortezomib treatment of the quasi-normal mammary epithelial cell line MCF10A yielded 

no effects on the basal NUMB expression levels (Figure 16). 

 

 

 

 

Figure 16. Analysis of the effects of the treatment of the MCF10A and MDA-MB-361 cells with the 

proteasome inhibitor Bortezomib.  

The NUMB-proficient quasi-normal breast cell line MCF10A (left panel) and the NUMB-deficient breast 

cancer cell line MDA-MB-361 (right panel) were exposed to the indicated concentrations of MG-341 

(Bortezomib, Velcade®) for 24 h. NUMB levels were assessed with the moAb21 antibody. Protein loading 

was controlled using an anti-actin antibody. MW markers are shown on the left of the blots. Results are 

representative of 3 independent experiments. 
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4.3 DEVELOPMENT OF AN ELISA-BASED HIGH-THROUGHPUT 

PLATFORM. 

4.3.1 Optimization of a capture ELISA assay to detect NUMB protein. 
 
To perform the RNAi screening in high-throughput mode we opted to use a 384-well 

plate format. In this format, we are able to use a maximum of 20,000 cells/well. Hence, 

it was necessary to identify a suitable method for quantifying NUMB protein in such a 

limited number of cells. For this purpose, we employed a commercially available ELISA 

capture assay for the quantification of total NUMB levels (DuoSet IC Human/Mouse/Rat 

Total NUMB, R&D Systems). In this assay, the NUMB protein is captured from total cell 

lysates using a mouse anti-human NUMB polyclonal antibody coated onto the ELISA 

plate. Captured NUMB is then detected using a biotinylated sheep anti-human NUMB 

polyclonal antibody specific for total NUMB, streptavidin-conjugated to horseradish 

peroxidase (streptavidin-HRP), and a chromogenic HRP substrate, tetramethylbenzidine 

(TMB) (Figure 17A). 

Considering the high degree of homology between NUMB and NUMB-L, we firstly 

verified, by IB analysis, the specificity of both the capture and detection anti-NUMB 

polyclonal antibodies using purified NUMB and NUMBL recombinant proteins. We 

noted that the commercial mouse polyclonal capture antibody recognized both NUMB 

and NUMBL (Figure 17B), while the detection antibody specifically recognized NUMB, 

with no cross-reaction with NUMBL. Considering that the concomitant reaction of the 

capture antibody against either NUMB or NUMB-L would unavoidably affect 

interpretation of results based on the phenotypic restoration of NUMB expression upon 

siRNA of candidate E3 ligases, we decided to replace in the ELISA platform the 

commercial polyclonal capture antibody with the moAb21 anti-NUMB antibody 
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produced in-house, which selectively recognizes the NUMB protein (Figure 11, Section 

4.1 of Results). 

 

 

 

Figure 17. Optimization of a capture ELISA to measure total NUMB levels in cell lysates. A) Schematic 

representation of the capture ELISA. NUMB protein is captured from total cell lysates using a mouse 

polyclonal anti-NUMB antibody coated onto the ELISA plate. Captured NUMB is detected using a 

biotinylated polyclonal antibody specific for total NUMB, Streptavidin-HRP, and a chromogenic HRP 

substrate, tetramethylbenzidine (TMB). 

(B) The specificity of both capture and detection polyclonal anti-NUMB antibodies was assessed by 

immunoblotting using purified NUMB and NUMB-L recombinant proteins (5 ng). s.e., short exposure; l.e., 

long exposure. MW markers are reported to the left of the blot. 
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To optimize the use of our moAb21 antibody in the ELISA protocol, we first compared 

the standard curves obtained in a binding assay challenging the commercially available 

capture mouse polyclonal antibody and the moAb21 antibody against a range of 

concentrations of a recombinant NUMB protein produced in E. Coli and provided by the 

manufacturer (Figure 18). The moAb21 monoclonal antibody produced a standard 

binding curve comparable to that obtained with the capture antibody provided by the 

manufacturer, arguing for the suitability of this reagent to the customization of the ELISA 

protocol. 

The first question we decided to address in the establishment of the ELISA-based 

platform was how the sensitivity of the ELISA compared to IB analysis in detecting 

variations of NUMB expression upon MG-132 treatment of NUMB-deficient and -

proficient cells.  

To this aim, we tested by ELISA the same preparation of cell lysates, from cells grown in 

10-cm plates, analyzed by IB analysis shown in Figure 15.  

To perform a direct quantitative comparison of ELISA and IB results, we performed 

densitometric analysis of IB results. From this comparison, it was evident that, while 

ELISA and IB are reasonably comparable in the detection of small variations of the 

NUMB protein (compare, for instance, IB densitometry and ELISA results of MG-132 

treatment of BT474 with 10 µM for 10h and 5 µM for 24h), ELISA appears to be far less 

sensitive than IB in scoring large increase in NUMB expression (for instance, BT474 

treated with 20 µM MG-132 for 6h or MDA-MB-361 exposed to 5 µM MG-132 for 24h). 

This is likely due to the limited dynamic range of the ELISA that does not appear to 

efficiently score NUMB protein increases greater than 1.5/2-fold (Figure 19A,B).  
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Figure 18. Test of the efficacy of the moAb21 anti-NUMB monoclonal antibody vs. the commercial 

anti-NUMB poyclonal antibody.  

Comparison of the moAb21 anti-NUMB mouse monoclonal antibody (red line) and anti-NUMB mouse 

poyclonal antibody (blu line) provided by the kit. The indicate concentrations of a recombinant purified 

human NUMB protein (0-1600 pg/ml) were used to test efficacy of the two antibodies. Equivalent 

concentrations (4 µg/ml) of moAb21 or of the commercial mouse polyclonal antibody were used for the 

coating of the ELISA plates; after 3 washes, a blocking buffer was added for 1 h. After another round of 

washes, recombinant protein NUMB was added at the indicated concentrations and incubated for 2 h and 

then, after 3 washes, the biotinylated detection antibody (100 ng/ml) was added and incubated for 2 h. 

Finally, streptavidin coniugated to horseradish-peroxidase (streptavidin-HRP) and the TMB substrate 

provided by the kit were added to the plate. Each data point represents the mean ± s.dev (n = 3) of a 

representative experiment of 3 repeats. 
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Figure 19. Comparison of the sensitivity of ELISA vs. IB in the detection of NUMB protein levels.  

A) Quantitative densitometry of the IB results depicted in Figure 5 showing the response of MCF10A, 

BT474 and MDA-MB-361 cells to MG-132 treatment. For the densitometric assessment of NUMB levels, 

for the different cell lines, values relative to each individual treatment were normalized to the control 

(EtOH=1) and then normalized to the corresponding vinculin level. B) ELISA determination of NUMB 

variations performed in a 384-well plate format using the same cellular extracts used for the IB analysis 

depicted in Figure 5, and quantified by densitometry as in A). ELISA was performed using the anti-NUMB 

moAb21 as a capture antibody (4 µg/ml) incubated overnight; after 3 washes, a blocking buffer was added 

for 1 h. After another round of washes, protein lysates (1 µg) from cells grown in 10-cm plates were added 

and incubated for 2 h and then, after 3 washes, the biotinylated detection antibody (100 ng/ml) was added 

and incubated for 2 h. Finally, streptavidin-coniugated to horseradish peroxidase (streptavidin-HRP) and 

the TMB substrate were added to the plate. Optical density (OD) of each well was determined immediately 

using a microplate reader set to 450 nm. Protein lysates from each data point were plated in triplicate in 

384-well plates. Each data point represents the mean ± S.D of three independent experiments run in 

triplicate. For each cell line, each treated sample was normalized to control sample (EtOH=1). 

A 

B 
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The next step towards the optimization of the ELISA platform, for the purpose of the 

high-throughput screening, was the miniaturization of the ELISA protocol to a 384-well 

format and the introduction of a method to measure the number and viability of cells 

directly in wells.  

To this aim, we performed the ELISA protocol using MCF10A cells (1 x 103/well) and 

MDA-MB-361 or BT474 cells (6 x 103/well) plated into a 384-well plate. To measure the 

viability and number of cells, we exploited the Cell Titer Fluor Cell Viability (CTF) Assay 

from Promega. This assay measures a conserved and constitutive cellular protease 

activity and utilizes a fluorogenic, cell-permeant, peptide substrate (glycylphenylalanyl-

aminofluorocoumarin, GF-AFC), which enters intact cells where it is cleaved by the live-

cell protease activity to generate a fluorescent signal proportional to the number of living 

cells. This fluorescent signal can be monitored using a wavelenght (excitation, 380nm; 

emission, 505nm) compatible with the absorbance of the ELISA protocol (450nm).  

The CTF substrate was added immediately before the ELISA substrate. The analysis of the 

absorbance values relative to basal NUMB levels in the different cell lines, calculated in 

the presence or absence of the CTF substrate, demonstrated that the introduction of the 

CTF-based measurement of cell number/viability does not perturb the sensitivity of the 

ELISA (Figure 20).  

Therefore, the successful introduction of the CTF-based viability assay and the reduction 

of the ELISA to a 384-well plate format represents a further step towards the 

development of a fully automatized and miniaturized ELISA platform. 
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Figure 20. Analysis of the effects of the CTF-based viability assay in the performance of the capture 

ELISA.  

Cells were plated in triplicate directly in 384-well ELISA plates (1 X 103 MCF10A cells and 6 X 103
 MDA-

MB-361 or BT474 cells) for 72 hours. ELISA was performed using the anti-NUMB moAb21 as a capture 

antibody (4 µg/ml) incubated overnight; after 3 washes, a blocking buffer was added for 1 h. The CTF 

substrate was added before the ELISA substrate to measure cell viability. Data are shown as the mean ± 

S.D. from 3 independent experiments.  

 

 

We next used this protocol to measure the response of MCF10A, MDA-MB-361 and 

BT474 cells to MG-132 treatment. Results from this analysis in a 384-well plate format 

were similar to those obtained in cells grown in 10-cm plates (see Figure 19), with a 

maximun increase in NUMB expression observed in MDA-MB-361 cells exposed to 

5µM MG-132 for 24 h (Figure 21).  

 

 

 



! 64 

 

 

 

 

Figure 21. Capture ELISA assay performed in a 384-well plate format to detect NUMB protein levels 

upon proteasome inhibition.  

The effect of MG-132 treatment on NUMB levels in the indicated cell lines was determined by the capture 

ELISA assay in a 384-well plate using the chromogenic HRP substrate, tetramethylbenzidine. Cells were 

plated directly in 384-well ELISA plates (1 x 103 MCF10A cells and 6 x 103 MDA-MB-361 or BT474 cells) 

and then treated with MG-132 (5/10/20 µM for 24, 10 and 6 h respectively) or with equivalent 

concentrations of the solvent ethanol (EtOH) as a control (CTRL). ELISA assay was performed using the anti-

NUMB moAb21 as a capture antibody (4 µg/ml) incubated overnight; after 3 washes, a blocking buffer was 

added for 1 h. After another round of washes, cell lysis was performed according to the manufacturer’s 

instructions with cell lysates incubated for 2 h and then, after 3 washes, the biotinylated detection antibody 

(100 ng/ml) was added and incubated for 2 h. Finally, streptavidin-coniugated to horseradish peroxidase 

(streptavidin-HRP) and the TMB substrate were added to the plate. Absorbance values from ELISA assay 

(NUMB protein levels) were normalized to the number of cells/well measured by the Cell Titer Fluor Cell 

Viability Assay (Promega), performed according to the manufacturer’s instructions. Cells from each data 

point were plated in triplicate. Each data point represents the mean ± S.D. (n = 3) of triplicate experiments. 

Every treated sample was normalized for control sample in each cell line. 
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Based on these results, we decided to verify whether we could improve the dynamic 

range of the ELISA in scoring cellular changes in NUMB expression upon proteasome 

inhibition, by modifying stepwisely the different steps of the original ELISA protocol.  

We started by challenging different concentrations of either the capture (Figure 22A) or 

the detection antibody (Figure 22B) against standard concentrations of the NUMB 

recombinant protein (0-1600 pg/ml).  

Compared to the concentrations of the capture and detection antibody indicated by the 

manufacturer’s instructions (respectively, 4 µg/ml and 100 ng/ml), we tested in the ELISA 

protocol four different concentrations (1, 2, 4, 8 µg/ml) of the moAb21 as a capture 

antibody and of the commercial rabbit polyclonal detection antibody (25, 50, 100, 200 

ng/ml), observing no substantial differences across the different concentrations of either 

the capture or the detection antibodies in the binding of the different dilutions of the 

NUMB recombinant portein (Figure 22A,B). 

In parallel experiments, the same concentrations of capture and detection antibodies 

were challenged against the lysates used before of MDA-MB-361 plated in 10-cm plates 

and treated with 5µM MG-132 for 24 h, a condition that, by IB analysis, yielded the 

most remarkable increase in NUMB (see Figure 19 for comparison). Unfortunately, none 

of the different concentrations of either capture or detection antibodies were able to 

provide a better dynamic range in the detection of NUMB increase compared to the 

experimental conditions of the original ELISA protocol (Figure 23 A,B). 
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Figure 22. Optimization of the ELISA assay: set-up of capture or detection antibody’s concentration. 

The indicated concentrations of moAb21 as a capture antibody A) or of the detection antibody provided by 

the ELISA kit B) were tested in the ELISA protocol against the indicated serial dilutions of a recombinant 

purified human NUMB protein. Data represent the mean ± S.D. of 3 indipendent experiments performed in 

triplicate. 

 

A 

B 
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Figure 23. Optimization of the ELISA assay: detection of NUMB protein levels upon proteasome 

inhibition using different concentrations of capture or detection antibody. 

ELISA performed in the presence of the indicated concentrations of moAb21 as a capture antibody A) or of 

the detection antibody provided by the ELISA kit B) to measure variations in NUMB expression in MDA-

MB-361 cells treated with 5µM MG-132, or with equivalent concentrations of EtOH as a control, for 24h. 

Data represent the mean ± S.D. of 3 indipendent experiments performed in triplicate. 

 

A 

B 
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As a further attempt to improve the sensitivity of the ELISA, we decided to substitute the 

HRP chromogenic substrate with a chemiluminescent substrate (Chemiluminescent Pico 

ELISA Signal-Luminol-based, Thermo Scientific). We compared the two detection 

systems using serial dilutions of a purified recombinant human NUMB protein provided 

by the manufacturer, and observed that the chemiluminescent substrate was more 

sensitive and displayed a wider dynamic working range than the chromogenic substrate 

(Figure 24A,B). Indeed, TMB substrate gave linear read-out between 0-200 pg/ml of 

NUMB protein concentration, before plateuing out, while chemiluminescent substrate 

was still linear from 100 pg/ml to 1600 pg/ml.  

 

We then repeated the MG-132 treatment experiment with the new chemiluminescent 

substrate after growing 1 X 103 MCF10A cells and 6 X 103 MDA-MB-361 and BT474 

cells in a 384-well plate. We observed a maximum of three fold-increase in the NUMB 

protein levels in MDA-MB-361 treated with 5 µM MG-132 for 24 h (Figure 25), which 

constitutes, albeit to a limited extent, an improvement of the dynamic range of the ELISA 

compared to the standard manufacturer’s protocol. Thus, we decided to use the 

chemiluminescent, instead of the chromogenic, substrate in our ELISA assay for the 

siRNA screening.  
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Figure 24. Optimization of the ELISA assay: chromogenic vs chemiluminescent substrate. 

Comparison of the chromogenic A) and chemiluminescent B) substrates as detection systems in ELISA using 

standard serial dilutions of a recombinant purified human NUMB protein (0-1600 pg/ml). 

ELISA was performed using anti-NUMB moAb21 as a capture antibody (4 µg/ml) and the commercial 

biotinylated antibody (100 ng/ml) as a detection antibody combined to streptavidin-HRP and to the TMB 

substrate provided by the kit A) or to the a chemiluminescent substrate (Chemiluminescent Pico ELISA 

Signal-Luminol-based, Thermo Scientific) B). Data represent the mean ± S.D. from 3 independent 

experiments performed in triplicate. 
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Figure 25. Detection of NUMB restoration following MG-132 treatment using the capture ELISA 

assay and the chemiluminescent substrate.  

The effect of MG-132 on NUMB levels in the indicated cell lines was determined by the capture ELISA 

assay in a 384-well plate using the chemiluminescent substrate (Chemiluminescent Pico ELISA Signal-

Luminol-based). NUMB protein levels were normalized to the number of cells/well measured with the Cell 

Titer Fluor Cell Viability Assay (Promega). Cells were plated directly in 384-well ELISA plates (1 X 103 

MCF10A cells and 6 X 103
   MDA-MB-361 and BT474 cells) and then treated with MG-132 (5/10/20 µM for 

24, 10 and 6 h respectively) and control (CTRL) samples received an equivalent volume of solvent Ethanol 

(EtOH). ELISA assay was performed using mouse anti-NUMB moAb21 as capture antibody (4 µg/ml) 

incubated overnight; after 3 washes, a blocking buffer was added for 1 h. After another round of washes, 

cell lysis was performed according to the manufacturer’s instructions with cell lysates incubated for 2 h and 

then, after 3 washes, the biotinylated detection antibody (100 ng/ml) was added and incubated for 2 h. 

Finally, streptavidin coniugated to horseradish-peroxidase (streptavidin-HRP) and the chemiluminescent 

substrate were added to the plate. Absorbance values from ELISA assay (NUMB protein levels) were 

normalized to the number of cells/well measured by the Cell Titer Fluor Cell Viability Assay (Promega), 

performed according to the manufacturer’s instructions. Cells from each data point were plated in 

triplicate. Each data point represents the mean ± S.D. (n = 3) of a representative experiment of 3 repeats. 

Every treated sample was normalized for control sample in each cell line. 
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4.3.2 Optimization of cell growth conditions in 384-well plates. 
 
We next set out to determine optimal cell growth conditions in 384-well plates. To this 

aim, we plated different amounts of MDA-MB-361 cells in 384-well plates and 

measured cell growth over 96 h using the aforementioned Cell Titer Fluor kit.  

We observed exponential cell growth over 96 h in wells containing a starting 

concentration of 2.5 – 7.5 x 103 cells/well (Figure 26A). From the standard curve, 

generated by plotting fluorescent content versus cell concentration (Figure 26B), we 

determined that the doubling time for MDA-MB-361 cells was approximately 72 h, 

which is consistent with known doubling time for this cell line. Moreover, the signal 

obtained from wells plated at 7.5 x 103 at T = 0, after 72 h (17.5 x 103 AFU) was within 

the linear range. Thus, for the siRNA screening experiments, we chose a starting 

concentration of MDA-MB-361 cells of ≤ 7.5 x 103 cells/well. 

We next measured NUMB levels in lysates from wells containing different starting 

amounts of cells using the ELISA assay with the new chemiluminescent detection system 

and we observed a linear correlation up to 12 x 103 cells/well (Figure 27A). From the 

standard curve generated with recombinant NUMB (Figure 27B), we observed a linear 

correlation between NUMB concentration and the ELISA read-out up to 800 pg/ml of 

rNUMB, and determined that 7.5 x 103 cells/well corresponds to ~200 pg/ml. Since our 

aim is to efficiently detect NUMB restoration by ELISA and considering the low dynamic 

range of this assay, it is necessary to use a cell concentration in the siRNA screening 

experiments that corresponds to a quantity of NUMB at the lower end of the standard 

curve, but not too close to background values. Taking into consideration these results 

we concluded that a suitable starting concentration of cells is 6 - 7.5 x 103 cells/well. 
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Figure 26. Set up of growth conditions of MDA-MB-361 cells in 384-well plates.

A) MDA-MB-361 cells were plated in quadruplicate in 384-well plates at the indicated concentrations. Cell 

viability was measured using the Cell Titer Fluor Kit every 24 h over 96 h period. Each data point 

represents the mean ± S.D. (n = 4) of a representative experiment of 3 repeats. Time 0 (T0) was considered 

as 3 h after plating, which represents the time required for cells to attach. B) Standard curve showing the 

relationship between cell number at T0 and fluorescence content determined using the Cell Titer Fluor Kit. 

A 

B 
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Figure 27. Relationship between cell concentration and NUMB protein levels measured by the 

capture ELISA assay.  

A) MDA-MB-361 cells were plated in quadruplicate in 384-well plates at the indicated concentrations. 

NUMB levels were determined using ELISA with the chemiluminescent detection system. The blue circle 

highlights the position on the graph corresponding to 6000 cells/well (A) or 150 pg/ml of NUMB (B). B) 

Standard curve generated by testing in ELISA increasing concentrations of a purified recombinant NUMB 

with the use of the chemiluminescent detection system. Data points represent the mean ± S.D. (n = 4) of a 

representative experiment of 3 repeats.  

 

4.3.3 Optimization of reverse transfection of siRNAs. 
 
We employed a siGENOME SMARTpool siRNA from Dharmacon Technologies (pools of 

4 oligos/gene) and a reverse transfection protocol with an incubation time of 72 h. We 

set up and optimized RNAi conditions using NUMB as the target protein in MDA-MB-

361 cells. We used different starting concentrations of cells ranging from 5 to 15x103 

cells/well and determined that the level of NUMB knockdown was comparable at all 

concentrations of cells (Figure 28A). Similar results were also obtained with MCF10A 

cells using the same protocol (Figure 28B). We concluded that the starting MDA-MB-

361 cell concentration of 6 to 7.5 x 103 cells/well is suitable for protein knockdown in 

siRNA experiments. 

A B 
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Figure 28. Set up of RNA-interference conditions in 384-well plates.  

NUMB was knocked down in MDA-MB-361 cells A) and MCF10A cells B), plated in quadruplicate at the 

indicated concentrations in 384-well plates, using 50 nM anti-NUMB or control siRNA oligo (siNUMB and 

siCTRL, respectively) for 72 h. NUMB levels were detected using the ELISA assay with the 

chemiluminescent detection method and the number of cells/well was determined using the Cell Titer 

Fluor viability assay. NUMB levels are shown normalized to number of cells/well and to controls. 
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4.4 IDENTIFICATION OF CANDIDATE E3 LIGASES TARGETING 

NUMB BY siRNA SCREENING 

After having identified a suitable cell model system for NUMB-deficient breast cancer, 

i.e. MDA-MB-361 cells, and optimized conditions for the NUMB capture ELISA assay as 

well as for the siRNA reverse trasfection protocol in a 384-well plate format, we decided 

to run the ‘high-throughput siRNA phenotypic screening’ to identify possible NUMB 

downregulators among enzymes belonging to E3 ligase family. For that purpose, we 

used a commercial library from Dharmacon Technology, the Dharmacon siGENOME® 

SMARTpool® siRNA Library-Human Ubiquitin Conjugation subset 1-3 (G-005615  Lot 

08119). 

4.4.1 Plate uniformity and signal variability assessment.  
 
We decided to perform the siRNA screening using the automated EVOware platform; all 

the automation process of the screening was done in collaboration with the Drug 

Discovery Unit (DDU) at IFOM-IEO Campus. 

During the automation process, two main protocol were followed: 1) the siRNA reverse 

transfection protocol and 2) the ELISA protocol, whose optimization and set-up has 

already been described in Section 4.3.  

1) For all silencing experiments in the screening, we used a final concentration of the 

siRNA pool of control/gene oligos (siCTRL/siGeneX) of 50 nM; according to the reverse 

transfection protocol, the first step was the distribution of oligos targeting individual E3 

ligases into separate wells of a 384-well plate, followed by cell plating and incubation 

for 72 h at 37 °C; these steps were automatized through the help of a automatic 

dispencer. As a negative control of the trasfection we used NUMB knockdown 

(siNUMB), as assessed in Section 4.3; as a positive control of NUMB restoration after 
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candidate gene silencing we used MDA-MB-361 cells treated with MG-132 (5µM for 24 

h) during all screening experiments, as already assessed in Section 4.2 and 4.3. 

2) For the ELISA protocol, we used the in-house-produced  moAb21 antibody at a final 

concentration of 4 µg/ml as capture antibody, the mouse polyclonal detection antibody 

provided by kit, at a final concentration of 100 ng/ml, and the Chemiluminescent Pico 

ELISA Signal-Luminol-based as substrate for the detection step. The different steps of the 

ELISA protocol, such as coating of capture/detection antibodies and distribution of buffer 

solutions, except for washing steps, had been fully automatized. Cell lysates from treated 

MDA-MB-361 cells were transferred from siRNA trasfection plates to ELISA plates 

through the automated dispencer. Initially, we defined the workflow for the automation 

of the screening by writing two specific scripts for the EVOware platform, in order to 

complete the two main steps in the protocol: 1) Transfection of siRNA and 2) ELISA. The 

accuracy of the automation process was evaluated by assessing both plate uniformity 

and signal variability of the ELISA performed with the EVOware platform. Three 384-

well plates were assayed for intra- and inter-plate signal uniformity, performing ELISA 

assay using recombinant NUMB (rNUMB) protein at two different concentrations, whose 

optical absorbance values defined, respectively, High (H), corresponding to 800 pg/ml, 

and Medium (M) signals, corresponding to 400 pg/ml; the optical absorbance value of 

the buffer alone was considered as Low signal (L). Statistical analysis showed no drift or 

edge effects throughout the plates. Coefficients of variation (CV) of all the signals (H, M 

and L), defined as the ratio Standard deviation and mean of each experimental point, 

were below the acceptance criterion of CV < 20%, which is the standard criterion for 

these kind of assays (Table 1), indicating that intra- and inter-plate variability was low. A 

similar experiment was performed with MDA-MB-361 cells treated with siCTRL, 

siNUMB and MG-132. Also in this case both the intra- and inter-plate CV values were 

well below the defined threshold of 20% (Table 2). 
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Table 1. Assessing plate uniformity of the automated ELISA performed with recombinant NUMB.  

Three 384-well plates were assayed for intra- and inter-plate signal uniformity, using in each plate 

recombinant NUMB (rNUMB) protein at two different concentrations: High (H), corresponding to 800 

pg/ml, and Medium (M) signals, corresponding to 400 pg/ml, or buffer alone, considered as Low signal (L). 

The intra- and inter-plate CV values were calculated using the ratio S.D./mean of each data point in the 

three different plates. Plates were coated with capture moAb21 antibody (4 µg/ml), washed and blocked 

before adding rNUMB at H and M concentrations or buffer alone (L); this was done for all wells of the 

plate. Captured NUMB was detected using biotinylated detection anti-NUMB antibody and streptavidin-

HRP system. Luminescence values relative to rNUMB levels were measured with Chemiluminescent 

Supersignal PICO Luminol (Thermo Scientific). 

 

 

 

 

 

 

 

 

 

Table 2. Assessing plate uniformity of the automated siRNA trasfection and ELISA performed with 

MDA-MB-361 cells.  

Three 384-well plates were assayed for intra- and inter-plate signal uniformity on MDA-MB-361 cells, 

using siCTRL, siNUMB and MG-132 as controls. MDA-MB-361 cells were plated (6000 cells/well) onto 

siRNA oligos following the reverse trasfection protocol for 72 h at 37°C. Oligos, trasfection reagent 

(Dharmacon) and cells were dispensed in an automatized way. After 72 h, cell lysates were transferred 

automatically into the ELISA plate. 

The intra- and inter-plate CV values were calculated using the ratio S.D. /mean of each data point in the 

three different plates, as reported in the table. Plates were coated with capture moAb21 antibody (4 µg/ml), 

washed and blocked before adding cell lysates from reverse transfection plates. This was done for all wells 

of the plate. Captured NUMB was detected using biotinylated detection anti-NUMB antibody and 

streptavidin-HRP system. Cell counting was measured with Cell Titer Fluor cell viability assay (Promega), 

while luminescence for detection of NUMB levels was measured with Chemiluminescent Supersignal 

PICO Luminol system (Thermo Scientific).  

Signal (Recombinant NUMB) CV inter CV intra 

High 7.81 5.91 

Medium 6.53 6.21 

Low 7.12 7.68 

Signal (NUMB levels) CV inter CV intra 

siCTRL 9.81 5.45 

siNUMB 11.21 6.51 

MG-132 10.2 7.25 
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4.4.2 E3 ligase siRNA screening 
 
The siRNA library (Dharmacon siGENOME® SMARTpool® siRNA Library - Human 

Ubiquitin Conjugation subset 1-3) was provided in 9 x 96-well plates. Each well 

contains 40 µl of a 2.5 µM concentration of siRNA smart pool oligos (4 oligos/gene) in 

1x siRNA buffer, for a total of 600 target genes. In each plate, columns 1 and 11 do not 

contain any target gene siRNA oligo and are filled with 40 µl of 1x siRNA buffer, being 

available for eventual additional controls. From each original 96-well plate, three 384-

well pre-spotted “daughter” plates, containing quadruplicate wells, were prepared and 

used in the screening. We decided to design each plate in a way that all controls were 

included among test wells, following the scheme showed below (Figure 29). 

 

 

 
 

Figure 29. Schematic representation of the 384-well plate format for the E3 ligase screening.  

The siRNA library (Dharmacon siGENOME® SMARTpool® siRNA Library Human Ubiquitin Conjugation 

subset 1-3) purchased from Dharmacon was provided in 9 x 96-well plates. Each 96-well plate was pre-

spotted in three 384-well plates, according to the experimental design indicated in the figure. Positive 

control for NUMB restoration (MG-132), the standard curve performed with the recombinant NUMB 

(rNUMB), the positive (siNUMB) and the negative control (siCTRL) of the transfection were spotted at both 

sides of each plate. 
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Three independent screening experiments were performed, referred to as the Pilot 

experiment, and the 1st and 2nd rounds of screening.  

The Pilot experiment differed from the 1st and 2nd rounds of screening in the sense that it 

was performed using only two 384-well plates containing the target genes. This Pilot 

experiment was instrumental to assessing the global assay performance of the overall 

optimized procedure described at the beginning of this section, which was then used for 

the two subsequent rounds of screening (termed as 1st and 2nd rounds).  

After removing outliers the final intra- and inter-plate variability was below the 20% 

threshold, both in the Cell Titer Fluor viability assay (Figure 30A) and in the ELISA assay 

(Figure 30B).  

Based on overall results from this initial testing, we decided to perform two additional 

screening rounds with the remaining plates, which also showed a final intra- and inter-

plate variability below the 20% threshold either in the Cell Titer Fluor viability assay 

(Figure 30A) and in the ELISA assay (Figure 30B).  

In the pilot experiment and in the subsequent two screening rounds, the fold-increase in 

NUMB expression following MG-132 treatment (positive control) varied from 1.5 to 2.5 

relative to siCTRL cells, while NUMB downregulation after NUMB silencing (negative 

control) was from 60 to 80% relative to control silenced cells (siCTRL).  
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Figure 30. Assessing plate uniformity of the automated siRNA trasfection and ELISA performed with 

MDA-MB-361 cells.  

The 384-well plates (A-J) from the Pilot experiment (J1, J2 and E1 plates), from the 1st (A1-D1, F1-H1 

plates) and 2nd screening round (A2-D2, F2-H2 plates) were assayed for intra- and inter-plate signal 

uniformity performed on MDA-MB-361 cells, using siCTRL, siNUMB and MG-132 as controls, in the Cell 

Titer fluor cell viability assay Performance (A) and in the ELISA assay performance (B). All plates were run 

in triplicate in Pilot and screening rounds. The intra- and inter-plate CV values were calculated using the 

ratio S.D./mean of each data point in the three different plates. MDA-MB-361 cells were plated (6000 

cells/well) onto pre-spotted siRNA oligos to allow reverse trasfection for 72 h at 37°C. Oligos, trasfection 

reagent (Dharmacon) and cells were dispensed in an automatized way. After 72 h, cell lysates were 

transferred automatically into the ELISA plate. Plates were coated with capture moAb21 antibody (4 µg/ml), 

washed and blocked before adding cell lysate from reverse transfection experiment. This procedure was 

followed for all wells of the plate. Captured NUMB was detected using biotinylated detection anti-NUMB 

antibody and streptavidin-HRP system and fluorescence; cell counting was measured with the Cell Titer 

Fluor cell viability assay (Promega), while luminescence for detection of NUMB levels was measured with 

Chemiluminescent Supersignal PICO Luminol system (Thermo Scientific).  
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From the combination of results from the Pilot experiment and from the 1st and 2nd 

rounds of screening, we identified a number of E3 ligases that negatively regulate NUMB 

expression: i.e., E3 ligases whose ablation resulted in increased NUMB expression in 

MDA-MB-361 cells (Table 3). Data were analyzed by performing a three-step analysis: 

1) Self-Normalization, 2) Normalization and 3) Hit identification (for details on step 1 

and 2 see Section 6.13.2 of Material and Methods). 

Normalized data were processed for hit identification using a Median Absolute 

Deviation approach (MAD). MAD can be defined as follows: MAD: = Median (|Xi – 

median(X)|), where X indicates all the normalized values in the sample wells of a plate 

and Xi indicates the sample at position i in the plate.  

To score for potential hits, we applied a threshold of 

Median(X) ± 3 x MAD, 

where MAD (Median Absolute Deviation) is defined as 

Median(|Xi – median(X)|) 

X indicates all the normalized values in the sample wells of a plate and Xi indicates the 

sample at position i in the plate. 

Using these criteria, we identified 15 candidate E3 ligases that negatively regulate 

NUMB. By lowering the threshold (Median(X) ± 2 x MAD) and by matching positive 

candidates common to the pilot experiment and to the two rounds of screening, we 

obtained 21 candidate E3 ligases that target NUMB (Table 3). 
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* http://www.ncbi.nlm.nih.gov/ 

NA = Not Available 

 

Table 3. List of candidate E3 ligases involved in the negative regulation of NUMB, identified through 

a high-throughput phenotypic siRNA screening.  

Positive hits from the ELISA-based high-throughput screening were selected using a Median Absolute 

Deviation (MAD) approach. We used a threshold of Median(X) ± 3 x MAD to identify the top 15 candidate 

hits and a threshold of Median(X) ± 2 x MAD to identify additional hits that were confirmed in the 1st and 

2nd rounds of screening. This analysis yielded a total number of 21 candidate E3 ligases. 
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4.5 FUNCTIONAL VALIDATION OF CANDIDATE E3 LIGASES 

RESPONSIBLE FOR NUMB DEGRADATION. 

4.5.1 Validation of the top six candidate E3 ligases identified by high-throughput 
siRNA screening. 
 
Despite the extensive troubleshooting performed in the preliminary set-up phase of this 

work, the ELISA platform we developed remained affected by the intrinsic problem of a 

low degree of sensitivity, as witnessed by the fact that, throughout the screening, even in 

the case of our positive control (MDA-MB-361 cells exposed to 5 µM MG-132 for 24h), 

we could never score NUMB increases greater than two fold. The fact that all the 

candidate hits from the screening were therefore comprised within a low dynamic range 

unavoidably reflects in the occurrence of either false positive or false negative hits. We 

therefore embarked on a stepwise validation process starting with the top six candidates, 

(RBX1, TRIP12, KIAA1718, UBE2G1, WHSC1L1, LOC642446) identified in the 

screening. Initially, we verified by q-RT PCR the efficiency of the individual SMARTPool 

siGENOME siRNA oligo pools (4 oligos/gene, Dharmacon Technologies), used in the 

screening to silence the target gene. Using the same experimental conditions to perform 

siRNA reverse transfection as in the high-throughput screening, we observed that all six 

target genes were efficiently silenced by their respective siRNA pool (Figure 31A). We 

then assessed by IB the restoration of NUMB protein upon candidate gene silencing 

(Figure 31B). We observed that NUMB levels increased only after silencing of RBX1 and 

WHSC1L1, with no substantial changes in the case of the other genes. From this first 

validation step, we were therefore able to confirm that silencing of RBX1 and WHSC1L1 

lead to restoration of NUMB protein levels in a model of NUMB-deficient tumor breast 

cells (Figure 31B), suggesting that these two genes might be involved in the negative 

regulation of NUMB cellular levels. 
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Figure 31. Validation of candidate E3 ligases in MDA-MB-361 cells.  

A) The efficiency of the individual siRNA pools in silencing the corresponding target gene was evaluated 

for the top six candidate E3 ligases by q-RT PCR. MDA-MB-361 cells (3X105) were transfected with 50 nM 

of oligo pool and incubated for 72 hours using Lipofectamine RNAiMAX (Invitrogen) technologies. Total 

RNA was extracted and q-RT PCR performed as described in Material and Methods (Section 6.5, 6.7, 6.8). 

Results for each gene from siRNA transfected cells were normalized to the MOCK (not transfected) control 

cells. siCTRL: non-targeting siRNA oligo (Dharmacon Technologies). Results are representative of 3 

independent experiments. B) The effect of silencing the top six candidate E3 ligases on NUMB protein 

levels in MDA-MB-361 cells was determined by immunoblotting. MBA-MB-361 cells (3X105) were 

transfected with 50 nM siRNA oligo pools using Lipofectamine RNAiMAX protocol (Invitrogen) and 

incubated for 72 h, before cell lysis (see section 6.5 of Material and Methods). MG-132 treatment (5 µM) 

was started 48 h after transfection and cells were then harvested 24h after the beginning of the treatment. 

Total cell lysate (20 µg) was loaded on gel for IB analysis. A non-targeting siRNA oligo (Dharmacon 

Technologies) was used as a negative control (CTRL). An anti-NUMB siRNA was used as a positive control 

for transfection efficiency. MG-132 treatment (5 µM for 24 h) was used as a positive control for NUMB 

restoration. Protein loading was assessed using an anti-actin antibody. MW markers are shown to the left of 

the blot. Blot is representative of 3 independent experiments.  

B 

A 
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4.5.2 Development of a NUMB-GFP based system for measuring NUMB restoration 
 
As a complementary approach for the validation of candidate positive hits, we devised a 

strategy based on the use of a NUMB fusion protein conjugated to the Green Fluorescent 

Protein (NUMB-GFP). To this aim, we used a lentiviral vector (pLVX-Puro) to deliver a 

NUMB-GFP protein into MDA-MB-361 and MCF10A cells, yielding cells stably 

expressing the fusion protein (respectively, MDA-MB-361/NUMB-GFP and 

MCF10A/NUMB-GFP cells). We next checked whether the behavior of ectopic NUMB-

GFP in these cells mimics the one of the endogenous protein in the corresponding 

parental cell lines. We therefore monitored by IB and immunofluorescence analysis (IF) 

the expression of NUMB-GFP in MDA-MB-361/NUMB-GFP and MCF10A/NUMB-GFP 

cells under basal and MG-132 or MG-341-treated conditions (Figure 32A,B,C). Faithfully 

recapitulating the situation of endogenous NUMB in control parental cells, we observed, 

either by IB or IF analysis, basally low NUMB-GFP levels in MDA-MB-361/NUMB-GFP 

cells, which could be promptly restored by MG-132 (Figure 32A,B) or MG-341-

mediated proteasome inhibition (Figure 32C), while no differences could be  observed in 

in MCF10A/NUMB-GFP cells. We concluded that MDA-MB-361/NUMB-GFP cells are a 

suitable cell model system for the validation of our top candidates from the siRNA 

screening.  

We therefore used the MDA-MB-361/NUMB-GFP model system to silence individually 

the top six candidates with the corresponding siRNA oligo pools and evaluate the effect 

of this treatment on NUMB-GFP levels by IB and IF analysis (Figure 33A,B). In these 

experiments, RBX1 was confirmed as the most potent negative regulator of NUMB 

expression. Of note, the modest restoration of NUMB expression observed upon 

silencing of WHSC1L1 and TRIP12 in MDA-MB-361/NUMB-GFP cells could not be 

reproducibly observed in other replicates using this model system, nor was it 

reproducible for the endogenous NUMB protein in parental MDA-MB-361 cells.  
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We therefore decided to focus on RBX1 as a candidate hit to be subjected to thorough 

biochemical and functional validation. 

 

 

 

 

 

 

Figure 32. Characterization of the MDA-MB-361/NUMB-GFP and MCF10A/NUMB-GFP model 

system.  

MDA-MB-361 and MCF10A cells were stably infected with a lentiviral vector expressing NUMB-GFP. The 

effect of MG-132 treatment (5 µM for 24 h) and of MG-341 (0.5 µM for 24h) on NUMB-GFP levels in the 

two infected cell populations was determined by IB (A, C) and fluorescence microscopy (B). A,C) Actin was 

used as a loading control. s.e., short exposure; l.e., long exposure. B) DAPI was used to stain nuclei (blue), 

NUMB-GFP (green). Scale bar, 50 µm. 
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Figure 33. Analysis of the effects of silencing the six top candidate E3 ligases in MDA-MB-361 cells 

stably expressing NUMB-GFP. 

The effect of silencing the six candidate E3 ligases on NUMB-GFP levels was assessed in MDA-MB-

361/NUMB-GFP by (A) IF and (B) IB analysis. MDA-MB-361/NUMB-GFP cells (3 X 105) were transfected 

with 50 nM siRNA oligo pools using Lipofectamine RNAiMAX protocol (Invitrogen) and incubated for 72 h 

(see section 6.5 of Material and Methods), before IF analysis (A) and cell lysis for IB (B). MG-132 treatment 

(5 µM) was performed 48 h after transfection and cells were harvested 24 h post-treatment. A) A non-

targeting siRNA oligo (Dharmacon Technologies) was used as a negative control (siCTRL). Nuclei are 

shown in blue (DAPI staining) and NUMB-GFP in green. Scale bar, 100 µm. B) Total cell lysate (20 µg) was 

loaded on gel for IB analysis. MG-132 treatment (5 µM for 24 h) was used as a positive control for NUMB-

GFP restoration. Actin was used as a loading control. MW markers are shown to the left of the blots. 

Results are representative of 3 independent experiments. 

A 

B 
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4.5.3 Deconvolution of the pool of anti-RBX1 siRNA oligos. 
 
We next went on to verify the individual efficiencies of the four anti-RBX1 siRNA oligos 

comprised in the pool originally used in the high-throughput screening.  

We observed by IB that, albeit to a different extent, all four oligos caused an increase in 

NUMB levels in MDA-MB-361 cells, with oligo #03 being the most efficient and 

comparable to MG-132 treatment in its effect (Figure 34A).  

Remarkably, when the same experiment was performed in MCF10A cells or in MDA-

MB-231 cells as models of, respectively, normal and tumor breast cell lines with 

proficient NUMB levels and insensitive to MG-132 treatment, none of the four siRBX1 

oligos yielded any modification of NUMB expression over the basal cellular levels 

(Figure 34B).  

We therefore concluded that silencing of RBX1 is able to restore NUMB expression only 

when the NUMB protein is hyper-degraded by the UPS, thereby placing RBX1 as a key 

player in the molecular pathogenetic setting of NUMB-deficient breast tumors. 
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Figure 34. The effect of individual anti-RBX1 siRNA oligos on NUMB levels in breast epithelial cell 

lines.  

The effect of the four anti-RBX1 siRNA oligos, singularly (RBX1 #01/03/05/06) or pooled (RBX1 pool) on 

NUMB expression levels in MDA-MB-361 cells (A) and in MCF10A and MDA-MB-231 cells (B) was 

determined by IB analysis. Cells (3 X 105 MDA-MB-361 and 1 X 105 MDA-MB-231 and MCF10A) were 

transfected with 10 nM of each siRNA oligo (50 nM siRNA oligo pool) using Lipofectamine RNAiMAX 

protocol (Invitrogen) and incubated for 72 h, before cell lysis (see section 6.5 of Material and Methods). 

MG-132 treatment (5 µM) was performed 48 h after transfection and cells were harvested 24 h after 

treatment. Total cell lysate (20 µg) was loaded on gel for IB analysis. A non-targeting siRNA oligo provided 

by Dharmacon (CTRL) was used as a negative control. The efficiency of RBX1 silencing was assessed by 

anti-RBX1 immunoblotting. NUMB basal expression levels are compared to those in MCF10A cells. MG-

132 treatment (5 µM for 24 h) was used as a positive control of NUMB restoration levels. Actin was used as 

a loading control. MW markers are shown on the left. Results are representative of 3 independent 

experiments. 

A 

B 
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4.5.4 RBX1 silencing restores NUMB protein levels in primary tumor cells from 
breast cancer patients. 
 
These results prompted us to directly assess the relevance of RBX1 to human cancer. To 

this aim, we set out to determine the effects of RBX1 silencing on NUMB levels in 

primary tumor epithelial cells derived from breast cancer patients. We have previously 

established that these primary tumor cells faithfully recapitulate the biology of the 

original tumor 105. We therefore initially characterized a set of primary tumor cells for 

their intrinsic NUMB status and for their response to MG-132. We defined NUMB–

proficient tumors as those with basal levels of NUMB higher or at least comparable to 

those in their normal counterpart and NUMB-deficient tumors as those with low basal 

levels of NUMB relative to their normal counterpart, which could be restored by MG-

132 treatment.  

We took andvantage of having in our lab one sample, used for other research lines in 

the lab, from human mammary tumor epithelial cells already characterized for NUMB 

levels as a NUMB-proficient tumor (12-M-176T) and one selected as a NUMB-deficient 

tumor (12-B1-54P). We used these samples for the analysis of the effects of RBX1 

silencing.  

We first optimized conditions for silencing RBX1 in 12-M-176T and 12-B1-54P samples, 

using the four anti-RBX1 oligos (singularly and pooled) used for the original screening. 

We decided to adopt the same conditions used for RBX1 silencing in MDA-MB-361, 

MCF10A and MDA-MB-231 cells. Briefly, we performed the reverse trasfection protocol 

by plating cells after oligos seeding and incubating them for 72 h at 37°C. From this 

optimization, we identified siRNA oligos #01 and #03 as the most efficient at silencing 

RBX1 (Figure 35).  
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Figure 35. Test of the silencing efficiency of anti-RBX1 siRNA oligos in primary human tumor breast 

epithelial cells.  

The effect of the four anti-RBX1 siRNA oligos, singularly (RBX1 #01/03/05/06) in two samples of human 

tumor breast epithelial cells derived from breast cancer patients (12-M-176T and 12-B1-54P) was 

determined by IB analysis. Cells (3 X 105) were transfected with 10 nM of each siRNA oligo or with 40 nM 

of the siRNA oligo pool, using Lipofectamine RNAiMAX protocol (Invitrogen) and incubated for 72 h, 

before cell lysis (see section 6.5 of Material and Methods). Total cell lysate (20 µg) was loaded on gel for IB 

analysis. A non-targeting siRNA oligo provided by Dharmacon (CTRL) and not transfected cells (Mock) 

were used as negative controls. The efficiency of RBX1 silencing was assessed by anti-RBX1 IB. Actin was 

used as a loading control. MW markers are shown on the left. Results are representative of 3 independent 

experiments. 

 

 

We then transiently silenced RBX1 in the NUMB-proficient (12-M-176T) and the 

NUMB-deficient (12-B1-54P) primary tumor cell cultures. We observed that upon RBX1 

silencing in the NUMB-deficient tumor, NUMB protein levels were restored to levels 

comparable to those following MG-132 treatment (Figure 36). In contrast, in the NUMB-

proficient tumor, RBX1 silencing had no effect on NUMB levels (Figure 36). These data 

confirm an involvement of RBX1 in the downregulation of NUMB in NUMB-deficient 

human breast cancers. 
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Figure 36. Assessment of the effect of RBX1 silencing on NUMB levels in NUMB-deficient and 

NUMB-proficient human primary breast tumor epithelial cells.  

The effect of anti-RBX1 siRNA oligos #01 and #03 on NUMB protein levels in NUMB-deficient (12-B1-

54P) and NUMB-proficient (12-M-176T) primary breast tumor cells was determined by IB. Cells (1 X 105) 

were transfected with 10 nM of each siRNA oligo using Lipofectamine RNAiMAX protocol (Invitrogen) and 

incubated for 72 h, before cell lysis (see section 6.5 of Material and Methods). MG-132 treatment (5 µM) 

was performed 48 h after transfection and cells were harvested 24 h post MG-132 treatment. Total cell 

lysate (20 µg) was loaded on gel for IB analysis. The efficiency of RBX1 silencing was controlled using an 

anti-RBX1 antibody. A non-targeting siRNA oligo (CTRL) was used as a negative control. Treatment with 5 

µM MG-132 for 24 h was used as a positive control for NUMB restoration. Actin was used as a protein 

loading control. MW markers are shown on the left. Blots are representative of 2 independent experiments. 
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4.5.5 RBX1 silencing restores NUMB protein levels in primary tumor cells from 
lung cancer patients. 
 

To extend our findings to other human malignancies in which loss of NUMB expression 

has been shown to be pathogenetically relevant, we analyzed the involvement of RBX1 

in regulating NUMB levels in primary cells derived from non-small cell lung cancer 

(NSCLC).  

We took andvantage of having in our lab the following types of samples: one sample, 

used for other research lines in the lab, of human lung tumor epithelial cells already 

characterized for NUMB levels as NUMB-proficient (12-P-36T), one as normal (12-L-

303NP) and four selected as NUMB-deficient (12-L-313P, 12-L-302P, 12-L-311P and 

12-L1-3P). We decided to analyze the effects of RBX1 silencing on NUMB levels on 

these samples by IB. To do this, we silenced RBX1 using siRNA oligos anti-RBX1 oligos 

R#01 and R#03 used for the original screening. We decided to use the same conditions 

used for RBX1 silencing in primary tumor breast cancer cells. As with primary breast 

cancer cells, we observed an increase in NUMB protein levels only in the NUMB-

deficient cells (Figure 37). These data suggest that RBX1-dependent downregulation of 

NUMB could be a phenomenon common to different types of NUMB-deficient cancers. 
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Figure 37. The effect of RBX1 silencing on NUMB protein levels in NUMB-deficient and NUMB-

proficient human primary tumor cells from NSCLCs.  

The effect of anti-RBX1 siRNA oligos #01 and #03 on NUMB protein levels in the NUMB-deficient (12-L-

313P, 12-L-302P, 12-L-311P and 12-L1-3P), NUMB-proficient (12-P-36T) and NUMB normal (12-L-

303NP) NSCLC tumor samples was determined by IB analysis. The efficiency of RBX1 silencing was 

controlled using an anti-RBX1 antibody. A non-targeting siRNA oligo (CTRL), provided by Dharmacon, was 

used as a negative control. Treatment with 5 µM MG-132 for 24 h was used as a positive control for 

NUMB restoration. Actin and GRP-94 were used as a protein loading controls. MW markers are shown on 

the left. Blot is representative of 2 independent experiments. 
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4.5.6 Characterization of the molecular mechanism responsible for enhanced 
RBX1-dependent NUMB degradation in NUMB-deficient cancers 
 
We hypothesized that overexpression of RBX1 in tumors could be responsible for the 

hyper-ubiquitination and excessive degradation of NUMB in NUMB-deficient tumors. 

To test this hypothesis, we compared RBX1 protein levels in NUMB-deficient and 

NUMB-proficient primary tumor epithelial cell cultures from breast and lung tumors by 

IB (Figure 38). In this preliminary analysis, we observed no differences in RBX1 protein 

levels between the NUMB-deficient and NUMB-proficient tumors.  

One possibility is that RBX1 mutations, which have also been detected in several types 

of human cancercs (source TCGA), might result in deranged activity of the RBX1 protein.  

While this speculation deserves experimental addressing, we noted that RBX1 is a 

component of the SCF multi-protein E3 ligase complex that contains proteins, such as 

cullins and F-box proteins, which cooperate with RBX1 in the ubiquitination process. 

We therefore reasoned that other SCF complex proteins could be deregulated/mutated in 

NUMB-deficient tumors, for the activity of which RBX1 represents a key component. 

Of note, in the process of ubiquitination and ensuing proteasomal degradation through 

the SCF E3 ligase complex, the specificity towards the protein substrate rests on the F-

box component of the SCF multi-protein complex. Intriguingly, we noted that the F-box 

protein FBXW8 was one of the top hits in the list of candidates identified from our 

screening (Table 3). This F-box protein has been described to form heterodymers and to 

be responsible for the binding of CUL1-RBX1 to CUL7-RBX1, enhancing the 

ubiquitination of CUL1 substrates 215.  

We therefore decided to test the effects of silencing FBXW8 on NUMB protein levels in 

NUMB-deficient (MDA-MB-361) and NUMB-proficient (MCF10A and MDA-MB-231) 

breast epithelial cells. We used the four anti-FBXW8 siRNA oligos employed in the high-

throughput screening, individually or pooled together, to silence FBXW8. Initially, we 

verified the efficiencies of these siRNAs at silencing FBXW8 in the three cell lines by q-
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RT PCR (Figure 39A). We then assessed NUMB protein levels by IB and observed that, in 

MDA-MB-361 cells, all four oligos were able to restore NUMB to levels comparable or 

greater than MG-132 treatment (Figure 39B). In contrast, we did not observe any effects 

on NUMB levels in NUMB normal and NUMB-proficient tumor epithelial cells, 

MCF10A and MDA-MB-231, respectively (Fig. 39B). These data suggest that FBXW8 

could be involved in the hyper-degradation of NUMB in NUMB-deficient tumors, most 

likely cooperating with RBX1 in the contest of a SCF multiprotein complex.  

 

 

 

 

Figure 38. Analysis of RBX1 protein levels in NUMB-deficient and NUMB-proficient primary tumor 

epithelial tumor cells from lung and breast cancer.  

NUMB and RBX1 expression levels in NUMB-deficient and NUMB-proficient breast and lung primary 

tumor cells were determined by IB analysis using specific antibodies. Actin was used as a loading control. 

MW markers are shown on the left. Blots are representative of 2 indipendent experiments. 
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Figure 39. Analysis of the effects of FBXW8 silencing on NUMB levels in breast cancer cell lines.  

The efficiency of FBXW8 silencing was assessed by q-RT PCR analysis in all the three cell lines (A). The 

effect of the four anti-FBXW8 siRNA oligos employed in the high-throughput screening, singularly (FBXW8 

#02/#03/#04/#18) or pooled (FBXW8 pool) on NUMB expression levels, in MDA-MB-361, MCF10A and 

MDA-MB-231 cells was determined by IB (B). A non-targeting siRNA oligo (CTRL), provided by 

Dharmacon, was used as a negative control. MG-132 treatment (5 µM for 24 h) was used as a positive 

control for NUMB restoration. NUMB basal expression levels are compared to those of MCF10A cells. 

Actin was used as a loading control. MW markers are shown on the left. Results are representative of 3 

independent experiments. 
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4.5.7 NUMB and RBX1 physical interact in MDA-MB-361 cells. 
 
The process of ubiquitination by SCF E3 ligases requires binding of the substrate within 

the multi-protein machinery. We therefore decided to investigate the possibility that 

NUMB and RBX1 might physically interact by performing immunoprecipitation 

experiments in MDA-MB-361 cells. To this aim, considering that E3 ligase/substrate 

interactions might be transient and notably difficult to detect, we decided to overexpress 

a FLAG-tagged NUMB protein in MDA-MB-361 cells and to perform IP experiments in 

the presence of MG-132 to stabilize the NUMB-FLAG protein and enhance the eventual 

NUMB-RBX1 interaction. We therefore generated a lentiviral construct to overexpress 

NUMB in mammalian cells using the lentiviral backbone pLentilox 3.7 (pLL 3.7), which 

allows achieving high and constitutive expression of genes of interest, due to the 

presence of the human cytomegalovirus immediate early promoter. Using this lentiviral 

vector, we generated a construct for the human FLAG-tagged full length (FL) NUMB 

(NUMB FL-FLAG) and for a FLAG-tagged NUMB mutant lacking the Phospho-Tyrosine 

Binding (PTB) domain of NUMB (NUMB ΔPTB-FLAG), an adaptor domain mediating 

NUMB interaction with many binding partners 216.  

We therefore transfected 293T packaging cells with these constructs to produce viruses 

to infect MDA-MB-361 cells. Not infected cells were used as a negative control (NI).  

We performed an anti-FLAG immunoprecipitation experiment using the anti FLAG M2 

affinity gel (Sigma Aldrich), a purified murine IgG1 monoclonal antibody covalently 

attached to agarose. Analysis of the immunoprecipitates by IB revealed that RBX1 co-

immunoprecipitates with NUMB FL-FLAG, but not with NUMB ΔPTB-FLAG (Figure 40). 

This result suggests a putative interaction between NUMB and RBX1, possibly mediated 

through the PTB domain of NUMB.  

We also verified that the NUMB ΔPTB-FLAG protein was still able to bind to other 

known interactors of NUMB, by analyzing the interaction of this NUMB mutant with the 
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endocytic proteins Eps15 and AP2, that are known to interact with the C-terminal region 

of NUMB 10,30. We found that both Eps15 and AP2 were enriched in both the NUMB FL-

FLAG and NUMB ΔPTB-FLAG IP samples, arguing for the specificity of the interaction 

between NUMB and RBX1 through the PTB domain (Figure 40). 

We are now verifying whether we can observe an interaction between NUMB and RBX1 

following IP of the endogenous proteins and whether this interaction is direct or 

mediated by the participation of other components of the SCF complex, first and 

foremost, FBXW8. 
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Figure 40. Analysis of the physical interaction between NUMB and RBX1 in MDA-MB-361 cells.  

MDA-MB-361 cells were infected with NUMB FL-FLAG or NUMB ΔPTB-FLAG. Not infected (NI) MDA-

MB-361 cells were used as a negative control. The cells were treated with MG-132 (5 µM for 24 h) two 

days after cells infection and lysed at the end of the treatment. FLAG-tagged NUMB proteins were 

immunoprecipitated from total cell lysates (30 mg) with anti FLAG M2 affinity gel (120 µl) and 

immunoprecipitates were analysed by IB using the indicated antibodies. Blot shows input of the IP reaction 

(25 µg) and a half of the anti FLAG immunoprecipitates. s.e., short exposure; l.e., long exposure. MW 

markers are reported to the left of the blots. Experiment is representative of two repeats. 
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4.6 TARGETING LOSS OF NUMB AS AN ANTI-CANCER THERAPY 

FOR NUMB-DEFICIENT BREAST CANCERS. 

 
The overall rationale of this thesis work is based on the notion that loss of NUMB in 

human cancer is the consequence of its exaggerated ubiquitination and ensuing 

degradation. A clinically relevant corollary of this view is that targeting the upstream 

mechanisms responsible for NUMB degradation in tumors might represent an effective 

therapeutical strategy. While the bulk of this thesis work was aimed at identifying such 

mechanisms through a high-thoughput siRNA-based screening focused on the family of 

E3 ligases, we also decided to perform experiments to provide proof-of-concept that 

restoring NUMB expression is an effective anti-cancer strategy. To do this, we decided 

to exploit MDA-MB-361 and MDA-MB-231 cells as models of, respectively NUMB-

deficient and NUMB-proficient tumor cells, and to verify the effects of proteasomal 

inhibition by MG-132 on their tumorigenic potential in vivo. To this aim, we 

orthotopically xenografted 1.5 x 106 MDA-MB-361 or 1.5 x 105 MDA-MB-231 cells into 

the inguinal mammary fat pads of NOD/SCID IL2R gamma-chain null female mice. 

Once tumors had reached ~150 mm3
 volume (~4 weeks after injection), as assessed by 

in vivo caliper measurements, mice were treated every three days with MG-132 at a 

dose of 1 mg/kg intravenously. Control mice received and equivalent dose of vehicle, 

ethanol. Two weeks after the first treatment, mice were sacrificed and tumors were 

explanted and weighed. Tumor explants were also lysed for protein extraction and IB 

analysis to control for the efficiency of MG-132 treatment and NUMB restoration, by 

monitoring beta-catenin and NUMB protein levels. We observed that tumor outgrowths 

generated by MDA-MB-361 cells in MG-132 treated mice were ~50% smaller in size 

compared to tumors generated in control mice (Figure 41A, C). IB analysis of beta-
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catenin and NUMB confirmed that the proteasome was efficiently inhibited and NUMB 

restored in MG-132 treated MDA-MB-361 tumors (Figure 41B).  

In contrast, tumor outgrowths generated by MDA-MB-231 cells in MG-132 treated mice 

were comparable in size to tumors generated in control mice (Figure 42A, C). IB analysis 

confirmed that MG-132 treatment was efficient as beta-catenin levels were higher in 

MG-132 treated mice compared with controls (Figure 42B). Altogether, these results 

indicate that NUMB restoration upon proteasome inhibition results in a significant 

reduction of the tumorigenic potential of NUMB-deficient tumor cells. This effect is 

specific and directly dependent on the restoration of NUMB expression, rather than 

related to off-target effects of the MG-132 treatment, as witnessed by evidence that the 

growth inhibitory effect could not be observed in NUMB-proficient tumor cells. 

Therefore, targeting proteosomal degradation of NUMB in NUMB-deficient tumors can 

represent an effective anti-cancer strategy. Remarkably, by this experiments, we have 

also established an amenable in vivo model to assess the potential of RBX1/FBXW8 

inhibition in affecting tumor growth of NUMB-deficient cancers. 
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Figure 41. Effects of MG-132 treatment on the tumorigenicity of NUMB-deficient MDA-MB-361 

cells in vivo.  

Mammary tumors were generated by injecting 1.5 x 106 MDA-MB-361 cells into the inguinal mammary fat 

pads of NOD/SCID IL-2R gamma chain null mice. Tumors were allowed to develop until they reached 150 

mm3 before starting the treatment of mice every 3 days with MG-132 (1 mg/kg) or ethanol (1 mg/kg), in 

controls (CTRL). Two weeks after the first treatment, animals were sacrificed and tumors explanted and 

weighed. A) Representative images of tumor outgrowths obtained from MG-132-treated and CTRL mice. 

Scale bar, 1 cm. B) IB analysis of NUMB and beta-catenin expression in MG-132-treated and CTRL tumors. 

Vinculin was used as a protein loading control. MW markers are shown on the left. C) Kinetic evaluation of 

tumor growth in MG-132-treated and CTRL mice. Tumor volume was assessed by in vivo caliper 

measurements after the first treatment (Day 0) and then every 3 days for a period of 15 days. Results are 

plotted as fold-increase with respect to Day 0 and are the mean ± S.D. of 3 independent experiments (n = 

9). 
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Figure 42. Effects of MG-132 treatment on the tumorigenicity of NUMB-proficient MDA-MB-231 

cells in vivo.  

Mammary tumors were generated by injecting 1.5 x 105
 MDA-MB-231 cells into the inguinal mammary fat 

pads of NOD/SCID IL-2R gamma chain null mice. Tumors were allowed to develop until they reached 150 

mm3 before starting the treatment of mice every 3 days with MG-132 (1 mg/kg) or ethanol (1 mg/kg), in 

controls (CTRL). Two weeks after the first treatment, animals were sacrificed and tumors explanted and 

weighed. A) Representative images of tumor outgrowths obtained from MG-132 treated and CTRL mice. 

Scale bar, 1 cm. B) IB analysis of NUMB and beta-catenin expression in MG-132 treated and CTRL tumors. 

Vinculin was used as a protein loading control. MW markers are shown on the left. C) Kinetic evaluation of 

tumor growth in MG-132-treated and CTRL mice. Tumor volume was assessed by in vivo caliper 

measurements after the first treatment (Day 0) and then every 3 days for a period of 15 days. Results are 

plotted as fold-increase with respect to Day 0 and are the mean ± S.D. of 3 independent experiments (n = 

9).  
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5 DISCUSSION 
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5.1 RNAi HIGH-THROUGHPUT SCREENING TO IDENTIFY NUMB 

NEGATIVE REGULATORS IN NUMB-DEFICIENT TUMORS 

 
In the human genome project era, it has become clear that the identification of genetic 

networks regulating cellular homeostasis such as cell differentiation and transformation, 

cell growth and apoptosis, is fundamental to understanding their complexity and, 

moreover, the complexity of their dysfunction, which leads to pathological situations, 

first and foremost cancer.  

In the last decades, the employment of high-throughput screening approaches combined 

with traditional cell culture techniques, has opened the way to functionally profile the 

biological processes of thousands of genes in live cells through the invention of 

innovative cellular-genomics methodologies. Among these, RNA interference (RNAi) has 

the potential to perform rapid genome-wide loss-of-function (LOF) screens in 

mammalian systems, which until recently has been applied only to lower organisms. 

In this thesis, we developed a strategy to perform a high-throughput screening aimed at 

analyzing, in a rapid and homogeneous manner, hundreds of putative candidate genes 

involved in NUMB downregulation in live cells.  

The screening assay employs: i) a NUMB-deficient cell model system (the MDA-MB-361 

cell line) that recapitulates NUMB-deficient human cancers, in which NUMB protein is 

excessively ubiquitinated and degraded by the proteasome; ii) a siRNA library 

(Dharmacon Technologies) targeting families of potential NUMB regulators (e.g. E3 

ligases), in which each gene is targeted by a pool of 4 siRNA oligos to guard against 

potential off-target effects; iii) an ELISA capture assay, employing an in-house produced 

monoclonal NUMB antibody, which measures NUMB protein levels in cell lysates (see 

section 4.3).  
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Using this assay, we screened an E3 ligase siRNA library targeting ~600 E3 ligases (see 

section 4.4) and derived a list of 21 candidate ligases that potentially downregulate 

NUMB protein levels (see Table 3) in human cells. This list included: i) HECT-type 

ligases, e.g. TRIP12; ii) monomeric RING finger E3 ligases, such as MDM2; and iii) 

multisubunit RING finger E3 ligases and F-box proteins belonging to SCF complexes. 

Upon validation of the top six candidates (see sections 4.5), we were able to verify only 

one hit, RBX1, as a negative regulator of NUMB. Based on this finding, we also 

investigated FBXW8, which is known to interact with RBX1 in an SCF complex 215, and 

verified its involvement in NUMB downregulation. Thus, from 7 candidates tested, only 

two were validated as true NUMB regulators. From this initial validation, it appears that 

the screening assay we developed is intrinsically affected by a high rate of false positive 

results. This high false positive hit rate is likely attributable to the limited dynamic range 

of the ELISA screening assay, in which only a 2.5-fold difference in NUMB levels was 

obtained in the positive control (MG-132 treated samples) over basal levels. 

Nevertheless, despite the limitations of the screening assay, we were able to successfully 

identify and validate two components of an SCF multi-component E3 ligase complex, 

RBX1 and FBWX8, that mediate proteasomal degradation of NUMB. 

These results demonstrate that the high-throughput siRNA screening assay is a valid 

assay for identifying genes involved in NUMB downregulation and we are now using 

this system to screen other siRNA libraries targeting potentially interesting gene families, 

such as kinases. 
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5.2 CHARACTERIZATION OF THE UPS MACHINERY REGULATING 

NUMB 

 
RBX1 is a 15 kDa protein containing a RING finger domain that together with the 

scaffold protein Cullin, determines the catalytic activity of SCF ligases. FBXW8, on the 

other hand, is one of the F-box protein that determines substrate specificity of SCF 

ligases. FBXW8 belongs to the Fbw class of F-box proteins that contain a WD-40 

domain, which mediates binding to the substrate 165.  

We validated both RBX1 and FBXW8 as a negative regulators of NUMB in breast cancer 

cell lines, and, in the case of RBX1, also in primary tumor cells derived from NUMB-

deficient human breast and lung cancers (see section 4.5). Moreover, we demonstrated 

that NUMB and RBX1 physically interact in MDA-MB-361 cells (see section 4.5.7), 

supporting the idea that RBX1 directly regulates NUMB. 

Based on these data, it is tempting to speculate that an SCF complex containing RBX1 

and FBXW8 mediates NUMB downregulation. Indeed, published data indicate the 

existence of an SCF complex comprised of RBX1, CUL7, FBXW8 and Skp1 215. This 

ligase complex is critical for correct intrauterine growth and placental development due 

to its role in the regulation of cell differentiation and vascular morphogenesis. 

Consistently, dysfunction of the CUL7-SCF complex has been linked to pre- and post-

natal growth retardation in mice and humans 217-219.  

Interestingly, FBXW8 is the only F-box protein that has been shown to bind to the CUL7, 

and only a few CUL7 E3 ligase substrates have been identified, including cyclin D1 and 

insulin receptor substrate 1 (IRS-1) 220, suggesting a role for this ligase in cell 

proliferation and survival, as well as the Golgi reassembly stacking protein 1 (GRASP65) 

215.  
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However, there is evidence that CUL7-RBX1 can promote the ubiquitination of CUL1 

substrates by forming high order complexes with CUL1-RBX1, via the 

heterodimerization of FBXW8 with other F-box proteins 215. Thus, it is conceivable that 

NUMB could be a novel substrate of a RBX1-CUL7 SCF complex that is recruited by 

FBXW8, or of a RBX1-CUL7/RBX1-CUL1 high order complex in which FBXW8 mediates 

heterodimerization of the complex. In this latter case, another F-box protein recruits 

NUMB. Further experiments are therefore required to define the exact nature and 

composition of the SCF complex mediating NUMB downregulation. Transient silencing 

of CUL7 and CUL1 in the NUMB-deficient MDA-MB-361 cell line should allow us to 

determine the involvement of these proteins in NUMB degradation. The precise 

definition of the SCF complex is relevant, not only from a scientific point-of-view, but 

also from a translational point-of-view, as it could lead to the identification of novel 

molecular targets for therapeutic intervention in NUMB-deficient cancers. 

 

5.3 RELEVANCE OF SCF E3 LIGASES TO CANCER 

 
By promoting a variety of short-lived regulatory proteins for targeted degradation, SCF E3 

ligases play an essential role in many biological processes, including cell cycle 

progression, DNA replication, signal transduction, gene transcription, and development, 

among others 149,172. It is not surprising therefore that the deregulation of SCF activity, 

due to alterations of one of its components, leads to subversion of molecular circuitries 

and contributes to pathological conditions, including cancer.  

Indeed, several SCF components are known to be deregulated in cancer. Among the 

cullins, CUL1 is overexpressed in 40% of lung cancers, with active neddylated forms 

specifically expressed in high-grade neuroendocrine lung tumor tissues 221, whereas 

CUL2 frameshift mutations have been detected in two out of 41 colon cancers 222. CUL5 
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is a putative tumor suppressor that blocks Src activity 223 and inhibits breast cancer cell 

growth upon overexpression 224, while CUL4A is overexpressed in a number of human 

cancers, including poor prognosis breast cancers 225-227. 

Among the ~70 F-box proteins encoded by the human genome, only three have been 

linked to cancer: i) Skp2, which was shown to be oncogenic in hormone-dependent 

breast cancer cells 228 and in human prostate cells where it led to an increase in p27 

degradation and increased proliferation 229,230, while it exerted a tumor suppressor role 

by regulating the activity of CDKs by the degradation of p27 231,232; ii) Fbxw7, which is a 

tumor suppressor in breast and endometrial cancers 233 and has a high rate of mutations 

in gastric, colon and prostate cancers 234-237 ; III) β-TrCP, which is either an oncogene or 

a tumor suppressor, depending on its target substrates in colorectal, pancreatic and 

breast cancers or melanoma 238-241. Moreover, ectopic expression of CUL7 increased cell 

proliferation in U2OS cells expressing functional p53, by antagonizing p53 function 247 

and CUL7 is a key factor in regulating the EMT of the trophoblast cells 248.  

Of the proteins involved in NUMB degradation, RBX1 has been shown to be 

overexpressed in carcinomas of the lung, liver and breast 242. Notably, siRNA silencing 

of RBX1 in multiple cancer cell lines, such as breast, lung, colon, cervical carcinoma, 

pancreas and glioblastoma cancer cell lines, suppressed tumor cell growth in monolayer 

culture, reduced clonogenic potential, and impaired anchorage-independent growth in 

soft agar, a hallmark of transformed cells 243. These effects were accompanied by the 

induced G2/M cell cycle arrest, senescence and apoptosis in a p53-independent 

manner, leading to suppression of cancer cell growth 242,243. Thus, RBX1 appears to be 

required for cancer cell proliferation and survival, as well as for the maintenance of the 

transformed phenotype in vitro 244. 

FBXW8 has also been linked to cancer in preliminary studies. It has been demonstrated  
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that silencing of FBXW8 expression by siRNA inhibited the growth of choriocarcinoma  

JEG-3 cells, inducing cell growth arrest at G2/M phase through decreasing the levels of 

CDK1, CDK2, cyclin A and cyclin B1 and upregulation of p27 at protein level 245. In 

colon cancer and glioblastoma cell lines, depletion of FBXW8 caused a significant 

accumulation of cyclin D1, as well as sequestration of CDK1 in the cytoplasm. This 

resulted in a severe reduction of cell proliferation. Thus, FBXW8 appears to have an 

essential role in colon cancer and glioblastoma cell proliferation through proteolysis of 

cyclin D1 246. However, no evidence has so far been provided for role of FBXW8 in 

breast and lung cancer.  

In order to causally link RBX1 and FBXW8 (if validated in primary tumor cells) to breast 

and lung tumorigenesis, it is important to define the mechanism(s) leading to their 

deregulation. At variance with previous studies reporting overexpression of RBX1 in 

breast and lung cancers 242, data from our preliminary screening in primary cells do not 

point to major differences in basal RBX1 protein levels between NUMB-proficient and 

NUMB-deficient tumors (see section 4.5). However, a more in-depth characterization of 

the correlation between NUMB status and RBX1 levels is required to determine whether 

overexpression could be a mechanism leading to deregulated RBX1 activity in NUMB-

deficient cancers. 

Alternative mechanisms that could result in RBX1-FBXW8-SCF dysfunction in cancer, 

include activating mutations in the RBX1 gene, overexpression of FBXW8 (if confirmed 

as the F-box protein recruiting NUMB), or deregulation of upstream regulators of SCF 

complexes. Indeed, SCFs have been shown to be regulated by kinases, which 

phosphorylate the F-box protein and promote their dimerization and consequently SCF 

ligase activity 245,249. Moreover, Cullin neddylation is known to be important for the 

activation of SCF ligases, as it causes dissociation of the ligase assembly inhibitor Cand1, 

promoting E2 recruitment and ubiquitin transfer 250,251. 
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5.4 SCF AS A NOVEL TARGET FOR THERAPEUTIC INTERVENTION IN 

NUMB-DEFICIENT CANCERS 

 
Considering that re-expression of NUMB, or inhibition of the downstream consequences 

of loss-of-NUMB (such as Notch activation and p53 suppression) in NUMB-deficient 

tumor cells, impairs tumorigenic phenotypes in vitro and in vivo 103,107 (Pece, 

unpublished data), inhibition of the UPS components responsible for NUMB degradation 

could represent an effective strategy for therapeutic intervention in NUMB-deficient 

cancers.  

We demonstrated that both MG-132 and Bortezomib were able to restore NUMB 

protein levels in NUMB-deficient breast cancer cell lines to levels comparable to 

MCF10A cells. Moreover, we observed that MG-132 in vivo is able to inhibit growth of 

NUMB-deficient tumors. Thus, inhibiting the proteasome could be an effective 

therapeutic strategy for the treatment of NUMB-deficient cancers. Given the availability 

of a clinically approved proteasome inhibitor, Bortezomib, a full pre-clinical evaluation 

of this inhibitor in NUMB-deficient cancers is merited.  

However, targeting downstream components of the UPS, i.e., the proteasome, is 

unspecific and could lead to toxic side effects. Indeed, numerous side effects resulting 

from Bortezomib treatment have been described, such as asthenic conditions, 

gastrointestinal events, hematological toxicity and peripheral neuropathy 252. 

Targeting the upstream components in the UPS should be a more specific strategy as it 

will affect a smaller set protein substrates, instead of all proteins subject to proteasomal 

degradation.  
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In this context, an investigational small molecule inhibitor of the NEDD8-activating 

enzyme, MLN4924, has recently been developed, which inhibits SCF activation by 

preventing neddylation of the Cullin subunit 253,254.  

This inhibitor causes accumulation of SCF E3 ligases substrates and suppresses growth of 

colon, NSCLC and breast tumor cells both in vitro and in vivo by inducing apoptosis 254. 

In line with the increased specificity of this drug, MLN4924 was well-tolerated in mice 

and is now being assessed in Phase I clinical trials against a number of human 

malignancies 254-257. Based on the data presented in this thesis, it would be interesting to 

test the efficacy of this inhibitor against NUMB-deficient cancers. 

 

5.5 CONCLUDING REMARKS  

 
The tumor suppressor protein NUMB has been found to be downregulated in several 

types of cancers, such as breast, lung and salivary gland tumors 103,106,107. The 

mechanism leading its downregulation in breast and lung cancers is excessive 

ubiquitination and, consequently, proteasomal degradation, in the absence of lesions at 

the level of the NUMB locus, such as loss-of-heterozygosity or primary inactivating 

mutations affecting the NUMB protein 103,107. Since we have shown that restoration of 

NUMB in NUMB-deficient tumors inhibits their growth in vivo in immunocomprimised 

mice (unpublished data), then targeting the UPS machinery responsible for NUMB 

degradation in human cancers could be an effective therapeutic strategy.  

Thus, in the present study, we aimed to identify enzymes involved in NUMB 

degradation. We employed an ELISA-based RNAi high-throughput screening of ~600 

genes of the E3 ligases families and identified and validated the SCF E3 ligase 

components, RBX1 and FBXW8, as novel negative regulators of NUMB. RBX1 was 
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validated in primary breast and lung tumor cells, indicating that this protein and its SCF 

complex could be a valid therapeutic targets in human cancers.  

To complete the study, we will now validate FBXW8 in primary tumor cells derived 

from NUMB-deficient breast and lung cancers. We also plan to define the SCF complex 

responsible for NUMB degradation by silencing candidate components such as CUL7 

and CUL1. Furthermore, we will determine the effects of silencing NUMB-specific SCF 

components on the tumorigenic potential of NUMB-deficient primary tumor cells in 

vivo. These experiments will provide a preliminary preclinical evaluation of the efficacy 

of targeting upstream component of the UPS in NUMB-deficient tumors. If these 

experiments prove successful it would be interesting to test the novel NEDD8-activating 

enzyme inhibitor, MLN4924, in preclinical in vivo models of NUMB-deficient tumors. 

Eventually, it will be of great interest to determine the mechanisms regulating the activity 

of the NUMB-specific SCF complex, e.g. neddylation or phosphorylation, as these 

events could be deregulated in cancer. We will also determine whether RBX1 and 

FBXW8 are overexpressed in NUMB-deficient tumors or whether their genes harbor 

mutations that affect their activity, by performing a deep-sequencing analysis.  

Then, we will further investigate the NUMB/RBX1/FBXW8 interaction in order to see if it 

is direct and if other SCF complex proteins are required. 

Moreover, we will perform in vivo xenotransplantation studies to assess the potential of 

RBX1/FBXW8 inhibition in affecting tumor growth of NUMB-deficient cancers. 

These investigations should open new avenues in the development of novel therapies for 

NUMB-deficient cancers. 
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6 MATERIALS AND METHODS 
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6.1 GENERATION OF AN ANTI-NUMB MONOCLONAL ANTIBODY  

 
An antigenic peptide corresponding to a unique sequence within NUMB (amino acid 

residues 537–551), as described in 30, was selected and used to immunize mice in the 

form of a GST-fusion protein, in collaboration with the Antibody Biochemistry Facility at 

the IFOM‐IEO Campus, Milan. The moAb21 monoclonal antibody was selected and 

affinity-purified using GE Healthcare columns. The final concentration of the antibody 

was 1.99 µg/ µl. 

 

6.2 CELL LINES  

 
All human breast cell lines were from the American Type Culture Collection (ATCC). 

MDA-MB-361, BT474, MDA-MB-231, MDA-MB-415, MDA-MB-453, MCF7, SK-BR3, T-

47D and BT549 cell lines were cultured in DMEM medium (from Lonza), supplemented 

with 10% Fetal Bovine serum (FBS, HyClone), 4 mM L-Glutamine (Euroclone). 

HCC1569, HCC1954 and AU565 cell lines were cultured in RPMI medium (from 

Lonza), supplemented with 10% FBS and 4 mM L-Glutamine. ZR-75-1 cell line was 

cultured in RPMI, supplemented with 10% FBS, 4 mM L-Glutamine, 1 mM Sodium 

Pyruvate (Life Technologies) and 10 mM Hepes (Life Technologies). BT-20 cell line was 

cultured in EMEM medium (from Lonza), supplemented with 10% FBS, 1 mM Sodium 

Pyruvate (Life Technologies), Non-Essential Amino Acids (100X, Gibco, Life 

technologies,). MDA-MB-175VII cell line was cultured in Leibovitz L-15 medium 

(Invitrogen, Life Science Technologies), supplemented with 10% FBS and 1% 

Penicillin/Streptomycin (from Sigma). MDA-MB-468 cell line was cultured in 1:1 

mixture of DMEM and Ham’s F12 medium, 4 mM L-Glutamine and 10% FBS.  
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MCF10A cell line was cultured in 1:1 mixture of DMEM and Ham’s F12 medium 

(Gibco, Life Technologies), 20 ng/ml Epidermal Growth Factor (EGF), and 5% Horse 

Serum (all from Invitrogen), 100 ng/ml Cholera Toxin, 10 µg/ml Insulin, 500 ng/ml 

Hydrocortisone (all from Sigma).  

 

6.3 PRIMARY EPITHELIAL CELLS  

 
All breast and lung primary epithelial cells were from Institute of European Oncology 

(IEO, Milan, Italy) and were cultured in a 1:1 mixture of DMEM and Ham’s F12 

medium, 1% L-glutamine, 1% FBS, 1% Penicillin/Streptomycin (Sigma), 0.2% 

Gentamicin (Sigma), 0.2% Amphotericin (Sigma), 10 µg/ml Transferrin (Invitrogen), 1 

µg/ml Insulin (from Sigma), 1 µg/ml Hydrocortisone (Sigma), 10 mM Hepes pH 7.5 (Life 

Technologies), Ascorbic Acid 50µM, 15 nM Sodium Selenite, 0.1 mM Ethanolamine and 

50 ng/µl Cholera Toxin 10 ng/ml Epidermal Growth Factor (EGF) 35µg/ml, Bovine 

Pituitary Extract (BPE), 10 nM T3 and, only for breast epithelial cells, 10 nM Beta-

Estradiol (all from Sigma). All cells were cultured at 37oC with 5% CO2.  

 

6.4 CELL TRANSFECTION   

 
Transfections were performed using calcium phosphate, according to manufacturer’s 

instructions. For lentiviral production cells were transfected with calcium phosphate 

(293T cells). 
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6.5 SILENCING CANDIDATE GENES EXPRESSION BY siRNA 

 
Transient knock down (KD) of candidate genes was achieved using a specific pre-

designed siRNA and the corresponding non-targeting universal control siRNA 

(Dharmacon Technologies). Briefly, for a 6-wells plate, 5 µl of Lipofectamine RNAiMAX 

(Invitrogen, Carlsbad, CA) and siRNA oligos diluted at a final concentration of 50 nM for  

single oligo and 250 nM for pooled oligos (referred to a 2.5 ml final volume), were 

added to 500 µL OptiMEM (Invitrogen‐Gibco Carlsbad, CA), for each well to be 

transfected. The mix was incubated at room temperature for 20 min. Then cells were 

counted for plating (3 X 105/well for MDA-MB-361 1,5 X 105
 for MCF10A and MDA-

MB-231 and 1 X 105
 for primary epithelial cells) and were diluted in 2 ml of complete 

medium without antibiotics in order to obtain the appropriate number to give 50% 

confluence 24 hours after plating; diluted cells were added to oligos/Lipofectamine 

RNAiMAX complexes. This gives a final volume of 2.5 ml and a final RNA concentration 

of 10 nM for single oligo and 50 nM for pooled oligos. 24 hours after trasfection, 2 ml 

complete medium with 10% FBS was added to cells. After 72 hours, the cells were 

harvested for WB or IF analysis. 

For 384-well format 50 nM of pooled oligos (final concentration) was used and 6000 

cells/wells were plated.  

 

6.6 INFECTIONS   

 
Lentivirus was generated by co-transfection of third generation helper vectors together 

with lentiviral vectors, pLentilox 3.7 (pLL 3.7), in 293T cells. Twenty-four hours after 

transfection the supernatant was concentrated to 5 ml for each 10 cm plate.  
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After an additional 24 hours, supernatant was collected, filtered through 45 µm filters, 

and added to the target cells at 40-50% confluency. Cells were then incubated at 37°C 

for 12 hours. Forty-eight hours after infection, cells were split and MG-132 (5µM) was 

added 24 hours before cell harvesting. 

 

6.7 mRNA EXTRACTION AND cDNA SYNTHESIS   

 
RNA was extracted from the control and test cell lines with RNA-ase Mini Kit (Qiagen), 

according the manufacturer’s protocol. 

First-strand cDNA synthesis was performed using SuperScript VILO cDNA Synthesis Kit 

(Invitrogen), following manufacturer’s instructions. Briefly, 1 μg of total RNA was mixed 

with 5X VILO reaction buffer containing random primers (250 ng), dNTPs mix (0.5 mM 

final concentration) and MgCl2; 1 μl of SuperScript III reverse transcriptase were added 

to the mix (20 μl final volume) in RNase-free water and the reaction was first incubated 

at 25°C for 10 min and then at 42°C for 1 hour. Finally, the reaction was inactivated by 

heating at 85°C for 5 min. 

 

6.8 q-RT PCR   

 
q-RT PCR was performed using the following TaqMan Gene Expression Assays (Applied 

Biosystems): NUMB (Hs00269398_s1), TRIP12 (Hs00188505_m1), UBE2G1 

(Hs00163320_m1), RBX1 (Hs00360274_m1), WHSC1L1 (Hs00256555_m1), KIAA1718 

(Hs01398501) and LOC642446 (Hs04190563_mH).  
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6.9 PROTEIN PROCEDURES   

6.9.1 Cell lysis and protein purification  
  
Cells were washed in PBS and lysed in RIPA lysis buffer [50 mmol/L Tris (pH 8), 120 

mmol/L NaCl, 0.5% NP40]; Phosphatase and protease inhibitors were added freshly to 

lysis and wash buffers: 20 mM Na Pyrophosphate pH 7.5, 50 mM NaF, 2 mM PMSF in  

ethanol, 10mM Na vanadate, Protease Inhibitor Cocktail (Calbiochem). Cells were 

harvested directly on the plates using a cell scraper. About 300 µl of RIPA lysis buffer/10 

cm plates and 50 µl RIPA buffer/for one well of a 6-well plate were used. Lysates were 

incubated on ice for 30 min and centrifuged at 13,000 rpm for 30 min at 4°C. The 

supernatant was transferred to a new Eppendorf tube and protein concentration was 

measured by the Bradford assay (Biorad), following manufacturer’s instructions. 

 

6.9.2 SDS polyacrylamide gel electrophoresis (SDS-PAGE)  
 
Gels for resolution of proteins were made from a 30%, 30:0.8 mix of 

acrylamide:bisacrylamide (Sigma). As polymerization catalysts, 10% ammonium 

persulphate (APS) and TEMED were used. 

 
Separating gel mix 

 5% 7,5% 8,75% 10% 12% 15% 

H2O (ml) 5.8 5 4.5 4.2 3.5 2.5 

Lower Tris 4x (ml) 2.5 2.5 2.5 2.5 2.5 2.5 

Acr.-Bis 30% (ml) 1.7 2.5 2.9 3.3 4 5 

APS 10% (µl) 50 50 50 50 50 50 

TEMED (µl) 10 10 10 10 10 10 
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Stacking gel mix 

 MAXI MINI 

H2O (ml) 5.8 2.92 

Upper Tris 4x (ml)  2.5 1.25 

Acr.-Bis 30% (ml) 1.7 0.83 

APS 10% (µl) 50 25 

TEMED (µl) 20 10 

 

6.9.3 Immunoblotting  
 
Desired amounts of proteins were loaded onto 0.75 - 1.5 mm thick polyacrylamide gels 

for electrophoresis (Biorad). Proteins were transferred in western transfer tanks (Biorad) 

to nitrocellulose (Schleicher and Schnell) in 1 x Western Transfer buffer (diluted in 20% 

methanol) at 30 V overnight, or 100 V for 2 hours for small gels and at 70 V for 3 hours 

for large gels. Ponceau coloring was used to reveal the amount of protein transferred to 

the filters. Filters were blocked 1 hour (or overnight) in 5% milk or 5% BSA in TBS 0.1% 

Tween (TBS-T). After blocking, filters were incubated with the primary antibody, diluted 

in TBS-­‐T with 5% milk or BSA, for 1 hour at room temperature, or overnight at 4°C, 

followed by 3 washes of 10 min each in TBS-T. Filters were then incubated with the 

appropriate horseradish peroxidase (HRP)-conjugated secondary antibody diluted in 

TBS-T with 5% milk or BSA for 45 min. The primary antibody used were anti NUMB 

(moAb21) anti vinculin and anti actin produced in-house; anti p53 (FL-2393, Santa 

Cruz); anti FLAG (#2368, Cell Signaling); anti beta-catenin (Cat. 610153, BD); anti RBX1 

(Cat. 5296-1, Epitomics); anti Eps15 (C-20, SC-534, Santa Cruz) and anti AP2 (A71107, 

Sigma). After the incubation with the secondary antibody, the filter was washed 3 times 

in TBS-T and the bound secondary antibody was revealed using the ECL (enhanced 

chemiluminescence) method (Amersham). 
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6.9.4 Immunoprecipitation  
 
Lysates prepared in RIPA buffer (for moAb21 testing) or JS buffer (for co-

immunopreipitation experiments) [50 mM Hepes (pH 7.5), 150 mM NaCl, 10% 

Glycerol, 1% Triton, 1.5 mM MgCl2, 5mM EGTA] were incubated in the presence of 

specific antibodies for 2 hours at 4°C with rocking.  

For co-immunopecipitation experiments an anti FLAG M2 affinity gel (Sigma Aldrich) 

was used: a purified murine IgG1 monoclonal antibody covalently attached to agarose. 

Then, protein G Sepharose beads (Sigma) were added, and samples were left for an 

additional hour at 4°C, rocking. Immunoprecipitates were then washed 4 times in RIPA 

or JS buffer. After washing, beads  were resuspended in 1:1 volume of 2x SDS-PAGE 

Sample Buffer, boiled for 5 min at 95°C, centrifuged for 1 minute and then loaded onto 

polyacrylamide gels. 

6.9.5 Immunofluorescence   
 
Cells were plated on glass coverslips pre-incubated with poly-D lysine (15 µg/ml) in PBS 

at 37°C for 15 min. Cells were fixed in 4% paraformaldehyde (in Pipes Buffer) for 10 

min, washed with PBS and permeabilized in PBS 0.1% Triton X-100 for 10 min at room 

temperature. To prevent non-specific binding of the antibodies, cells were incubated 

with PBS in the presence of 3% BSA for 60 min. The coverslips were incubated with 

primary antibodies diluted (2 µg/ml) in PBS 3% BSA. After 1 hour of incubation at room 

temperature, coverslips were washed 3 times with PBS. Cells were then incubated for 45 

min at room temperature with the appropriate secondary antibody Cy3 (Amersham), 

Alexa 488-conjugated (Molecular Probes). After three washes in PBS, coverslips were 

mounted in a 90% glycerol solution containing diazabicyclo-(2.2.2)octane antifade 

(Sigma) and examined under a wild-field immunofluorescence microscope (Leica).  

DAPI was used to stain nuclei and was incubated for 3 minutes, RT.  
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Images were further processed with the Adobe Photoshop software (Adobe) or with 

Image J to merge the images of the single channels. 

6.9.6 Immunohistochemistry 
 
IHC was performed in collaboration with the Molecular Pathology Unit At the IFOM-

IEO Campus, Milan. Briefly, MCF10A control cells (siCTRL) and MCF10A cells silenced 

for NUMB (siNUMB) were removed from the paraffin donor blocks and deposited on the 

recipient block using a custom‐built precision instrument (Tissue Arrayer-Beecher 

Instruments, Sun Prairie, WI 53590, USA). Two-µm sections of the resulting recipient 

block were cut, mounted on glass slides, and used for IHC. Glass slides were analyzed 

for NUMB protein expression by IHC (IHC‐NUMB). Slides sections were routinely 

processed, placed for 30 minutes in 0.25 mM EDTA at 95°C for antigen retrieval and 

incubated for 3 hours with the moAb21 anti-NUMB monoclonal antibody (1:1000, 

produced in-house); bound antibody was revealed using the EnVision Plus/HRP 

Detection system (DAKO) and diaminobenzidine as a chromogenic substrate. IHC 

sections were finally counterstained with hematoxylin and mounted.  

Positive and negative controls were included in each experiment and only clear staining 

of the plasma membrane was considered positive for NUMB expression. 

 

6.10 CONSTRUCTS AND PLASMIDS   

 
The pLentilox 3.7 lentiviral vector expresses shRNA under the mouse U6 promoter and 

it was cloned in there a 21-nucleotide shRNA sequence for NUMB (NUMB shRNA), 

which specifically silences endogenous NUMB gene.In the same construct, human 

FLAG-tagged full length (FL) NUMB (NUMB FL-FLAG) or a FLAG-tagged NUMB mutant 

lacking the PTB domain (NUMB ΔPTB-FLAG) were inserted by digestion with the 

restriction enzymes NheI and EcoRI, instead of EGFP sequence. 
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The pLVX-puro lentiviral vector was used to generate a construct to overexpress NUMB 

fused with GFP protein at the C-termini (NUMB-GFP) in mammalian cells. The human 

NUMB coding sequence, already present in the lab, was inserted by digestion with the 

restriction enzymes BamH1 and Sal1 and ligation into the pLVX-puro vector. With this 

system, expression of NUMB is driven by the human cytomegalovirus immediate early 

promoter, located just upstream of the multiple cloning site. pLVX contains a 

puromycin-resistance gene under the control of the murine phosphoglycerate kinase 

promoter for the selection of stable transductants. 

 

6.11 BASIC CLONING TECHNIQUES  

6.11.1 Agarose gel electrophoresis  
 
DNA samples were loaded onto 0.8 - 2% agarose gels along with DNA markers. Gels 

were made in TAE buffer containing 0.3 µg/ml ethidium bromide and run at 80 V until 

the desired separation was achieved. DNA bands were visualized under a UV lamp. 

 

6.11.2 Transformation of competent cells 
 
Fresh competent cells (50 µl), Top10 (Invitrogen) for cloning and DNA preparation or 

electrocompetent DH5alpha cells (produced in-house), were thawed on ice for 

approximately 10 min prior to the addition of plasmid DNA. Cells were incubated with 

DNA on ice for 30 min and then subjected to a heat shock for 45 sec at 42°C. Cells 

were then returned to ice for 2 min. SOC medium (300 µl) was then added and the cells 

were left at 37°C for 1 hour before plating them onto LB-agar plates with the appropriate 

antibiotic. Two plates for each reaction were used, one plated with 2/3 of the 

transformed bacterial cells and the other one with the rest. Plates were incubated 

overnight at 37°C.  
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6.11.3 Minipreps  
 
Clones picked from individual colonies were used to inoculate 5 ml LB (containing the 

appropriate antibiotic) and grown overnight at 37°C. Bacteria cells were transferred to 

Eppendorf tubes and pelleted for 5 min at 13,000 rpm. Minipreps were performed with 

the Wizard Plus SV Minipreps Kit (Promega) following the manufacturer’s instructions. 

The plasmids were eluted in 50 µl nuclease free H2O. 

 

6.11.4 Diagnostic DNA restriction   
 
Between 0.5 and 5 µg DNA were digested for 2 hours at 37°C with 10 – 20 units of 

restriction enzyme (New England Biolabs). For digestion, the volume was made up 

depending on the DNA volume to 20 – 50 µl with the appropriate buffer and ddH2O. 

 
 
 
 
 
 

6.11.5 Large-scale plasmid preparation 
 
Cells containing transfected DNA were expanded into 300 ml cultures overnight. 

Plasmid DNA was isolated from these cells using the Qiagen Maxi-prep kit according to 

the manufacturer’s instructions.  
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6.12 BIOLOGICAL ASSAYS   

6.12.1 ELISA assay  
 
To monitor changes in NUMB expression in a 384-wells format, we customized a 

capture ELISA assay kit (Human/Mouse/Rat Total NUMB, DuoSet IC) from R&D. As a 

capture antibody, we used an in-house monoclonal antibody for NUMB detection 

(moAb21).   

 

REAGENTS USED 

 
Wash Buffer - 0.05% Tween 20 in PBS, pH 7.2 - 7.4 (R&D Systems, Catalog # WA126). 

Block Buffer - 1% BSA, 0.05% NaN3, in PBS, pH 7.2 - 7.4. 

IC Diluent #1 - 1% BSA in PBS, pH 7.2 - 7.4, 0.2 µm filtered. 

IC Diluent #4 - 1 mM EDTA, 0.5% Triton X-100 in PBS, pH 7.2 - 7.4. 

Lysis Buffer - 1 mM EDTA, 0.5% Triton X-100, 10 µg/mL Leupeptin, 10 µg/mL 

Pepstatin, 100 µM PMSF, 3 µg/mL Aprotinin in PBS, pH 7.2 - 7.4. 

Substrate Solutions: A) 1:1 mixture of Color Reagent A (H2O2) and Color Reagent B 

(Tetramethylbenzidine) (R&D Systems, Catalog # DY999), which should be inactivated 

by a Stop Solution - 2 N H2SO4 (R&D Systems, Catalog # DY994).  

We subsituted this substrate with B) Supersignal ELISA Pico Luminol 

Chemiluminescence substrate from Thermo Scientific, which had to be used by mixing 

equal parts of SuperSignal ELISA Pico Luminol/Enhancer and SuperSignal ELISA Pico 

Stable Peroxide Solution. After 1 minute, a luminometer was used to measure relative 

light units (~425 nm), between 1-5 minutes after adding the substrate. 
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For the remaining part of the protocol, we followed the manufacturer’s instructions 

elencated below: 

1. Dilute the Capture Antibody to a working concentration of 4.0 µg/ml in PBS, without 

carrier protein. Immediately coat a 384 well microplate with 25 µl per well of the 

diluted Capture Antibody. Seal the plate and incubate overnight at room temperature. 

2. Aspirate each well and wash with Wash Buffer, repeating the process two times for a 

total of 3 washes. Wash by filling each well with Wash Buffer (25 µl). After the last 

wash, remove any remaining Wash Buffer by aspirating or by inverting the plate and 

blotting it against clean paper towels. 

3. Block plates by adding 50 µl of Block Buffer to each well. Incubate at room 

temperature for 2 hours. 

4. Repeat the aspiration/wash as in step 2. The plates are now ready for sample addition. 

 
Assay Procedure 

1. Add 25 µl of sample or standards in IC Diluent #4 per well. Use IC Diluent #4 as the 

zero standard. Cover with a plate sealer and incubate 2 hours at room temperature. 

Note: A seven point standard curve using 2-fold serial dilutions and a high standard of 

1600 pg/ml is recommended. 

2. Repeat the aspiration/wash as in step 2 of Plate Preparation. 

3. Dilute the Detection Antibody to a working concentration of 100 ng/ml in IC Diluent 

#1 before use. Add 25 µl of the diluted Detection Antibody to each well. Cover with a 

new plate sealer and incubate 2 hours at room temperature. 

4. Repeat the aspiration/wash as in step 2 of Plate Preparation. 

5. Immediately before use, dilute the Streptavidin-HRP to the working concentration 

specified on the vial label using IC Diluent #1. Add 25 µl of the diluted Streptavidin-

HRP to each well. Incubate for 20 minutes at room temperature. Avoid placing the plate 

in direct light. 
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6. Repeat the aspiration/wash as in step 2 of the Plate Preparation. 

7. Add 25 µl of Substrate Solution to each well. Incubate for 20 minutes at room 

temperature (TMB substrate) or for 1 minute (Supersignal PICO Chemiluminescent 

substrate). Avoid placing the plate in direct light. 

8. Add 25 µl of Stop Solution to each well (only if TMB substrate was used). Gently tap 

the plate to ensure thorough mixing. 

9. Determine the optical density of each well immediately, using a microplate reader set 

to 450 nm (TMB substrate) or to 425 nm (Supersignal PICO Chemiluminescent 

substrate).  

   

6.12.2 Cell viability assay  
 
Cell viability was assessed by the Cell Titer-Fluor Cell Viability assay, a non-lytic 

fluorescence assay, from Promega. 

The CellTiter-Fluor Cell Viability Assay is a nonlytic, single-reagent addition 

fluorescence assay that measures the relative number of live cells in a culture population 

after experimental manipulation. The CellTiter-Fluor Cell Viability Assay measures a 

conserved and constitutive protease activity within live cells and therefore serves as a 

marker of cell viability, using a fluorogenic, cell-permeant, peptide substrate 

(glycylphenylalanyl-aminofluorocoumarin; GF-AFC). The substrate enters intact cells 

where it is cleaved by the live-cell protease activity to generate a fluorescent signal 

proportional to the number of living cells. This live-cell protease becomes inactive upon 

loss of cell membrane integrity and leakage into the surrounding culture medium. The 

CellTiter-Fluor Cell Viability Assay also can be used in a single-well, sequential, 

multiplex format with other downstream chemistries to normalize data by cell number. 

Data from the assay can serve as an internal control and allow identification of errors 

resulting from cell clumping or compound cytotoxicity.  
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The CellTiter-Fluor Cell Viability Assay is compatible with most luminescence assays or 

spectrally distinct fluorescence assay methods. The assay was performed following the 

manufacturer’s instructions; briefly, a CellTiter-Fluor Reagent in an equal volume (25µl 

per well) was added to all wells, mixed briefly by orbital shaking and incubated for 30 

minutes at 37°C. Finally, resulting fluorescence was measured using a fluorometer 

(380nmEx/505nmEm). 

 

6.12.3.	
  In vivo xenograft assays  
 
Six to 8 week-old NOD/SCID IL2R gamma-chain null female mice were injected in the 

inguinal mammary fat pad with 150,000 MDA-MB-231 and 1,500,000 MDA-MB-361 

cells resuspended in 40 µL of a 1:1 Matrigel‐PBS solution. Mice were monitored by 

hand-palpation for tumor development. Tumor growth was measured by using a vernier 

caliper and applying the standard formula: tumor volume = (a x b2)/2, where a and b are 

the long and short side respectively. Mice were treated with MG-132 when tumors 

reached a dimension of 150 mm3 for two weeks, every 3 days, for a total of 4 treatments. 

Tumors were explanted, weighed, and processed for formalin-fixing, paraffin embedding 

and lysis for WB analysis. 
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6.13 PHENOTYPIC HIGH-THROUGHPUT siRNA-BASED SCREENING  

6.13.1 siRNA E3 ligases library  
 
The library used for the screening was the Dharmacon siGENOME® SMARTpool® 

siRNA Library- Human Ubiquitin Conjugation subset 1-3 (G-005615  Lot 08119), which 

was provided in 9 x 96well plates. For each plate, 3 x 384 well pre-spotted “daughter” 

plates were prepared and directly used in the screen. 

 

6.13.2 Statistical analysis for the identification of positive candidate hits from 
siRNA high-throughput screening 
 

STEP ONE: Self- Normalization 

 
Each plate was assayed for Cell Viability (CellTiterFluor reagent: CTF) and NUMB levels 

(ELISA).  

- siCTRL, siNUMB and MG-132 were run in 16 replicates 

- siRNAs were run in 4 replicates. 

 

STEP TWO: Normalization 

  
This step is a process intended to remove systematic errors from the data and to allow 

comparison and combination of data from different plate in the screen. We performed 

the normalization per plate. 

Three different scores were calculated: 

1) Robust Z-score 

2) Fraction of Control 

3) Fraction of sample median 
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1) ROBUST Z-SCORE 

This method relies on the use of samples as de facto negative controls. Thus, siCTRL and 

MG132 are excluded from the analysis. This approach is based on the assumption that 

most samples display no biological effect in the assay. 

For each plate, we calculated: 

i) Median of samples 

ii) MAD (Median Absolute deviation), for more details see below, step 3. 

iii) Z-score: (X
i 

– Median) / MAD 

 
2) FRACTION OF CONTROL 

This is the classical approach: each sample is divided by the mean of the control 

(siCTRL=1) 

 
3) FRACTION OF SAMPLE MEDIAN 

The median of the samples on the plate can be substituted for the mean of siCTRL. 

Again, the assumption that most samples display no biological effect in the assay is 

made.  

 

STEP THREE: Hits identification 

 
Normalized data were processed for hit identification using a Median Absolute 

Deviation approach (MAD). MAD can be defined as follows: 

MAD: = Median(|X
i

 – median(X)|), 

Where X indicates all the normalized values in the sample wells of a plate and 
 

X
i

 

indicates the sample at position i in the plate.  

To score for potential hits, we applied a threshold of: Median(X) ± 3 x MAD. 
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