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ABSTRACT 
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Oncogene activation is a key step of cellular transformation. However normal cells have 

developed a tumor suppressive barrier to restrain the oncogene-induced uncontrolled 

cellular proliferation. This barrier consists in a permanent cell cycle arrest - known as 

Oncogene Induced Senescence (OIS) - that is triggered as a consequence of a robust DNA 

damage response (DDR) activation due to oncogene-induced hyper-replication and the 

consequent accumulation of DNA damage (Bartkova et al., 2006; Di Micco et al., 2006). 

However the molecular mechanisms underlying the complex interplay between oncogene 

activation, DNA replication and DDR activation are still poorly understood. Thus in this 

thesis I tried to unveil the impact that oncogene activation has on DNA replication 

dynamics and DDR activation. 

 Previous studies from my laboratory demonstrated that oncogene activation leads 

to DNA replication stress that affects mainly fragile sites, as seen by Loss Of 

Heterozygosity (LOH) occurring preferentially at fragile sites (Di Micco et al., 2006). 

Since it has been recently demonstrated that telomeres resemble fragile sites (Sfeir et al., 

2009), I attempted to understand the impact that oncogene activation could have on 

telomere structure and function. In this thesis I have shown that oncogenic Ras expression 

impairs telomere replication, as seen by an increase in telomeric fork stalling. This is also 

accompanied by the appearance of fragile telomeres together with stochastic telomeric 

attrition. Furthermore, both in vitro - human fibroblast - and in vivo - human nevi 

preneoplastic lesions - oncogene activation results in the accumulation of persistent 

telomeric DDR. These results revealed a novel and unprecedented link between oncogene 

activation and telomere dysfunction, refining the model underlying the establishment of 

oncogene-induced senescence. 

 After this site-specific study, I proceeded with whole genome analyses of the 

dynamics underlying oncogene-induced altered DNA replication. Previous studies in 

literature showed that oncogene activation leads to increased fork stalling and increased 

replication initiation (Bartkova et al., 2006; Di Micco et al., 2006; Jones et al., 2013). 



 24 

However these studies were conducted in DDR deficient cells (Di Micco et al., 2006) or 

tumor cell lines (Bartkova et al., 2006; Jones et al., 2013) without following the impact of 

oncogene activation over time. Thus to better understand the kinetics of oncogene-induced 

altered DNA replication, here I performed a whole genome study of DNA replication 

dynamics and DDR activation upon oncogene activation over time, from the initial 

hyperproliferative burst to OIS establishment. I discovered that oncogene activation has an 

immediate effect on DNA replication dynamics. Indeed from the very initial phase 

oncogene activation results in high fork speed and low frequency of initiation, together 

with high levels of unidirectional forks. This is accompanied by a prompt and robust DDR 

activation. As time passes frequency of initiation increases, the level of unidirectional 

forks and fork speed decreases, as cells approach senescence.  

 Oncogene activation results also in increased level of Reactive Oxygen Species 

(ROS). Beyond their toxic effects, ROS are essential intracellular second messengers for 

several cytokines and growth factors (Lee et al., 1999) mediating mitogenic signalling 

(Irani et al., 1997). However the mechanism underlying oncogene-induced ROS 

production are not completely understood. The data presented in this thesis revealed that 

oncogene-induced ROS production is mediated by the NADPH oxidase NOX4. Upon 

oncogene activation, pharmacological inhibition of NOX4 enzymatic activity blocked ROS 

production. The absence of ROS restrains the oncogene-induced hyperproliferation and 

DDR activation, preventing OIS establishment. Furthermore NOX4 inhibition leads to fork 

speed reduction together with differential regulation of local origin initiation. Overall this 

data revealed the fundamental role of NOX4 - and consequently of ROS - in mediating 

oncogene-induced hyperproliferation. ROS appears to be the fuel of Ras-induced 

hyperproliferation and it seems to directly affect DNA replication dynamics. 

 Polycomb repressive complexes (PRCs) are mainly known for their role in 

establishing and maintaining cell identity during development as well as in adult 

organisms. PRCs exert these functions by repressing a large set of genes involved in 
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development, proliferation and differentiation via trimethylation of H3K27, catalysed 

mainly by EZH2. PRCs have been found highly overexpressed in various cancers and their 

role in promoting cancer progression has been ascribed to their repressive function on the 

INK4a-ARF locus. However recent independent studies revealed a more direct role of 

PRCs on S phase progression and on the regulation of DNA replication(Francis et al., 

2009; Hansen et al., 2008; Pasini et al., 2004). Indeed EZH2 has been shown to colocalized 

with sites of ongoing DNA replication (Hansen et al., 2008). I therefore attempted to better 

characterise the role of PRCs on DNA replication. EZH2 knock out (KO) lead to 

impairment of cell cycle progression, with cells blocked at G1/S transition. Furthermore 

absence of proficient PRCs - obtained by EZH2 KO - impairs DNA replication dynamics 

leading to reduced fork speed, increased frequency of initiation and increased fork stalling, 

demonstrating that PRCs deficiency leads to replication stress. Overall the data presented 

in this thesis unveil a novel and unprecedented function of PcG proteins in the regulation 

of cellular proliferation through a direct role in DNA replication dynamics underlying 

novel mechanisms of proliferation control that opens new perspective in the field. 
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INTRODUCTION 
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CHAPTER 1. DNA damage and DNA damage response 

1.1 Different types of DNA damage 

 

Nuclear DNA is the most important component of a cell. It retains all the information that 

defines any single aspect of the cell and thus plays a central role in essential cellular 

functions. Being the most precious component of a cell, DNA must be safeguarded from 

alteration and damage in order to maintain its integrity. 

DNA is daily subjected to exogenous and endogenous sources of DNA damage. It is 

regularly exposed to environmental DNA damaging agents such us UV light, IR, chemical 

compounds. Furthermore, during normal DNA and cellular metabolism, DNA lesions are 

introduced as a consequence of errors in DNA replication, or by the action of nucleases, as 

well as of the action of by-products of oxygen metabolism deriving from normal 

respiration and also as a part of inflammatory response (Altieri et al., 2008; Jackson and 

Bartek, 2009).  

The lesions occurring at DNA include base modifications, replication errors, DNA inter-

strand and intra-stand crosslinks, DNA-protein crosslinks, single-strand breaks (SSBs) and 

double-strand breaks (DSBs).  

Base modifications comprise DNA depurination and deamination, generated by 

spontaneous hydrolytic reactions, and base oxidation (Cadet et al., 2003), caused by 

oxygen free radicals derived from cellular respiration by-products. 

Errors during DNA replication can alter DNA by introducing mismatches, small insertions 

or deletions. Moreover abortive topoisomerase I and II activity can lead to generation of 

SSBs and DSBs. 

DNA crosslinks, either inter- or intra-strand or DNA-protein crosslinks, are produced by 

alkylating agents, such as cis-platin and psoralen, as well as by exposure to UV and IR. 

These kinds of damages alter the structure of the DNA double helix and this situation can 
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become problematic when a DNA replication fork is approaching these lesions. Indeed 

replication forks encountering a structural block stall, exposing DNA single strand nicks 

that can easily turn into DNA DSBs by the action of nucleases. 

Other sources of SSBs and DSBs are oxygen free radicals deriving from cellular oxygen 

metabolism or by exposure to IR. Indeed the energy released by free oxygen radicals can 

break the phosphodiester bonds in the backbone of the DNA helix generating a single-

strand DNA break; when two of these breaks are close to each other on opposite DNA 

strands a DSB is generated (Altieri et al., 2008). 

 

1.2 The DNA Damage Response (DDR) 

 

Any kind of damage that introduces discontinuities in the nuclear DNA elicits a rapid 

cellular response, known as DNA Damage Response (DDR). This pathway first detects the 

presence of damage by DNA damage sensors. Once the damage is sensed, a signalling 

cascade starts transducing to downstream kinases the presence of DNA damage. The final 

outcome of DDR activation is the induction of proper DNA repair pathways, together with 

the block of cell cycle. Indeed the DDR pathway plays two fundamental roles in the 

response to DNA damage: it triggers the appropriate repair pathway while it also acts as a 

checkpoint, inducing cell cycle to arrest to give cells the time to repair the damage. Thus 

DDR pathway avoids the propagation of corrupted DNA to daughter cells maintaining 

genome integrity by the coordination of the cell cycle arrest and cellular attempts to repair 

DNA damage (Figure 1, (Sulli et al., 2012)). 
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Figure 1. The DNA damage checkpoint response cascade.  
The DDR pathway presents two main DNA damage sensors: the MRE11-RAD50-NBS1 (MRN) complex 
recognizes DSBs, while Replication Protein A (RPA) and the RAD9–RAD1–HUS1 (9-1-1) complex detects 
regions of single-stranded DNA. Once the damage is sensed, the apical kinases ATM - and ATR, which is 
bound by ATRIP, are recruited to the site of damage through the MRN complex or RPA and 9-1-1 complex 
respectively. These apical kinases in turn phosphorylate (P) the histone variant H2AX on Ser139 (known as 
γH2AX) to recruit other components of the DDR cascade such as MDC1, 53BP1, BRCA1. The diffusible 
downstream kinases CHK1 (mainly phosphorylated by ATR) CHK2 (mainly phosphorylated by ATM) 
spread the signal to downstream effectors such as CDC25 and p53. The activation of DDR pathway can 
result in three different outcomes: transient cell-cycle arrest, when cell cycle is transiently blocked to allow 
DNA damage to be repaired before cycling is resumed; apoptosis, programmed cell death; or cellular 
senescence, a permanent cell cycle arrest. Adapted from (Sulli et al., 2012). 
 

1.2.1 Different types of DNA repair pathways. 

The choice of the proper repair system depends on the type of lesion and on the cell cycle 

phase in which the damage occurred. We can distinguish four main DNA repair pathways: 

base excision repair (BER) and nucleotide excision repair (NER); mismatch repair 

(MMR); double strand break repair (DBR), which includes homologous recombination 

(HR) and non-homologous end joining (NHEJ) pathways. 

!"!#$%"&'()*&+,--.&%$&!-&/01/&
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BER allows for the recognition and excision of a damage base, by the action of specific 

DNA-glycosylases, and it is active throughout the cell cycle (Fortini and Dogliotti, 2007; 

Hitomi et al., 2007).  

NER detects DNA damage by the presence of structural abnormalities in the double helix, 

proceeding then with their excision and replacement. It acts mainly during G1 phase by 

removing bulky lesions, such as those caused by exposure to UV radiation or to polycyclic 

aromatic hydrocarbons produced by cigarette smoke, and the distorting intrastrand DNA 

produced by chemotherapeutic agents, such as cisplatin (Batty and Wood, 2000). 

MMR is the repair system devoted to fix errors introduced during replication, such as base 

mismatches, small insertion or deletion loops. In case these mismatches are not solved, 

they will give rise to permanent mutations in the genome during the next round of 

replication. Thus MMR plays an essential role in maintaining the stability of the genome 

during replication (Jiricny, 2006). 

BER, NER and MMR share a similar repair mechanism that comprises lesion recognition 

and excision, followed by DNA synthesis of the removed nucleotides and ligation to the 

single strand nick. Excision consists of an incision in the strand containing the lesion and 

the removal of 1-2 nucleotides in BER or 12-30 nucleotides as in NER or hundreds in 

MMR.  

  

If left unrepaired during G1 phase, bulky DNA lesions can hinder the progression of DNA 

polymerases. Cells have developed two main mechanisms to deal with this kind of damage 

occurring during S phase, known as DNA damage tolerance pathways. In one case DNA 

replication may continue by using a translesion synthesis (TLS) polymerases, which 

replicate across the damage, in an error-prone manner. The other DNA damage tolerance 

pathway consists of template-switching (TS), an error-free process that repairs gaps in 

newly replicated DNA using the newly synthesized sister chromatid as a template (Branzei 

and Foiani, 2007; Lehmann et al., 2007). 



 33 

 

1.2.1.1 Double-Stranded Break (DSB) repair pathways 

There are two main pathways ascribed to the repair of DSBs: Homologous Recombination 

(HR) and Non Homologous End Joining (NHEJ). NHEJ repairs predominantly DSBs that 

occur during G1 phase, whereas HR is mainly devoted to repair of DSBs that are formed 

during S and G2 phases. 

 

HR is an accurate repair mechanism that uses the undamaged sister chromatid as repair 

template. Hence it mainly works during late S/G2 phases. The first step in HR pathway is 

the resection of the DSB end in 5'- to 3' direction by a nuclease activity that is modulated 

by MRE11/RAD50/NBS1 (MRN) complex. This complex presents various biochemical 

properties such as 3' to 5' exonuclease activity, single strand endonuclease activity and 

DNA unwinding activity, that together with a 5'- to 3' exonuclease allows the resection of 

the DSB and create a 3'-ended single stranded DNA (ssDNA) necessary to initiate strand 

invasion. After resection, RAD51, with the help of BRCA2, binds to ssDNA creating a 

nucleoprotein filament that invades sister chromatid and pairs at the undamaged 

complementary sequence. DNA heteroduplex is formed. The annealed 3'-terminus of the 

damage molecule is extended by a DNA polymerase and DNA ligation takes place. DNA 

crossovers formed at the border between homo- and heteroduplex, known as Holliday 

junctions, are solved to yield two intact DNA molecules by RecQ helicases, such as the 

Bloom protein (BLM), a 3’-5’ helicase, or the Werner protein (WRN), that has 3' → 5' 

helicase and exonuclease activity (Sung et al., 2003). 

 

Differently, NHEJ does not require an undamaged template molecule and it essentially re-

joins any compatible broken DNA ends. The first step in NHEJ consists in the binding of 

the two extremities of a DSB by the heterodimeric DNA end-binding protein Ku  (ku70-
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ku80). This complex then recruits the DNA-dependent protein kinase catalytic subunit 

(DNA-PKcs). Once bound to DNA ends, DNA-PKcs undergoes autophosphorylation and 

it phosphorylates other targets such as replication protein A (RPA), Werner protein (WRN) 

and Artemis. At this point the DNA ends can be ligated by the DNA ligase IV in 

association with its binding partners, XRCC4 and XRCC4-like factor (XLF, also known as 

Cernunnos), completing the NHEJ (Ahnesorg et al., 2006). Artemis plays a fundamental 

role in processing DNA "dirty" ends derived from exposure to IR or alkylating agents, to 

make them suitable for the LIGIV-XRCC4 mediated ligation. 

NHEJ allows for the ligation of DNA ends regardless of their genomic loci. Therefore 

translocations or deletions can occur, making NHEJ an error prone repair pathway. 

 

1.2.2 The DNA damage checkpoint pathways 

The break of the sugar-phosphate backbone leads to the exposure of single-stranded DNA 

and/or the generation of DSBs. Specialized complexes, after sensing these two kinds of 

lesions, recruit to the site of damage and activate two large protein kinases, ataxia 

telangiectasia and RAD3-related (ATR), or ataxia telangiectasia (ATM), respectively (Zou, 

2007; Shiloh and Ziv, 2013). Upon recruitment of one of these apical kinases to the site of 

lesion, local phosphorylation in cis of the histone variant H2AX occurs. This local 

phosphorylation of H2AX is the key step in the nucleation of DDR (Celeste et al., 2002). 

Indeed γH2AX - the phosphorylated form of H2AX - recruits at the site of damage 

additional ATM complexes, resulting in a positive feedback loop that increases the local 

ATM activity and promotes the spreading of γH2AX along the chromatin.  

In unperturbed conditions ATM is present as a homodimer in which internal domain 

conformation blocks the kinase domain. When a DSB occurs, this leads to a 

conformational change in the ATM protein that stimulates the kinase to phosphorylate 

serine 1981, thus inducing the homodimer to dissociate, releasing the activated ATM 
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monomer. In its activated form, ATM can phosphorylate its several targets, both at the site 

of damage, such as Nijmegen breakage syndrome (NBS1), breast cancer 1 (BRCA1), and 

structural chromosome maintenance (SMC1) and in the nucleoplasm such p53. The 

activated form of ATM phosphorylates also important DNA damage mediators that help in 

establishing a strong positive feedback loop that strengthens and supports the checkpoint 

cascade. Some of these mediators are p53 binding protein 1 (53BP1) and mediator of DNA 

damage checkpoint (MDC1). After the activation of apical kinases and DNA damage 

mediators, downstream kinases are also activated. In case of ATM activation the main 

downstream kinases is CHK2. When activated, CHK2 phosphorylates downstream 

effectors such as p53, stabilizing it and leading to its activation.  

On the other hand, upon single-stranded DNA (ssDNA) exposure, the single-stranded 

DNA binding protein A (RPA) binds to the ssDNA and recruits ATR to the site of damage. 

This recruitment occurs via ATR-interacting protein (ATRIP), to which ATR is usually 

bound both in unperturbed and perturbed conditions (Cortez et al., 2001). Thus upon 

accumulation of RPA on ssDNA both ATR and ATRIP are recruited to the site of damage 

(Cimprich and Cortez, 2008). Independent recruitment to RPA-ssDNA of the 

heterotrimeric 911 complex (constituted by RAD9, RAD1 and HUS1) and of 

topoisomerase binding protein 1 (TOPBP1) induces further ATR recruitment to the site of 

damage and boosts ATR kinase activity. Indeed TOBP1 mediates ATR activation 

(Kumagai et al., 2006), which then phosphorylates several substrates including CHK1, a 

fundamental downstream kinase that controls cellular responses to DNA damage and 

replication stress acting on downstream effectors such as CDC25 phosphatases (Cimprich 

and Cortez, 2008). 

Hence DSBs, such as those formed upon IR, mainly trigger ATM kinase, whereas single-

stranded DNA coated with RPA, activates ATR. Although RPA-coated ssDNA it is mainly 

generated upon perturbed DNA replication, it can also result from resection of one DNA 

strand at DSBs in cells in the S and G2 phases of the cell cycle. Thus DSBs that are 
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processed by HR in S/G2 have the opportunity to involve both ATM and ATR kinase at 

the same DNA lesion, further boosting the checkpoint-signalling cascade (Jazayeri et al., 

2006). 

 To engage DDR factors that are far from the damaged site, local ATM and ATR 

activity should reach a certain threshold (Buscemi et al., 2004). When DNA damage 

induces ATM to surpass this threshold, the downstream kinase CHK2 is activated by ATM 

phosphorylation. CHK2 then goes in the nucleoplasm, and further spreads DDR signalling 

by phosphorylating its targets (Lukas et al., 2003). CHK1 is also activated by 

phosphorylation, mainly by ATR, but to a lesser extent also by ATM. After activation, 

similarly to CHK2, CHK1 diffuses in the nucleoplasm, phosphorylating its substrates, 

further enforcing the checkpoint pathway cascade.  

The checkpoint cascade is thus amplified in several, often redundant, signalling pathways 

(Cuadrado et al., 2006; Jazayeri et al., 2006) that ultimately act on key cellular effectors, 

such p53 and the CDC25 phosphatases.  

Upon DNA damage, a rapid cell-cycle arrest is achieved by the inactivation of CDC25, 

essential phosphatases for cellular proliferation (Mailand et al., 2000). On the other hand, a 

stable cell-cycle arrest is accomplished by a slower p53 induction. The DDR kinases 

stabilise p53 by phosphorylating it, and then, once active, p53 triggers the transcription of 

p21, a cyclin dependent kinase (CDKs) inhibitor (Deng et al., 1995), which is then 

responsible for the establishment of a stable cell cycle arrest.  

 

Upon DNA damage, γH2AX helps in the amplification of the signal by spreading γH2AX 

for hundreds of kilobases away from the DNA damage site. In this way γH2AX acts as a 

molecular ‘velcro’ recruiting and retaining numerous DDR factors at the site of damage 

(Downey and Durocher, 2006). Thus γH2AX becomes a cytologically detectable nuclear 

focus, which consists of several copies of the same proteins that are compacted on the 

chromatin close to the site of damage. DDR foci are formed at the site of damage by the 
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upstream factors of the DDR pathway that act in the proximity of the damaged site. On the 

other hand, downstream factors such as CHK2, CHK1, p53, CDC25 do not form DDR 

foci.  

The formation of DDR foci at the site of damage requires mainly two steps. The first step 

consists of an initial recruitment to the site of damage of activated ATM and other DDR 

factors, and it is independent from H2AX. Once at the site of damage, ATM and other 

DDR factors induce a subsequent accumulation of DDR foci by phospho-specific protein-

protein interactions. In this second step H2AX is fundamental for foci formation: without 

H2AX the formation of visible foci does not occur, mainly because most of the phospho-

specific protein-protein interactions rely on the molecular velcro formed by γH2AX. This 

confirms the essential role played by γH2AX in DDR signalling amplification and 

activation (Celeste et al., 2003b). 

DDR foci are stable sites at the damaged DNA at which DDR factors accumulate in a very 

dynamic manner, as shown by photobleaching experiments (Celeste et al., 2003b). To 

detect the DDR activation it is thus possible to exploit the high local concentration of DDR 

factors at damage sites. These DDR factors represent a robust and specific set of markers 

to detect DDR activation. Indeed by performing immunostainings with antibodies against 

γH2AX or other DDR factors that accumulate at the site of damage, a typical nuclear 

pattern of discrete bright foci becomes visible.  

 

Once DNA is repaired, checkpoint recovery occurs. This process consists in the 

dismantling of DDR foci by the action of phosphatases dedicated to the dephosphorylation 

of γH2AX, as well as by chromatin remodelling complexes (Panier and Durocher, 2013). 

In this way DNA damage response is terminated and cells can re-enter cell cycle. 
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1.2.3 The DDR through the cell cycle 

G1 checkpoint activation occurs whenever DNA damage accumulates during G1. It is able 

to induce a prolonged G1 arrest, brought about by the ATM (ATR) - CHK2 (CHK1) - 

p53/MDM2 - p21 pathway. The level of ATM and CHK2 are constant throughout cell 

cycle. On the contrary, ATR and CHK1 levels fluctuate during cell cycle. Early-to-mid G1 

presents low levels of ATR and CHK1. In late G1, the expression of ATR and CHK1 

increases as a consequence of E2F-dependent S-phase-promoting transcriptional 

programme activation. Under unperturbed conditions, in late G1 the expression of cyclins 

E and A are induced together with CDC25A phosphatase, the activator of cyclin 

E(A)/CDK2 kinase. Indeed CDC25A dephosphorylate CDKs leading to their activation 

(Pines, 1999): the active cyclin E(A)/CDK2 kinase complex promotes the entrance into S 

phase via the activation of a specific signalling cascade. In physiological conditions, 

ATR/CHK1 (but not ATM/CHK2) keeps CDC25A levels under control by 

phosphorylation of CD25A, inducing its ubiquitin-mediated proteosomal degradation 

(Zhang et al., 2003). Under genotoxic stresses, this physiological mechanism is further 

boosted by the increased activation of CHK1 and CHK2. This induces the downregulation 

of CDC25A and therefore cyclin E(A)/CDK2 complexes are inhibited, thus blocking the 

cells in G1 (Bartek and Lukas, 2003). ATM/ATR activation leads ultimately to the 

simultaneous phosphorylation of p53 and CDC25A, respectively. However these events 

act differently on cell cycle: the CDC25A-degradation cascade induced by ATR 

phosphorylation is faster since it does not necessitate transcription or newly synthetized 

proteins. By contrast p53 pathway that acts on transcription, affects cell cycle progression 

in a slower manner than the CDC25A-proteolysis. Thus, independently of p53, the 

CHK1/CHK2-CDC25A checkpoint is rapidly executed, and it postpones the G1/S 

transition only for a few hours. A prolonged block in G1 can then occur only with the 

sustained p53-dependent mechanism (Kastan and Bartek, 2004). 
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The p53 transcription factor is directly activated by ATM and ATR. These kinases 

phosphorylate p53 at its serine 15, within its amino-terminal transactivation domain. In the 

same domain, also threonine 18 and serine 20, together with probably some other p53 

sequence(s), are also targeted by ATM and ATR or CHK1 and CHK2, respectively (Bartek 

et al., 2004; Craig et al., 2003; Shiloh, 2003). 

 Upon DNA damage, ATM and ATR further stabilize p53 by targeting MDM2, the 

ubiquitin ligase that normally binds p53 inducing a rapid p53 turnover via ubiquitin-

mediated proteasomal degradation (Maya et al., 2001). This further contributes to the 

accumulation of functional p53 protein as well as to its increased activity as a transcription 

factor. 

The main transcriptional target of p53 is the p21CIP1/WAF1 inhibitor of cyclin-dependent 

kinases (Wahl and Carr, 2001). p21 binds and inhibits the G1/S-promoting cyclin E/Cdk2 

kinase, and therefore causes a G1 arrest. This leads to a sustained G1 blockade, due to the 

inability to initiate DNA synthesis, but also due to maintenance of the Rb/E2F pathway in 

its active, growth-suppressing mode. Thus, the G1 checkpoint response targets two crucial 

tumor suppressor pathways, governed by p53 and Rb (see paragraph 2.2 The p53 and Rb 

pathways). These two pathways are most commonly deregulated in human cancer. 

 

 Intra-S-phase checkpoint is activated when DNA damage occurs during S phase. 

The aim of this checkpoint is to transiently block the firing of late replication origins, in 

order to avoid S phase progression into mitosis before that the damage is solved. Another 

important function of the intra-S-phase checkpoint is to protect the integrity stalled forks. 

This checkpoint brings about a slow down in DNA synthesis using two parallel pathways, 

both controlled by the ATM/ATR machinery. ATR phosphorylates CDC25A inactivating 

it. As a consequence CDK2 is inhibited and thus blocks the loading onto chromatin of 

CDC45, one of its downstream target. Since CDC45 is required for the recruitment of 

DNA polymerase alpha onto pre-replication complexes (pre-RC), the block of CDC45 via 
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CDK2 inhibition prevents the initiation of new origin firing (Bartek and Lukas, 2003). 

Also ATM acts in the intra-S-phase checkpoint pathway by phosphorylating NBS1 and the 

cohesin protein SMC1 (Kitagawa et al., 2004). 

The G2/M checkpoint occurs when DNA damage occurs during G2, or when cells have 

reached G2 with some unrepaired damage that occurred in the previous S or G1 phase. The 

aim of the G2/M checkpoint is to prevent the cells with unrepaired DNA to enter mitosis. 

G2/M checkpoint targets the cyclin B/CDK1 kinase, which has a mitosis-promoting 

activity. ATM/ATR, CHK1/CHK2 and/or p38-kinase-mediated subcellular sequestration, 

mediate the inhibition of cyclin B/CDK1 kinase activity. CDK1 inhibition occurs also by 

of degradation and/or inhibition of the CDC25 family of phosphatases that normally 

activate CDK1 at the G2/M boundary (Bulavin et al., 2001; Donzelli and Draetta, 2003). 

Equivalent to the role of the checkpoint mediators in the S-phase checkpoint, 53BP1 and 

BRCA1 are also involved in the regulation of the G2-checkpoint responses (DiTullio et al., 

2002; Xu et al., 2001). G2 checkpoint probably partly depends on the transcriptional 

programmes regulated by BRCA1 and p53. In this way, cell cycle inhibitors such as CDK 

inhibitor p21 and GADD45a (growth arrest and DNA-damage-inducible 45 alpha) are 

upregulated, leading to cell cycle arrest (Taylor and Stark, 2001). 

 

1.2.4 Defects in DNA repair and checkpoint processes 

Given the essential function of DNA damage response pathway, defects in this signalling 

cascade, from DNA damage recognition to repair and recombination processes, have been 

linked to genomic instability, immunodeficiency, cancer predisposition and premature 

aging syndromes.  

Mutations in the Atm gene are responsible for the development of Ataxia Telangiectasia 

(AT). Patients with AT show ataxia starting between the first and third year of life, as a 

result of progressive neuronal degeneration characterized by loss of Purkinje cells in the 

cerebellum. AT is further characterized by telangiectasia in the face, a humoral and cellular 
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immunodeficiency, an increased sensitivity towards IR, and a high predisposition to 

develop lymphomas and leukaemia (Shiloh and Kastan, 2001; Thompson and Schild, 

2002). Indeed, loss of ATM predisposes human and mice to lymphoma development and 

to some other malignancies (Shiloh and Kastan, 2001). 

The Nijmegen breakage syndrome (NBS) is similar to AT, and was formerly viewed as a 

variant form of AT. Distinction from AT was possible after the identification of the 

defective gene, Nbs1 (Shiloh, 1997). NBS patients show no telangiectasia and, often 

exhibit microcephaly, café au lait macules, vitiligo, or altered eye pigmentations, and it 

often associated with mental retardation. In some patients with AT-like disorders (AT-LD), 

mutations in the MRE11 gene were identified (Stewart et al., 1999). 

Disruption of both alleles of Atr causes embryonic lethality in mice (Brown and Baltimore, 

2003). However hypomorphic mutations in Atr that lead to low levels of ATR expression, 

are associated with Seckel syndrome, a human disease characterized by growth retardation, 

dwarfism, microcephaly and mental retardation. Furthermore, Atr haploinsufficiency 

enhances tumorigenesis in mice that are defective for DNA-mismatch repair (O'Driscoll et 

al., 2003). Other mutations in additional components of these signalling pathways also lead 

to cancer predisposition.  

 

In mice, the lack of H2AX (Bassing et al., 2003) or 53BP1 (Ward et al., 2003) results in 

cell-cycle checkpoint defects and cancer predisposition. The inability to recruit 53BP1 to 

sites of DNA DSBs has been recently ascribed to a human syndrome, called RIDDLE 

(Radiosensitivity, Immunodeficiency, Dysmorphic features and learning difficulties; 

(Stewart et al., 2007)). Even haploinsufficiency for H2AX provokes detectable genomic 

instability and enhanced tumor susceptibility in the absence of p53 (Bassing et al., 2003) 

(Celeste et al., 2003a). 
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Although MDC1 seems to be required for cell-cycle checkpoint function (Stucki and 

Jackson, 2004), mutations in the gene have not yet been linked to enhance tumor 

development in mice or humans.  

Since the homozygous-deficient state of Chk1 cannot be tested because of its lethality, 

Chk1 heterozygosity was proved in various transgenic mouse models. Chk1 heterozygosity 

moderately enhances the tumorigenic phenotype of Wnt1 transgenic mice (Liu et al., 

2000). This enhancement was explained as a haploinsufficient tumor suppressor 

mechanism. Chk1 conditional disruption in mammary epithelial cells showed inappropriate 

S-phase entry, accumulation of DNA damage during replication and inappropriate mitotic 

entry (Lam et al., 2004). These observations support the idea that checkpoint defects 

associated with Chk1 haploinsufficiency can contribute to tumorigenesis.  

Even though Chk2-/- mice do not spontaneously develop tumours (Hirao et al., 2002), skin 

tumorigenesis induced by carcinogen exposure is enhanced in absence of Chk2. Moreover 

individuals with Chk2 variants are predisposed to develop breast and prostate cancer 

(Bartek and Lukas, 2003). Thus all these observations indicate that Chk2 acts as a tumor 

suppressor gene.  

The incidence of breast and ovarian cancers in women is noticeably increased when a 

single mutated allele of either Brca1 or Brca2 is inherited (King et al., 2003). Moreover, 

since the tumours from these individuals always lose the second allele, both Brca genes 

present the feature of classic tumor suppressor genes (Venkitaraman, 2002). 

Mutations in the enzymes involved in other DNA repair pathways, such as mismatch repair 

(MMS) or nucleotide excision repair (NER), lead to congenital syndromes, characterized 

by increased genomic instability and enhanced tumor formation. Inherited mutation in 

MMR genes results in three different diseases, characterized by increased genomic 

instability and high risk of tumor formation: Hereditary nonpolyposis colorectal cancer 

(HNPCC) syndrome, Muir-Torre syndrome and the Turcot syndrome. Microsatellite 
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instability (MSI) - the expansion or contraction of short nucleotide repeats - is a common 

feature of tumours developed in the MMR deficiency syndromes (Aaltonen et al., 2007). 

Patient with defects in NER pathway develop rare autosomal recessive disorders, such as 

xeroderma pigmentosum (XP), trychothiodystrophy (TTD) and cockaine syndrome (CS). 

Beyond marked differences between these disorders these patients share some clinical 

features. They show complex neurological abnormalities like progressive neurological 

degeneration, developmental delay, progressive sensoneural deafness. These neurological 

problems derived from primary neuronal degeneration (XP) or as a consequence of 

reduced myelination in the brain (CS and TTD), due to DNA damage occurring in 

neuronal cells. Moreover XP patient are hypersensitive to UV light, with an increased risk 

of skin cancer (de Boer and Hoeijmakers, 2000). 

 

To sum up, deficiencies in the DNA damage checkpoint pathway allows the survival and 

extended growth of cells with genomic abnormalities, thereby enhancing the probability of 

malignant transformation. On the other hand the response to DNA damage accumulation in 

checkpoint-proficient cells can lead to different cellular outcomes. In case DNA damage 

generated in proliferating cells is promptly and properly fixed, cells will rapidly resume 

normal proliferation. Otherwise, when DNA damage is particularly severe, cells may 

decide to undergo programmed cell death, or apoptosis, that allows to eliminate damaged 

cells from a cell population (Taylor et al., 2008). An additional outcome is also possible. 

Cells may enter an irreversible cell-cycle arrest induced by DDR signalling. This condition 

is known as cellular senescence and it will be described in Chapter 2. 
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CHAPTER 2. Cellular senescence 

2.1 General features of cellular senescence 

Cellular senescence was first described by Hayflick and Moorhead in 1961 (Hayflick and 

Moorhead, 1961). They discovered that after an initial robust proliferation, human lung 

foetal fibroblasts eventually irreversibly lose their ability to divide. They display a 

replicative limit of approximately 50 cell divisions when serially passaged in monolayer 

cultured in standard tissue conditions. Thus it was proposed that these normal cells have an 

intrinsic replicative potential limit, known as Hayflick's limit, in honour of Hayflick work.  

Most of the cells present in a human body are in a reversible growth arrested state, known 

as quiescent or G0-phase. Quiescent cells can re-enter cell cycle and proliferate again upon 

appropriate mitogenic stimuli and space. Therefore, quiescent state is different from 

senescence, since senescence cells are permanently arrested despite the presence of space 

and of nutrient and growth factors in the culture medium. Cellular senescence differs also 

from post-mitotic differentiated cells such as neurons or muscle cells. Indeed these cells 

have lost their ability to divide and they are irreversibly blocked from re-entering the cell 

cycle as a consequence of a programmed differentiation process, which has nothing to do 

with cellular senescence. 

 

Senescent cells are characterized by a flattened and enlarged morphology. Even though 

they are not able to divide they are metabolically active. The typical DNA content of a 

senescent cell correspond to the G1-phase DNA content, even though some oncogenes 

induces a part of cells to arrest with a S- or G2 DNA content (Olsen et al., 2002). 

Another feature of senescent cells is their resistance to apoptotic cell death. The apoptotic 

program is a cellular mechanism that is activated to avoid the proliferation of cells that 

have damaged DNA and works by inducing the so-called "programmed cell death".  
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The factors that determine the choice between senescence and apoptosis are still unclear. 

The nature of the damage, together with the duration and the intensity may play an 

important role in the choice between senescence and apoptosis. Also the cell type can 

influence such decision. For example damaged lymphocyte preferentially undergo 

apoptosis, while damaged human fibroblast tend to senescence. These differences can be 

ascribed to the physiological turnover of different cells type in the body (Lechel et al., 

2005). Even though cellular senescence and apoptosis are mutually exclusive, they share 

common components, among which p53. Thus the resistance to apoptosis of senescence 

cells can result from the action of p53 that is preferentially activating genes responsible for 

proliferation arrest, rather than those involved in cell death (Jackson and Pereira-Smith, 

2006). 

Senescent cells have an altered gene expression profile, largely due to altered transcription 

(Mason et al., 2004). The main alteration in the gene expression profile lies on the gene 

encoding for cell cycle inhibitors or activators. Senescent cells often accumulate p21 and 

p16, two cyclin-dependent kinase inhibitors (CDKIs) that are part respectively of p53 and 

Rb tumor suppressive pathways. Moreover upon senescence, proliferative genes, such as 

cyclin A, cyclin B and PCNA, are stably repressed by the Rb-dependent inactivation of 

E2F transcription factors (Narita et al., 2003; Stein et al., 1991). Senescent cells have also 

a secretory phenotype: they release proteins that can modify the tissue microenviroment 

resulting in the enforcement of the senescence state (Acosta et al., 2008; Kuilman et al., 

2008). 

 

2.1.1 Senescence markers 

At present markers that exclusively identify the senescent state have not been found. 

However it is possible to exploit some specific feature of senescent cells to distinguish 

them. Since senescent cells do not replicate DNA, it is possible to detect them with 

immunostaining for proliferation markers, such as PCNA and Ki-67, or with the 
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incorporation of 5-bromodeoxyuridine (BrdU) or 3H-thymidine. However these markers 

do not distinguish between senescent cells and quiescent or differentiated post-mitotic 

cells. To make sure that the absence of DNA replication is due to a senescent state, you 

need to couple it with other markers, such as the senescence associated β-galactosidase 

(SA-β-gal). SA-β-gal, is an enzyme active at pH 6.0 specifically in senescent cells and not 

found in pre-senescent, quiescent or immortal and transformed cells (Dimri et al., 1995). 

The function of SA-β-gal activity during senescence establishment remained unknown. 

Only recently it has been shown that SA-β-gal activity derives from the activity of the 

lysosomal-β-galactosidase (designated GLB1) that is normally active at acidic pH 4.5 (Lee 

et al., 2006). As cells enter senescence the level of lysosomal-β-galactosidase protein 

increases as a consequence of increased in their lysosomal content. In this way SA-β-gal 

activity reaches threshold levels becoming detectable by histochemical staining. However 

SA-β-gal is a marker for increased lysosomes number and activity that we can exploit to 

infer the senescent state.  

Another marker often used to identify senescent cell is p16 (Krishnamurthy et al., 2004). 

p16 is indeed an key regulator of senescence state. However, not all senescent cell types 

expressed p16 (Beausejour et al., 2003), and in case of loss of Rb function, it can also be 

expressed in some tumor cells.  

It is also possible to use some cytological markers to identify some senescent cells. These 

cytological markers are known as senescence associated-heterochromatin foci (SAHFs, 

(Narita et al., 2003) and senescence-associated DNA-damage foci (SDFs, (d'Adda di 

Fagagna et al., 2003)).  

SAHFs are distinct heterochromatic nuclear structures, that can be detected by the 

preferential binding of the DNA dye 4',6-diamidino-2-phenylindole (DAPI), as compacted 

DNA foci. They are characterized by the presence of certain heterochromatin-associated 

histone modifications (such as, H3K9 trimethylation) as well as typical proteins found in 

heterochromatin (such as heterochromatin protein-1 (HP1)). p16-Rb pathway is 
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responsible for SAHFs formation at E2F genes, thus leading to transcriptional silencing of 

proliferation promoting genes of E2F family (Narita et al., 2003). However, SAHFs are 

formed in a cell type- and insult-dependent manner. Therefore SAHFs are not clearly 

detectable in all cell types undergoing senescence or in all types of senescence (Di Micco 

et al., 2011; Kosar et al., 2011). 

SDFs are distinct bright nuclear foci present in senescent cells from mice and humans. 

They contain proteins involved in DNA damage checkpoint activation and DNA damage 

repair and are typical of senescent state (see paragraph 1.2. The DNA damage response 

(DDR)). 

 

2.2 The p53 and Rb pathways 

The main tumor suppressive pathways governing senescence are the p53 and p16-Rb 

pathways.  Their activation is mainly induced by three different mechanisms: telomere 

shortening, DNA damage accumulation and the upregulation of CDKN2A locus (which 

encodes for INK4A and ARF) (Collado et al., 2007). Even though these pathways interact 

they can also act independently to induce cell cycle arrest. They share some common 

activators, but they can respond to different stimuli. The propensity to activate one or the 

other pathway, or both of them is cell-type-dependent and species-dependent. Here we 

discuss all these feature of p53 and Rb pathways. 

Upon exposure to stimuli that activate DDR, like telomere dysfunction or IR, senescence is 

primarily induced through the p53 pathway. In unperturbed conditions, p53 protein levels 

are kept at a physiological range by the action of HDM2 (MDM2 in mice). Indeed HDM2 

is an E3 ubiquitin-protein ligase that specifically facilitate p53 turnover through ubiquitin-

mediated proteasomal degradation. Upon DNA damage accumulation, the DDR pathway 

stabilizes p53 levels by targeting HDM2 for degradation. Moreover DDR apical kinases 

directly phosphorylate p53, thus, activating it. In addition, the alternate-reading-frame 
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protein (ARF), often found upregulated in senescent cells, controls p53 by inhibiting 

HDM2 activity (Sherr and McCormick, 2002). 

A key transcriptional target of p53 is p21, a CDK inhibitor crucial to the establishment of 

p53-dependent senescence (Brown et al., 1997). Indeed p21 is responsible for the 

inactivation of cyclin E/CDK2, thus inducing an arrest in G1. Experimental impairment of 

p53, p21 or DDR factors (for example ATM or CHK2) prevents telomere- or damage 

induced senescence (Brown et al., 1997; d'Adda di Fagagna et al., 2003; Gire et al., 2004; 

Won et al., 2006), demonstrating the fundamental role of these factors in the senescence 

establishment.  

p16-Rb pathway can be induced independently of p53, even though p16-Rb activation 

usually occurs secondary to the induction of p53 pathway (Jacobs and de Lange, 2004). 

Differences in the activation of these pathways can be ascribed also to different cell type 

used. For example cultured epithelial cells are more prone than fibroblasts to induce p16 

and arrest proliferation. There are also species-specific differences: upon experimental 

telomeres uncapping mouse cells primarily activate the p53 pathway, whereas human cells 

induce both the p53 and p16-pRb pathways in (Smogorzewska and de Lange, 2002). 

Other senescence-causing stimuli can induce p16 expression. One possible mechanism is 

linked to the regulation of Polycomb INK4a repressors, like a reduced expression of BMI1 

(Bracken et al., 2007; Itahana et al., 2003) or CBX7 (Gil et al., 2004). Consistent with this 

idea, BMI1 or CBX7 overexpression extends the replicative lifespan of human and mouse 

fibroblasts (Jacobs et al., 1999). I will discuss in detail the role of Polycomb in cellular 

senescence in the paragraph 4.3 Polycomb and cellular senescence. 

p16 is a CDK inhibitor that keeps Rb in an active, hypophosphorylated form. Also p21 can 

help in Rb activation. In this way the active form of Rb inhibits E2F from transcribing 

genes that are needed for proliferation, further enforcing cellular senescence (Sherr and 

McCormick, 2002; Sherr and Roberts, 1999). 
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However a recent study (Velimezi et al., 2013) revealed an additional regulatory interplay 

between the DDR apical kinase ATM and the downstream effector ARF. Indeed the 

authors demonstrated that ATM is suppressing ARF levels in a transcription independent 

manner by targeting ARF to ubiquitin-mediate proteosomal degradation. Furthermore in 

xenografts and tissue culture models, inhibition of ATM triggered the tumour-suppressive 

effects of ARF and loss of ATM expression correlated with increased ARF levels in 

human clinical samples. This study highlights the existence of a cross talk between ARF 

protein turnover and DDR signalling, and it reveals two pathways that lead to ARF 

induction: oncogene activation and ATM suppression. Thus, upon ATM suppression, the 

subsequent increased ARF activity results to be a secondary anti-tumor response that can 

start a positive feed back loop to boost the remaining active DDR signalling pathway 

ATR/Chk1 (Eymin et al., 2006; Velimezi et al., 2013). 

 

2.3 Different types of cellular senescence 

Cellular senescence occurs in response to different stimuli. According to this we can 

distinguish three main types of cellular senescence: replicative senescence; stress induced 

premature senescence (SIPS) including the subtypes culture shock-induced senescence and 

DNA damaging agents induced senescence; oncogene induced senescence (OIS).  

Here we briefly discuss about the first types of cellular senescence, while we will dedicate 

an entire chapter to deeply discuss the feature of oncogene-induced senescence (OIS). 

 

Replicative senescence results from exhaustion of cell proliferative capacity. Under 

optimal growth conditions, an intrinsic “clock” induces cell proliferation inevitably to stop. 

This "clock" is particularly sensitive to the number of DNA replication rounds performed. 

This can be ascribed to the so-called "end replication problem", whereby DNA polymerase 

cannot completely replicate DNA ends. Thus at each round of DNA replication, cells lose 

50-200 base pairs of telomeric DNA. Given the correlation between telomere attrition and 
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proliferative exhaustion, telomere attrition was suggested as the cause of replicative 

senescence (Harley et al., 1990). Further studies demonstrated this hypothesis by 

introducing telomerase in normal human cells: this resulted in extended life-span and 

avoidance of senescence, at least in vitro (Bodnar et al., 1998). 

Thus telomere shortening is the phenomenon that limits the proliferative lifespan of many 

human cell types. Cells undergo replicative senescence due to critically short telomeres. 

Senescence is determined by the generation of even one or few telomeres sufficiently short 

to induce the senescent signal (Hemann et al., 2001; Herbig et al., 2004). Progressive 

telomere shortening activates a strong DDR by direct recognition of few telomeres in the 

cell (d'Adda di Fagagna et al., 2003; Herbig et al., 2004). When telomere length goes 

below a certain threshold, telomeres are not anymore sensed as physiological chromosome 

termini but as DSBs. As a consequence, DDR is activated and DDR foci start to appear in 

the proximity to the telomeric DNA (d'Adda di Fagagna et al., 2003; Herbig et al., 2004).  

DDR is necessary both in the establishment and maintenance of senescence. Indeed 

functional inactivation of components of DDR pathway, such as CHK2, p53 or p21 was 

sufficient to extend proliferation of cultured the human fibroblasts beyond their senescence 

limit (Bond et al., 1994; Brown et al., 1997; Gire et al., 2004). 

In summary, progressive telomere shortening eventually causes chromosome ends to be 

recognized as DNA breaks, to activate a consequent DDR and to enforce senescence.  

 

The concept of stress induced premature senescence (SIPS) derived from the observation 

that various cellular stresses could cause a premature senescence phenotype, is very similar 

to replicative senescence. Indeed SIPS and replicative senescence share molecular and 

cellular features. The main difference between these two phenomena is that replicative 

senescence is physiologically programmed and occurs when telomeres become critically 

short, while SIPS is not programmed and it occurs in response to external cellular stress. 

An important example of SIPS is the culture shock-induced senescence. When placed in 
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culture, explanted mouse embryonic fibroblasts (MEFs) stop proliferating after only 15-30 

cell divisions. There is no evidence linking this proliferative block to telomere shortening 

below a critical length. Instead the loss of proliferative capacity seems to result from the 

non-physiological conditions that cell culture procedures include. Among them the 

disruption of cell-cell contacts, plating on plastic, lack of heterotypic interaction between 

different cell types, medium-to-cell ratio as well as hyperoxia. Oxygen sensitivity is the 

major determinant of culture shock-induced senescence and it shows critical differences 

between human and mouse cells. Mouse cells are more sensitive to oxygen tension than 

human cells. These differences can explain their differences in proliferation when placed in 

culture.   

MEFs do not senescence under physiological (3%) oxygen conditions but do senescence in 

parallel cultures at 20% oxygen. The block in proliferation of MEFs at 20% oxygen has 

been ascribed to the activation of DDR (Di Micco et al., 2008). Even though human 

fibroblasts are less sensitive to oxygen tension, some human fibroblasts cell lines, when 

cultured at low oxygen tension, can achieve up to 20 population doublings more compared 

with counterparts grown at 20% oxygen. 

Another example of SIPS is the DNA damaging agents-induced senescent. Treatment with 

IR creates DSBs that results in the activation of ATM-p53-p21 pathway within few hours 

from treatment, while p16 induction and SA-β-gal activity are observed only several days 

after IR treatment (Suzuki et al., 2006). Upon IR treatment distinct nuclear foci are formed 

at site of damage, also known as ionizing radiation-induced DNA damage foci (IRIF). 

They contains protein complexes devoted to DSBs recognition as well as mediator 

proteins, similarly to the ones observed in senescent cells with shortened and dysfunctional 

telomeres (d'Adda di Fagagna et al., 2003; Herbig et al., 2004). The main difference 

between replicative senescence and SIPS is that SIPS occurs without affecting telomeric 

shortening. Indeed IR does not seem to accelerate telomeric erosion. Moreover senescent 

induction is not prevented by expression of hTERT in different types of normal cells 
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undergoing SIPS (by IR or UV treatment or exposure to hydrogen peroxide). This reveals 

that DNA lesions can trigger senescence mediated by ATM-p53 pathway in a telomere-

shortening-independent manner (Gorbunova et al., 2002). Furthermore it has recently been 

shown that IR-induced senescence is triggered by irreparable DNA damage at telomeres, 

independently of telomere shortening. Indeed this persistent telomeric DNA damage did 

not occur preferentially at critically short telomeres and the analyses were all made in 

quiescent cells  - post-mitotic differentiated neuronal cells or contact inhibited cells – thus 

telomere length was not affected (Fumagalli et al., 2012). 

The ability of DNA damaging agents, such as cisplatin and doxorubicin, to induce SIPS is 

exploited in various cancer treatments. SIPS is also triggered by the exposure to drugs 

inducing replication stress such as hydroxyurea, aphidicolin, or etoposide. Indeed, since 

replication stress induces replication fork to stall and some of the stalled forks can 

collapse, this leads to the generation of DSBs and the activation of the ATR/CHK1 

pathway (Marusyk et al., 2007). The ability of several DNA damaging agents to induce in 

vitro a G1-restricted senescence in different cell types and in many cancer cell lines, 

indicates the existence of a basal senescence mechanism that is preserved, even though 

many cancer cell lines are known to carry severe genetic defects (Chang et al., 1999). 
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CHAPTER 3. Oncogene-induced senescence 

 

3.1 General features of Oncogene-induced Senescence 

Cellular senescence plays a central role in promoting a stable cell cycle arrest in response 

of various cellular stresses. Beyond the different types of senescence I discussed in the 

previous chapter, another type of senescence can result from the activation of an oncogene 

and is known as Oncogene-induced senescence (OIS). OIS was first observed in vitro in 

primary human and mouse cells, after the overexpression of oncogenic HRAS (HRASV12) 

(Serrano et al., 1997). Further studies revealed that the Raf-Mek pathway downstream of 

Ras is the most relevant in the induction of senescence (Lin et al., 1998; Zhu et al., 1998). 

These observations in vitro were then demonstrated in vivo using mouse models with 

inducible endogenous oncogenes (Collado et al., 2005). 

The first compelling evidence for the occurrence of senescence in vivo was revealed in 

human nevi. Nevi are melanocytes that, due to the sustained BRAF600 expression, 

underwent a permanent cell cycle arrest and display the typical features of senescence, 

such as induction of p16 and SA-β-gal activity (Michaloglou et al., 2005). Furthermore this 

was also the first demonstration of the association of cellular senescence with pre-

malignant stages of tumorigenesis. Indeed human nevi are premalignant lesion that remain 

senescent for decades and hardly progress into malignant stages (melanoma) (Bennett, 

2003; Chin et al., 1998; Robinson et al., 1998). This observation highlighted the 

fundamental role of oncogene-induced senescence as a tumor suppressive mechanism 

exploited by the cells to restrain the hyperproliferation induced by oncogene activation, 

ultimately leading to a permanent cell cycle arrest that blocks the progression towards 

cellular transformation and the consequent malignant stages. In this way OIS prevents the 

expansion of a pool of cells bearing an activated oncogene and prevents the formation of 

potential tumor. 
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The main players in this tumour-suppressive mechanism are DNA hyper-replication and 

DNA damage response (DDR). It is commonly thought that oncogene activation first 

induces DNA hyper-replication that then leads to the accumulation of DNA damage. This 

in turn triggers a robust DDR activation, which is responsible for the onset of senescence. 

In case of DDR deficient cells, senescence cannot be stably established and cells undergo 

uncontrolled proliferation leading to cellular transformation (Figure 2). Thus this model 

highlights a causative role of DNA replication in inducing DNA damage and DDR 

activation in cells undergoing OIS (Bartkova et al., 2006; Di Micco et al., 2006; 

Halazonetis et al., 2008). 

In the following paragraphs, after the description of various oncogenes able to induce 

senescence, I will discuss in detail the molecular bases underlying OIS. 

 

Figure 2. Model of the events following oncogene activation.  
Oncogene activation first induces cells to hyperproliferate by triggering DNA hyper-replication. This then 
leads to the generation of DNA damage. As the consequence of DNA damage, a robust DDR is activated, 
ultimately leading to senescence establishment. In case of DDR deficient cells, senescence cannot be stably 
established and cells undergo uncontrolled proliferation leading to cellular transformation. Adapted from (Di 
Micco et al., 2006). 

 

expression in cells unable to undergo DNA replication, either because
they were contact-inhibited or because they had been released fromG0
in the presence of aphidicolin, a DNA polymerase inhibitor, and in
control replicating cells. We discovered that oncogene expression in
cells unable to undergo DNA replication does not trigger a detectable
DDR (Fig. 4f). This is despite comparable levels of Ras expression and
activation (Supplementary Fig. 17). Therefore, oncogene-induced
DDR and senescence are dependent on DNA replication.

We extended our observations in vivo by the use of a mouse model
(Mus musculus) of chemically induced skin carcinogenesis associated
with H-Ras-activating mutations. Treatment with 7,12-dimethylbenz
(a)anthracene (DMBA) plus 12-O-tetradecanoylphorbol-13-acetate
(TPA) induces hyperproliferative papillomatous skin lesions18 and
accumulation of OIS markers6. We observed c-H2AX-positive cells

among skin keratinocytes in the basal and suprabasal layers of all early
benign skin papillomas studied, but not in the treated skin immediately
adjacent to the lesions and in mock-treated mice (Fig. 4g, and
Supplementary Fig. 18). Therefore, cellular hyperproliferation asso-
ciated with activating mutations of Ras triggers a DDR also in vivo.

Thus, our data indicate that OIS results from the enforcement of
a robust DDR. The observation that DDR functions in both sene-
scence induced by telomere shortening19,20 and oncogene activation
indicates that activation of some DDR elements may be a general
feature of cellular senescence. We propose a model (Fig. 4h) in which
oncogene expression leads to hyperproliferation and DNA hyper-
replication. This causes an accumulation of DNA damage and sparks
the activation of an S-phase-specific DDR. In DDR-proficient cells,
this results in cellular senescence. In the absence of effective DDR
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Figure 4 | Oncogene expression leads to alterations of DNA replication.
a, Growth curve shows faster cell proliferation immediately after oncogene
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byanunrelated centromeric alphoidprobe (PRB11)on the same chromosome
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number of active replicons but leads to an asymmetric fork progression, as
detected by DNA combing. d, Immunoblotting shows that oncogene
expression leads to a transient upregulation of CDC6. e, Single-nucleotide

polymorphism analysis reveals significant loss-of-heterozygosity (LOH)
preference at two of the three most common fragile sites in OIS cells. f, DDR
activation by oncogenic Ras, as detected by pS/TQ immunostaining, is
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after oncogene expression.
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3.2 Different oncogenes induce OIS 

After the discovery of oncogenic Ras-induced cellular senescence, similar observations 

were obtained with other oncogenes, further confirming and extending the concept of OIS 

as a tumor suppressive mechanism (Evan and d'Adda di Fagagna, 2009). 

Increased expression and/or activation of other members of the RAS mitogenic pathway, 

such as EGF receptor, RAC1, RAF, MOS and MEK can induce cellular senescence in 

vitro. (Bartkova et al., 2006; Debidda et al., 2006; Lin et al., 1998; Zhu et al., 1998).  

Furthermore, evidence for in vivo cellular senescence was demonstrated for some of these 

oncogenes (Collado et al., 2005; Collado and Serrano, 2010; Michaloglou et al., 2005).  

On the other hand, loss of PTEN function, an inhibitor of RAS pathway, also leads to the 

establishment of cellular senescence. PTEN encodes for a dual protein and lipid 

phosphatase that antagonizes PI3K/AKT signalling, a downstream element in the RAS 

cascade that triggers responses important for tumor development. Furthermore, beyond 

induction of senescence in vitro, Pten deficient prostate cells undergo a p53-dependent 

senescence that limits tumorigenesis (Chen et al., 2005). 

Coherent with the idea that RAS transduction pathways transmit their signals to the 

nucleus to control cellular proliferation, the triggering of a number of key nuclear-localized 

positive regulators of cell cycle progression has been shown to induce senescence: 

increased expression of E2F transcription factors, crucial regulators of G1/S cell-cycle 

transition, induces premature senescence (Johnson and Degregori, 2006). 

Moreover CDC6, a DNA replication licensing factor, and CYCLIN E, a CDK modulator 

involved in DNA replication initiation, can both induce cellular senescence when 

ectopically expressed, with decline in BrdU incorporation rates and accumulation of SA-β-

gal activity (Bartkova et al., 2006). 

Consequently, the triggering of a cell-cycle progression stimulus, from extracellular 

signals down to DNA replication licensing, can result in a senescence outcome. It is 
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presently unclear whether these signals lie on a unique pathway or on separate converging 

ones.  

 

3.3 Oncogene-induced DDR 

The first evidence for a causative role of DDR activation in OIS establishment was 

demonstrated in two independent studies (Bartkova et al., 2006; Di Micco et al., 2006), 

revealing that the oncogene-induced DNA replication stress is a key effector of DDR 

activation. These discoveries were achieved by deeply characterising the effect of 

oncogenic RAS both in vitro in normal human fibroblast and in vivo in mouse models (Di 

Micco et al., 2006), or by analysing the effects of various oncogenes, such as Mos, Cdc6 

and cyclin E in vitro and examining precancerous lesions for the presence of senescence 

cells - showing SA-β-gal activity - and DDR activation.  

In normal human fibroblasts, oncogenic RAS activation leads to a first hyperproliferative 

burst, which is then followed by a slow down in the cells growth, due to the accumulation 

of DNA damage. This DNA damage in turn triggers a robust DNA Damage Response 

(DDR) activation, which is essential for the establishment and maintenance of a permanent 

cell cycle arrest known as Oncogene Induced Senescence (OIS; (Di Micco et al., 2006)). 

On the other hand, oncogenic Ras activation in DDR-deficient human fibroblasts - by the 

permanent CHK2 knock down (shCHK2) - does not lead to cellular senescence but induces 

cellular transformation. Indeed, when these cells are injected into nude mice, they induce 

tumor formation, which is not the case for DDR-proficient senescent cells (Di Micco et al., 

2006). Similar results were obtained by knocking down ATM in a cell line carrying both 

endogenous copies of ras gene mutated and exhibiting constitutive activation of DDR and 

senescence (Bartkova et al., 2006). Furthermore the prevalence of senescence in 

preneoplastic rather than in neoplastic lesions (Bartkova et al., 2006) supports the idea of 

oncogene-induced senescence as a barrier to tumor progression.  



 57 

These results revealed the importance of DDR activation in the establishment and 

maintenance of oncogene-induced senescence and the fundamental role of OIS as a tumor 

suppressive mechanism exploited by cells to avoid cellular transformation and progression 

into malignancy. 

 

BOX1: DNA replication  

Since DNA replication is one of the main aspects onto which oncogenic signalling 

converges, here I described the fundamental molecular steps that characterize and control 

normal DNA replication. 

In all eukaryotes DNA replication is a tightly regulated process that guarantees proper 

duplication of genomic DNA ensuring chromosomal DNA being replicated only once per 

cell cycle (Vaziri et al., 2003). The origin recognition complex (ORC), a six-subunit 

complex, binds specifically to sites of DNA replication initiation, also known as DNA 

replication origins (ORI). During late mitosis and G1 phase, ORC tags the initiation sites 

for the recruitment of replication licensing factors, CDC6 and CDT1. Once at the initiation 

site, CDC6 and CDT1 coordinate the loading of the MCMs (Mini Chromosome 

Maintenance) complex with helicase activity on the origin. Once MCMs are loaded, a fully 

licensed pre-replication complex (pre-RC) exists. The Pre-RC is activated by recruitment 

of additional factors including MCM10, CDC45, SLD2-3, DPB11 and GINS complex. The 

initiation of DNA replication in S-phase additionally requires DBF4/CDC7 kinase and 

CDKs activity. Indeed CDKs stimulate DNA replication origin licensing by 

phosphorylating CDC6 and preventing its degradation and nuclear export at G1/S 

transition (Mailand and Diffley, 2005) and by recruiting CDC45, which in turn brings 

DNA polymerases to the origins. At this stage, DNA synthesis begins. Cells developed 

different mechanisms to ensure DNA being replicated only once per cell cycle. ORC, 

CDC6 and CDT1 are required for the loading of MCMs onto DNA. To avoid MCMs 

continued association on DNA, the downregulation of ORC, CDC6 and CDT1 at the end 
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of G1 phase effectively prevents re-licensing of DNA replication origins. Cyclin E and 

CDKs activity also limit the assembly of pre-RC complex to G1 phase by modulating the 

levels of key replication proteins. Furthermore, an inhibitor of the licensing system, 

GEMININ, binds tightly to CDT1, blocking its ability to bind MCMs. Failure of this 

mechanism leads to re-replication DNA damage accumulation. In mammals, variations in 

the expression of MCMs, CDC6, CDT1, GEMININ and CYCLIN E induces genomic 

instability and tumor development. 

 

3.4 Oncogenes-induced DNA replication stress 

DNA replication plays fundamental roles in OIS establishment. Indeed the DDR activation 

that is responsible for the induction of senescence is completely dependent on DNA 

replication: oncogene-expressing cells unable to undergo S phase - by aphidicolin 

treatment or contact inhibition - do not accumulate DDR (Di Micco et al., 2006). 

 

Oncogenes act on a plethora of molecular pathways to promote uncontrolled cellular 

proliferation. Beyond the transcriptional activation of proliferative genes, c-Myc controls 

DNA replication by direct interaction with the pre-replicative complex, revealing a direct 

control of DNA replication dynamic (Dominguez-Sola et al., 2007). Oncogenic Ras up-

regulates the expression of Cdc6 (Di Micco et al., 2006), a crucial positive regulator of 

DNA replication origin licencing. Indeed Cdc6, together with Cdt1, helps the loading of 

MCM (Mini Chromosome Maintenance) complex onto replication origin during G1, 

licencing the origin for firing in the subsequent S phase.  

Therefore the upregulation of Cdc6 induces a specific phenomenon known as re-

replication that consists in replication origins firing more than once per cell cycle (Takeda 

et al., 2005). This phenomenon leads to amplification of the genomic region close to the 

re-replicated origin and it can also induce DNA topological problems that can turn into 

DSBs, thus leading to genomic instability (Di Micco et al., 2006). Moreover also 
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overexpression of Cyclin E induces Cdc6, and overexpression of Cdc6 itself can induce 

cellular senescence (Bartkova et al., 2006), revealing that DNA replication dynamics are 

the central node onto which oncogenic signalling converges.  

DNA combing experiments in DDR deficient cells (shCKH2) revealed that oncogenic Ras 

overexpression induces an increase in origin firing together with an increase asymmetric 

fork progression that stems from increased fork instability and fork pausing (Di Micco et 

al., 2006). In agreement with these results, also Cyclin E overexpression in U2OS leads to 

premature termination of DNA replication that can results in fork stalling or fork collapse 

and subsequent formation of DNA DSBs (Bartkova et al., 2006), and thus leading to 

genomic instability.  

Further evidence that strengthens the link between oncogene-induced altered DNA 

replication and genomic instability derived from the analysis of single nucleotide 

polymorphism at common fragile sites upon oncogene activation. Fragile sites are genomic 

regions difficult to replicate, where replication forks slow down, especially upon limited 

nucleotide pools, and seem to be caused by the paucity of DNA replication origins inside 

fragile regions (Casper et al., 2002; Durkin and Glover, 2007; Letessier et al., 2011). The 

analyses revealed that upon oncogene activation Loss Of Heterozygosity (a measure of 

genomic instability LOH) is more likely to occur at fragile sites than in the rest of the 

genome (Bartkova et al., 2005; Di Micco et al., 2006).  

  

Importantly, it was recently shown that mammalian telomeres present some of the typical 

features of fragile site. Fragile sites are genomic loci composed by repetitive sequences 

that challenge replication and display abnormal cytological patterns in metaphase 

chromosome upon replication stress. Therefore this discovery was achieved by metaphase 

spreads analysis and combing experiments in TRF1 knock out MEFs. Indeed most of 

chromatids of TRF1 KO showed irregular multiple telomeric patterns, often spatially 

detached from the chromatid end. These aberrant telomeres then correlate with increased 
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fork stalling and problems in telomere replication, further supporting the fragility of 

telomeres (Sfeir et al., 2009). Noteworthy, telomeres, when dysfunctional can promote 

cancer progression, most probably by inducing chromosomal instability (Chin et al., 2004; 

Rudolph et al., 2001). However the causative effect that makes telomeres dysfunctional in 

preneoplastic lesion - thus in presence of an active oncogene - have not been yet identified. 

 

Taken together all these data indicate that oncogene activation is first causing a 

hyperproliferative burst that results in aberrant DNA hyper-replication and subsequent 

DDR accumulation. 

However other studies revealed a much more complex interplay between altered DNA 

replication and DDR, where DNA damage itself is able to alter DNA replication dynamics. 

(Doksani et al., 2009; Ge et al., 2007; Petrini, 2009). Indeed upon DNA replication stress - 

induced by HU or aphidicolin treatment - dormant replication origins are activated to cope 

with the fork stalling and ensure S phase completion on time (Ge et al., 2007).  In addition, 

DSB can activate DNA replication events. Indeed the induction of a single DSB in the 

entire yeast genome is able to induce the firing of DNA replication origins in the 

immediate vicinity of the break (Doksani et al., 2009; Petrini, 2009). Even though the 

signal that produced the effect of origin firing has not been discovered yet, these findings 

further highlight the complexity of the dynamics interconnecting oncogene activation, 

DNA replication, and DNA damage. 

 

3.5 Possible mechanisms underlying oncogene-induced DNA replication stress 

 Growing evidence for the complexity of the molecular processes involved in 

oncogene-induced DNA replication stress is demonstrated by recent studies that are trying 

to dissect the mechanisms by which oncogene-induced replication stress is inducing DNA 

damage, leading to genomic instability. 

Recent reports suggest that dNTP pools play a fundamental role in oncogene-induced 
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replication stress. Indeed it has been proposed that cyclin E overexpression leads to 

depletion of the dNTP pools that results in replication stress and increased fork stalling. 

The dNTP pool depletion is due to increased active replication origins: the consumption of 

dNTPs is faster than their biosynthesis, thus as cells run out of dNTPs, replication fork stall 

more easily due to the lack of the right complementary dNTP to be incorporated in the 

DNA. Moreover upon dNTP pool depletion the chances to induce mutation due to the 

incorporation in the DNA of the wrong dNTP is higher, thus further leading to genomic 

instability (Bester et al., 2011). The importance of dNTP pools in oncogene-induced 

replication stress has been also demonstrated in a recent report showing that oncogenic Ras 

expression downregulates RRM2 - a key enzyme involved in the dNTP pool biosynthesis - 

already after 24 hour from oncogenic Ras infection. Furthermore RRM2 downregulation 

itself is sufficient to induced replication stress and subsequent OIS establishment (Aird et 

al., 2013). Thus dNTP pools depletion occurring upon oncogene activation depends both 

on increased consumption due to increased DNA replication as well as on the lack of de 

novo biosynthesis. However the oncogene-mediated downregulation of dNTP biosynthesis 

is a bit counterintuitive: if the oncogene is inducing cells to replicate more, why should it 

block the synthesis of dNTPs, essential compounds for replication? Further studies are 

needed to elucidate this novel and unprecedented aspect. 

 Other studies revealed that oncogene-induced replication stress lies on an increased 

topological stress that results in unusual replication intermediates entering mitosis, thus 

leading to genotoxic stress (Neelsen et al., 2013). 

 Collision of replication and transcription machinery is another possible mechanism 

underlying the oncogene-induced replication stress, and there is growing evidence 

supporting this hypothesis. As shown in (Jones et al., 2013) cyclin E overexpression leads 

to an increase in replication initiation that results in higher frequency of collision of 

replication-transcription machinery. The collision leads to fork breakage and increase 

DNA damage that is mainly resolved by homologous recombination. Furthermore the 
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replication stress resulted to be dependent on transcription: indeed transcription inhibition 

was sufficient to prevent DNA damage caused by oncogene-induced replication stress 

(Jones et al., 2013). These data are in line with the results presented in (Barlow et al., 

2013), where DNA replication stress is shown to affect mainly early replicating and 

actively transcribed gene clusters. The approach used allowed the mapping of the DNA 

regions that were coupled with DNA damage upon replication stress, induced both by HU 

treatment as well as by oncogene activation. Interestingly, both replication stresses induced 

DNA damage at the same DNA regions, which were characterized by gene clusters 

actively transcribed and early replicating. The authors propose a new concept of fragile 

sites, differing from common fragile sites (CFS): early replication fragile sites (ERFS). 

ERFS are sites located in actively transcribed regions, thus with an open chromatin 

configuration. They are early replicating regions, showing high density of DNA replication 

origins, together with a high G-C content (Barlow et al., 2013). CFS consist in very large 

genes characterized by a condensed chromatin configuration. They are late replicating 

regions, with low density of replication origins, with a high A-T content. Moreover their 

sequences are prone to form secondary structures, thus impeding proper fork progression 

through the locus (Ozeri-Galai et al., 2012). Common to both ERFS and CFS is the fact 

that they are protected by ATR kinase activity, and their DNA lesions are mainly repaired 

by homologous recombination (Barlow et al., 2013). Furthermore, they are both subjected 

to oncogene-induced replication stress. The reason for the replication stress-induced 

instability of CFS lies on the oncogene-induced increase in origin firing and the resulting 

reduced fork speed: this would hamper replication completion in those regions, such as 

CFS, with few replication origins and challenging sequences to replicate. Instead at ERFS, 

the increase in active origins in actively transcribed regions would increase replication-

transcription collision thus inducing fork stalling and ERFS instability (Barlow et al., 

2013; Mortusewicz et al., 2013). 

The complex mechanisms underlying oncogene-induced replication stress highlight the 
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importance of the coordination between DNA replication and transcription, in order to 

prevent genomic instability. Cells exploit various mechanisms to coordinate DNA 

replication and transcription to avoid their collision. For example Sen1/Senataxin helicase 

allows efficient progression of the DNA replication machinery through transcribed genes 

by removing RNA/DNA structures (Alzu et al., 2012). Furthermore topoisomerase I was 

previously found to be critical for preventing the formation of RNA-DNA hybrids and 

maintaining efficient replication fork speed through transcribed genes (Tuduri et al., 2009). 

 

3.6 Oncogene-induced Reactive Oxygen Species production 

Reactive oxygen species are highly reactive compounds that are formed upon incomplete 

reduction of oxygen. They include superoxide anion (O2
-), hydrogen peroxide (H2O2) and 

the hydroxyl radical (HO·). O2
- is produced by NADPH as a by-product of respiration. 

H2O2 exert its toxicity by its reduction to (HO·) by metal-catalysed Fenton chemistry. ROS 

are highly toxic to cells, since they induce lipid peroxidation, DNA and amino acid 

oxidation. Cells developed homeostatic pathways to keep these compounds at 

physiological levels. These pathways lead to the activation of specific enzymes, like 

superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase, devoted to the 

clearance of unbalanced ROS levels. However, the imbalance between the production of 

ROS and the capacity of cells to counteract them induces oxidative stress (D'Autreaux and 

Toledano, 2007). 

 

Beyond their toxicity there is growing evidence demonstrating that ROS are also essential 

intracellular second messengers. Indeed the existence of motifs sensitive to the redox status 

- such as metal co-factors and cysteine residues in phosphatases and kinases - in many cell 

cycle regulatory proteins suggests that oscillations in intracellular redox state could have a 

crucial role in regulating progression from G0/G1 to S- to G2- and M- cell cycle phases 

(Menon and Goswami, 2007). Moreover ROS help in activating the mitogenic and growth 
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factor signalling required for progression through the cell cycle by various mechanisms. 

For example H2O2 production results in tyrosine phosphorylation and activation of EGF 

receptor (Gamou and Shimizu, 1995). O2- activates PKC enzyme inducing disulphide bond 

formation (Knapp and Klann, 2000). Furthermore, the control of signal transduction by 

oxygen species through reversible phosphotyrosine phosphatase inhibition is a widespread 

and conserved component of the biochemical machinery that is activated by RTKs 

(Chiarugi and Cirri, 2003). 

Oxidizing agents can also impact on tumor suppressors: cysteine redox modifications 

regulate p53 DNA binding activity (Rainwater et al., 1995) and H2O2 exposure leads to 

reversible formation of ARF oligomers involving three critical cysteines (Menendez et al., 

2003). Similarly, expression and phosphorylation of Rb protein is redox regulated in 

human natural killer cells and fibroblasts treated with thiol antioxidants (Menon et al., 

2003). Moreover H2O2 exposure can directly induce disulfide bond formation between two 

ATM monomers, leading to ATM activation also in absence of DNA DSBs and MRN 

complex (Guo et al., 2010). 

Furthermore transformed cells produce elevated levels of ROS, including hydrogen 

peroxide. The use of antioxidant can inhibit tumor cell proliferation, pointing to a crucial 

role of ROS in mediating loss of growth control, highlighting ROS functions as mitogenic 

signalling compounds (Behrend et al., 2003). Interestingly, various independent studies 

demonstrated the presence of a direct link between oncogene activation and an increased 

production of ROS. Indeed it has been reported that the expression of MYC in human 

fibroblasts increases levels of intracellular ROS (Vafa et al., 2002). In addition, it has been 

demonstrated that RAS activation induces the production of ROS and that Ras-induced 

ROS play mitogenic functions crucial for cellular transformation. Treatment with the ROS 

scavenger N-acetyl-cysteine (NAC) completely inhibited the mitogenic activity of 

oncogenic Ras-expressing cells, further supporting the role of ROS as mitogenic signalling 

molecules that fuel Ras-induced hyperproliferation (Irani et al., 1997). There is some 
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evidence that at least in some cells, ROS production by oncogenic RAS proceeds through a 

PI3K and RAC-dependent pathway (Cho et al., 2002; Sundaresan et al., 1996) and the 

subsequent regulation of a cytosolic NADPH-dependent oxidase (NOX). However little is 

known about the pathway that Ras regulates to induce ROS production and further studies 

need to be undertaken to unveil the mechanisms exploited by ROS to promote 

proliferation.  

Furthermore the mechanisms that underlie ROS-induced DNA damage upon oncogene 

activation are not yet clear. ROS-induced DNA damage could be a consequence of ROS 

toxicity that induces spurious DNA damage, or it could depend on ROS acting like 

mitogenic molecules thus mediating oncogene-induced replication stress.  
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CHAPTER 4. Role of Polycomb in cancer and senescence 

 

4.1 Polycomb group protein: epigenetic control of cell identity and cellular proliferation  

Polycomb group proteins (PcG) were first discovered in Drosophila melanogaster for their 

ability to induce, when mutated, homeotic transformations (Kennison, 1995; Orlando and 

Paro, 1995; Schwartz and Pirrotta, 2008; Simon, 1995; Simon and Kingston, 2009). Indeed 

mutations in Polycomb group genes are able to induce spatial-temporal deregulation of 

homeotic genes expression, leading to developmental defects (Simon and Kingston, 2009). 

A second class of developmental regulators that counteract the effects of PcG mutations is 

Trithorax Group proteins (TrxG). PcG and TrxG proteins act on common regulatory 

pathways and play a crucial role in maintaining a pre-set active (TrxG) or repressed (PcG) 

transcriptional state during development (Kennison, 1995; Orlando and Paro, 1995; Simon, 

1995). PcG and TrxG proteins are chromatin-modifying factors that play essential roles in 

regulating the cellular epigenetic status, modifying the chromatin surrounding their 

association sites (Morey and Helin, 2010; Sparmann and van Lohuizen, 2006). TrxG act as 

global inducers of epigenetically active states, which is balanced by an antagonistic 

repressed state mediated by PcG proteins.  

PcG proteins are highly conserved in evolution and consist in two biochemically distinct 

multiprotein complexes known as Polycomb Repressive Complex (PRC) 1 and 2 (Morey 

and Helin, 2010). The PRC1 complex consists of a large number of subunits with different 

biochemical proprieties (Ring, Chromo and Zinc finger domains; (Morey and Helin, 

2010)) The minimal components of PRC1 complex than ensure in vitro PRC1 activities are 

Polyhomeotic (Ph), Polycomb (Pc), Posterior Sex Comb (PSC) - which include the proto-

oncogene BMI1 - and RING1 (Francis et al., 2001; King et al., 2002; Shao et al., 1999). 

The essential components of PRC2 complex are the three PcG proteins EZH2, EED and 

SUZ12 and the histone binding proteins RbAp46/48 (Cao and Zhang, 2004; Czermin et al., 
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2002; Kuzmichev et al., 2002; Muller et al., 2002). KO mice for EZH2, EED and SUZ12 

show embryonic lethality during gastrulation (Faust et al., 1998; O'Carroll et al., 2001; 

Pasini et al., 2004), further supporting the fundamental role of PRC2 complex in 

development.  

The catalytic subunit of PRC2 complex, namely EZH2, mediates the di- and tri-

methylation (me2/me3) of lysine (K) 27 of histone H3 (Cao et al., 2002; Czermin et al., 

2002; Kuzmichev et al., 2002; Muller et al., 2002) with the help of EED and SUZ12 (Cao 

and Zhang, 2004; Pasini et al., 2004). This epigenetic mark - H3K27me3 - is essential for 

PRC1 binding to the same target sites (Cao et al., 2005). Indeed, the chromo-domain 

proteins of the PRC1 complex (CBX4, CBX6, CBX7 and CBX8) mediate PRC1 

recruitment to the target sites by binding H3K27me3 (Bernstein et al., 2006; Cao et al., 

2002; Kuzmichev et al., 2002). Once at the target sites, PRC1 mediates ubiquitylation 

(ubq) of histone H2A K119 through the ubiquitin ligase activity of RING1B (Wang et al., 

2004). This results in a stable transcriptional repression possibly through chromatin 

compaction and inhibition of SWI/SNF chromatin remodelling activity (Francis et al., 

2004; Francis et al., 2001).  

4.2 Polycomb and cancer 

The identification of BMI1 as a proto-oncogene that cooperates with MYC to promote B- 

and T-cell lymphomas (Haupt et al., 1991; van Lohuizen et al., 1991), gave the first 

evidence for the involvement of PcG gene family in cancer development. Together with 

BMI1, EZH2, the catalytic subunit of the PRC2 complex, is the best-characterized PcG 

protein in human cancer. EZH2 has been identified as a direct downstream target of the 

pRB/E2F pathway and one of the most frequent over-expressed genes in malignant 

prostate cancer (Bracken et al., 2003; Varambally et al., 2002). 

Also other PcG proteins, like BMI1, RING1B and CBX7 are highly overexpressed in 

malignant prostate cancers (Bernard et al., 2005; van Leenders et al., 2007). The 

overexpression of PcG proteins has been ascribed to deregulation of pRB/E2F pathway, as 
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well as specific amplification of BMI1 and EZH2 loci. EZH2 overexpression promotes 

prostate cancer development by silencing ADRB2, a ß-adrenergic receptor. Indeed loss 

ADRB2 expression induces cell invasion in benign prostate cells, whereas its constitutive 

expression counteracts the metastatic and proliferative effects induced by EZH2 

overexpression. This regulatory pathway is common also to a model for mammary 

epithelial cellular transformation (Yu et al., 2007). 

Indeed PcG proteins were also found highly overexpressed in breast cancers (Bracken et 

al., 2003; Collett et al., 2006; Kleer et al., 2003). High EZH2 expression in preneoplastic 

mammary lesions suggests deregulation of PRC2 activity as an early event in breast cancer 

development (Ding et al., 2006). EZH2 overexpression in breast cancer is associated with 

bad prognosis and correlates with metastatic sporadic and familial breast tumours (Ding et 

al., 2006; Kleer et al., 2003). BMI1 is also found overexpressed in breast cancers and it 

correlates with MYC expression. EZH2 resulted to be essential for the proliferation of 

BRCA1 -/- cells (Puppe et al., 2009), and BMI1 overexpression, in cooperation with H-

Ras, caused MCF10A breast epithelial cells transformation (Hoenerhoff et al., 2009). 

EZH2 and BMI1 are also highly expressed in glioblastoma (Abdouh et al., 2009; 

Godlewski et al., 2008; Korur et al., 2009; Suva et al., 2009). The proliferation of 

glioblastoma cells was blocked by downregulating EZH2 or BMI1 expression (Abdouh et 

al., 2009; Suva et al., 2009), further highlighting the role of PcG protein in cancer 

development.  

EZH2 and BMI1 are also involved in lung tumor development. EZH2 has been found 

highly expressed in Squamous Lung Cell Carcinoma (SLCC) together with BMI1 and 

Ki67 (Breuer et al., 2004). Furthermore in Non-Small Cell Lung Cancer, BMI is required 

for K-RAS induced tumorigenesis in vivo, and plays its tumorigenic role by repressing the 

INK4b-ARF-INK4a locus ((Dovey et al., 2008); discussed later in paragraph 4.3 Polycomb 

and cellular senescence). 
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Several other tumours are characterized by a significant increase in EZH2 and BMI1 

expression. This suggests that deregulation of PcG proteins is a common feature of 

transformed cells. Other tumours that show an overexpression of EZH2 and BMI1 include 

Oral Squamous Cell Carcinomas (Kang et al., 2007; Kidani et al., 2009), Hepatocellular 

Carcinomas (Sasaki et al., 2008; Steele et al., 2006), gastrointestinal cancers (Cai et al., 

2010; Mimori et al., 2005; Tateishi et al., 2006), osteosarcomas (Sasaki et al., 2010) and 

bladder tumours (Arisan et al., 2005; Raman et al., 2005; Shafaroudi et al., 2008; Weikert 

et al., 2005). 

 

4.3 Polycomb and cellular senescence 

INK4b-ARF-INK4a locus is one of the best-characterized PcG target in mammals (Bracken 

et al., 2007; Dietrich et al., 2007; Jacobs et al., 1999). INK4b-ARF-INK4a locus encodes 

for three fundamental tumor suppressors: p15INK4b, p19ARF (p14ARF in humans) and 

p16INK4a (Gil and Peters, 2006). p14ARF binds to MDM2 blocking its ability to degrade p53.  

Stabilization of p53 leads to transcriptional activation of the Cyclin/CDK inhibitor p21 

resulting in anti-proliferative and pro-apoptotic effects (Gil and Peters, 2006). p16INK4a and 

p15INK4b bind to Cyclin/CDK complexes blocking CDK mediated phosphorylation of the 

Retinoblastoma protein pRB, thus inhibiting cell cycle progression. Loss of function of any 

of these proteins prevents cells to undergo cellular senescence and promotes cellular 

proliferation (Gil and Peters, 2006). 

PcG proteins maintain INK4b-ARF-INK4a locus transcriptionally repressed through the 

specific association of PRC1 and PRC2 to the p16INK4a promoter (Bracken et al., 2007; 

Dietrich et al., 2007). 

Various studies revealed that loss of PcG functions correlates with activation of INK4b-

ARF-INK4a expression resulting in cellular senescence (Bracken et al., 2007; Dietrich et 

al., 2007; Gil et al., 2004; Jacobs et al., 1999). BMI-1 deficient mouse embryonic 

fibroblasts (MEFs) show a dramatic proliferative block together with a strong activation of 
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p15INK4b, p19ARF and p16INK4a (Jacobs et al., 1999). Also upon loss PRC2 members, like 

EZH2 or SUZ12, the INK4b-ARF-INK4a locus is actively expressed leading to premature 

senescence in mouse and human cells (Bracken et al., 2003; Pasini et al., 2004). 

Furthermore Ink4a-Arf inactivation can rescue Ring1B-/- mice embryonic lethality from 

E9.5 to E11.5 (Voncken et al., 2003), and it can partially rescue developmental defects of 

Bmi1-/- mice (Bruggeman et al., 2005). These results revealed the physiological relevance 

of PcG regulation of Ink4a-Arf locus. However a recent study demonstrated a role of PcG 

proteins in cellular proliferation that is independent of Ink4a-Arf expression. Indeed, loss 

of INK4A-ARF cannot rescue developmental defects of Bmi1 KO mice, which are instead 

rescued by genetic inactivation of Chk2, independently of Ink4a-Arf repression (Liu et al., 

2000). In agreement with these findings, no clear correlation between INK4b-ARF-INK4a 

repression and overexpression of PcG proteins has been found in human tumours. For 

example, no correlation between BMI1 and p16INK4a expression was found in different 

haematological malignancies (van Galen et al., 2007). Moreover, in a mouse model for 

lung cancer, BMI1 represses the INK4A-ARF locus during K-rasG12D driven transformation 

(Young and Jacks, 2010) whereas hepatocellular carcinomas and transformation of 

MCF10A mammary epithelial cells by co-expression of RAS and BMI1 have no effect on 

INK4A-ARF expression (Hoenerhoff et al., 2009). All together these findings highlight the 

importance of PcG mediated INK4A-ARF repression in development and carcinogenesis, 

but they also reveal the existence of additional regulatory pathways mediated by PcG that 

are independent INK4A-ARF repression.  

 

4.4 Polycomb and DNA replication 

Growing evidence for a role of Polycomb group proteins on S phase progression and, more 

directly, on DNA replication has been recently shown from independent studies. Indeed, in 

absence of SUZ12, serum starved quiescent human fibroblasts show impairment in cell 

cycle re-entry as measured by BrdU incorporation (Pasini et al., 2004), suggesting an 
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involvement of PRC2 in G1/S progression. Furthermore, during DNA synthesis PcG 

proteins can stay attached to chromatin (Francis et al., 2009) and PRC2 subunits have been 

localized at sites of ongoing DNA replication (Hansen et al., 2008). These results support 

the hypothesis of a direct role of PcG on DNA replication. However the molecular 

mechanisms underlying the interplay between PcG proteins and DNA replication are still 

poorly understood. 
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DNA Molecular Combing: Technology set up 
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1. Complexity of DNA replication dissected by DNA molecular combing  

DNA replication is a tightly regulated process that at each cell cycle ensures the efficient 

duplication of the entire genome. In metazoan, especially in mammalian cells, the elements 

involved in DNA replication are still poorly characterised.  

The development of single molecule assays to study DNA replication dynamics has been 

one of the major improvements in the field. Namely DNA molecular combing has proven 

to be one of the most powerful technologies to address the complexity of DNA replication 

process at whole genome level in vivo. 

Since the aim of my PhD project is to understand how oncogene activation alters DNA 

replication, I set up DNA molecular combing technology in my Institute. In this section I 

explain all the steps I have undertaken to make DNA molecular combing a proficient 

technology for my scientific purposes. 

 

2. DNA molecular combing: physical forces to stretch the genome for 

High-resolution studies 

 

DNA molecular combing exploits the physical force between air/water meniscus and the 

coverslips interface that occurs when the coverslips is pulled out from the DNA solution. 

This process allows for DNA molecules to become attached by their extremities to the 

silane-coated glass slide, and to be orderly stretched on the glass slide (Bensimon et al., 

1994; Michalet et al., 1997) (Figure 3). This technique can be applied to different type of 

genomic studies (Caburet et al., 2002; Lebofsky and Bensimon, 2003). It is possible to 

apply FISH on combed DNA, by using specific fluorescent probe for the genomic locus of 

interest. This allows to physically mapping the locus of interest, as well as detecting micro 

and gross chromosomal rearrangements such deletion (Michalet et al., 1997) and 

amplifications (Gad et al., 2001a; Gad et al., 2001b).  
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Figure 3. DNA molecular combing of genomic DNA.  
(A) DNA molecular combing apparatus is made of a vertically moving clip to which a silinised coverslip is 
attached. Coverslips are then dipped at a constant velocity of 300 µm/s into the reservoir containing the DNA 
solution of interest. DNA molecules (f) in the solution bind to the coverslip surface by their extremities. 
After 5 minutes incubation, the coverslip is pulled out of the DNA solution. In this way the DNA molecules 
anchored to the surface are moved upward together with the coverslip surface. The meniscus air/water exerts 
a localized constant and downward vertical force on the coiled DNA molecules attached to the coverslip. In 
this way the coiled molecules are gradually unwound and stretched on the dry part of the surface, irreversibly 
binding to it (c). (B) Representative image of combed human genomic DNA observed at epifluorescence 
microscope. Adapted from (Michalet et al., 1997). 
 

 

DNA replication can be studied by fluorescent detection of thymidine analogues 

incorporated on combed DNA molecules. Moreover, by coupling FISH and detection of 

incorporated nucleotide analogues, it is possible to monitor the DNA replication at a 

specific locus of interest (Caburet et al., 2002; Lebofsky and Bensimon, 2003). 

 

This approach combines major technical

developments of the molecular combing

phenomenon (9)—referred to as dynamic

molecular combing (DMC)—with fluores-
cent hybridization. In this process, silanized

cover slips (9–11) are dipped into a buffered

solution containing genomic DNA (12)

and, after 5 min of incubation, are pulled

out with the mechanical device described

in Fig. 1. During incubation, DNA mole-
cules bind spontaneously to the cover slip

surface by their extremities only. When the

cover slips are pulled out of the solution at

a constant vertical speed of 300 �m/s (13),

the meniscus (air solution–cover slip inter-
face) exerts a constant restoring force on

the immersed part of each anchored mole-
cule, while their emerged part comes out

with the surface (Fig. 1A). Because of their

hydrophobicity, the silanized surfaces dry

instantaneously as they are pulled out of the

solution. This rapid process results in irre-
versibly fixed, parallel DNA fibers, aligned

in a single direction all over the surface

(Fig. 1B).

As in the previously described procedure

(9), DMC results in constant stretching of

DNA molecules. The measured stretching

factor is uniform all over the surface, as

verified by systematic measurements of �-
DNA molecules (48.5 kb) on test surfaces,

yielding a factor of 2 kb/�m. This stretching

factor does not depend on the size of the

DNA fragments (11, 14).

The major advantage of DMC is its abil-
ity to comb high concentrations of total

genomic DNA in conditions preserving it

from excessive shearing. This yields a very

high density of fibers (which, for human

samples, can reach up to hundreds of ge-
nomes per cover slip), with most DNA

fragments longer than several hundred kilo-
bases (Fig. 1B) (15). Moreover, a very large

number of identical surfaces can be pre-
pared from the same DNA solution.

Fluorescent hybridization of DNA

probes on combed DNA allows direct map-

ping of their respective positions along the

fibers (16, 17). Because the density of fibers

is high, scanning and recording of signals is

fast, and numerous signals can be rapidly

measured, allowing reliable distance mea-
surements by statistical analysis, without

reference to any other method or internal

control. To calibrate and test the feasibility

of this approach, we used it for the orien-
tation and the refined physical mapping of

the human calcium-activated neutral pro-
tease 3 gene (CAPN3 located on 15q15.2)

contained in YAC 774G4. Mutations in

this gene are responsible for the autosomal

recessive limb-girdle muscular dystrophy

type 2A (18). Cosmids of two contigs cov-
ering the gene region were hybridized; con-
tig 1 has a known transcriptional orienta-
tion with respect to the centromere, where-
as contig 2, which contains the CAPN3

gene, has not yet been orientated (Fig. 2).

The orientation of contig 2 would be ob-
tained from a sufficient number of indepen-
dent measurements of distances between

different pairs of cosmids belonging to both

contigs.

Total yeast genomic DNA [12.6 mega-
bases (Mb)] containing the YAC clone

774G4 (1.6 Mb) was obtained directly from

yeast cells embedded in agarose blocks (12),

and no separation of the YAC was attempt-
ed. A solution of this DNA (7.5 � 106

genomes per milliliter) (19) was combed by

DMC. Pairs of cosmids were then hybrid-
ized, and detected with a different fluoro-
chrome [fluorescein isothiocyanate (FITC)

(green) or Texas Red™ (red)] for each cos-
mid (17). Using only a fraction of a single

22 mm by 22 mm cover slip, tens of aligned

pairs of red and green signals, as well as

isolated signals, were systematically record-
ed. During the recording, no rejection of

incomplete signals was made, in order to

study the possibility of a purely statistical

determination of real sizes and distances of

signals. The analysis of the distributions of

measurements, indeed, led to the assess-
ment of an unambiguous size for both cos-
mids and for their distance, with a standard

deviation of a few kilobases (20, 21). This

strategy thus seems easily amenable to au-
tomation. Sizes of cosmids used in different

hybridizations were reproducibly measured

on different slides, and a further test of the

stretching uniformity was obtained from re-
dundant measurements of a few long dis-
tances (21, 22). This consistency allows a

confident use of a constant stretching factor

of 2 kb/�m to translate these measurements

into kilobases, without requiring a probe of
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Fig. 1. Dynamic molecular combing of total
genomic DNA. The technique involves four steps:
(i) preparation of suitable surfaces coated with
trichlorosilane (9–11), (ii) preparation of a DNA
solution from DNA embedded in low-melting
agarose blocks (12), (iii) incubation of surfaces in
the solution for 5 min, and (iv) extraction of the
surfaces out of the solution at a constant speed
(300 �m/s) (13). (A) Steps (iii) and (iv) are per-
formed in a Teflon™ reservoir, using a molecular
combing apparatus consisting of a vertically
moving clip holding one or more cover slips. We
used silanized 22 mm by 22 mm cover slips,
which were dipped vertically at a constant speed
(300 �m/s) into a 4-ml Teflon reservoir containing
either an �0.25 �g/ml solution of total yeast
genomic DNA in 50 mM MES (pH 5.5) or an �1.5
�g/ml solution of total human genomic DNA in
150 mM MES (pH 5.5) (12). Freely floating mole-
cules (f ) randomly bind to the surface by their
extremities. For clarity, the random coil of the
bound molecule (b) is represented as exaggerat-
edly distant from the anchoring point. The cover
slip area below the meniscus line is immersed. As
the cover slip is pulled out of the solution after a
5-min incubation period, the anchoring points
move upward with the surface. The fixed, horizontal meniscus exerts a localized, constant, and down-
ward vertical force on the coil of the molecules, which are thus progressively unwound. The unwound
part is stretched and irreversibly fixed on the dry part of the surface (c). Some loops are observed (lo)
when DNA fragments are bound at both extremities, as described (9). (B) One field of view (200 �m by
120 �m) is shown of combed human genomic DNA, observed with an epifluorescence microscope
(Axioskop, Zeiss, Plan Neofluar 40� objective) with an attached intensified video camera (SIT 68,
Dage-MTI). Most of the DNA strands span several fields of view, corresponding to hundreds of mi-
crometers (1 �m § 2 kb). The density of fibers shown is close to the maximum for optimal combing.
Spherical deformations due to the intensified camera were corrected and image was contrast-enhanced
with a homemade computer software. Differences in fluorescence intensity can be attributed to local
bundling of a few DNA molecules. Bar, 25 �m.
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As for the study of DNA replication dynamics, the technique involves various steps: 

1. Preparation of coverslips coated with thrichlorosilane; 

2. Pulse labelling the cells with thymidine analogues and embed them in low-melting 

agarose plugs; 

3. Preparation of a DNA solution deriving from pulse labelled cells. 

4. Performing DNA molecular combing of the DNA solution prepared with the use of a 

specific combing apparatus produced by Genomic Vision. 

5. Whole genome studies: immunofluorescence against the incorporated thymidine 

analogues. 

6. Site specific studies: coupling FISH to the staining for thymidine analogues.  

7. Image acquisition. 

8. Image analysis: measurement of replication signals. 

9. Image analysis: interpretation of replication signals. 

 

To properly set up this technology I went through each one of these steps and I optimized 

the state of art of the protocols that are used at each phase of DNA molecular combing in 

different laboratories to optimize them in my hands.  

 

2.1 Preparation of coverslips coated with thrichlorosilane 

DNA molecules bind irreversibly to the glass slide only when the glass is chemically 

modified to obtain a hydrophobic surface onto which DNA extremities binds during the 

DNA molecular combing process.  

Thus the production of the high quality coated glass slides becomes of primary importance. 

Given the fact that at the beginning of my PhD the coated glass slides for DNA combing 

experiments were not yet commercially available, I try to produced them in collaboration 

with Marcella Chiari, at the University of Milan following an adapted version of the 

protocol described in (Labit et al., 2008).  
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They used an optimized liquid-phase silanization method that utilizes a novel combination 

of silane/solvent. The chemicals used in the silanization process must be of the highest 

quality to ensure a good quality of silanized glass slides. We used ethanol and 

chlorophorme purchased from Carlo ERBA. As silane compound we used 7-octen-1-yl-

Trimethoxysilane (Catalog no. 452815), purchased from Sigma-Aldrich. We used 

22×22mm glass slides purchased from Esco (Portsmouth, VA, USA).  

The steps involved in the silanization consist in:  

1. Cleaning the coverslips prior to silanization;  

2. Overnight silanization;  

3. Post-silanization cleaning. 

Before proceeding for silanization, coverslips needs to be cleaned and free from organic 

residues to ensure homogeneous silane coating over the surface. There are mainly three 

different cleaning procedures, one involves piranha solution, which contains hazardous 

organic solvents; the other two are safer and are based on the use of plasma cleaner or UV-

ozone cleaner.  In our case we used UV-ozone cleaner. Briefly coverslips were washed 

three times in ethanol and dried with Argon. Then coverslips cleaning was performed by 

incubation in the UV-ozone cleaner for 10 min. Then the coverslips were incubated with 

silane overnight. Briefly, (7-octen-1-yl) trimethoxysilane was diluted 1:1000 in n-heptane. 

Dried coverslips were rapidly transferred into the silane solution without rehydration and 

kept overnight in a desiccator, under a chemical hood. After silanization, coverslips were 

transferred into n-heptane and sonicated for 5 min. Coverslips were moved one by one into 

distilled water and sonicated for another 5 min in distilled water. Coverslips were 

recovered and dried before a 5-min final sonication in chloroform. To test the 

hydrophobicity of the silanized coverslips, a drop of water on a silanized coverslip will 

form a characteristic round drop, unlike on an untreated surface.  
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Figure 4. DNA fibers are better stretched on commercially-available silanized coverslips compared 
with home made ones.  
DNA molecular combing was performed using a DNA solution coming from cells pulsed labeled with 
thymidine analogues. After immunodetection (IdU green, and CldU red), I assessed the level of DNA 
stretching, fiber length and fiber density on coverslips silanized by us (A) or made commercially available by 
Genomic Vision (B). 
 

We tested the quality of these silanized coverslips by performing DNA molecular 

combing. The DNA attached to the glass slide even tough it was a bit waved (Figure 4A).  

!"
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So as this coated glass slides became commercially available we tested then. As show in 

Figure 4, DNA is better stretched on coverslips produced by Genomic Vision (Figure 4B) 

as respect to the coverslips we produced (Figure 4A). Thus we stop producing them 

ourselves and we started purchasing them from Genomic Vision for the rest of the project.  

 

2.2 Pulse labelling the cells with thymidine analogues and embed them in low-melting 

agarose plugs 

 

DNA molecular combing allows for the visualization and the study of DNA replication 

dynamics occurring in vivo at the single DNA molecule level. To accomplish this, cells 

needs to be pulse labelled with analogues of thymidine, such as BrdU 

(Bromodeoxyuridine), IdU (Iododeoxyuridine) and CldU, (Clorodeoxyuridine). According 

to the specific need, one can decide whether to label the cells with a single pulse, BrdU, or 

to label them with two successive pulses, IdU and CldU. Pulse labelling cells with two 

analogues allows for the analysis of more replication parameters than in the case of 

labelling with a single analogue. Indeed, double labelling allows for the precise evaluation 

of for the symmetry of fork progression, interorigin distances, which can only be inferred 

in case of single labelling. Therefore in all of my combing experiments I decided to 

perform double labelling with thymidine analogues. 

 

Another important aspect of the labelling is the time of incubation with the thymidine 

analogues, which depends on the doubling time of the cells. Usually the incubation time 

with thymidine analogues ranges from 15 to 30 minutes, but it can also reach 1 hour in 

case of slow replicating cells. It is very important to remember that the incubation time 

with modified nucleotides has to be really precise in order to have accurate measurements. 
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When studying DNA replication at specific genomic loci it is crucial to optimize the 

labelling protocol in order to maximize the probability to have the locus of interested 

replicated during the pulses. To this regard I set up a protocol of pulse and chase for the 

study of DNA replication dynamics at telomeres, by adapting the protocol used in (Sfeir et 

al., 2009). Briefly, I performed 3 rounds of pulse and chase, with 1 hour pulse labelling 

and 3 hours of chase. More precisely, 1 hour incubation with IdU, 1 hour incubation with 

CldU followed by 3 hours of chase, repeated for 3 times. The total duration of the three 

rounds of pulse/chase was 12 hours, which is less than the cell doubling time. Since this 

labelling procedure last less than a cell cycle, I am confident that cells already labelled at 

the beginning of the procedure will not be re-labelled at the same genomic loci.  

 

Another key point in the labelling is the concentration at which thymidine analogues are 

used. In some protocols they are used at the same concentration, while in others the 

thymidine analogue of the second pulse is used at a higher concentration than the first 

analogue (1st 25um vs 2nd 200um). In the case of equal concentration, cells are extensively 

washed – 3 fast washes with PBS - between 1st and 2nd pulse, to ensure that the first 

analogue is washed away and so to proceed with the second pulse. However this procedure 

can more easily introduce errors in the incubation time, and it does not ensure a complete 

wash out of the analogue, also because the analogue is usually transported into the nucleus 

and the washing with PBS is not enough to wash away the nuclear thymidine analogues. 

Therefore other protocols optimized the washing step reducing it to a single fast wash with 

PBS. After this fast wash, the second labelling is performed using the thymidine analogue 

at a much higher concentration (8 times higher) than the analogue used in the first pulse, 

putting the two analogues in competition for the incorporation in the DNA. In this way, 

due to the higher concentration, the second analogue is winning the competition over the 

first analogue, reducing the probability of the first analogue that was not washed away, to 

be incorporated in the DNA during the second pulse.  
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Figure 5. Optimal DNA fiber density derives from ~ 45*103 cells/plug.  
DNA molecular combing was performed using a DNA solution coming from cells pulsed labeled with 
thymidine analogues. After immunodetection (IdU green, CldU red and ssDNA blue), I assessed the level of 
DNA fiber density of DNA solution derived from 250*103 cells/plug (A) or 45*103 cells/plug (B). 
 

Once the cells are labelled, they need to be embedded in low-melting agarose plugs. The 

amount of cells per plugs is critical to obtain an optimal DNA fiber density on the slide. 

Thus it is very important to find the proper range of cells per plug, in order to obtain the 

ideal fiber density. According to various protocols the number of cells per plug can range 

from 45 . 103 to 250 . 103 (Bianco et al., 2012; Schurra and Bensimon, 2009). Thus I tested 

the two concentrations for the density of DNA fibers. As shown in Figure 5 the optimal 

concentration is the lowest one (45 . 103 cells/plug). Indeed with 250 thousands cells the 

!"
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number of fibers is so high that most of they often overlap, thus rendering the analysis 

unfeasible. With the lowest concentration of cells, DNA fibers on the coverslip are at a 

proper density that allows for the analysis of DNA replication signals. 

 

The step involved in agarose plugs preparation is crucial and everything must be handled 

with care. After the labelling, cells are trypsinized and resuspended in cold PBS to slow 

down DNA replication. Cells are then centrifuged 5 minutes at 1200 rpm, while counting 

cells (from 10µl of cell culture) and calculating the amount of plugs you can obtain. 

Supernatant should be removed as much as possible (decantation and pipetting). To avoid 

clusterization of the cells, a cold PBS/trypsin mixture is added to the tube (corresponding 

to 45µl for one plug). The cell pellet is resuspended very gently by pipetting 10 times with 

P100 or 200-micropipette (with yellow cone). Then 1.2% low-melting point agarose 

solution (equal volume to PBS/trypsin) is added to the cell suspension while the tube of 

agarose is also immersed in 50°C water bath to avoid agarose solidification. Before mixing 

cell suspension to agarose you should leave the cell suspension at 37°C also to avoid 

agarose solidification before pouring it in the plug molds. The cell/agarose mixture is again 

mixed gently by pipetting 10 times with P100 or 200-micropipette (with yellow cone). The 

mixture is then poured immediately into gel plug mold (about 90 µl for each well). The 

poured gel plug mold is cool down immediately in a fridge for 30 min. This passage is 

important to avoid that the cells fall down in the plug due their higher density respect to 

agarose. Before storing the agarose plugs, they need to be incubated with Proteinase K to 

degrade all the proteins and leave just DNA inside the plugs. This deproteinization step 

occurs with an overnight incubation of the plugs into pre-warmed ESP solution - 2mg/ml 

Proteinase K, 1% sarcosyl in EDTA (0.5M, pH 8.0), 250µl for one DNA plug - at 50°C. 

The next day plugs are cooled down at room temperature and then washed 3 times in TE. 

Plugs are then ready to be processed to produce DNA solution to be combed. At this stage 

they can also be stored at 4°C in 0.5M EDTA. 
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2.3. Preparation of a DNA solution deriving from pulse labelled cells. 

To obtain a DNA solution form the DNA agarose plugs produced, these plugs need to be 

processed through various steps. Plugs are first stained for 1 hour with the intercalating 

agent YOYO-1. This intercalation is an important step because it allows the DNA to be 

better stretched over the silanized coverslip. Moreover, since it emits light at green 

wavelengths, it can also be used to check for the fiber density at a fluorescent microscope, 

before proceeding with the immunofluorescence. 

After YOYO-1 staining, plugs need to be melted in a proper buffer, since the attachment of 

the DNA to the silanized coverslips is highly dependent on the pH of the buffer solution in 

which DNA is dissolved (Allemand et al., 1997). In all my experiment I used the buffer 

solution proposed in (Caburet et al., 2002), that is MES 0.5 M, pH 5.5. Agarose plugs are 

then melted in 3ml MES buffer with 20 minutes incubation at 68°C. Longer incubation can 

break the DNA so this incubation time must be precise. At the end of the incubation 

agarose plugs should be melted. The solution is then cooled down for 10 minutes at 42°C 

and then 4.5 µl of β-agarase I is added to the solution and left overnight at 42°C to digest 

the agarose. The next day the DNA solution is ready to be combed. 

 

2.4. Performing DNA molecular combing of the DNA solution prepared with Molecular 

Combing System, a specific combing apparatus produced by Genomic Vision. 

 

DNA solution is gently poured in Teflon reservoirs. In this step the DNA solution must be 

handle with extreme care since minimal mechanical stress can induce the DNA to break. 

Silanized glass slides are then incubated for 5 minutes in the buffered DNA solution. 

During incubation, the extremities of DNA molecules bind naturally to the glass slides. 

The coverslips are then pulled out of the solution at a constant vertical velocity of 300 
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um/s by the Molecular Combing System, a specific combing apparatus produced by 

Genomic Vision (Figure 3). During this process the meniscus air/solution and coverslip 

interface applies a constant force on the immersed part of each attached molecule, while 

their emerged part comes out with the coverslip surface. Due to their hydrophobicity, the 

silanized coverslips dry immediately as they are pulled out of the solution. This results in 

permanently fixed, parallel DNA fibers, stretched in a single direction on the slide 

(Michalet et al., 1997). Alternative methods that do not require combing apparatus have 

been described (Norio and Schildkraut, 2001).  

Importantly, under these conditions, the stretching of the DNA molecules results to be 

constant (Bensimon et al., 1994). This was proved by systematic measurements of phage λ 

DNA molecules (48.5 kb) combed on silanised coverslip. The stretching factor obtained by 

this analysis is 2 kb per 1 µm: this indicates that for any DNA molecules stretched on the 

class slide 1 micrometre of DNA corresponds to 2 kilobases (1µm=2kb) (Michalet et al., 

1997).   

After combing the DNA solution, the DNA molecules are crosslinked to the coverslips 

surface by incubation at 60°C for 4 hours in the oven. After crosslinking, combed DNA 

can be processed for immunofluorescence. 

 

2.5. Whole genome studies: immunofluorescence against the incorporated thymidine 

analogues 

 

There are different protocols to perform immunofluorescence against thymidine analogues. 

(Conti et al., 2001) (Bianco et al., 2012) (Schurra and Bensimon, 2009), which have in 

common some steps: a. dehydration step, where DNA is dehydrated by successive ethanol 

baths (70%, 90%, 100%); b. denaturation step, where DNA is denatured with an alkaline 

solution containing NaOH. After these steps slides can be hybridized with antibodies 
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against thymidine analogues. The difference between the two a due soli lies in the 

chronological sequence of the dehydration and denaturation steps and the solutions used 

for the DNA denaturation.  

In the protocol proposed by Schurra C. and Bensimon A. (Schurra and Bensimon, 2009),  

the DNA is first denatured with a solution of 0.5 M NaOH and 1M NaCl and then it is 

dehydrated with successive ethanol bath. Differently, in the protocol proposed by Bianco, 

J.N. (Methods, 2012, Pasero's laboratory), slides are first dehydrated and then denatured 

with a solution of NaOH 1M. I tested both of these protocols and in my hands it appeared 

that the protocol from Bensimon’s lab is perfectly suitable for the staining of the thymidine 

analogues (IdU and CldU). However, when one needs to stain also for the ssDNA, the 

protocol from Pasero’s lab resulted to be the only one giving nice triple staining (IdU, 

CldU, ssDNA). The staining for ssDNA is fundamental to perform proper analysis of DNA 

replication dynamics and limits mistakes in the assessment of replication patterns. Staining 

of ssDNA ensures that the replication signals analysed are on the same DNA molecule, 

thus avoiding misinterpretation of the replication patterns. Moreover the DNA fibers 

length can influence the interpretation of some replication parameters (Bianco et al., 2012; 

Techer et al., 2013), hence knowing the distribution of the DNA fiber length ensures 

accurate estimation of replication parameters.  

Therefore in my combing experiments, when studying DNA replication dynamics at whole 

genome level, I stained also for ssDNA applying the protocol from Pasero’s lab. In this 

triple staining, the primary antibodies against IdU and ssDNA are both rose in mouse, but 

they are isotype-specific. For IdU I used the mouse IgG1 anti BrdU clone B44 (Becton 

Dickinson 347580), while for ssDNA I used Mouse IgG2a anti-ssDNA (polydt, Chemicon 

MAB3034). So to avoid any cross reactivity of secondary antibody recognition, the 

protocol includes two rounds of primary/secondary antibodies hybridization. First 

thymidine analogues are immunodetected with primary and secondary antibodies 
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hybridization. This step is then followed by immunodetection of ssDNA with primary and 

secondary antibodies hybridization. 

Briefly, after dehydration steps by successive ethanol baths (70%, 90%, 100%, three 

minutes each), slides are incubated 25 min in 1M NaOH to open up the DNA double-helix, 

allowing for thymidine analogues immunodetection. It's very important to be precise with 

the time of incubation, since more than 25 minutes incubation can induced the DNA fibers 

to detach from the slide. After denaturation, slides are then extensively washed with PBS 

to neutralize NaOH. At this point immunodetection can start. Slides are incubated with 

blocking solution (Blockaid blocking solution, B-10710) for 15 minutes.  After this 

blocking step, the first round of immunodetection takes place: 45 minutes incubation at 

37°C in a humid chamber with primary antibodies (IdU: mouse antiBrdU clone B44 IgG1 

1:20 (Becton Dickinson 347580); CldU: rat antiBrdU clone BU1/75 1:20 (ab6326 abcam)). 

After washing - 5 times in PBST on agitation - slides are incubated 30 minutes at 37°C in a 

humid chamber with secondary antibodies (IdU: Isotype specific Goat Alexa 546 anti- 

Mouse IgG1 1:50 (molecular probes A21123); CldU: Goat Alexa 488 anti Rat 1:50 

(molecular probes A11030)). Slides are then washed 5 times in PBST on agitation. The 

slides then undergo the second round of immunodetection, where ssDNA is stained. Slides 

are incubated 30 minutes at 37°C in a humid chamber with primary antibody (ssDNA: 

Mouse anti-ssDNA (polydt) IgG2a 1:100 (Chemicon MAB3034)). After washing, slides 

are incubated 30 minutes at 37°C in a humid chamber with secondary antibody (ssDNA: 

Isotype specific ab Goat Alexa 647 anti- Mouse IgG2a 1:50 (molecular probes A21241)). 

After immunodetection slides are washed and then mounted on the coverslips. As for the 

mounting step I tested different kind of mounting medium (Vectashield, Prolong Gold 

antifade reagent) but with none of them I was satisfied. Serendipitously, I discovered that 

the best way of mounting combing slides is the dry mounting, with no mounting medium 

at all. As shown in Figure 6, bright fluorescent signals are detected only on the air bubble, 

while mounting medium reduces signal intensity. Since mounting medium are supposed to 
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stabilize the fluorescent signals and act as antifade system, I checked for the stability of the 

fluorescent signals over time in condition of dry mounting. Unexpectedly, the fluorescent 

signal was stable over months in dry medium. Therefore I always used dry mounting. 

 

 

Figure 6. Dry mounting results in brighter DNA replication signals than vectashield mounting.  
DNA molecular combing was performed using a DNA solution coming from cells pulsed labeled with 
thymidine analogues. After immunodetection (IdU green, CldU red and ssDNA blue), I mounted the 
coverslips with vectashield, but the replication signals were very faint and it was very difficult to properly 
distinguish them. Only the absence of mounting medium due to air bubble (dotted red lines) inside the 
coverslips allowed the visualization of nice bright signals. 

 

2.6 Site specific studies: coupling FISH to the staining for thymidine analogues  

Given my interest in the study of DNA replication dynamics at telomeres, I tried to set up a 

proper protocol that couples the staining of thymidine analogues with fluorescence in situ 

hybridization (FISH) using a Peptide Nucleic Acid (PNA) telomeric probe conjugated with 

Cy3. To this end I applied the protocol used in (Hande et al., 1999) for the telomere 
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detection in q-FISH experiment. The hybridization step with the PNA telomeric probe in 

the q-FISH protocol occurs after dehydration step, while the denaturation occurs directly 

during the hybridization, where the hybridization mix is placed on the coverslip and 

denatured by incubation at 80°C for 3 minutes. After these denaturation steps the 

coverslips are left at room temperature for 2 hours to allow probe hybridization. Since in 

molecular combing the denaturation of the DNA occurs by treatment with alkali solutions, 

which in some protocol is followed by dehydration step (Schurra and Bensimon, 2009), I 

decided to perform the hybridization with PNA telomeric probe after this dehydration step, 

on DNA previously denatured.  

Briefly, combed DNA is denatured with incubation in 0.5 M NaOH, 1M NaCl for 8 

minutes. Then it is washed 3 times in PBS. Then the DNA is dehydrated by successive 

ethanol baths (70%, 90%, 100% ethanol). The sample is then hybridized with the 

hybridization mix containing the PNA telomeric probe (hybridization mix: formamide 

70%, Blocking reagent in maleic acid 0.25%, TRIS 10 mM, PNA-Telo-Cy3 500 nM) for 2 

hours in a humid chamber at room temperature. The sample is then washed twice in wash 

solution I (formamide 70%, TRIS 10 mM, BSA 0.1%), 15 minute each wash; after this 

first round of wash, the slide is washed three times in wash solution II (TRIS 0.1 M, NaCl 

0.15 M, Tween 20 0.08%), 5 minutes for each wash. At this point DNA is dehydrated 

again and the immunodetection of thymine analogues can start. 

In this case it is not possible to stain also for ssDNA since the fluorophores needed would 

be four (Telomeres, IdU, CldU, ssDNA).  Indeed so far I was not able to find a proper 

combination of fluorescent secondary antibody for all the conditions stated above. Since 

telomeres are probed with a Cy3-conjugated PNA probe, I used Alexa 647 donkey anti-

mouse, to detect IdU and Alexa 488 goat anti-rat for CldU detection. The Thymidine 

immunodetection step is performed as explained above, with the exception of lighter 

washing (performed in PBS instead of PBST) and the secondary antibody used.  
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Before proceeding to perform combing staining coupled with telomeric FISH, I decided to 

check whether telomeric repeats could be stretched and visualised by combing with this 

protocol. Moreover I wanted to check which was the resolution limit of combing in terms 

of kb of telomeres that could be detected with this technique. To this end, I made use of 

two plasmids: pSX_270, which contains telomeric repeats (800 bp + 800 bp), and pSX_I-

SceI, which does not contain telomeric repeats (Figure 7 A-B).  

 

 

 

 

Figure 7. ImmunoFISH applied to DNA molecular combing allows to detect telomeric DNA with a 
resolution of around 2 kb.  
(A-B) Maps of the plasmids used to test the telomeric probe with immunoFISH protocol on combed DNA. 
(A) pSX_270 presents two adjacent telomeric repeats of 800 bp each, for a total of 1600 bp. (B) pSX_I-SceI 
does not detect any telomeric repeats. (C-D) ImmunoFISH with Cy3-conjugated PNA-telomeric probe 
applied to the combed linearized plasmid DNA from A and B. pSX_270 (C) but not pSX_I-SceI (D) detect 
small red signals of around 1.6 kb length, corresponding to the length of the telomeric signal present in the 
plasmid. 
 

pSX_270  pSX_I-SceI  

!" #"
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Since molecular combing allows the DNA molecules to attach to the silanized coverslip by 

their extremities, plasmids were linearized through digestion with Sca1 restriction enzyme. 

Based on calculation made in (Michalet et al., 1997), I then combed 1.5 µg/ml of each of 

the two linearized plasmid. Then I performed FISH with a Cy3-conjugated-telomeric PNA 

probe following the protocol described above. I could see red short signals only in case of 

the presence of pSX_270 plasmids, which contained telomeric repeats corresponding to 

1600 bp, while no signal at all in case of the empty plasmid. Thus these results indicate 

that telomeres are detectable with combing with the protocol adapted from (Hande et al., 

1999). 

 

We then performed FISH coupled with immunofluorescence for thymidine analogues and 

could appreciate nice telomeric signals and some of them were overlapping with DNA 

replication signal (Figure 8). 

 

 

Figure 8. Representative images of DNA replication and telomeric signals.  
The images result from immunoFISH on combed DNA derived from mouse embrionic fibroblast. Blue 
signal: IdU; Green signal: CldU; Red signal: telomere. Scale bar: 40 kb.  

 

2.7. Image acquisition 

One limiting step of this technique is the image acquisition. Indeed to obtain nice combing 

results enormous amounts of images need to be analysed and thus properly acquired. At 

the beginning of my PhD, I used to manually acquire around 500 images per condition. 

Moreover, since DNA fibers are often longer than a single field of view, the manual 

!"#$%#
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acquisition became even more inefficient in term of time spent at the microscope because I 

had to carefully try to acquire partially overlapping fields of view to keep the information 

of the DNA fibers longer than a single field of view. So beyond being time consuming it 

was also not so much precise.  

Thus, with the help of Dario Parazzoli and Amanda Oldani, from imaging facility IFOM, I 

tried to set up a system that could allow for automated image acquisition as well as for the 

acquisition of adjacent images with a certain overlap between each other to be then able to 

properly reconstruct the real mosaic image and so have the chance to see the DNA fibers in 

their full length. 

I tried to apply different microscope systems that could perform this kind of automated 

acquisition. I first tried with Scan R Olympus system: it consists in a wide field 

microscope equipped with a motorized stage. Once the grid of points is set and the focus is 

reached, the acquisition is run and thus the microscope acquires sequential fields of view in 

the fluorescence emission channels of interest. This automated system applied to DNA 

molecular combing images has been a great improvement since it allowed for a fully 

automated acquisition of the entire coverslips. However the software running the Scan R 

Olympus system did not allow for the acquisition of partially overlapping fields of view, 

rendering impossible to recapitulate the length of DNA fibers longer than a single fields of 

view.  

The next system we tried is the Spinning Confocal Microscope from PerkinElmer. This 

system, beyond automated image acquisition, allows for the acquisition of adjacent fields 

of view with a partial overlap. At the end of the acquisition, Volocity, the software running 

on this microscope, reconstructs a mosaic image by precisely stitching the images by their 

overlapping regions. Thus this system appeared to be the most suitable for my purposes. 

Briefly, before proceeding with the automated acquisition, various parameters need first to 

be set: the points one wants to acquire on the grid, the dimension of the mosaic image that 

will be reconstructed at each point of the grid and the percentage of overlap between 
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adjacent images. I set the dimension of the mosaic image as 10 images in length and 5 in 

height, ensuring for the presence of long DNA fibers in an entire image. Longer mosaic 

images are possible, but they are difficult to handle computationally due to their big 

memory size. Then I set the points on the grid to be distant enough between each other in 

order to avoid mosaic images overlap (Red cross Figure 9).  

 

 

Figure 9. Screenshot of Volocity Software during image acquisition.  
The grid from which the software recapitulates the fields of view to be acquired is shown. Red crosses 
represent the central point of each mosaic image of 10x5 fields of view. The bottom left window allows the 
visualization of the emitted fluorescence signal while the acquisition is ongoing.  
 

After different trials, we concluded that the minimal % of overlap between adjacent fields 

of view to gain the best mosaic stitching is 10 %.  Once the emission light intensity and 

exposure time for the three lasers (488nm, 561nm, 647nm) are set, the automated 

acquisition can start. Each coverslips results then in 54 mosaic images, one of them is 

shown in Figure 10.  
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Figure 10. Representative mosaic image derived from Volocity acquisition and stitching of partially 
overlapping fields of view.  
DNA molecular combing was performed using a DNA solution from cells pulsed-labeled with thymidine 
analogues. After immunodetection of DNA replication signals, the coverslips were acquired at the spinning 
disk confocal microscope with Volocity software. In (A) an example of a mosaic image of 10x5 fields of 
view derived from the stitching of adjacent acquired images is shown. An enlargement of the same mosaic 
image corresponding to 3x2 fields of view is shown in (B). (Green signal: CldU; Red signal: IdU; Blue 
signal: ssDNA). 
 

2.8. Image analysis: measurement of replication signals  

Once images are acquired, they need to be processed before proceeding with the analyses. 

First I need to merge the three fluorescent channels in order to obtain a composite image 

containing all the three signals (ssDNA, IdU, CldU). Then I have to convert the pixel 

dimension of my image in length units (µm). This occurs by applying a mathematical 
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formula that takes into account all the features of the microscope used and the conditions at 

which the acquisition was performed. In the acquisition performed with Spinning Confocal 

Microscope the software calculates directly the pixel dimension on the bases of the 

objective used (40X, dry). The formula used is the standard one used for cameras with also 

a correction coefficient of 0.89, which depends on the insertion of a projection lens in the 

fluorescence emission pathway. Here is the formula: 

 

  Camera pixel dimension X binning factor  
 µm = 0.89  

    Total magnification 
 

Given the huge amount of images I needed to acquire for my experiments, Amanda Oldani 

helped me by generating a macro for Image software that was performing these two image 

processing – merge channels and conversion from pixel to µm dimension. This speeded up 

the images processing before the analyses. 

 

Another limiting step of this technique is the imaging analysis. I need to analyse around 

500 to 1000 DNA molecules to gain a statistical significance on the results, and sometimes 

it is not even enough. This analysis consists in the manual measurement of the length of 

each replication signal with the ruler of ImageJ software. The values of this measurement 

are then pasted in an excel file to be subsequently interpreted. Therefore, after having set 

up an automated acquisition, the images analysis became the time consuming step of this 

technique. Thus for an automatic analysis of spread DNA fibers I tried to apply IDeFIx 

software, a software developed by Thierry Gostan from Institut de Genetique Moleculaire 

de Montpellier.  

This software is first recognizing the fluorescence signal for ssDNA and then the 

fluorescence signals of the thymidine analogues – IdU and CldU - that are lying on the 

recognized DNA fiber. However since it was first developed on images with only two 
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fluorescent signals,  - ssDNA and BrdU - I found various bugs when applying it to my 

images. Given all the problems encountered while trying to apply the IDEfix software to 

my combing images, I decided to go back to manual analysis. 

   

2.9. Image analysis: interpretation of replication signals 

After the measurements of replication signals it is possible to evaluate various DNA 

replication patterns that allow to unveiling the ongoing DNA replication dynamics. We can 

assess fork speed, the frequency of initiation rate, and the symmetry of fork progression. In 

any of these patterns we excluded the ones that were lying at the extremities of DNA 

fibers, since it was not possible to ensure that distal end of the replication signal was not in 

fact the result of the breakage of the DNA fiber. 

 

2.9.1 Fork speed 

The fork speed is obtained by dividing the length of the replication signal over the 

incubation time of the pulse with thymidine analogue (Figure 11). The replication pattern 

shown in Figure 11 represents a replication origin (ORI) that fired before the first pulse of 

thymidine analogue. Two bidirectional forks started replicating DNA in opposite direction 

of the ORI. As I gave the first pulse with IdU, the DNA incorporates the thymidine 

analogue and red signals are detectable. After 30 minutes I gave the second pulse with 

CldU, DNA keeps incorporating thymidine analogue and I can see this incorporation as 

green signal on combed DNA. Given the incubation time interval of the pulses, I can 

calculate the fork speed by dividing the length of the replication signal over the incubation 

time of the pulse with thymidine analogue. 

In Figure 11 I can assess 2 fork speeds, the ones corresponding to the first pulse (red lines) 

since they are the only one of which I can be sure that their lengths correspond to the entire 

time interval of the pulse.  
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Figure 11. DNA replication pattern consistent with a replicon.  
(A) Representative image of a replication bubble centred at the ORI, that started DNA replication before 
pulse labelling. As the labelling begins replication forks incorporate the thymidine analogues that are then 
visualized by immunofluorescence on combed DNA with specific antibodies against the thymidine analogues 
used. 1st pulse, IdU: Red signal. 2nd pulse, CldU: Green signal. ssDNA: Blue signal. ORI: DNA replication 
origin. From this DNA replication pattern I can calculate two fork speeds. (B) Formula used to calculate fork 
speed. 
 
 

Indeed in all the analyses for fork speed I considered only the replication signals that were 

flanked on one side by the replication signal of the other thymidine analogue, and on the 

other side by ssDNA. Only under these conditions, I could be confident that the distal end 

of the replication signal was not caused by the fiber break. Thus I excluded from these 

analyses all replication signals in which their extremities were not flanked by ssDNA. For 

example, following this criteria, in case of Figure 12A I could calculate 3 fork speeds, 

while in Figure 12B I could consider 6 fork speeds. 

 

This parameter can be slightly affected by fiber length, so to ensure proper estimation of 

fork speed it is important to guarantee that the median fiber length of the DNA used for 

fork speed analysis is at least equal to 200 kb (Techer et al., 2013). 

 

!"#$%&'()'*"+,-./0(#'1-$#/,'

2#.34/0(#'05"'
6(*7'1+""8'9' 9':4;5-#'

<'

=>2'

?@'74'

A1%'

B#8'+3,1"'C28D'

B#8''B#8'' A1%'

A1%'+3,1"'28D'

E'



 98 

2.9.2 The frequency of initiation  

To assess the frequency of origin initiation it is possible to consider two different 

parameters: the inter-origin distances (IODs) or the number of active origin per Megabases 

(ORI/Mb). The IOD is the most widely used parameter to assess the frequency of 

initiation, while the ORI/Mb is a rather new parameter, recently proposed by (Bianco et al., 

2012), and so far there are no studies in literature that include this parameter. However I 

decided to apply it to my analyses as a further support to what I observed by analysing the 

IODs. Another parameter that can be considered and that should reflect the trend of IODs, 

is the inter-termini distance (ITD). It consists in the distance between termini (TER) of 

DNA replication (Techer et al., 2013). However this parameter was not considered in my 

analysis. 

 

The inter-origin distance consists in the distance between adjacent active origins and 

accounts for the evaluation of DNA replication initiation events: smaller IOD indicates 

higher number of simultaneously active origins, while higher IOD corresponds to lower 

number of simultaneously active origins. To properly assess the distance between 

replication origins (ORI) it is necessary to have replication patterns that allow precise 

positioning of the ORI. One ORI is defined as the central point on the ssDNA signals that 

is flanked on both sides from replication signal generated by the 1st pulse. Thus, I had to 

exclude from this analysis all the origins for which the position could not be precisely 

determined due to the lack of replication signal on one of the extremities of the DNA fiber, 

or in case of unidirectional fork, that occurs when ssDNA signal is flanked one side from 

red signal while on the other side is flanked on green signal. Example of unidirectional 

fork is shown in Figure 12B and in Figure 13C. (For further details on the unidirectional 

fork see the paragraph about symmetry of fork progression). IODs estimation can also be 

influenced by DNA fiber length. Short DNA fibers would imply an underestimation of 

IODs, since longer interorigin distances would be excluded due to DNA fiber 



 99 

fragmentation. Thus as suggested in (Techer et al., 2013), it is necessary to have the 

median size of fiber length at least of 350 kb to ensure accurate IODs estimation. 

Moreover, to further avoid bias in IODs assessment due to fiber fragmentation, it is 

possible to recalculate IODs by considering only fibers at least three times longer the 

average of all IODs, as suggested in (Bianco et al., 2012). 

 

Figure 12. Examples inter-origin distances and ORI/Mb quantitation of DNA replication patterns.  
Representative images used to assess IODs and ORI/Mb. (A) The replication signals of this image derive 
from 3 ORI, of which only two can be properly positioned, thus only 1 IOD can be evaluated. (B) The 
replication signals of this image derive from 5 different ORIs. Since one of the ORI cannot be positioned due 
to the presence of unidirectional fork, only IOD can be assessed. 1st pulse, IdU: Red signal. 2nd pulse, CldU: 
Green signal. ssDNA: Blue signal. ORI: DNA replication origin. TER: termination of DNA replication. 
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The number of active ORI/Mb is obtained by evaluating the replication patterns lying on 

the same DNA fiber. It is less sensitive to fiber fragmentation, since it has less stringent 

rules to be assessed. For example, as shown in Figure 12A, the replication pattern we see 

depends on at least 3 replication ORIs, of which only two can be precisely positioned. This 

implies that if I consider IODs in this case, I can precisely evaluate the distance between 

two ORIs, while I am losing some information, regarding the third ORI that cannot be 

precisely positioned. On the other hand, evaluating the number of active ORI/Mb takes 

into consideration all the three ORIs from which the replication patterns derive. However 

ORI/Mb is less precise because the ORIs that cannot be exactly positioned due to fiber 

breakage can introduce some bias, some overestimation or underestimation that I cannot 

recapitulate since I do not have the information for this, due to fiber breakage. However 

these biases are limited by big sample size analysis, because one can argue that some 

overestimations would more easily balanced by some underestimations in big sample size. 

The major limitation of this parameter is that it can take into consideration molecules 

containing just one ORI. However one origin on a very short fiber - likely due to fiber 

breakage during the combing process - would result in a high level of ORI/Mb, which 

might not reflect the real value of ORI/Mb. One way to avoid this bias is the to exclude 

short DNA fibers. 

Another example to compare IODs and ORI/Mb is shown in Figure 12B. By analysing 

these replication patterns I obtain 5 ORIs of which only three can be precisely placed. The 

ones that cannot be position are either at the edge of the DNA fiber or of unidirectional 

fork. Thus with ORI/Mb I do not lose any information. As for the IODs, even though there 

are 5 active ORIs I am able to assess just 1 interorigin distance. Again IODs estimation is 

more precise but implies the loss of some useful information that ORI/Mb can pick up. 
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2.9.3 The symmetry of fork progression 

When DNA replication proceeds normally, the two replication forks deriving from the 

same ORI should proceed at the same speed. So from one ORI, normally two bidirectional 

forks are departing, replicating DNA in opposite directions. As a result by combing 

experiments, you will see symmetric replication signals (Figure 13A). On the contrary as 

one of the two forks encounters an obstacle, it starts to replicate DNA in a slower fashion 

than the other fork. Combing experiment allow you to see this difference as the appearance 

of asymmetric replication pattern of this bidirectional forks (Figure 13B). In case one of 

the two forks encounter an obstacle that is not even allowing the fork to proceed this 

results in fork collapse or fork breakage. This situation is the most dangerous for a cell and 

it can be visualized by combing as a unidirectional fork, corresponding to ssDNA signal 

flanked one side from red signal while on the other side is flanked on green signal (Figure 

13C and also 12B).  

Beyond visual interpretation of symmetry of fork progression I performed quantitative 

analyses by calculating the left to right fork speed correlation (Figure 13D). This parameter 

allows evaluating the level of symmetry of two replication forks generating from the same 

DNA replication origin. It consists in making the ratio between left and right fork speed 

deriving from the same ORI and then plotting this value in a correlation plot (Figure 13D).  

I defined 3 different groups of symmetry: a. symmetric, in which the difference between 

left and right fork speed is between 0 to 30% of the highest fork speed (blue dots lying in 

the cone); b. asymmetric, in which the difference between left and right fork speed is 

between 30 to 99 % (green dots, lying outside the cone); c. Unidirectional in which the 

difference between left and right fork speed is 100 %, meaning that one of the two forks 

did not start during the first pulse (red dots, on x and y axis) (Figure 13D). 
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Figure 13. Representative images for DNA replication patterns used to assess the symmetry of fork 
progression. 
(A) Symmetric replication fork progression: the difference between left and right fork speed is between 0 to 
30% of the highest fork speed. (B) Asymmetric replication fork progression: the difference between left and 
right fork speed is between 30 to 99 %. (C) Unidirectional forks: the difference between left and right fork 
speed is 100 %, meaning that one of the two forks did not start during the first pulse. It represented by 
ssDNA that one side id flanked by red signal, while on the other side is flanked by green signal. 1st pulse, 
IdU: Red signal. 2nd pulse, CldU: Green signal. ssDNA: Blue signal. ORI: DNA replication origin. (D) 
Example of a Left to Right fork speed correlation plot. The cone on the plot separates the symmetric fork - 
inside the cone - from the asymmetric and unidirectional forks - outside the cone till x and y axes. Blue dots: 
Symmetric fork progression; Green dots: Asymmetric fork progression; Red dots: Unidirectional forks.  
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Another way to assess symmetry of fork progression is the evaluation of how the single 

fork is proceeding during 1st and 2nd pulse. It consists in the ration between the fork speed 

of the first pulse over the fork speed of the second pulse. The closer the ratio is to 1 the 

more symmetric the replication fork progression was. Instead the closer the ratio is to 0 the 

more asymmetric the replication fork progression was. However this kind of parameter 

was not taken into account in my analyses. 
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MATERIALS AND METHODS 
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Cell Culture 

BJhTERT (Clontech) and BJELR (a kind gift of William C. Hahn,Harvard Medical 

School, Dana-Farber Cancer Institute, Boston, USA) were grown under standard tissue-

culture conditions in DMEM:M199 (4:1) supplemented with 10% foetal bovine serum, 1% 

Na Pyruvate, 25mM Hepes pH 7.5, 1% L-glutamine, 1% penicillin/streptomycin. Phoenix 

amphotropic cell line HEK293-T in DMEM, supplemented with 10% foetal bovine serum, 

1% L-glutamine, 1% penicillin/streptomycin. All cells were grown in 20% oxygen.  

For growth curves, after retroviral infection (see the section Retroviral infection), cells 

were plated in triplicated at 5x104 per well in six-well plates and cells were counted every 

day.  

NIH 3T3 cells were grown in DMEM supplemented with 10% TET system approved 

foetal bovine serum, 1% L-glutamine, hygromicin (400 µg/ml). 

Human Cancer Tissue Samples 

Archival and paraffin-embedded tumor tissue was obtained from the tumor tissue bank at 

NJMS-University Hospital with the approval of the local IRB committee. 

 

MEFs generation and growth conditions 

The Rosa26 CRE-ERT2 EZH2 fx/fx MEFs used in this thesis have been derived from 13.5 

dpc embryos. Rosa26 CRE-ERT2 mice and EZH2 fx/fx mice used have been described 

elsewhere (Ventura, a. Nature 2007;Su, iH, nat immunol, 2003). Low passages MEFs have 

been grown in DMEM medium supplemented with 10% foetal bovine serum (Euroclone), 

non-essential amino acids (Gibco), sodium pyruvate (Gibco) and 1% 

penicillin/streptomycin (Gibco), in a CO2 incubator (5% CO2) with reduced oxygen 

tension (3% oxygen) if not differently specified. MEFs were passaged every 3-4 days. The 

Rosa26 CRE-ERT2 EZH2 fx/fx MEFs were then immortalized by the expression of SV40 
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ER and HRas-V12. To induce CRE-ERT2 nuclear translocation, cells were treated for 7 

days with 500 nM of 4-hydroxytamoxifen (4-OHT, Sigma) dissolved in absolute ethanol 

(Panreac). 

For G1/S synchronization using a double thymidine block, sub-confluent asynchronous 

MEFs were treated with 2mM thymidine (Sigma) for 12 hours, release with normal 

medium for 8 hours and treated again with 2mM thymidine for additional 12 hours. 

 

Cells Treatments  

The Nox4 inhibitor used VCC444973:02 (Borbely et al., 2010), was produced by Vichem 

Chemie Ltd, Budapest, Hungary and was freshly resuspended in DMSO and added every 

48 hours at 5 µM final concentrations. DMSO was used as control treatment.  

 

Retroviral Infection 

Human diploid fibroblasts and mouse embryonic fibroblasts are very poorly transfectable 

with commonly used transfection methods. I therefore took advantage of a retroviral-

mediated infection method to express genes in these cells. Recombinant retroviruses have 

the ability to stably integrate into the host genome. They contain a reverse transcriptase, 

which allows integration into the host genome and are replication-defective, failing in this 

way to produce infective particles and to induce cell lysis and death. The primary 

drawback to use of retroviruses is the requirement for cells to be actively dividing for 

transduction. Phoenix is a second- generation retrovirus producer cell line, based on the 

HEK293T cell line (a human embryonic kidney line transformed with adenovirus E1a and 

carrying a temperature sensitive SV40 T antigen co-selected with neomycin), which is 

highly transfectable using calcium phosphate method. This retrovirus producer cell line 

was created by placing into HEK293T cells stably integrated constructs capable of 

producing gag-pol and envelope protein for amphotropic (able to infect more than one 
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species, such as human and murine cells) viruses (Pear et al., 1993). The retroviral 

expression vectors provide the viral packaging signal (Ψ), the gene of interest under LTR 

promoter and an antibiotic resistance marker. 48h prior transfection packaging cells were 

plated at 1.8x106 cells per 10 cm dish in producer cell growth medium. Phoenix 

amphotropic packaging cells were transfected by the calcium phosphate method. Calcium 

phosphate transfection is based on the formation of a precipitate containing calcium 

phosphate and DNA, which adheres to the cell surface and is internalized by endocytic 

process. Chloroquine, added to the medium at a final concentration of 40µM for not more 

than 12 hours, increases retroviral titer by approximately two fold, by inhibiting lysosomal 

DNases by neutralizing vescicles pH. The precipitate is prepared by slowly mixing, by 

bubbling, a HEPES-buffered saline solution containing sodium phosphate with a solution 

containing calcium chloride and high quality DNA. It is important that the pH of the Hepes 

is adjusted to 7.05. The HBS/DNA/CaCl2 solution should be added to the cells within 1-2 

minutes of preparation. 10µg of DNA were used to transfect a 10cm dish. The day after 

transfection the growth medium was replaced with 5ml of fresh medium to concentrate 

viral supernatants and the target adherent cells were plated at 50% of confluence. At 48h 

post-transfection, viral supernatants were collected, filtered with 0.45µm filter, to remove 

cells accidentally dead or detached from the plate, and supplemented with 4µg/ml 

polybrene (this is a small, positively charged molecule that binds to cell surfaces and 

neutralizes surface charge, allowing the viral glycoproteins to bind more efficiently to their 

receptors). Supernatants were used to infect human primary fibroblasts. Four rounds of 

infections, of four hours each, distributed in two days, were carried out to have higher 

infection efficiency. After infection, cells were selected with puromycin (2µg/ml) or 

hygromycin (100µg/ml) and/or neomycin (250ng/ml). However in case of growth curve 

experiments cells were not selected to allow the study of DNA replication dynamics 

occurring immediately after oncogenic Ras expression.  
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Lentiviral Infection 

Lentiviruses are a subclass of retroviruses, with the ability to integrate into the genome of 

non-dividing as well as dividing cells. Thus lentiviral infection is amenable for contact 

inhibited or non-cycling senescent cells. The viral genome in the form of RNA is reverse-

transcribed when the virus enters the cell to produce DNA, which is then inserted into the 

genome at a random position by the viral integrase enzyme. The vector, now called 

provirus, integrated in the genome is transmitted to the progeny through cell divisions. 

Lentiviruses were produced by transfecting HEK293T by calcium phosphate method with 

pMDL g/p RRE (gag-pol elements), pVSVG (envelope elements), pRSV-REV (reverse 

transcriptase) plasmids and the transfer vector expressing GFP or H-RasV12. 48h after 

transfection, supernatants were collected, filtered and ultracentrifuged. 30µl of 

concentrated virus were used to infect a 35mm plate of BJhTERT. Virus efficiency was 

evaluated by infecting the target cells with decreasing volumes of the final viral 

preparation of LentiGFP to find the minimal amount of virus able to infect more than 80% 

of target cells. 

 

Plasmids  

pSX_270, pSX_I-SceI telo were a kind gift of Titia de Lange. pBABE-Puro H-RasV12, 

pBABE-Hygro H-RasV12 and corresponding empty vectors were used to infect BJ hTERT 

(a kind gift from Pier Giuseppe Pelicci group, IFOM). pRETROSUPER shp53 (a kind gift 

from Salvatore Pece, IFOM-IEO-CAMPUS). pMDL g/p RRE (gag-pol elements), pVSVG 

(envelope elements), pRSV-REV (reverse transcriptase) (a kind gifts from Judith Campisi, 

Life Sciences Division, Lawrence Berkeley National Laboratory, California, USA) were 

used together with the lentiviral vectors to assemble the lentivirus (see Lentiviral infection 

section).pRRL.SIN-18 Lenti GFP, pRRL.SIN-18 lenti H-RasV12 plasmids (kind gifts from 

Judith Campisi, Life Sciences Division, Lawrence Berkeley National Laboratory, 
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California, USA). pWZL SV40 ER neomycin (a kind gift of Diego Pasini, IFOM-IEO-

CAMPUS). 

 

Immunofluorescence 

The study of the activation of DDR factors (checkpoint and DNA repair proteins) at the 

single cell level relies on the observation of their accumulation (or the accumulation of 

their activated forms) in nuclear foci that can be detected within the nucleus using specific 

antibodies by immunofluorescence techniques. Cells were grown on poly-D-lysinated 

coverslips (poly-D-lysine was used at 50µg/ml final concentration) and plated (15-20x103 

cells/cover) one day before staining. Cells were gently washed 2x5 minutes with PBS and 

fixed and permeabilized with 1:1 methanol/acetone solution for 2 minutes at room 

temperature in case of DDR markers staining.  

Cells were incubated for 1 hour in blocking solution (PBG, 0.5% BSA, 0.2% gelatin from 

cold water fish skin) and then stained with primary antibodies for 1h at room temperature 

in a humidified chamber. Cells were washed 3x5 minutes with PBG and incubated with 

secondary antibodies for 1h at RT in a dark humidified chamber; I used donkey anti-mouse 

or anti-rabbit Alexa488 IgG, donkey anti-mouse or anti-rabbit Alexa 546 IgG donkey anti-

goat 647 Alexa IgG (Molecular Probes). 4'-6-Diamidino-2- phenylindole (DAPI, SIGMA) 

(excitation wavelength 358nm, emission wavelength 461nm) is known to form fluorescent 

complexes with natural double-stranded DNA. DAPI binds to preferentially to AT clusters 

of DNA minor groove. DAPI staining was used at concentration of 1µg/ml for 5 min to 

visualize nuclei; Coverslips were then mounted with Mowiol mounting medium 

(Calbiochem), which is a brand-name polyvinyl alcohol solution not only optically 

appropriate (non-absorbing, containing no autofluorescence, or light scattering) but also 

with an "anti fade" agent which is capable of reducing light-induced fading 

(photobleaching) of the fluorophore. Coverslips were air dried before microscope analysis. 
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Irradiated cells and empty-vector cells were used as a positive and negative control for 

DDR activation, respectively. Comparative immunofluorescence analyses were performed 

in parallel with identical acquisition parameters; 100-300 cells were screened for each 

antigen. 

 

Brdu Incorporation Assay 

Traditionally, the study of cell proliferation has involved the use of 3H thymidine to allow 

monitoring of DNA synthesis in individual cells by autoradiography, and hence identify 

proliferating cells or cell populations. More recently, alternative rapid non-radioactive 

techniques have been developed in which a thymidine analogue, 5-bromo-2’-deoxyuridine 

(BrdU), is incorporated into replicating DNA and subsequently detected using a specific 

antibody (Gratzner, H.G., Science, 1982). This technique requires the denaturation of 

cellular DNA to allow access to BrdU. This is usually achieved by treatment with acids or 

alkali, which may adversely affect cell and tissue morphology. To avoid this problem, I 

used a mild treatment with a nuclease to digest DNA to allow antibody access. This 

process is achieved under mild conditions, simultaneously with antibody incubation. Cells, 

plated on coverslips, were incubated with 10µg/ml BrdU (SIGMA) for a 6 h labelling 

period (for 6 hours in Figure 26 and Figure 56B; for 1 hour and 12 hours Fig.19). Cells 

were fixed with 4% paraformaldehyde for 10 minutes and permeabilized with 0.2% 

TritonX-100 for 10 minutes at room temperature. After 1 hour incubation with PBG 

blocking solution, cells were incubated with a mixture containing primary antibody (anti-

BrdU 1:20), DNase (1:10, Stock concentration: 1U/µl, Promega), DNase buffer and MgCl2 

at 3mM final concentration for 45 minutes at room temperature. Coverslips were then 

washed 3x with PBG and incubated with secondary antibody. DAPI staining was used to 

detect nuclei and Mowiol solution to mount coverslips. Proliferating cells were used as a 

control. At least 100-300 cells were screened for a statistically significant analysis. 
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Immunofluorescence and Fluorescence In Situ Hybridization 

(ImmunoFISH)  

ImmunoFISH technique combines the immunofluorescence with an antibody that 

recognizes a cellular antigene and FISH with a probe that detects the presence of specific 

DNA sequences on chromosomes in metaphase or interphase cells. The binding to its 

target can be identified by a distinct fluorescence signal. A Peptide Nucleic Acid (PNA) 

probe is a synthetic DNA/RNA analogue capable of binding to DNA/RNA in a sequence-

specific manner obeying the Watson-Crick base paring rules. In PNA molecules, a neutral 

peptide/polyamide backbone keeps the distances between the bases exactly the same as in 

DNA and gives PNA excellent properties for hybridizing to DNA or RNA. In addition, 

PNAs are highly resistant to degradation by DNases, RNases, proteinases and peptidases 

and are superior to DNA probes in terms of sensitivity and specificity. The fluorescence 

intensity of the spots is directly correlated to the length of the telomeres, thus it allows an 

exact measurement of the telomere length (Lansdorp Hum Mol Genet 1996). 

Cells were fixed and probed as described in the corresponding immunofluorescence 

sections. Subsequently, after secondary antibodies incubation and washes, samples were 

fixed with 4% PFA and 0.1% Triton X-100 for 10 minutes at RT and reaction was then 

blocked with 100 mM Glycin, for 30 minutes at RT. Samples were washed 3 times with 

PBS and DNA was denaturated at 80°C for 5 minutes under a glass coverslip in the 

presence of the Cy3-conjugated telomeric PNA probe (Panagene, excitation wavelength 

550 nm, emission wavelength 570 nm) in hybridization solution (70% formamide, 0.25% 

blocking reagent Roche, 10 mM Tris HCl pH 7.4, 0.5 µM telomeric PNA probe). The 

hybridization process took place in the dark at RT for 2 hours. Samples were washed twice 

for 15 minutes in wash solution I (70% formamide, 0.1% BSA, 10 mM Tris HCl pH 7.4) 

and twice for 5 minutes in wash solution II (100 mM Tris HCl pH 7.4, 150 mM NaCl, 

0.08% Tween 20). They were stained with DAPI for 2 minutes, briefly washed with PBS 

and water and mounted with mowiol. 
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To detect TIF in tissue section, tissue sections were deparaffinized and heat treated in 

sodium citrate buffer (10mM Na–citrate, 0.05% Tween 20, pH.6) at 95°C for 45 min to 

retrieve antigens. Sections were then dehydrated by incubating them in 95% ethanol for 3 

min. After air-drying, nuclear DNA was denatured for 5 min at 80°C in hybridization 

buffer containing Cy3-conjugated telomere-specific PNA (Cy3- (C3TA2)3; Panagene, 

Korea) at 0.5 mg/ml, 70% formamide, 12mM Tris–HCl pH.8.0, 5mM KCl, 1mM MgCl2, 

0.08% Triton X-100 and 0.25% acetylated BSA (Sigma-Aldrich, St Louis, MO), followed 

by incubation in the same buffer for 2 h at room temperature. Slides were washed 3 times 

for 15 minutes with 70% formamide, 0.6 x SSC (90mM NaCl, 9mM Na–citrate (pH.7)). 

Afterwards slides were washed for 15 minutes in 2 x SSC. These washes were followed by 

5 minutes wash in PBS and one 5 minutes wash in PBST (PBS.0.1% Tween 20; 5 min). 

Afterwards tissue sections were incubated with block buffer (4% BSA in PBST) for 30 

min. It followed an overnight incubation with primary polyclonal anti-53BP1 in block 

buffer at 4°C. Tissue sections were then washed twice for 5 minutes in PBST. Afterwards 

they were incubated with secondary Alexa Fluor 488-conjugated goat anti rabbit antibody 

(Invitrogen, Carlsbad, CA) 1:1000 in block buffer for 1 h at room temperature. Slides were 

washed 3 times 5 minutes each with PBST, rinsed with water and mounted using DAPI 

containing mounting medium (Vector Laboratories, Burilngame, CA). 

  

Telomere Length Measurements by Quantitative Fluorescence In Situ 

Hybridization (Qfish) and Flow Cytometry In Situ Hybridization  (Flow-

FISH) 

Contact inhibited BJ cells were infected with  -GFP or -H-RasV12 lentiviral vectors (see 

the section Lentiviral infection). To induce mitotic arrest cells were released in colcemid-

containing medium (0.1mg/ml) immediately after lentiviral infection. In this way cells 

underwent a single DNA replication round in the presence (or not) of oncogenic Ras. Cells 
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were then incubated with a hypotonic solution of potassium chloride at 37°C for 15 min 

followed by fixation in Carnoy’s fixative to then be processed for telomere fluorescence 

analysis by q-FISH and Flow FISH.  

q-FISH consists in a software-based quantitative analysis of telomere fluorescence 

intensities after hybridization of denatured telomeres with a Cy3-conjugated telomere-

specific PNA probe (CCCTAA)3 on metaphase spreads (Hande et al., 1999). q-FISH 

provides estimation of telomeres length in each individual chromosome with the resolution 

of 200 base pairs. q-FISH was performed on metaphase spreads on a glass slide by 

hybridization with a Cy3 conjugated-Peptide Nucleic Acid (PNA) probe with a telomeric 

sequence. DAPI staining of DNA is used in q-FISH to measure the amount of DNA per 

each chromosome and normalize the telomeric PNA probe.  Images were acquired on the 

same day (within 3 h) for all the samples using the Zeiss Axioplan 2 imaging fluorescence 

microscope. Fluorescence intensity of telomere signals was measured using the in situ 

imaging software (Metasystems, Germany). 

The total amount of telomere DNA was also measured at the single-cell level by flow-

FISH as described in (d'Adda di Fagagna et al., 1999; Poonepalli et al., 2005). Flow-FISH 

is a cytogenetic technique that couples flow cytometry with fluorescence in situ 

hybridization for the analysis of telomere fluorescence intensities at single-cell level. We 

measured the average telomere fluorescence at chromosome ends by fluorescence in situ 

hybridization combined with flow cytometry (flow-FISH) with minor modifications. Cells 

were hybridized with a fluorescein isothiocyanate (FITC)-conjugated telomere-specific 

(CCCTAA)X3 PNA probe (0.3 ug/ml) (Perceptive Biosystems) in hybridization buffer 

(70% formamide, 20 mM Tris, 0.1% BSA). After denaturation at 86°C for 10 min, 

hybridization was performed for 2 h at RT in the dark. The unbound telomere PNA probe 

was removed by post hybridization washes. Afterwards cells were counterstained with 

propidium iodide. Cells were then analysed on a flowcytometer (FACSCalibur Becton-

Dickinson, San Jose, CA,USA) using argon ion laser (488 nm) to excite FITC. We used 
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FITC-labelled fluorescent calibration beads (QuantumTM-24 Premixed; Flow Cytometry 

Standards corporation) to correct for daily shifts in the linearity of the flow cytometer and 

fluctuations in the laser intensity and alignment and to express the results in standard 

fluorescence units. The resulting calibration curve was then used to convert telomere 

fluorescence data to molecules of equivalent soluble fluorochrome units (MESF), allowing 

comparison of results between experiments. Studies were carried out blind.  

Imaging    

Immunofluorescence and immunoFISH images were acquired using a wide field Olympus 

Biosystems Microscope BX61 or a Leica TCS SP2 AOBS confocal laser microscope. To 

allow a more accurate signals discrimination and detection of co-localization events, 

confocal sections were obtained by acquisition of optical z-sections at different levels 

along the optical axis. Co-localization between DDR and telomeres was assessed by 

ImageJ software with co-localization ImageJ plug-in on confocal 3D stacks. Two points 

were considered co-localizing if their respective intensities were higher than the threshold 

of their channels, and if the ratio of their intensity was higher than the ratio setting value. 

Comparative immunofluorescence analyses were performed in parallel with identical 

acquisition parameters. 

Fluorescence microscopy for DNA Molecular Combing was performed on an UltraVIEW 

VoX (Perkin Elmer) spinning disk confocal unit, equipped an EclipseTi inverted 

microscope (Nikon), a C9100-50 emCCD camera (Hamamatsu) and driven by Volocity 

software (Improvision, Perkin Elmer). Images were acquired using a 40x/0.95 NA dry 

objective. The right focal plane was maintained using the Nikon Perfect Focus system. 

 

Immunoblotting 

Cells were lysed in Laemmli sample buffer (2% SDS, 10% glycerol, 60mM Tris pH 6.8) 

and 50 micrograms of whole cell extracts were resolved by sodium dodecyl sulphate- 
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polyacrylamide gel electrophoresis (SDS-PAGE), transferred to nitrocellulose and probed 

with the antibody of interest. The amount of proteins in the samples was measured by the 

biochemical Lowry protein assay, or Lowry method. Copper (II) ions in alkaline solution 

react with protein to form complexes, which react with the Folin-phenol reagent, a mixture 

of phosphotungstic acid and phosphomolybdic acid in phenol. The product becomes 

reduced to molybdenum/tungsten blue and can be detected colorimetrically by absorbance 

at 750nm. SDS is an anionic detergent, which denatures secondary and non-disulfide 

linked tertiary structures, that unfolds the protein, giving a near uniform negative charge 

along the length of the polypeptide, allowing separation only by molecular weight. 

A tracking dye, bromophenol blue, is added to the protein solution to allow the tracking of 

the progress of the protein solution through the gel during the electrophoretic run. Proteins 

were further denatured by heating at 95°C for 5 minutes and disulfide linkages were 

reduced by β-mercaptoethanol. Protein solution run is performed in two layers of gel, 

namely stacking or spacer gel and resolving or separating gel. The stacking gel is a large 

pore polyacrylamide gel (4%) in which proteins are concentrated, prepared with Tris buffer 

pH 6.8 of about 2 pH units lower than that of electrophoresis buffer. This gel is cast over 

the resolving gel, which is a small pore polyacrylamide gel. The Tris buffer used is of pH 

8.8. Resolving gel is used for separating different range of proteins: I commonly used 6% 

gel for > 100 kDa proteins, 10% gel for 40-100 kDa proteins and 15% gel for < 40 kDa 

proteins, in running buffer (Running Buffer 10X: 250mM Tris base, 2M glycine, 50ml 

SDS 20%; pH 8.3). After running, proteins were transferred to nitrocellulose membrane by 

a wet electroblotting transfer method with transfer buffer (transfer buffer 10X: 250mM 

Tris base, 2M Glycine) plus 20% methanol. Following protein transfer, membrane can be 

temporarily stained with Ponceau to assess the transfer efficiency. Ponceau is a negative 

stain, which binds to the positively charged amino groups of the protein and it also binds 

non-covalently to non-polar regions in the protein. Blocking of aspecific sites and primary 

and secondary antibody incubations are carried out in 5% milk in T-TBS (Tween 0.1% in 
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Tris-Buffered Saline); all the washes between incubations are performed in T-TBS. The 

primary antibody is specific to the protein of interest, whereas the secondary antibody is a 

modified antibody, which is linked to an enzyme (HRP – horse radish peroxidase) that, in 

the presence of the acridan-based substrate, produces localized light in the region where 

the antibody is bound to the membrane. The localized light, which is emitted from the 

bands, is detected by photosensitive photographic film. This method of detection is called 

chemiluminescence. 

 

ROS measurements 

Several fluorescent probes and new methods have been developed to monitor ROS 

generation in intact living cells. Fluorescent probes used for determining intracellular ROS 

in intact living cells must fulfil specific requirements: effective cell loading with the cell- 

permeant fluorogenic probe; oxidation of the fluorogenic probe by cellular ROS (but not 

by spontaneous auto-oxidation); stability and retention (low leakage) of the fluorescent 

probe inside the cell; easy detection of the fluorescent probe with commonly used 

fluorescent microscopes and lack of self-toxicity. The commonly used fluorescent probes, 

derived from fluorescein, rhodamine, ethidium, or other fluorescent dyes, are 

dehydrogenated into colourless and non-fluorescent dehydro derivatives. Hydroethidine 

(dihydroethidium, DHE) is a dehydro derivative of ethidium, which has blue fluorescence 

in the cytoplasm and does not intercalate into DNA, and can undergo a two-electron 

oxidation to form the DNA-binding fluorophore ethidium bromide, in a reaction relatively 

specific for superoxide, with minimal oxidation induced by other ROS (Amir, 2008). 

Ethidium then binds DNA and stains the nucleus with a bright fluorescent red, since it has 

an excitation wavelength at 518nm and an emission one at 605nm. Thus, for ROS 

measurement, cells were incubated for 30 min with 5µM DHE (Molecular Probes, 

Invitrogen) in complete culture medium at 37°C; cells were washed with PBS before live 
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imaging either by widefield or confocal microscopes without fixation. All images were 

obtained within 30 minutes post-treatment. 

 

Fluorescence Activated Cell Sorting (FACS) analysis 

FACS is a specialized type of flow cytometry. It provides a method for analyzing and 

sorting a heterogeneous mixture of biological cells, based upon the specific light scattering 

and fluorescent characteristics of each cell. It gives fast, objective and quantitative 

recording of fluorescent signals from individual cells as well as physical separation of cells 

of particular interest. Analyzable features range from physical cell properties, such as cell 

size and morphology, to expression of proteins of interest, by immunodetection via 

fluorochrome conjugated antibodies and quantification of cell DNA content to evaluate 

cell cycle progression or apoptosis. For cell cycle analysis, after double thymidine block 

cells were released in BrdU containing medium (33µM BrdU) for 30 minutes. Cells were 

then fixed with 75% ethanol (Panreac), permeabilized with 2N HCl (Panreac) for 30 

minutes at RT and the pH equilibrated using 0,1M BORAX (Sigma) for 2 minutes. 

Afterwards cells were incubated for 1h at room temperature with a mouse anti-BrdU 

antibody (BD) in 1% BSA/1X PBS, washed and stained with a donkey anti- mouse FITC-

conjugated antibody (Jackson). Stained cells were treated with RNAse A (Sigma) followed 

by DNA staining with 2,5 ug/ul propidium iodide (Sigma) O/N at 4°C. BrdU intensities 

have been acquired on FACS Calibur and analyzed using the FLOW JO software. 

 

Quantitative Real Time PCR 

RNeasy Mini Kit (Qiagen) was used for total RNA extraction from cultured cells, 

according to manufacturer's instructions. Total RNA was quantified with NanoDrop 

spectrophotometer (Thermo Scientific). 1 µg of RNA was retrotranscribed using 
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SuperScript VILO cDNA Synthesis Kit, following manufacturer's instructions. For each 

qPCR reaction was used a volume corresponding to 10 ng of initial RNA.  

The Real Time PCR Instrument permits real time detection of PCR products as they 

accumulate during PCR cycles. The low fluorescence level, characteristic of the initial 

PCR cycles, defines the reference for the plot of fluorescence signal vs cycle number. A 

fixed fluorescence threshold can be set above the baseline. The parameter Ct (threshold 

cycle) is defined as the cycle number at which the fluorescence becomes higher than the 

fixed threshold. So, the higher the initial amount of the sample, the sooner accumulated 

product is detected in the PCR process as a significant increase in fluorescence, and the 

lower the Ct value. Ct values are very reproducible in replicates because the threshold is 

picked to be in the exponential phase of the PCR, where there is a linear relation between 

log of the change in fluorescence and cycle number. When the Ct values were higher than 

35, PCR result was classified as undetermined.  

The Sybr Green-based qPCR experiments were performed on a Roche LightCycler 480 

sequence detection system in triplicate. Sybr Green binds to all double-stranded DNA 

species present in the sample, thus during the reaction the fluorescence intensity increases 

proportionally to the amount of PCR product produced. Ribosomal protein large P0 

(Rplp0) was used as a control gene for normalization. 

Primer sequences for qRT–PCR: 

RPPO-fwd,5′-TTCATTGTGGGAGCAGAC-3′;  

RPPO-rev, 5′-CAGCAGTTTCTCCAGAGC-3′;  

Nox1-fwd,5′-AAGGATCCTCCGGTTTTACC-3′; 

Nox1-rev, 5′-TTTGGATGGGTGCATAACAA-3′; 

Nox2- fwd, 5′-GGTTTTGGCGATCTCAACAG- 3′; 

Nox2- rev, 5′- CGATGGTTTTGAAAGGGTGA- 3′;  

Nox3- fwd, 5′- AGTTCAAGCAGATTGCCTACAA- 3′;  

Nox3- rev, 5′- CGAGAGAGCTTTAGGTCCACA- 3′;  
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Nox4- fwd, 5′- GCTGACGTTGCATGTTTCAG- 3′;  

Nox4- rev, 5′- CGGGAGGGTGGGTATCTAA- 3′;  

Nox5- fwd, 5′- CGTCTGTGCCGGCTTATC- 3′;  

Nox5- rev, 5′- CCAATTCCAGATACAACATGACTG- 3′; 

 

DNA Molecular combing see the section DNA Molecular Combing: Technology set 

up 

Fluorescence in situ hybridization (FISH) coupled with DNA Molecular 

combing see the section DNA Molecular Combing: Technology set up 

 

Antibodies  

I used anti-γH2AX, (Millipore); anti-BrdU BU 1/75, anti-H2AX and anti-H3 (Abcam); 

anti-BrdU (Becton Dickinson); anti-ssDNA (Chemicon); anti-ATM, anti-vinculin clone 

hVIN-1 and anti-ERK1/2 (SIGMA); anti-pS/TQ, anti-CHK2 pT68, anti- phospho-ERK1/2, 

anti-p53 pS15 and anti-H3K27me3 (Cell Signalling Technology); anti-ATM pS1981 

(Rockland); anti-p53 (DO1); anti-Ras, (BD Transduction Laboratories); (SIGMA); anti-

53BP1 (Novus Biologicals), anti-CDC6 (Santa Cruz); anti-Ezh2 (home made, hybridoma 

BD 43). 

For triple labeling of DNA molecular combing I used isotype specific secondary 

antibodies: Goat Alexa 546 anti-mouse IgG1, Goat 647 anti- Mouse IgG2a and Goat 488 

anti Rat and (Invitrogen, Molecular Probes). 

 

Statistical analyses 

Results are shown as means plus minus standard deviation (s.d.) or standard error of the 

mean (s.e.m.) as indicated. For means measurements p-value were calculated by Student's 
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two-tailed t-test or in case of a non parametric distribution, by Wilcoxon test. For 

qualitative data p-value were calculated by chi-square test with 1 degree of freedom. 

 
  



 123 

RESULTS 
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CHAPTER 1. Telomeres are hypersensitive to oncogene-induced 

replication stress. 

1.1. Oncogenic H-RasV12 expression causes fragile telomeres and stochastic telomere 

shortening. 

Since fragile sites are particularly sensitive to oncogene induced DNA replication stress 

(Di Micco et al., 2006), and telomeres resemble fragile sites (Sfeir et al., 2009), we asked 

whether oncogenic Ras could enhance telomeres fragility, thereby altering telomere 

structure and function. To this end, contact-inhibited human normal skin fibroblasts (BJ) 

were transduced with -GFP or -H-RasV12 lentiviral vectors. Cells were then replated into 

colcemid containing medium and metaphase chromosome spreads were prepared and 

analysed for their telomeric structures. 

 

Figure 14. Oncogenic signalling causes fragile telomeres. 
(A) Metaphase spreads from contact inhibited BJ cells, transduced with lentivirus encoding oncogenic Ras, 
and subsequently released into colcemid-containing medium to arrest them in mitosis. Chromosome ends, 
labelled using a telomeric Cy3-conjugated-Peptide Nucleic Acid (PNA) probe (CCCTAA)3 (red), either 
displayed telomeric doublets (physiological condition; 1), different signal intensities on sister chromatids (2), 
absence of signal (3), or diffuse telomeric staining patterns (4). (B) Bar graph: percentage of aberrant 
telomeric structures (± s.d.) in GFP (69 metaphases) and Ras (98 metaphases) expressing cells (n.3); 
*P<0.001. Statistical significance was calculated by unpaired t-test. Performed by Haihe Ruan. Adapted from 
(Suram et al., 2012). 
 
 
Upon oncogenic Ras expression, 25% of all chromosome ends analysed displayed aberrant 

and fragile telomeres (Figure 14A-B generated by U. Herbig group, New Jersey Medical 

!"



 126 

School), while this was not the case in the GFP-transduced cells. Furthermore the 

fluorescence signal intensities of sister telomeres were noticeably different, or 

undetectable. These data suggest that oncogene-induced DNA replication stress is also 

responsible for stochastic telomere attrition (Figure 14A-B). To confirm this hypothesis we 

asked our collaborator Prakash Hande (University of Singapore) to analyse the telomere 

fluorescence by Flow-FISH (Fluorescence In Situ Hybridization) (Figure 15A) or q-FISH 

(Figure 15B), in BJ cells expressing oncogenic Ras, or -GFP, generated in our laboratory. 

Briefly, contact inhibited BJ cells were infected with  -GFP or -H-RasV12 lentiviral 

vectors. They were then released in colcemid-containing medium to induce mitotic arrest 

to then be processed for telomere fluorescence analysis by Flow FISH and q-FISH. In this 

way cells underwent a single DNA replication round in the presence (or not) of oncogenic 

Ras. 

Flow-FISH is a cytogenetic technique developed by Peter M. Lansdorp and Prakash Hande 

that couples flow cytometry with fluorescence in situ hybridization for the analysis of 

telomere fluorescence intensities at single-cell level. After hybridization with fluorescein 

isothiocyanate (FITC)-labelled telomere-specific peptide nucleic acid (PNA) probe, 

telomere fluorescence was measured by flow cytometry (d'Adda di Fagagna et al., 1999; 

Poonepalli et al., 2005). Results are shown in Figure 15A.  

q-FISH consists in a software-based quantitative analysis of telomere fluorescence 

intensities after hybridization of denatured telomeres with a Cy3-conjugated telomere-

specific PNA probe (CCCTAA)3 on metaphase spreads (Hande et al., 1999). Results are 

shown in Figure 15B.  
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Figure 15. Oncogenic signaling causes stochastic telomere attrition.  
Contact inhibited BJ cells were transduced with lentivirus encoding GFP (control) or oncogenic Ras followed 
by release into colcemid-containing medium. Telomere fluorescence (arbitrary units, mean±s.d.) as measured 
by flow-FISH (A) or q-FISH (B) in Ras- and GFP-transduced cells; *P<0.001. Statistical significance was 
calculated by unpaired t-test. Performed by Haihe Ruan, Marzia Fumagalli, Resham Lal Gurung, Manoor 
Prakash Hande. Adapted from (Suram et al., 2012). 
 
 

Oncogenic Ras expression induced dramatic telomere shortening with a 40% reduction in 

telomeric repeats, as compared to the control, detectable by both techniques (Figure 15). 

This reduction in telomeric lengths seems to occur at all telomeres equally, with no 

preference for shorter or longer telomeres as demonstrated by qFISH that detects 

individual telomere lengths (Figure 15B).   

Overall these results indicate that oncogenic Ras expression causes fragile telomeres and it 

is responsible for a stochastic telomere shortening.  

 

1.2. Dysfunctional telomeres increase in vitro and in vivo upon oncogenic activation 

Given the observed dramatic and rapid telomeric shortening in oncogene-expressing cells, 

we asked whether this could account for dysfunctional telomeres. To test this, our 

collaborator Utz Herbig monitored and quantified DDR activation, as detected by 53BP1 

focus formation, at telomeric sequences by immunoFISH experiments, in normal human 

!" #"
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fibroblast transduced with H-Ras V12 or empty vector (EV) (Figure 16A-B). 

Oncogenic Ras expression caused a high degree of both non-telomeric and telomeric DDR 

foci. Interestingly, most of non-telomeric DDR foci were resolved within weeks, in 

contrast to telomeric DDR foci, which persisted over time (Figure 16B).  

 

Figure 16. Dysfunctional telomeres increase in vitro upon oncogenic activation.  
(A) Micrographs: dysfunctional telomeres in Ras expressing cells at days 29 following retroviral 
transduction. TIF were visualized by immunoFISH to simultaneously detect 53BP1 (green) and telomeres 
using a Cy3-labeled telomeric PNA probe (red). Enlarged versions of the numbered areas are shown on the 
right. White arrows indicate 53BP1-telomere co-localizations. (B) Percentages of 53BP1 foci co-localizing 
with telomeres in DDR positive cells (left y-axis; solid squares) vs. the average number of 53BP1 foci per 
cell in DDR positive cells (right y-axis; open circles) in Ras expressing cells vs control cells. Performed by 
Anitha Suram. Adapted from (Suram et al., 2012). 
 

Our analyses were next extended for the presence of dysfunctional telomeres also in vivo. 

Human nevi are a well-characterized example of oncogene-induced senescent cells 

occurring in vivo. As demonstrated in (Michaloglou et al., 2005), most of human nevi are 

melanocytes that display classical features of senescence, due to the presence of the 

oncogenic form of BRAF  (BRAFV600E), a protein kinase down stream of Ras. Nevi 

normally remain in this growth arrest state for decades. They rarely progress into 

malignancy, but when they do, they inactivate other tumour suppressor genes, such as p53.  

Thus, we decided to use human nevi as an in vivo system for the study of the impact of 

oncogene activation on telomere dysfunctions in vivo. Specifically, we analysed human 

benign nevi, dysplastic nevi and melanoma for the presence of dysfunctional telomeres 

(Figure 17A-B).  
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Figure 17. Dysfunctional telomeres increase in vivo upon oncogenic activation.  
(A) Dysfunctional telomeres in human nevi. Tissue sections from benign nevi were processed by 
immunoFISH to simultaneously detect 53BP1 (green) and telomeres (red). Enlarged versions of the 
numbered DNA damage foci showing co-localization with telomeres are shown in the right micrographs. 
Note that only one optical slice is displayed. (B) Quantitation of co-localization between 53BP1 and 
telomeres in indicated lesions (mean±s.d.). A total of 13 benign nevi (1355 53BP1 foci), 13 dysplastic nevi 
(2968 53BP1 foci), and 7 melanoma (891 53BP1 foci) were counted; *P<0.001. Performed by Anitha Suram. 
Adapted from (Suram et al., 2012). 
 

 

Our collaborator Utz Herbig observed that the majority of all DDR foci analysed in cells of 

benign and dysplastic nevi specifically co-localized with telomeric repeats, demonstrating 

that DDR signalling was primarily originating within telomeric DNA (Figure 17A). 

Samples were analysed for the presence of telomere dysfunction induced DNA damage 

foci (TIF), with cells scored as TIF positive, when at least 50% of 53BP1 foci colocalized 

with telomeric repeats. We discovered that most of melanocytic cells in benign (64%) and 

dysplastic nevi (70%) were TIF positive, while this was not the case for cells in malignant 

melanoma that were rarely scored as TIF positive (11%, Figure 17B).  

These results indicate that oncogene activation induce dysfunctional telomeres both in 

vitro and in vivo. 

 

1.3 Oncogenic Ras expression impairs telomere replication 

The results described so far indicate that oncogene expression causes telomere fragility, 

telomere attrition and subsequent appearance of dysfunctional telomeres. Since our group 

had previously demonstrated that oncogenic Ras induces global DNA replication stress 
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that preferentially impacts on fragile loci, I then asked whether dysfunctional telomeres 

could be a result of oncogene-induced DNA replication alterations occurring at telomeres. 

 

Figure 18. Experimental plan.  
Three days after retroviral transduction with H-RasV12 or empty vector (EV) mouse fibroblasts were pulse 
labelled with halogenated nucleotides. Subsequently the DNA was extracted, combed, and processed by 
immunoFISH (for a detailed description of DNA combing see the section DNA molecular combing).  
 

To test this hypothesis I applied DNA molecular combing technique together with FISH. 

These techniques allowed me to study DNA replication dynamics at specific genomic sites, 

the telomeres. In Figure 18 the experimental plan is shown. I used mouse fibroblast cells 

because mouse cells have telomeres sufficiently long - raging from 40 to 150 kb - to be 

studied within the resolution limits of DNA molecular combing technique and imaging 

setups commonly used in association with it. I infected mouse fibroblasts cells with H-

RasV12, or with an empty vector (EV). 4 days after infection, cells were pulse-labelled 

with thymidine analogues, following a pulse and chase protocol adapted from (Sfeir et al., 

2009). Since I aimed at studying replication at specific genomic loci – the telomeres - I 

needed to optimize the procedure in order to maximize the probability of telomere 

replicating while giving the pulses with the thymidine analogues. So I performed 3 rounds 

!"
"
#
$
%
&!
'(

)))

!*#)+,*)-.*#)/001,2*343562,)

&!'()728)43.203839):/4;)<$=)>)?3.2038/5)@82A3))

-%
"
B!
$
C
)

D94))E)!*#)D);218)

F,*)E)-.*#)D);218)

G8*)E)5;+93)G);2189)H=
BI

HH
!$
C
)

(>J+9KDF)I0@4L)M35428)

"2193)$!(G?G)53..9)

!$
&I
-?

!%
$
)

G)821,*9)27)@1.93)
+,*)5;+93)



 131 

of pulse and chase: 1 hour pulse with Iododeoxyuridine (IdU), 1 hour pulse with 

Clorodeoxyuridine (CldU) followed by 3 hours of chase, repeated for 3 times. The total 

duration of the three rounds of pulse/chase was 12 hours, which is less than the cell 

doubling time, thus ensuring that cells will be labelled once per cell cycle.  

In parallel to the pulse and chase procedure, cells were incubated with BrdU to check that 

the proliferation rates during labelling were not changing between oncogenic Ras-

expressing cells and control cells. We tested BrdU incorporation rates at the beginning of 

the procedure, after 1 hour of BrdU incubation, as well as at the end of the procedure, after 

12 hours of BrdU incubation. As shown in Figure 19 the proliferation rates of EV- and 

HRasV12-transduced cells do not differ throughout the pulse labelling procedure.  

 

Figure 19. The proliferation rates of EV- and HRasV12-transduced cells do not differ during pulse 
labelling.  
Percentage of control- (EV) and H-RasV12-transduced mouse cells that stained positive for BrdU. BrdU was 
added to the culture medium for the indicated time intervals.  
 
 
 
I then performed DNA molecular combing coupled with immunoFISH. A scheme 

illustrating replication fork progression at the telomeric locus is shown in Figure 20.  
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Figure 20. Scheme illustrating replication fork progression at the telomeric locus.  
As an example, a newly fired DNA replication origin (ORI) that incorporates IdU during the first pulse (blue) 
is shown. CldU (green) is then incorporated during the second pulse. Telomeric repeats were detected using a 
Cy3-conjugated telomeric PNA (red). We interpret symmetric replication signals as normal replication fork 
progression (#4). Asymmetric DNA replication bubbles bordering, or extending into-telomeric repeats, as 
inferred by asymmetric replication signals were considered as telomeric fork stalling events (#1, 2 and 3).  
 
 
By performing immunoFISH on combed DNA I could identify three different replication 

patterns occurring at telomeres: replication fork fully replicating the telomeres; replication 

fork partially replicating the telomere; replication fork arresting at the subtelomeric-

telomeric border (within 2 kb) (Figure 21A).  

I scored 140 telomeres for control cells and 171 for oncogenic Ras-expressing cells. By 

quantifying these telomere for the replication patterns shown in Figure 21A, I discovered 

that in oncogenic Ras-expressing cells, replication fork arresting at the subtelomeric-

telomeric border increased (2.8% in EV vs 8.2% in Ras) as well as the replication fork 

partially replicating the telomere (6.3% in EV vs 14.6% in Ras). Instead the replication 

4 
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forks that successfully replicate the telomere in its full length are decreased compared to 

control (22% in EV vs 7% in Ras) (Figure 21B). These results indicate that oncogenic Ras 

expression impairs telomeric DNA replication.  

 

Figure 21. Oncogenic signals impair DNA replication at telomeres.  
(A) Representative images of analysed DNA replication patterns. IdU: blue signal; CldU: green signal; 
telomere: red signal. Scale bar: 40 kb. (B) Quantitation of the percentage of DNA combing signals revealing 
DNA replication forks arrest at the start of a telomeric tract (within 2 kb), partial and complete telomere 
replication in empty vector- (EV; black bars; n=140) and H-RasV12-expressing (Ras; red bars; n.171) cells. 
*P<0.001, **P<0.02. 
 

This first analysis was based only on the quantification of the replication patterns shown in 

Figure 21A, regardless the level of symmetry of fork progression. To assess the symmetry 

of fork progression the ratio between the replication signal of the 1st pulse over the 

replication signal of the 2nd pulse is calculated. Before proceeding with this analysis, it is 

 36 

 
Figure 3. Oncogenic signals cause stalling of telomeric DNA replication forks.  (A) 

Representative images of analyzed DNA replication patterns. Rows 1: merged image; 2: 

IdU (blue); 3: CldU (green); 4: telomere (red). Scale bar: 40kb. (B) Quantitation of the 

percentage of DNA combing signals revealing DNA replication forks arrest at the start of 

a telomeric tract (within 2 kb), partial and complete telomere replication in empty vector- 

(EV; black bars; n=140) and H-RasV12-expressing (Ras; red bars; n=171) cells. 

*p<0.001, **p=0.02. (C) Quantitation of fork stalling events at telomeres in empty 

vector- (EV; n=140) and H-RasV12-expressing (Ras; n=171) cells. *p=0.03. 
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crucial to assess that the end of each replication signal is not due to DNA fiber breakage, 

since this prevents the assessment of the correct length of the replication signal. Since it 

was not possible to stain for DNA because 3 wavelengths were already used for IdU, CldU 

and PNA telomeric probe stainings, - the only case in which I could be sure about the 

length of replication signal, was the presence of another replication signal after the gap. 

Indeed this pattern indicates that in the observed gap a replication origin has fired during 

the first pulse and then the forks proceeded their replication in the two directions, one 

subtelomeric, toward the centromere, and the other end towards the telomere. Thus in this 

first analysis it was not always possible to assess the symmetry of fork progression at 

telomeres, due to the lack of enough replication signals. However I performed this first 

simpler analysis to have an initial idea of the effect of oncogenic Ras expression on the 

telomere replication. Given these preliminary encouraging results I proceeded with the 

analysis of symmetry of fork progression.   

 

Figure 22. Oncogenic signals cause stalling of telomeric DNA replication forks.  
(A) Representative image of replication fork stalling. Rows 1: merged image; 2: IdU (blue); 3: CldU (green); 
4: telomere (red). Scale bar: 40 kb. (B) Quantitation of fork stalling events at telomeres in empty vector- 
(EV; n.140) and H-RasV12-expressing (Ras; n.171) cells. *P<0.03.  
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Thus to make a more consistent analysis, where possible, I also scored replication patterns 

for replication fork stalling events - inferred by asymmetric replication signals inside or at 

telomeres (Figure 20, patterns 1, 2 and 3). An example of fork stalling is shown in Figure 

9A. Strikingly the percentage of fork stalling at telomeres is increased upon Ras activation 

(2.1% in EV vs 8.8% in H-RasV12; p=0.03 Figure 22B). These results clearly show the 

hypersensitivity of telomeres to oncogene-induced replication stress. To further support 

this result, I analysed the level of fork stalling in the rest of the genome – whole genome 

excluding telomeric loci. To this end I performed this whole genome analysis by assessing 

the symmetry of DNA replication fork progression as the ratio between left and right fork 

speed derived from the same DNA replication origin. A ratio of 0 indicates a completely 

asymmetric fork; as the ratio increases, the level of asymmetry decreases; a ratio of 1 

indicates completely symmetric DNA replication fork progression. All the ratios (n=41) 

were sorted from the lowest to the highest values and plotted in the graph shown in Figure 

23.  

 

Figure 23. Oncogenic signals have a modest impact when analysed at the whole genome level.  
Whole genome analysis of fork stalling was performed by assessing the symmetry of DNA replication fork 
progression and by generating a ratio between left and right fork speed derived from the same DNA 
replication origin. A ratio of 0 indicates a completely asymmetric fork; as the ratio increases, the level of 
asymmetry decreases; a ratio of 1 indicates completely symmetric DNA replication fork progression. All the 
ratios (n=41) were sorted from the lowest to the highest values and plotted in this graph. Telomeric loci were 
excluded from this analysis. EV, control cells; Ras, H-RasV12 expressing cells. (Wilcoxon test, p <= 
0.9963).  
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This graph shows that in oncogenic Ras-expressing cells there is a slight decrease in the 

symmetry of fork progression at whole genome level as respect to the control, and this 

decrease is not statistically significant. These results revealed a more modest impact in 

response to oncogene activation at whole genome level than at telomeric loci further 

supporting the idea that telomere are hypersensitive to oncogene-induce replication stress.  

These whole genome results are not in contrast with the previous data about the impact of 

oncogenic Ras on DNA replication dynamics, rather, they indicate the extreme sensitivity 

of telomeres to oncogene-induced DNA replication stress compared to the bulk of the 

genome.  

While making comparison between the data about the impact of oncogenic Ras on DNA 

replication dynamics described in (Di Micco et al., 2006) and the data shown here, it is 

important to keep in mind that this two data sets derive from different experimental set up, 

that were properly designed to assess specific but different scientific questions. First of all, 

here I used mouse fibroblast cell line to have telomeres long enough to be detected with 

molecular combing technique and I used a pulse and chase labelling protocol. Differently, 

in the work of (Di Micco et al., 2006) DDR deficient (shChk2) BJ human fibroblasts were 

used applying standard pulse labelling protocol. Moreover, given the differences in 

labelling protocol and experimental conditions, I could not assess all the parameter they 

assessed, and the outcomes of these analyses are comparable just to a certain extent. 
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CHAPTER 2. Characterization of oncogene-induced altered DNA 

replication and DNA damage response activation. 

Oncogene-induced DNA hyper-proliferation is commonly thought to be the trigger for 

DNA damage generation that is then responsible for DDR activation and consequent 

establishment and maintenance of OIS (Bartkova et al., 2006; Di Micco et al., 2006; 

Halazonetis et al., 2008). However, recent studies demonstrated that DNA damage itself 

can alter DNA replication kinetics (Doksani et al., 2009; Ge et al., 2007; Petrini, 2009). 

When single strand DNA is exposed (Ge et al., 2007), or when a DNA double strand break 

occurs (Doksani et al., 2009), the dormant replication origins in the immediate vicinity, are 

fired. Even though the signal that produced the effect of origin firing is still elusive 

(Petrini, 2009), the discovery further highlights the complex interplay between oncogene 

activation, DNA replication, and DNA damage (Doksani et al., 2009).  

Previous studies demonstrated that oncogene activation alters DNA replication dynamics -

resulting in increased origin firing together with increased fork stalling and premature 

termination of replication - leading to DNA damage accumulation that is then responsible 

for a robust DDR activation. However these studies were performed on DDR-deficient 

(shCHK2) fibroblasts (Di Micco et al., 2006) or in tumor cell line (U2OS) (Bartkova et al., 

2006). In addition, more recent studies tried to further dissect the mechanism underlying 

the oncogene-induced replication stress by analysing DNA replication dynamics only at a 

single time point after oncogene activation (Jones et al., 2013; Neelsen et al., 2013). The 

results obtained shed new light on the complexity of oncogene-induced DNA replication 

stress, linking it to increased replication initiation that results in forks colliding with 

transcription machinery (Jones et al., 2013), or to the accumulation of unusual replication 

intermediates that entering mitosis lead to genomic instability (Neelsen et al., 2013). 

However given the complexity of the molecular mechanisms exploited by oncogene 

activation to induce replication stress and subsequent DDR activation, more detailed 
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studies to dissect the kinetics of oncogene-induced altered DNA replication dynamics are 

needed. 

Thus, I performed a time course analysis to assess the effects that oncogenic Ras 

expression has on DDR activation, DNA replication dynamics, from the initial 

hyperproliferative burst till the establishment of oncogene-induced cellular senescence 

(OIS). Such an approach has never been reported in the literature so far. 

Therefore I transduced BJ hTERT human fibroblasts with the oncogenic form of Ras (H-

RasV12) or the empty vector Babe and I monitored their growth over time, every day after 

transduction till OIS establishment.  

 

Figure 24. H-RasV12 expression and activation of Ras downstream pathway were studied by 
immunoblotting.  
Immunoblotting analysis shows equal level of RAS expression and ERK1/2 activation - as detected by 
phospho ERK1/2 - a downstream factor of the RAS-signalling cascade, in H-RasV12 transduced BJ hTERT 
cells throughout the time course analysis. Vinculin serves as loading control. 
 
 
Before proceeding for any further analysis I checked the oncogenic-Ras overexpression 

and the activation of the Ras downstream pathway by western blot analysis. As shown in 

Figure 24 Ras is overexpressed in H-RasV12 infected cells, while it is not the case for the 

cells infected with the empty vector. Furthermore, the level of H-RasV12 overexpression is 

constant overtime. Ras downstream pathway activation can be studied by detecting the 

presence of the phosphorylated form of ERK1/2. Thus to check for the activation of Ras 

downstream pathways, I probed the membrane with an antibody against phosphoERK1/2. 
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As shown in Figure 24 Ras-overexpression corresponds to high level of phosphoERK1/2, 

indicating that Ras downstream pathway is active.  

 

Figure 25. Growth curve experiment of empty vector (Babe)- or H-RasV12-transduced human normal 
fibroblast.  
BJ hTERT cells were retrovirally infected with empty vector (Babe) or the oncogenic form of Ras (H-
RasV12) and their proliferation was followed by cells counting every day after infection till the onset of 
senescence. (A) Growth curve graph with decimal scale on the vertical axis. (B) Growth curve graph with 
logarithmic scale on the vertical axis. Red lines indicate the time points when cells were split.  
 

The results obtained are consistent with previous data from the lab (Di Micco et al., 2006). 

Indeed upon H-RasV12 expression cells start to hyperproliferate (between day 2 and day 3 

after infection, Figure 25). This hyperproliferative burst is then followed by a slow down 

in growth, starting from day 5 after infection, that then turns into a permanent proliferative 

arrest also known as oncogene-induced senescence (day 9 after infection, Ras curve 
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crossing and Babe curve). These results are supported by a very similar pattern observed in 

BrdU incorporation experiment (Figure 26).  

 

 

Figure 26. Proliferation rates of the growth curve experiments assessed by quantification of BrdU 
incorporation.  
At every time point of the growth curve, cells were incubated with BrdU for 6 hours. The red lines indicate 
the time points when cells were split. Numbers on the graph indicate the sample size. The error bars indicate 
the Standard Error of the Mean (SEM). Red lines indicate days when cells were split. 
 

Here, oncogenic Ras-expressing cells show an initial high rate of BrdU incorporation (Ras 

day 2) that then progressively decreases to lower BrdU incorporation rates (Ras day 7-9). 

Unexpectedly, on day 1 after retroviral infection, BrdU incorporation rates were high also 

in the control (Babe) cells, similar to oncogenic Ras-expressing cells. This may be due to 

the effect that infection itself has on cells independently of the gene transduced. Indeed 

retroviral integration in addition to DDR activation (Lau et al., 2005), may alter cell-cycle 

progression. Thus I decided not take into further consideration the time point of day 1 for 

subsequent analyses. BrdU incorporation rates of control cells (Babe) stayed quite constant 

over time, except from day 4, which shows a slight increase. This might be due to the 

effect of cell splitting which was performed on the day before. Trypsinization, pipetting 

and reseeding to a lower confluency are all events that may alter cellular physiology and 
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cell proliferation (Huang et al., 2010) to which normal and oncogene-expressing cells may 

be differently sensitive – importantly splitting were performed always in parallel for 

control and oncogene-expressing cells. This should to be kept in mind when drawing 

conclusions from analyses of events at day 4. 

 

2.1 Kinetics of oncogene-induced damage response activation.  

I then assessed the kinetics of oncogene-induced DNA damage response activation, by the 

use of two independent methods: immunofluorescence against upstream DDR markers 

(γH2AX, 53PB1, ATM (pSer1981), pS/TQ, Figure 27 and Figure 28), and analyses of 

DDR activation markers (p53 (pSer15), γH2AX, pATM (pSer1981), Chk2 (pThr68) by 

western blot Figure 29, 30 and 31).  

Immunofluorescence analyses showed that the level of γH2AX, evaluated by the mean 

number of foci per cell and percentage of γH2AX-positive cells, is low and constant over 

time in control cells. Differently, in oncogenic Ras-expressing cells the level of γH2AX is 

overall higher than control cells. (Figure 27 B-C). Western blot analyses confirmed a 

robust induction of γH2AX throughout the time course of the experiment, with differences 

between control and oncogene-expressing cells becoming more dramatic at later time 

points (Figure 29).  

I then monitored and quantified the level of another DDR marker: 53BP1 (Figure 27 D-E). 

Immunofluorescence analyses of 53BP1, assessed by mean number of foci per cell and 

percentage of 53BP1-positive cells, showed a low and fairly constant level of 53BP1 

activation in control cells, while it progressively increased with time in oncogenic Ras-

expressing cells. As for γH2AX, also 53BP1 levels were very high in oncogenic Ras-

expressing cells at day 2, in association (possibly a causative one) with the 

hyperproliferative phase that starts at that time point.  
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Figure 27.  Quantification of DDR activation by immunofluorescence for yH2AX and 53BP1.  
(A) Confocal images of empty vector (Babe) and oncogenic Ras at day 9 after infection, showing DAPI in 
blue, yH2AX in green and 53BP1 in red. (B) Quantification of mean number of yH2AX foci per cell. (C) 
Quantification of  % of yH2AX-positive cells (a cells is considered as positive when it has more than 4 foci). 
(D) Quantification of mean number of 53BP1 foci per cell. (E) Quantification of  % of 53BP1 positive cells 
(a cell is considered as positive when it has more than 4 foci). The error bars indicate the Standard Error of 
the Mean (SEM). 
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Figure 28. Quantification of DDR activation by immunofluorescence for pATM and pS/TQ.  
(A) Confocal images of empty vector (Babe) and oncogenic Ras at day 9 after infection, showing DAPI in 
blue, pS/TQ in green and pATM in red. (B) Quantification of mean number of pS/TQ foci per cell. (C) 
Quantification of  % of positive pSTQ cells (a cells is considered as positive when it has more than 15 foci). 
(D) Quantification of mean number of pATM foci per cell. (E) Quantification of  % of pATM positive cells 
(a cell is considered as positive when it has more than 10 foci). The error bars indicate the Standard Error of 
the Mean (SEM). 
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To assess the global activation of the three members of the PI-3 like kinases ATM, ATR 

and DNA-PK, I quantified the signals generated by an antibody raised against the pS/TQ 

epitope, a phosphorylated epitope characteristic of protein substrates phosphorylated by 

these activated protein kinases. pS/TQ levels, assessed by mean number of pS/TQ foci per 

cell and percentage of pS/TQ positive cells, remain lower in control compared with 

oncogene-expressing cells which show a trend toward progressively higher levels in time 

(Figure 28 B-C).  

 
 
Figure 29. Quantification of DDR activation by western blot for p53 (pSer15) and γH2AX.  
Immunoblot analysis of γH2AX and p53 (pSer15) reveals that DDR starts to be activated from the first days 
after Ras infection, and it gradually increases, reaching its maximum levels at the onset of senescence (day9). 
Vinculin serves as loading control 
 

I then checked for the activation of one of the PI-3 like kinases, ATM, by quantifying the 

phospho(Ser1981)-ATM levels, by immunofluorescence and western blot analysis (Figure 

28 and 30). ATM gets activated upon DNA damage by autophosphorylation on serine 

1981. pATM levels in oncogenic Ras cells, assessed by mean number of pATM foci per 

cell and percentage of pATM positive cells, increased gradually from the basal level of the 

first days after infection, till it reached its maximum level on day 9 after infection, which 

corresponds to the establishment of cellular senescence (Figure 28). This trend is 

confirmed by pATM western blot analysis (Figure 30).  
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Chk2, a checkpoint kinase activated by ATM by phosphorylation on Threonin 68, is 

generally activated in oncogenic Ras-expressing cells since the first days after infection, 

while this is not in control cells (Figure 31). 

 

Figure 30. Quantification of DDR activation by western blot for pATM.  
Immunoblot analysis of pATM (pSer1981) reveals that DDR starts to be activated from the first days after 
Ras infection, and it gradually increases, reaching its maximum levels at the onset of senescence (day9). 
Vinculin serves as loading control. 
 

To check for the activation of downstream effectors in the DDR pathway I quantified the 

levels of phospho-p53 by western blot. p53 is a target of the PIKK family (ATM, ATR and 

DNA-PK) that upon DNA damage gets activate by phosphorylation on serine 15. 

Phospho(Ser15)-p53 levels increase over time in oncogenic Ras cells, while it is almost not 

present in control cells, except from the first days after infection, and on day 4 (Figure 29). 

 

 

Figure 31. Quantification of DDR activation by western blot for pChk2 and quantification of DNA 
replication up regulation by western blot for Cdc6.  
Immunoblot analysis of phospho-Chk2 (pThr68) reveals that DDR is activated from the first days after Ras 
infection, and it gradually increases, reaching its maximum levels at the onset of senescence (day9). 
Immunoblot analysis of Cdc6 reveals that upon Ras overexpression Cdc6 is promptly upregulated, while as 
cells are entering senescence, Cdc6 is downregulated to control levels. Vinculin serves as loading control. 
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Taken together this data show that, upon oncogenic Ras expression, DDR is gradually 

activated till it reaches its maximum level of activation at the moment of OIS 

establishment. 

 

2.2 Kinetics of oncogene-induced DNA replication stress  

Oncogenic Ras acts on a plethora of molecular pathways to promote uncontrolled cellular 

proliferation. Indeed oncogene activation acts directly on DNA replication by upregulating 

Cdc6, a crucial positive regulator of DNA replication origin licencing (Bartkova et al., 

2006; Di Micco et al., 2006). This upregulation results in an alteration of DNA replication 

dynamics and it is often associated with replication origins firing more than once per cell 

cycle - re-replication - a mechanism of genomic instability (Takeda et al., 2005).  

Also in the experiments I performed, oncogenic Ras upregulated Cdc6 during the 

hyperproliferative phase, before becoming downregulated upon entry into cellular 

senescence (Figure 31).  

This result confirms data shown in previous studies (Bartkova et al., 2006; Di Micco et al., 

2006) giving a more precise kinetic of the impact that Ras activation has on DNA 

replication dynamics through the upregulation of an important replication factor as Cdc6.  

 

2.2.1 Oncogene activation and DNA replication dynamics  

To dissect the replication dynamics at whole genome level, I used the DNA molecular 

combing technique (Lebofsky and Bensimon, 2003; Michalet et al., 1997). Cells were 

labelled with thymidine analogues for a precise time interval (1st pulse IdU: 30 min; 2nd 

pulse CldU: 30 min), at each time point after Ras-infection or empty vector infection, from 

day 2 till day 7. As cells replicate, they incorporate the thymidine analogues in their DNA. 

Cells are then embedded in agarose plugs. After deproteinization with proteinase K, DNA 

is extracted by melting the agarose, which is degraded by β agarase I digestion. The DNA 
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solution is then combed on silane-coated glass slides. This procedure allows for the 

stretching of single DNA molecules on the slide. By performing immunostainings with 

primary antibodies specific for individual thymidine analogues and total DNA and 

secondary fluorescent antibodies, I can visualize and measure replication patterns. (For 

further details see the section DNA Molecular Combing). 

 

2.2.2 Oncogene activation and DNA replication fork speed 

The first replication parameter I checked is the DNA replication fork speed, obtained by 

dividing the length of the replication signal by the incubation time (30 min). 

For each time point I analysed around 600 fork speeds for control cells, and around 1000 

for oncogenic Ras-expressing cells. In these analyses, I considered only the replication 

signals that were flanked on one side by the replication signal of the other thymidine 

analogue, and on the other side by detectable ssDNA. Only under these conditions, I could 

be confident that the distal end of the replication signal was not caused by the fiber break. 

Thus I excluded from these analyses all replication signals in which their extremities were 

not flanked by ssDNA (for further details the section DNA Molecular Combing). 

Upon oncogenic Ras expression, fork speed is increased during the first day studied after 

infection (day 2). Starting from day 3 after infection, fork speed gradually decreased till it 

reached levels that are lower than the control (day 5-7 after infection). On the contrary, 

fork speed of control cells stay quite constant throughout the growth curve experiment 

(Figure 32A). The differences in fork speed between Ras and control at each time point are 

statistically significant. For more detailed statistics, I checked for the statistical 

significance of each condition against all the other conditions, and plotted the resulting p 

values in the table of Figure 32B. 
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Figure 32. Quantification of DNA replication fork speed.  
Fork speed was calculated as the ratio between the length of the replication signal and the time interval of the 
incubation with thymidine analogues (30 min). (A) Graph showing the average fork speeds of the growth 
curve experiment. Numbers on the graph indicate the sample size. (B) Table showing the p-value for the 
graph shown in A. The error bars indicate the Standard Error of the Mean (SEM). p-values were calculated 
applying Wilcoxon test. 
 
In order to better visualize these results, I plotted fork speed distribution of each time point 

(Figure 33A-E). At day 2 after infection, the distribution of fork speeds in oncogenic Ras-

expressing cells is clearly centred to the right (higher values) of control cells (Figure 33A). 

As oncogenic Ras-expressing cells approach their entry into cellular senescence, fork 

speeds then shift towards lower values, actually lower than the control (day 5-7; Figure 

33D-E). Days in between (day 3 and 4) show similar fork speeds, likely as the outcome of 

the transition from faster to slower forks in oncogenic Ras-expressing cells (Figure 33B-

C). 

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

(#&"

(#'"

$" )" %" *" +"

!"
#$

%&
'

()*+'),-.'%&/-012&'

,-./"
0-1"

&!)" 2$$" *&)" (()*" &*)" (!&*" ($%("&!!" (($*"+()"

3"

,"

3456578'-9:;' 347678<=' 347677>?' 34:6:@>-9?' 34568:<-98='



 149 

 

Figure 33. Fork speed distributions.  
(A) Fork speed distribution of empty vector and Ras cells at day 2 after infection. (B) Fork speed distribution 
of empty vector and Ras cells at day 3 after infection. (C) Fork speed distribution of empty vector and Ras 
cells at day 4 after infection. (D) Fork speed distribution of empty vector and Ras cells at day 5 after 
infection. (E) Fork speed distribution of empty vector and Ras cells at day 7 after infection. The error bars 
indicate the Standard Error of the Mean (SEM). 
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It has been suggested that DNA fiber integrity is an important parameter in fork speed 

studies and that to ensure accurate fork speed estimation, the median size of fiber length 

should be at least of 200 kb (Techer et al., 2013). I therefore checked the fiber length 

distribution to make sure that it did not bias my fork spee 

d analyses (Figure 34-35).  

 

 

Figure 34. DNA Fiber length analysis.  
(A) Average length of the DNA fibers analysed to obtain fork speed. (B) Median length of the DNA fibers 
analysed to obtain fork speed. The error bars indicate the Standard Error of the Mean (SEM). 
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Figure 35. DNA Fiber length distribution.  
(A) DNA fiber length distribution of empty vector and Ras cells at day 2 after infection. (B) DNA fiber 
length distribution of empty vector and Ras cells at day 3 after infection. (C) DNA fiber length distribution of 
empty vector and Ras cells at day 4 after infection. (D) DNA fiber length distribution of empty vector and 
Ras cells at day 5 after infection. (E) DNA fiber length distribution of empty vector and Ras cells at day 7 
after infection. The error bars indicate the Standard Error of the Mean (SEM). 
 

Reassuringly, the medians of fiber length of all our samples are higher than 200 kb (Figure 

B). Intriguingly, all oncogenic Ras samples, except from day 2, have shorter DNA fibers as 

compared to the control (Figure 34-35). This is consistent with the intriguing possibility 
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that oncogenic Ras introduces DNA discontinuities (including DNA nicks and aberrant 

DNA replication structures) that may be prone to breakage during sample preparation 

resulting in shorter DNA fibers and that DNA combing is a technique that may allow to 

visualize this – similar to comet assays, but more sensitive.  

In summary, these analyses indicate that oncogenic Ras expression induces an initial 

increase in fork speed, which then gradually decreases over time as cells enter into 

senescence to levels lower than control cells. 

 

2.2.3 The impact of oncogene activation on DNA replication origins firing as measured by 

inter-origin distances  

The next parameter I assessed is the Inter-Origin-Distance (IOD), which consists in the 

measure of the distance between two adjacent origins and accounts for the evaluation of 

DNA replication initiation events: smaller IOD indicates higher number of simultaneously 

active origins, while higher IOD corresponds to lower number of simultaneously active 

origins. For each time point I analysed around 100 IODs both for control and for 

oncogenic Ras-expressing cells. To assess the distance between replication origins (ORI) it 

is necessary to have replication patterns that allow precise positioning of the ORI. One 

ORI is defined as the central point on the ssDNA signals that is flanked on both sides from 

replication signal generated by the 1st pulse. Thus, I had to exclude from this analysis all 

the origins for which the position could not be precisely determined due to the lack of 

replication signal on one of the extremities of the DNA fiber or in case of unidirectional 

forks (for further details the section DNA Molecular Combing). 
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Figure 36. Quantification of Inter-Origin Distances.  
Inter-Origin-Distances (IODs) were calculated as the distance between two adjacent DNA replication origins. 
(A) Graph showing average IODs of the growth curve experiment. Numbers on the graph indicate the sample 
size. (B) Table showing the p-value for the graph shown in A. The error bars indicate the Standard Error of 
the Mean (SEM). p-values were calculated applying Wilcoxon test. 
 

The first days after infection (day 2), oncogenic Ras-expressing cells show a dramatic 

increase in IODs as compared to the control (Babe vs Ras, 98.33 kb vs 170.19 kb; Figure 

36 and 37), indicating that Ras activation induces a reduction of simultaneously active 

origins. This result is consistent with my previous observation (Figure 32) that oncogenic 

Ras increases DNA replication fork speed at this time point. Indeed fork speed and the 

number of simultaneously active origins is often inversely correlated: faster forks usually 

correspond to fewer active origins (Zhong et al., 2013).  
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Figure 37. Inter-Origin-Distances distributions.  
(A) IODs distribution of empty vector and Ras cells at day 2 after infection. (B) IODs distribution of empty 
vector and Ras cells at day 3 after infection. (C) IODs distribution of empty vector and Ras cells at day 4 
after infection. (D) IODs distribution of empty vector and Ras cells at day 5 after infection. (E) IODs 
distribution of empty vector and Ras cells at day 7 after infection. The error bars indicate the Standard Error 
of the Mean (SEM). 
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Figure 38. Average and median DNA fibers lengths of the DNA fibers containing IODs.  
(A) Average length of the DNA fibers analysed to obtain IODs. (B) Median length of the DNA fibers 
analysed to obtain IODs. The error bars indicate the Standard Error of the Mean (SEM). Numbers on the 
graph indicate the sample size. 
 

With time, comparisons within the same day show that IODs of oncogenic Ras-expressing 

cells become progressively shorter than control cells with day 3 being the transition point 

in which they are identical (Figure 36-37). Admittedly, the last day studied (day 7) shows 

an inversion of this trend, although the p-values suggest that this difference is the least 

robust of all studied. It is also worth noticing that at day 7, most cells are actually 

senescent and thus the little ongoing DNA replication detected (day 7 Ras is the lowest 

BrdU incorporating time point in Figure 26) may be occurring in that subset of cells 
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actually not expressing H-RasV12 (in our cellular system, cells are not selected for drug 

resistance, to avoid the confounding effect of cell death due to drug selection, thus a small 

fraction of uninfected cells may exist). 

As suggested in literature (Techer et al., 2013), the median size of fiber length should be at 

least of 350 kb to ensure accurate IODs estimation. Therefore I measured the fiber length 

distribution to make sure that it did not influence the IODs analyses (Figure 38). Indeed the 

median fiber length of our samples is higher than 350 kb in all samples studied. Thus the 

fiber length of our samples is unlikely to influence IODs assessment. 

 

 

Figure 39. Quantification of Inter-Origin-Distances on long fibers.  
The graph shows the average of IODs on long DNA fibers (longer than 3 times the average IODs) to avoid 
possible bias introduced by fiber length (Bianco et al., 2012). The error bars indicate the Standard Error of 
the Mean (SEM). Numbers on the graph indicate the sample size. 
 

In any case, to further exclude any bias caused by fiber fragmentation in IODs estimation, I 

recalculated IODs by studying only fibers at least three times longer the average of IODs –

in this case equal to 394.3 kb -, as suggested in (Bianco et al., 2012). Also under these 

more stringent conditions in which only signals in very long fibers are studied, I could 

confirm the trend (Figure 39-40) previously observed in the bulk of fibers (Figure 36-37). 
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Taken together these results suggest that oncogenic Ras expression initially downregulates 

the number of simultaneously active ORI - as inferred by higher IOD -, while as the time 

passes it upregulates their number. To further confirm this trend we analysed also another 

parameter to estimate the frequency of initiation: the active ORI/Mb. 

 

Figure 40. Distributions of Inter-Origin-Distances on long DNA fibers.  
(A) IODs distribution of empty vector and Ras cells at day 2 after infection. (B) IODs distribution of empty 
vector and Ras cells at day 3 after infection. (C) IODs distribution of empty vector and Ras cells at day 4 
after infection. (D) IODs distribution of empty vector and Ras cells at day 5 after infection. (E) IODs 
distribution of empty vector and Ras cells at day 7 after infection. The error bars indicate the Standard Error 
of the Mean (SEM).  
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2.2.4 The impact of oncogene activation on DNA replication origins firing as measured by 

active origins per Mb  

It has been proposed that another manner to account for the frequency of initiation events 

is the measure of active replication origin per Megabases of DNA (ORI/Mb). This 

approach is less sensitive to variations in fibers length and takes into account also fibers 

containing a single active origin (Bianco et al., 2012). This may be qualitative, not just 

quantitatively different, as these individual ORIs may lie in ORI deserts or away from ORI 

clusters. Even though this approach is less sensitive to fiber length, it has a major 

limitation when considering DNA molecules containing a single origin. Indeed the fibers 

length of DNA molecules containing just one ORI can bias the analysis. One origin on a 

very short fiber - likely due to fiber breakage during the combing process - would result in 

a high level of ORI/Mb, which might not reflect the real value of ORI/Mb. One way to 

avoid this bias is the to exclude short DNA fibers (for further details the section DNA 

Molecular Combing). I nevertheless analysed my combing data according to this approach. 

Also in this way, on day 2 oncogenic Ras-expressing cells showed a dramatic reduction in 

the number of active origins (Figure 41-42A). Likely due to the above-mentioned 

sensitivity to fiber lengths, the values of the later days showed a fuzzier trend although not 

in contrast with a general increase in origins activation in oncogenic Ras-expressing cells 

(Figure 41-42).  
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Figure 41. Quantification of the number of active Origin per Megabases (ORI/Mb).  
The number of active origins per megabases (ORI/Mb) was calculated by the ratio between the number 
active origins present in the DNA fiber analyzed and the length of the fiber (Bianco et al., 2012). (A) Graph 
showing average number of active ORI/Mb. Numbers on the graph indicate the sample size. (B) Table 
showing the p-value for the graph shown in A. The error bars indicate the Standard Error of the Mean 
(SEM). p-values were calculated applying Wilcoxon test. 
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Figure 42. ORI/Mb distributions.  
(A) ORI/Mb distribution of empty vector and Ras cells at day 2 after infection. (B) ORI/Mb distribution of 
empty vector and Ras cells at day 3 after infection. (C) ORI/Mb distribution of empty vector and Ras cells at 
day 4 after infection. (D) ORI/Mb distribution of empty vector and Ras cells at day 5 after infection. (E) 
ORI/Mb distribution of empty vector and Ras cells at day 7 after infection. The error bars indicate the 
Standard Error of the Mean (SEM).  
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In order to decrease the variability due to fiber lengths, I decided to consider only the 

ORI/Mb deriving from fibers longer than 300 kb. This further analysis reduced variability 

and showed a fairly stable difference between control and oncogenic Ras-expressing cells 

with a mild increase in origins firing at later time point in oncogene-expressing cells 

(Figure 43-44).  

 

Figure 43. Quantification of the number of active Origin per Megabases (ORI/Mb) on long fibers.  
(A) Number of active origin per Megabases (ORI/Mb) on fibers longer than 300 kb. The graph shows the 
average of ORI/Mb for each condition analysed. The error bars indicate the Standard Error of the Mean 
(SEM). Numbers on the graph indicate the sample size. p-values were calculated applying Wilcoxon test. 
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Figure 44. Distribution of ORI/Mb lying on long DNA fibers.  
(A) ORI/Mb distribution of empty vector and Ras cells at day 2 after infection. (B) ORI/Mb distribution of 
empty vector and Ras cells at day 3 after infection. (C) ORI/Mb distribution of empty vector and Ras cells at 
day 4 after infection. (D) ORI/Mb distribution of empty vector and Ras cells at day 5 after infection. (E) 
ORI/Mb distribution of empty vector and Ras cells at day 7 after infection. The error bars indicate the 
Standard Error of the Mean (SEM).  
 

Taken together these results, even though the differences are relatively small, confirm the 

presence of a trend where upon oncogenic Ras expression the frequency of initiation 

events increases over time, both in the bulk of fibers and, though to a lesser extent, also in 

the long fibers. 

!"

#"

$!"

$#"

%!"

%#"

!"

!&
#" $"

$&
#" %"

%&
#" '"

'&
#" ("

(&
#" #"

#&
#" )"

)&
#" *"

*&
#" +"

+&
#" ,"

,&
#" $!
"

$!
&#
"

$$
"

$$
&#
"

$%
"

$%
&#
"

$'
"

$'
&#
"

$(
"

$(
&#
"

-
".
/"0

10
23
4"

56789:"

;<:0"=%">2?$((@"

6<4"=%">2?'%)@"

!"

#"

$!"

$#"

%!"

%#"

!"

!&
#" $"

$&
#" %"

%&
#" '"

'&
#" ("

(&
#" #"

#&
#" )"

)&
#" *"

*&
#" +"

+&
#" ,"

,&
#" $!
"

$!
&#
"

$$
"

$$
&#
"

$%
"

$%
&#
"

$'
"

$'
&#
"

$(
"

$(
&#
"

-
".
/"0

10
23
4"

56789:"

;<:0"='">2?$+!@"

6<4"='">2?%*$@"

!"

#"

$!"

$#"

%!"

%#"

!"

!&
#" $"

$&
#" %"

%&
#" '"

'&
#" ("

(&
#" #"

#&
#" )"

)&
#" *"

*&
#" +"

+&
#" ,"

,&
#" $!
"

$!
&#
"

$$
"

$$
&#
"

$%
"

$%
&#
"

$'
"

$'
&#
"

$(
"

$(
&#
"

-
".
/"0

10
23
4"

56789:"

;<:0"=(">2?$+!@"

6<4"=(">2?'(!@"

!"

#"

$!"

$#"

%!"

%#"

!"

!&
#" $"

$&
#" %"

%&
#" '"

'&
#" ("

(&
#" #"

#&
#" )"

)&
#" *"

*&
#" +"

+&
#" ,"

,&
#" $!
"

$!
&#
"

$$
"

$$
&#
"

$%
"

$%
&#
"

$'
"

$'
&#
"

$(
"

$(
&#
"

-
".
/"0

10
23
4"

56789:"

;<:0"=#">2?$*)@"

6<4"=#">2?'$+@"

!"

#"

$!"

$#"

%!"

%#"

!"

!&
#" $"

$&
#" %"

%&
#" '"

'&
#" ("

(&
#" #"

#&
#" )"

)&
#" *"

*&
#" +"

+&
#" ,"

,&
#" $!
"

$!
&#
"

$$
"

$$
&#
"

$%
"

$%
&#
"

$'
"

$'
&#
"

$(
"

$(
&#
"

-
".
/"0

10
23
4"

56789:"

;<:0"=*">2?%%*@"

6<4"=*">2?%,,@"

!"

#"

$"

%"

&"

%
!'
"(
"

%
!'
")
"

%
!'
"*
"

%
!'
"+
"

%
!'
",
"



 163 

 

2.2.5 Oncogene activation and the symmetry of fork progression 

 

I then tested the effect of oncogene activation on the symmetry of fork progression by 

analysing the left to right fork speed correlation (Figure 45-50). This parameter allows the 

evaluation of the level of symmetry of two replication forks generated at the same DNA 

replication origin. I could define 3 different groups of symmetry: a. symmetric (blue dots), 

in which the difference between left and right fork speed is between 0 to 30% of the 

highest fork speed; b. asymmetric (green dots), in which the difference between left and 

right fork speed is between 30 to 99 %; c. Unidirectional (red dots) in which the difference 

between left and right fork speed is 100 %, meaning that one of the two forks did not start 

during the first pulse (for further details the section DNA Molecular Combing). During the 

first day after infection (day 2) the level of symmetry (blue bar, Figure 45) of fork 

progression is similar between oncogenic Ras-expressing cells and control cells. The main 

difference between oncogenic Ras-expressing cells and control cells lies in the 

unidirectional forks  (the highest level of fork stalling, red bar, Figure 45).  Indeed they are 

almost doubled in oncogenic Ras-expressing cells as respect to control cells (Figure 45). 

This high level of unidirectional fork holds true also in the following day (day3, Figure 

46). Moreover on day 3 the overall level of symmetry of fork progression is around 15% 

lower in oncogenic Ras-expressing cells as respect to control cells (Figure 46). 
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Figure 45. Symmetry of fork progression on day 2 after infection.  
Symmetry of fork progression was calculated as the Left to Right fork speed correlation:  right (y axis) and 
left (x axis) fork speed coming from the same replication origin are plotted in A and B. Three groups of fork 
progression were considered: symmetric (blue dots), in which the difference between Left and Right fork 
speed is between 0 to 30%; Asymmetric (green dots), in which the difference between Left and Right fork 
speed is between 30 to 99 %; Unidirectional (red dots) in which the difference between Left and Right fork 
speed is 100 %, where one of the two forks did not even start during the first pulse. (A-B) Left to right fork 
speed correlation at day 2 after infection with the empty vector (Babe) (A), and oncogenic form of Ras (B). 
(C) Percentage of symmetric, asymmetric and unidirectional fork progression on day 2 after infection.  
 

 
Figure 46. Symmetry of fork progression on day 3 after infection.  
(A-B) Left to right fork speed correlation at day 3 after infection with the empty vector (Babe) (A), and 
oncogenic form of Ras (B). (C) Percentage of symmetric, asymmetric and unidirectional fork progression on 
day 3 after infection.  
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At later time points, with day 4 being the transition point (Figure 47), the level of 

symmetry of fork progression in oncogenic Ras-expressing cells reaches the level of 

control cells (day 4-5, Figure 47-48), with unidirectional forks becoming even lower than 

the control (day 7, Figure 49). 

 

  
 
Figure 47. Symmetry of fork progression on day 4 after infection. 
 (A-B) Left to right fork speed correlation at day 4 after infection with the empty vector (Babe) (A), and 
oncogenic form of Ras (B). (C) Percentage of symmetric, asymmetric and unidirectional fork progression on 
day 4 after infection.  
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Figure 48. Symmetry of fork progression on day 5 after infection.  
(A-B) Left to right fork speed correlation at day 5 after infection with the empty vector (Babe) (A), and 
oncogenic form of Ras (B). (C) Percentage of symmetric, asymmetric and unidirectional fork progression on 
day 5 after infection.  
 

 
 
Figure 49. Symmetry of fork progression on day 7 after infection.  
(A-B) Left to right fork speed correlation at day 7 after infection with the empty vector (Babe) (A), and 
oncogenic form of Ras (B). (C) Percentage of symmetric, asymmetric and unidirectional fork progression on 
day 7 after infection.  
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To check how the symmetry of fork progression is changing over time, I plotted the data of 

symmetry time point by time point in Figure 50. As for the control, the level of symmetry 

and asymmetry is fairly constant. As for oncogenic Ras-expressing cells, the overall level 

of symmetry is rather constant over time, while the level of unidirectional forks shows an 

apparent decrease over time.  

 

Figure 50. Symmetry of fork progression occurring during the growth curve experiments.  
Percentage of symmetric, asymmetric and unidirectional fork progression during growth curve experiment in 
–Babe (empty vector)  and H-RasV12 infected cells. 
 

I then quantified the percentage of fork stalling occurrence. I considered fork 

stalling as all the forks that show an asymmetric behaviour as respect to the sister fork 

(sister fork = fork coming from the same DNA replication origin). Thus fork stalling 

consists in the sum of asymmetric and unidirectional forks. As shown in Figure 51, 

oncogene activation does not seem to induce massive fork stalling. Indeed the levels of 

fork stalling are similar between oncogenic Ras-expressing cells and control cells in all 

time points, except from day 3, where oncogenic Ras has a more than 10% increase in fork 
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stalling as compared to the control and this difference is statistically significant. 

 

Figure 51. Effect of oncogene activation on fork stalling and unidirectional forks.  
(A) Percentage of fork stalling. We intend fork stalling as the sum of the asymmetric and the unidirectional 
forks. (B) Table showing the p-value for the graph shown in A. The error bars indicate the Standard Error of 
the Mean (SEM). p-values were calculated applying Chi-squared test. 
 

So I further checked for the impact of oncogene activation on the unidirectional forks 

(Figure 52). As for the control, the level of unidirectional forks seems to be constant over 

time. As for Ras samples, it seems that there is a trend: right after oncogenic activation 

(day 2 and 3) high levels of unidirectional forks are detected, these then decrease gradually 

to levels even lower than controls (day 7). Even though the statistical significance of these 

data is not completely proven (see Figure 52B for p values), a trend is clearly appreciable. 
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Figure 52. Effect of oncogene activation on fork stalling and unidirectional forks.  
(A) Percentage of unidirectional forks. (B) Table showing the p-value for the graph shown in A. The error 
bars indicate the Standard Error of the Mean (SEM). p-values were calculated applying Chi-squared test. 
 

Taken together these data about the symmetry of fork progression reveal an 

overarching trend in which at early time points oncogenic Ras-expressing cells show high 

levels of unidirectional forks, with the differences with control cells reduced at minimal 

level at the latest time point.  

 

2.2.6 Effect of Oncogene activation on DNA replication dynamics 

To gain a synthetic picture of the impact of oncogene activation on DNA replication 

dynamics I compiled the observation of all the replication parameters that I assessed (fork 

speed, IODs, ORI/Mb, Fork stalling, Unidirectional forks) in one figure (Figure 53) and I 

tried to extrapolate possible trends for each factor over time. To achieve this, I added trend 

lines for each parameter. These trend lines are directly built over the graph by an Excel 
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function. For all the parameters I choose polynomial regression of order 3. R2 is the 

coefficient of determination and it estimates how the regression line is close to the real data 

point. R2 varies from 0 to 1. The closest this coefficient is to 1 the most reliable the trend 

line is.  

 
 
Figure 53. Trend plots for each DNA replication parameter.  
Trend lines (dashed lines, blue for control, red for H-RasV12 are directly built over the graphs by an excel 
function. All trend lines derive from polynomial regression curves of order 3 directly calculated by an Excel 
function. R2 is the coefficient of determination, and it estimates how the regression line is close to the real 
data point. R2 varies from 0 to 1. The closest it is to 1 the most reliable the trend line is. (A) Fork speed. (B) 
IODs from long fibers. (C) ORI/Mb from long fibers. (D) Fork stalling. (E) Unidirectional forks. 
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From this analysis I do not intend to infer any statistical correlation. This analysis is made 

to better appreciate possible trends of the replication changes over time at a glance.  

With this approach, is appreciated that at early time points after oncogene activation, fork 

speed is very high, being the highest amongst all the conditions analysed. Consequently, 

the frequency of initiation events is low, as inferred both by high IODs and low ORI/Mb. 

Only at later time points, as the fork speed decreases the frequencies of initiation are 

slightly increasing, reaching control levels as cells are entering OIS. Moreover, together 

with the high fork speed of the early time points, oncogenic Ras cells have higher levels of 

fork stalling, in particular of unidirectional forks, which represent forks undergoing the 

highest level of fork stalling. The unidirectional forks are gradually reduced to control 

levels at later time points. 

  



 172 

CHAPTER 3. Nox4 plays an essential role in Ras-induced ROS 

production 

Oncogenic Ras expression is responsible for increased production of Reactive Oxygen 

Species (ROS). Beyond their toxic effects, ROS are essential intracellular second 

messengers for several cytokines and growth factors (Lee et al., 1999) mediating mitogenic 

signalling (Irani et al., 1997). Unpublished data from our lab (Muege Ogrunc et al. under 

revision) indicate that ROS are essential for the onset of OIS: ROS depletion by treatment 

with ROS scavengers - such as N-Acetyl-Cystein (NAC) - prevents cells to undergo 

senescence by suppressing oncogene-induced hyperproliferation and DNA damage 

response (DDR) activation. Thus ROS are the “fuel” that drives the aberrant cell 

proliferation intrinsically associated with DNA damage generation and DDR activation.  

Given the fundamental role of ROS in the establishment of OIS, our lab searched for the 

enzymes that could account for oncogene-induced ROS production. Some members of 

NADPH oxidases (NOX) family have been previously implicated in cell proliferation and 

cancer (Block and Gorin, 2012; Burdon, 1995; Suh et al., 1999). We observed that, among 

the NOX1-5 genes tested, NOX4 is most strongly expressed in human fibroblasts, and it 

was further induced upon oncogene activation (Figure 54). 

  
 
Figure 54. NOX4 is upregulated upon oncogenic Ras expression.  
qRT-PCR analysis of human NOX genes in shp53 or shp53 Ras Human Normal Fibroblasts. (Performed by 
Muge Ogrunc. Adapted from Ogrunc et al 2013 under revision). 
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3.1 Pharmacological inhibition of NOX4 prevents oncogene-induced hyperproliferation, 

DDR activation and OIS establishment 

Our data indicate that Nox4 is the candidate enzyme to be the responsible for oncogene-

induced ROS production. Therefore we tested the effects that Nox4 inhibition has on ROS 

production as well as on oncogene-induced hyperproliferation, DDR activation and OIS. 

For this purpose we used a specific Nox4 small-molecule inhibitor (Nox4i). We chose this 

Nox4 inhibitor, since it was the most potent among the compounds identified and 

characterized in a cell-based assay for the ability to inhibit ROS production by Nox4 

(Borbely et al., 2010). Figure 55 shows the chemical structure of the compound.  

 

 

Figure 55. Chemical structure of small-molecule inhibitors of NOX4 enzymatic activity.  
Nox4 inhibitor, a derivative of flavonoids (Borbely et al., 2010). 
 
 
 

Normal human fibroblasts were transduced with H-RasV12 or EV retroviral vectors and 

treated with NOX4i or DMSO as a control. Their growth was followed for 9 days, till OIS 

was established in H-Ras untreated cells (Figure 56A).  

Treatment with the Nox4 inhibitor efficiently prevents ROS accumulation upon oncogenic 

Ras expression, as detected by the Dihydroethidium (DHE) probe. DHE after entering the 

cells, interacts with O•− to form oxyethidium, and emits a bright red colour detectable by 

fluorescence microscopy ((Amir, 2008), see Materials and Methods for further details; 

Figure 57).  
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Figure 56. Pharmacological inhibition of Nox4 enzymatic activity prevents OIS establishment.  
Pharmacological inhibition of Nox4 enzymatic activity prevents hyperproliferation by H-RasV12. (A) NOX4 
inhibitor, but not its vehicle (DMSO) prevents H-RasV12-induced hyperproliferation and OIS establishment. 
(B) BrdU incorporation rates measured at the indicated time points of the growth curve displayed in panel 3A 
show that both hyperproliferation and cellular senescence are abolished by Nox4i treatment. (Performed by 
Muge Ogrunc. Adapted from Ogrunc et al 2013 under revision). 
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Figure 57. Upon pharmacological inhibition of Nox4 enzymatic activity ROS quantities are reduced to 
control levels.  
Nox4i treatment reduces ROS accumulation in H-RasV12 cells as detected by the DHE probe. (Performed by 
Muge Ogrunc. Adapted from Ogrunc et al 2013 under revision). 
 
 

In addition to inhibiting ROS production, this treatment fully suppresses oncogene-induced 

cell hyperproliferation, while empty vector-transduced cells are not significantly affected 

by NOX4i treatment. This effect is apparent both on cell proliferation and DNA replication 

rates as measured by BrdU incorporation (Figure 56 A-B). In agreement with our model, 

the suppression of hyperproliferation by the use of a NOX4 inhibitor also prevents 

oncogene-induced DDR activation (Figure 58). 

 

Figure 58. Pharmacological inhibition of Nox4 enzymatic activity strongly reduces DDR activation.  
Immunostaining of cells at the last time point of the growth curves shown in Figure 56, indicates that DDR 
activation is strongly reduced by Nox4i treatment. (Performed by Muge Ogrunc. Adapted from Ogrunc et al 
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2013 under revision). 
 

3.2 Inhibition of ROS production by NOX4 inhibitors treatment reduces proliferation rates 

specifically in cells expressing oncogenic Ras. 

The results of NOX4 inhibitor are consistent with the model previously discussed, in 

which ROS reduction is an efficient mechanism to suppress hyperproliferation, prevent 

DDR activation and OIS establishment. Nonetheless, cancer cells avoid OIS by DDR 

inactivation and are characterized by rampant proliferation and high levels of ROS (Grek 

and Tew, 2010) (Szatrowski and Nathan, 1991). To better understand the role of ROS in 

the context of DDR-deficiency, we therefore tested fully transformed HNF (BJELR; 

expressing oncogenic Ras, hTERT and the SV40 early region (Hahn et al., 1999) and the 

respective control cell line (BJhTERT) for their response to NOX4i. Cells were treated for 

6 days with NOX4i or with DMSO as a control and proliferation rates were checked by 

BrdU incorporation. We observed that NOX4 inhibition, and subsequent ROS levels 

reduction, dramatically decreases BrdU incorporation rates only in cells expressing 

oncogenic Ras (Figure 59). These data further support the hypothesis of ROS as the fuel of 

oncogene-induced hyperproliferation and highlight the dependency of oncogene-

expressing cells on ROS. 

 
 
Figure 59. ROS scavenging with NOX4 inhibitor treatment reduced proliferation rates only in cells 
expressing oncogenic Ras.  
Both BJ hTERT and BJ ELR cells were cultured in the presence of NOX4i or DMSO for six consecutive 
days. BrdU incorporation rates for day 6 are shown. (Performed by Muge Ogrunc. Adapted from Ogrunc et 
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al 2013 under revision). 
 

3.4 Effect of NOX4 inhibition on DNA replication dynamics. 

Given the fundamental role of ROS in oncogene-induced proliferation, I tested the effect 

that ROS suppression by NOX4 inhibition has on DNA replication dynamics. To address 

this question I used the DNA molecular combing technique (Lebofsky and Bensimon, 

2003; Michalet et al., 1997). Briefly, after 6 days of treatment with the NOX4i or with 

DMSO as a control, BJELR cells were pulse labelled with thymidine analogues for a 

precise time interval (1st pulse IdU, 20 min: 2nd pulse CldU 20 min). DNA was then 

purified, combed on glass slides and IdU and CIdU were detected by fluorescent staining, 

together with anti single-strand DNA antibodies. Before proceeding with the analysis of 

DNA replication parameters, I checked for the effect of NOX4 inhibition on the 

proliferation rates on the cells used for combing experiments. As shown in Figure 59 

NOX4 inhibitor induces a 55% reduction in BrdU incorporation rates as compared to 

control cells.  

3.4.1 Nox4 inhibitor reduces fork speed upon oncogene activation 

I checked the effect that NOX4 inhibition has on replication fork speed. Fork speed is 

calculated dividing the length of the replication signal by the incubation time.  For each 

condition I analysed around 1200 fork speeds. I excluded from these analyses all 

replication signals in which their extremities were not flanked by ssDNA, since I could not 

be confident that the distal end of the replication signal was not caused by the fiber break. 

(for further details the section DNA Molecular Combing). 

I observed that Nox4i treatment induces a ~ 20% decrease in fork speed as respect to the 

control, where Nox4i is 0.824 kb/min (n=1156) and DMSO is 1.01 kb/min (n=1185). 

These differences are highly statistically significant (p< 1.114e-40) and can be better 

appreciated as a shift of the fork speed distribution towards smaller values (Figure 60).  
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Figure 60. NOX4 inhibitor treatment reduces for speed.  
(A) The graph shows the average of fork speed for each condition analysed. Fork speeds were calculated by 
dividing the length of replication signal over the time of incubation with the thymidine analogues (20 min). 
(B) Fork speed distribution. The error bars indicate the Standard Error of the Mean (SEM). p values were 
obtained applying Wilcoxon test. * P<1.114e-40. 
 

 
Figure 61. DNA Fiber length analysis. 
(A) Average length of the DNA fibers analysed to obtain fork speed. (B) Median length of the DNA fibers 
analysed to obtain fork speed. (C) DNA Fiber length distribution. The error bars indicate the Standard Error 
of the Mean (SEM). p values were calculated applying Wilcoxon test. *P<0.004966. 
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To ensure accurate fork speed estimation, the median size of fiber length should be at least 

200 kb, as suggested in (Techer et al., 2013). Therefore I checked the fiber length 

distribution to make sure that it did not influence my fork speed analysis (Figure 61).  

Indeed the median size of fiber length is always higher than 200 kb in my samples 

(NOX4i: 288.714 kb; DMSO: 328.926 kb). Thus the fork speed estimation is not affected 

by fiber length in our samples.  

Taken together these data indicate that treatment with Nox4-generated ROS impact on 

DNA replication by increasing fork speed. 

 

3.4.2 Nox4 inhibition does not affect Inter-Origin-Distances  

 

The next parameter I assessed is the Inter-Origin-Distance (IOD), that is the measure of the 

distance between two adjacent origins and account for the evaluation of DNA replication 

initiation events: a smaller IOD indicates higher number of simultaneously active origins, 

while higher IOD corresponds to lower number of simultaneously active origins. For each 

condition I analysed around 100 IODs both for control and for oncogenic Ras-expressing 

cells. The proper estimation of the distance between replication origins (ORI) requires 

replication patterns that allow precise positioning of the ORI. One ORI is defined as the 

central point on the ssDNA signals that is flanked on both sides from replication signal 

generated by the 1st pulse. Thus, all the origins for which the position could not be 

precisely determined - due to the lack of replication signal on one of the extremities of the 

DNA fiber or in case of unidirectional forks - were excluded from the analysis (for further 

details the section DNA Molecular Combing). 
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Figure 62. Effect of pharmacological inhibition of Nox4 enzymatic activity on Inter-Origin-Distances 
(IODs).  
Inter-Origin-Distances (IODs) were calculated as the distance between two adjacent origins laying on the 
same DNA fiber. (A) Average of IODs for each condition analysed. (B) IODs distribution for each condition 
analysed. The error bars indicate the Standard Error of the Mean (SEM).  
 

IODs are larger in Nox4i-treated cells, 138.123 kb (n=105), compared with DMSO, 126.23 

kb (n=100), but these differences are not statistically significant (p<0.4) (Figure 62A). 

However by analysing the distributions of IODs (Figure 62B) it becomes apparent that 

Nox4 inhibition impacts differently on different sets of origins causing the appearance of 

two or possibly three peaks of IOD lengths, centred on IODs smaller or larger than 

controls. This may be interpreted as different kinds of DNA replication origins may 

respond differently to ROS modulation. Consequently, when all IODs are pooled and 

compared to control (DMSO) cells, the differences lose statistical significance. To ensure 

IODs analysis was not influenced by DNA fibers length I checked the median size of fibers 

length, as suggested in (Techer et al., 2013). To accurately estimate IODs, the median size 

of fibers length should be at least of 350 kb (Techer et al., 2013), which was always the 
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case in our sample (NOX4i: 525.95 kb; DMSO: 652.70 kb), indicating that IODs 

evaluation was not influenced by fibers length (Figure 63).  

 

Figure 63. Average and Median DNA fibers lengths of the DNA fibers containing IODs.  
(A) Average length of the DNA fibers analysed to obtain IODs. (B) Median length of the DNA fibers 
analysed to obtain IODs. The error bars indicate the Standard Error of the Mean (SEM).  
 

 
Figure 64. Quantification of Inter-Origin-Distances on long fibers.  
(A) Inter-Origin-Distances (IODs) lying on DNA fibers that are at least 3 times longer than the average of 
each condition analysed. This procedure allows you to avoid bias due to DNA fibers fragmentation in 
different sample (Bianco et al., 2012). (B) Distribution of the IODs lying on DNA fibers at least 3 times 
longer than the IODs average. The error bars indicate the Standard Error of the Mean (SEM). 
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In any case, to further exclude any bias caused by fibers fragmentation in IODs estimation, 

I recalculated IODs by studying only fibers at least three times longer the average of IODs, 

as suggested in (Bianco et al., 2012). Under these conditions the two samples reach similar 

levels: 150.84 kb in Nox4i treated cells versus 149.5 kb in control cells, confirming the 

absence of a statistically and biological significant difference in IODs between Nox4i and 

DMSO (Figure 64A). Nevertheless also in this case by checking the distributions of IODs 

(Figure 64B) Nox4 inhibition shows two peaks of IOD lengths, while the control cells 

present a single peak, further supporting the possibility that Nox4 inhibition impacts 

differently on different set of origins. To further confirm this trend I analysed also another 

parameter to estimate the frequency of initiation: the active ORI/Mb. 

3.4.3 NOX4 inhibition does not affect the number of active ORI/Mb 

Another parameter that accounts for the frequency of initiation events that is less sensitive 

to variations in fiber length (Bianco et al., 2012), is the measure of ORI/Mb that 

corresponds to the number of active replication origin per Megabase of DNA.  

NOX4i treatment does not affect the number of active ORI/Mb as compared to control 

(DMSO vs NOX4i, 6.07 ORI/Mb vs 5.85 ORI/Mb, p<=0.03603) (Figure 65). To further 

avoid bias due to fiber length I considered only the ORI/Mb deriving from fibers longer 

than 300 kb. Also in this case, NOX4i treatment does not affect the number of active 

ORI/Mb as compared to control (DMSO vs NOX4i1, 3.59 ORI/Mb vs 3.47 ORI/Mb; p <= 

0.6607; Figure 66). Moreover, the observation of multiple peaks found in the IODs 

distributions of cells treated with the NOX4 inhibitor is different from the absence of peaks 

in the distributions of ORI/Mb in the same cells. Although these differences may account 

to the different sensitivity of the two parameters analysed, an intriguing interpretation is 

that IODs are more sensitive to (or measure only) the simultaneously active origins in 

clusters, whereas the number of active ORI/Mb incorporates also isolated origins.  
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Figure 65. Quantification of the number of active Origin per Megabases (ORI/Mb).  
The number of active origins per Megabases (ORI/Mb) was calculated by making the ratio between the 
number active origins present in the DNA fiber analyzed and the length of the fiber (Bianco et al., 2012). (A) 
Number of active origin per Mega base (ORI/Mb). The graph shows the average of ORI/Mb for each 
condition analysed. (B) ORI/Mb distribution for each condition analysed. The error bars indicate the 
Standard Error of the Mean (SEM). p values were calculated applying Wilcoxon test. *p <0.03603. 
 

 

Figure 66. Quantification of the number of active Origin per Megabases (ORI/Mb) on long fibers.  
(A) Number of active origin per Megabases (ORI/Mb) on fibers longer than 300 kb. The graph shows the 
average of ORI/Mb for each condition analysed. (B) ORI/Mb distribution for each condition analysed. The 
error bars indicate the Standard Error of the Mean (SEM). 
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Taken together, the results about the frequency of initiation events, - assessed by IODs and 

the number of active ORI/Mb - indicate that even though the general frequency of 

initiation does not seem to be affected by NOX4 inhibition, when looking at IODs 

distribution, which account for clustered simultaneously active origins, the presence of 

multiple peaks might indicate a differential regulation of local origin initiation upon NOX4 

inhibition.  

 

3.4.4 NOX4 inhibition does not influence the symmetry of fork progression 

 

I then tested the effect of NOX4 inhibition on the symmetry of fork progression by 

analysing the Left to Right fork speed correlation (Figure 67). This parameter allows 

evaluating the level of symmetry of two replication forks generating from the same DNA 

replication origin. I could define 3 different groups of symmetry: a. Symmetric (blue dots), 

in which the difference between Left and Right fork speed is between 0 to 30% of the 

highest fork speed between the left and the right; b. Asymmetric (green dots), in which the 

difference between Left and Right fork speed is between 30 to 99 %; c. Unidirectional (red 

dots) in which the difference between Left and Right fork speed is 100 %, where one of the 

two fork did not even start during the first pulse (for further details the section DNA 

Molecular Combing).  

By looking at the correlation plots it seems there are no differences in terms of replication 

fork progression upon NOX4 inhibition compared with the control (Figure 67). 
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Figure 67. Left to Right fork speed correlation upon treatment with NOX4 inhibitors.  
Right (y axis) and left (x axis) fork speed coming from the same replication origin, are plotted. To asses 
symmetry of for progression we distinguished 3 different groups of Left/Right fork speed: symmetric (blue 
dots), in which in which the difference between Left and Right fork speed is between 0 to 30%; Asymmetric 
(green dots), in which the difference between Left and Right fork speed is between 30 to 99 %; 
Unidirectional (red dots) in which the difference between Left and Right fork speed is 100 %, where one of 
the two fork did not even start during the first pulse. (see introduction/ M&M for details). (A) Left to Right 
fork speed correlation upon DMSO treatment. (B) Left to Right fork speed correlation upon NOX4i1 
treatment. (C) Left to Right fork speed correlation upon NOX4i2 treatment. (D) Histogram showing the 
percentage of symmetric, asymmetric and unidirectional forks, in each condition analysed. 
 

 
 

Figure 68. Pharmacological inhibition of Nox4 enzymatic activity does not affect the symmetry of fork 
progression.  
(A) Percentage of fork stalling. We intend fork stalling as the sum of the asymmetric and the unidirectional 
forks. (B) Percentage of unidirectional forks. The error bars indicate the Standard Error of the Mean (SEM).  
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I then focused my attention on the effect of NOX4 inhibition on fork stalling events. I 

considered fork stalling as the sum of asymmetric and unidirectional forks. NOX4i 

treatment slightly decreases the level of fork stalling (DMSO, 60.68%, NOX4i vs 57.2%; 

Figure 68B) and the level of unidirectional forks (DMSO, 20.39%, NOX4i vs 18.64%; 

Figure 68B). However these differences are so small that they do not reach statistical 

significance. 
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CHAPTER 4. Polycomb role in the regulation of DNA replication 

dynamics 

 

4.1 Absence of PRC2 activity achieved by knock out of EZH2 reduces the number of cells 

that are in S phase  

 

Polycomb group (PcG) proteins are mainly known for their role in establishing and 

maintaining cell identity during development as well as in adult organisms. The Polycomb 

repressive complexes exert these functions by repression of a large set of genes involved in 

proliferation, development and differentiation via trimethylation of H3K27, catalysed 

mainly by EZH2. Recent independent studies revealed a role of Polycomb group proteins 

on S phase progression and, more directly, on DNA replication (Francis et al., 2009; 

Hansen et al., 2008; Pasini et al., 2004). Absence of SUZ12 leads to impairment in cell 

cycle re-entry (Pasini et al., 2004). Furthermore, during DNA synthesis PcG proteins can 

stay attached to chromatin (Francis et al., 2009), and EZH2, the catalytic subunit of PRC2, 

has been localized at sites of ongoing DNA replication (Hansen et al., 2008). 

To better understand the function of PRC2 on cell cycle progression and DNA replication 

we used SV40 H-RasV12 Ezh2 fx/fx and Ezh2-/- MEFs. EZH2 KO was obtained by 7-days 

treatment of SV40 H-RasV12 Ezh2 fx/fx MEFs containing the Rosa26 CRE-ERT2 

construct,  with 4-hydroxy-tamoxifen. In this way Cre recombinase was induced, leading 

to EZH2 KO. Before proceeding with further analyses we tested for the absence of EZH2 

in EZH2 KO MEFs by western blot. Indeed in Ezh2-/- MEFs EZH2 protein is absent; 

similarly EZH2 activity is lost, as determined by lack of H3K27me3 (Figure 69).  
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Figure 69. Immunoblot analysis reveals that Ezh2 -/- MEFs lack of EZH2 protein and activity.  
Immunoblots shows that H-RASV12 SV40ER Ezh2 -/- MEFs have no EZH2 protein and the lack of EZH2 
leads to absence of EZH2 activity, as detected by lack of H3K27me3 signal. β-tubulin and total Histone H3 
served as loading control. (Performed by Andrea Piunti; Adapted from Piunti A. et al under revision 2013) 
 
 
We then tested the impact of EZH2 KO on cell cycle progression, with flow cytometric 

analyses (FACS). Briefly, Ezh2 fx/fx and Ezh2-/- MEFs were synchronized at the G1/S 

boundary with a double-thymidine block. Cells were then allowed to re-enter S-phase for 

30 minutes in the presence of BrdU, and DNA synthesis was measured by flow cytometric 

analyses (FACS) using a specific antibody against BdrU. Since the MEFs used stably-

express SV40 and RasV12, their level of polyploidy is high  ((Duhamel et al., 2012); 

Figure 70), thus BrdU measurements were restricted to the 2C population to prevent cross-

contaminations of G1/S boundaries.  

 

 

Figure 70. Absence of EZH2 results in an impairment in G1/S transition of cell cycle progression.  
FACS analyses of H-RASV12 SV40ER immortalized Ezh2 fx/fx or Ezh2 -/-. 7 days after OHT (Ezh2 -/-) and 
EtOH (Ezh2 fx/fx) treatment; cells were incubated 30 minutes in the presence of BrdU after release from a 
double-thymidine G1/S block. The bar plots show the relative percentage of cells with 2C DNA content that 
are present in the highlighted gates (BrdU negative, intermediate and BrdU positive). (Performed by Andrea 
Piunti; Adapted from Piunti A. et al under revision 2013) 
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This analysis revealed that EZH2 KO results in a 20 % reduction of cells that are in S 

phase compared with control cells. This may indicate a more direct effect of PRC2 

deficiency on DNA replication dynamics. 

 

4.2 Effects of EZH2 knock out on DNA replication dynamics  

To test the effect of PcG deficiency on DNA replication dynamics, I performed DNA 

molecular combing experiments (Lebofsky and Bensimon, 2003; Michalet et al., 1997) on 

EZH2 KO MEFs. Briefly, after knocking out EZH2 by 7-days treatment with 4-hydroxy-

tamoxifen in SV40ER H-RASV12 mouse fibroblasts, Ezh2 fx/fx and Ezh2 KO cells were 

labelled with thymidine analogues for a precise time interval (1st pulse IdU: 20 min; 2nd 

pulse CldU: 20 min). As cells replicate they incorporate the thymidine analogues in their 

DNA. Cells were then embedded in agarose plugs. After deproteinization with proteinase 

K, DNA was extracted by melting the agarose, which is degraded by β agarase I digestion. 

The DNA solution was then combed on silane-coated glass slides. This procedure allows 

for the stretching of single DNA molecules on the slide. By performing immunostainings 

with primary antibodies specific for individual thymidine analogues and total DNA and 

secondary fluorescent antibodies, I can visualize and measure DNA replication patterns.  

 

4.2.1 Effects of EZH2 knock out on replication fork speed  

The first parameter I assessed was the fork speed, calculated by dividing the length of the 

replication signal by the incubation time (20 min). This analysis revealed that upon Ezh2 

KO (Ezh2 -/-), cells display a reduction in fork speed (1.79 kb/min) as compared to the 

Ezh2 proficient cells (2.02 Kb/min). Interestingly, while control cells have a unimodal fork 

speed distribution, Ezh2 depleted cells present a bimodal fork speed distribution 
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underlying the existence of a sub-population of DNA replication forks significantly slower 

(Figure 71).  

 

Figure 71. EZH2 KO leads to reduced fork speed.  
Fork speed was calculated by dividing the length of the replication signal by the time interval of the 
incubation with thymidine analogues (20 min). The graph shows the distribution of fork speeds in Ezh2 fx/fx 
or Ezh2 -/- MEFs. p-values were calculated applying Wilcoxon test. 
 

4.2.2 Effects of EZH2 knock out on the symmetry of fork progression 

Next, I assessed the symmetry of fork progression. To achieve this, I compared the speeds 

of left and right DNA replication forks that derive from the same DNA replication origin. I 

was able to distinguish three main patterns of DNA replication progression: a. symmetric 

fork progression, in which left and right fork speeds are comparable, differing at maximum 

of a 30 % between each other; b. asymmetric fork progression, in which left and right fork 

speeds differ between 30% - 99%, and unidirectional fork progression in which one of the 

two forks did not even start during the first pulse, thus showing a 100% difference between 

left an right fork speed (for further details the section DNA Molecular Combing).  
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Figure 72. EZH2 KO leads to increase fork stalling.  
Symmetry of fork progression was calculated as the Left to Right fork speed correlation:  right (y axis) and 
left (x axis) fork speed coming from the same replication origin, are plotted in A and B. Three groups of fork 
progression were considered: symmetric (blue dots), in which the difference between Left and Right fork 
speed is between 0 to 30%; Asymmetric (green dots), in which the difference between Left and Right fork 
speed is between 30 to 99 %; Unidirectional (red dots) in which the difference between Left and Right fork 
speed is 100 %, where one of the two forks did not even start during the first pulse. (A-B) Left to right fork 
speed correlation plots of Ezh2 fx/fx (A) or Ezh2 -/- MEFs (B). (C) Percentage of symmetric, asymmetric and 
unidirectional fork progression of Ezh2 fx/fx (A) or Ezh2 -/- MEFs.  
 
 

As shown in Figure 72, Ezh2 -/- MEFs accumulate a greater number of forks stalling, as 

seen by increased in asymmetric (Green) and unidirectional (Red) DNA replication forks 

as compared to control cells. 
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4.2.3 Reduction in fork speed does not correlate with increased fork stalling 

Given the reduction in fork speed and the increase asymmetric fork progression occurring 

in absence of EZH2, I was eager to test whether asymmetric fork progression within 

individual replicons was associated with the reduced fork speed. Thus I considered only 

the fork speeds deriving from replicons, in spite of their levels of symmetry (Figure 73A).  

 

Figure 73. Increased fork stalling observed upon EZH2 KO does not correlate with slow forks. 
To test whether asymmetric fork progression within individual replicons was associated with the reduced 
fork speed, I considered the distribution of fork speeds deriving from replicons, in spite of their levels of 
symmetry (A) and compared this with (B) the distribution of fork speeds deriving from symmetric replicons, 
excluding asymmetric ones. 
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Noteworthy, the replication fork speed deriving from replicons still presents a bimodal 

distribution in Ezh2 -/- MEFs, consistent with the fork speed distribution previously shown 

(Figure 71). Next, I selected only the fork speeds deriving from symmetric replicons, thus 

excluding asymmetric ones. Also in case of symmetric replicons, I found a consistent 

reduction in fork speed in Ezh2 -/- MEFs as compared with wild-type MEFs (Figure 73B).  

Taken together, these results indicate that the reduction in fork speed seen in Ezh2 -/- 

MEFs is not a feature of asymmetric forks, but it affects all forks, regardless the level of 

symmetry of fork progression. 

4.2.4 Impact of EZH2 knock out on Inter-origin distances 

I then analysed the impact of loss of Ezh2 expression on the frequency of replication 

initiation, by evaluating the inter-origin distances (IODs). IODs consist in the distance 

between two adjacent origins, and from them it is possible to infer the number of active 

origins: the smaller the IODs are, the higher the number of active origins, and vice versa. 

 
Figure 74. EZH2 KO results in a reduction in IODs.  
Inter-Origin-Distances (IODs) were calculated as the distance between two adjacent DNA replication origins. 
(A) Graph showing the distribution of IODs in the bulk of the fibers. (B) Graph showing the distribution of 
IODs in fibers longer than 3 times the IODs average. p-values were calculated applying Wilcoxon test. 
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Ezh2 KO resulted in a reduction in IODs (122.78 kb) as respect to control cells (168.6 kb), 

thus indicating that Ezh2 KO leads to an increased number of simultaneously active 

replication origins respect to Ezh2 fx/fx control cells (Figure 74A).  

These differences are preserved also when considering the IODs observed among DNA 

fibers that are longer than three times the average IODs (Ezh2 KO vs Ezh2 fx/fx : 166.43 kb 

vs 220.69 kb) ((Bianco et al., 2012); Figure 74B) suggesting that fibers breakage is not 

affecting these results. Moreover since the DNA preparations of the conditions analysed 

displayed overlapping DNA fiber lengths distribution (Figure 75) the results presented here 

are not influence by difference in fiber length or increased DNA fibers fragmentation of 

one of the conditions.  

 

Figure 75. DNA fiber length analysis.  
(A) Fiber length distribution. (B) Average fiber length and median size of fiber length are plotted.  

 

4.3 Impact of EZH2 knock out on the DDR activation  

Since altered DNA replication - mainly fork stalling events - usually triggers DNA damage 

response (DDR) activation, we checked for DDR activation by immunofluorescence 

quantification of 53BP1 foci formation (Lukas et al., 2011). Indeed Ezh2 deficient MEFs 

show an increased number of 53BP1 foci compared with WT cells (Figure 76). 
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Figure 76. EZH2 KO resulted in DDR activation.  
(A) Confocal immunofluorescence images of H-RASV12 SV40ER Ezh2 fx/fx MEFs 7 days after EtOH (Ezh2 
fx/fx) and OHT (Ezh2 -/-) treatment, 30 minutes after release from a double-thymidine G1/S block, stained 
with 53BP1 specific antibody. (B) Box plot shows the number 53bp1 foci per cell. Quantification was 
obtained using ImageJ software. n is indicated in the figure. p-value was determined with paired t-test. 
(Performed by Andrea Piunti; Adapted from Piunti A. et al under revision 2013). 
 
 
 

Overall, these data demonstrate that PcG deficiency leads to altered DNA replication 

dynamics resulting also in the activation of DDR.  Thus these results revealed a novel role 

of PcG activity in the regulation of DNA replication dynamics. 
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DISCUSSION 
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CHAPTER 1. Oncogene activation induces telomere dysfunction by 

impairing telomere replication 

 

1.1 Oncogene-induced replication stress at telomere results in telomeric fork stalling and 

telomeric DNA damage accumulation 

 

In this thesis I presented a set of data that revealed a novel and unprecedented link between 

telomere dysfunction and oncogene activation, unveiling the molecular mechanisms 

underlying oncogene-induced telomere dysfunction. Oncogene activation is known to 

induce replication stress affecting preferentially fragile sites (Bartkova et al., 2006; Di 

Micco et al., 2006; Tsantoulis et al., 2008). Therefore the discovery of telomere fragility 

(Sfeir et al., 2009) becomes the key element that allows the connection between oncogene 

activation and dysfunctional telomeres.  

The dramatic telomeric shortening occurring within a single cell cycle after oncogene 

activation, as measured by q-FISH and flow-FISH (Figure 15), together with the 

appearance of aberrant telomeric structures that resemble fragile sites (Figure 14), revealed 

a direct impact of oncogene activation on telomere structure. Moreover these structural 

alterations were accompanied by DDR activation at telomeres, both in vitro in oncogene-

expressing fibroblasts, and in vivo in preneoplastic lesions, but not in the fully malignant 

counterparts. Thus the telomeric structural alterations induced by oncogene activation 

result also in the impairment of telomeric functions. The link between oncogene activation 

and the appearance of dysfunctional telomeres lies in the telomere hypersensitivity to 

oncogene induced replication stress. This hypersensitivity results in impaired telomeric 

DNA replication that leads to increased telomeric fork stalling (Figure 22). The data 

presented here suggests that oncogene-induced replication stress leads to a general increase 

in fork stalling that preferentially occurs at telomeres. Since the initial phases after 
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oncogene overexpression in fibroblasts result in a robust DDR activation at whole genome 

level, which is then resolved except from telomeric DDR that persists over time (Figure 

16), it seems that the replication fork stalling at non-telomeric region can be resolved, 

while the stalled forks inside telomeres result in irreparable and persistent DNA damage.  

These results are in line with a recent publication from our laboratory showing the 

accumulation of irreparable and persistent DNA damage at telomeres in response to IR-

induced DNA damage and aging (Fumagalli et al., 2012). 

The data presented here reveal a crucial role for dysfunctional telomeres in OIS 

establishment: oncogene-induced fork stalling alters telomeric structure and function 

inducing telomeric DDR activation that persists over time leading to establishment of 

senescence, that is independent of telomere shortening. 

 

1.2 Unifying mechanisms mediating cellular senescence: oncogene activation and 

telomere dysfunction 

 

The data presented in this thesis revealed a refined model for tumor suppression that 

unifies oncogene activation and telomere dysfunction-induced senescence (TDIS). 

Dysfunctional telomeres are telomeres that had lost their structure and function so that they 

are sensed as DSBs, inducing DDR/p53-dependent senescence pathways. They play 

critical role in cancer progression, most probably by inducing chromosomal instability, as 

observed in ductal carcinoma in situ (Chin et al., 2004), rand colonic adenomas with high 

dysplasia (Rudolph et al., 2001). However the causative role of TDIS as tumor suppressive 

mechanism so far has been demonstrated only in mouse model systems. (Cosme-Blanco et 

al., 2007; Feldser and Greider, 2007; Sharpless and DePinho, 2005). Noteworthy, the 

results shown here shed new light on the fundamental role of dysfunctional telomeres to 

limit cancer progression in preneoplastic lesions. Indeed the analysis of preneoplastic 

lesions (benign and dysplastic nevi) and the malignant counterpart (melanoma), revealed 
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that dysfunctional telomeres - detected as colocalization between DDR marker 53BP1 and 

telomeric DNA - are present in the preneoplastic lesions but not in the malignant 

counterpart (Figure 17). Beyond the relevance of telomere dysfunction in tumor 

suppression these data revealed also a direct link between oncogene activation and 

telomere dysfunction, since the preneoplastic lesions analysed are human nevi, 

melanocytes that display classical features of senescence, due to the presence of the 

oncogenic form of BRAF  (BRAFV600E), a protein kinase downstream of Ras (Michaloglou 

et al., 2005). 

Thus, in line with similar analyses undertaken in other human cancer precursor lesions - 

breast and colon adenomas (Suram et al., 2012) - the results reported in this thesis unveil 

the interplay between oncogene activation and dysfunctional telomere. 
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CHAPTER 2. Impact of oncogene activation on DNA replication 

dynamics and DDR activation 

 

2.1 Oncogene activation results in a prompt DDR activation 

The results presented in this thesis derive from the study of the kinetics underlying altered 

DNA replication dynamics and DDR activation that occur upon oncogene activation. 

Previous studies in literature have shown that oncogene activation leads to an increase in 

DNA replication initiation events as well as an increase in fork stalling that account for the 

subsequent robust DDR activation responsible for OIS onset (Bartkova et al., 2006; Di 

Micco et al., 2006). However these studies were conducted in DDR-deficient cells 

(shChk2) (Di Micco et al., 2006) or in tumor cell line (U2OS) (Bartkova et al., 2006), 

whereas here I used fully DDR-proficient cells. Moreover so far no studies in literature 

tried to dissect the impact that oncogene activation has over time on DNA replication and 

DDR activation. 

Thus to better understand the impact of oncogene activation at the various steps till OIS 

establishment, I performed a time course analysis to assess the effects that oncogenic Ras 

expression has on DDR activation, DNA replication dynamics, from the initial 

hyperproliferative burst till OIS establishment. The cellular growth and the proliferation 

rates confirmed previous data about the effect of oncogenes on proliferation and OIS 

establishment: a first hyerproliferation phase (day 2-3) is followed by a gradual slow down 

(day 4 - 7) till the entrance into senescence (day 9, Figure 25). 

By looking at the kinetics of DDR activation, γH2AX show very high level starting from 

the initial days after oncogenic Ras expression and it is the only DDR marker studied to 

show such a high level of activation at the initial stages (Figure 27B-C and 29). In the 

following day the levels of γH2AX are a little bit reduced as compared to the initial robust 

γH2AX activation, but then γH2AX levels stay almost constant till the onset of senescence. 
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On the other hand all the other DDR markers analysed, - such as 53BP1, ATM (pSer1981), 

Chk2 (pThr68), pS/TQ and p53 (pSer15) - show a gradual increase over time, reaching 

their maximum level at the latest time point (Figure 27-31). The level of DDR activation in 

control cells remained almost constant throughout the time course analyses, except for high 

levels of p53 (pSer15) at the first day after infection that could be due to DDR activation 

triggered by the retroviral integration independently of the gene transduced (Lau et al., 

2005). 

As for the kinetics of DDR activation, here I showed that DDR is activated since the first 

day after oncogenic Ras infection, suggesting that oncogenic Ras may induce replication 

stress from the very initial stage following the infection. Indeed by looking at data of DNA 

replication dynamics, at day 2 after infection the replication fork speed is already very high 

as compared with the control (Figure 32 and 53A). This may indicate that oncogenic Ras 

expression has an almost immediate effect on DNA replication, inducing DNA hyper-

replication that could be mediated by the upregulation of a crucial replication licencing 

factor such as Cdc6 (Figure 31). At the same time as forks replicate faster, they stall more 

easily as shown by the increase in unidirectional forks (Figure 52 and 53E). Furthermore 

the unidirectional forks correspond to the highest level of asymmetric fork progression, 

and represent both fork stalling and fork breakage, which can result in DNA damage and 

subsequent activation of the DDR cascade. As time passes fork breakage and the 

consequent DNA damage are resolved - as seen in the decrease in unidirectional forks 

(Figure 52 and 53E). Various DNA replication parameters may account for the 

accumulation or decrease in unidirectional fork: frequency of initiation is increasing, 

making forks more prone to stall due to collision with ongoing transcription machinery; on 

the other hand the fork speeds are decreasing over time, and this might indicate a lower 

chance to stall. Given the complexity of the DNA replication dynamics, in the next 

paragraphs I will discuss in details the results of each DNA parameter I analysed. 
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Thus the data shown in this thesis suggest that robust activation of γH2AX is the primary 

response to the initial oncogene induced replication stress that in the following days results 

in a gradual activation of downstream DDR kinases and effectors.  

 

2.2 Oncogene-induced replication stress: increased initiation and decrease fork speed  

It has been demonstrated in various studies that oncogene activation results in an increase 

in the replication initiation events, together with an increase in fork stalling (Bartkova et 

al., 2006; Di Micco et al., 2006; Jones et al., 2013).  However none of these studies took 

into consideration an analysis of the kinetics of oncogene-induced altered DNA replication 

dynamics, and the conclusions they obtained derived from studies in DDR deficient cells 

(Di Micco et al., 2006), or in tumor cell lines (Bartkova et al., 2006; Jones et al., 2013). 

The set of data presented in this thesis try to dissect the impact that oncogene activation 

has on DNA replication over time, from the first hyerproliferative phase (day 2-3) till the 

entrance into senescence (day 9), giving a more complete and detailed picture of the 

interplay between oncogene activation, DNA replication and DDR. 

Even if in some conditions of the various parameters analysed the statistical significance is 

not completely proven, I will discuss the possible mechanisms underlying the oncogene-

induced DNA replication stress, keeping in mind the need to further confirm the results 

presented here. Furthermore, even in the lack of complete statistical significances, different 

parameters - IODs and ORI/Mb - used to estimate the same issue (frequency of DNA 

replication initiation) have comparable trends, achieving similar results. This further 

supports the idea that, beyond their statistical significance, the parameters analysed give 

robust and consistent results. 

The first day after oncogenic Ras expression shows the highest fork speed, which then 

starts to gradually decrease in the following days, till becoming even smaller than control 

cells fork speed as oncogenic Ras-expressing cells undergo senescence. This gradual 

decrease in fork speed shows the same trend as the BrdU incorporation rates.  
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As for the frequency of initiation, I took into consideration the analysis of two independent 

parameters - IODs and ORI/Mb – which generated similar results: at the beginning of the 

time course analysis, oncogenic Ras-expressing cells show the lowest frequency of 

initiation both as respect to control cells and to oncogenic Ras-expressing cells in the 

following time points. As time passes, the frequency of initiation increases, reaching levels 

close to the control (Figure 39, 43 and 53B-C). However some unexpected fluctuations 

over time in the control cells are also observed: the IODs in control cells are slightly 

increasing, reaching the highest values on day 4, to then decrease again to initial values. 

The increase in IODs shown on day 4 is present also in oncogenic Ras-expressing cells 

(Figure 36 and 39). Thus these fluctuations could be ascribed to the effect on cell cycle of 

cells splitting performed the previous day (day 3). Indeed trypsinization, pipetting and 

reseeding to a lower confluency are all events that may alter cellular physiology and cell 

proliferation (Huang et al., 2010). 

Therefore, apart day 4, the fluctuations of control cells are reduced to minimal levels, 

while the trend of oncogenic Ras-expressing cells is more clearly gradually going from 

initial high IODs (around 200 kb) to smaller IODs (around 150 kb). As the distance 

between origins gets smaller, it indicates that the number of simultaneously active origins 

increases. Similar results were obtained with the analysis of the number of active origins 

per Megabase (ORI/Mb): oncogenic Ras-expressing cells show a slight increase in the 

number of active ORI/Mb over time, both in the bulk of the fibers (from 4.5 to 6 ORI/Mb, 

Figure 41), and in the long fibers, even though to a lesser extent (from 3.2 to 3.6 ORI/Mb, 

Figure 43). To note that also in the case of ORI/Mb there is a fluctuation on day 4 

(oncogenic Ras-expressing cells invert their trend), which further supports the link 

between cells splitting and proliferation. 

The increase in initiation event upon oncogene activation is in line with previous 

discoveries (Di Micco et al., 2006; Jones et al., 2013).  The replication stress mechanism 

underlying the increase in replication initiation has been ascribed to increased interference 
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between transcription and replication, leading to fork stalling and subsequent DNA 

damage accumulation that activates DDR leading to OIS (Jones et al., 2013). However in 

my case the increase of replication initiation does not correspond to increase in fork 

stalling or in unidirectional forks. Actually it seems that upon increase initiation either fork 

stalling is staying constant or unidirectional fork are decreasing. These differences may lie 

in the different experimental approach used: the data presented in Jones RM et al (2013), 

show an increase in initiation after 3 days post cyclin E overexpression in U2OS cell line, 

while I performed a time course analysis assessing DNA replication dynamics every day 

after oncogenic Ras expression. Thus the increase in initiation events that I observe is 

mainly related to an increase initiation in oncogenic Ras-expressing cells over time, rather 

than comparing it with control cells. Indeed at the very initial phase after oncogenic Ras 

expression (day2), the initiation events are at their lowest level and then start to increase in 

the following days. Furthermore the way used to estimate fork stalling is different than the 

one used in this thesis: they evaluate di symmetry of progression between first and second 

pulse of the same replication fork (Jones et al., 2013), whereas I consider the symmetry of 

fork progression between two replication forks deriving from the same replication origin. 

Thus I cannot exclude replication/transcription collision as a possible mechanism 

underlying oncogene-induced replication stress. Further experiments are needed to 

demonstrate a role of transcription in oncogenic Ras-induced replication stress. 

Moreover considering the time course analysis, the presence of a robust γH2AX activation 

from the very initial phase after oncogenic Ras expression, might indicate an immediate 

impact of oncogenic Ras on DNA replication dynamics. Indeed the initial phase is 

characterized by the highest fork speed as well as by the highest level of unidirectional 

forks, together with the lowest level of replication initiation. Thus it seems that oncogenic 

Ras is altering DNA replication dynamics from the very beginning after its activation. In 

support to this view, a recent paper demonstrated that oncogenic Ras expression is 

inducing the downregulation of RRM2 - a key enzyme involved in the dNTP pool 
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biosynthesis - already after 24 hour from oncogenic Ras infection. This immediate 

downregulation of dNTP pools may account for the oncogene-induced replication stress: 

upon oncogene activation cells are hyper-replicating and thus the consumption of dNTPs is 

increasing in a manner faster than their biosynthesis, which is instead blocked (Aird et al., 

2013). Hence as cells replicate they run out of dNTPs, replication fork stalls more 

frequently due to the lack of the right complementary dNTP to be incorporated in the 

DNA, leading to increased genomic instability and DDR activation. What I see, under the 

conditions studied here, is that indeed from the beginning of the time course analysis, 

already at day 2 after oncogenic Ras expression, the unidirectional forks, which represent 

the greatest level of asymmetric fork progression, are at their highest level. This is in line 

with the possible effect of dNTP pool depletion in inducing an increased fork stalling (Aird 

et al., 2013; Bester et al., 2011). However to prove this hypothesis, further studies need to 

be undertaken. 

 

2.3 Oncogene-induced fork stalling: whole genome studies versus fragile site specific 

studies 

The data presented in this thesis revealed that the oncogene-induced DNA replication 

stress results mainly in an increase in unidirectional forks, which represent the highest 

level of asymmetry. Indeed unidirectional fork are at their highest already from the initial 

stages after oncogene activation. As time passes, unidirectional forks decrease till they 

reach levels lower than control cells, in correspondence to OIS onset (Figure 52).  

Instead general fork stalling, that includes both bidirectional asymmetric forks as well as 

unidirectional forks, does not seem to be affected by oncogene activation. Indeed the level 

of fork stalling stays almost constant over time (Figure 51). These results are unexpected, 

since oncogene-induced replication stress is known to result in increased fork stalling 

(Bartkova et al., 2006; Di Micco et al., 2006) that preferentially affects fragile sites 

(Tsantoulis et al., 2008). Thus, the lack of oncogene-induced fork stalling shown here 
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might result from the whole genome analysis performed. Indeed, if forks stall 

preferentially at fragile sites, the assessment of fork stalling at whole genome level may 

mask the fork stalling occurring at fragile sites. Hence the genomic analysis would result in 

an underestimation of the fork stalling itself, which occurred mainly at critical sensitive 

genomic loci like fragile sites. Furthermore the data about the impact of oncogene 

activation on telomeric DNA replication, previously described in this thesis, are in support 

to this idea. Indeed, even if the experimental set-ups are slightly different, I showed that 

upon oncogene activation there is a dramatic increase in fork stalling at telomeric DNA, 

whereas in the rest of the genome the impact of oncogene activation on fork stalling is 

much more modest.  

Another possible reason that did not let me appreciate an increased fork stalling as respect 

to previous studies (Di Micco et al., 2006) could be ascribed to the different cell line used: 

in Di Micco, Nature 2006 fork stalling was assessed in DDR-deficient cells (shChk2), 

while the in my case in fully DDR proficient cells. In the absence of effective DDR 

pathway fork stalling might have not been properly resolved, leading to an accumulation of 

these events, whereas in my case, full proficient DDR pathway might have solved them, 

avoiding their accumulation. 

Thus a way to better appreciate the dynamics of fork stalling would be to analyse the effect 

of oncogene-induce replication stress at specific fragile sites, both with DNA molecular 

combing as well as with Repli-Seq analysis (Hansen et al., 2010), as done in (Letessier et 

al., 2011). Repli-Seq would allow to map the replicating DNA and to recapitulate the 

ongoing replication at specific genomic sites that could be supported by the combing 

analysis at the same genomic sites that showed altered DNA replication upon oncogene-

activation.  
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2.4 The complex interplay between oncogene activation, replication stress, DDR 

activation: a mathematical model may help? 

 

Here I summarize the results presented and discussed in this thesis about the oncogene-

induced DNA replication stress and DDR activation. 

At the initial stages after oncogene activation, the frequency of initiation is at the lowest 

level, both as respect to control cells and to oncogenic Ras-expressing cells in the 

following days. This corresponds to high replication fork speed in oncogenic Ras-

expressing cells, the highest of all time course analysis. These fast forks are accompanied 

by an increase in fork stalling, mainly unidirectional forks. This may account to higher 

probability of fast forks to stall, due to higher chances to encounter obstacles - proteins, 

DNA topological problems - while replicating in a faster manner. Indeed as forks slow 

down also the unidirectional forks decrease. This decrease might be due to both to a lower 

chance to stall together with higher probability that stalled forks might be repaired as DDR 

is activated.  

Furthermore the initial high level of unidirectional forks together with a robust γH2AX 

activation may indicate an immediate role of oncogenic Ras expression in altering DNA 

replication dynamics. This initial high level of unidirectional forks and the robust γH2AX 

activation can be ascribed to the effect of dNTP pool depletion that occurs at early stage 

after oncogenic Ras expression (day 1-2) as shown in (Aird et al., 2013). 

As for the frequency of initiation and the replication fork speed, there is a progressive 

increase in replication initiation together with a gradual decrease in the fork speed. These 

results are in line with other studies showing that cyclin E overexpression leads to an 

increase in replication initiation (Jones et al., 2013). Jones R.M et al (2013) demonstrated 

that these higher frequencies of initiation result in increased collision between replication 

and transcription machinery, leading to increased fork stalling and subsequent DNA 

damage. Even though it is tempting to speculate it as a possible mechanism occurring also 
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in the experimental set up used here, further analysis are needed to confirm this hypothesis. 

As previously explained, my experimental set up is different (time course analysis vs 

single time point analysis) and some parameters - fork stalling - were estimated in a 

different way (Left/Right fork speed correlation vs 1st/2nd pulse symmetry of fork 

progression). Indeed our increased in initiation is mainly related to an increase in 

oncogenic Ras-expressing cells over time, rather than comparing it with control cells, 

while the lack of increased fork stalling could be ascribed to the different methods used to 

assess it. 

 

Given the complexity of these processes, it is difficult to extrapolate information on the 

various parameters and relate them both to the control as well as to the trend each of these 

parameters has over time. It is however possible to infer some trends within same 

parameter, comparing them with control conditions or/and with the results of the other 

parameters occurring at the same time point. However when it comes to relate all the data 

obtained for one parameter to all the parameters over time then it can become very 

challenging to get a clear picture of the relations existing between different parameters 

analysed. Thus following a growing line of research (Bechhoefer and Rhind, 2012; 

Gauthier et al., 2010; Sancar et al., 2004), the use of mathematical models designed ad hoc 

to dissect the complex interplay between oncogene activation, DNA replication and DDR 

activation would be very helpful.  
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CHAPTER 3. Ras-induced ROS production via NOX4 as the fuel for 

oncogene induced hyperproliferation 

 

The data presented in this thesis describe the mechanisms underlying oncogenic Ras-

induced ROS production and the central role of ROS in the oncogene-induced 

hyperproliferation. 

It was previously proposed that oncogene activation leads to genomic instability in a DNA 

replication-dependent manner (Bartkova et al., 2006; d'Adda di Fagagna, 2008; Di Micco 

et al., 2006; Halazonetis et al., 2008). Indeed it was observed that oncogene activation is 

followed by an initial hyperproliferative burst that results in replication stress, DDR 

activation and ultimately senescence. In addition, it has been demonstrated that several 

oncogenes - including RAS -, when activated, induce the accumulation of ROS and 

experimental evidence revealed that ROS scavenging can prevent senescence 

establishment. However the pathways involved in Ras-induced ROS production together 

with the causative role of ROS in OIS establishment has remained elusive.  

 The data presented here demonstrated that NOX4 is the central mediator of 

oncogenic Ras signaling: it is upregulated upon oncogenic Ras expression and its 

inhibition prevents the onset of senescence in oncogenic Ras-expressing cells. The key 

effectors involved in this process resulted to be ROS. Indeed pharmacological inhibition of 

NOX4 revealed that in absence of NOX4 enzymatic activity, the Ras-induced ROS 

production is completely abolished. As a consequence, in absence of ROS also Ras-

induced hyperproliferation is prevented, further supporting a mitogenic role of ROS 

compounds, as previously shown in the literature (Irani et al., 1997). Furthermore, the lack 

of hyperproliferation prevents also the oncogene-induced DDR activation and the 

subsequent OIS establishment. This set of results highlight the essential role of ROS in 

Ras-induced hyperproliferation.  We also observed that fully transformed oncogene-

expressing cells that have bypassed senescence by DDR inactivation are particularly 
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sensitive to ROS inhibition by specific NOX4 inhibition. Indeed upon NOX4 inhibition 

their proliferation is reduced to control levels. This further supports the idea of ROS as the 

mitogenic molecules that fuel the oncogene-induced hyperproliferation. 

The results presented here revealed also possible molecular mechanisms underlying the 

reduced proliferation rates occurring upon NOX4 inhibition. Molecular combing 

experiment indicates that inhibition of ROS production by specific NOX4 inhibitor 

treatment, affects DNA replication by inducing a general reduction in replication fork 

speed, together with a different regulation of clustered origins initiation. Indeed even 

though the general frequency of initiation seems not affected, when analysing the 

distribution of IODs, which account for clusters of simultaneously active origins, the 

presence of multiple peaks might indicate a local regulation of origin initiation, that is not 

appreciable when considering the average IOD. These results shed new light on the 

possible mechanism underlying ROS-induced altered DNA replication. Since the analyses 

shown here were performed in transformed human fibroblasts (BJELR), further studies 

will be useful to better dissect the molecular mechanisms underlying the effect of 

inhibition of ROS production by specific NOX4 inhibitor treatment in fully DDR 

proficient human fibroblast upon oncogenic Ras activation, by following their effect on 

DNA replication dynamics over time, from the first hyperproliferative phase till OIS onset. 

 

In conclusion, the results presented here demonstrate the fundamental role of NOX4 - and 

consequently of ROS - in mediating oncogene-induced hyperproliferation. ROS appears to 

be the fuel of Ras-induced hyperproliferation and it seems to act on DNA replication 

dynamics by altering replication fork speed and deregulating clustered origin initiation. 

Furthermore the reduced proliferation of fully transformed cells occurring upon NOX4 

inhibition indicates possible therapeutic application of NOX4 inhibition in cancer 

treatment.  

  



 213 

CHAPTER 4. Novel Polycomb functions in DNA replication dynamics 

The set of data presented in this thesis revealed a novel function of Polycomb group 

proteins in S phase progression and in the regulation of DNA replication dynamics. The 

impairment of cell cycle progression occurring upon EZH2 KO is in line with previous 

studies showing that PRC2 deficiency leads indeed to impairment in cell cycle re-entry 

(Pasini et al., 2004). PRC2 deficiency led also to an impairment of the DNA replication 

dynamics, further supporting a direct role of PcG protein in the regulation of DNA 

replication. Indeed, upon PRC2 deficiency I observed a reduction of fork speed, 

accompanied by an increase in simultaneously active origins, together with increased fork 

stalling, demonstrating that PcG deficiency results in DNA replication stress. The presence 

of replication stress upon PRC2 deficiency is highlighted by increased 53BP1 foci, a 

known DDR maker activated upon DNA replication stress (Lukas et al., 2011). 

PcG proteins may act on the progression of DNA replication by regulating origin firing, as 

shown here by the reduced inter-origin distance of Ezh2 -/- MEFs. Given the fact that 

PRC2 subunits have been localized at sites of ongoing DNA replication (Hansen et al., 

2008) another mechanism through which PcGs could act on DNA replication dynamics is 

by PcGs control on chromatin dynamics during the progression of the replication forks. 

PcGs could also play a role in preventing the collision between DNA replication and RNA 

transcription machineries, thanks to PcGs ability to bind and disassemble the RNA 

polymerase II complex (Lehmann et al., 2012). However further studies to better 

understand the molecular mechanisms underlying the function of PcG on DNA replication 

are needed.   

Taken together, the data presented in this thesis unveil a novel and unprecedented function 

of PcG proteins in the regulation of cellular proliferation through a direct role in DNA 

replication dynamics. This PcG novel function further support the essential role of PcG 

activity for the growth of normal and cancer cells, underlying novel mechanisms of 

proliferation control that opens new perspective in the field. 
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