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1. INTRODUCTION 

Water buffalo is an important livestock resource, which occupies a critical niche in many 

ecologically disadvantaged agricultural systems, providing milk, meat, and work power. In Italy, 

the most important production related to buffalo breeding is milk, traditionally processed into 

mozzarella cheese. This peculiar product gained a well-defined profile in the market, under the 

name of “Mozzarella di Bufala Campana”, enhanced and protected by a Denomination of Protected 

Origin (DPO) trademark, recognized in an increasing number of countries. The major problem of 

buffaloes is the poor reproductive efficiency, mainly caused by late age at maturity, long calving 

intervals, and silent heat. On Italian farms where natural mating is practiced and bulls are always 

present in the herd, the calving interval is approximately 400 days and the culling rate is lower than 

15% (Zicarelli, 2010). Moreover, artificial insemination is not often performed because of the 

weakness of oestrus symptoms and the variability of oestrus length, which makes oestrus detection 

very difficult. Fertility is a problem also in cattle species, where a negative genetic correlation with 

milk yield has been observed (Van Arendonk et a., 1989; VanRaden et al., 2004; Wang et al 2009). 

It is now well established that the large improvement in milk yield obtained over the last 40 years, 

was accompanied by a strong decline in fertility in this species (Washburn  et al., 2002; Hare et al., 

2006; Norman et al., 2009). 

Another fundamental factor affecting buffalo breeding is seasonality of calving. Particularly in Italy 

this is a big issue, since it implies that the greater milk production does not coincide with the 

increased market demand for mozzarella cheese, the main income of buffalo breeding. Under 

Mediterranean latitudes, reproductive efficiency of buffaloes is usually negatively affected by 

increasing day-length. Buffaloes become sexually active in late summer to early autumn (Zicarelli 

1997). The main environmental factor affecting seasonality is photoperiod, which regulates changes 

in the daily melatonin secretion by the pineal gland. The pattern of melatonin secretion provides 

photoperiodic information to cells within the brain that possess the relevant receptors and control 

reproductive function (Migaud et al., 2005). 

During the last 10,000 years our domestic species have been genetically adapted for various 

purposes and to different environmental conditions. In the past years the developments in 

understanding animal genetics have opened the possibility to evolve the genetic evaluation of 

livestock species. Improvement in animal traits through genetic selection is advantageous, because 

genetic gain is cumulative over generations. The genetic improvement of livestock breeds has been 

traditionally based on phenotypic selection. The development of molecular biology tools during the 

past decades created new means for studying livestock genetics and animal breeding, allowing a 

more accurate selection of individuals also without phenotypic information. The availability of 

molecular markers largely distributed throughout the genome, makes them key players in animal 

genetics, also as an useful tool for animal identification and genetic distance estimation. Extensive 

genetic maps designed in the last few decades in a variety of animal species such as cattle, sheep, 

swine, were used for marker assisted selection, quantitative trait loci segregating analysis and for 

detection of major genes (Rohrer et al., 1994; Kinghorn, 1997; Vignal et al., 2002). Single 

nucleotide polymorphisms (SNPs), single base variation in a DNA sequence, are now the most 

widely used class of genetic marker, as they are easy to evaluate and interpret and are widely 

distributed within genomes. A total of 4.4 million human SNP were genotyped during phase II of 

the HapMap project (Frazer et al., 2007). In recent years, the discovery and validation of millions of 

Single Nucleotide Polymorphisms also in the major livestock genomes has been made possible by 

http://www.sciencedirect.com/science/article/pii/S0093691X12005766#bib1
http://www.sciencedirect.com/science/article/pii/S0093691X12005766#bib1
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the release of their complete sequences. These are now available for cattle (Elsik et al., 2009), sheep 

(Archibald et al., 2010) and horse (Wade et al., 2009), pig (Groenen et al., 2012) and chicken 

(Hillier et al., 2004). The release of complete genome sequences also for goat and buffalo has been 

recently announced, but are not yet available to the scientific community. In domestic animals 

Genome-wide association study (GWAS) has become feasible thanks to the development of large 

collections of SNPs and the development of more cost-effective methods for large-scale SNP 

analysis and also in buffalo species, a genomic SNP chip tool is now developing. 

Even with these new genetic tools, the selection for fertility trait is hampered by low heritability. In 

cattle, where the BovineSNP50 chip tool is now widely used for association studies, it has been 

observed that the low heritability and polygenic nature of fertility traits limit the improvements in 

reliabilities achieved by incorporation of genomic information compared to other traits (Cochran et 

al., 2013). Consequently, it has been suggested that incorporation of candidate gene SNPs into 

genomic tests for reproduction is required to select causative SNPs or SNPs physically more close 

to causative SNPs in cattle, as it was already demonstrated in detection of genomic associations 

with disease (Amos et al., 2011). 

Aim of this work is to conduct a candidate-gene association study in genes related to fertility and 

seasonality traits in Mediterranean Italian buffalo. Candidate genes analyzed are: signal transducer 

and activator of transcription 5A (STAT5A), serpin peptidase inhibitor, clade A (alpha-1 

antiproteinase, antitrypsin), member 14 (SERPINA14) and tumor necrosis factor alpha (TNFA) for 

fertility, and melatonin receptor 1A (MTNR1A) for seasonality.  
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1.2. WATER BUFFALO 

The water buffalo (Bubalus bubalis) is one of the most important dairy animals, concentrated 

largely in tropical and sub-tropical countries. Water Buffalo milk production, although only 

produced in a few countries, is increasing and it constitutes 13% of the world milk production, 

principally in Asia (Ferreira et al., 2013). 

1.2.1. Origins 

The phylogeny of water buffalo is still a matter of debate (Perera, 2011). Buffaloes form two 

groups: the Asian (genus Bubalus) and the African (genus Syncerus). Since the African buffalo can 

be tamed and has bred in captivity, but it has never been domesticated, the wild water buffalo is 

thought to be the founder of all domestic buffaloes in the world today (Cockrill, 1993). MacGregor 

(1941) classified water buffaloes in two groups: the Swamp buffaloes of South-east Asia and the 

River buffaloes of the Indian subcontinent. These two types can be distinguished using karyotyping, 

as they differ in the number of chromosomes (Iannuzzi, 1994), first described by Fischer & Ulbrich 

in 1968 (figures 1.2.1.1. and 1.2.1.2.), as well as morphological and ethological criteria (Cockrill, 

1981). Swamp buffaloes are the most similar to the wild Asian progenitor Bubalus arnee (Clutton-

Brock 2001); compared to Indian breeds, they usually have in fact more massive horns, heavily 

striated and grow outward from the head laterally and upwards to form a semi-circle as in the wild 

arni. Overall colour is dark slate grey; a red tinge in the long hairs of the coat is common (Cockrill, 

1984). The River buffaloes are usually black, have curled or sickle-shaped horns and are primarily 

dairy animals (Cockrill, 1984). The main breeds of dairy buffalo belong to the river type and 

include the Murrah, Surti, Jafarabadi and Nili-Ravi. The swamp type has no specialized breeds but 

selective breeding in some countries has resulted in populations with characteristic features (Perera, 

2011). The Mediterranean buffalo, which some consider to be a third type, is derived from the river 

type. 

From the practical aspects of buffalo breeding, the disparity in the number of chromosomes in 

swamp (2n=48) and river (2n= 50) buffalo has relevance (Huang et al., 2003). The F1 hybrids have 

49 chromosomes, while the F2 hybrids have 48, 49 or 50 chromosomes. The backcrosses have two 

different karyotype categories each, with 2n = 48 and 2n = 49 in the three quarters swamp types and 

2n = 49 and 2n = 50 in the three quarters river types (Harisah et al., 1989). The distribution of 

chromosome categories among the F2 hybrids and backcrosses suggests that only genetically 

balance gametes of the F1 hybrids are capable of producing viable F2 and backcross generations, 

and that crossbreds with 2n=49 had lower fertility than crossbreds with 2n=50 (Huang et al., 2003). 
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Figure 1.2.1.1.: Swamp buffalo karyotype (Fischer & Ulbrich, 1968). 
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Figure 1.2.1.2. River buffalo karyotype (Fischer & Ulbrich, 1968). 
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1.2.2. Domestication 

The domestication of buffaloes most likely took place in the civilization of the Indus, the Yangtze, 

and the Euphrates and Tigris in the third millennium BC (Nachtsheim and Stengel, 1977; Cockrill, 

1981). A seal dating back to the Indus Valley Civilization of Mohenjo-daro, states that at the time 

(2500 BC), the buffalo was already domesticated in the region corresponding to modern Pakistan; 

another seal coming from the same period was discovered in the Cemetery of Ur in Mesopotamia 

(Clutton-Brock 2001). Some evidence indicates that wild prehistoric buffaloes lived in the Middle 

East. It has been suggested (Bökönyi et al., 1973) that the discovery of a Sassanid silver plate, 

dating back to a period between the sixth and seventh century AD, decorated in relief with 

depictions of a hunting scene, could prove that at that time the buffalo still existed in Iran in the 

wild (Fig 1.2.2.1.). 

 

 

Figure 1.2.2.1. Silver plate of Sassanid manufacture, from Iran, which depicts the hunt wild buffalo and other animals, 

VI-VII century AD, Russia (picture from Clutton-Brock 2001). 

Based on studies of mitochondrial DNA (mtDNA) of swamp and river buffalo, together with 

analysis of data published from South-East Asian and Australian water buffalo, Kierstein and 

colleagues concluded that both swamp and river buffaloes descend from one domestication event, 

probably in the Indian subcontinent (Kierstein et al., 2004). They also found evidence for 

introgression of wild Bubalus arnee mtDNA into domestic swamp buffalo. However, another 

research proved that river and swamp buffalo are distinguished into two distinct clades, indicating 

that the two types were domesticated independently (Kumar et al., 2007). This was supported by 

studies in China (Lei et al., 2007) that showed two mtDNA lineages with divergence estimated at 
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18,000 years ago, indicating independent domestication events for the swamp buffalo from China 

and the river buffalo from the Indian subcontinent. Finally, in a recent work (Yue et al., 2013) 

authors report that there are three possible scenarios regarding the original domestication center of 

buffalo: (1) swamp buffalo was domesticated in multiple centers, including Southeastern Asian and 

Southwestern China; (2) swamp buffalo was first domesticated in Southeastern Asia, and then 

introduced to Southwestern China before spreading to the adjacent regions; and (3) swamp buffalo 

was first domesticated in Southwestern China, but archaeologists have not discovered the early 

buffalo remains. Authors conclude that more DNA tests on buffalo from Southeastern Asia, 

particularly Myanmar, Laos, Vietnam, and Thailand, need to be done in order to compare with the 

data from China. 

In Italy, buffaloes were introduced from central Europe in the sixth century or by the Bey of Tunis 

in the seventh century at the time of the Arab conquest (Salerno, (1974). Importation of water 

buffaloes to Africa, Australia, and South America took place only recently (Kierstein et al., 2004). 

1.2.3. Role of the buffalo in livestock production 

In recent decades, there has been an increase in the international interest in water buffalo species, 

made evident by the popularization of buffalo farming in Mediterranean area to Latin America and 

in Central⁄Northern Europe as well (Barile, 2005). The world buffalo population is continuously 

increasing and was estimated at over 195 million head in 2011. More than 97% of the population is 

in Asia, above all India, where buffaloes play an important role in rural livestock production. In 

fact, the good feed conversion efficiency of buffaloes and the relatively low maintenance 

requirements make them ideal in low-input, low-cost production systems (Paul et al., 2002). 

Buffaloes are important production animals also in developed countries (Zicarelli, 1994). In Europe, 

buffalo population was estimated at about 390,000 heads in 2011, the most part of which is 

concentrated in Italy, with more than 365,000 heads (FAO, 2013). 

The average milk yield per animal, where checked, is 940 kg (Table 1.2.3.1.). 
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Country 

 

Milk buffaloes 

(Head) 

Buffalo milk 

Yield (kg/animal) 

Milk production 

(tonnes) 

Albania 20 500 10 

Bangladesh 90000 400 36000 

Bhutan 209 400 84 

Brunei Darussalam 450 200 90 

Bulgaria 5444 1629 8868 

China 5706400 543 3100000 

Egypt 1680000 1579 2653240 

Georgia 9500 579 5500 

Greece 200 800 160 

India 37131000 1679 62350000 

Iran (Islamic Republic of) 150000 933 140000 

Iraq 29500 922 27206 

Italy 244599 787 192540 

Malaysia 9700 1150 11155 

Myanmar 560000 541 302974 

Nepal 1291660 859 1109330 

Pakistan 11864000 1935 22955000 

Sri Lanka 86220 537 46330 

Syrian Arab Republic 3398 1766 6000 

Turkey 40218 1004 40372 

Vietnam 32000 1000 32000 

Table 1.2.3.1. World production of buffalo milk in 2011 (www.fao.org). 

1.2.4. Mediterranean Italian Buffalo 

In recent decades, buffalo farming has expanded greatly in Mediterranean areas. In Italy, buffalo 

was estimated at over 365 thousand head in 2012 (FAO, 2013) and its importance and 

competitiveness is confirmed by the positive trend observed in the national buffalo population in the 

last ten years (Figure 1.2.4.1.). 

http://www.fao.org/
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Figure 1.2.4.1. Buffaloes population trend in Italy from 2000 to 2011 (www.fao.org). 

In the Italian ANASB (Italian Buffalo Breeders’ Association) database (www.anasb.it), 295 

breeding farms resulted in 2012, with on average about 190 heads per farm and a total population of 

about 56,000 buffaloes, which means that there is a big difference in the estimated population 

relative to that checked. The largest concentration of heads checked can be found in southern and 

Center of Italy, where 95 percent of the Italian buffalo population is reared. 

The increasing in Buffalo farming in Italy is due to the growing market demand for buffalo milk 

that is utilized exclusively for the production of "mozzarella cheese". Another economic benefit  

deriving from buffalo milk production is that buffalo milk is not restricted by the specific European 

Union (EU) directive called "milk quotas", introduced to regulate cow milk production. In fact, this 

regulation induced some farmers, in areas where Friesian cattle are traditionally reared, to consider 

the option of breeding milking buffaloes for the production of "mozzarella" cheese. This led to an 

expansion of buffalo breeding also in the north of Italy, away from the customary area in southern 

Italy (Borghese, 2005). 

The buffalo farming in Italy has been reaching significant productive standards thanks to an intense 

work of selection and research carried out during the past years. These efforts have led to an 

officially recognized breed known as Mediterranean Italian Buffalo. Many improvements have been 

also seen in management. In fact, in Italy, the type of farming has changed over time and the 

scheme with extensive use of meadows and pastures of the past has given way to an intensive 

farming, modeled on the same modern systems used for dairy cows. Concerning nutritional aspects, 

the “unifeed” technique has become very widespread for buffalo, both during lactation and when 

dried off. Buffaloes are divided into at least two groups: the dried off and the lactating ones. The 

lactating ones are usually divided in two groups based on lactation stage (milk yield). Dry matter 

intakes for the lactating buffalo depend on live weight, milk yield, lactation stage (the highest 

consumption of dry matter is between the 50th and the 150th day from calving), forage concentrate 

ratio and quality (Bartocci and Terramoccia 2004). 

For Mediterranean Italian Buffalo, the recording activity is administrated by the Italian Breeders 

Association (A.I.A.) through productive controls performed monthly by Recording Inspectors. The 

collecting activity is organized all over the Italian territory by the Provincial Breeders’ Associations 
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(A.P.A.’s). Data are then transmitted to A.I.A.’s central office to be processed. The productive 

controls referred to the conventional lactations (270 days or less) longer than 150 days, and regard: 

milk yield (kg), fat and protein content (kg and %) and somatic cell count. The beginning of the 

official lactation starts at calving, the first control cannot be carried before the five days from 

calving and not beyond 75 days. Every milk control must be made on all the milking ordinarily 

practiced by the breeder in the 24 hours, also annotating: time of the control, amount of milk (kg), 

and milk weight, measured with a balance or determined with milk flow-meters (Borghese, 2013). 

Productive controls are recorded at the end of lactation, and are divided into four categories, based 

on the parity order: 

1-animals at first calving 

2-animals at second calving 

3-animals at third calving 

4-animals from the fourth calving onwards 

Data recorded for each category are: the number of controlled buffaloes, the number of closed 

lactations, the average milk production and the average fat and protein percentage, the average age 

at calving, the average length of lactation. For the dairy productivity controls, only the conventional 

lactations longer than 150 days are considered. 

All data collected are shared with ANASB, to be processed for the elaboration of productive and 

morphological breeding values. These are the result of genetic evaluation carried out by the method 

Blup-Animal Model, which will be explained in more details in paragraph 1.5. The major selective 

goal for production traits is to increase the mozzarella cheese yield, expressed in the selection index 

PKM, that is the most important product for buffalo species in Italy, as well as both milk yield and 

quality. The production traits analyzed for this purpose are:  

• Mozzarella cheese yield (PKM)  

• Milk yield (kg)  

• Fat content (kg and %)  

• Protein content (kg and %) 

The breeding values are based on open and closed lactations whose length ranges from 140 to 570 

days. All productions referred to a standard lactation of 270 days and those reporting value of less 

than 1,300 kg are not considered. 

The milk average production recorded in 2012 was over 2,200 kg, with 8.3% fat and 4.7% protein 

content (ANASB, 2013; see Table 1.2.4.2.). 

  



16 
 

Year 

 

Average milk 

yield (kg) 

Fat (%) 

 

Proteins 

(%) 

heads 

checked (n) 

Farms 

checked (n) 

Average 

heads/farm (n) 

2002 2168 8.28 4.73 35755 292 122.4 

2003 2175 8.1 4.65 36966 287 128.8 

2004 2184 8.06 4.68 39439 294 134.1 

2005 2169 8.07 4.69 39925 282 141.5 

2006 2178 8.09 4.67 40425 286 141.3 

2007 2211 8.18 4.66 44430 290 153.2 

2008 2221 8.24 4.66 46799 290 161.3 

2009 2182 8.39 4.61 48535 288 168.5 

2010 2180 8.47 4.59 50240 292 172,1 

2011 2223 8.5 4.66 54548 302 180,6 

2012 2218 8.3 4.7 56075 295 190.1 

Table 1.2.4.2. Parameters regarding buffalo population and milk production in the last decade in Italy 

(ANASB 2013). 

The production of mozzarella cheese guarantees the profitability of buffalo species in Italy. Buffalo 

mozzarella is a €300million ($430million) a year industry, which produces around 33,000 tons of 

mozzarella cheese every year, with 16% sold abroad, mostly in the European Union. France and 

Germany are the main importers, but sales to Japan and Russia are expanding. With the inclusion in 

the European Union register of Denomination of Protected Origin in 1996, as “Mozzarella di Bufala 

Campana”, the organoleptic and merchandise characteristics of this typical cheese were officially 

recognized. The Mozzarella di Bufala Campana cheese is produced exclusively with buffalo fresh 

milk from the area of origin and performed with a specific and regulated technological process. The 

production district of this cheese is defined in its law specifications and encompasses seven 

provinces across two regions of southern Italy (Campania and Lazio) (Bonizzi et al., 2007). 

The composition of buffalo milk is different from that of other animal species, such as cow and 

sheep. It is richer in protein, fats and calcium. These chemical characteristics allow to obtain cheese 

yields equal to about twice those usually obtained with cow's milk. In table 1.3.4.3., average 

production performances of the two most important dairy cow breeds reared in Italy, Italian 

Holstein and Italian Brown, together with two native northern Italian and less productive breeds, 

Grey Alpine and Rendena, are compared to those registered for Mediterranean Italian Buffalo. 
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Breed Year N. lactations recorded Milk yield (kg) Fat (%) Protein (%) 

Italian Holstein 2012 1,130,270 9,320 3.72 3.38 

Italian Brown 2012 56,014 7,089 3.98 3.55 

Grey Alpine 2013 6,214 5,015 5.015 3.72 

Rendena 2012 2,717 5,206 3.42 3.31 

Mediterranean Italian Buffalo 2012 56,075 2,218 8.30 4.70 

Table 1.2.4.3. Average production performances recorded for Italian Holstein (www.anafi.it), Italian Brown 

(www.anarb.it), Grey Alpine (www.grigioalpina.it), Rendena (www.anare.it) and Mediterranean Italian 

Buffalo (www.anasb.it). 

1.3. BUFFALO LOW FERTILITY 

Problem of silent heat coupled with late maturity, poor expression of oestrus, irregular oestrous 

cycle, seasonality in breeding, anestrous, low conception rate, long postpartum interval are some of 

the major constraints in buffalo productivity and improvement through artificial breeding (Madan et 

al., 1990). In table 1.3.1. are summarized the principal parameters of buffalo reproduction. 

 
Table 1.3.1. Summary of reproductive characteristics of buffalo (Perera, 2008). 

Reproduction is a complex biological process which involves a series of physiological events 

properly regulated by the endocrine system. In the sexual reproduction of all organisms except 

bacteria, haploid, uninucleate gametes are produced that join in fertilization to form a diploid, 

uninucleate zygote, which suddenly develops in a new individual. The gametes differ essentially 

from somatic cells in having undergone meiosis, a process in which the number of chromosomes is 

reduced to one-half of the diploid (2n) number found in somatic cells. The resulting sex cells thus 

receive only half the number of chromosomes present in the somatic cell. Furthermore, the sex cells 

are generally capable of developing into a new individual only after two have united in a process 

called fertilization. The gametes have two forms: the female sex cell (ovum, or egg), derived from 

http://www.anafi.it/
http://www.anarb.it/
http://www.grigioalpina.it/
http://www.anare.it/
http://www.anasb.it/
http://www.britannica.com/EBchecked/topic/537189/sexual-reproduction
http://www.britannica.com/EBchecked/topic/205305/fertilization
http://www.britannica.com/EBchecked/topic/658686/zygote
http://www.britannica.com/EBchecked/topic/205305/fertilization
http://www.britannica.com/EBchecked/topic/436179/ovum
http://www.britannica.com/EBchecked/topic/180149/egg
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an oocyte (immature egg), and the male sex cell (spermatozoon or sperm), derived from a 

spermatocyte. 

Different aspects of reproduction in buffaloes, compared to cows, along with the physiological 

mechanisms involved are discussed in the following paragraphs. 

1.3.1. Gamete formation 

Reproductive development and physiology are evolutionarily conserved processes across eutherian 

mammalian species gonads, the site of future gamete production (Matzuk and Lamb, 2002). The 

indifferent gonad forms during fetal development in the female: primordial germ cells (PGCs) enter 

the gonad primordium and the tissue eventually differentiates along an ovarian pathway; this 

differentiation dictates the formation of the secondary sex organs (Xu et al., 1996). The haploid 

germ cells are produced in the adult gonad, but the diploid germ-cell line is established during early 

embryogenesis. When the gonads become morphologically differentiated into ovary, the germ cells 

of the female are termed oogonia and divide mitotically until meiosis initiated. After beginning the 

meiotic process, germ cells can no longer divide mitotically, and they are therefore incapable of 

increasing their number. This is crucial for female reproduction since all germ cells are transformed 

to oocytes during early stages of development. Most of the millions of primordial oocytes formed in 

the fetal gonads eventually undergo atresia before birth and during postnatal development (Foote, 

1975). Thus, the female starts the fertile life with a finite number of germ cells and, unlike the male, 

the female gonad contains only a limited number of potential gametes in the adult (Austin and 

Short, 1982). This concept, which has been considered a dogma for many years, has recently been 

challenged by authors suggesting that neo-oogenesis takes place during adult life in the mouse 

ovary from germline stem cells in the surface epithelium of the ovary (Johnson et al., 2004). 

However, even if several studies have supported this theory (Virant-Klun and Skutella, 2010), it 

remains to be confirmed, as other works failed to find evidence that any cells contribute to the 

formation of new oocytes in the adult (Notarianni, 2011). 

Based on the concept of a limited, fixed supply of oocytes in the female, buffaloes are severely 

disadvantaged compared to cows. In fact, the ovaries of post-pubertal buffalo heifers have a 

reservoir of only 10,000 to 20,000 primordial follicles compared with over 100,000 in cattle 

(Perera, 2011). 

1.3.2. Development and function of the reproductive system 

The reproductive process in mammals is governed by the central nervous system. Information 

emanating from a variety of external cues (e.g. visual, auditory, tactile, olfactory) is fed into the 

central nervous system and converges on the hypothalamus. The hypothalamus is the portion of the 

anterior end of the diencephalon that lies below the hypothalamic sulcus and in front of the 

interpeduncular nuclei. The pituitary gland, or hypophysis, consists of two major subdivisions, the 

anterior and the posterior lobe. The posterior lobe is made up of neural tissue and is connected to 

the rest of the brain via the infundibular stem, or pituitary stalk (Austin and Short 1984). Thus, there 

is a direct neural link between the posterior pituitary and the brain. The anterior lobe of the pituitary 

(or adenohypophysis) is further subdivided into the pars distalis, pars intermedia and pars tuberalis. 

The pars tuberalis surrounds the infundibular stem like a cuff and extends upwards to lie beneath 

the portion of the median eminence. The anterior pituitary communicates with the brain by a 

vascular connection, the hypothalamo-hypophyseal portal system (Austin and Short 1984). 

http://www.britannica.com/EBchecked/topic/429454/oocyte
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The anterior pituitary secretes six hormones, including follicle-stimulating hormone (FSH) and 

luteinizing hormone (LH). Pituitary FSH is essential for development and maintenance of ovarian 

follicles in single and multiple ovulating species (Kaneko et al., 1991). Inhibin (INHBE), produced 

by granulosa cells of ovarian follicles, is a glycoprotein hormone which suppresses production 

and/or secretion of FSH through negative feedback at pituitary level (Burger et al., 2008). In figure 

1.3.2.1. the protein interactions involved in this processes are represented. These interactions 

comprise also growth differentiation factor-9 (GDF9), expressed in oocytes, which plays an 

important role in the development of primary follicles in the ovary (Juengel et al., 2004). It has a 

critical role in granulosa cell and theca cell growth, as well as in differentiation and maturation of 

the oocyte (Su et al., 2004). 

 

 

Figure 1.3.2.1. Representation of known and predicted protein interactions of man FSH hormone from 

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) v9.1 (Franceschini et al., 2013). 

Leptin is another important hormone involved in reproductive processes and it serves as a metabolic 

signal that acts on the hypothalamic-pituitary-ovarian axis to enhance Gonadotropin releasing 

hormone (GnRH), and LH secretion and ovarian function (Terzano et al 2012). GnRH is a 

decapeptide neurohormone that plays a key role in the reproductive axis, ultimately modulating the 

release of gonadal steroid hormones. It has been reported in several farm animals, that leptin 

stimulates steroidogenesis and modulated follicular development (Agarwal et al., 1999; Brannian et 

al., 1999). Leptin effects on gonadotropin-releasing hormone and luteinizing hormone secretion are 

mediated by neuropeptide Y (NPY) and kisspeptin, thus, leptin appears to be an important link 

between metabolic status, the neuroendocrine axis and subsequent fertility in farm animals (Barb 

and Kraeling, 2004). In figure 1.3.2.2. a schematic representation indicating how kisspeptin neurons 

regulate GnRH neurons is reported. 

http://en.wikipedia.org/wiki/Ovarian_follicle
http://en.wikipedia.org/wiki/Ovary
http://en.wikipedia.org/wiki/Granulosa_cell
http://en.wikipedia.org/wiki/Theca_cell
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Figure 1.3.2.2. Diagram of kisspeptin neurons regulation of GnRH neurons (Yeo, 2007). 

The LH is important in studies of ovarian activity since its pre-ovulatory peak is responsible for the 

follicular wall rupture and ovulation (Terzano et al, 2012). Both FSH and LH play a fundamental 

role also in the onset of puberty in mammals. 

1.3.3. Puberty 

Puberty is the culmination of a complex series of maturational events that lead to the completion of 

sexual and somatic development and the acquisition of reproductive competence (Tena-Sempere, 

2013). In female, puberty is characterized by the manifestation of oestrus and ovulation. This is a 

developmental process with genetic drivers conserved among species (Matzuk and Lamb, 2002). 

Puberty is a product of increased activity of the hypothalamic-pituitary-gonadal axis leading to 

production of gonadal steroids and other growth-associated hormones (McCarthy, 2013). GnRH 

from the hypothalamus regulates the pituitary gonadotrope production of follicle stimulating 

hormone and luteinizing hormone (Matzuk and Lamb, 2002), which in turn reaches the gonad and 

promotes steroidogenesis (figure 1.3.3.1.). 
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Figure 1.3.3.1. Schematic representation of the Female Hypotalamus-Pituitary- Gonad Endocrine Axis, 

(Hiller-Sturmhofel and Bartke, 1998). The hypothalamus secretes GnRH that acts on the pituitary gland 

stimulating its releasing of gonadotropins (i.e., LH and FSH). 

During pubertal development, GnRH secretion transforms from low-level irregular pattern to a 

pattern of regular, pulsatile secretion , which is critical in initiating this process (Plant et al., 2006). 

The increased GnRH secretion at puberty is determined by a cascade of events. During the 

prepubertal period an inhibitory neuronal system suppresses GnRH release and during the 

subsequent maturation of the hypothalamus this prepubertal inhibition is removed, allowing the 

adult pattern of pulsatile GnRH secretion (Terasawa and Fernandez, 2001). However, interruption 

of inhibition proves insufficient for induction of puberty; there is also the need for an accelerator, 

which must include fine-tuned temporal control of GnRH neurons in what is referred to as the 

GnRH pulse generator, so that luteinizing hormone is released from the pituitary at the appropriate 

frequency and amount (Windsor-Engnell et al., 2007). In this regard, during the past decade 

evidence has accumulated suggesting GnRH secretory activity is modulated by a specific glial-

neuronal gene family which synthesizes adhesion/signaling proteins involved in the functional and 

structural integrity of bi-directional glial-neuronal communications (Srivastava et al., 2011). 

One hypothesis about the possible mechanism of GnRH neuron activation that has received 

considerable recent attention is one in which neurons synthesizing the neuropeptide kisspeptin 

stimulate GnRH neurons to initiate puberty(McCarthy, 2013). Kisspeptin is a small RF-amide 

peptide from a phylogenetically diverse family of peptides that share a common C-terminal arginine 
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and an amidated phenylalanine and have critical roles in the control of reproduction, food intake 

and energy expenditure (Ebling and Luckman, 2008). Kisspeptins are the peptide products of KISS1 

gene, which operate via the G-protein-coupled receptor GPR54 (Navarro, 2013).The critical role of 

kisspeptin in pubertal maturation was first demonstrated in 2003 when studies in both humans and 

mice (de Roux et al., 2003; Funes et al., 2003; Seminara et al., 2003) reported that mutations or 

deletion of GPR54 prevented normal pubertal maturation resulting in infertility. Subsequently, 

KISS1 knockout mice, i.e. designed to produce a null mutation in the KISS1 gene, were reported to 

exhibit a similar phenotype to the GPR54 knockout mice, indicating that kisspeptin signaling 

through GPR54 is essential for normal pubertal maturation to occur, and loss of KISS1 cannot be 

overcome by compensatory mechanisms. (d'Anglemont de Tassigny et al., 2007; Lapatto et al., 

2007). In figure 1.3.3.2., the KISS1 network in man is represented, indicating interactions between 

KISS1 and GnRH. 

KISS1 neurons are localized to the arcuate nucleus and the anteroventral periventricular nucleus, 

two brain regions that play a key role in the control of GnRH neuronal activity, hence kisspeptin 

was established as being fundamental for GnRH secretion, but also for luteinizing hormone release 

and, ultimately, puberty (Kauffman, 2010). In fact, since kisspeptin cells provide direct synaptic 

input to GnRH cells (Kinoshita et al., 2005) and kisspeptin is a potent stimulator of GnRH secretion 

(Messager et al., 2005), these cells are ideally placed to transmit estrogen feedback information to 

the brain cells that drive the reproductive process (Clarke et al., 2009). 

 

Figure 1.3.3.2. KISS1 network in man, from STRING (Search Tool for the Retrieval of Interacting 

Genes/Proteins) v9.1 (Franceschini et al., 2013). 

The timing of puberty onset is an important phenotype for the livestock industry because late 

puberty has negative effects on reproduction rates and profitability. In buffalo, compared with 

cattle, puberty is delayed. Buffalo heifers usually attain puberty when they reach about 55-60%, of 

their adult body weight, around 250-400 kg for the river type (Perera, 2011). The age at which 

buffalo heifers attain puberty can be highly variable, ranging from 18 to 46 months, and it is 

significantly influenced by nutrition, management, social environment, climate, season of birth, 

growth rate and diseases (Barile, 2005). The pre- weaning and weaning systems are important in 

promoting growth and achieving puberty, therefore heifer management needs start from birth to 

ensure a correct weight increase. In fact, the animals that showed a higher daily gain before the 
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trials reached puberty in a shorter time (Borghese, 2005). The delay in puberty and the consequent 

delay in conception, is one of the causes of low reproductive efficiency of bubaline species thus 

lengthening non-productive life. In recent years, there has been a general improvement of this 

parameter. In a study performed on 86 farms (30,735 primiparous buffaloes, which calved between 

1975 and 2005), it was observed that the mean age at first calving decreased by 1 month every 5 

years (Zicarelli et al., 2007). However it must be said that, since the age at puberty is hard to 

establish because of difficulties in estrous detection, in this species most estimations are 

extrapolated from the age at first calving (Barile, 2005). 

1.3.4. Oestrous cycle 

From the time of puberty, the female begins to express the oestrous cycle which, in buffaloes, can 

vary from 16 to 28 days (Baruselli et al., 1997). The periods of oestrous cycle are oestrus, 

metoestrus, dioestrus and pro-oestrus. 

1.3.4.1. Oestrus 

During oestrus period, the female is receptive to the male and will stand for mating. Near the start 

of oestrus, there is dramatic surges in FSH, which promotes follicular growth and estrogen 

production by granulosa cells in ovarian follicles, and LH, together with estradiol. The interval 

between the onset of oestrus and the LH surge can vary from 1 to 12 h in buffaloes and ovulation 

occurs between 26 and 33 hours after the LH surge (Seren and Parmeggiani, 1997), with differences 

according to the reproductive method adopted. For example, studies on Italian buffalo show that 

they have the interval from peak LH concentration to ovulation being about 25 hours in animals that 

conceived to artificial insemination (AI) and 46 hours in those that did not (Moioli et al., 1998). 

Behavioural symptoms of oestrous are induced by the action of estrogens on the central nervous 

system. These are hormones produced by the ovary and transported by carrier proteins, the most 

important of which is estradiol 17β (E2). Peripheral plasma E2 profile in buffalo is not very 

different from that reported in cattle, with peak concentrations observed before and during the 

preovulatory surge of gonadotropins, after which the levels come down to base values in the next 

few days, with minor fluctuations throughout the oestrous cycle (Terzano et al., 2012). A marked 

difference between buffalo and cattle is that external signs of oestrus are less obvious in the former, 

with less oestrus-associated mounting behavior (Roy and Prakash, 2009). The main behavioral 

signs are restlessness, bellowing and frequent voiding of small quantities of urine, but these are not 

consistently exhibited by all animals. Externally detectable physical changes include swelling of the 

vulva, resulting in removal of the horizontal wrinkles that are present on its external surface and 

this, together with vestibular reddening, can be detected by regular examination of individual 

animals under confined systems (Perera, 2008). Mucus, secreted from the cervix during oestrus, is 

less copious than in cattle and does not usually hang as strands from the vulva but tends to 

accumulate on the floor of the vagina and be discharged either when the animal is lying down or 

with the urine. These factors have contributed to the observation that silent ovulation (also termed 

as silent oestrus) is more common in buffalo than in cattle (Perera, 2008). 

1.3.4.2. Metoestrus 

After ovulation, dramatic changes occur in the follicle, which result in the formation of a transient 

ovarian organ, the corpus luteum (CL). The mammalian CL is composed of a heterogeneous 

mixture of cell types. There are at least two types of steroidogenic cells, large and small luteal cells, 

which originate from the granulosa and thecal cells of the follicle ruptured at ovulation, respectively 
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(Skarzynski et al., 2008). The primary product of the CL is progesterone (P4), required for 

establishment and maintenance of pregnancy. P4 concentration in blood increases during the 

developing luteal stage. The CL continues to secrete a high level of P4 until late luteal stage, and 

then its ability rapidly decreases in the regressing luteal stage (Skarzynski et al., 2008). In domestic 

animals LH released in a pulsatile fashion from the anterior pituitary plays a major role in the 

regulation, synthesis and secretion of P4 in the CL (Niswender et al., 2007). In buffalo, P4 levels 

continue to increase in animals that conceive, but drop 3 days before the next oestrus in those that 

fail to conceive (Batra et al., 1979). Variation in progesterone concentration during oestrus cycle in 

buffaloes can also be observed according to season (Srivastava et al., 1999) and nutritional status 

(Ronchi et al., 2001). 

1.3.4.3. Dioestrus 

Dioestrus id characterized as the period in the cycle when the corpus luteum is fully functional and 

reaches the maximum size. Progesterone attains the highest values in this stage, preventing 

secretion of GnRH by the hypothalamus. The duration of this phase is directly related to the time 

that the corpus luteum remains functional. High progesterone levels prompt the uterus to prepare a 

suitable environment for development of the embryo, and eventual attachment of the conceptus to 

the endometrium (implantation). 

1.3.4.4. Pro-oestrus 

If fertilization does not occur, the pro-oestrus period begins, during which the regression of CL, or 

luteolysis, takes place. This is essential for normal cyclicity as it allows the development of a new 

ovulatory follicle (Skarzynski et al., 2008). In mammals, luteolysis consists of two phases, 

functional luteolysis and structural luteolysis (McCracken et al. 1999). A rapid functional regression 

of CL is characterized by a decrease of P4 production, followed by a phase of structural regression 

(McCracken et al. 1999). The onset of the decline in P4 concentrations is variable, depending upon 

the time of regression of CL (Terzano et al., 2012). The CL regressing implies that the 

hypothalamus is no longer inhibited and oestrogen levels are rising, due to the formation of 

follicles, promoting GnRH secretion. It has been proposed that the regression of the CL in buffaloes 

is a more extended process than in cattle, based on a more gradual decline in circulating 

concentrations of progesterone in the former (Avallone et al 1987). In support of this suggestion, 

some authors demonstrated that the RNA/DNA ratio of CL tissue in buffaloes did not change 

during the developing, developed and regressing phases. Moreover, on a tissue weight basis, total 

DNA and RNA did not differ between developing and regressing CL of buffalo (Ghosh and 

Mondal, 2006). On the contrary, in cattle the RNA/DNA ratio was reported to decline during the 

regressing phase of the CL (Hafs and Armstrong, 1968; Mares et al., 1962). 

The following figure 1.3.4.4.1. represents a mammalian ovary with the sequential development of 

the follicle and the formation of corpus luteum. 

  

http://en.wikivet.net/Implantation_-_Anatomy_%26_Physiology
http://en.wikivet.net/Implantation_-_Anatomy_%26_Physiology
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Figure 1.3.4.4.1. Diagram of a mammalian ovary, showing the sequential development of a follicle, 

formation of a corpus luteum, and, in the center, follicular atresia. A section of the wall of a mature follicle is 

enlarged at the upper right. (Gorbman and Bern, 1962). 

1.3.5. Fertilization, pregnancy and embryo development 

Fertilization comprises a series of steps beginning with penetration of the egg coats followed by the 

incorporation of the spermatozoon into the cytoplasm of the egg. When the mammalian oocyte is 

fertilized, it is still arrested at metaphase II until the sperm’s entrance activates a release of calcium 

from storage sites into the ooplasm in a wave-like pattern (Swann and Yu, 2008). The repeated 

oscillations of cytosolic Ca
2+ 

give rise to a set of event known as oocyte activation (Khatib, 2012). 

Next there occurs a transformation of the sperm nucleus and of the remaining haploid set of egg 

chromosomes so as to form, respectively, the male and female pronuclei (Austin, 1982). 

Fertilization results with a diploid cell, the zygote, containing the genetic code for a new individual. 

With fertilization starts gestation, which ranges from 300 to 330 days with a mean of approximately 

310 days for river type buffaloes (Perera et al., 1987). 

To establish a successful pregnancy, a number of well-orchestrated events must take place in a 

precise order. An ‘in time’ resumption of ovarian activity and cyclicity should result in the 

completion, selection and growth of a healthy follicle, enclosing a competent oocyte, and ult imately 

in ovulation, fertilization and uterine attachment of a viable embryo (Van Soom et al., 2006). Early 

embryo development is a process of series of repeated cell divisions known as cleavage. Each cell 

in an early mammalian embryo is called a blastomere, and there are no morphologic differences 

among individual blastomeres (Chen et al 2010). However, from a molecular point of view, many 

complex processes take place in each individual blastomere in order to attain cell division and begin 

cell differentiation (Khatib, 2012). During the first cell cycles, the preimplantation embryo is 

controlled by maternal genomic information that is accumulated during oogenesis (Telford et al 

1990). Around the 8-cell stage in the bovine embryo, the embryo starts transcribing its own RNA 

(Memili and First, 2000).When the embryo passes from the oviduct into uterus, an amorphous mass 

of cells forms a structure called morula. During the next few days, fluid collecting in the 
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intercellular spaces will push to the center forming the blastocyst, a structure with a fluid-filled 

cavity (the blastocele) surrounded by a layer of cells (Bearden and Fuquay, 1984). 

In ruminants, the establishment and maintenance of pregnancy is strongly dependent on 

progesterone production. This is related to the correct functionality of corpus luteum at the early 

stages of embryo development, and supported by additional progesterone production by the 

fetoplacental unit at later stages of pregnancy (Jainudeen and Hafez, 1980). In buffaloes, it has been 

reported that progesterone concentration linked to maintenance or loss of pregnancy, follows a 

seasonal pattern, with a differential production according to the period of the year (Di Francesco et 

al., 2012). However, the reasons for higher embryonic mortality in buffaloes during specific periods 

of the year are not fully understood (Campanile et al., 2013). 

1.3.6. Embryonic mortality  

The high incidence of embryonic mortality is one major reproductive problem recognized in 

subfertile animals. Embryonic development in buffaloes is advanced by 12–24 h compared with 

embryonic development in cattle, as it has been demonstrated by both in vivo (Gasparrini, 2002) 

and in vitro studies (Neglia et al., 2003). The windows for embryonic mortality in buffaloes occur 

between day 15 and day 24 (early embryonic mortality) and days 25–45 (late embryonic mortality), 

with fetal mortality typically occurring from day 46 to day 90 (Vecchio et al., 2010). This is a big 

issue in buffalo as in cattle, where more than 40% of the conceptuses are lost within two weeks post 

insemination, suggesting that oocyte and early embryo quality may be compromised (Wathes et al., 

2008). Furthermore, in cattle late embryonic losses (after Day 28 post insemination) can account for 

20% of pregnancy losses and 5% of cows lose their fetus during later pregnancy (Wathes et al., 

2008). 

Many factors are involved in embryonic mortality and the failure to maintain pregnancy. 

Concerning early embryonic mortality, it is clear that the oocyte’s microenvironment during oocyte 

maturation has a profound effect on oocyte quality and subsequent embryo developmental potential 

(Leroy et al., 2011). During follicular growth, maternal genes are transcribed and the resulting 

mRNA and protein molecules are synthesised and accumulated in the oocyte (van den Hurk and 

Zhao, 2005). These processes are crucial to guarantee the survival of the early embryo before 

embryonic genome activation. Once genome activation has occurred, the embryo starts using its 

own newly formed DNA to make transcription factors (Leroy et al., 2011). This means that, even 

when a perfect fertilization has taken place, adverse follicular conditions during oocyte growth and 

maturation can impact on the viability of the embryo later on (Leroy et al., 2011). Embryonic 

mortality at this stage is unobserved by the farmer. However, adverse conditions within the follicle 

during oocyte growth and maturation may originate from disturbed maternal metabolism, which can 

lead to an incompetent oocyte and thus to impaired fertility (Leroy et al., 2011). Also late 

embryonic mortality is likely mediated through inadequate oocyte competence and a compromised 

maternal environment. Oocyte competence increases with follicular maturity and is dependent upon 

acquisition of a complete complement of mRNA transcripts and establishment of the appropriate 

epigenetic marking of the oocyte genome before the preovulatory gonadotropin surge (Pohler et al., 

2012). 

1.3.7. Postpartum anoestrus 

As in cattle, postpartum uterine involution in buffalo is usually completed in 25-35 days after 

calving (Perera et al., 1987). At this moment, there are a low number of ovarian follicles and 
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follicular waves and few cycles occur. If conception does not take place, therefore, an anoestrus of 

variable length begins (Zicarelli, 1994). The period of postpartum anoestrus is a major cause of 

infertility resulting in economic loss to buffalo breeders in many countries (El-Wishy, 2007), is 

highly variable and is usually longer than in cattle under comparative management conditions. 

Under optimal conditions, buffalo can resume ovarian activity after calving by 30-90 days. The 

presence of the bull in the herd appears to have a biostimulating effect on postpartum ovarian 

activity of buffalo cows, reducing cyclic irregularities and advancing the time of ovulation (Moioli 

et al., 1998). 

Abnormal estrous cycles postpartum lead to prolonged calving to first insemination intervals and, 

consequently, to prolonged calving intervals, that are important parameters to evaluate the 

productive and reproductive efficiency in a farm and/or in a population (Singh and Lal, 1992). 

Actually, long calving intervals are a major problem in buffalo breeding. On Italian farms where 

natural mating is practiced and bulls are always present in the herd, the calving interval is 

approximately 400 days and the culling rate is lower than 15% (Zicarelli, 2010). 

1.3.8. Application of reproductive biotechnologies in buffalo breeding 

From the above, it is clear that inherent reproductive problems, namely weak/silent oestrous signs, 

seasonal anoestrus, a long post-partum anoestrus period, delayed age of puberty and low conception 

rates limit the productivity of buffalo. Assisted reproductive technologies have been introduced to 

overcome the reproductive inefficiencies, thus contributing to increased genetic gain (Nandi et al., 

2002). These technologies, allowing planning selective directions in a shorter time, allow the 

distribution of elite genes, the reduction in generation interval and provide continued genetic gain 

and increased production. In fact, in spite of the expansion of buffalo farming, the improvement, for 

example, in milk or meat production was poor, and was mainly due to a progress in management 

techniques rather than to genetic selection (Barile, 2005). 

Manipulation of animal reproduction is probably as old as domestication itself. Since man started to 

keep animals in captivity, he exerted a profound influence on the natural behavior and reproduction 

of domesticated species. The purpose of this manipulation was always an attempt to optimize 

production traits, whether it is milk, meat, wool, labor or any other advantage a particular species 

could possibly offer. Until only several decades ago, the productivity of our livestock species 

improved by application of the principle ‘breed the best to the best’. Thus, crossbreeding the most 

productive animals or those with the best conformation characteristics resulted in a gradual 

improvement of certain traits, depending on their inheritability and expression (Bols et al., 2010). 

Today, assisted reproduction and biotechnology allow breeders to design and direct the 

reproductive course, disseminate desired traits and accelerate genetic improvement (Basrur and 

King, 2005). Therefore, reproduction biotechnology is without doubt one of the most emblematic 

products for research to genetic improvement in the field of animal science and it has left a decisive 

mark on the evolution of farming over these last sixty years (Thibier, 2005).  

1.3.8.1. Artificial Insemination (AI)  

The first generation of reproduction biotechnology applied is artificial insemination (AI). The use of 

frozen-thawed semen for AI, along with sire testing and selection has markedly affected genetic 

quality of livestock, especially in dairy cattle (Bazer and Spencer, 2005). Through the choice of the 

best males this technique allows to improve the genetic make-up of the entire population. AI gives 

the opportunity to quickly obtain a numerous progeny for a given sire, thus allowing a quick 



28 
 

evaluation of its genetic value, carried out through the productive performances of its daughters. 

The use of frozen semen for AI has also made it possible both for genes to migrate from one 

population to another through the marketing of male germoplasm and for female of seasonal 

breeders to be bred during the non-breeding season, and to preserve and use the germoplasm of a 

meritorious male beyond his reproductive lifespan (Foote, 1999). 

There are in Italy two Bull Buffalo Centers for semen production: the COFA (Cooperativa 

Fecondazione Artificiale) in Cremona Province, Lombardia Region, in North of Italy and the 

Chiacchierini Bull Centre in Perugia Province, Umbria Region, in Central Italy, which currently 

produces semen from 16 tested bulls (Borghese, 2013). However, the application of AI in the 

buffalo species has always found strong limitations due to intrinsic physiological features such as 

reduced signs of oestrus behavior, variable duration of oestrus and time interval between LH surge 

and ovulation (Baruselli et al., 1997; Campanile et al., 2008). The failure in estrus detection causes 

a decrease in the reproductive performance and a consequent increase in the breeding period and in 

the calving interval, with serious economic losses for the breeder (Baruselli et al., 2007). Therefore, 

the use of management schemes not requiring the identification of estrus, contribute to the increase 

of AI in buffalo herds, mainly because it is easy to perform. The objectives of these schemes are to 

synchronize the luteal phase, the follicular growth and the ovulation allowing the AI in all animals 

of the farm, even those that are not showing estrus or cyclicity. The use of these protocols, which 

have been improved with the spread of artificial insemination technique in buffalo herds, enables 

genetic improvement, increasing milk and meat yield (Baruselli et al., 2007). 

1.3.8.2. Synchronization of ovulations and oestrus induction 

Systematic reproductive manipulation of the estrous cycle using exogenous compounds such as 

progesterone and gonadotropins to mimic physiological levels of naturally occurring hormones are 

routinely used in dairy herds world-wide. These hormonal interventions normally improve fertility 

performance and decrease proportion of animals culled at the end of lactation due to reproductive 

failure (van Werven et al., 2013). Various protocols to synchronize estrus and ovulation have been 

evaluated in buffaloes in an attempt to overcome the difficulty of applying AI in spontaneously 

ovulating animals (Zicarelli et al., 2007). Hormonal treatments have been tested to induce and 

synchronize oestrus in buffalo heifers, with economic impact as a greater proportion heifers can be 

bred early (Barile et al., 2001). At the period of seasonal anoestrus buffaloes present absence of 

estrous behavior and a lack of ovulation and progesterone secretion by the ovary. Thus, at this 

period ovarian follicular turnover occurs. To induce oestrus in buffalo, prostaglandins have been 

used to control both luteal and follicular functions, providing the possibilities for synchronization of 

follicular growth and ovulation (Kharche and Srivastava, 2001). Synchronisation with different 

compounds (PGF2α-prostaglandin2α, GnRH-gonadotrophin releasing hormone, CIDR-controlled 

internal drug relesing device, PRID-progesterone releasing intravaginal device, CRESTAR-

progestagen ear implant) have been used to synchronize the follicular wave and/or luteal regression 

(Borghese, 2013). The use of gonadotropin-releasing hormone (GnRH) followed seven days later 

by prostaglandin F2α (PGF2α) can synchronise oestrus and improves the conception rate (De 

Rensis et al., 2005; Karen and Darwish, 2010). These hormonal treatments to synchronize oestrus in 

buffalo are widely used also to induce out-of season reproduction. Nevertheless, it must be 

considered that the demand for free-hormone products is increasing and this leads to a search for 

alternative methods. 
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Between the other important reproductive technologies are: induction of multiple ovulation 

followed by embryo transfer (MOET), which allows the decreasing of generation interval for the 

obtaining of a higher number of progenies during the reproductive female life; ovum pick-up (OPU) 

and in vitro embryo production (IVEP), technologies that allow to obtain from each female a greater 

number of transferable embryos (Gasparrini, 2002), permitting the repeated production of embryos 

from live donors of particular value and is a serious alternative to multiple ovulation (Galli et al., 

2000); use of sexed semen or embryos to produce female progeny. 
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1.4. SEASONALITY OF REPRODUCTION 

In buffalo, the successful application of reproductive technologies can be hampered, among other 

conditions already mentioned, by the seasonality of reproduction.  

Seasonality is a survival strategy adopted by many wild mammals to ensure that the offspring are 

born at the most favorable season of the year. This biological programming of births, or 

synchronization of reproductive response to appropriate environmental conditions, clearly leads to 

distinct advantages for the offspring, being born at the time of most suitable weather and maximal 

food availability during the early stages of life (Wood et al., 2006). Although domestication 

processes generally reduced seasonality of reproduction compared to what is observed in their wild 

counterparts, a majority of animal-derived products remain accessible only seasonally and this 

characteristic is still present in some genetic types of bovine extensively bred, such as Podolica, 

Sarda, Maremmana, Bos Indicus and the Highland bovine (Zicarelli, 1997). 

In buffalo, the differential seasonal output in terms of cyclicity, pregnancy rates, and calving is 

clearly evident when animals are subjected to controlled breeding through the adoption of 

reproductive technologies, as well as when they are left to naturally occurring mating with the 

exclusion of any human intervention (Di Palo et al., 2009). The buffalo cows seasonal change in 

displaying oestrus, conception rate and calving rate is clearly manifested. Buffalo is a short day 

breeder, as it is sexually active in response to decreasing day length that is, under Mediterranean 

latitudes, in late summer to early autumn (Zicarelli, 1997). On the other hand, during the spring and 

summer, the cow shows stages of partial anoestrous or even deep anoestrous. Calving occurs mainly 

between July and December and the calving interval is longer for deliveries occurring between 

February and June, indicating a decrease in the conception rate during the spring-summer seasons. 

This is a big issue in Italy, where the market demand for buffalo dairy products is concentrated in 

the spring-summer period. To produce milk in synchrony with the market requirements, a special 

procedure was defined and developed, the out of breeding mating season (OBMS). It consists in the 

interruption of sexual promiscuity in the herd between September and December during the first 

year of application, and from September to March in the following steps of the technique (Zicarelli, 

1997). Currently, the OBMS technique is practiced in more than 60% of the farms in Campania 

region, where the largest concentration of heads can be found. It must be considered, however, that 

in Italy the OBMS technique leads to a decline in fertility. In fact, when the OBMS technique was 

not applied, calving intervals of 400 to 445 days were recorded, while more recently, a mean inter-

calving interval of 487±133 days was reported (Zicarelli et al. 2007). 

When the AI is applied, the females are generally inseminated in February-March after oestrus 

induction, to obtain calving before spring. However, buffaloes that undergo oestrus synchronization 

and artificial insemination during a period of increasing day length have a relatively low conception 

rate, about 50%. Therefore, a month after artificial insemination the empty females are naturally 

mated to increase conceptions of a further 30% with a total mean conception rate of 80% (Borghese 

2013). Buffaloes calving during the unfavorable season express long calving intervals, because they 

do not resume their ovarian activity until the following proper season, decreasing their reproductive 

efficiency (Borghese, 2005). In particular, it has been reported that buffaloes that deliver between 

January and March delay their conception until August to September, after three months of 

decreasing day length. Similarly, buffaloes that deliver in the period April to September show the 

shortest inter-calving period because after 58 days decreasing day length begins (Zicarelli, 2010). 

However, also buffaloes that delivered in the period October-December show high calving 
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intervals, due to the out of breeding season mating technique, that does not allow the conception 

between October and February, the period of maximum sexual activity. The shortest calving 

intervals are generally observed in the last two quarters, when the resumption of ovarian activity 

coincides with the decreasing day length (Zicarelli 2007). 

Among the environmental factors influencing reproductive seasonality, photoperiod is of critical 

importance. The annual photoperiod cycle provides a critical environmental signal, which entrains 

seasonal physiology (Dupre et al., 2008). Nocturnal secretion of the pineal hormone melatonin 

reflects these seasonal changes in photoperiod and thereby provides the brain with an internal 

hormonal representation of external photoperiod changes. Together with reproduction, seasonal 

cycles in melatonin modulates multiple physiological systems including food intake, adiposity, 

body temperature regulation, and many neuroendocrine pathways (Bartness et al., 1993). In 

buffaloes living in environments where there is no significant annual variation in photoperiod 

(equatorial zones) nutrition has a major influence on reproduction (Vale et al., 2002). On the other 

hand, they become increasingly influenced by photoperiod with distance from the equator, even if 

nutrition remains important (Zicarelli et al., 1997; Campanile et al., 2010). In the following 

paragraphs, the principal mechanisms behind mammalian seasonality are presented. 

1.4.1. The basis of circannual timing 

At the basis of reproduction seasonality are long-term timing mechanisms that allow organisms to 

anticipate environmental events months or years in advance and to optimize survival and 

reproductive success (Lincoln et al., 2003). Two types of mechanisms are used by mammals for the 

long-term timekeeping. The first, already mentioned, is photoperiodism, which registers the change 

in the annual cycle in day-length and translates this into the timed control of physiology and 

behavior (Tamarkin et al., 1985). The second timing mechanism is circannual rhythm generation, 

which occurs in mammalian groups from all latitudes. These species express annual cycles in the 

wild, and continue to express circannual cyclicity when maintained indoors under constant 

conditions, often for many years or throughout life (Woodfill et al., 1994). 

1.4.2. Photoperiodism 

Photoperiodism generates timing through photoinduction which is a genetically programmed 

response to a change from short to long days, or vice versa (Lincoln et al., 2003). The response to 

photoperiod is mediated by endogenous rhythms, controlled by one neuronal pathway. The 

photoperiod is converted into neuroendocrine signals via a dedicated photo-neuroendocrine 

pathway, which involves the master biological clock located in the suprachiasmatic nuclei (SCN) 

and other hypothalamic nuclei, which in turn synchronize various biological activities with the time 

of the day and year (Kalsbeek et al., 2006). The mammalian pineal gland converts external signals 

(principally light) to an endocrine message: melatonin, produced exclusively at night, with duration 

depending on the length of the night. Therefore, photoperiodic variations in circulating levels of 

melatonin throughout the year informs the animal of the day length, providing the body with a 

strong and reproducible representation of the seasons (Simonneaux and Ribelayga, 2003). 

Melatonin is secreted into the peripheral blood and cerebral spinal fluid where the highest 

concentrations occur (Malpaux et al., 2001). Experimental studies in different species, among which 

sheep, clearly demonstrate that pinealectomy, or any surgical procedure that disrupts the daily 

melatonin signal, blocks seasonal photoperiodic responsiveness (Karsch et al., 1989; Lincoln, 

2006). Variable long-term cycles in gonadal activity and other characteristics persist, however, 
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reflecting the intrinsic control (Lincoln, 2006). The action of melatonin is apparently unique, as the 

same signal can both stimulate and inhibit reproductive activity, depending on the species. The 

reproduction of short-day breeders, that are sexually active in fall, such as buffalo, is stimulated by 

melatonin via exerting a stimulating effect on Gonadotropin-releasing hormone secretion by the 

hypothalamus. On the contrary, in long-day breeders, such as horse, increased melatonin exposure 

has the opposite effect, inhibiting GnRH release by the hypothalamus. 

Light regulates the melatonin rhythm by two different mechanisms: first, periodic light stimuli 

every 24 h act to entrain the circadian clockwork of the SCN, and to regulate clock genes and 

electrophysiological activity of SCN neurons (Sumova et al. 1995, Nuesslein-Hildesheim et al. 

2000), which control the timing of many aspects of daily rhythmicity, as well as the nocturnal-

associated release of melatonin (Lincoln et al., 2003); secondly, light inhibits melatonin secretion 

regardless of circadian time, via a retinal–hypothalamic–sympathetic innervation to the pinealocytes 

and the control of the rate-limiting enzyme N-acetyltransferase (NAT), the key enzyme in the 

melatonin biosynthetic pathway (Klein et al. 1997). These two mechanisms determine that 

melatonin is released only at night, providing an endocrine index of night length and thus day 

length (Lincoln et al., 2005). 

Concerning circadian rhythms, the molecular machinery that regulates these processes comprises of 

a set of genes, known as “clock” genes, the products of which interact to generate and maintain the 

rhythms. Clock genes are strongly involved in the molecular mechanism that decodes the duration 

of the melatonin signal to produce a summer or winter phenotype (Lincoln, 2006). In figure 1.4.2.1. 

is reported the pathway map representing today knowledge on the molecular interaction and 

reaction networks for circadian rhythm in man. The first negative feedback loop is a rhythmic 

transcription of period genes (PER1, PER2, and PER3) and chryptochrome genes (CRY1 and 

CRY2). PER and CRY proteins form a heterodimer, which acts on the CLOCK/BMAL1 heterodimer 

to repress its own transcription. PER and CRY proteins are phosphorylated by casein kinase I 

epsilon (CKIepsilon), which leads to degradation and restarting of the cycle. The second loop is a 

positive feedback loop driven by the CLOCK/BMAL1 heterodimer, which initiates transcription of 

target genes containing E-box cis-regulatory enhancer sequences (Kanehisa et al., 2012). 

  

http://en.wikipedia.org/wiki/Estrous_cycle#Frequency
http://en.wikipedia.org/wiki/Fall
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Figure 1.4.2.1. Pathway map of circadian rhythm in Homo sapiens, from KEGG database (Kanehisa and 

Goto, 2000), update October 2013. 

Light stimuli are received by the SCN directly through the complex retino-hypothalamic pathway of 

phototransduction (see figure 1.4.2.2.). This is a biochemical process by which the photoreceptor 

cells generate electrical signals in response to the caption of photons made by the photoreceptive 

pigments, the rhodopsins. 
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Figure 1.4.2.2. Pathway map of Phototransduction in Bos taurus, from KEGG database (Kanehisa and Goto, 

2000), update October 2013. The photon isomerizes 11-cis-retinal to all-trans-retinal which induces a 

structural change that activates the opsin. This triggers hydrolysis of cGMP by activating a 
transducinphosphodiesterase 6 (PDE6) cascade, which results in closure of the cGMP-gated cation channels 

(CNG) in the plasma membrane and membrane hyperpolarization. The hyperpolarization of the membrane 

potential of the photoreceptor cell modulates the release of neurotransmitters to downstream cells. Recovery 
from light involves the deactivation of the light- activated intermediates: photolyzed rhodopsin is 

phosphorylated by rhodopsin kinase (RK) and subsequently capped off by arrestin; GTP-binding transducin 

alpha subunit deactivates through a process that is stimulated by RGS9 (Kanehisa et al., 2012). 

Through this complex process, light active SCN neurons, synchronizing a circadian pacemaker in 

the SCN that controls the activity of the pineal gland (figure 1.4.2.3.). This “central pacemaker” in 

the SCN receives signals from the environment and coordinates the oscillating activity of peripheral 

clocks that are located in almost all tissues (Schibler and Sassone-Corsi, 2002). 
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Figure 1.4.2.3. (Lincoln et al., 2003) Representation of the two mechanisms by which light regulates the 

melatonin rhythm: (a) the generation of a 24-h nocturnal melatonin signal by the pineal gland that reflects the 
night-length and thus day-length, and (b) the decoding of this signal in specialized target tissues, including 

the pars tuberalis (PT) of the pituitary gland that is thought to regulate seasonal cycles in prolactin secretion 

from lactotrophs. Light of the daily light/darkness cycle is detected by photoreceptors in the retina, and 
influences the melatonin signal through entrainment of the SCN circadian cell (pacemaker pathway - 1) and 

by inhibition of melatonin secretion (inhibitory pathway - 2). The wave form of circadian clock gene 

expression, and patterns of electrophysiological activity in the SCN pacemaker, are known to vary with 

photoperiod; however long-term time keeping depends principally on the melatonin target cells – here called 
calendar cells. These are thought to use a clock gene-based mechanism to decode melatonin duration to 

produce a long or short day physiology. For the PT/lactotroph axis, LD activate an increase in prolactin 

release and drive associated seasonal changes in the hair papilla cell (pelage moult cycle), hepatocyte (liver  
function), luteal cell (uterine activity/implantation) and other tissues. 

One important feature of the circadian clocks is that they are self-sustained: circadian oscillations 

intrinsic to each cell can occur autonomously, without any environmental signals. However, 

because the period of oscillation is not exactly 24 h, the endogenous clock needs to be synchronized 

by external cues, a process called entrainment (Masri et al., 2012). External cues, above all light, 

reset the system daily and thereby prevent the endogenous clock from free-running out of phase 

(Quintero et al., 2003). Unlike temperature, availability of food, rainfall or other environmental 

cues, photoperiod provides information about the season and remains constant from year to year. 
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1.4.3. Circannual rhythm generation 

Circannual rhythm generation is the second timing mechanism used by mammals for long-term 

timekeeping. Under static conditions, complete endogenous long-term cycles of physiology and 

behavior, alternating between summer and winter phenotypes, may persist for years or even 

throughout the entire life cycle. In longer-lived species (e.g. ground squirrels, mustelids, sheep, and 

deer), exposure to a fixed light period can also cause refractoriness and reversion to a winter-like 

physiology, and when the photoperiod is held constant for a sufficiently long period, these animals 

express alternating transitions in seasonal physiology every 10–12 months as an endogenous 

circannual rhythm (Freeman and Zucker, 2001). 

In some species (e.g. hibernating ground squirrels, tropical fruits bats), the intrinsic circannual cycle 

predominates irrespective of photoperiod, while in others (e.g. Sika deer, Suffolk sheep) both 

circannual timing and photoperiodism are combined to regulate seasonality (Lincoln et al., 2003). 

Analogous to multi-oscillator circadian organization, circannual rhythm generation occurs in 

multiple tissues with hypothalamic and pituitary sites serving as central pacemakers (Hazlerigg and 

Lincoln, 2011). In photoperiodic species, the innate nature of the timing mechanisms is revealed by 

exposure to constant day length and temperature extended over long periods, analogous to the use 

of constant light or dark regimens in the study of circadian biology (Hazlerigg and Lincoln, 2011). 

Melatonin target tissues read the changes in the nightly melatonin signal to time seasonal 

physiology to the annual photoperiodic cycle. The interpreting of the changes in melatonin signal 

duration that govern seasonal physiology depends on specialized melatonin target cells in the brain, 

pituitary gland and, it is believed, in peripheral tissues. These cells are required to express high 

affinity with melatonin receptors to register the systemic signal, and to distinguish between short 

(6–10 h) and long (12–16 h) daily exposure to melatonin (Lincoln et al., 2003). Long duration 

melatonin signal stimulate a winter physiology and short duration signals promote a summer 

physiology. However, the cellular sites of melatonin action for the seasonal control of reproductive 

activity are still unknown (Simonneaux et al., 2013). A high density of melatonin receptors has been 

identified in the pars tuberalis of the adenohypophysis in a number of mammalian species (Masson-

Pevet and Gauer, 1994), and recent studies point to this structure as a crucial site for the effect of 

melatonin on seasonal functions, particularly reproduction (Nakao et al., 2008; Dardente et al., 

2010). 

An important role in the seasonal regulation of reproduction in mammals has been recently 

demonstrated for kisspeptins and RFamide-related peptide-3 (RFRP3) neurons (Simonneaux et al., 

2013). Kisspeptins have been already mentioned in the previous paragraphs for their role in 

reproductive processes, including the onset of puberty. In fact, decisive evidence has mounted in 

recent years that KISS1 neurons, expressing kisspeptins, are part of such a hypothalamic network 

involved in the metabolic regulation of GnRH neurons (Castellano et al., 2010). On the other hand, 

the RFRP gene in mammals is expressed in neurons situated in the mediobasal hypothalamus and it 

encodes a precursor that produces two peptides, RFRP-1 and RFRP-3 (Kriegsfeld et al., 2006; 

Revel et al., 2008; Rizwan et al., 2009). RFRP neurons project to multiple brain regions including 

the preoptic area, the arcuate nucleus, the lateral septum, the anterior hypothalamus, and the bed 

nucleus of the stria terminalis (Ukena and Tsutsui, 2001; Mason et al., 2010). In a recent work 

performed on Syrian hamster species, it has been reported that RFRP-3 expression in the 

dorsomedial hypothalamus is strongly inhibited by melatonin in a short-day photoperiod and that 

both kisspeptins and RFRP-3 neurons regulate GnRH neuron activity. In addition, central RFRP-3 



37 
 

infusion was associated with a significant increase in arcuate kisspeptins expression (Simonneaux et 

al., 2013). Hence, the role of kisspeptins and RFRP3 neurons is thought to be essential in regulation 

of reproductive seasonality in mammals. 

Interesting hypotheses have been presented to explain the long time domains that characterize 

circannual rhythms, recognizing that histogenic processes running at low rates over months to years 

are the core of this mechanism (Hazlerigg and Lincoln, 2011). Authors proposed that circannual 

rhythm generation depends on tissue-autonomous, reiterated cycles of cell division, functional 

differentiation, and cell death (Hazlerigg and Lincoln, 2011). According to authors, while circadian 

timing is clock gene and cell based, circannual timing is tissue based and the local environments 

surrounding adult stem cells (so-called stem cell niches) play a fundamental role. They stated also 

that entrainment of circannual rhythms by photoperiod or other inputs operates through the CNS via 

hypothalamic or pituitary stem cell niches (Hazlerigg and Lincoln, 2011), focusing on two potential 

cell stem niches as being of crucial importance: the subventricular zone adjacent to the walls of the 

third ventricle in the basal hypothalamus and the cleft region in the anterior pituitary. Based on this 

hypothesis, the new challenge would be to identify genes that govern the timing of cyclic 

hystogenesis in the adult, confirming their role in circannual timing by tissue-specific ablation 

(Hazlerigg and Lincoln, 2011). 
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1.5. SINGLE NUCLEOTIDE POLYMORPHISM (SNP) MARKERS IN ANIMAL GENOME 

ANALYSIS 

From all the foregoing that fertility and reproductive seasonality, regardless of the species, breed or 

sex of the individual, are very complex processes. In addition, an antagonistic relationship between 

fertility and milk production parameters has been well-established in numerous studies in cattle 

(Roxstrom et al., 2001; Royal et al., 2002; Berry et al., 2003). This unfavorable genetic correlation 

has led to a decline in reproduction in dairy animals, at least in part due to an insufficient 

consideration of this trait when selecting for a higher milk production. Undesirable trends are 

expected for the reproductive traits if they are not included in the breeding goal and many countries 

have lately implemented genetic evaluation for fertility traits in cattle species. More traits are 

gradually being evaluated and more sophisticated evaluation methods are being implemented 

(Berglund, 2008). 

Today’s breeding is international, intensive and uses modern reproductive and molecular genetic 

techniques. For Mediterranean Italian Buffalo, the selection indexes were published for the first 

time in 1997 by the Italian ANASB association, which collects phenotypes and determines the 

selection goals. For farmers participation in the controls is voluntary and milk records registered 

are: milk yield (kg) fat and protein content (kg and %), mozzarella cheese yield (kg), somatic cells 

and morphological traits. No reproductive parameters are currently included in selection schemes. 

Mediterranean Italian Buffalo genetic evaluation is based on the Best Linear Unbiased Prediction 

(BLUP) of bulls, which relies on modeling of phenotypic and pedigree information to estimate the 

genetic value of animals. The BLUP method enables the distinction of the genetic and non-genetic 

components of the phenotypic values (Henderson, 1975). Since in buffalo, as in all dairy animals, 

many traits included in the selection index are sex-limited (i.e. milk yield and quality traits) and can 

only be collected on females, phenotypes are recorded on the daughters of bulls under evaluation. 

This selection scheme, called Progeny Test (PT), is designed to increase genetic progress by 

optimizing the accuracy of selection and the generation interval. 

In the genetic evaluations of buffaloes, it is necessary to consider that BLUP methods assume that 

all known genetic relationships among individuals included in the analysis are correct (Parlato and 

Van Vleck, 2012). However, in the Italian buffalo population, rates of sire and dam 

misidentification were found to be 24% and 20% (ANASB, Caserta, Italy; E. Parlato, 2010). This is 

a big challenge, since pedigree errors are expected to bias estimation of genetic parameters 

(Senneke et al., 2004), breeding values of individuals (Banos et al., 2001), correct ranking of tested 

bulls in progeny testing, and expected genetic progress (Israel and Weller, 2000; Weller et al., 

2006). 

As already stated, natural mating is the system applied by most Italian buffalo enterprises. Breeding 

is, generally, carried out by group mating (2 bulls with 25 cows) and calving takes place on open 

ranges. Under these conditions, paternity is hard to establish. Thus, to avoid pedigree errors due to 

sire misidentification, only sires identified by DNA testing are included in the relationship matrix 

for the genetic evaluation. Sires in the reported pedigree are classified as unknown (Parlato and Van 

Vleck, 2012). These limitations in registering the genealogies, together with the difficulties in 

applying the AI necessary for the planned progeny test, strongly hamper the genetic improvement in 

buffalo species. 
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Recently, use of DNA markers has provided a more accurate method of identifying individuals and 

verifying parentage. For the buffalo population, the DNA markers of choice in parental testing are 

microsatellites, i.e. repeating sequences of 2-6 base pairs of DNA (Heyen et al., 1997). The 

probability of exclusion depends on the marker type, number of alleles, and allelic frequencies in 

the population to be used for paternity testing. In a recent work on the effect of parentage 

misidentification on estimates of genetic parameters, it was demonstrated that including only bulls 

identified by DNA testing in the pedigree for the genetic evaluation will lead to a much greater 

genetic progress. Authors concluded that implementation of reproductive biotechnologies, 

particularly AI programs, and DNA testing of sires are the keys to increasing genetic progress in the 

Italian buffalo population (Parlato and Van Vleck, 2012). 

With recent advances in genetics it is now possible, and highly recommended, to use molecular 

markers as auxiliary tools for animal breeding. Molecular biological tools are the methods of choice 

also to provide an insight into the limitations currently associated with reproductive technologies in 

buffalo species (Singh et al., 2009). The next challenge is to integrate the knowledge gained from 

molecular genomic investigations into optimizing buffalo production systems through the selection 

of desirable animals and their use in breeding programs. 

1.5.1. The generation of single nucleotide polymorphisms 

Molecular genetics techniques are widely used in today’s breeding, with an extent depending on the 

species. In fact, the genetic polymorphism at the DNA sequence level has provided a large number 

of markers and revealed potential utility of application in animal breeding (Teneva, 2009), opening 

the possibility to evolve the genetic evaluation of all species of livestock. 

The most widely used class of molecular markers in today’s genetics are single nucleotide 

polymorphisms (SNPs), as they are easy to evaluate and interpret and they are widely distributed 

within genomes. In fact, SNPs are the most common form of polymorphism among individuals, 

approximately one every 200 base pairs in livestock (Williams, 2005). Both during the DNA 

duplication that occurs when cells divide and as the result of external factors (e.g., exposure to 

radiation or certain chemicals), changes in the nucleotide sequence (i.e., mutations) can occur. A 

SNP marker is just a single base variation in a DNA sequence, with a usual alternative of two 

possible nucleotides at a given position. For such a base position with sequence alternatives in 

genomic DNA to be considered as an SNP, it is assumed that the least frequent allele should have a 

frequency of 1% or greater (Vignal et al., 2002). SNPs with a minor allele frequency (MAF) <5% 

are usually considered as rare, and the others are called “common”. SNPs may be within 

(intragenic) or outside genes (intergenic). Within a gene, a SNP may be located within a coding 

sequence (exonic) or within a non-coding sequence (intronic). In turn, exonic SNPs can be split into 

synonymous (no amino acid change in the protein) and non-synonymous (amino acid change in the 

protein). Non-synonymous SNPs are potentially functional. 

Furthermore, many mutations occur in non-coding DNA regions and therefore do not result in 

protein variants that are associated with an altered phenotype or increased disease risk. Under two 

conditions, however, even mutations in non-coding regions might result in an altered phenotype. 

First, mutations that occur in regulatory regions, such as promoters or intron splice sites, could alter 

gene activity and, consequently, the phenotype determined by that gene. Second, non-coding 

mutations that occur in an intron or outside a gene could be associated with an altered phenotype if 

they are positioned close to a functional mutation, according to the phenomenon known as linkage 
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disequilibrium (LD). This is defined as the correlation of alleles at two loci, and depends on the 

distance between the loci. The greater the distance, the higher is the probability of a recombination 

event to occur between the two loci. On the other hand, the alleles of two marker loci that are very 

close together will have a very low probability of recombination and will mostly segregate together 

in the population. Hence, non-coding mutations that are very close to a functional mutation 

(typically within 200,000 nucleotides) are almost always inherited together with the functional 

mutation itself (Kwon and Goate, 2000). 

1.5.2. The human genome example 

As often in molecular genetics, work progress in the human genome is the most advanced. The 

availability of genetic markers has led to extraordinary progress in human genetics in the past 25 

years, including the elucidation of the molecular genetic basis of many Mendelian disorders or 

traits. In 2005, the International HapMap Project genotyped one million SNPs (Consortium, 2005) 

and, in a second phase, a total of 4.4 million human SNP were genotyped (Frazer et al., 2007). At 

the time being more than 20 million genetic markers are deposited in public databases (see the 

NCBI Single Nucleotide Polymorphism database). These variants constitute the major source of 

inter-individual genetic and phenotypic variation (Beckmann et al., 2007). 

The literature is continuously expanding with experimental uses of genetic variation. To date, SNPs 

are the variant type of choice for association studies in common diseases and complex traits. In fact 

most human variation that is influenced by genes can be traced to SNPs, especially in such 

medically and commercially important traits, and even when a SNP is not directly responsible, the 

overall number of SNPs means they can also be used to locate genes that influence such traits (Li 

and Sadler, 1991). Nucleotide diversity is also a sensitive indicator of biological and historical 

factors that have affected the human genome (Chakravarti, 1999). Gene diversity depends on the 

mutation rate of genes, the size and demographic history of the population in which these mutations 

occur, the time over which such diversity accumulates and biological factors such as selection.  

Human population history studies in the past relied largely on single genetic loci, such as 

mitochondrial DNA. The year 2010 saw the publication of the first three ancient hominid nuclear 

genome sequences (Green et al., 2010; Reich et al., 2010), the first results from the 1000 Genomes 

Project (Consortium, 2010), and several other human genome and exome sequences (Li et al., 2010; 

Schuster et al., 2010). These new developments could help to better understand human population 

history (Stoneking and Krause, 2011). 

1.5.3. Use of SNP markers in animal science 

Following the human model, we assist in the last years to a high improvement in genetic studies for 

animal species. SNPs are particularly interesting for this purpose occurring, for example, at a 

frequency of about one SNP per 500 base pairs (bp) in cattle (Heaton et al. 2001), which is twice 

the frequency observed in man, attesting at about one SNP per kb. 

In recent years, large collections of SNP have been identified in the main livestock species, like 

chicken (2.9 million), dog (3.2 million), mouse (15.5 million), horse (1.15 million) and cow (9.2 

million) (Archive EnsEMBL release 68 - July 2012). With the advent of next-generation 

sequencing, more high density SNP arrays were made commercially available, for example Illumina 

BovineHD BeadChip with more than 777,000 SNPs (Matukumalli et al., 2011), which is 15-fold 

denser as compared to the previous BovineSNP50 array (Van Tassell et al., 2008). Today the use of 

SNP markers plays a fundamental part in different fields of animal breeding and genet ics, such as 
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food traceability and authentication, conservation and the most commonly used Marker Assisted 

Selection, or MAS and genomic selection. 

In following paragraphs, some of the most common applications of molecular genetics in animal 

science are presented. 

1.5.3.1. Traceability 

Genetic traceability is the identification/authentication of animals and their products through the 

analysis of DNA, which is unique for each individual and highly variable among individuals 

(except for monozygotic twins and clones) (Alford and Caskey, 1994; Cunningham and Meghen, 

2001). It is inalterable during animal life, sex and age independent, quite stable in processed food 

(at least subjected to standard treatments) and present in almost all of the cells of the organism. 

Once DNA is extracted from a biological sample (blood, muscle, hair, sperm or even a processed 

food such as cheese or canned meat), it is analysed by molecular markers to assess variations 

between individual (Nicoloso et al., 2013). Individual identification and paternity testing are based 

on the principle of molecular fingerprinting (Cegelski et al., 2003; Koskinen, 2003; Lirón et al., 

2004). Animal assignment exploits the difference in allele frequencies among breeds. Although less 

informative (Krawczak, 1999), SNPs are rapidly replacing microsatellites due to a more robust 

genotyping and data interpretation (Weller et al., 2006), and a strong potential for automation 

(Lindblad-Toh et al., 2000). 

SNPs in the coding regions of candidate genes might be breed specific markers exploitable in a 

diagnostic assay to identify and protect typical products tied to a specific breed. EU - resolution 

2009/c 286 E/10 invokes new management approaches that reconcile animal food production with 

the conservation and sustainable use of biodiversity, promotes the delivery of ecosystem services 

and benefits the agricultural sector and society as a whole. This resolution calls on member states to 

sponsor traditional products, to improve the traceability of animals and products, to sustain 

Protected Geographical Indication and Protected Designation of Origin brands and to introduce a 

mandatory EU labelling regulation system (Nicoloso et al., 2013). In this context, breed DNA 

traceability and authentication methods might represent a valid marketing strategy and operative 

tool to support and protect high quality products from local breeds linked to traditional farming and 

production methods (Schwägele, 2005; Smith et al., 2005). 

1.5.3.2. Conservation and genetic diversity 

DNA-based polymorphisms are now the markers of choice also for molecular-based surveys of 

genetic diversity. Wide agreement exists on the need to conserve the genetic diversity of animal 

genetic resources (AnGR). Genetic diversity is necessary for genetic change within a biological 

population. Genetic diversity of AnGR allows for the sustained ability of a breed or population to 

respond to selection to increase productivity and for adaptation to changing environmental 

conditions, including not only those conditions associated with climate, but also to changes in 

markets, management and husbandry practices, and disease challenges (Boettcher et al., 2010). In 

turn, conservation of diversity of AnGR helps ensure long-term food security. In addition, 

conservation of specific AnGR may be necessary to preserve particular cultural and historical 

values, to sustain the request value of livestock, and to fulfill the rights of an existing genetic 

resource to continue to exist (Hanotte and Jianlin, 2005). Conservation is one of the four Strategic 

Priority Areas of the recently adopted Global Plan of Action for Animal Genetic Resources 
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(Hoffmann et al., 2011), underlining the need for governments to address this topic in national plans 

for management of AnGR. 

1.5.3.3. Marker and Assisted Selection 

One of the most commonly used applications of markers in animal breeding programs is Marker 

Assisted Selection, or MAS. This is the process of the selection for a particular trait using genetic 

markers, DNA segments associated with and hence segregating in a predictable pattern as the trait. 

The basic idea of MAS is to exploit linkage disequilibrium existing in the joint distribution of 

markers and quantitative trait loci (QTL) genotypes (Gianola et al., 2003), which can be used to 

improve predictions of genetic merit of candidates for selection in a breeding program (Fernando 

and Grossman, 1989). MAS can accelerate the rate of genetic progress by increasing accuracy of 

selection and by reducing the generation interval. The advantages of MAS are that it is greatest for 

traits with low heritability. It facilitates increased rate of genetic gain by allowing measurement in 

young stock thereby reducing generation interval, which is very important above all for traits that 

can be identified and selected only after growing the organism to maturity. MAS could also enhance 

future prospects for breeding for such traits as tolerance or resistance to environmental stresses, 

including diseases (Soetan and Salako, 2010). Several strategies to incorporate markers information 

on breeding programs have been proposed, as selection index, two and single step analyses and 

non-parametric methods (VanRaden, 2008; Legarra et al., 2009). SNP markers are also employed to 

determine the genetic relatedness in animals (Heaton et al., 2002). Through the DNA fingerprinting 

method, it is possible to accurately trace offspring to parents or genetic source (Soetan and Salako, 

2010). 

1.5.4. Association Studies 

Genetic association studies are performed to determine whether a genetic variant is associated with 

a trait: if association is present, a particular allele, genotype or haplotype of a polymorphism or 

polymorphisms will be seen more often than expected by chance in an individual carrying the trait. 

Thus, association studies are based on the examination of one or more genetic variants in different 

individuals to see if any variant is associated with a trait. Microsatellite markers selected from 

genome-wide linkage have been used to localize QTL with effects on several economically 

important traits in cattle (Boichard et al. 2003; Casas et al. 2003; Ashwell et al. 2004; Hu et al. 

2007). However, genotyping microsatellite markers is labour-intensive and allele calls are 

laboratory-specific. In addition, these anonymous markers provide no information on the genes 

underlying QTL. SNPs are more abundant than microsatellite loci and, despite being biallelic and so 

having lower information, SNPs within genes may also be the causative mutations responsible for 

variations in the phenotypes (Williams et al., 2009). 

There are two approaches for dissections of complex and quantitative traits using single nucleotide 

polymorphisms, i.e., genome-wide association study and candidate gene association study. 

1.5.4.1. Genome-Wide Association Studies 

Genome-wide association study (GWAS) has become feasible in humans as well as in domestic 

animals thanks to the development of large collections of SNPs and the development of more cost-

effective methods for large-scale SNP analysis. The number of SNPs required for a GWAS depends 

on the pattern of linkage disequilibrium in the population. In humans, significant LD usually 

extends over only short distances (tens of kb) and therefore a large number of SNPs is required for 

GWAS, on the order of 500,000 SNPs. On the contrary, the population structure of domestic 
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animals makes them particularly useful for GWAS. Populations of domestic animals resemble to 

some extent recombinant inbred lines although most domestic animals are not highly inbred. But 

breeds have been formed from large populations by dividing them into many smaller often closed 

populations. This has led to a reduced genetic diversity within breeds and large haplotype blocks. 

Therefore, a more modest number of SNPs is required for GWAS in domestic animals (Andersson, 

2009). 

The number of studies based on this technique in animal sciences is increasing. In cattle, to name a 

few as example, in a recent study authors performed a GWAS for rectal temperature during heat 

stress in lactating Holstein cows, identifying SNPs that serve as QTL for that trait, which could 

prove useful in genetic selection and for identification of genes involved in physiological responses 

to heat stress (Dikmen et al., 2013). In another recent GWAS, authors genotyped more than 700 

animals with phenotypes on several carcass quality traits, providing useful information to further 

assist the identification of chromosome regions and subsequently genes affecting carcass quality 

traits in beef cattle (Lu et al., 2013). Pig is another species well studied and for which several 

genome wide association studies have been performed. For example, a whole-genome analysis 

performed in one porcine crossbreeding population, revealed molecular networks and potential 

candidate genes for the expression of lean meat water-holding capacity (Heidt et al., 2013).  

These studies are only few examples of the increasing number of researches based on genome-wide 

analysis. This is because genomic selection has two important properties: (1) it strongly increases 

the potential genetic gain, by up to 80% because of a reduced generation interval (Schaeffer, 2006); 

and (2) it disconnects the phenotype recording in a reference population from the selection of the 

candidates evaluated from their genomic information. However, this does not mean that 

phenotyping is now less important than in the past. On the contrary, the difficulties in obtaining 

accurate phenotypes and biological samples, particularly for tissues other than blood, which are 

difficult to obtain from live animals, are important limitations. The real added value of these 

approaches relies on researchers ability to transform these raw data without interest on their own at 

the farmer level into informative diagnosis through indicator traits (Boichard and Brochard, 2012). 

1.5.4.2. Candidate Gene Association Studies (CGAS) 

Candidate gene approach is based on the a priori hypothesis of the involvement of a gene in 

pathways playing a role in the determination of a phenotype of interest. This approach is based on: 

generating hypotheses about, and identifying candidate genes that might have a role in, the 

aetiology of the trait; identifying variants in or near those genes that might either cause a change in 

the protein or its expression, or be in linkage disequilibrium with functional changes; genotyping 

the variants in a population; and on using statistical methods to determine whether there is a 

correlation between those variants and the phenotype (Tabor et al., 2002). 

Therefore, candidate genes are generally the genes with known biological function directly or 

indirectly regulating the developmental processes of the investigated traits, which could be 

confirmed by evaluating the effects of the causative gene variants in an association analysis (Zhu 

and Zhao, 2007). The first studies focused the attention on single polymorphisms, in single genes, 

thought having a major role determining functional changing in the transduced protein, or in close 

regions regulating the gene expression. In the candidate gene approach, differently from other 

genetic designs, is easier to find a linked intermediate phenotype which can confirm the hypothesis, 



44 
 

since the selection of gene is based on a priori hypothesis of involvement of its function in a certain 

phenotype (Gianfagna et al., 2012). 

There are two main strategies in selecting candidate genes for an association study. 

One is position-dependent strategy, in which the identification of candidate gene is mainly based on 

the physical linkage information in a QTL-identified chromosomal segment (Zhu and Zhao, 2007). 

This approach aims at the proximity of known QTLs, and candidate genes are identified from tens 

to hundreds of gene members harbored in the targeted chromosomal region. Some successful 

applications of position-dependent strategy have already been reported in different fields, including 

the classical examples of DGAT1 in cattle (Grisart et al., 2002), GDF8 in sheep (Johnson et al., 

2005) and IGF2 in swine (Van Laere et al., 2003). 

The other strategy is the functional candidate gene approach, where a putative candidate gene is the 

one that could be statistically detected from the genes controlling large components of inheritable 

gene expression variation. One method used to find out a gene’s function is based on the use of 

knockout mouse models, which are typically designed to produce a null mutation in the target gene 

and thus they are useful to reveal non-redundant and essential functions of genes (Matzuk and 

Lamb, 2002). Although functional information from gene knockout and transgenic animal and 

cellular models can provide distinct clues about candidate genes responsible for phenotypes of 

interest, there is little practical information available because of the difficulty of producing gene 

knockout and transgenic animals in livestock (Zhu and Zhao, 2007). In general, important 

biological features of traits are directly reflected by transcript pattern, and quantitative traits were 

usually the consequence of the structure of genetic regulatory networks and the parameters that 

control the dynamics of those networks (Frank, 2003). 

Many researchers used the candidate gene approach in different fields. For instances in goat species, 

recent works based on the candidate gene approach found polymorphisms associated with birth 

weight and weaning weight (Supakorn and Pralomkarn, 2013), dairy (Crepaldi et al., 2013) and 

growth (Zhang et al., 2013) traits. 

1.5.4.3. Comparison between the two techniques 

Until recently, genetic association testing of quantitative or binary traits was synonymous with 

candidate gene analysis, as the number of markers required for genome-wide coverage made studies 

of one or a few candidate genes the only practical option (Singer, 2009). With the onset of 

microarray genotyping, the whole-genome association analysis became feasible, and also in buffalo 

species a genomic SNP chip tool is now developing. However, candidate gene associations still 

remain a powerful method, especially for the association analysis of particular traits, such as 

fertility. 

The relatively sparse number of polymorphisms tested in whole-genome association analysis 

provides high power to identify significant associations. However, because the candidate 

polymorphisms have been specifically selected by the researcher, the credibility and interpretability 

of those significant associations are frequently greater than is the case for associations identified in 

a genome-wide study (Singer, 2009). In fact, the most important problem in a posteriori designs is 

that the plausible mechanism linking genotype and phenotype is often not known. In most of 

GWAS, SNPs found to be associated to a particular trait are located in regions distant from genes 

(Gianfagna et al., 2012). In fact, genome-wide scanning usually proceeds without any 

presuppositions regarding the relevance of specific functional features of the analyzed traits. In 
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general, genome-wide scanning only locates the glancing chromosomal regions of quantitative trait 

loci (QTLs) at cM-level with the aid of DNA markers under family-based or population-based 

experimental designs, which usually embed a large number of candidate genes. In fact, up to now, 

genome-wide association studies have used panels of SNP markers selected to give a uniform 

distribution across the genome. In comparison, the alternative candidate gene approach has been 

proven to be extremely powerful for studying the genetic architecture of complex traits, which is a 

far more effective and economical method for direct gene discovery (Zhu and Zhao, 2007). Indeed, 

to identify the causative mutations within genes or regulatory sequences, SNPs within genes 

provide a higher power for association analysis, even when the SNPs themselves do not produce 

functional variations, compared with using a SNP set with uniform genome-wide distribution 

(Jorgenson and Witte, 2006). This conclusion is based on the observation that, in general, linkage 

disequilibrium in regions with a high density of coding sequences is shorter than in gene-sparse 

regions of the genome. As a consequence, SNPs within genes are more likely to be in LD with the 

causative variations than SNPs in flanking non-coding regions (Williams et al., 2009). 

A number of important discoveries have recently been made from GWAS, with important advance 

in our understanding of the genetic basis of many traits of interest. Nevertheless, the associated loci 

that have been identified usually have small individual effects on phenotype, and even collectively 

tend to explain only a small fraction of the heritable component (Kruglyak, 2008). Moreover, for 

some traits studied no significant loci have been identified with this method (Gibson and Goldstein, 

2007). This failure to detect loci that explain the bulk of the heritable components of the phenotypes 

studied could be imputable to several factors. First, because the detected loci have small effects, the 

power to detect them is low, and more such loci remain to be discovered as sample sizes increase. 

Second, association studies can only detect the effects that are due to relatively common alleles. 

Rare alleles remain to be discovered — both at the loci that are identified by GWAS because they 

also have common alleles with phenotypic effects, and at other loci that do not have such common 

alleles (Kruglyak, 2008). The former can be found by focused resequencing studies of the loci 

identified by GWAS; finding the latter might require resequencing of other genes in the relevant 

pathways, of the exons of all genes (Porreca et al., 2007) or of the entire genome. Third, we might 

be missing the effects of structural variation, of other less well studied types of genome alterations, 

and of interactions among variants and between genetic and environmental factors (Kruglyak, 

2008). 

So, in general, candidate gene studies tend to have rather high statistical power but are incapable of 

discovering new genes or gene combinations, while GWA studies can identify genes regardless of 

whether their function was known before (Cooke et al., 2008), but have low power owing to the 

number of independent tests performed (Wu et al., 2010). Indeed, the problem of false positives, 

already an issue in early studies deploying a few hundred microsatellite markers, is becoming acute 

as we move into the era when SNPs are replacing microsatellites and more than a million markers 

may be used (Amos et al., 2011). A bias on population genetics parameters caused by the use of 

SNP subsets discovered in different breeds has been also assessed. In fact, existing SNP panels 

were developed in breeds unrelated or poorly related to, for example, those used in extensive 

agriculture. As a result, they may not be fully informative to detect selective sweeps along the 

genome in many breeds (Negrini et al, 2010). The limited SNP density, or marker resolution, of the 

BovineSNP50 assay significantly impacted the rate of false discovery of selective sweeps. This bias 

led to the identification of recent selective sweeps associated with breed formation and common to 
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only a small number of breeds rather than ancient events associated with domestication which could 

potentially be common to all European taurines (Ramey et al., 2013). 

On the other hand, the two approaches of genome-wide and candidate gene analysis could be seen 

as two complementary tools in the study of complex traits. In fact, GWAS provides useful 

information to further assist the identification of chromosome regions and subsequently genes 

affecting traits. Candidate genes identified this way, can then be studied to find polymorphisms that 

are most likely to functionally affect the trait. This strategy, proved to be useful in the analysis of 

different traits and species. For example, in a recent work authors performed a GWAS to analyze 

fatty acid composition in more than 500 pigs, identifying a total of 46 loci surpassing the suggestive 

significance level with specific effects on fatty acid composition and finding several promising 

candidate genes in the adjacent regions of the lead SNPs at the genome-wide significant loci, such 

as SCD and ELOVL7 (Yang et al., 2013). To cite another example, a genome-wide association 

approach utilizing the Illumina BovineSNP50 BeadChip was presented to seek genomic regions that 

potentially harbor genes underlying variation in carcass quality of beef cattle, providing useful 

information to further assist the identification of chromosome regions and subsequently genes 

affecting these traits (Lu et al., 2013). 

1.5.5. The genetic information in buffalo species 

Despite the increasing interest in buffalo, the genetic information is still underdeveloped in this 

species as compared to other, such as cattle. The backwardness in the information of bubaline 

genome is a big challenge, since genome resources in water buffalo would provide knowledge and 

technologies that could help optimize production potentials and reproduction efficiency in the 

species. 

For the whole genome mapping, the first method used in buffalo species is the radiation hybrid 

(RH) and in situ hybridization. Iannuzzi and Di Meo (2009) reported 309 mapped loci on all 

chromosome arms mostly assigned by FISH (Fluorescent In Situ Hybridization). As water buffalo 

and domestic cattle, both members of the Bovidae family, are closely related, the vast amount of 

genomic resources for cattle research has served as shortcuts for the water buffalo community to 

initiate genome science in the species (Michelizzi et al., 2010). RH maps were constructed for river 

buffalo and cattle Y chromosomes (Stafuzza et al., 2009) and the first generation whole genome RH 

map for river buffalo when compared to Btau_4.0 genome sequence assembly showed the marker 

order with in linkage groups was consistent with cow assembly (Michelizzi et al., 2010). These 

studies encouraged researchers interested in buffalo genomics to undertake buffalo genome 

mapping initiatives using cow genome resources. The first version of assembly of a single female 

Murrah buffalo was constructed with Illumina paired end and mate pair short read sequencing using 

the cattle genome (Btau 4.0 assembly) as a reference (Tantia et al., 2011). This buffalo assembly 

represented ~91%-95% coverage in comparison to the cattle assembly and the analysis also reveiled 

about 300 structural variants in the buffalo genome (Tantia et al., 2011). In Italy, an International 

Buffalo genome Consortium was founded, within an international collaborative project, with the aim 

to sequence and analyze the buffalo genome, starting with de novo sequencing, assembly and 

annotation of a Mediterranean Buffalo female (Williams J, 2013). 

For now, the complete annotated genome sequence for buffalo is not yet available in public genetic 

resources. Likewise, is not yet available a genome-wide chip tool for a GWAS for this species, even 

if it is developing. In a recent work authors made an investigation of transferability of 

http://en.wikipedia.org/wiki/Fluorescent
http://en.wikipedia.org/wiki/In_situ
http://en.wikipedia.org/wiki/Hybridisation_(molecular_biology)
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BovineSNP50 BeadChip from cattle to water buffalo for genome wide association study (Wu et al., 

2013). A total of 40,766 (75.5%) bovine SNPs were found in the water buffalo genome in this 

work, but 49,936 (92.5%) were with only one allele, and finally 935 were identified to be 

polymorphic and useful for association analysis in water buffalo. Therefore, even if the genome 

sequences of water buffalo and cattle shared a high level of homology, the polymorphic status of 

the bovine SNPs varied between these two species. Authors concluded that more works in larger 

sample size are needed in future to verify these candidate SNPs for water buffalo. 

For these reasons, studies on important economic traits in buffalo are still prevalently based on 

candidate gene approach analysis. For example, a recent candidate gene association study was 

performed to verify the existence of polymorphisms in the ghrelin gene and their associations with 

milk, fat and protein yield and percentage (Gil et al., 2013). Three out of SNPs found by authors 

resulted differently associated with fat yield and percentage and protein percentage, and could be 

used as molecular markers to assist selection. In another recent study, buffalo β-casein gene and its 

promoter were characterized and several nucleotide substitutions were found, of which three located 

in exon VII of β-casein and seven in its 5' untranslated region (UTR) (P V et al., 2013). 

For their aforementioned close relationship, a useful starting point in the candidate gene association 

studies on buffalo species is represented by what has already been found in cattle. For example, in a 

study performed on four buffalo breeds, authors investigated several polymorphisms in DGAT1, 

GH, GHR, PRL and PRLR genes, which have been proved to be strongly associated with milk 

composition traits in dairy cattle (Yao et al., 1996; Winter et al., 2002; Yardibi et al., 2009), 

Ghasemi et al., 2009). In this work an indirect evidence that water buffalo have fixed alleles with 

genotypes reported in cattle, which is thought to be responsible for high milk fat, high protein 

content and low milk yield, was reported. Moreover, three new intra-specific SNPs were found (Shi 

et al., 2011). 

1.5.6. Genetic evaluation of fertility 

Concerning fertility, despite the explosion of molecular, genomic and computer techniques, our 

understanding still is far from complete. 

First of all, the term “fertility” itself is not so precise because it does not clearly explain the issue of 

what must be measured: fertilization or conception to form a zygote, formation of a blastula, 

attachment of an embryo to the uterine lining, an embryo-induced increase in some molecule 

detectable in peripheral maternal blood, a conceptus detectable via transrectal palpation or 

ultrasound, or a live-born calf. Producers would define success as a live calf (Amann and 

DeJarnette, 2012). Indeed, many reproduction traits are difficult to handle in parameter estimation 

and genetic evaluation. The low heritabilities, usually less than 5%, are mainly due to a large 

influence of management and environmental effects. Moreover, fertility is the result of a process 

involving both male and female and it is not so easy to distinguish their contribute to the success or 

otherwise of reproductive process. In cattle it has been demonstrated that a portion of the embryo 

death before Day ~ 8 is caused by the fertilizing spermatozoon (Walters et al., 2006), but most 

subsequent embryonic mortality is due to the female, environmental factors, or defects in the 

embryo (Santos et al., 2004). Moreover, calving performance traits are influenced by an effect of 

the young (Hansen et al., 2004) which may be difficult to correctly estimate. 

Therefore, a challenge in achieving a good and expected selection response in reproduction traits is 

the data collection and the quality of data. Traditionally, most fertility traits are based on calving 
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and insemination data and each trait has its strengths and weaknesses. For female fertility, there are 

measures reflecting the ability to resume oestrous cycles after calving and the ability to conceive, or 

measures combining these abilities like calving to last insemination, often also called days open 

(Berglund, 2008). Information about calving are recorded by ANASB for Mediterranean Italian 

buffaloes but, as already stated, natural mating is the system applied by most Italian buffalo 

enterprises and calving takes place on open ranges. Furthermore, as buffalo is characterized by 

seasonal anoestrus, is common practice at breeders, to avoid missing the pregnancy, to assign two 

or even three bulls at the same time to one group of breedable buffaloes (Catillo et al., 2001). This 

practice, while increasing fertility rate, does not allow paternity assessment. This is a big issue in 

buffalo genetic evaluation, since phenotypic recordings of traits for individuals and their pedigree 

are fundamental prerequisites. 

The study of reproductive biology in mammals appears very difficult also for the in vitro analyses. 

Two major obstacles have historically hindered this branch of research. First, germ cells in 

mammals develop in a microenvironment of supporting stromal cells of somatic origin that interacts 

with the former through autocrine/ paracrine mechanisms as well as direct cell-to-cell interactions 

(Matzuk and Lamb, 2002). Devoid of this support, isolated germ cells in culture fail to survive and 

maintain their characteristics, making it extremely difficult to study molecular interactions and 

pathways that are unique to these cells. The second, but related, difficulty has been the inability to 

develop an appropriate cellular context in vitro that would allow undifferentiated germ cells to 

differentiate into specialized gametes that preserve their ability to fertilize and produce healthy 

offspring (Roy and Matzuk, 2006). Our understanding of the molecular mechanisms of mammalian 

reproduction therefore has been largely dependent on loss-of-function mutagenesis in mice, based 

on the use of knockout mouse models (Roy and Matzuk, 2006). However, there is little practical 

information available because of the difficulty of producing gene knockout and transgenic animals 

in livestock (Zhu and Zhao, 2007). 

In figure 1.5.6.1. is represented a scheme of the key proteins of female fertility pathway in 

mammals, defined through knockout mouse models (Matzuk and Lamb, 2002). 

  



49 
 

 

Figure 1.5.6.1. Female fertility proteins. Knockout mouse models have defined key proteins that function at 

various stages of follicle formation, folliculogenesis, ovulation, and post-ovulatory events. FIGα is required 

for primordial follicle formation, and several proteins are needed for oocyte and granulosa cell (GC) growth 

and differentiation, ovulation, and the integrity of the cumulus oocyte complex (COC) (Matzuk and Lamb, 

2002). 

In the genetic study of reproductive parameters, there are other complications that must be 

considered. 

The analysis of gene expression profiles is a useful method to increase our understanding of the 

mechanisms behind reproductive functions and their phenotypic expression. However, reproduction 

traits are regulated by a multitude of genes and environmental factors in a complex relationship 

(Berglund, 2008). 

In figures 1.5.6.2, 1.5.6.3, 1.5.6.4., and 1.5.6.5. are reported pathway maps representing today 

knowledge on the molecular interaction and reaction networks for endocrine systems related to 

female fertility. 
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Figure 1.5.6.2. Pathway map of ovarian steroidogenesis in Bos taurus, from KEGG database (Kanehisa and 

Goto, 2000), update October 2013. Theca cells respond to LH signaling by increasing the expression of 

enzymes necessary for the conversion of cholesterol to androgens, such as androstenedione (A) and 

testosterone (T). Granulosa cells respond to FSH signaling by increasing the expression of enzymes 

necessary for the conversion of theca-derived androgens into estrogens (E2 and estrone). 
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Figure 1.5.6.3. Pathway map of ovarian estrogen signaling in Bos taurus, from KEGG database (Kanehisa 

and Goto, 2000), update October 2013. Estrogen mediates its cellular actions through two signaling 

pathways classified as "nuclear-initiated steroid signaling" and "membrane-initiated steroid signaling". In the 

"nuclear" pathway, estrogen binds either ERalpha or ERbeta, which in turn translocates to the nucleus, binds 

DNA at ERE elements and activates the expression of ERE-dependent genes. In "membrane" pathway, 

Estrogen can exert its actions through a subpopulation of ER at the plasma membrane (mER) or novel G-

protein coupled E2 receptors (GPER). Upon activation of these receptors various signaling pathways (i.e. 

Ca2+, cAMP, protein kinase cascades) are rapidly activated and ultimately influence downstream 

transcription factors (Kanehisa et al., 2012). 

  



52 
 

 

Figure 1.5.6.4. Pathway map of GnRH signaling in Bos taurus, from KEGG database (Kanehisa and Goto, 

2000), update October 2013. GnRH secretion from the hypothalamus acts upon its receptor in the anterior 

pituitary to regulate the production and release of the gonadotropins, LH and FSH. The GnRHR is coupled to 

Gq/11 proteins to activate phospholipase C which transmits its signal to diacylglycerol (DAG) and inositol 

1,4,5-trisphosphate (IP3). DAG activates the intracellular protein kinase C (PKC) pathway and IP3 

stimulates release of intracellular calcium. In addition to the classical Gq/11, coupling of Gs is occasionally 

observed in a cell-specific fashion. Signaling downstream of protein kinase C (PKC) leads to transactivation 

of the epidermal growth factor (EGF) receptor and activation of mitogen-activated protein kinases (MAPKs), 

including extracellular-signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38 MAPK. Active 

MAPKs translocate to the nucleus, resulting in activation of transcription factors and rapid induction of early 

genes. 
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Figure 1.5.6.5. Pathway map of GnRH progesterone-mediated oocyte maturation in Bos taurus, from KEGG 

database (Kanehisa and Goto, 2000), update October 2013. Xenopus oocytes are naturally arrested at G2 of 

meiosis I. Exposure to either insulin/IGF-1 or the steroid hormone progesterone breaks this arrest and 

induces resumption of the two meiotic division cycles and maturation of the oocyte into a mature, fertilizable 

egg. This process is termed oocyte maturation. The transition is accompanied by an increase in maturation 

promoting factor (MPF or Cdc2/cyclin B) which precedes germinal vesicle breakdown. Most reports point 

towards the Mos-MEK1-ERK2 pathway [where ERK is an extracellular signal-related protein kinase, MEK is 

a MAPK/ERK kinase and Mos is a p42(MAPK) activator] and the polo-like kinase/CDC25 pathway as 

responsible for the activation of MPF in meiosis, most likely triggered by a decrease in cAMP. 

1.5.7. Epigenetic aspects in reproductive cyclicity 

A new interesting aspect concerning a possible role of epigenetics in various aspects of fertility has 

recently been revealed. The term epigenetics refers to changes in the phenotype not due to DNA 

sequence variations but caused by chromatin modifications that regulate gene activity (Saitou et al. 

2012). Chemical modification of DNA or chromatin-associated proteins, particularly histones, has a 

major influence on chromatin structure and gene expression. DNA methylation is a primary 

epigenetic mechanism by which gene expression is controlled and, in mammals, it is based on the 

covalent attachment of a methyl group to the C5 position of the cytosine ring of CpG pairs 

(Illingworth and Bird, 2009). This modified residue is distributed throughout the majority of the 

genome including gene bodies, endogenous repeats and transposable elements and functions to 

repress transcription (Eckhardt et al., 2006). Methylcytosine spontaneously deaminates to thymine 

resulting in the under representation of CpG (21% of that expected in the human genome) (Lander 

et al., 2001). However, non-methylated DNA sequences called CpG islands can be found along the 

entire genome. These have an elevated G + C content and little CpG suppression (Gardiner-Garden 

and Frommer, 1987). CpG islands have been shown to colocalize with the promoters of all 

constitutively expressed genes and approximately 40% of those displaying a tissue restricted 

expression profile in human genome (Zhu et al., 2008). Hence, it is clear that increased methylation 

of CpG residues in the promoter of genes is associated with reduced gene expression. 
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In several works, an important role of epigenetics in female fertility has been assessed, particularly 

for the onset of puberty. As already stated, the timing of puberty is controlled by many genes but 

the elements coordinating this process have not been identified (Herbison, 2007). It was proposed 

that the highest level of intra-network control is provided by transcriptional regulators that, by 

directing expression of key subordinate genes, impose genetic coordination to the neuronal and glial 

subsets involved in initiating the pubertal process (Ojeda et al., 2003). However, the explanation of 

how inherited, permanent changes in DNA sequence can regulate gene expression dynamically 

while also defining an encompassing level of coordination and transcriptional plasticity on the gene 

networks involved was discovered only recently, hypothesizing that a biological regulatory system 

behind these mechanisms may be, in fact, epigenetics (Lomniczi et al., 2013). 

The epigenetics influences on the onset of puberty was demonstrated in a recent work though 

pharmacological inhibition of the enzymes responsible for methylating DNA. Authors identified 

silencers of the Polycomb group (PcG) as principal contributors to this mechanism and showed that 

PcG proteins repress KISS1, a puberty-activating gene already mentioned. Therefore epigenetic 

silencing has been proven to be a mechanism underlying the neuroendocrine control of female 

puberty (Lomniczi et al., 2013). In another recent work it was demonstrated that daily treatment of 

prepubertal female mice with 5-azacytidine, a DNA methyltransferase inhibitor, substantially 

delayed puberty onset, suggesting that some gene or genes must be repressed by methylation for 

puberty to occur (McCarthy 2013). 

Epigenetics seems also to be involved in oocyte maturation processes. During cytoplasmic 

maturation, there is accumulation of RNA, proteins, nutrients and substrates that are fundamental 

for completing oocyte maturation and subsequent embryo development (Watson, 2007). Final 

mRNA and protein production along with epigenetic modifications seem to be essential for 

acquisition of oocyte competence, even if the details have not been well characterized. Sirard and 

colleagues proved that, while many oocytes attain meiotic and cytoplasmic competence, the 

molecular milieu of an oocyte may determine the potential for embryonic and fetal development 

culminating in birth of viable offspring. Although molecular changes within the cytoplasm are 

difficult to investigate, authors suggested that these final changes in the days preceding ovulation 

may be the “capacitators” that result in a normal pregnancy (Sirard et al., 2006). 

An important role of epigenetics has also been demonstrated in the cyclicity of many mammalian 

processes. In fact, epigenetic regulation of certain genes has been shown to be cyclic, exhibiting a 

periodicity that results in a rapid, tight and dynamic control of gene expression (Metivier et al., 

2008). It is now clear that epigenetic information is essential for circadian rhythms (Nakahata et al., 

2008). As already mentioned above, circadian rhythms impact on a wide range of physiological 

mechanisms and this impact extends to fertility, such that disruptions to timing systems can impact 

upon reproductive capacity (Kennaway et al., 2012). For example, photic condition were suggested 

to be one of the modulators of growth hormone secretion, involved in the regulation of male and 

female infertility, in ruminants. A significant effect of day length on the secretion of GH in sheep 

and goats has long been observed (Barenton et al., 1988; Gazal et al., 2002). Epigenetic control has 

also been implicated in the modulation of biological timekeeping, regulated by the circadian clock 

machinery on a systemic level (Reppert and Weaver, 2001), and cellular metabolism and epigenetic 

state seem to be closely linked (Masri and Sassone-Corsi, 2010). 
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1.6. CANDIDATE GENES FOR FERTILITY TRAITS 

Today, in the genetic study of fertility, for which genetic selection is hampered by low heritability, 

the candidate gene approach is still the most used method also in species where the whole-genome 

tools are now widely adopted. For example in cattle, where the BovineSNP50 chip tool is now the 

most extensively used approach for association studies, it has been observed that the low heritability 

and polygenic nature of reproduction traits limit the improvements in reliabilities obtained through 

incorporation of genomic information compared to other traits (Cochran et al 2013). Therefore, the 

candidate gene approach in an association study for fertility traits could be the best method to select 

causative SNPs or SNPs physically more close to causative SNPs, as it was already demonstrated in 

detection of genomic associations with disease (Amos et al., 2011). 

Few studies have been performed in buffalo species to dissect the genetics of fertility parameters. 

Here are some examples of the characterization of genes which can be considered candidate for 

female fertility. 

In a recent study, Kandasamy and colleagues studied the expression profile of bubaline ghrelin, a 

novel motilin-related endogenous ligand for growth hormone secretagouge receptor, implicated in 

various biological functions, including regulation of female reproduction. The results obtained 

indicate the persistent expression of ghrelin in the uterine endometrium throughout the estrous cycle 

and in early pregnancy, which might be helpful in determining its role in buffalo reproduction 

(Kandasamy et al., 2013). In another recent work, GDF9 gene, which plays a vital role in 

determination of oocyte competence, was isolated and characterized in buffalo, using orthologous 

primers based on the bovine GDF9 sequence (Roy et al., 2013). GDF9 gene, together with bone 

morphogenetic protein15 (BMP15), were analyzed to evaluate the association of their mRNA 

expression in cumulus-oocyte complexes of buffalo ovary during in vitro maturation. Authors 

concluded that these two genes are differentially expressed during the period of oocyte maturation 

process and that BMP15 expression pattern is associated specifically with the period of cumulus cell 

expansion (Kathirvel et al., 2013). In databases for buffalo species are mRNA and complete coding 

sequences for both these two genes, while in bovine they are well characterized: GDF9 is located 

on chromosome 7, it has 1 transcript with a coding sequence 1790 bp long and the encoded protein 

is made up of 453 aa. 43 SNPs along all genomic sequence are known. BMP15 is located in X 

chromosome and it is 1185 bp long, there is one transcript made up of just two exons and the 

encoded protein has 394 aminoacids. 10 SNPs are known of which two are missense variations 

(ensembl release 73 - September 2013). 

Another important candidate gene for female fertility is CYP19 (cytochrome P450, family 19) 

which produces aromatase, the key enzyme in estrogen biosynthesis, catalyzing the conversion of 

androgens into estrogens by irreversible aromatization step. The CYP19 gene is regulated by 

different tissue specific promoters (Fürbass et al., 1997). Aromatase expression shows a gradual 

increase from small to large follicles, indicating that the increased aromatase expression may be 

essential for the follicular development and maturation in buffalo ovary (Lenz et al., 2004). The 

bubaline CYP19 cDNA was characterized in granulosa cells of large follicles (Kumar et al., 2009) 

and the expression pattern during ovarian follicular growth, development and maturation has been 

also characterized in this species (Babitha et al., 2013). In databases are bubaline mRNA sequence, 

promoter region, 5’UTR and a partial coding sequence for this gene. In bovine species this gene has 

a 5178 bp cds and it has 10 exons, with 3 known SNPs reported, of which one in the 5’UTR and 

two in the 3’UTR, that is unusually extended. 
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FSH (follicle-stimulating hormone) is a key regulator of the reproductive process in mammals, and 

its receptor (FSHR) is located at the plasma membrane of target cells (Sprengel et al., 1990). FSHR 

gene has been studied in many livestock species including cattle (Houde et al., 1994), sheep 

(Yarney et al., 1993), horse (Robert et al., 1994), donkey (Richard et al., 1997), poultry 

(Wakabayashi et al., 1997), monkey (Gromoll et al., 1993), mouse (Tena-Sempere et al., 1999), rat 

(Sprengel et al., 1990) and domestic guineapig (Suzuki et al., 2003). A study has been conducted to 

clone and characterize the FSHR gene of buffalo (Minj et al., 2008) and sequence analysis indicated 

that the buffalo FSHR cDNA sequence comprised of an open reading frame of 2085 bp encoding a 

695 amino acid protein. Its nucleotide sequence showed more than 80% similarity to the 

homologous genes of mammalian species. At amino acid level buffalo FSHR exhibited a high 

percentage (84–96.7%) of identity with the corresponding mammalian homologs. In bovine FSHR 

gene have 19 known SNPs in databases, of which two synonymous in exons 1 and 2, while two are 

non-synonymous and are located in exons 4 and 9, two SNPs are located in splicing sites, at the end 

of exons 2 and 6, one is located in the 3’UTR and the others are located in introns. 

FGF2 (fibroblast growth factor 2) is present in the uterine lumen during early pregnancy and plays 

an active role in regulating the establishment and maintenance of pregnancy in ruminants (Michael 

et al., 2006). It is involved in oocyte maturation and it has been associated with embryonic mortality 

in cattle (Khatib et al., 2008a). Buffalo mRNA e complete coding sequence are in databases for this 

gene. In bovine species the coding sequence of this gene is 6594 bp long, the encoded protein is 

composed by 155 amino acids and there are 3 exons with an extended 3’UTR. Moreover, as many 

as 228 SNPs are known in cattle (ensembl release 73 - September 2013). 

PRL-PRLR (prolactin- prolactin receptor): prolactin plays a crucial role in mammary gland 

differentiation by favoring mammary growth, initiating milk synthesis. PRL and its homologs 

accomplish their biological effects through the PRL receptor (PRLR). PRLR deficiency results in 

implantation failure. Uterine PRLR is supposed to be essential for the support of late gestation 

(Reese et al 2000). This gene has been studied in bubaline species and mRNA and complete coding 

sequence are in databases, moreover 2 SNPs in exon 3, one of which non-synonymous (Shi et al., 

2011) are known. In bovine species this gene is made up of 5 exons and has a 902 bp long coding 

sequence. There are 4 known SNPs, of which two synonymous in exons 1 and 4 and two in introns. 

Finally this gene has a homology equal to 80% with pig, 76% with rabbit, 74 % with horse and 72% 

with human. In man for PRL gene are in databases 16 known SNPs, two of which are silent SNPs 

and one, located in exon 2 provokes a stop codon gain (ensembl release 73 - September 2013). 

The genetic variability in leptin gene, candidate for milk quality and female fertility traits, was 

analyzed in buffalo species but no significant effects were found by authors (Zetouni et al., 2013). 

Another work has been performed on buffalo bulls with the aim to identify polymorphisms in the 

osteopontin gene and their associations with certain semen production traits of water buffaloes in 

the Brazilian Amazon (Rolim Filho et al., 2013). Also for this gene mRNA e complete coding 

sequence are in databases for buffalo. 

In bovine species, an important finding has been recently made by VanRaden and colleagues, who 

reported the discovery of five haplotypes with deleterious effects on fertility in three breeds of dairy 

cattle, including one recessive in Brown Swiss cattle, three in Holsteins, and one in Jerseys 

(VanRaden et al., 2011). Based on this previous discovery, a whole-genome resequencing has been 

performed in a following study, identifying a nonsense mutation located in CWC15 gene, which 
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resulted the causative mutation associated with early embryonic loss in Jersey cattle (Sonstegard et 

al., 2013). 
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2. AIM OF THE WORK 

Fertility and seasonality traits are of critical importance in buffalo species, as discussed in the 

introduction. Up to now, even if a complete genomic sequence was announced, as well as the 

development of a high density SNP chip tool, little genetic information are available for this 

species. 

For this reason, aim of this work was to perform a polymorphism detection and an association study 

in candidate genes involved in fertility and seasonality of reproduction in Mediterranean Italian 

Buffalo. 
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3. MATERIALS AND METHODS 

3.1. SNP discovery analysis 

3.1.1. Animals 

SNP discovery analysis was conducted on two sets made up of 12 animals each. For fertility 

estimation 6 animals with calving interval >200 days and 6 with calving interval <100 days were 

selected. For seasonality trait analysis 6 animals with calving occurred between March and May and 

6 with calving occurred between October and December were chosen. 

3.1.2. DNA isolation and PCR analyses 

DNA extraction from frozen blood samples has been performed using a commercially available kit 

(Promega ReliaPrep
TM

 Blood gDNA Miniprep System), according to the manufacturer’s 

instructions. Primers used for PCR amplifications with annealing temperatures are reported in 

table….. and amplicons were investigated for SNP discovery. A typical PCR reaction mix (20µl) 

comprised: 1µl of gDNA, 5X PCR Buffer (Promega), 5mM MgCl2, 0.4µl of each primer, dNTPs 

each at …. mM, 0.2µl of Taq DNA Polymerase (Promega). PCR products were purified and 

sequenced. The sequence alignment was then performed using the BioEdit software (Hall, 1999). 

3.2. SNP genotyping 

Entire blood of a total of 491 female buffaloes was collected and DNA extraction was performed as 

already described. DNA samples were then genotyped for the identified SNPs 

(http://lgcgenomics.com). 

3.2.1. Animals and parameters analyzed 

Samples were collected from four farms located in south of Italy, province of Caserta. In the 

analyzed farms the OBMS technique is performed, which interrupts sexual promiscuity in the herd 

during the autumn season.  

Phenotypic data obtained for all samples are the following: 

- date of calving 

- milk yield (kg) 

- protein (kg and %) 

- fat (kg and %) 

- lactation number 

- age at the control 

- days with the bull 

- days in milk at the control 

- date of sampling 

- farm 

 

 

http://lgcgenomics.com/
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3.3. Statistical analysis 

Population genetics parameters were calculated using PowerMarker v3.25 

(http://statgen.ncsu.edu/powermarker; Liu and Muse, 2005). In particular, minor allele frequency, 

expected and observed heterozygosity, and Hardy-Weinberg equilibrium exact P-values were 

calculated. 

Associations between the analyzed traits and each single SNP at the 5 candidate genes were tested 

using the following mixed linear model: 

 

[1] Yijk = μ + FLOCKi + bAGE + NLACTj + SEAk + SNPl + e, 

 

where Yijk = calving interval (days), seasonality (2 levels), milk yield (kg), protein or fat yield (kg) 

and protein and fat content (%); μ = overall mean; FLOCKi = random effect of the flock (4 levels); 

bAGE= covariable represented by the age at calving (days); NLACTj = fixed effect of the number 

of lactation (from 1 to 7); SEAk = fixed effect of the calving season; SNPl = fixed effect of the SNP 

genotype (3 levels); and e = random residual. 

All the factors included in the model (flock, age at calving, lactation number and seasonality of 

calving) were prior described through a one-way analysis of variance. 

The parentage information was limited and no information were available for the sires of the 

buffaloes analyzed. However, the sires were not shared between flocks, so the random effect of 

flock was considered also to account for the effect of the bull. 

For the SNP association analysis, being that each SNP was tested separately, the level of 

significance was corrected gene wide using the Bonferroni adjustment. 

Average gene substitution effect (α) was calculated using a model with the same structure of model 

1 but with the gene effect treated as a covariable (Banos et al., 2008; Pauciullo et al., 2012). The 

SNP allelic effect was described as 0, 1, or 2, in each case corresponding to as many copies of the 

substitution SNP base. The coding of the 3 genotypes was based on the number of copies of the first 

allele in alphabetical order. 

In a separate series of analyses, interactions between alleles in a SNP locus were also fitted to assess 

possible dominance effects . In this case, the model 1 was repeated with the SNP effect treated as a 

covariable and described as 0, if the SNP is homozygous, and 1 if the SNP is heterozygous 

(Dagnachew et al., 2011).  

Variance associated with the SNP genotype (σ
2

SNP) was estimated by running a model with the same 

structure of model 1 but with the SNP treated as random. Thus, a variance component associated 

with the SNP locus was estimated (Crepaldi et al., 2013). Contributions of the SNP locus (r
2

SNP) to 

the total phenotypic variance of the trait considered were calculated as 

    
  

    
  

      
  

  

http://statgen.ncsu.edu/powermarker
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4. RESULTS AND DISCUSSION 

4.1. Sample description 

4.1.1. Dataset editing 

For the 491 buffaloes genotyped in present study, as already mentioned in materials and methods, 

phenotypic data made available by the Italian Buffalo Breeders’ Association (ANASB) are the 

periodic milking recording data, referring to: farm, date of calving, lactation number, year, age of 

animal, days in milk at recording (referring to a standard lactation of 270 days where it resulted 

longer) and mean values of all the controls recorded throughout the lactation for milk yield (kg), 

protein (kg and %) and fat (kg and %). 

For the purpose of this research, the data provided have required a massive editing work. 

The dates of calving were used in present work to have information related to seasonality and 

fertility parameters. For all animals, the month of every registered calving was pointed out to 

analyse the reproductive seasonality. Moreover calving interval, that is one of the most used and 

reliable field datum for the analysis of fertility traits, was calculated through the distance in days 

between two consecutive dates of calving for every animal having more than one calving date 

recorded. 

The analysis of the registered dates of calving, required a considerable revision phase to delete all 

the recorded data which were not considered reliable. For this purpose, the characteristics of the 

biology of reproduction in water buffalo were considered. Gestation ranges from 300 to 330 days 

with a mean of approximately 310 days for river type buffaloes (Perera et al., 1987; Campanile et 

al., 2005). Considering that, under optimal conditions, buffalo can resume ovarian activity after 

calving by 30-90 days (Moioli et al., 1998), only calving intervals falling in a range between 330 

and 1000 days were considered reliable. After this correction, 9 animals, for a total of 43 

observations, were removed from the dataset. 

Another important parameter, the number of lactation, required a careful control. In fact, ANASB 

usually records as first lactation the first controlled, even if this corresponds to a different order of 

physiological lactation. A lactation number equal to 1 refers to the first lactation recorded for the 

animal, but it often does not correspond to its first calving. For example, in the dataset were animals 

with age equal to 12 or 9 years at first lactation. This is not reliable and means that, most likely, the 

previous deliveries of these animals have not been recorded. This may be the result of inaccuracy of 

registration or even of the birth of male calves that have not been declared. Since the lactation 

number is a fundamental parameter to be considered in the analyses performed in the present 

research, a correction was made to consider only the reliable lactation number data, based on the 

age of animals and the dates of calving. In particular, all animals having more than 4 years at first 

lactation, for a total of 17 animals and 64 observations, were removed from the dataset. Finally, the 

age at calving (days) was obtained for every animal from the distance in days between the date of 

birth and the date of calving. 

4.1.2. Descriptive statistics 

The descriptive statistics for all the traits considered are reported in tables 4.1.2.1. and 4.1.2.2..



 
 

Trait Age at calving (years) Calving interval 

Lactation 

number 

N. obs. Mean SD Max Min N. obs. Mean SD Max Min 

all 1441 5.02 2.45 18.6 1.9 947 446.92 109.58 982 331 

1 436 2.83 0.61 4.4 1.9           

2 341 4.11 0.78 6.2 2.9 340 474.62 121.47 982 332 

3 239 5.37 1.08 9.8 3.9 236 439.04 113.45 947 332 

4 140 6.52 1.32 11.0 4.9 140 414.09 75.94 770 331 

5 85 7.69 1.52 12.0 5.9 85 424.24 85.51 883 334 

6 52 8.77 1.14 13.4 7.0 52 422.69 71.14 697 336 

7 29 10.02 1.20 14.6 8.8 29 444.72 134.13 879 352 

8 12 11.03 1.61 15.6 9.5 11 402.82 63.11 543 337 

9 8 12.24 1.85 16.5 10.5 8 420.13 73.12 572 347 

10-12 4 10.55 4.94 14.2 11.7 3 492.33 66.86 567 438 

Table 4.1.2.1. Descriptive statistics for age at calving and calving interval on the samples analyzed. 

  



 
 

Trait Protein yield (kg) Fat yield (kg) Milk yield (kg) 

Lactation 

number 

N. obs. Mean SD Max Min N. obs. Mean SD Max Min N. obs. Mean SD Max Min 

all 1060 114.51 28.863 228 30 1060 211.716 54.037 413 59 1063 2462.31 607.75 4980 559 

1 366 108.52 25.224 198 47 366 199.825 45.975 376 81 368 2339.21 535.31 4079 1015 

2 260 116.16 26.810 215 42 260 215.969 51.451 376.4 69 260 2497.08 564.93 4620 842 

3 166 117.73 30.961 207 30 166 218.042 58.148 381 59 166 2518.11 628.91 4242 559 

4 99 121.12 32.950 208 39 99 225.596 62.73 413 75 99 2612.45 699.43 4396 898 

5 58 124.14 36.526 228 49 58 227.5 65.266 399 94 58 2681.69 781.66 4980 1049 

6 37 118.14 29.185 170 61 37 218.568 62.062 382 105 37 2559.35 638.59 3759 1337 

7 16 135.88 27.122 189 88 16 237.313 43.657 320 154 16 2893.88 563.02 4159 2036 

8 6 128 38.838 174 75 6 237.167 71.648 336 140 6 2679.17 809.37 3662 1559 

9 4 109 51.459 163 45 4 198.5 110.711 336 78 4 2334.50 1124.42 3597 975 

10-12 3 127 28.214 153 97 3 220 52.716 265 162 3 2607.67 583.02 3176 2011 

  Protein % Fat %           

all 1064 4.623 0.189 5.3 3.7 1065 8.591 0.820 11.8 6.5           

1 366 4.627 0.192 5.3 3.7 367 8.564 0.856 11.8 6.6           

2 262 4.621 0.178 5.2 3.9 262 8.631 0.808 11.2 6.6           

3 166 4.634 0.205 5.3 4 166 8.629 0.804 11.4 6.9           

4 100 4.603 0.204 5.1 4.1 100 8.598 0.808 11.2 7           

5 58 4.593 0.168 4.9 4.1 58 8.522 0.807 10.9 6.5           

6 37 4.589 0.173 4.9 4.2 37 8.481 0.805 10.2 6.8           

7 16 4.650 0.179 4.9 4.3 16 8.175 0.505 8.9 7.4           

8 6 4.767 0.151 5 4.6 6 8.850 0.414 9.5 8.2           

9 4 4.650 0.129 4.8 4.5 4 8.275 0.727 9.3 7.6           

10-12 3 4.833 0.058 4.9 4.8 3 8.367 0.404 8.8 8           

Table 4.1.2.2. Descriptive statistics for milk, protein and fat yield (kg) and for protein and fat (%) recorded on the samples analyzed.  
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The calving intervals observed in our sample showed, as expected, a highly asymmetric 

distribution, with a skewness value equal to 2.04. This is an indication of a highly right-tailed 

distribution, as can be observed in the following figure (4.1.2.1.). Median value for this parameter is 

equal to 412 days with upper and lower quartiles equal to, respectively, 481 and 375 days. Due to 

the lack of homoscedasticity in respect to the number of lactation shown by this parameter at 

Levene’s test, subsets for every lactation number were created and considered separately for the 

subsequent SNP association analyses. 

 

  
  Calving interval (days) 

Figure 4.1.2.1. Calving interval distribution in the entire dataset. 

The highest mean value for calving interval, equal to 982 days, was reached between the first and 

the second parturition, while the lowest one, 331 days, was observed at fourth lactation. The 

average calving intervals recorded in the different subsets analyzed are quite high compared to the 

mean value reported in literature for Italian farms, that is 400 days (Zicarelli, 2010). However, the 

latter is related to farms where natural mating is practiced and bulls are always present in the herd. 

But, in the farms analyzed in present work, the Out of Breeding Mating Season (OBMS) technique 

is performed, which interrupts sexual promiscuity in the herd during the autumn season. Since, in 

this case, the resumption of ovarian activity coincides with the decreasing day-length at Italian 

latitude, this practice can cause longer intercalving periods (Zicarelli et al., 2007). 

The OBMS technique operated in the analyzed farms appears evident analyzing the calving 

distribution. This showed an opposite trend compared to the natural breeding conditions (figure 

4.1.2.2.), as 71% of the observations fall in the out of breeding season period, with high deliveries 

concentration between June and July. 
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Figure 4.1.2.2. Monthly calving distribution in Mediterranean Italian buffalo under natural conditions 

(Zicarelli, 2010) compared to animals analyzed in present work. 

After this analysis, the dates of calving were divided into “seasonal” (from August to December) 

and “out of season” (from January to July). The calving distribution at different number of lactation 

in these two period is represented in figure 4.1.2.3. Notably, at first lactation almost 80% of 

calvings occurred in the out of breeding season. The low seasonality showed by females at first 

calving is probably due to a more successful application of the OBMS technique operated in the 

analyzed farms, as heifers are less sensitive to photoperiod (Zicarelli, 1997). 

Figure 4.1.2.3. Average percentage of calvings observed in the out of breeding season in the different 

subsets of lactation number. 

Median value for age at calving amounted to 4.4 years, with upper and lower quartiles pair to, 

respectively, 6.1 and 3.1 years, but in most of calvings recorded animals were three years old 

(figure 4.1.2.3.). The mean value + SD for age at first calving was pair to 2.81+0.4 years, that is 

lower compared to the official statistics reported for Mediterranean Italian Buffalo by the Italian 

Breeders’ Association (AIA), where the average age reported for buffalo cows at first calving is 3 

years, 4 months and 29 days (www.aia.it). 
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Figure 4.1.2.4. Average percentage of animals recorded at different classes of age at calving. 

Concerning productive parameters, milk yield showed a normal distribution in the complete dataset, 

with a mean value + SD equal to 2462.31+607.75 kg. The maximum value recorded is pair to 4980 

kg, while 559 kg is the minimum one. These performances are considerably high compared to those 

reported for Mediterranean Italian Buffalo, as the mean value + SD declared for milk yield for year 

2012 is equal to 2218+602 kg (www.anasb.it). This divergence could be due to a particularly high 

management level of the farms where the animals analyzed in the present research were sampled.  

Protein yield (kg) showed a normal distribution but, with respect to the classes of lactation number, 

homoscedasticity at Levene’s test was not respected, because the variance at first lactation resulted 

out of range compared to the other classes. For this reason, the subset including data related to first 

lactation was analyzed separately from the others in the subsequent SNP association analyses. The 

same applies to fat yield (kg) parameter, which exhibited a similar trend. 

Protein (%) and fat (kg and %) did not show normal distributions, as verified with the Shapiro-Wilk 

test. For this reason, transformations were calculated to be used for the subsequent analyses. For fat 

yield and fat percentage parameters, a root square and a logarithmic transformation, respectively, 

were calculated to meet the Shapiro-Wilk test for normality. Nevertheless, for protein % no 

transformations could overcome the lack of normality. 

As can be observed in table 4.1.2.2., protein yield distribution showed mean value + SD equal to 

114.51 + 28.9 kg. High variation is observed at this parameter, with a maximum value equal to  

228 kg, reached at the fifth lactation, and a minimum of 30 kg, at the third one. 

High variation was shown also by fat yields, with mean + SD of 211.72 + 54.04 kg in the entire 

dataset, maximum, observed at fourth lactation, equal to 413 kg and minimum, at third lactation, 

equal to 59 kg. 

Protein and fat percentage parameters respected the homoscedasticity condition based on the classes 

of lactation number. Average value + SD for protein content amounts to 4.62 + 0.19% in the entire 

dataset, while maximum and minimum values are equal to 5.3 and 3.7 respectively, the former 

observed at first and third lactation subsets, the latter at the first one. Fat content showed mean 
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value + SD equal to 8.59 + 0.82 % in the entire dataset, maximum of 11.8 %, recorded at first 

lactation, and minimum 6.5 %, observed at fifth lactation. Mean values observed in the analyzed 

population for these parameters are comparable with data reported for Mediterranean Italian Buffalo 

for year 2012, where mean values for protein and fat percentage amount to, respectively, 4.7 % and 

8.3 % (www.anasb.it). 

4.1.3. ANOVA for production, fertility and seasonality parameters 

A one –way analysis of variance (ANOVA) was performed to describe the factors included in the 

model used for the subsequent SNP association analyses. These are: seasonality of calving, flock, 

classes of lactation number and age at calving (days).  

4.1.3.1. Seasonality of calving 

In the entire dataset, seasonality of calving affected calving intervals (P<0.0054), with higher values 

(mean + SD equal to 461.71 + 111.15 days) for the seasonal buffaloes compared to animals calving 

out of the breeding season (mean + SD equal to 440.06 + 113.92 days). Seasonality of calving 

seems to exert strong influence also on the production parameters, as previously reported (Pauciullo 

et al., 2012). In fact, animals that calved in the out of breeding season period exhibited significantly 

higher (P<0.0312) milk yields (mean + SD equal to 2489.22 + 579.33 kg) compared to the seasonal 

ones (mean + SD equal to 2401.59 + 666.56 kg). No statistically significant differences emerged for 

protein and fat yields (kg), in relation to the seasonality of calving. An opposite trend (P<0.0016) 

compared to milk yield, as expected, was shown by fat percentage in response to the season of 

calving, with lower values (SE) for buffaloes that calved in the out of season period, 8.5 (1.003) %, 

compared to the seasonal ones, 8.7 (1.005) %. The production across different calving seasons did 

not show statistically significant differences for protein percentage. 

4.1.3.2. Flock 

Flock exerts a strong effect on all traits (P<0.0001). It is important to note that this parameter 

includes also the sire effect, for this reason it was included as random factor in the ANOVA model 

used to estimate the SNP effects. In fact, the use of AI is very limited in buffalo species and in most 

cases bulls are not shared by different farms. Above all, there is a very low availability of parentage 

information, which is a big issue for the genetic improvement of this species. 

Regarding seasonality, as can be seen in the figure reported below (4.1.3.2.1.), a strong effect was 

detected for Z flock, which showed much better performances for this trait. In fact, 82.5% of 

animals calved in the out of breeding season in this farm. The trend observed between the other 

three flocks analyzed did not show statistically significant differences for seasonality of calving. 

Moreover, the Z flock showed better performances also for fertility trait (figure 4.1.3.2.2.a), with an 

average calving interval (SE) equal to 409 (6.01) days. 
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Figure 4.1.3.2.1. Percentage of calvings occurred in the out of breeding season at different flocks 

(P<0.0001). 

From the point of view of production, the Y flock evidenced the highest milk yields, with mean 

value (SE) pair to 2700 (31.8) kg (figure 4.1.3.2.2. b). This trend was also observed for fat and 

protein yields (figure 4.1.3.2.3. a, b) with mean values equal to, respectively, 232.5 (0.01) kg and 

128.9 (1.48) kg. On the contrary, X flock exhibits fat and protein yields significantly low compared 

to the other farms analyzed, with mean values equal to, respectively, 177.38 (0.01)kg and 94.24 

(1.47)kg. The Y flock exhibited the highest values also for protein percentage, with mean (SE) 

equal to 4.5 (0.01) %, while for fat percentage parameter, the best performances were recorded for 

X and Y flocks, with mean values (SE) equal to, respectively, 8.75 (0.05) % and 8.71 (0.05) % 

(figure 4.1.3.2.2. c and d). 
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Figure 4.1.3.2.2. Mean values observed for calving interval (a), milk yield (b), protein% (c) and fat% (d) in the four analyzed flocks (P<0.0001). 
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a) 

 
b) 

 
Figure 4.1.3.2.3. Mean values observed for fat (a) and protein (b) yield (kg) in the four analyzed flocks 
(P<0.0001). 

4.1.3.3. Lactation number 

Another fundamental parameter to be considered in the study of the analyzed traits is the number of 

lactation. 

In the analyzed sample, the average number of lactation + SD was equal to 2.63 + 1.76. This is low 

compared to the official statistics for Mediterranean Italian Buffalo in Italy in 2012, where an 

average number of lactation equal to 3.29 is reported (www.aia.it). For buffaloes analyzed in 

present work, 86% of data are related to the first 4 lactations, while fewer observations are related 

to superior lactation classes. In particular, 6% of the observations fall in the 5
th

 lactation, 4% in the 

6
th
 and 2% in the 7

th
. Consequently, for the ANOVA analysis, data related to lactations superior to 7 

were included in the latter, due to a lack of numerosity.  

This parameter significantly (P<0.0001) affects all traits, except for fat and protein percentage. 
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Calving intervals resulted significantly higher between first and second lactation (figure 4.1.3.3.1.), 

with a mean value (SE) of 474.34 (5.8) days. This was expected, as postpartum anoestrus in 

buffaloes, which is one of the main factors responsible for long calving interval, is usually reported 

with higher frequency in primiparous cows (Presicce et al., 2005). The lowest value for this 

parameter was recorded between the third and fourth parturition, with mean value (SE) equal to 

414.11 (9.03). However, no statistically significant differences could be detected between lactations 

superior to the second one. 

Concerning the seasonality of reproduction, the tendency in calving out of the typical breeding 

season observed in the analyzed farms appears more evident at first lactation (Figure 4.1.3.3.2.). as 

already underlined, the low seasonality showed by females at first calving can be due to a more 

successful application of the OBMS technique operated in the analyzed farms, as heifers are less 

sensitive to photoperiod (Zicarelli, 1997). 

In the analyzed sample, milk yield tends to increase with the class of lactation number, reaching 

maximum value at 7
th
 lactation, with a mean (SE) equal to 2742.7 (111.3) kg. The lowest mean 

values for this parameter, as expected, were observed at first lactation, with 2341 (31.3) kg of milk 

(figure 4.1.3.3.3.). No statistically significant differences were observed for protein and fat content 

(kg and %). 

 
Figure 4.1.3.3.1. Mean values observed for calving interval at different classes of lactation number 

(P<0.0001). 
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Figure 4.1.3.3.2. Average percentage of calvings observed in the out of breeding season at different classes 
of lactation number (P<0.0001). 

 
Figure 4.1.3.3.3. Mean values observed for milk yield at different classes of lactation number (P<0.0001). 

4.1.3.4. Age at calving 

Age at calving was also considered in the association analyses. Only 2 animals were 1 year old at 

calving, that is doubtful from a biological point of view, consequently they were removed from the 

dataset. Moreover, data related to ages of calving superior to 10 years were included in the latter 

class, because of lack of numerosity (number of observations per class less than 20). 

Concerning calving interval, just one animal had data related to an age lower than 3 years, so it was 

removed from this analysis, due to a lack of numerosity for this class. The statistically significant 

(P<0.0012) difference observed for this parameter in the analyzed sample is due to the high mean 

value registered at 4 years of age, equal to 464.4 (SE=6.9) days, compared to those recorded at 3 

and 6 years of age, equal to, respectively, 420.3 (SE=8.5) and 424.3 (SE=10.1) days (figure 

4.1.3.4.1.). 
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Figure 4.1.3.4.1. Mean values observed for calving interval at different classes of age at calving (P<0.0012). 

The seasonality of deliveries for age at calving, reflects what was shown by the classes of lactation 

number, with lower seasonality, in terms of percentage of calvings observed in the out of breeding 

season, for animals that have calved younger, above all in the first three years of age (figure 

4.1.3.4.2.), which correspond to lactations number 1 and 2. 

 
Figure 4.1.3.4.2. Average percentage of calvings observed in the out of breeding season at different ages at 

calving (P<0.0001). 

Production parameters were also affected by the age at calving. No differences could be detected for 

protein and fat percentage, while milk, protein and fat yields (kg) tend to increase with age at 

parturition, reaching the maximum value at 7 years, with a mean (S.E.) equal to 2686.51 (81.95) kg, 

125.24 (4.82) kg and 225.95 (0.1) kg, respectively (figure 4.1.3.4.3.). 
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a) 

 
b) 

 
c) 

 
Figure 4.1.3.4.3. Mean values for milk (a), protein (b) and fat (c) yields observed at different ages at calving 

(P<0.0001). 
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4.2. Candidate genes analysis for SNP discovery 

As is clear from the above, the characters examined in present research are very complex. For this 

reason, it was not easy to identify a single criterion for the selection of candidate genes that could 

provide a complete description of the complexity of the problem. 

After an extensive study of literature and databases, also considering information available for other 

species, such as cattle, the candidate genes chosen for SNP discovery analysis were: STAT5A, 

SERPINA14 and TNFA genes, involved in fertility, and MTNR1A gene, previously associated with 

seasonality of reproduction. These are discussed in detail in the following paragraphs. 

4.2.1. SERPINA14  

The SERPINA14 (serpin peptidase inhibitor, clade A, alpha-1 antiproteinase, antitrypsin, member 

14) is member of a large serpin super family of serine protease inhibitors (Ing and Roberts, 1989), 

that are secreted from the uterine endometrium mainly under the influence of progesterone (Leslie 

and Hansen, 1991) in many ungulate animal species including bovine (Mathialagan and Hansen, 

1996), ovine (Ing et al., 1989), caprine (Tekin et al., 2005) and porcine (Malathy et al., 1990). The 

SERPINA14 protein performs diverse biological functions which include direct nutrition to the 

conceptus, growth control, inhibition of proteolytic activities and suppression of the local maternal 

immune system for sustaining pregnancy (Roberts and Bazer, 1988). This gene has been studied in 

bubaline species (Kandasamy et al., 2010) where authors found a differential spatio-temporal 

expression of SERPINA14 gene in the uterine endometrium of buffalo which suggests its plausible 

important roles in reproduction. 

In bovine species this gene is located on chromosome 21 and it has a 1464 bp long coding 

sequence, it is composed by 5 exons and there are 124 known SNPs (see figure 4.2.1.1.) in 

literature, of which: 22 are in the upstream region; one in the 5’UTR; 14 are located in exons, of 

which 6 are synonymous; 7 are missense variants and 1 is placed within the region of the splice site; 

32 SNPs are in introns; one is in the 3’UTR and finally 55 are located in the downstream gene 

region. The homology between bovine and other species is quite low, equal to 60% with swine and 

45% with horse. 

Concerning buffalo species, in databases is the complete mRNA and coding sequences for this gene 

(National Center for Biotechnology Information, Accession: HM590822.1).

http://www.ncbi.nlm.nih.gov/


 
 

 

Figure 4.2.1.1. Bos taurus SERPINA14 gene structure and known polymorphisms (Ensembl release 73 - September 2013). 29 intronic variations are not 

represented in the image. 



77 
 

4.2.2. STAT5A 

The signal transducer and activator (STAT) proteins are known to play a vital role in cytokine 

signaling pathways (figure 4.2.2.1.). The STAT proteins are transcription factors that are 

specifically activated to regulate gene transcription when cells encounter cytokines and growth 

factors. Hence, they act as signal transducers in the cytoplasm and transcription activators in the 

nucleus (Kisseleva et al., 2002). In mammals, the STAT proteins comprise a family of 7 structurally 

and functionally related proteins: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and 

STAT6 (Darnell, 1997). The 7 mammalian STAT proteins range in size from 750 to 850 AA. The 

chromosomal distribution of these STAT, as well as the identification of STAT proteins in more 

primitive eukaryotes, suggest that this family arose from a single primordial gene (Chen et al., 

1998). In addition, STAT share a number of structurally and functionally conserved domains. 

 

Figure 4.2.2.1. Jak-STAT signaling pathway in man from KEGG database (Kanehisa and Goto, 2000), 

update October 2013. 

The STAT5A gene has been studied in bovine species for its influence on both reproduction and 

milk production traits. (Khatib et al 2009). In particular, an association between allele G of 

SNP12195 and a decrease in both protein and fat percentages was found, and this G allele was also 

associated with low embryonic survival and fertilization rate. More recently, STAT5A gene was 

associated with oestrous expression in cattle (Homer et al., 2013). Again, the expression of this 

gene during early bovine embryogenesis was analyzed, demonstrating that the embryonic STAT5A 

gene is primarily activated by maternal gene products (Flisikowski et al., 2013). 

In bovine species this gene has a 2585 bp long cds, it is made up of 20 exons and there are 144 

known SNPs, of which: 46 are located in within the upstream gene region; 4 are located in exons 

and do not result in an aminoacid change; one is a splice acceptor variant, i.e. it changes the 2 base 

region at the 3' end of the intron; one SNP is located on the splicing site at the end of exon 8, while 

all the other 68 SNPs are located in introns (figure 4.2.2.2.). STAT5A gene in bovine species shows 

high homology with other livestock species, equal to 97% with horse, 96% with swine and 95% 

with rabbit. In Figure 14 gene structure and known polymorphisms are reported. 
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In buffalo, nucleotide sequences encompassing exons from 6 to 11 and a partial coding sequence 

are reported in databases (National Center for Biotechnology Information). 

 

http://www.ncbi.nlm.nih.gov/


 
 

 

Figure 4.2.2.2. Bos taurus STAT5A gene structure and known polymorphisms (Ensembl release 73 - September 2013). 53 intronic variations are not represented 

in the image. 
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4.2.3. TNFα 

The TNFα (tumor necrosis factor-α) gene has been associated with male fertility in man, in 

particular with low sperm count, altered sperm motility (Tronchon et al., 2008; Zalata et al., 2013)), 

significantly decreased normal sperm morphology, acrosin activity, and seminal α-glucosidase 

(Zalata et al., 2013). Polymorphisms of TNFα gene both in exon and promoter regions have been 

also associated with female fertility, in particular with the early first ovulation within 3 weeks after 

parturition, in the high-producing dairy cow (Shirasuna et al., 2011). 

For buffalo species, no nucleotide sequences are reported in databases (National Center for 

Biotechnology Information). On the contrary, the bovine TNFα is well characterized and it is 

located on chromosome 23, the transcript is composed by 4 exons for a total of 1,689 bps and a 

translation of 234 residues length. 112 known SNPs are reported in databases, of which: 51 in the 

upstream gene region; 4 in coding sequence and synonymous; 8 in introns; 3in the 3’UTR and 46 in 

the downstream gene region (figure 4.2.3.1.). 

 

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/


 
 

 

 

 

Figure 4.2.3.1. Bos taurus TNFα gene structure and known polymorphisms (Ensembl release 73 - September 2013). 4 intronic variations are not represented in 

the image. 
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4.2.4. MTNR1A 

As it was explained in the previous paragraphs, there is evidence that melatonin, through its impact 

on the timing of puberty and adult breeding activity, plays a key role in the control of reproductive 

events in a wide range of species. Melatonin secretion is mediated by photoperiod, the main 

environmental factor affecting the regulation of reproductive seasonality (Kennaway and Hugel, 

1992). The melatonin effect is carried out at hypothalamic level, by regulating of GnRH secretion 

(Malpaux et al., 1998). Melatonin receptors are classified in MTNR1A and MTNR1B subtypes but 

only the first seems to be involved in the regulation of seasonal reproductive activity (Dubocovich 

et al., 2003). In several sheep, goat and cattle breeds, polymorphic sites in MTNR1A (melatonin 

receptor 1A) gene exon 2 were found (Messer et al., 1997). One G to an A substitution in position 

612 in sheep and a G to an A substitution in position 52 in goat of the sequence of MTNR1A gene 

was found to lead to a less seasonal reproductive activity (Carcangiu et al., 2009a; Carcangiu et al., 

2009b). In a more recent work (Carcangiu et al., 2011) it has been demonstrated that buffaloes 

carrying C/C genotype showed the reproductive activity principally during decreasing day-length 

whereas those with T/T genotype showed mating period largely during increasing day-length. 

Animals carrying T/T genotype could be allocated to reproduction during long photoperiod instead 

the C/C subjects during natural mating season. In a more recent study performed on MTNR1A gene 

in Mediterranean Italian buffalo, no associations between genotype, first mating and subsequent 

calving date were found, but the duration from first to second calving was longer in buffaloes with 

the C/C genotype compared with those with the T/T and C/T genotypes (P<0.01). Moreover, the 

period of calving for buffaloes with the C/C genotype was mainly from July to September, whereas 

that for buffaloes with the T/T genotype was largely from March to May and the association 

between the T/T genotype and reproductive activity during days with a long photoperiod indicates 

that this polymorphism may be considered a genetic marker to identify buffaloes that are able to 

reproduce out of the breeding season (Luridiana et al., 2012). 

In databases a partial coding sequence, including the exon 2, is reported for buffalo species. The 

bovine MTNR1A has a 771 bps long coding sequence and it is made up of 2 exons. 183 SNPs are 

reported in this species, of which: 40 in the upstream gene region; 8 in exons, of which 3 missense 

and 5 synonymous; 128 in introns and 7 in the downstream gene region (figure 4.2.4.1.).



 
 

 

Figure 4.2.4.1. Bos taurus MTNR1A gene structure and known polymorphisms (Ensembl release 73 - September 2013). 128 intronic variations are not 

represented in the image. 
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4.3. SNP detection and population parameters 

The polymerase chain reaction (PCR) analyses and the alignment of fragments allowed the 

identification of 12 single nucleotide polymorphisms in the analyzed genes. Of these, 11 were identified 

for the first time in present work, while a C>T substitution in MTNR1A gene was already found in 

literature and associated to seasonality in buffalo species (Carcangiu et al., 2011). The SNPs 

identified are described in table 4.3.1. 

GENE 

NAME 

SNP 

NAME 

LOCATION SNP 

TYPE 

AA 

CHANGE 

REFERENCES REFSEQ-SNP 

IDENTIFICATION
1 

MTNR1A c.318C>T exon 2 C/T no Carcangiu et al. (2011) GU817415 

SERPINA14 c.70C>T exon 2 C/T Leu>Phe Present Work HM462262.1 

  c.717G>A exon 3 A/G Asn>Asp Present Work HM462262.1 

TNFA c.323C>A exon 4 A/C no Present Work NM_173966.2 

  c.371G>A exon 4 A/G no Present Work NM_173966.2 

STAT5A c.128+179G intron 2-3 G/C - Present Work NM_001012673.1 

 

c.924C>T exon 8 C/T no Present Work NM_001012673.1 

 

c.989+144G intron 8-9 G/T - Present Work NM_001012673.1 

 

c.989+344C intron 8-9 C/T - Present Work NM_001012673.1 

 

c.1342+99A intron 10-11 A/G - Present Work NM_001012673.1 

 

c.2057T>A exon 16 T/A no Present Work NM_001012673.1 

  c.2331C>T exon 19 CT no Present Work NM_001012673.1 

Table 4.3.1. Single Nucleotide Polymorphisms detected in present work. 
1Sequenced reference (SeqRef) identification in the National Center for Biotechnology Information (NCBI) database 
(www.ncbi.nlm.nih.gov). 

A first genotyping analysis on a sample of 36 buffaloes was performed in outsourcing for all the 

SNPs found. For two polymorphisms located at STAT5A gene, c.989+144G and c.2331C>T, the 

setup of SNP genotyping failed at the laboratory where the analysis was performed. Seven SNPs, 

highlighted in bold in table 4.3.1., resulted polymorphic and were subjected to the subsequent 

analyses, while other 3 SNPs among those identified by PCR sequencing resulted monomorphic in 

the sample of 36 buffaloes. Of these, the two SNPs within the SERPINA14 gene were detected by 

comparing the sequences of animals analyzed in present work with the one found in database for 

Bubalus bubalis (GenBank: HM462262.1). The other polymorphism which resulted monomorphic 

in the 36 buffaloes genotyped, the STAT5Ac.2057T>A, was identified through a well-defined 

double pick in the chromatogram of one of the six animals analyzed in the SNP discovery. This 

probably means that it is a very rare polymorphism, which was not considered for the subsequent 

analyses in present work. 

Of the seven polymorphisms resulted polymorphic, apart from that already present in literature, two 

are located in exon 4 of TNFA gene and four in STAT5A gene, of which one in exon 8 and three in 

introns. All the coding SNPs are synonymous, i.e. they do not change the aminoacid sequence of the 

encoded protein. Even if synonymous codons are nucleotide triplets that are translated into the same 

amino acid, they deserve to be analyzed also because of the phenomenon known as codon bias. This 

http://www.ncbi.nlm.nih.gov/
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means an unequal frequency usage of the codons from the same synonymous group, and is a 

characteristic to all organisms from bacteria to multicellular eukaryotes (Nabiyouni et al., 2013). 

Also, Chamary and co-authors reviewed evidence that variable sites in synonymous codons are 

important in mRNA stability and proper splicing (Chamary et al., 2006). Synonymous SNP, as well 

as non-coding SNP, could also be associated with an altered phenotype if they are in linkage 

disequilibrium with a functional mutation, being almost always inherited together with the 

functional mutation itself. Moreover, SNP located in introns may have effects on important 

mechanisms such as transcription, translation and splicing. 

The seven polymorphic loci were genotyped on the sample of 491 female Mediterranean Italian 

Buffaloes characterized by the phenotypes described above. Population parameters for these SNPs 

are reported in table 4.3.2. The markers MTNR1Ac.318C>T and STAT5Ac.128+179G deviated 

from the Hardy-Weinberg equilibrium, with significantly different values for observed and expected 

heterozygosity. Noticeably, even if these two polymorphisms had comparable value for the minor 

allele frequency (MAF) (equal to 0.292 and 0.319, respectively), for the SNP at STAT5A gene the 

homozygous class for the minor allele C resulted highly under-represented, with a frequency for 

this genotype equal to 0.073, that is very low. This can be due to a selection against this allele, 

which remains in the population mostly in heterozygous form. 

A similar hypothesis can be done for the homozygous class of minor allele A of the marker at 

position c.323C>A of TNFA gene, which showed a very low frequency, equal to 0.016, in the 

analyzed population. In fact, just 8 animals of the 491 analyzed were AA. This was expected, as 

already in the first sample of 36 buffaloes genotyped this SNP reported a very low frequency for the 

A allele, equal to 0.097, and no animals were homozygous for this allele. 

The other SNP genotyped at TNFA gene, located at position c.371G>A, showed a MAF lower than 

1%, so it was removed from the subsequent association analyses. The A allele at this locus was rare 

also in the initial sample of 36 buffaloes, with just one animal carrying this allele in heterozygous 

form. This animal was the same analyzed for SNP discovery, and it allowed the detection of this 

rare polymorphism. Even if just one buffalo among the 36 genotyped carried the A allele, this SNP 

was analyzed also in the larger sample of 491 animals, in order to maximize information on TNFA 

gene, as only another one SNP was found at this interesting locus. 

For all the other markers, the MAF resulted around 30%, little higher (36%) for the SNP c.924C>T 

at STAT5A gene. 

 



 
 

SNP Genotype and frequency 

Allele and 

MAF 

No. of 

obs. Availability Het exp Het obs 

HW exact 

P-value 

MTNR1A c.318C>T CC CT TT T 
     

    0.520 0.378 0.103 0.292 487 0.992 0.413 0.378 0.051* 

TNFA c.323C>A AA AC CC A 
     

  
0.016 0.189 0.794 0.111 491 1.000 0.197 0.189 0.346 

 
c.371G>A AA AG GG A 

     
    - 0.002 0.998 0.001 487 0.992 0.002 0.002 1.000 

STAT5A c.128+179G CC CG GG C 
     

  
0.073 0.493 0.435 0.319 467 0.951 0.435 0.493 0.004* 

 
c.924C>T CC CT TT T 

     

  
0.422 0.439 0.139 0.358 483 0.984 0.460 0.439 0.274 

 
c.989+344C CC CT TT T 

     

  
0.474 0.410 0.115 0.321 485 0.988 0.436 0.410 0.167 

 
c.1342+99A AA AG GG G 

     
    0.550 0.368 0.083 0.267 484 0.986 0.391 0.368 0.210 

Table 4.3.2. Population genetics parameters: genotype frequencies, minor allele frequencies (MAF), observed and expected heterozygosity (Het obs and Het exp, 

respectively), and Hardy-Weinberg (HW) equilibrium exact P-values at the investigate SNPs. 

. 
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4.4. Associations with SNPs 

4.4.1. TNFA gene 

The SNP located at the 3
rd

 exon of TNFA gene showed a statistically significant association 

(P<0.0404) with the parameter of calving interval. This trait was analyzed separately for every class 

of lactation number, and the association observed with the TNFAc.323CA polymorphism could be 

assessed only in the fourth lactation subset. However, just one animal, with very low value for 

calving interval (equal to 331 days) resulted homozygous for the A allele in this subset, so it was 

removed from the dataset. After repeating the analysis with this correction, all the factors in the 

model resulted significantly associated with calving interval (table 4.4.1.1.). In particular, a 

statistically significant (P<0.0318) effect was highlighted between buffaloes homozygous for the C 

allele, showing significantly longer calving intervals compared to the CA animals, with least square 

means (SE) equal to, respectively, 425.72 (7.14) days and 390.31 (15.33) days (figure 4.4.1.1.). 

This confirms the improving effect of the A allele observed for the homozygous AA animal, which 

reported a very low level for calving interval. In fact, the A allele at this locus showed a large 

(P<0.012) negative substitution effect, equal to -38.11 (SE=15.03) days (table 4.4.3.2.). Also 

dominance effect resulted statistically significant (P<0.038), with a negative value of -34.32 

(SE=16.37) days. Since just one animal carried the AA genotype in the subset analyzed and both 

allelic substitution and dominance effects are calculated based on the allelic frequencies, is to assess 

whether, in a sample with other frequencies, these effects are confirmed. The SNP contribution to 

the variance observed is equal to 0.029 and is the highest between the polymorphisms analyzed 

(table 4.4.3.2.). 

 
Figure 4.4.1.1. Least square means for calving interval at the TNFAc.323CA locus in the 4

th
 lactation subset 

(P<0.0318). 
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Trait 

 

Dataset 

 

Effects 

 

Sum of Squares 

 

Degree of 

freedom 

Mean 

Square 

Prob>F 

 

Calving interval Lactation 4 Flock 43954.6 3 14651.5 0.0329 

    Seasonality of calving 19987.9 1 19987.9 0.045 

    Age at calving (days) 48363.5 1 48363.5 0.002 

    TNFA_c323 22969.2 1 22969.2 0.0318 

    Error 639157.1 131 4879.1   

    C Total 794531.98 137   <.0001 

Table 4.4.1.1. Model results for the TNFAc.323C>A polymorphism association analysis with calving 

interval parameter in the 4
th
 lactation subset. 

The TNFAc.323CA polymorphism did not show any other statistically significant associations, 

even considering the subset including data related to only the 4
th

 lactation. Nevertheless, the 

frequency of A allele seems to decrease from the first lactation on, as can be observed in table 

4.4.1.2. In the first lactation, 8 AA animals were recorded while in the fourth one just one animal 

carried this genotype and it was not present from the 6
th

 lactation on. Since in our sample the A 

allele resulted significantly associated with a reduction of the calving interval, its decrease in the 

population is to be considered a negative effect. Moreover, no statistically significant associations 

were detected for this polymorphism with the other parameters studied. Therefore, further analyses 

on other traits, which could have been selected reducing the A allele frequency in the buffalo 

population, deserve to be conducted. 

Lactation 

number 

Animals 

 

A allele 

frequency 

SD 

 

1 96 0.1103 0.0110 

2 80 0.1176 0.0128 

3 50 0.1050 0.0145 

4 26 0.0935 0.0173 

5 14 0.0833 0.0220 

6 6 0.0577 0.0222 

7 4 0.0690 0.0320 

Table 4.4.1.2. Frequency of A allele for SNP TNFAc.323CA in the different lactation number subsets 

analyzed. 

Contrary to buffalo, for which there is no information on the sequence in the database, the bovine 

TNFA is well characterized and it is located on chromosome 23. The transcript is composed by 4 

exons for a total of 1,689 bps and a translation of 234 residues length. 112 known SNPs are 

reported in databases, of which: 51 in the upstream gene region; 4 in coding sequence and 

synonymous; 8 in introns; 3in the 3’UTR and 46 in the downstream gene region (figure 4.2.3.1.). 

The TNFA gene has been previously associated with male fertility in man, in particular with low 

count, motility and morphology of sperm (Tronchon et al., 2008; Zalata et al., 2013). Calving 

interval measures the cow’s ability to be successfully inseminated again quickly post calving. Since 

the outcome of an insemination depends on both male and female fertility, previous studies 

performed in cattle species have compared bull fertility estimation based on the reproductive 

performance of field data, such as calving interval, on cows (Clay and McDaniel, 2001; Averill et 

al., 2004). Surely, the polymorphism found in buffalo species in the present research deserves to be 
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studied also on male buffaloes, in order to investigate associations with male fertility parameters. 

However, polymorphisms of TNFA gene both in exon and promoter regions have been directly 

associated with female fertility in cattle, in particular with the early first ovulation within 3 weeks 

after parturition, which can result in the elongation of calving interval period, in the high-producing 

dairy cow (Shirasuna et al., 2011). In this recent work, which was not published when the PCR 

performed in present research were set up, Shirasuna and co-authors found an association with a 

polymorphism located at the 4
th
 exon of TNFA gene, in addition to a non-coding mutation. Given 

the relevant effect of the SNP located in the 3
rd

 exon, highlighted in the present work for buffalo, it 

would be interesting to analyze also the remaining part of the TNFA gene, particularly the 4
th

 exon 

region, in this species. 

None of the other polymorphisms, identified in candidate genes for fertility traits, showed 

statistically significant associations with calving interval. It must be said, however, that this 

parameter, obtained from the dates of calving, was the only enough reliable phenotype which could 

be related to fertility. However, as discussed above, fertility is a complex issue, involving many 

mechanisms and very difficult to be measured with field data. This is true above all in buffalo 

species, where artificial insemination is rarely practiced and very little parentage information is 

available. More accurate fertility phenotypes should be obtained to find associations with the genes 

analyzed in present study. 

4.4.2. MTNR1A gene 

The MTNR1A gene was a candidate gene for seasonality of reproduction. Concerning this 

parameter, the SNP association analysis in present work was performed between “seasonal” (from 

August to December) and “out of season” (from January to July) dates of calving. 

The C>T substitution in MTNR1A gene found in literature and associated to seasonality in buffalo 

species (Carcangiu et al., 2011), was confirmed in our sample. The association analysis performed 

in the present research, did not allow establishing a relationship between this polymorphism and 

seasonal breeding. Carcangiu and co-authors reported, for the buffaloes with C/C genotype, the 

highest number of mating in the semester between August and January, with a peak in October and 

November, which is the typical breeding period for buffalo species. On the other hand, animals with 

T/T genotype mated mostly in the semester between February and July and calving occurred largely 

from March to May, specifically in the out of breeding season period. In another study, the same 

polymorphism in MTNR1A gene was analyzed in a smaller population of Mediterranean Italian 

Buffaloes, confirming the association reported by Carcangiu and colleagues with seasonality of 

reproduction (Luridiana et al., 2012). In fact, Luridiana and co-authors found that reproductive 

activity in buffaloes with the T/T genotype was unaffected by fluctuations in the photoperiod. In 

contrast, buffaloes with the C/C genotype exhibited a more seasonal reproductive pattern, with 

sexual activity mainly during days with a short photoperiod. 

Some differences between animals studied in present work and those analyzed by the other authors 

should be underlined. In both the cited papers one herd, of different size, of Mediterranean Italian 

Buffaloes reared in the South of Sardinia was analyzed, while the animals studied in present work 

belong to 4 different farms, located in South of Italy. Moreover, all animals studied by Carcangiu 

(2011) and Luridiana (2012) and co-authors were under natural photoperiod conditions, with bulls 
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kept always within the herd, while in our sample all the buffaloes were subjected to the OBMS 

technique, which interrupts sexual promiscuity in the herd during the autumn season. 

In the population analyzed in present research, the C allele resulted more frequent (allele frequency 

equal to 0.72) than T (0.28). Also this data is in contrast with the findings of previous authors, who 

reported a more balanced allele frequency for this SNP. In particular, Carcangiu and colleagues in 

2011 found a frequency for the C allele equal to 0.44, and 0.56 for T allele. 

The trend of genotypic frequencies at this locus showed even more remarkable differences from the 

results reported by other authors. In fact, in present work just 50 buffaloes showed the T/T genotype 

(10.2%), while 253 were C/C (51.5%) and 184 C/T (37.5%). Carcangiu and colleagues reported 

instead genotype frequencies equal to 34% for T/T, 26% for C/C and 40% for C/T. These results are 

similar to those reported for the same SNP in the other study performed on 60 buffaloes by 

Luridiana et al. in 2012, where allele frequencies for C were 0.42 and 0.58 for T allele, and 

genotype frequencies for C/C, C/T and T/T were equal to, respectively, 28%, 38% and 34%. The 

number of homozygous animals for the C allele observed by other authors is significantly lower 

than that found in the population analyzed in present work. Likewise, in our population the number 

of TT buffaloes is significantly lower compared to those analyzed by the other authors. Our sample 

included data related to all lactations, while in that studied by Carcangiu and colleagues, 

primiparous and old cows were removed from the dataset. However, no statistically significant 

differences were detected for the MTNR1Ac.318C>T polymorphism in respect to the number of 

lactation in our population. As already underlined, in the farms analyzed in present research the 

OBMS technique was performed. In fact, 71% of calvings recorded for buffaloes analyzed in 

present work fall in the out of breeding season period, while 29% are seasonal, i.e. between August 

and December. In present work, seasonality of reproduction was studied in animals subjected to 

OBMS practice because, on one hand, this represents the usual management condition for the 

Mediterranean Italian Buffalo farms and, on the other hand, it seemed interesting to investigate 

animals which, even under OBMS conditions, were not able to show sexual activity in the out of 

breeding season period. 

Given the differences emerged in comparison to other researches, underlined and discussed above, 

and since the animals studied in present work belong to 4 different farms, the previous analysis of 

the flock variable in respect to the seasonality of calving parameter was investigated. As was 

presented in the previous paragraph (4.1.3.2.), a strong effect on reproductive seasonality parameter 

was assessed for Z farm, where 82.5% of calvings occurred in the out of breeding season. 

Consequently, the association analysis of this trait with the MTNR1Ac.318C>T polymorphism was 

repeated removing all data related to this flock. Actually, in this case an association with this SNP 

could be detected (P<0.0415), with a tendency in calving in the out of breeding season period 

showed by the animals with genotype TT. The Z flock presented two significant differences in 

respect to the other three analyzed farms: a significantly higher number of TT animals (14.60 %) 

and buffaloes with a significantly lower age at calving, with a mean (SE) equal to 1700 (39.47) days 

in the Z flock and a mean of 1864 (27.69) days in the other three farms. 

A statistically significant (P<0.0012) allelic substitution effect was observed, with a negative value 

equal to -0.286 (SE=0.0113) for the C allele. No dominance effects could be instead detected.  
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The results obtained with this posterior analysis, seem to be in accordance with those reported from 

the other authors who associated the reproductive seasonality trait with this polymorphism at 

MTNR1A gene. However, this association could be seen in our population only after the removing 

of data related to one of the flocks analyzed. Hence, this effect should be validated on a sample 

collected from a higher number of farms. 

In the present research, the MTNR1Ac.318C>T polymorphism resulted associated also with dairy 

parameters. In particular, a statistically significant effect emerged on milk (P>0.0043), fat 

(P<0.0101) and protein (P<0.0101) yield (kg) parameters. In all these cases, TT animals showed 

lower performances. In particular, animals homozygous for T allele reported a significantly reduced 

milk yield production, with least square mean (SE) equal to 2340.53 (68.41) kg, compared to CC 

and CT, showing least square mean values (SE) of 2515.15 (56.50) kg and 2512.89 (57.89) kg, 

respectively (figure 4.4.2.1.a). The C allele at this locus had a large (P<0.0123) substitution effect, 

equal to (SE) 63.03 (25.15) kg, while the genotype dominance effect resulted not statistically 

significant. Little contribution, equal to 0.0085, is given by this SNP to the total variance observed 

(table 4.4.3.2.). All the effects in the model resulted statistically significant for this parameter, 

except for the age at calving (table 4.4.2.1.). 

Milk yield parameter showed a normal distribution in the analyzed population and also 

homoscedasticity was satisfied, as reported above. Therefore, just one dataset, including data related 

to all lactations, was considered. On the contrary, fat and protein yields were analyzed separately 

for the first lactation subset, which showed an out of range variance for the classes of lactation 

number. Concerning fat yield, no statistically significant differences were observed in the 

primiparous dataset. On the other hand, while both the age at calving and the number of lactation 

did not affect this parameter (table 4.4.2.1.), an effect (P<0.018) was shown by the 

MTNR1Ac.318C>T SNP in the subset including lactations from 2 to 7 (figure 4.4.2.2.a). In 

particular, heterozygous animals showed significantly higher values for this parameter, with least 

square mean + SD equal to 215.02 + 3.7 kg, compared to the homozygous for the C allele (211.65 + 

4.28 kg) and for the T allele (196.93 + 2.26 kg), the latter being noticeably lower. The substitution 

effect for the C allele resulted not statistically significant at this locus, as well as the genotype 

dominance effect. However, it is noticeable that CT animals showed performances comparable with 

the CC ones, and were not at intermediate level between the two homozygous classes for this 

parameter. The SNP variance contribution at this locus was low and equal to 0.0099 (table 4.4.3.2.). 

Also the association of this polymorphism with protein yield was observed in the subset including 

lactations from 2 to 7, while no statistically significant associations could be detected in the 

primiparous subset. As for the fat yield parameter, both the age at calving and the number of 

lactation resulted not significant in the model, while a strong effect was assessed for the SNP at 

MTNR1A gene (table 4.4.2.1.). Buffaloes carrying the CC genotype at this locus showed 

significantly higher performances, with least square mean values (SE), equal to 118.64 (2.62) kg, 

while CT and TT animals, showed least square means (SE) equal to, respectively, 116.84 (2.75) kg 

and 108.89 (3.45) kg (figure 4.4.2.2.b). Allelic substitution effect for the C allele at this locus 

resulted statistically significant (P<0.0062), with α (SE) equal to 4.07 (1.48) kg, while no 

dominance effects could be detected (table 4.4.3.2.). 

A statistically significant effect of MTNR1Ac.318C>T polymorphism was also assessed for protein 

percentage, analyzed in the entire dataset, as homoscedasticity was satisfied for this parameter. The 



92 
 

trend observed for the three classes of genotype in respect to protein % was the same of the other 

associations previously discussed. In fact, buffaloes carrying the CC genotype at the SNP in 

MTNR1A gene showed better performances (P<0.0375), with least square mean values (SE), pair to 

4.61 (0.018) %, while CT and TT animals showed comparable values, with least square means (SE) 

equal to, respectively, 4.58 (0.02) % and 4.59 (0.02) % (figure 4.4.2.1.b). No allelic substitution 

effects could be observed for this parameter, while a significant (P<0.019) genotype dominance 

effect was detected, equal to -0.027 (SE=0.011) %. Interestingly, in this case an intermediate level 

for protein % is shown not by the heterozygous animals, but by the homozygous for the T allele. 

Finally, SNP variances contribution resulted low for both protein yield and percentage and equal to, 

respectively, 0.01 and 0.0054 (table 4.4.3.2.). 

a) 

 
b) 

 
Figure 4.4.2.1. Least square means at the MTNR1Ac318C>T locus for milk yield (a) and protein percentage 

(b) in the entire dataset. 
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a) 

 
b) 

 
Figure 4.4.2.2. Least square means at the MTNR1Ac318C>T locus for fat (a) and protein (b) yield in the 

lactations from 2 to 7. 
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Trait 

 

Dataset 

 

Effects 

 

Sum of 

Squares 

Degree of 

freedom 

Mean 

Square 

Prob>F 

 

Milk yield all lactations Flock 67600000 3 2.25E+07 <.0001 

    Seasonality of calving 2531469 1 2531469 0.0032 

    Number of lactation 4742027 6 790338 0.0124 

    Age at calving (days) 128363 1 128363 0.5058 

    MTNR1A_c318 128363 2 1586687 0.0043 

    Error 288298434 995 289747 
     C Total 374339183 1008 

 

<.0001 

Fat yield (kg) lactations 2-7 Flock 530.905 3 176.968 <.0001 

    Seasonality of calving 10.5453 1 10.5453 0.062 

    Number of lactation 12.3946 5 2.47893 0.5343 

    Age at calving (days) 0.13021 1 0.13021 0.8355 

    MTNR1A_c318 24.3821 2 12.1911 0.018 

    Error 1906.1562 632 3.0161 

     C Total 2472.705 644 
 

<.0001 

Protein yield (kg) lactations 2-7 Flock 161957 3 53985.6 <.0001 

    Seasonality of calving 3399.11 1 3399.11 0.0237 

    Number of lactation 2985.19 5 597.038 0.4781 

    Age at calving (days) 60.9539 1 60.9539 0.7614 

    MTNR1A_c318 6119.92 2 3059.96 0.0101 

    Error 417545.56 632 660.7 

     C Total 589378.44 644 
 

<.0001 

Table 4.4.2.1. Model results for the MTNR1Ac318C>T polymorphism association analysis with milk, fat 

and protein yield parameters. 

The SNP at MTNR1A gene, although already found in literature, has never been previously analyzed 

for dairy traits in buffalo species. The strong negative effect associated to the TT genotype in the 

productive parameters analyzed, seems to be a possible explanation of the low frequency observed 

for this genotype in the sample analyzed in present work. In fact, even if other authors reported a 

positive effect for seasonality of reproduction for TT genotype at MTNR1Ac.318C>T locus 

(Carcangiu et al., 2011; Luridiana et al., 2012), the effect on productive parameter, assessed for the 

first time in present work, is opposite. Moreover, the relationship found by previous authors with 

seasonality of reproduction was only in part confirmed in present work, and it deserves further 

analyses on a sample collected in a larger number of flocks. 

The reducing of the TT genotype frequency could be the result of a selection of more productive 

animals in the analyzed farms. In fact, a high management level of the flocks studied can be 

deduced from the high dairy performances reported, compared to the official statistics published for 

Mediterranean Italian Buffalo. Another element is given by the high efficiency of the application of 

OBMS technique in the farms studied in present work, as a high percentage of the recorded calvings 

occurred in the out of breeding season period. 

The MTNR1Ac.318C>T locus proved to be very interesting for buffalo species. There is an 

apparent antagonistic relationship between the seasonality of reproduction, based on works made by 

other authors and only partially confirmed in current work, in respect to productive parameters 
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analyzed in present research. A study of productive performances on the herds analyzed by the 

other authors, would be very useful to better understand this important topic. 

4.4.3. STAT5A gene 

An association with seasonality of calving was assessed in the analyzed sample for two loci at 

STAT5A gene: c.989+344C (P<0.0046) and c.1342+99A (P<0.0144). In particular, concerning the 

former SNP, 81.1 % of animals homozygous for the minor allele T calved in the out of breeding 

season period. On the other hand, no statistically significant differences could be observed in 

respect to the season of calving for buffaloes carrying the other two genotypes (table 4.4.3.1.). 

Consequently, the T allele in homozygous form seems to be associated to a less seasonal 

reproductive pattern. In fact, the allelic substitution effect resulted statistically significant for this 

locus (P<0.0149), with α (SE) equal to -0.24 (0.098) calvings, even if no statistically significant 

dominance effect was detected (table 4.4.3.2.). 

Another effect (P<0.0136) for this polymorphism was assessed in present work with protein 

percentage. Even if the association resulted not statistically significant based on the Bonferroni-

adjusted significance level, a trend is observed for this SNP. In particular, buffaloes homozygous 

for the T allele showed higher performances, with least square mean (SE) equal to 4.628 (0.024) %, 

compared to the heterozygous, 4.577 (0.018) %. The homozygous for the other allele, showed 

intermediate performances, equal to 4.599 (0.019) % (figure 4.4.3.1.). The substitution effect for the 

C allele at the c.989+344C locus did not show a statistically significant effect, while a negative 

dominance effect of genotype was observed (P<0.012), amounting to -0.028 (SE=0.011) %. Also in 

this case, as for the SNP at MTNR1A gene, an intermediate level for protein % is shown not by the 

heterozygous animals, but by the homozygous for the T allele. These trends suggest, on the basis of 

classical Mendelian genetics, the presence of an overdominance effect. This is a form of dominance 

in which the expression of the heterozygote is outside the range defined by the expressions of the 

homozygous genotypes and most closely resembles the expression of the homozygous dominant 

genotype (Bourdon R.M. 1997). 

The variance contribution of this SNP resulted equal to 0.0072 (table 4.4.3.2.). 

It must be noticed that, even if the TT genotype seems to be associated to better performances for 

both seasonality and protein percentage traits, its frequency in the analyzed population is highly 

under-represented, equal to only 11.5%. Also the frequency of the T allele is low (32%). Moreover, 

this low frequency remained with the increasing of the number of lactation. In fact, the SNP was not 

affected by this parameter. However, based on the overdominance effect explained above, a 

selection against the TC genotype, which showed significantly negative performances for the 

analyzed traits, could have occurred, leading to a reduction of the T allele in the analyzed 

population. Further association analyses of this polymorphism on more traits could help in 

understanding the interesting mechanisms emerged in present work. 

Regarding the other SNP, located at position c.1342+99A on STAT5A gene, associated with 

seasonality of reproduction, 74.44% of AA animals calved in the out of breeding season period, and 

this trend is observed also for the heterozygous buffaloes, with 67.96% of calvings occurred in this 

period. The homozygous for the minor allele G, showed more balanced trend, with percentage of 

calving in the out of breeding season equal to 58.6% and 41.4% in the breeding season. Hence, the 

GG genotype seems to be associated to a reduced sensitiveness to photoperiod. The allelic 
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substitution effect resulted statistically significant (P<0.0083), with α (SE) equal to 0.302 (0.114) 

calvings. On the other hand, no statistically significant dominance effect was detected (table 

4.4.3.2.). The G allele was the minor allele in the analyzed population, with a frequency equal to 

about 27 %. Moreover, the GG genotype is very under-represented, with a frequency equal to 0.8%. 

No other statistically significant effects were detected for this polymorphism in the analyzed 

sample. Hence, considering the positive effect on seasonality trait observed in present work for this 

genotype, its frequency in the population should be enhanced. It must be said, however, that with 

Bonferroni correction the effect at this SNP resulted not statistically significant. 

Also for the STAT5A_c989+344C and STAT5A_c1342+99A polymoprhisms, as was done for the 

SNP on MTNR1A gene, the association analysis for seasonality parameter was repeated removing 

all data related to the Z flock, which reported significantly high percentage of calving in the out of 

breeding season period. The associations already found resulted confirmed (P<0.0101 for 

STAT5A_c989+344C and P<0.0013 for STAT5A_c1342+99A) and, differently from the previous 

analysis, the significance at the c.1342+99A locus overcame the Bonferroni correction. 

SNP STAT5A_c989+344C 

Genotype C:C T:C T:T 

out of season (%) 44.93 41.85 13.22 

seasonal (%) 47.8 44.6 7.6 

SNP STAT5A_c1342+99A 

Genotype A:A G:A G:G 

out of season (%) 59.52 34.72 5.75 

seasonal (%) 50.00 40.05 9.95 

Table 4.4.3.1. Percentage of animals with different genotypes at the two SNPs STAT5A_c.989+344C and 

STAT5A_c.1342+99A, calving in the two periods considered. 

 
Figure 4.4.3.1. Least square means at the STAT5A_c.989+344C locus for protein percentage in the entire 

dataset (P<0.0136). 

Another polymorphism detected on the STAT5A gene, the C to G substitution at position c.128, 

showed a trend (P<0.0567) in respect to the protein yield (kg) in the subset including data related to 
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classes of lactation number from 2 to 7. In particular, buffaloes carrying the CC genotype registered 

significantly higher performances, with least square mean (SE) equal to 123.87 (5.75) kg, compared 

to the GG ones, least square mean (SE) of 118.12 (2.62) kg. Interestingly, the lowest average 

protein yields, with least square mean (SE) pair to 114.04 (2.71), were recorded for the 

heterozygous animals (figure 4.4.3.2.). Based on these results, also in this case an overdominance 

effect may be hypothesized. 

A high dominance effect was observed at this locus (P<0.032), equal to (SE) -4.531 (2.104) kg. 

However, no statistically significant effect was detected for allelic substitution. Noticeably, the CC 

genotype class at this locus resulted highly under-represented in the analyzed population, with a 

frequency equal to 0.073. A hypothesis behind this could be based on the negative performances 

associated to the heterozygous animals, which may have led to a selection against the TC genotype, 

even if the effect was not statistically significant. 

Finally, the SNP variance contribution, equal to 0.0099, resulted comparable with the other 

emerged in the present work on polymorphisms STAT5A_c989+344C, STAT5A_c1342+99A and 

MTNR1Ac.318C>T (table 4.4.3.2.). 

The SNPs found at STAT5A gene are not in Linkage Disequilibrium. 

 

Figure 4.4.3.2. Least square means at the STAT5A_c.128+1798G locus for protein yield in the lactations from 2 to 7 

subset (P<0.0546). 

The trends observed in present work for milk protein (kg and %) and fat (kg) content, in respect to 

polymorphisms found in STAT5A sequence, highlighted an influence of this gene on milk 

production traits in buffalo species. The STAT5A gene has been studied in cattle for its influence on 

both reproduction and dairy traits. (Khatib et al 2009). In particular, a SNP located in this gene has 

been associated with protein and fat percentages in bovine species (Khatib et al., 2008b).  

On the other hand, in the present research no effects were detected for the fertility parameter of 

calving interval in buffalo. Instead, in cattle this gene was previously associated with oestrous 

expression (Homer et al., 2013) and embryonic survival (Khatib et al., 2008b). 

As already explained, among the phenotypes available for the buffaloes analyzed in present work, 

the only one which could be reliable for the study of fertility was calving interval, obtained from the 
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dates of calving. However, this is only an aspect of the problem and it is difficult to find correct 

parameters to capture the complexity of fertility, which can be also sufficiently accurate. This is a 

big issue above all in buffalo species, where artificial insemination is rarely practiced and very little 

parentage information is available. More accurate phenotypes should be obtained to find more 

associations with the genes analyzed in present study and to better understand the molecular basis 

of reproduction processes. 



 
 

        
Effect1 Variance 

contribution
2
 

Variable dataset SNP allele α P-value d P-value r
2

SNP 

Calving interval 

(days) lactation 4 TNFAc.323C>A A -38.11 ± 15.03 0.012 -34.32 ± 16.37 0.038 0.029 

Seasonality of calving All lactations STAT5Ac.989+344C C -0.24 + 0.098 0.015 -0.14 + 0.129 0.275  

Seasonality of calving All lactations STAT5Ac.1342+99A A 0.302 + 0.114 0.008 -0.047 + 0.135 0.730  

Milk yield (kg) all lactations MTNR1Ac.318C>T  C 63.03 ± 25.15 0.012 33.75 ± 36.17 0.351 0.0085 

Protein yield (kg) lactations 2-7 MTNR1Ac.318C>T  C 4.069 ± 1.482 0.006 0.341 ± 2.183 0.876 0.01 

 

lactations 2-7 STAT5Ac.128+179G  C -1.582 ± 1.841 0.390 -4.531 ± 2.104 0.032 0.007 

Protein content (%) all lactations MTNR1Ac.318C>T  C 0.015 ± 0.008 0.057 -0.027 ± 0.011 0.019 0.0054 

 

all lactations STAT5Ac.989+344C C -0.0026 ± 0.009 0.766 -0.028 ± 0.011 0.012 0.0072 

Fat yield (kg) lactations 2-7 MTNR1Ac.318C>T  C 0.16 ± 0.1 0.110 0.228 ± 0.147 0.121 0.0099 

Table 4.4.3.2. Allele substitution effect (mean + SE) and contribution of each significant SNP to the total phenotypic variance of calving interval, milk yield (kg), 
protein content (kg and %) and fat yield (kg). for the statistically significant associations described in present work. 

1α=substitution effect, expressed in the same units of corresponding variables; d=dominance effect, expressed in the same units of corresponding variables. 
2r2

SNP= contribution to the variance of SNP genotype to the total genotypic variance. 
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5. CONCLUSIONS 

Fertility and seasonality traits are of critical importance in buffalo species and, until now, even if a 

complete genomic sequence was announced, as well as the development of a high density SNP chip 

tool, little genetic information is available for this species. 

In the present research, a polymorphism detection and an association study in candidate genes 

involved in fertility and seasonality of reproduction in Mediterranean Italian Buffalo were 

performed. The candidate genes analyzed were: signal transducer and activator of transcription 5A 

(STAT5A), serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 14 

(SERPINA14) and tumor necrosis factor alpha (TNFA) for fertility, and melatonin receptor 1A 

(MTNR1A) for seasonality. The single nucleotide polymorphism (SNP) detection analysis allowed 

the identification of a total of 12 SNPs. Of these, 11 were identified for the first time in present 

work, while a C>T substitution in MTNR1A gene was already found in literature and associated to 

seasonality in buffalo species. After a first genotyping on a sample of 36 buffaloes, seven SNPs 

resulted polymorphic, including the one already found in literature and six identified in this work 

for the first time. Of these, two are located in exon 4 of TNFA gene and four in STAT5A gene, of 

which one in exon 8 and three in introns. All the coding SNPs are synonymous, i.e. they do not 

change the aminoacid sequence of the encoded protein. These SNPs were genotyped and used for 

the association analysis. In fact, even non-coding and synonymous mutations can be associated with 

an altered phenotype, affecting mechanisms such as transcription, translation and splicing or being 

in linkage with a functional mutation. 

The genotyping analysis of these seven polymorphisms was performed on a total of 491 female 

Mediterranean Italian Buffaloes, characterized by the periodic milking recording data and the dates 

of calving, provided by the Italian Buffalo Breeders’ Association (ANASB). 

The data obtained have required a massive editing work. For the study of fertility and seasonality 

traits, the dates of calving were considered the most suitable phenotype. However, these required a 

considerable revision phase to delete all the recorded data which were not considered reliable. For 

this purpose, the characteristics of the biology of reproduction in water buffalo were considered. 

Another important parameter, which required a considerable revision phase, was the number of 

lactation. In fact, in the ANASB registrations the lactation identified with a number equal to 1 refers 

to the first lactation recorded for one animal, but it often does not correspond to its first calving. 

This may be the result of inaccuracy of registration or even of the birth of male calves that have not 

been declared. Since, for the purpose of this research, the lactation number is a fundamental 

parameter to be considered, a correction was made to evaluate only the reliable lactation number 

data, based on the age of animals and the dates of calving. 

After these corrections, 26 animals, for a total of 107 observations, were removed from the dataset. 

Another fundamental element considered in the analyses performed in present work, was the lack of 

parentage information. Natural mating is the system applied by most Italian buffalo enterprises. 

Breeding is generally carried out by group mating of two or even three bulls at the same time to one 

group of breedable buffaloes and calving takes place on open ranges. Under these conditions, 

paternity is hard to establish. For this reason, since the sires were not shared between flocks, a 

random effect of flock was considered in the SNP association analyses also to account for the effect 

of the bull. 



101 
 

In the analyzed population calving interval distribution showed quite high value compared to that 

reported in literature for Italian farms. This trend reflects the higher intercalving periods usually 

ascribed to the Out of Breeding Mating Season technique, which interrupts sexual promiscuity in 

the herd during the autumn season, performed in the analyzed population. This is shown by the 

calving distribution trend, which is opposite compared to the natural breeding conditions, with high 

deliveries concentration in the out of breeding season period, especially at first lactation. Compared 

to the official statistics reported for Mediterranean Italian Buffalo by the Italian Breeders’ 

Association (AIA), the mean value recorded for age at first calving in our sample is lower, while 

milk yields show considerable high performances, suggesting that the analyzed farms reach high 

management level. However, milk protein and fat content observed in the analyzed population are 

comparable with published data. In our sample, animals that calved in the out of breeding season 

showed shorter calving intervals and higher milk yield compared to the seasonal ones, but a 

significant influence on all the analyzed traits was also detected for the flock variable. This was 

expected considering that this parameter includes the sire effect. 

For the analyzed buffaloes, most of data are related to the first 4 lactations and the average number 

of lactations observed is low compared to the official statistics for Mediterranean Italian Buffalo. 

The number of lactation significantly affects all traits, except fat and protein percentage. Milk yield 

tends to increase with the class of lactation number, reaching maximum value at 7
th

 lactation, and 

the minimum one, as expected, is observed at first lactation. A statistically significant effect is also 

shown by the age at calving, which affected all the analyzed parameters, except for protein and fat 

percentage. 

Phenotypic parameters were used for an association study of the SNPs found in the analyzed genes. 

An interesting result emerged for the SNP located at the 3
rd

 exon of TNFA gene. This is a candidate 

gene for fertility traits and a statistically significant association with calving interval was assessed in 

the fourth lactation subset. Noticeably, just one animal, with very low value for calving interval, 

resulted homozygous for the A allele but, even removing this subject from the dataset, a statistically 

significant effect was highlighted, confirming the improving effect of the A allele observed for the 

homozygous AA animal. In fact, the A allele at this locus showed large negative substitution effect, 

leading to a reduction of the calving interval, and also the genotype dominance effect resulted 

statistically significant. These effects deserve to be evaluated on a larger sample with more 

balanced genotype frequencies at this SNP. However, it is relevant that the frequency of A allele 

decreases from the first lactation on. Since in present work this allele resulted significantly 

associated with a reduction of the calving interval, its decrease in the population is to be considered 

a negative effect. Moreover, as no statistically significant effects were detected for this 

polymorphism on the other parameters analyzed, further analyses on other traits, which could have 

been selected reducing the A allele frequency in the buffalo population, deserve to be conducted. 

None of the other polymorphisms identified in candidate genes for fertility traits showed 

statistically significant associations with calving interval. However, fertility is a complex issue, 

involving many mechanisms and very difficult to be measured with field data. This is true above all 

in buffalo species, where artificial insemination is rarely practiced and very little parentage 

information is available. With the availability of more accurate fertility phenotypes, the association 

study with polymorphisms analyzed in present work could underline further relevant effects. 
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Concerning seasonality parameter, the SNP association analysis was performed between “seasonal” 

(from August to December) and “out of season” (from January to July) dates of calving. In the 

present work, the C>T substitution in MTNR1A gene found in literature and associated to 

seasonality in buffalo species was confirmed, but a relationship between this polymorphism and 

seasonal breeding was not completely established. Other authors reported a statistically significant 

difference in mating behavior for animals homozygous for the T allele, showing sexual activity in 

the out of breeding season period, compared to the CC ones, which resulted more seasonal. An 

opposite trend emerged for the TT genotype frequency, which resulted significantly lower in our 

population compared to that reported by other authors. Some differences between the sample 

analyzed by the other authors and that studied in present work can be underlined. In fact, animals 

studied in the other works belong to one herd, of different size, of Mediterranean Italian Buffaloes 

reared in the South of Sardinia, while our sample belong to 4 different farms, located in South of 

Italy. Moreover, the association analysis of the SNP on MTNR1A gene was performed by other 

authors on animals reared under natural photoperiod conditions, with bulls kept always within the 

herd, while in our sample all the buffaloes were subjected to the OBMS technique, which interrupts 

sexual promiscuity in the herd during the autumn season. In fact, most of calvings recorded in our 

sample fall in the out of breeding season period. In present work, the seasonality of reproduction 

was studied in animals subjected to OBMS practice because, on one hand, this represents the usual 

management condition for the Mediterranean Italian Buffalo farms and, on the other hand, it 

seemed interesting to investigate animals which, even under OBMS conditions, were not able to 

show sexual activity in the out of breeding season period. 

Given the differences emerged in comparison to other researches, and since a strong effect on 

reproductive seasonality parameter was assessed for Z farm, the association analysis of this trait 

with the MTNR1Ac.318C>T polymorphism was repeated removing all data related to this flock. 

Actually, in this case an association with this SNP could be detected, with a tendency in calving in 

the out of breeding season period showed by the animals with genotype TT. The Z flock presented 

two significant differences in respect to the other three analyzed farms: a significantly higher 

number of TT animals and buffaloes with a significantly lower age at calving. A strong allelic 

substitution effect was observed, while no dominance effects could be detected. The results 

obtained with this posterior analysis, seem to be in accordance with those reported from the other 

authors who associated the reproductive seasonality trait with this polymorphism at MTNR1A gene. 

However, this association could be seen in our population only after the removing of data related to 

one of the flocks analyzed. Hence, this effect should be validated on a sample collected from a 

higher number of farms. 

The SNP at MTNR1A gene, although already found in literature, has never been previously analyzed 

for dairy traits in buffalo species. In the present research, a statistically significant effect emerged 

on milk, fat and protein yield (kg) and with protein percentage parameters, with large substitution 

effects for milk and protein yield. The effects for fat and protein yield were observed in the subset 

excluding data related to the first lactation. In all cases, TT animals showed lower performances 

compared to the CC ones. 

The strong negative effect associated to the TT genotype for productive parameters analyzed, seems 

to be a possible explanation of the low frequency observed for this genotype in the sample analyzed 

in present work. In fact, even if other authors reported a positive influence for seasonality of 
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reproduction of TT genotype at MTNR1Ac.318C>T locus, the effect on productive parameter, 

assessed for the first time in present work, is opposite. Moreover, the relationship found by previous 

authors with seasonality of reproduction was only in part confirmed in present work, and it deserves 

further analyses on a sample collected in a larger number of flocks. Hence, the reducing of the TT 

genotype frequency could be the result of a selection of more productive animals in the analyzed 

farms. In fact, a high management level of the flocks analyzed can be deduced from the high dairy 

performances reported, compared to the official statistics published for Mediterranean Italian 

Buffalo. Another element is given by the high efficiency of the application of OBMS technique in 

the farms analyzed in present work, as a high percentage of the recorded calvings occurred in the 

out of breeding season period. 

The MTNR1Ac.318C>T locus proved to be very interesting for buffalo species. There is an 

apparent antagonistic relationship between the seasonality of reproduction, based on works made by 

other authors and only partially confirmed in current work, in respect to productive performances. A 

study of the dairy traits recorded on the herds analyzed by the other authors, would be very useful to 

better understand this important topic. 

Concerning the STAT5A gene, an association with seasonality of calving was assessed in the 

analyzed sample for two loci: c.989+344C and c.1342+99A. In particular, in relation to the former 

SNP, the T allele in homozygous form seems to be associated to a less seasonal reproductive 

pattern. In fact, the allelic substitution effect resulted statistically significant for this locus, even if 

no statistically significant dominance effect was detected. For this polymorphism, a trend is also 

observed in respect to the protein percentage parameter, even if the effect was not statistically 

significant with the Bonferroni correction. In particular, buffaloes homozygous for the T allele 

showed higher performances. Also in this case, as for the SNP at MTNR1A gene, an intermediate 

level for protein % is shown not by the heterozygous animals, but by the homozygous for the T 

allele. These trends suggest, on the basis of classical Mendelian genetics, the presence of an 

overdominance effect. 

It must be noticed that, even if the TT genotype seems to be associated to better performances for 

both seasonality and protein percentage traits, its frequency in the analyzed population is highly 

under-represented and also the frequency of the T allele is low. Based on the overdominance effect, 

a selection against the TC genotype, which showed significantly negative performances for the 

analyzed traits, could have occurred, reducing the T allele frequency in the population. Further 

association analyses of this polymorphism on more traits could help in understanding the interesting 

mechanisms emerged in present work. 

Regarding the other SNP on STAT5A gene, located at position c.1342+99A and associated with 

seasonality of reproduction, the GG animals showed a reduced sensitiveness to photoperiod. The 

allelic substitution effect resulted statistically significant, while no statistically significant 

dominance effect was detected. The G allele was the minor allele in the analyzed population and the 

homozygous genotype GG is very under-represented. No other statistically significant effects were 

detected for this polymorphism in the analyzed sample. Hence, considering the positive effect on 

seasonality trait observed in present work for this genotype, its frequency in the population should 

be enhanced. It must be said, however, that with Bonferroni correction the effect at this SNP 

resulted not statistically significant. 
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Also for the STAT5A_c989+344C and STAT5A_c1342+99A polymorphisms, as was done for the 

SNP on MTNR1A gene, the association analysis with the seasonality parameter was repeated 

removing all data related to the Z flock, which reported significantly high percentage of calving in 

the out of breeding season period. The associations already found resulted confirmed and, 

differently from the previous analysis, the effect of the c.1342+99A locus overcame the Bonferroni 

correction. 

Another polymorphism detected on the STAT5A gene, the C to G substitution at position c.128, 

showed a trend in respect to the protein yield (kg). This effect could be underlined in the subset 

including data related to classes of lactation number from 2 to 7. Interestingly, the lowest average 

protein yields were recorded for the heterozygous animals so, also in this case, an overdominance 

effect may be hypothesized. In fact, since the CC genotype class at this locus resulted highly under-

represented in the analyzed population, we can hypothesize that the negative performances 

associated to the heterozygous animals have led to a selection against the TC genotype, even if the 

effect was not statistically significant with Bonferroni correction. 

The trends observed in present work for milk protein (kg and %) and fat (kg) content, in respect to 

polymorphisms found within STAT5A sequence, highlighted an influence of this gene on dairy traits 

in buffalo species. On the other hand, in the present research no effects were detected for the 

fertility parameter of calving interval in buffalo. The STAT5A gene has been studied in bovine 

species for its influence on both reproduction and milk production traits. However, the only 

phenotype made available for the study of fertility in present research was calving interval. This is 

just an aspect of the problem and it is difficult to find correct parameters to capture the complexity 

of fertility, which could be also sufficiently accurate. This is a big issue above all in buffalo species, 

where artificial insemination is rarely practiced and very little parentage information is available. 

The associations found, that could be tested in a larger sample, may offer useful indications for the 

genetic improvement of fertility, seasonality and production traits in buffalo species. The candidate 

genes considered in present study are involved in part of the complexity inherent in fertility and 

seasonality of reproduction. Further researches including other genes should be performed to extend 

the knowledge about the molecular basis underlying the relationships between production and 

reproduction and the complex mechanisms behind seasonality and response to photoperiod. 

These perspectives could be further enhanced by the next commercial availability of a high-

throughput SNP platform for the genotyping of tens thousands of SNP markers for this species and 

even whole sequence. However, an accurate recording activity of phenotypic parameters, as well as 

genealogies registration are critical elements in buffalo, and must be improved to enhance the 

genetic progress in this species. This could also allow obtaining further relevant results from the 

association analyses performed in present study.  
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