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Abstract

Objectives: This is a cross-sectional study aimed at investigating cognitive performances in patients with primary lateral
sclerosis (PLS) and using diffusion tensor (DT) magnetic resonance imaging (MRI) to determine the topographical
distribution of microstructural white matter (WM) damage in patients with or without cognitive deficits.

Methods: DT MRI scans were obtained from 21 PLS patients and 35 age- and sex-matched healthy controls. All PLS patients
underwent a comprehensive neuropsychological battery. Tract-based-spatial-statistics (TBSS) was used to perform a whole-
brain voxel-wise analysis of fractional anisotropy (FA), axial, radial (radD) and mean diffusivity (MD).

Results: Ten PLS patients had abnormal scores in at least one neuropsychological test (PLS with cognitive deficits, PLS-cd).
Compared with healthy controls and cognitively unimpaired PLS patients (PLS-cu), PLS-cd cases showed decreased FA and
increased MD and radD in the corticospinal tract (CST), corpus callosum, brainstem, anterior limb of internal capsule,
superior and inferior longitudinal fasciculi, fornix, thalamic radiations, and parietal lobes, bilaterally. Compared with healthy
controls, PLS-cd patients showed further decreased FA and increased radD in the cerebellar WM, bilaterally. Compared with
controls, PLS-cu patients showed decreased FA in the mid-body of corpus callosum. In PLS, executive and language test
scores correlated with WM damage.

Conclusions: This is the first study evaluating the relationship between cognitive performance and WM tract damage in PLS
patients. PLS can be associated with a multi-domain cognitive impairment. WM damage to interhemispheric, limbic and
major associative WM tracts seem to be the structural correlate of cognitive abnormalities in these patients.
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Introduction

Primary lateral sclerosis (PLS) is a rare, progressive disorder

characterised by an isolated degeneration of the upper motor

neurons (UMN) in the absence of lower motor neuron (LMN)

signs [1]. Longitudinal studies have estimated that 2–5% of

patients seen in adult neuromuscular clinics are diagnosed with

PLS [1,2]. PLS patients present with an insidious onset of a

symmetric, spastic paresis, usually beginning in the lower

extremities [1]. Compared with amyotrophic lateral sclerosis

(ALS), PLS has a slower rate of progression and a more benign

prognosis with a survival of more than 10 years from symptom

onset [2].

A detectable degree of cognitive involvement, which can vary in

magnitude, appears in many patients with ALS [3]. In ALS,

deficits at tests of executive functions are more commonly found,

with verbal fluency as the most affected one, followed by set

shifting, cognitive inhibition and selective attention [4]. The

language domain is also affected in ALS (especially confrontation

naming), and memory deficits, although less studied, have been

reported in encoding rather than in retrieval [4]. A few studies so

far have investigated the cognitive status of PLS patients and

findings are controversial with some authors reporting no cognitive

abnormalities [1] and others describing the occurrence of

cognitive impairment which extends beyond the executive

functions to also involve memory and language [2,5–8].

Diffusion tensor (DT) magnetic resonance imaging (MRI) is

currently unrivalled as a neuroimaging marker of UMN involve-

ment and has the potential to provide an objective in vivo

assessment of the extramotor brain damage in ALS and other

motor neuron disorders (MND) [9]. White matter (WM)

abnormalities in PLS have been classically reported in the
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corticospinal tract (CST) and corpus callosum (CC) [10–14].

Nevertheless, DT MRI studies have shown that extramotor

regions are not spared in PLS, including frontal, temporal and

parietal WM areas [10–14].

Aim of this study was to investigate cognitive performances in

patients with PLS and to use DT MRI to determine the

topographical distribution of microstructural WM damage in

patients with or without cognitive deficits.

Methods

Subjects
Patients with a clinically definite diagnosis of PLS [1] were

recruited prospectively between April 2010 and July 2011. All

patients had no evidence of acute or chronic denervation on

repeated electromyographical examinations and had their symp-

toms for at least 3 years. To be eligible, subjects had to meet the

following criteria: no family history of MND; no clinical diagnosis

of frontotemporal dementia (FTD) [15]; age at onset $ 40 years

and no mutations of major genes related to hereditary spastic

paraparesis (i.e., SPG3A, SPG4, SPG6, SPG7 and SPG20); no any

other major systemic, psychiatric or neurological illnesses; no

history of substance abuse; and no other causes of focal or diffuse

brain damage, including strokes, lacunae and other evidence of

cerebrovascular disease at routine MRI scans. Within 48 hours

from MRI, functional status was assessed using the ALS

Functional Rating Scale (ALSFRS-r) [16] and clinical UMN

involvement was graded according to the UMN score [17]. The

rate of disease progression at study entry was calculated as follows:

(48 – ALSFRS-r score)/ time from symptom onset [18].

Twenty-six PLS patients were recruited [10]. Five patients were

excluded because of unwillingness to perform the cognitive

evaluation (age 66610 years; 60% women; 100% spinal onset;

disease duration 139632 months; ALSFRS-r 3962; UMN score

1560.9; disease progression rate 0.0760.02). Twenty-one pa-

tients, who were assessed using a comprehensive neuropsycholog-

ical battery and MRI scan, were included in the current study

(Table 1). Thirty-five healthy controls were recruited among

spouses of patients and by word of mouth; they underwent a

neurological evaluation which assessed neurological and other

medical symptoms, family history for neurological and major

mental conditions, and global cognition using the Mini Mental

State Examination (MMSE). Participants were included in the

study only if the assessment was normal (Table 1). The study was

approved by the Ethical Committee of San Raffaele Scientific

Institute, Milan, Italy. All subjects provided written informed

consent before enrolment.

Neuropsychological assessment
A comprehensive neuropsychological battery was administered

to all patients by an experienced neuropsychologist who was

unaware of MRI results and investigated global cognition with the

MMSE [19]; executive functions with the semantic and phonemic

fluency [20], fluency indices (controlling for individual variations

in motor disabilities) [21], Weigl’s test [22],Wisconsin Card

Sorting Test (WCST) [23], digit span backward [24], and

Cognitive Estimation Test (CET) [25]; reasoning and abstraction

abilities with the Raven coloured progressive matrices [26]; verbal

memory with the digit span forward [24] and the Rey’s word list

[27]; and language with the BADA oral naming of objects and

actions [28]. Mood and behaviour were assessed using the

Hamilton Depression Rating Scale (HDRS) [29] and the Frontal

Behavioural Inventory (FBI, administered to the caregivers) [30].

Scores on neuropsychological tests were age-, sex-, and education-

corrected by using related normative values. We defined as PLS

with cognitive deficits (PLS-cd) those patients who performed

below the 5th percentile in at least one cognitive test within the

executive, memory and/or language domains, and as cognitively

unimpaired (PLS-cu), PLS patients who performed within the

normal range in all considered domains.

MRI acquisition
Brain MRI scans were obtained using a 3.0 T scanner (Intera,

Philips Medical Systems, Best, The Netherlands). The following

sequences were acquired from all subjects: (i) T2-weighted spin

echo (SE) (repetition time [TR] = 3500 ms, echo time [TE] = 85

ms, echo train length = 15, flip angle = 90u, 22 contiguous, 5 mm-

thick axial slices with a matrix size = 5126512, field of view

[FOV] = 2306184 mm2); (ii) fluid-attenuated inversion recovery

(FLAIR) (TR = 11000 ms, TE = 120 ms, flip angle = 90u, 22

contiguous, 5 mm-thick axial slices with a matrix size = 5126512,

FOV = 2306230 mm2); (iii) 3D T1-weighted fast field echo

(TR = 25 ms, TE = 4.6 ms, flip angle = 30u, 220 contiguous axial

slices with voxel size = 0.8960.8960.8 mm, matrix

size = 2566256, FOV = 2306182 mm2); and (iv) pulsed-gradient

SE echo planar with sensitivity encoding (acceleration factor = 2.5,

TR = 8986 ms, TE = 80 ms, 55 contiguous, 2.5 mm-thick axial

slices, number of acquisitions = 2; after SENSE reconstruction, the

matrix dimension of each slice was 2566256, with an in-plane

pixel size of 0.9460.94 mm and a FOV = 2406240 mm2) and

with diffusion gradients applied in 32 non-collinear directions,

using a gradient scheme which is standard on this system (gradient

over-plus) and optimised to reduce echo time as much as possible.

The b factor used was 1000 s/mm2. Fat saturation was performed

to avoid chemical shift artefacts. All slices were positioned to run

parallel to a line that joins the most infero-anterior and infero-

posterior parts of the CC.

MRI analysis
MRI analysis was performed by an experienced observer,

blinded to subjects’ identity. WM hyperintensities (WMH), if any,

were identified on T2-weighted and FLAIR scans. WMH load was

measured using the Jim software package (Version 5.0, Xinapse

Systems, Northants, UK, http://www.xinapse.com).

DT MRI preprocessing. DT MRI analysis was performed

using the FMRIB software library (FSL) tools (http://www.fmrib.

ox.ac.uk/fsl/fdt/index.html) and the JIM5 software. The diffu-

sion-weighted data were skull-stripped using the Brain Extraction

Tool (BET) implemented in FSL. Using FMRIB’s Linear Image

Registration Tool (FLIRT), the two diffusion-weighted scans were

coregistered by applying the rigid transformation needed to

correct for position between the two b0 images (T2-weighted, but

not diffusion-weighted). The rotation component was also applied

to diffusion-weighted directions. Eddy currents correction was

performed using the JIM5 software. Then, the two acquisitions

were concatenated. The DT was estimated on a voxel-by-voxel

basis using DTIfit provided by the FMRIB Diffusion Toolbox.

Maps of mean diffusivity (MD), fractional anisotropy (FA), axial

diffusivity (axD) and radial diffusivity (radD) were obtained.

Voxel-based analysis: TBSS. TBSS version 1.2 (http://

www.fmrib.ox.ac.uk/fsl/tbss/index.html) was used to perform the

multi-subject DT MRI analysis. FA volumes were aligned to a

target image using the following procedure: (i) the FA template in

standard space (provided by FSL) was selected as the target image,

(ii) the non-linear transformation that mapped each subject’s FA to

the target image was computed using the FMRIB’s Non-linear

Image Registration Tool (FNIRT), and (iii) the same transforma-

tion was used to align each subject’s FA to the standard space. A
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mean FA image was then created by averaging the aligned

individual FA images, and thinned to create a FA skeleton

representing WM tracts common to all subjects. The FA skeleton

was thresholded at a value of 0.2 to exclude voxels with low FA

values, which are likely to include grey matter or cerebrospinal

fluid. Individual MD, FA, axD and radD data were projected onto

this common skeleton.

Statistical analysis
Demographic, clinical, cognitive and conventional

MRI data. Group differences in categorial variables were

assessed using the Fisher Exact test. Continuous variables were

compared using the Kruskal-Wallis or the Mann-Whitney U-test,

as appropriate (SAS Release 9.1, SAS Institute, Cary, NC, USA; p

value ,0.05).

TBSS: between-group comparisons. DT MRI voxelwise

statistics were performed using a permutation-based inference tool

for nonparametric statistical thresholding (‘‘randomise’’, FSL

[31]). The number of permutations was set at 5000 [31]. MD,

FA, axD, and radD values within the skeleton were compared

between groups adjusting for age. The between-group compari-

sons were thresholded at p,0.05, corrected for multiple compar-

isons at the cluster level using the threshold-free cluster

enhancement (TFCE) option.

TBSS: Relationships between cognitive features and
WM microstructural damage. To assess whether the DT

MRI abnormalities were associated with cognition, regression

models were run in FSL. Results were assessed at p,0.05,

corrected for multiple comparisons at the cluster level using the

TFCE option.

Results

Clinical, demographic and neuropsychological findings
Subject groups did not differ in terms of age at MRI, gender,

education and WMH load (Table 1). There were 10 PLS-cd and

11 PLS-cu patients. Patient groups were similar in terms of

ALSFRS-r score, UMN score, disease duration and disease

progression rate (Table 1). Table 2 shows neuropsychological

findings. One PLS-cd patient scored below the 5th percentile in

two executive tests (phonemic fluency and CET) and one language

test (BADA oral naming), and has been defined as ‘‘cognitively

impaired’’ according to the Strong consensus criteria [32]. In this

case, phonemic fluency index was 30.2 suggesting that the fluency

disturbances were pure and not affected by motor impairment.

Two PLS-cd patients showed abnormal scores in one executive

test (phonemic fluency or WCST - both WCST global score and

inability to maintain the set) and one test assessing non-executive

domains (memory/digit span or language/action naming). Three

PLS-cd cases presented with a decline in one executive test only

(two at the WCST and one at the semantic fluency), and four PLS-

cd patients scored below the 5th percentile in one non-executive

cognitive test only (three: language/action naming; one: memory/

Rey’s word list recall).

TBSS findings
PLS-cu patients vs healthy controls (Figure 1). Com-

pared with healthy controls, PLS-cu patients showed a decreased

FA in the mid-body of the CC. There was no difference in MD,

radD and axD between PLS-cu patients and healthy controls.

PLS-cd patients vs healthy controls (Figure 2) and PLS-
cu patients (Figure 3). Compared with healthy controls and

PLS-cu patients, PLS-cd patients showed a decreased FA and

increased radD of the whole CST (from the bulbar pyramids,

through the posterior limb of the internal capsule, to the corona

radiata and the WM surrounding the primary motor cortices),

mid-body, genu and splenium of the CC, anterior limb of internal

capsule, fornix, thalamic radiations, brainstem, superior and

inferior longitudinal fasciculi, and parietal lobes, bilaterally

(p,0.05). Compared with healthy controls, PLS-cd patients

showed also a decreased FA and increased radD in the cerebellar

WM, bilaterally (p,0.05). In PLS-cd patients relative to controls

and PLS-cu patients, regions of increased MD were found along

the CST, mid-body and splenium of the CC, superior longitudinal

fasciculus, anterior limb of the internal capsule, and thalamic

radiations, bilaterally (p,0.05). In PLS-cd patients relative to

Table 1. Sociodemographic and clinical features of the three study groups.

HC PLS-cu PLS-cd p1 p2

Number 35 11 10

Age at MRI [years] 63.968.9 (43–79) 60.169.7 (43–70) 63.665.6 (55–72) 0.647 0.622

Gender (women) 19 (54%) 6 (55%) 5 (50%) 0.969 1.000.

Education [years] 11.062.3 (8–13) 9.664.2 (2–18) 8.963.9 (5–18) 0.153 0.478

MMSE (co: 24) 29.760.5 (29–30) 27.661.5 (26–30) 25.463.6 (16–28)* 0.018 0.090

Bulbar symptoms at the onset - 2 (18%) 0 (0%) - 0.476

Disease duration [months] - 88.4656.1 (48–236) 98.4661.2 (38–247) - 0.778

ALSFRS-r - 35.366.4 (24–42) 36.566.8 (22–41) - 0.755

UMN score - 12.962.0 (10–16) 13.961.3 (12–16) - 0.415

Disease progression rate
[ALSFRS-r score/months]

- 0.1960.12 (0.03–0.4) 0.1560.10 (0.04–0.4) - 0.360

WMH load [ml] 0.761.0 (0–5) 0.360.4 (0–1) 0.661.0 (0–3) 0.452 0.519

Values are mean 6 standard deviation [range] or number (%). P1 = differences between all groups; P2 = differences between patient groups. *p,0.05 compared with
healthy controls. Group differences in categorial variables (i.e., gender and onset type) were assessed using the Fisher Exact test. Continuous variables (i.e., age, WMH load,
disease duration, ALSFRS-r, UMN score, and disease progression rate) were compared using the Kruskal-Wallis or the Mann-Whitney U-test. Disease progression rate = (48-
ALSFRS-r score)/time from symptom onset. Abbreviations: ALSFRS-r = ALS Functional Rating scale-revised; co = cut-off; MMSE = mini mental state examination; PLS-cd =
primary lateral sclerosis with cognitive deficits; PLS-cu = cognitively unimpaired primary lateral sclerosis; UMN score = upper motor neuron score; WMH = white matter
hyperintensity.
doi:10.1371/journal.pone.0082017.t001
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PLS-cu patients, further areas of increased MD were found in the

inferior longitudinal fasciculus and parietal lobe, bilaterally. There

was no difference in axD between PLS-cd patients and both

healthy controls and PLS-cu patients.

Relationships between WM microstructural damage
and cognitive features (Figure 4). In PLS patients the

performances at semantic fluency and BADA action-naming tests

were correlated to FA values of the CST, mid-body, genu and

splenium of the CC, anterior limb of the internal capsule, thalamic

radiations, brainstem, superior and inferior longitudinal fasciculi,

frontal and parietal lobes, with a left-side predominance (p,0.05).

MD, radD, and axD values did not correlate with cognitive scores.

Discussion

This study shows that PLS-cd patients had a more severe and

distributed pattern of WM damage compared with healthy

controls and PLS-cu patients with similar clinical motor severity.

The PLS-cd pattern of WM damage involved not only the motor

cerebral structures, as in the PLS-cu cases, but also extramotor

WM regions, such as the genu and splenium of the CC, prefrontal

and parietal WM, fornix, anterior limb of internal capsule and

thalamic radiations, bilaterally. In agreement with previous studies

[10,11,13,14], when compared with controls, all PLS patients

showed DT MRI alterations of the mid-body of the CC.

Table 2. Neuropsychological and behavioral data of PLS patients.

PLS-cu PLS-cd p

N 11 10

Executive functions

WCST, global score (co: 90.5) 33.2627.4 (8–78) 71.6629.5 (18–102) 0.024

WCST, perseverative responses (co: 42.6) 11.4611.6 (1–30) 19.9611.7 (3–31) 0.302

Phonemic fluency (co: 17) 30.1610.2 (17–52) 23.166.8 (16–33) 0.161

Phonemic fluency index 6.761.6 (4–9) 13.1610.1 (5–31) 0.247

Semantic fluency (co: 25) 44.4611.3 (32–62) 33.966.3 (19–39) 0.026

Semantic fluency index 4.661.2 (3–7) 5.661.7 (4–8) 0.487

Raven’s progressive matrices (co: 18) 30.264.6 (22–35) 28.765.6 (18–36) 0.437

Weigl test (co: 4.5) 12.661.9 (10–16) 10.663.2 (6–14) 0.246

Digit Span backward 4.560.9 (3–6) 3.961.1 (3–6) 0.190

Cognitive Estimation Test, total (co: 18) 13.062.3 (8–15) 14.264.2 (10–24) 0.884

Memory

Digit span forward (co: 3.75) 5.961.4 (4–9) 5.260.9 (3–6) 0.245

Rey’s word list, imm. recall (co: 28.53 ) 41.2610.1 (31–62) 41.868.4 (34–58) 0.665

Rey’s word list, delay recall (co: 4.69) 9.063.3 (5–16) 8.862.6 (4–13) 0.962

Language

BADA, oral object naming, errors (co: 2) 0.860.8 (0–2) 0.961.1 (0–3) 0.925

BADA, oral action naming, errors (co: 2) 1.060.8 (0–2) 3.162.3 (0–7) 0.040

Mood

HDRS, (co: 7) 6.662.9 (2–10) 7.167.9 (1–24) 0.561

FBI, total (co: 26) 5.167.9 (0–24) 2.664.1 (0–9) 0.531

Scores are corrected for age, gender and education. P = differences between patient groups; values refer to the Mann-Whitney U-test. WCST, global score
calculation = [N used cards-(completed categories*10)], higher scores mean worse performances [23]. Fluency indices calculation = for each letter (P, F, L) or category
(animals, fruits, cars) a partial index was calculated in order to correct for motor disabilities as following: [(60-seconds for reading words previously reported in 1’)/N
words previously reported in 1’]; the total semantic or phonemic index was obtained by averaging the 3 semantic or phonemic partial indices, respectively. Higher
scores mean worse performances [21]. Abbreviations: BADA = ‘‘Batteria per l’Analisi del Deficit Afasico’’; co = cut-off; FBI = frontal behavioral battery; HDRS = Hamilton
depression rating scale; PLS-cd = primary lateral sclerosis with cognitive deficits; PLS-cu = cognitively unimpaired primary lateral sclerosis; WCST = Wisconsin card
sorting test.
doi:10.1371/journal.pone.0082017.t002

Figure 1. TBSS results: areas of decreased fractional anisotropy (FA, red-yellow) in PLS patients without cognitive impairment (PLS-
cu) vs. healthy controls are displayed on a FA template in the Montreal Neurological Institute space. FWE = family wise error.
doi:10.1371/journal.pone.0082017.g001
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The most common form of cognitive impairment observed in

PLS-cd patients was a deficit of executive functions. Verbal

fluency, problem solving and ability to maintain a set were more

frequently impaired. In the PLS-cd group, however, the majority

of patients showed also deficits in non-executive cognitive

domains, such as verbal memory (short- and long-term memory),

and language (action naming). In addition to frontal and prefrontal

lobe deficits [2,5,6], memory and language were found to be

impaired in only a few of previous PLS cohorts [5–8]. Poor

performance in verbal and spatial memory tasks has been reported

by Caselli et al.[5] In another study [6], 20 non-demented PLS

patients presented with premotor cortex dysfunction (such as

Figure 2. TBSS results: areas of decreased fractional anisotropy (FA, red-yellow), and increased mean (MD, green) and radial
diffusivity (radD, blue) in PLS patients with cognitive deficits (PLS-cd) vs. healthy controls are displayed on a FA template in the
Montreal Neurological Institute space. FWE = family wise error.
doi:10.1371/journal.pone.0082017.g002

Figure 3. TBSS results: areas of decreased fractional anisotropy (FA, red-yellow), and increased mean (MD, green) and radial
diffusivity (radD, blue) in PLS patients with cognitive deficits (PLS-cd) vs. PLS patients without cognitive impairment (PLS-cu) are
displayed on a FA template in the Montreal Neurological Institute space. FWE = family wise error.
doi:10.1371/journal.pone.0082017.g003
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dynamic disintegration of the motor act and complex skilled

movements) and/or executive impairment, but also with verbal

memory recall and recognition deficits, as well as with grammat-

ical deficits at a language writing test. Since the performances of

verbal fluency could be misinterpreted due to patient dysarthria or

spasticity, several studies investigated writing abilities in PLS

patients [6–8]. Zago et al. [8] observed that, although all patients

were able to detect and copy a set of letters, 88% of cases made a

number of spelling errors (in terms of deletions, transposition,

additions, and phoneme substitution) during a composing task and

a dictation of words, non-words and phrases. Together with

previous findings, our report suggests that the current criteria for

cognitive impairment in ALS [32], which are centered on

executive dysfunction, may not be optimal to identify the entire

spectrum of cognitive deficits in PLS.

Consistent with the cognitive profile of abnormalities, TBSS

findings showed that tissue damage in PLS-cd patients extends

beyond the motor system. These findings are in keeping with

pathological studies showing that ubiquitin inclusions in PLS

occurr in the frontotemporal cortex [33,34], and that phosphori-

lated TDP-43 immunohistochemistry reveals the presence of many

positively stained neuronal cytoplasmic inclusions as well as

dystrophic neuritis/neuropil threads in the frontotemporal cortex

and subcortical nuclei of these patients [33]. Structural MRI

studies of PLS patients showed atrophy extending into the parietal

and occipital regions in addition to a pronounced tissue loss in the

precentral gyrus [35,36]. In a previous DT MRI study, the

thalamus, fornix and splenium of the CC were found to be

damaged in 12 non-demented PLS patients [11,13,14]. However,

previous structural and DT MRI studies did not take into account

the patient cognitive status. Only one study so far [37] has

investigated the association between cognitive impairment in PLS

patients cerebral hemodynamic changes. The pattern observed in

four PLS cases with cognitive deficits was consistent with a frontal

lobar dysfunction [37].

Extramotor WM damage may contribute to the cognitive

performances of PLS patients, as supported by the relationships we

observed between patient performance at executive and language

tests and WM damage. Such a relationship has been also

previously detected in ALS patients [38]. Perseverations, observed

in our patients using the WCST, are thought to be related to

damage to WM connections located in the ventral frontal regions

[39]. In ALS patients, performances at the executive tests were

related to DT abnormalities of the CC and major frontal

connections, such as the inferior longitudinal fasciculus, fronto-

occipital fasciculus, and the uncinate fasciculus [38]. Verbal

fluency was found to be related to the DT MRI metrics of the left

cingulum, while memory recall with those of fornix [38]. In

previous studies [5,6], memory deficits of PLS patients have been

interpreted as secondary to executive disturbances (related to a

frontal damage) rather than being the outcome of a direct damage

to the memory storage. This is likely to be the case for only one of

the two patients who experienced memory deficits in the current

study, since this patient’s performance was suggestive of poor

verbal encoding (which requires executive/attentive strategies)

rather than deficit of pure recall. The involvement of the fornix

and medial temporal WM regions in PLS-cd patients may have

contributed to memory deficits in our patients. The impairment in

lexical access (i.e., deficits in confrontation naming) found in six of

our PLS-cd patients could be related to damage to the temporo-

parietal parts of the superior longitudinal fasciculus and the

inferior longitudinal fasciculus, as supported by the relationship

observed between action-naming and WM abnormalities and as

previously suggested in patients with primary progressive aphasia

[40]. Finally, PLS-cd patients showed microstructural alterations

of the cerebellar WM compared with controls. The cerebellum

integrates sensory inputs to elicit precise motor control [41]. It

plays also important roles across a range of cognitive and

emotional functions [41]. Evidence for involvement of the

cerebellum in ALS comes from several neuropathological reports,

showing ubiquitinated forms of TDP-43 and ubiquitinated p62-

Figure 4. TBSS results: positive relationships between fractional anisotropy (FA, red-yellow) and patient performances at the
semantic fluency test and at the ‘‘Batteria per l’Analisi del Deficit Afasico’’ action-naming test are displayed on a FA template in the
Montreal Neurological Institute space. FWE = family wise error.
doi:10.1371/journal.pone.0082017.g004
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positive inclusions in this structure, and imaging studies, which

demonstrated cerebellar grey matter and WM abnormalities [42].

The structural damage to the cerebellum in MND may lead to an

ineffective modulation of both motor and cognitive functions [42].

The investigation of the role of cerebellar structure in larger PLS

population using structural and functional MRI can be of value in

understanding the pathophysiology of the disease and its clinical

and cognitive manifestations.

This study is not without limitations. First, when PLS patients

were divided according to their cognitive status, the samples were

relatively small. However, PLS is a rare condition; larger and

multicenter studies are nonetheless needed to confirm our findings.

Second, the criteria used for defining cognitive deficits in PLS (i.e.,

pathological score in one test) were less stringent compared with

previous studies of PLS cases [3,32], with this classification

possibly being over-inclusive. In any case, this should have worked

against finding significant differences rather than enhancing them.

In addition, to date, there is no consensus among researchers on

the definition of what constitutes cognitive impairment in PLS

patients. Cognitive results of our PLS patients also showed that

cognitive impairment in this condition is heterogeneous and

involves cognitive domains other than the executive functions. As a

consequence, we believe that consensus criteria for the diagnosis of

cognitive impairment in ALS [32] (i.e., pathological scores in at

least two distinct cognitive tests sensitive to executive functions)

may not be appropriate in PLS patients. Thus, although healthy

controls underwent a detailed neurological evaluation, we did not

perform a formal neuropsychological assessment in these subjects.

In conclusion, our study shows that PLS can be associated with

a multi-domain cognitive impairment. WM damage to interhemi-

spheric, limbic and major associative WM tracts may be one of the

structural correlates of such cognitive abnormalities.
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