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Abstract

In many occasions defects have been proved to be an opportunity more than a limit, as they may

be used to tailor the properties of a given material. To this end, a practical route to introduce a

controlled amount of defects as well as a deep knowledge of the defect nature is always desirable.

As well, recombinative and dissociative processes involving gas molecules are well known to likely

occur on metal surfaces, that may then be used in a number of industrial applications. In this thesis

I report on both the isolated carbon atom vacancy, that is a common lattice defect in graphene,

and the Eley-Rideal formation of H2 molecules in the limit of an single adsorbed atom on the

Ag(111) surface. In the �rst part of this thesis I consider the details of the electronic structure in

the neighbourhoods of a carbon atom vacancy in graphene by employing magnetization-constrained

density-functional theory on periodic slabs, and spin-exact, multi-reference, second-order perturba-

tion theory on a �nite cluster. The picture that emerges is that of two local magnetic moments (one

σ-like and one π-like) decoupled from the π-band and coupled to each other. The ground state is

identi�ed as a triplet with a planar equilibrium geometry resulting upon a Jahn-Teller distortion, in

which an apical C atom opposes a pentagonal ring. This state lies 0.2 eV lower in energy than the

open-shell singlet with one spin �ipped, which is a bistable system with two equivalent equilibrium

lattice con�gurations (for the apical C atom above or below the lattice plane) and a barrier 0.1 eV

high separating them. Accordingly, a bare carbon-atom vacancy is predicted to be a spin-one para-

magnetic species, but spin-half paramagnetism can be accommodated if binding to foreign species,

ripples, coupling to a substrate, or doping are taken into account.

In the second part, I study by DFT means the process of hydrogenation of the carbon vacancy,

starting from the bare defect atom up to the case of six hydrogen atoms chemisorbed onto its near-

est neighbours. I initially consider the formation of a mono-hydrogenated vacancy, �nding a binding

energy of ∼4.2 eV and no activation barrier to the adsorption. As well, I study a variety of possible

mutual arrangements of the adsorbates at higher coverages discussing their reactivity and local mag-

netic moments. In this way the overall hydrogenation process turns out to be thermodynamically

favoured and exothermic with respect to both atomic and molecular hydrogen gas sources at least

up to four H atoms. This follows from the fact that the driving force in this process is the saturation

of the (3σ+1π) unpaired electrons at the vacancy. Moreover, these DFT energies are used to build a

phase diagram in a broad range of temperatures and H2 partial pressures, thus �nding that at room

T and p conditions, the magnetic (M=1µB) 3H-anti structure is the most stable in agreement with

recent magnetic measurements. In addition, by considering the stable phase at TEM conditions, it

seems reasonable to identify the recently detected three-fold and distorted vacancy with the 3H-anti

and the 1H vacancy, respectively. In the end, in these calculations the 2H-geminal phase detected
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in µSR experiments, is found to be unfavoured both from a thermodynamic and a kinetic point of

view with respect to other di-hydrogenated structures.

In the third part I consider the formation of hydrogen molecules on the Ag(111) surface by abstrac-

tion of the adsorbed H atom according to the Eley-Rideal reaction mechanism. To follow the time

evolution of the system, I rely on ab initio molecular dynamics and on the quasiclassical trajectory

method based onto an external potential energy surface, originally built for quantum calculations

on the same system within the �at and rigid surface approximation. In general the reaction is not

activated, in fact it has a sizeable cross section even at collision energies in the order of few meV.

In terms of cross sections, the di�erences between ab initio and quasiclassical results at collision

energies below ∼0.5 eV are proved to depend on the surface corrugation and the energy exchange

between hydrogen atoms and surface atoms, which are ignored in the quasiclassical study, following

from the reference PES used. In this energy interval, the target vibration may be safely neglected

but this is not the case for higher collision energies where it strongly a�ects the �nal outcome.

Moreover, by considering the product molecules the reaction mechanism is indenti�ed as mainly

based on a non-collinear scheme with the reactive encounter occuring upon a bounce of the incident

atom on the surface. By means of all these dynamics calculations a large cross-section (compared to

the typical value on transition metals) is found in quite good agreement with a recent experimental

estimate at very low coverage. Anyway, in future in order to get closer to the experimental result,

it seems to be necessary to account for the initial surface temperature, the surface precoverage and

the incident angle of the incoming atoms.
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Chapter 1

Introduction

Surfaces are the natural boundaries of condensed phases, both solid and liquid. An accurate de-

scription of chemical and physical surface properties is highly desirable due to the crucial role of

surface processes in many technological applications. In the chemical industry most reactions are

performed in the presence of a catalyst. This is typically very convenient from many viewpoints

compared to reactions performed without a catalytic support, indeed it may allow the use of milder

reaction conditions, it may increase the selectivity, thereby reducing the waste of reactants and the

generation of by-products, it may improve the yield of the reaction, etc.. The importance of surface

studies further increased upon the isolation of truly bidimensional systems composed by a single

layer of atoms[76]. Graphene is the prominent example of this new class of materials and it shows a

series of peculiar properties that make it di�erent from its three-dimesional counterpart, graphite.

Nowadays, a large variety of experimental techniques is available to image surface structures. Some

of the most relevant are scanning tunneling microscopy (STM) and atomic force microscopy (AFM)

for conductive and nonconductive surfaces respectively; transition electron microscopy (TEM); low

energy electron di�raction (LEED); X-ray di�raction (XRD). Di�erent approaches, as thermal des-

orption spectroscopy (TDS) and thermal programmed desorption (TPD) allow to �nd the compo-

sition and the adsorption energy of foreign species on a given surface. As well, the use of pulsed

lasers and ultrafast laser techniques makes possible to follow the pathway of processes occurring

on a surface. Along with experimental techniques, there are also theoretical approaches to deal

with surfaces, among which the density-functional theory (DFT) is presently the most used to get

reliable results on electronic and geometric structure of surfaces. In many cases, the tight inding

approximation represents a valid alternative, less accurate than DFT but even cheaper in a com-

putational perspective. On the contrary, ab initio wavefunction approaches provide high quality

results at high computational price, thus they come into play only when subtle questions arise. In

the end, molecular dynamics techniques are used whenever the interest is in the time evolution of

a system and thus on the kinetic aspects of a process.

1



2 Chapter 1. Introduction

1.1 General considerations on surfaces

1.1.1 Geometric structure

The description of surface features needs to �rst introduce the ideal three-dimensional crystal struc-

tures. A three-dimensional periodic crystal is given by an in�nite repetion of identical cells in the

so called Bravais lattice. It is given by the positions vectors R, that in most cases coincide with

the atomic positions, and have the form: R = n1a1 +n2a2 +n3a3, where ai are three non-collinear

unit vectors and ni are integers. In addition to the translational symmetry, each crystal has its

own symmetry elements, like rotation axis, re�ection planes, inversion centers that transform the

crystal into itself. In the simple limit of a crystal with just spherical atoms at each lattice site, in

three dimensions one may distinguish 14 distinct Bravais lattices; they become 230 when each unit

cell contains more than one atom. In principle, any cell that generates the crystal upon translation

along the lattice vectors may serve as unit cell. Anyway normally one selects the smallest cell with

the full symmetry of the lattice, namely the Wigner-Seitz cell. Due to its periodicity, a crystal lat-

tice may be de�ned in the real space as well as in the reciprocal space. This is de�ned by reciprocal

unit vectors bi for which the following hold: ai · bj = 2πδij and b1 = 2π a2×a3
|a1·(a2×a3)| , from which b2

and b3 follow by cyclic permutation of the indices. The equivalent of the Wigner-Seitz cell in the

reciprocal space is the so called �rst Brillouin zone1. Reciprocal lattice vectors are used to denote

the planes of the real space lattice. Each plane is speci�ed by Miller indices (hkl) that indicate the

shortest reciprocal lattice vector hb1 + kb2 + lb3 perpendicular to this plane.

A surface can be ideally obtained by cleaving an in�nite crystal solid along one surface plane.

In this way the periodicity is reduced to two-dimensions along the surface and �ve two-dimensional

Bravais lattices can be de�ned. At the origin of all the surface properties there is the fact that

atoms on the surface are undercoordinated with respect to atoms in the bulk. This generally a�ects

the structure, possibly provoking a relaxation or a reconstruction of the surface. In the �rst case the

distances between the �rst few planes change but the overall surface symmetry is preserved; in the

second case instead the surface is restructured and both symmetry and periodicity change. Recon-

structions are typically more evident in semiconductors than in metals due to the di�erent nature of

the chemical bond. Indeed, semiconductors form directional covalent bonds and their surface atoms

may have to displace signi�cantly in order to �nd a new stable arrangement. Di�erently low index

metal structures, namely the (100), (110), (111) faces, do not usually reconstruct. Also the presence

of adsorbates may result in a new periodicity as well as in the loss of periodicity, depending on the

relative strenght of the adsorbate-substrate and adsorbate-adsorbate interactions. The properties

of real surfaces are in�uenced by the presence of defects. Their creation costs some energy, thereby

being an activated process; anyway at non-zero temperature a certain amount of defects is always

present because of entropic reasons. There can exist several types of defects, like terraces, steps,
1The reciprocal space is also known as k -space and plane waves with wave vectors k are here represented by single

points. The corresponding eigenenergies are usually plotted as a function of their k-vectors in the �rst Brillouin zone,
thus generating the band plot.
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kinks, adatoms and islands of adatoms, vacancies... whose concentration and nature can be altered

by the method of surface preparation. Defects are currently the object of many theoretical and

experimental studies, due to their e�ects on adsorption and reaction processes at surface that are

fundamental in catalysis.

1.1.2 Electronic structure

Naturally, at the surface of a solid the electronic structure is very di�erent compared to that of

the bulk. This is due to the fact that a bulk crystal has a three-dimensional periodicity while in a

surface only the in-plane periodicity is conserved. A simple way to represent a metal surface is the

jellium model[60] in which the positive ion charges are replaced by a uniform charge background. In

this framework the electronic charge distribution is evaluated using the density functional theory. It

comes out that the electron distribution does not follow the sharp edge of the positive background

charge, but it decreases smoothly and the electrons spill out into the vacuum. This means that

an excess of negative charge accumulates above the surface, while an equivalent excess of positive

charge remains below the jellium edge, �nally originating a dipole layer. The electron density inside

the jellium oscillates with the so called Friedel oscillations. These result from the behaviour of

electrons, that try to screen the sharp edge of the positive charge. Only electrons with wave vectors

up to kF are available, thus the screen is incomplete and the oscillations appear. The work function

Φ, namely the work needed to remove one electron from a solid at 0 K, is given by the di�erence

between the energy of the electron in vacuum and the Fermi energy. Accordingly, when a dipole

layer is present on the surface, the work function has to account also for the energy needed to carry

one electron across such layer. It is known that the work function usually varies of about 10% with

respect to the mean value depending on the surface orientation and the smaller value is normally

found in the less densely packed surfaces.

A slightly more accurate description is given by the nearly-free electron model[6], where weak

periodic pseudopotentials are used to model the screened positive ion cores. At the edges of the

Brillouin zone, the periodic potential causes the opening of a band gap; in the gap there are

localized states that are called Shockley surface states. These states form a band that does not

interact with bulk states if it is either fully localized in the gap or it overlaps with bulk states with

di�erent symmetry (as in the case of the surface d -state and the bulk sp-states). Di�erently, surface

resonances appear when symmetry allows the hybridization of surface states with delocalized bulk

states. From the projected density of states, it emerges that the energy band of the �rst layer is

typically narrower than that of the layers below due to lower coordination of the surface atoms.

The smaller band width shifts the band center towards the Fermi level to conserve the number of

electrons, thus leading to a higher reactivity of the surface[65].

Of course, one needs to spend some energy to cut a crystal along a surface otherwise the crystal

would not be stable; this amount of energy is the surface energy γ and strictly depend on the nature

of the solid. In the case of metals for a N-layers slab it reads as γ = (Eslab −NEbulk) /2A, where
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Ebulk is the cohesive energy per atom, Eslab is the total energy of the slab and 2A accounts for the

area of both the top and bottom faces of the slab. From a qualitative point of view the surface

energy of a given crystal is related to the number of bonds that one needs to break in order to

generate a chosen surface, thus closely packed surfaces have usually the lowest surface energy. This

is the basis of the so-called bond-cutting model which estimates the surface energy per atom by

relating the cohesive energy with the coordination number at the surface and in the bulk. On the

other hand, surfaces on semiconductor solids result upon the cleavage of truly directional bonds.

In this way dangling bonds, corresponding to unpaired electrons, are left on the surface atoms and

the structure is highly unstable. In principle, singly occupied atomic orbitals might combine and

generate a band. This would be half-�lled and thus have a metallic character, which is generally

unfavourable for semiconductors. As an alternative, an electronic transfer may occurr so that one

over two orbitals with an unpaired electron becomes doubly occupied while the other is empty.

The corresponding energy bands are well-separated in energy and thus the surface behaves as a

semiconductor.

1.1.3 Processes at surface

1.1.3.1 Adsorption

The potential energy surface (PES) is the key concept to describe the adsorption of any generic

foreign species on a chosen surface. This energy surface is built over the con�guration space of the

atomic coordinates of the atoms involved. By looking at the PES, usually along a speci�c direction,

one can get information about (i) the adsorption sites and energies, (ii) the vibrational frequencies of

the adsorbate, (iii) the barriers for the adsorption. The high symmetry sites are hollow, bridge and

top sites, where hollow and top positions give respectively the higher and the lower coordination;

typically less coordinated species are further away from the surface. However, the relative stability

of the adsorption sites depends on the kind of atoms involved. Depending on the nature of the

interaction between the adsorbate and the surface, one can distinguish the physisorption and the

chemisorption regime.

Physisorption The physisorption process is controlled by the van der Waals forces and it is

characterized by long-range (few Å) and low energy (∼ 0.1 eV) interactions between an adsorbate

and the surface. For these reasons the formation of a true chemical bond is excluded and the

bonding is rather due to a dipole-dipole interaction. This is possible even with nonpolar species,

as a dipole may appear due to the �uctuations in the ground state charge distribution. This

instantaneous dipole pinst generates an electric �eld proportional to −pinst/r3 and induces a dipole

pind ∝ −pinst/r3 in a given atom at distance r. In the limit of a large surface-adsorbate distance,

the physisorption energy is simply given by sum of two-body terms,

Ephys ∝ −
∑
i

1
|ri − rat|6

(1.1)
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where all the i-th atoms of the solid give a contribution that depends on the distance ri−rat = R. If

one also assumes that the charge distribution in the solid is continous, then the sum can be replaced

by an integral; this can be conveniently expressed in cylindrical coordinates as

Ephys ∝ −
�

1
|R|6

dR =
� ∞
d

dz

2π�

0

dθ

� ∞
0

r√
r2 + z2

. (1.2)

Upon integrating, one �nally obtains

Ephys ∝ −
1
d3

(1.3)

where d is the distance of the atom above the surface. Note that one can obtain this result also in

a rigorous derivation of the long-range interaction between a neutral atom and a solid surface by

using the second order perturbation theory[35]. Here, the perturbation describes the electrostatic

interaction between the atom and the solid.

The position of the physisorption minimum on the potential energy surface derives from the balance

between the long-range van der Waals attraction and the short-range Pauli repulsion. This increases

exponentially as the distance is reduced. In the well-known Lennard-Jones potential, the two

contributions are included as

V (R) = V0

{(
R0

R

)12

− 2
(
R0

R

)6
}

(1.4)

where V0 is the potential at the equilibrium distance R0.

Chemisorption As shown above, atoms may attract each other even without chemical bonding

via physisorption. Anyway the physisorption picture is meaningful only in the limit of large distances

from the surface, otherwise chemical interactions come into play even in case of rare-gas adsorption.

In the chemisorption process, a new chemical bond has to be created upon the hybridization between

the adsorbate and the substrate electronic structures. In general, when atomic or molecular systems

get close to a transition metal surface, their localized orbitals interact with the bands of the solid.

According to the Hammer and Norskov d -band model[37, 38], this interaction may be formally split

into a contribution arising from the s and p bands of the metal, and one due to the d band. The

sp interaction causes a broadening and a downshift in energy of the orbital level, in a process called

renormalization. Then the strong hybridization with the metal d -states splits the normalized level

into a bonding and an antibonding contribution. The antibonding state may be fully occupied,

partially occupied or empty depending on the position of the Fermi level. Note that, when the

antibonding state is fully occupied, the metal-adsorbate interaction is repulsive as the upshift of

the antibonding level is larger than corresponding downshift of the bonding state. This means that

no chemical bond can be formed. As an introductory example, consider the case of Xe on Pt[73].

As the Xe atom approaches the surface, atomic and surface electronic states start to overlap. If

only the occupied Xe5p and Pt5d states were involved, no bonding would result. However, by
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including also the unoccupied Pt5d states (polarization states), an overall downshift of the bonding

and antibonding states is observed, and thus a weak chemical bond forms. Moreover, the overlap of

Xe5p orbitals with both occupied and unoccupied Pt5d states leads to a charge transfer from the

Xe atom to the surface; this justi�es the bond formation as well as the lower work function of the

solid.

Similarly the adsorption of lithium, chlorine and silicon on an aluminum surface occurs upon a

charge transfer[61]. Typically a lithium atom displaces its electronic density towards the surface,

while the chlorine atom does the opposite and tends to capture some electron density from the

substrate. These correspond respectively to positive and a negative ionic chemisorptions. The case

of silicon is di�erent as the charge distribution shows an accumulation of charge density in the region

between the adsorbate and the surface, thus proving the formation of true covalent bond. In the

density of states of the whole system, the atomic orbitals of the adatoms appear as broad peaks,

due to the interaction with the substrate bands. As expected the Li2s state is shifted above the

Fermi level and thus it is empty; the Cl2p is shifted below the Fermi level and it is fully occupied;

and the Si3p is only half-�lled.

In this thesis, the adsorbtion of hydrogen atoms on a silver surface and on defective graphene

has been studied. Contrary to the alkali metals, hydrogen has high ionization energy and elec-

tronegativity comparable to that of standard transition metals. Thus it generally forms local and

covalent chemical bonds with the substrate and it prefers high coordination sites on transition metal

surfaces. Molecular hydrogen easily form on several transition metals surfaces and then it is likely

released. This means that the chemisorption of H2 as a molecule is unfavoured; on the other hand

physisorption may occur but it is very weak due to the low polarizability of the molecule. In most

cases upon adsorbing on a transition metal surface, the hydrogen molecule spontaneously dissoci-

ates. This is due to the interaction with the metal surface bands that weaken and �nally break the

bond in the molecule. This so called dissociative adsorption mechanism is very common in many

catalytic processes when the release reactive fragments from a large compound is needed.

1.1.3.2 Dynamics at surfaces

When a beam of atoms or molecules with a given energy collides with a surface many events may

occur. In this �eld, theory and experiments are strictly related. Indeed accurate experimental

techniques based on particle beams, ultra-high vacuum conditions and pulsed laser light provide

clean data likely comparable with theoretical outcomes.

Scattering After the collision with a surface, many particles of the incident beam can be scattered

back into the gas phase. If the incident particle remains on the surface for a time close to the

vibrational period of surface atoms, it may not have time enough to exchange energy with the

surface atoms. Thus, the total kinetic energy of the particle is conserved and one refers to this
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process as elastic scattering ; in this case after the scattering event, the component of the wavevector

parallel to the surface K‖f is given by

K
‖
f = K

‖
i +Gmn (1.5)

where Gmn is the two-dimensional reciprocal lattice vector of the periodic surface. As a consequence

for a given K‖i and thus for a given incident angle, the scattering angles associated to K
‖
f are entirely

determined by the surface periodicity. This is indeed the basis of di�raction studies.

On the other hand, inelastic scattering occurs when the energy exchange between the incident

particle and the surface is allowed. The energy transfer usually corresponds to the excitation(+)

or deexcitation(−) of the surface phonons, which also carry a momentum Q. Accordingly, the

conservation of the parallel momentum carries the additional term ±Q‖ ,

K
‖
f = K

‖
i +Gmn +

∑
exc.phon.

±Q‖. (1.6)

The simple equations above hold for monoatomic systems, but when dealing with molecules one

needs to include the internal degrees of freedom, namely vibrations and rotations, where energy can

be stored. Thus the total energy balance is

~2K2
f

2M
=

~2K2
i

2M
+4Erot +4Evib +

∑
exc.phon.

±~ωQ,j (1.7)

where the last term accounts for the energy exchange between the molecule and phonons and it is

null in case of elastic scattering. Moreover the term 4Evib is generally very small, as the excitation

of molecular vibrations is usually ine�cient with respect to the excitation of both phonons and

rotations. This is due to the time scale of molecular vibrations that is much shorter than the

scattering time or the rotational period. Therefore the molecular vibrations follow the process

almost adiabatically, while the rotations can be quite e�ciently excited.

Sticking When a molecular or atomic beam impinges on a surface, the sticking or adsorption

probability is given as the fraction of particles that remains on the surface, namely that is not

scattered back. In principle, if the surface has a �nite temperature, the adsorbed particle will

sooner or later desorb due the thermal �uctuations; anyway this usually happens after a long time

compared to microscopic time scales. In the sticking process the incident particle becomes trapped

into the attractive potential well, upon the transfer of its kinetic energy to the substrate. This

causes the excitation of phonos or electron-hole pairs. A simple model to deal with the trapping

probability is the hard cube model [25], where the surface is represented as a cube with mass Mc

moving with velocity vc sampled from an appropriate distribution. The incoming atom has mass

m and velocity vg; when it feels the attractive potential well Ead, it accelerates and its velocity
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becomes

vwell = −
√
v2
g +

2Ead
m

(1.8)

After the collision, if it has no su�cient energy to overcome the attractive potential, namely Ef <

Ead, the particle cannot escape the potential well and it remains at the surface. Taking energy and

momentum conservation into account, the particle that hits a surface with velocity vwell will get

trapped if the surface cube velocity does not exceed the limiting value,

vlim = vc <
µ+ 1

2

√
2Ead
m

+
µ− 1

2
vwell (1.9)

where µ = m/Mc. In conclusion, many di�erent aspects may in�uence the sticking probability, as

the mass and the kinetic energy of the incident particle, the adsorbtion energy and the temperature

of the surface. In general heavier atoms are favoured as they dissipate the energy more e�ciently;

for the same reason particles with low kinetic energy can much easily stick on a surface. In case of

molecular species, the possibility to store energy in form of vibrations and rotations generally leads

to an enhancement of the trapping probability with respect to atoms in the very same conditions.

Moreover, for a given particle, a higher adsorption energy means a deeper potential well and thus a

higher probability to be trapped. Finally, an increase in the surface temperature enlarges the range

of kinetic energies over which the particles can be trapped; more precisely, at high kinetic energy

the probability of trapping increases, while at low kinetic energy it decreases . Note that in the hard

cube model the surface is assumed to be �at and structureless, thus any scattering and adsorbtion

process conserves the incident parallel momentum. However this is a rough approximation, in fact

on real surfaces the behaviour of the incident particle is a�ected by the local environment. This

means that the potential energy surface is corrugated, namely that it depends on the lateral position

of the incident particle on the surface. It is clear that the excitation of the surface phonons is still

the main channel to dissipate the proper amount of energy and allow for the sticking of the particle.

Anyway, due to the corrugation and anisotropy of the potential, the particle can also transfer energy

into the motion parallel to the surface and, in case of molecules, into the rotational motion. After

that this energy won't be available for the backscattering into the gas phase.

The picture proposed so far is based on two assumptions: �rst of all the system can be described

with classical dynamical methods; then, the sticking process is not activated, thus there is no barrier

before the adsorption well. Accordingly, in the low kinetic energy regime, namely E → 0, Ts → 0,

the trapping probability tends to one, no matter how small is the adsorption well or how small is

the mass ratio between the particle and the solid. In fact, for Ts → 0 every particle will transfer

energy to the substrate; moreover for E → 0 any energy transfer is su�cient to keep the particle

trapped. Anyway, quantum-mechanically there is a nonzero probability for elastic scattering at the

surface; hence the sticking probability becomes less than unity in the zero energy limit in particular

for light atoms impinging on the surface.



1.1. General considerations on surfaces 9

Di�usion and subsurface penetration The di�usion process of adsorbed particles along a

surface is driven by thermal �uctuations. Each adsorbate is trapped into a potential well and it

vibrates around its equilibrium position. Anyway it may escape from the well once it has enough

energy to overcome the barrier. A generic adsorbate can jump from a stable adsorption site to the

next with a rate given as

kj = k0 exp
(
− Ea
kBTs

)
where Ea is the energetic barrier to the nearest neighbours sites and Ts is the surface temperature.

In terms of probability the di�usion process along a surface can be described as

P (R, t+4t) =
∑
R′

W
(
R,R′,4t

)
P
(
R′, t

)
This means that the probability of the adsorbate to be in R at time t+4t, depends on the probability
of the adsorbate to be in a generic site R′ at time t, weighted by the transition probability W . In

the assuption that the interval 4t allows only one jump and that jumps may involve only nearest

neighbours sites, the rate of transition to one of these N sites is kj/N and the probability is4t·kj/N .

Accordingly the transition probability reads as

W
(
R,R′,4t

)
=


4t · kj/N if R,R′ = n.n.

1−
∑

n.n.4t · kj/N if R = R′

0 else.

In the di�usion process, two alternative mechanisms may be found. In the hopping di�usion the

adatom hops from one equilibrium site to the next by crossing an intermediate con�guration; in

the exchange di�usion the adatom displaces one atom of the surface and takes its place; upon the

displacement, this surface atom adsorbes on to the nearest neighbour site. Note that the exchange

process occurs in a concerted way. Many di�erent aspects can in�uence the di�usion of adatoms

along a surface: of course, the type of adsorbates; then their interactions with the surface that

mostly depend on the nature of the surface atoms and the exposed face; �nally also the surface

temperature.

Sometimes the incoming particles may also cross the surface layer and penetrate subsurface, thus

dissolving into the bulk; here they can di�use either parallel to or through the layers, they can

adsorbe in stable sites, they can be re�ected back to the surface, ... The observed behaviour depends

on the energy of the particle as well as on the potential exerted on it by the bulk atoms. Even

if a certain amount of subsurface penetration is often possible, this process becomes relevant for

open surfaces and small incident particles. As demonstrated by thermal desorption measurements

in [52], this is the case of the Ag(100) surface under the �uence of hydrogen or deuterium atoms: at

�rst the incoming atoms are adsorbed on the surface; then, upon further exposure the atoms start

to penetrate in the bulk. Interestingly, this process proceeds in a di�erent way for the two atomic

species considered, indeed the D atoms occupy the available subsurface sites in addition to the
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surface positions, while the H atoms abandone the surface sites and all move subsurface. Anyway,

disregarding the surface coverage, the Ag(100) sample shows a clear tendency to host H atoms in

the bulk and might be possibly used for the hydrogen storage. On the contrary, the Ag(111) surface

under the very same conditions does not allow the penetration of H and D atoms below the surface.

This is due to the closer arrangement of the silver atoms in the Ag(111) face compared to Ag(100);

this essentially means that on closed-packed surfaces only few entrance channel are available for the

incoming particles, while most of the surface o�ers a repulsive barrier to the penetration.

A further con�rm on the importance of the di�usion of particles through the surfaces, from the

vacuum space to the bulk region and viceversa, comes from one of the procedure followed to grow

graphene on metal surfaces[11]. Currently most of the graphene/metal interfaces are generated

after exposure of the clean crystal to hydrocarbons inside the UHV chamber, where the low pres-

sure conditions mainly lead to monolayer graphene formation. After the dehydrogenation on the

hydrocarbons occurring at the metal surface, two main growth mechanisms may be distinguished.

The �rst one is the surface growth, where the carbon remains on the surface and aggregates to form

graphene. Such process ceases once the surface is covered and no more active sites are available to

produce new carbon atoms, thus after the deposition of a single layer of graphene. The second one

is the segregation growth, where the carbon atoms dissolve in the bulk at high temperature and then

segregate to the surface at lower temperature. In this case the driving force is the lower free energy

of the coated system, which anyway is e�ective only for the �rst layer formation. The addition of

further layers is not thermodinamically favoured, thus di�cult to accomplish in a controlled way.

The nature of the metal and the symmetry of the surface not only determine the growth mechanism

of the graphene sheet, but are also responsible for the arrangements of the carbon atoms over the

surface: in fact di�erent structures can be identi�ed depending on the position of the carbon atoms

with respect to the sites of the surface.

1.1.3.3 Reaction: Langmuir-Hinshelwood, Eley-Rideal and hot atoms mechanisms

Reactions at surfaces may ideally occur in terms of three alternative mechanisms[102] as reported in

�g.1.1. In the Langmuir-Hinshelwood (LH) regime the reaction takes place between two adsorbed

species which are in thermal equilibrium with the surface. The reaction path is typically thermoneu-

tral, in fact the energy generated upon the formation of the molecule is almost equal to the energy

spent to break the two weak adsorbate-substrate bonds. For this reason the desorbing molecules

generally occupy the lower vibrational states, namely ν = 0 and ν = 1. In order to give a reactive

encounter, the two fragments have to di�use on the surface, i.e. they have to overcome the di�usion

barrier. In ordinary conditions, this is the dominant mechanism.

The Eley-Rideal (ER) mechanism is based on the direct reaction between a gas phase species and

an adsorbed species, forming a molecule which immediately desorbs. Due to the fact that one of

the two fragments is in gas phase, the reaction is highly exothermic, thus leading to molecules

with high translational and internal energies. Moreover the initial state of the gas phase species
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Figure 1.1: Reaction mechanisms between a gas partcile and an adsorbed species. (a) the Langmuir-
Hinshelwood scheme; (b) the Eley-Rideal scheme; (c) the hot-atoms scheme.

strongly in�uences the vibro-rotational distribution of the molecules. Note that in the low kinetic

energy regime, the ER reaction probability is a�ected by the so-called dynamical steering. In

principle this e�ect may arise any time a gas phase species interact with a substrate to give a

certain outcome, thus for instance it is also observed in molecular dissociative adorptions. The

intensity of the steering has to be evaluated for each system depending on both the nature of the

substrate and that of the incoming species. To understand the steering phenomenon, one needs to

consider the multi-dimensional potential energy surface. For the ER recombination, the typical PES

shows non-activated or slightly activated reaction paths. Anyway there are plenty of alternative

paths corresponding to di�erent impact points with high energy barriers that hinder the reaction

to occur. The point is that at very low kinetic energy the particles are so slow that they can be

e�ciently steered to a favourable con�guration. In this way the number of reactive impact points

increases and thus the reaction probability is enhanced. Since the mechanism becomes less e�ective

at higher kinetic energies, the reaction probability decreases.

Unless for strong steering e�ects or high surface coverage, in general, the Eley-Rideal mechanism is

quite improbable as the direct encounter between gas and adsorbed species is a rare event. More

likely indeed the incident particle hits the surface. Here, this particle may access two main channels:

in one case, it dissipates the extra energy, it becomes trapped in a potential well and thus it sticks on

the surface; afterwards it might overcome the barrier, di�use, bump into another adsorbed species

and possibly react. In the other case, the dissipative process is almost une�ective, thus the particle

will either return into the gas phase or slide along the surface; which of these two possibilities is

the real one, depends on wheter the particle momentum has a major component perpendicular or

parallel to the surface. When the parallel term prevails, the particle moves along the surface and

possibly enters potential wells; here anyway the particle cannot be trapped as its energy is too high.

Moreover this high energy particle may �nally bump into an adsorbed species, react and form a

molecule, with high internal and translational energy. Such molecules are hot ER-like molecules and

they contribute to the ER reaction probability as they are not distinguishable from those obtained

upon a direct collision of the gas phase species on the adsorbed one. In summary this mechanism

di�ers from the traditional ER scheme only in one aspect: here several non-dissipative bounces on

the surface precede the reactive encounters; it is commonly known as hot atoms reaction mechanism.
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1.2 The case of graphene

Graphene is a two-dimensional crystal of carbon atoms arranged on a honeycomb structure made of

hexagons. The existence of free standing graphene has been proved only recently [77], even if it has

been known since long time as a model system to study the properties of some carbon allotropes,

like graphite, carbon nanotubes and fullerenes. The reason is that the physical structure of such

materials is closely related to that of graphene. For instance, the three-dimensional crystal structure

of graphite is made by stacked graphene layers that are coupled via weak van der Waals interactions;

further on, one-dimensional carbon nanotubes are obtained by rolling up a graphene sheet along

one axis; �nally fullerenes may form from graphene, by changing some hexagons into pentagons in

order to allow the �nal ball shape.

1.2.1 Lattice of graphene

Carbon atoms in graphene form an hexagonal planar lattice which belong to the simmetry point

group D6h. As illustrated in �g.1.2, the unit cell of graphene is de�ned by two lattice vectors a1

and a2 and it contains two atoms. The lattice vectors have coordinates:

a1 = d

(
3
2
,

√
3

2

)
, a2 = d

(
3
2
,−
√

3
2

)
(1.10)

where d = 1.42 Å is the C-C bond lenght; in direct cell cooordinates, the two carbon atom in cell

are located at

C1 = [0, 0] , C2 =
[

2
3
,
2
3

]
(1.11)

and they are nearest neighbours. In graphene each carbon has three nearest neighbours associated

to the real plane vectors

δ1 = d

(
1
2
,

√
3

2

)
, δ2 = d

(
1
2
,−
√

3
2

)
, δ3 = d (−1, 0) (1.12)

Note that graphene is formed by two interpenetrating sublattices A and B with triangular symmetry.

Due to the alternating character of the two sublattices, the nearest neighbours of a carbon atom in

the A sublattice belong to the B sublattice and viceversa. In the same way, a carbon atom will �nd its

six second-nearest-neighbours in its own sublattice located at δ
′
1 = ±a1, δ

′
2 = ±a2, δ

′
3 = ± (a2 − a1).

As shown in �g.1.3, the unit vectors in the momentum k -space are

b1 =
2π
d

(
1
3
,

1√
3

)
, b2 =

2π
d

(
1
3
,− 1√

3

)
. (1.13)

From the reciprocal lattice nodes, one can build the �rst Brillouin zone that is an hexagon. It has

the same shape of the Wigner-Seitz cell in the real space even if it is rotated by an angle of 90°. In

the Brillouin zone, one may �nd some special k -points: the Γ point is located at the center of the
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Figure 1.2: The lattice of graphene in real space. The unit cell is de�ned by the two lattice vectors
a1 and a2; some unit cells are shown with dashed lines; the light blue area is the Wigner-Seitz cell.
Each cell contains two atoms belonging to di�erent sublattices: A (blue) and B (red). The nearest
neighbours vectors are shown by vectors δi.

Figure 1.3: The lattice of graphene in reciprocal space. The unit cell is de�ned by the two lattice
vectors b1 and b2; some unit cells are shown with dashed lines; the light blue area is the �rst
Brillouin zone.

polygon, the K points are at the corners, while at the center of each side there are the M points. Of

course in this Brillouin zone, only three non equivalent special k -points may be found in addition

to the Γ point:

Γ = [0, 0] K =
[

1
3
,
2
3

]
K′ =

[
2
3
,
1
3

]
M =

[
1
2
,
1
2

]
(1.14)

The K and K′ sites are important in the band structure of graphene, due to the fact that the

Fermi level passes through these points. Here, the point group symmetry is D3h that spans two

dimensional irreducible representations; thus, the two points are degenerate in energy.
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1.2.2 Electronic structure of graphene

The high �exibility in bonding of carbon atoms is due to the four valence electrons and may give rise

to a large variety of structures. In graphene the typical honeycomb structure is due to the in plane σ

bonds oriented with angles of 120°. These strong covalent bonds result from the sp2 hybridization of

the 2s, 2px and 2py orbitals on each carbon atom and involve three valence electrons. The resulting

σ−band is fully occupied, it is quite deep in energy, thus it is rarely involved in the electronic

processes; similarly also the participation of the empty σ∗−band is rather marginal. Anyway, the

fourth electron occupies the pz orbital perpendicular to the plane and it is involved into a weak

and delocalized π bond, resulting from the lateral superposition of the pz orbitals on each carbon.

Note that the π cloud in graphene generates an aromatic network such as in benzene or in policylcic

aromatic hydrocarbons. From the linear combination of the singly occupied pz orbitals, the π

(valence) and π∗(conduction) bands arise; they cross exactly at the Fermi energy, thus in ideal

graphene the π band is fully occupied, while the π∗ band is totally empty. Note that these two

bands meet at the so called Dirac points, namely the K and K′ points in the �rst Brillouin zone,

without any band gap. Graphene is a semimetal due to its intermediate character: in fact at the

Fermi energy it behaves both like a metal as it has no band gap, and like a semiconductor with

no density of states. Typically the band structure of graphene is handled within the tight binding

approximation [4, 17]. In this framework, one basically assumes that the π contribution is su�cient

to get a reliable model for the electronic states in the region close to the charge neutrality point.

The tight binding hamiltonian in second quantization reads as

Ĥ = −t
∑
〈i,j〉σ

(
â†iσ b̂jσ + h.c.

)
− t′

∑
〈〈i,j〉〉σ

(
â†iσâjσ + b̂†iσ b̂jσ + h.c.

)
(1.15)

Here â†iσ creates an electron with spin σ on the lattice site i in the A sublattice, while its conjugate

complex âiσ annichilates it. In the same way, the b̂†jσ and b̂jσ operators respectively create and

destroy electrons on the j site in the B sublattice. The �rst term in the hamiltonian mimics the

hopping between nearest neighbours sites, thus into di�erent sublattices; the other term instead

accounts for the hopping between second nearest neighbours, thus into the same sublattice. Here t

(≈ 2.7 eV) and t
′
represent respectively the energy cost of the two processes. In principle one can

include also longer range interactions, but t
′
is already an order of magnitude smaller than t; hence,

they may be reasonably ignored as almost irrelevant to the overall band structure.

The natural choice is then to write the operators in the Hamiltonian in terms of Bloch's function

centered on a single sublattice

ârA =
1√
N

∑
k∈BZ

e−ik·rA âk =⇒ âk =
1√
N

∑
rA∈BK

eik·rA ârA

b̂rB =
1√
N

∑
k′∈BZ

e−ik
′·rB b̂k′ =⇒ b̂k′ =

1√
N

∑
rB∈BK

eik
′·rB b̂rB

(1.16)
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where BZ refers to the �rst Brillouin zone, while BK indicates the Born- von Karman cell that

de�nes the periodic boundary conditions in real space; the spin index has been dropped for the sake

of simplicity. Taking into account only the interaction between nearest neighbours, the Hamiltonian

reads as

Ĥ = − t

N

∑
rA,rB

∑
k,k′

(
â†kb̂k′e

ikrAe−ik
′rB
)

+ h.c. (1.17)

then following from the relation between the sites in the two sublattices, rB = rA + δj , the Hamil-

tonian becomes

Ĥ = − t

N

∑
rA

∑
k,k′

3∑
j

(
â†kb̂k′e

−i(k′−k)rAeiδjk
′
)

+ h.c.

= −t
∑
k,k′

3∑
j

(
â†kb̂k′δk,k′e

iδjk
′
)

+ h.c.

= −t
∑
k

3∑
j

(
â†kb̂ke

iδjk
)

+ h.c.

(1.18)

The hamiltonian matrix has only o�-diagonal elements due to the fact that an operator applied on

a basis function belonging to a di�erent sublattice returns zero, namely

âk |B (k)〉 = 0, b̂k |A (k)〉 = 0 and âk
∣∣....1Ak′ ...〉 = δk,k′ |0〉 (1.19)(

0 HAB

HBA 0

)(
cA

cB

)
= E (k)

(
cA

cB

)
(1.20)

Then by solving the secular equation one �nds the eigenvalues,

E (k) = ±t
√

3 + 2 cos k (δ1 − δ2) + 2 cos k (δ1 − δ3) + 2 cos k (δ2 − δ3) (1.21)

that �nally read as,

E (k) = ±t

√
3 + 2 cos

√
3ky + 4 cos

3
2
kx cos

√
3
2
ky = ±t

√
3 + f (k). (1.22)

where positive and negative eigenvalues refer respectively to the upper (π∗) and the lower (π)

band. As reported in ref.[108], when the second nearest neighbours interactions are included the

eigenvalues read as

E (k) = ±t
√

3 + f (k)− t′f (k) . (1.23)

Note that for t
′ 6= 0 the two solutions are no more symmetric around zero energy, the electron-hole

symmetry is broken and the π∗ and π bands become asymmetric.

As already outlined, the Fermi energy is zero at the Dirac points, namely K or K′ in the �rst BZ.

The low-energy properties of graphene associated to the electronic states close to the Fermi energy,

can thus be described by expanding the band structure around the K point according to k = K+q
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as in ref.[108],

= eiδ1·Keiδ1·q + eiδ2·Keiδ2·q + eiδ3·Keiδ3·q (1.24)

then, by using the K coordinates and projecting the δj vectors onto b1 and b2, it results

3∑
j

eiδj ·k = eiδ1q + ei
2
3
πeiδ2q + e−i

2
3
πeiδ3q =

= eiδ1q + cos
(

2
3
π

)(
eiδ2q + eiδ3q

)
+ i sin

(
2
3
π

)(
eiδ2q − eiδ3q

)
.

(1.25)

Then by writing each exponential as a Taylor's expansion up to �rst order, one gets

= 1 + iδ1q−
1
2

(2 + iq (δ2 + δ3)) + i

√
3

2
(iq (δ2 − δ3)) . (1.26)

By noticing that δ2 + δ3 = −δ1, one can de�ne new basis vectors

q̂x =
1
d
δ1, q̂y =

1√
3d

(δ2 − δ3) (1.27)

and then rewrite the above expression as

=
3d
2

qq̂x + i
3d
2

qq̂y =
3d
2

(qx + iqy) (1.28)

Therefore in the vicinity of the K point the Hamiltonian may be rewritten as

ĤK (q) = vF

(
0 qx + iqy

qx − iqy 0

)
= vFσ · q (1.29)

where σ = (σx, σy) is a vector of Pauli matrices. The corresponding eigenvalues are E (q) = ±vFq,

where vF is the Fermi velocity. This means that in the vicinity of the Dirac points the energy varies

linearly with respect to the momentum q; in the same way the density of states has also linear

dependence on the energy and it vanishes for E = 0,

ρ (E) ∝ |E|. (1.30)

Accordingly the band structure of graphene shows the peculiar double cones centered at the vertices

of the �rst Brillouin zone; these positions are characterized by no band gap and no density of states.

The linear dispersion near K is a direct consequence of the fact that electrons in graphene behave as

pseudorelativistic particles. They move at the Fermi velocity vF that does not depend on the energy

or momentum2 and it is de�ned as vF = 3
2dt ' 106m/s. Note also that due to the unusual behaviour

of the electrons, many novel e�ects appear in graphene, like the anomalous integer quantum Hall

e�ect, the Klein's paradox, etc... .

2Note that usually E (q) = q2/2m where m is the electron mass and the velocity v =
p

2E/m changes with energy.
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1.2.3 Defects in graphene

In crystalline solids the presence of defects is dictated by the second priciple of thermodynamics.

In general defects consist in a perturbation of the crystalline order and they are known as extrinsic

defects or intrinsic defects depending whether foreign species are involved or not. Intrinsic defects

may be classi�ed in terms of their dimensionality as: (i) zero-dimensional point defects like vacancies

and interstitial atoms, (ii) one-dimensional dislocations, (iii) two-dimensional grain boundaries and

stacking faults, and �nally (iv) three-dimensional voids and inclusions. In a similar way, also foreign

species may arrange into di�erent structures. In the production of graphene, defects and impurities

are always introduced. Anyway since graphene is a bidimensional crystal, the nature of possible

defects in this case is reduced [30]: point defects are usually Stone-Wales defects, single vacancies,

multiple vacancies and adatoms. Experimental studies to probe defective structures typically base

on transmission electron microscopy (TEM) and scanning tunneling microscopy (STM).

� In Stone-Wales defects the ideal hexagonal lattice is perturbed by a 90° rotation of a C-

C bond, that transforms four hexagons into two pentagons and two heptagons. In typical

working conditions, the concentration of SW defects is negligible due to the activation energy

that is close to 10 eV; thermodinamically the formation energy is Ef ≈ 5 eV.

� Vacancies may be roughly depicted as holes in the lattice due to missing atoms. In graphene

upon the removal of a carbon atom four unpaired electrons are left on the vacancy. These

electrons represent the key to interpret the destiny of a carbon vacancy in terms of lattice

relaxation and electronic structure. Vacancies are typically introduced by irradiation with

high energy particles. Indeed the threshold energy to move a carbon atom far from its lattice

position is about 18-20 eV, while the formation energy is Ef ≈ 7.5 eV.

� Double vacancies (DV) may form if two adjacent carbon atoms are removed from the lattice or

upon coalescence of two single vacancies. They can reconstruct in di�erent ways: in fact they

can form two pentagons and one octagon and give the V2 (5− 8− 5) system; alternatively by

rotating one bond of the octagon they can form the V2 (555− 777) structure. The formation

energy in the �rst case is about Ef ≈ 8 eV, thus close to the value found for the single vacancy;

while in the second case, the formation energy is about 1 eV lower. The removal of more than

two atoms produces large holes in the lattice that is then required to reconstruct. Commonly

the reconstruction implies the bending or warping of the layer, but the formation of pentagon

and heptagon rings has also been observed. Note that if an even number of carbon atoms are

missing, the vacancy can fully reconstruct and no dangling bonds are left. For this reason

such vacancies are typically favoured over structures with an odd number of missing atoms.

� A foreign species adsorbed on the graphene layer is usually referred to as an adatom. This

is physisorbed on graphene if the bond is weak and mainly due to van der Waals forces;

instead it is chemisorbed if it forms a strong covalent bond with graphene. Many bonding
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sites are available, normally corresponding to high symmetry points, like on top of a carbon

atom, in bridge between two carbons or above the center of a hexagon. In a defective lattice,

the adsorption mainly occurs at defective sites, due to the locally higher reactivity of the

π-electron system compared to that of perfect graphene. Upon the interaction with foreign

species, carbon atoms in the graphene layer may acquire some degree of sp3-hybridization,

thus breaking the symmetry of the lattice. Note that this usually occurs for covalently bound

species. Of course, the case of carbon adatoms is unique. In general adsorbed carbon atoms

may remain on the graphene surface when a vacancy is created; then they may easily recombine

with lattice defects, like vacancies; and �nally under the appropriate conditions they can also

be incorporated into the sp2 network at the expense of the local curvature.

� Foreign atoms can also be incorporated in the graphene lattice forming substitutional impu-

rities. Boron and nitrogen atoms can easily replace carbon atoms due to their similar atomic

radii; moreover they also serve as natural dopants since they have respectively one electron

less and one more than carbon. The presence of such impurities not only shift the Fermi level,

but also changes the electronic structure of graphene. In substitutional defects based on tran-

sition metal atoms, the foreign atom easily exchange electron density with graphene and it is

usually accommodated slightly o� the lattice plane due to its large volume compared to that

of carbon. A common way to introduce transition metals relies on vacancies: here the missing

carbon is replaced by the metal which then makes covalent bonds with the undercoordinated

atoms.

One-dimensional defects can be thought as lines of point defects that generally separate domains

with di�erent lattice orientations. In graphene grown on metal surface one often encounters such

domains that result from the growth process. In fact on a chosen metal surface, nucleation starts

simultaneously and independently at di�erent points and leads to graphene islands with di�ering

orientations. When two graphene grains coalesce, a line defect appears. Similar line defects can

appear also at the edges of a graphene sheet. Indeed edges, either free or passivated with atoms,

can possibly reconstruct to achieve a stable nuclear arrangement; note anyway that the presence of

non-defective edges a�ects the electronic structure of graphene by itself.

1.2.3.1 Origin of defects

In general the formation of defects in graphene can follow three alternative mechanisms, namely (i)

crystal growth, (ii) irradiation with high energy particles, like electrons or ions, and (iii) chemical

treatment. In the �rst case, defects form while graphene grows on a metal surface; in addition to

the expected line defects, also vacancies may form but they are rapidly suppressed due to their high

formation energy and to the high mobility of carbon adatoms on the surface. Of course, by reducing

the operating temperature, defects can be unlikely annealed and they become a serious problem.

Irradiation of graphene with electrons or ions is the common way to eject carbon atoms and generate

point defects[54]. This is a highly activated process, indeed each carbon atom needs approximately
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18-20 eV to leave its lattice site. Traditionally, the uniform irradiation of the graphene sample with

an electron beam generates a random distribution of vacancies; anyway nowadays more sophisticated

techniques based on highly focused electron beams allow to create vacancies with almost atomic

selectivity. Alternatively one can generate carbon vacancies by irradiating the graphene sheet with

high energy ions, like Ar+. Note that the number of vacancies depends on the ion energy: in fact

it increases up to a maximum value, then it decreases and �nally it tends to zero.

In a chemical perspective, in the absence of defects and far from the edges graphene is a quite inert

material. At room temperature, by oxidation with HNO3 or H2SO4, hydroxil and carboxyl groups

may attach to graphene, thus generating a functionalized defective layer. Under harsh conditions,

namely by using plasma, atomic hydrogen may also adsorb on graphene.

1.2.3.2 Properties of defects

Unlike the common way of thinking, the presence of defects is not always undesirable. In materials

science indeed it often proved to be an opportunity, possibly showing new and unforeseen ways to

use an 'old' material. In principle the controlled and proper generation of defects might allow to

act on the properties of the undefective material, so that to tailor them up to the aimed result. To

this end, a deep knowledge of the speci�c nature of a defect, as an isolated state or in a network

of defects, is highly desirable and it motivated many theoretical and experimental works. In this

way it has been proved that defects have a central role in determining the properties of graphene:

accordingly, they are highly reactive sites, they may act as scattering centers for the electron waves,

thus inducing a drop of conductance, and they may likely turn graphene into a magnetic material.

In a chemical perspective, it is clear that the presence of dangling bonds enhances the reactivity

towards foreign species. The same holds also at graphene edges which are normally saturated by

hydrogen atoms. Anyway a signi�cant reactivity is also found close to reconstructed vacancies and

Stone-Wales defects without dangling bonds. This is due to the modi�cation of the local density of

π-electrons that may lead to a higher local reactivity.

Electronic con�guration The electronic properties of graphene are determined by the π and

π∗ bands, generated by the side overlap of the pz-orbitals. These bands are likely perturbed by the

presence of defects. Consider for instance the adsorption of a foreign atom on the carbon lattice

that normally induces a local rehybridization of the carbon orbitals from sp2 to sp3: in this way

a pz orbital is subtracted from the π-network associated to the two π bands. Also the removal of

a carbon atom upon a vacancy formation removes a pz orbital and has a similar e�ect on the π

bands. Finally the generation of non-hexagonal rings causes a local curvature around defects that

may end up in a corresponding orbital rehybridization.

The main e�ect of such defects is the removal of the equivalence between the A and B sublattices of

the graphene sheet, resulting in the so called sublattice imbalance. In turn, this causes the opening

of a band gap and the appearence of a number of electronic states within the gap, known as midgap

states. The existence of such states, predicted by many theoretical studies[88, 89], was con�rmed
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in experiments[68]. Scanning tunneling microscopy experiments revelead the presence of a sharp

resonance at the Fermi energy around each single defects, which was attributed to these midgap

states. In general these states show a nonzero amplitude only on the nondefective sublattice, they

decay like ∼ 1/r as the distance from the defect increases and they show an overall three-fold

symmetry.

The presence of defects is also associated with the idea of doping, that modi�es the π system and

can be pursued in two alternative ways. The �rst is traditionally based on the addition of foreign

atoms which may act as donors or acceptors of electron density and thus give n-doped or p-doped

graphene. Here the relative position of the homo and lumo orbitals of the adsorbed species with

respect to the π and π∗ bands of graphene determines wheter the charge transfer occurs from the

adatom to the graphene surface or viceversa. The second way is known as self-doping where intrinsic

defects modify the band structure locally. Self-doping arises from the slight electron-hole asimmetry

at the Dirac points in perfect graphene, that shifts the Fermi energy of point defects and leads to

a transfer of charge from or to the clean regions.

Magnetic con�guration The electronic structure of defective graphene is closely related to its

magnetic behaviour[114]. In fact, each point defect usually carries a local magnetic moment due

to the presence of unpaired electrons. In the case of adatoms, the adsorption process involves one

pz orbital and thus removes one π electron from the π lattice. As a consequence a π unpaired

electron is left and a magnetic moment of ∼ 1 µB is generated. Similarly the formation of a car-

bon vacancy leaves in principle four unpaired electrons, three in the σ and one in the π network.

Anyway, upon the reconstruction of the lattice only two unpaired electrons remain and in principle

the local magnetic moment is expected to vary between 0− 2 µB depending on the coupling of the

two spins. Of course, the local magnetic moments of adatoms and vacancies vanish if the unpaired

electrons are removed from the system, for instance by forming chemical bonds. Moreover the ori-

entation of the π local magnetic moments is di�erent for the two sublattices; this means that the

total magnetisation, namely the sum of local magnetic contributions, depends on the distribution

of defects between the two sublattices. In the limit of an equal number of defects in the A and B

sublattice, the total magnetisation is expected to be zero. In general, ideal graphene is known to be

diamagnetic, while a paramagnetic behaviour arises with the introduction of magnetic defects, like

vacancies and adatoms; in recent experiments[75] no ferromagnetism has been found down to 2 K

in graphene samples obtained by sonic expholiation, thus excluding possible contaminants from the

preparation step. This is a signi�cant improvement as in early experiments, additional magnetic

moments and ferromagnetic ordering have been measured possibly due to residual impurities left

upon the preparation of the graphene sample[100].

From a theoretical perspective the number of midgap states and the spin con�guration of a de-

fective graphene sample can be predicted. Actually this is true for a generic system under some

fundamental assumptions: (i) it is a perfect bipartite system, thus it consists of two sublattices A

and B, with nonzero hopping only between A and B sites; as a consequence, (ii) it may be properly
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described within the tight binding approximation by including only the nearest-neighbours inter-

actions, namely with t 6= 0 and t
′ ∼ 0 in eq.1.23. In this way (iii) the electron-hole symmetry is

retained. Graphene ful�lls all these requirements as (i) it is composed by two equivalent sublattices

A and B and (ii) each carbon atom in the lattice can be represented by just one localized function.

This is the singly-occupied pz orbital, left upon the generation of the sp2 orbitals that form the σ

network in the plane. Note that the σ contribution can be safely neglected as almost irrelevant for

the band structure close to the Fermi energy. Finally, (iii) as t′ is at least one order of magnitude

smaller than t, the next nearest-neighbours term can be reasonably discarded. Within these as-

sumptions, it has been demonstrated that perfect bipartite systems support a number of zero-energy

midgap states which is greater or equal to the sublattice imbalance |nA−nB|, where nA,nB are the

number of sites in the two sublattices[41]. Both theory and experiments proved that midgap states

decay like ∼ r−1 (while other defective states behave as truly localized wavefunctions and decay

exponentially) and form quasi-localized π moments which may couple either ferromagnetically or

antiferromagnetically. In order to �nd the nature of the coupling, one refers to the Hubbard model

de�ned by the hamiltonian

H = −t
∑
〈i,j〉σ

(
ĉ†iσ ĉjσ + h.c.

)
+
∑
i

Uin
†
i↑ni↓ (1.31)

where the �rst term comes from the tight binding hamiltonian, while the second accounts for the

on-site interactions: Ui is indeed the on-site energy for the i-th site in the lattice and niσ = ĉ†iσ ĉiσ is

a number operator. Under the same assumptions as before, namely perfect electron-hole symmetry

and local interactions only, at charge neutrality (half-�lling), the spin state of the system exactly

matches the sublattice imbalance[64], S = |nA − nB|/2. This means that the coupling depends

on the relative position of defects, thus it is ferromagnetic for defects in the same sublattice and

antiferromagnetic otherwise.

1.2.4 Graphene on substrates

In practical applications, free-standing graphene is rarely used as most of synthetic routes lead to

supported graphene. Interestingly the presence of a substrate may control the electronic properties

of graphene, for instance by means of doping that shifts the Fermi energy and/or by inducing a

local change in the lattice that may open a band gap. For graphene on pure metals, the interaction

may be strong or weak[11], depending on the relative position of the center of the metal d-band

and the Fermi level in free-standing graphene. If the di�erence is lower than 2 eV, the interaction

is expected to be strong, otherwise weak. The weak interaction implies: (i) a distance between

graphene and the substrate close to 3.3 Å, i.e. similar to the interlayer distance in graphite which

is 3.36 Å; (ii) an almost undisturbed π-band, with no band gap opening. Note that a shift in the

Fermi level above or below the Dirac point is possibly observed, deriving from some n- or p-type

doping. This shift may be as much as 0.5 eV and it is a consequence of di�erences between the metal
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and the graphene work functions. Therefore, it comes from a charge transfer process and it does

not account for any hybridization or chemical bonding. On the other hand, the strong interaction

gives rise to: (i) a single rotational domain; (ii) a strong alteration of the graphene π band, with a

shift to higher binding energy of 1-3 eV and the opening of a band gap; (iii) a shortest carbon-metal

distance close to 2.1-2.2 Å, as found for lattice matched systems, thus graphene on Ni or Co, with

the graphene sheet almost �at on the substrate; (iv) a large corrugation of the graphene sheet,

if a moiré pattern is formed. The corrugation arises from the mismatch between the metal and

the graphene lattice. Indeed the carbon atoms are forced to occupy di�erent sites over the metal

surface, namely top, hollow or bridge sites, and thus interact di�erently with the substrate. As a

consequence, the distance from the substrate can vary between 2.1 and 3.6-3.8 Å and in the XPS

spectra the splitting of the C-1s signal can be observed, arising from the di�erent enviroment felt

by the carbon atoms. Graphene grown on a SiC crystal behaves di�erently depending on the face of

the substrate. On the Si-terminated face, graphene strongly interacts and it forms covalent bonds

with the Si atoms. In this way the carbon orbitals rehybridize, a large band gap opens and the

typical π-band structure of graphene is lost; moreover a charge transfer from the surface occurs.

This perturbed layer of graphene is known as bu�er layer; anyway on this sheet one may add a

further graphene layer that will be n-doped, but with no band gap. On the contrary, graphene

makes only weak interactions with the C-terminated surface, thus remaining almost una�ected by

the presence of the substrate. A similar dual behaviour is also observed for SiO2 or BN crystals [4].
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Theoretical methods

This chapter will report on two theoretical approaches to the fundamental problem in quantum

chemistry of how to describe in an accurate way an isolated atomic or molecular system. Such

approaches, namely the wavefunction methods[9, 95, 98, 103] and the density functional theory [81]

will be presented in sec.2.1 and sec.2.2 .

There is a variety of methods belonging to the �rst class and they mostly di�er in the way chosen to

approximate the exact wavefunction of a given system, in the attempt to get as close as possible to

the exact solution of the Schrödinger equation. In the Hartree-Fock (HF) method, the approximated

wavefunction is an antisymmetrized product of spin orbitals, namely a Slater determinant, that

re�ects the simple picture of electrons placed in orbitals according to the Pauli principle. The

Hartree-Fock wavefunction is the starting point to construct more �exible models, based on di�erent

kinds of spin orbitals as well as on a larger number of con�gurations (determinants), which are

expected to closely mirrors the exact wavefunction. Upon a general introduction, we will show the

HF approximation, pointing out its limits when dealing with open-shell systems along with the issue

of electronic correlation; after that we will present an overview of some representative theoretical

methods, some of them directly used in this thesis.

The peculiar aspect of the density functional theory is that the wavefunction is replaced by the

electron density and, as a consequence, the total energy turns out to be a functional of the elec-

tron density instead of the wavefunction. The theoretical foundation of this choice relies on the

Hohemberg-Kohn theorems, that will be demonstrated upon a general introduction on density ma-

trices and their correpondence to wavefunctions. Although in principle exact this theory bases on

an universal functional that is unknown, thus making it necessary the Kohn-Sham scheme to �nd

a way to the solution of the eletronic structure problem. In the end, we will present some approxi-

mated functional forms and some important theoretical tools that are responsible of the success as

well as the versatility of DFT.

23
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2.1 Wavefunction methods

In the Born-Oppenheimer nonrelativistic approximation, the motion of the nuclei along the potential

energy surface is obtained by solving the electronic problem, fully described by the time-independent

Schrödinger equation

ĤΨ = EΨ. (2.1)

The many-body wavefunction Ψ = Ψ (x1, ...xN ) depends on the coordinates of the N electrons in

the system, with xi giving both the position and spin of the i-th electron; E is the electronic energy
associated to the hamiltonian operator

Ĥ =
Nel∑
i=1

−1
2
∇2
i +

1
2

Nel∑
i,j

1
|rij |

−
Nat∑
α

Nel∑
i

Zα
|ri −Rα|

= T̂ + V̂ee + V̂ext (2.2)

that accounts for the kinetic energy of the electrons, the electron-electron repulsion and the electron-

nucleus attraction, represented by the the three operators in eq.2.2 T̂ , V̂ee and V̂ext respectively.

As it is an eigenvalue equation, the solution eq.2.1 gives eigenvalues and eigenstates. Anyway, it

is a matter of fact that the exact solution of the Schrodinger equation is not available except for

the simplest cases, thereby one generally has to deal with approximate results. In principle, for the

given operator H there are in�nite exact solutions of this equation, namely

HΦα = EαΦα (2.3)

with α = 0, 1, ... and E0 ≤ E1 ≤ E2... Since H is hermitian, the eigenvalues are real and the

eigenvectors are orthonormal; moreover in the assumption that the eigenstates form a complete set,

any trial function Ψ can be represented by a linear combination of {Φα}, thus Ψ =
∑

α cαΦα and

the energy reads as

E [Ψ] =
〈Ψ|H |Ψ〉
〈Ψ|Ψ〉

=
∑

α |cα|
2 Eα∑

α |cα|
2 (2.4)

where the energy is a functional of the wavefunction. Following from the fact that E0 ≤ E1 ≤ E2...,

the variation principle states that the energy of any state Ψ̃ is always an upper bound to the exact

ground state energy and it reaches the minimum if and only if Ψ = c0Φ0.

In general, every eigenstate of the hamiltonian is an extremum of the functional E [Ψ], thus the

Schrödinger equation may be replaced by a minimization of the energy functional with respect to

the allowed N-electron wavefunctions under the orthonormality constraint 〈Ψ|Ψ〉 = 1, that is

∂E [Ψ]
∂Ψ

=
∂

∂Ψ
[〈Ψ |H|Ψ〉 − E 〈Ψ|Ψ〉] = 0 (2.5)

In practice, one chooses an approximate wavefunction, that depends on certain parameters and starts

varying these parameters until the expectation value reaches the minimum; this is a variational

estimate of the exact ground state energy, namely E0 ≥ E0 and it is reasonable to expect that
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this result depends on the kind of wavefunction, Ψ0. This means that eq.2.5 returns for a chosen

wavefunction the best result achievable for that level of approximation, i.e. for that level of theory.

2.1.1 The Hartree-Fock approximation

The Hartree-Fock many-body wavefunction ΨHF is described as a Slater determinant, that is the

antisymmetrized product of spin orbitals ϕi,

ΨHF (x1, x2, ...xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

ϕ1 (x1) ϕ2 (x1) . . . ϕN (x1)

ϕ1 (x2)
. . .

...
. . .

ϕ1 (xN ) ϕN (xN )

∣∣∣∣∣∣∣∣∣∣∣
(2.6)

By applying the hamiltonian operator to this function one obtains the energyEHF =
〈
ΨHF

∣∣H ∣∣ΨHF
〉

that is a functional of the spin orbitals and reads as

EHF [ϕi] =
〈

ΨHF
∣∣∣Ô1 + Ô2

∣∣∣ΨHF
〉

=
N∑
i

〈i |h| i〉+
1
2

N∑
i,j

〈ij | ij〉 − 〈ij | ji〉 (2.7)

where Ô1 accounts for the one-particle terms, namely the kinetic energy of the electron and the

attractive interaction with the nuclei,

h = −1
2
∇2
i +

Nat∑
α

Zα
ri −Rα

(2.8)

and the operator Ô2 accounts for the two-body terms, that is the electron-electron interaction in

terms of Hartree (or Coulomb) energy and exchange energy. Note that the short notation in eq.2.7

corresponds to

〈ij | ij〉 =
�
dxdx

′
ϕ∗i (x)ϕ∗j

(
x
′
) 1

r− r′
ϕi (x)ϕj

(
x
′
)

(2.9)

and in the same way for 〈ij | ji〉. The ground state energy is found by carrying out a minimization

of the energy functional with respect to the spin orbitals, provided they remain orthonormal. In

this way, this becomes a constrained minimum search and it reads as

∂

∂ϕ∗i (x)

EHF [ϕi]−
∑
ij

λij

[�
dxϕ∗i (x)ϕj (x)− δij

] = 0 (2.10)

and �nally leads to

fϕi (x) =
∑
j

λijϕj (x) . (2.11)

where λij are the Lagrange multipliers associated to the orthonormality constraint and the one-
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particle Fock operator f 1 has been introduced. In general a unitary transformation of spin orbitals

in a single determinant wavefunction does not change the wavefunction, that may at most di�er from

the original determinant by a phase factor; in the same way, as any observable property depends on

|Ψ|2, any expectation value is expected to be invariant under an arbitrary unitary transformation

of the spin orbitals. This means that the nature of the basis set, e.g. localized or delocalized, does

to not a�ect the features of the system under investigation. In this case a unitary transformation is

used to transform the spin orbitals ϕi, into another set of orbitals ϕ̃i while leaving the wavefuction

unchanged, in such a way to diagonalize the matrix of the Lagrange multipliers λij and end up with

the canonical form of the eigenvalue equations

fϕ̃i (x) = εHFi ϕ̃i (x) (2.12)

where the eigenvalue εHFi gives the energy of the i-th orbital. The Koopman's theorem states that

−εHFi corresponds to the energy needed to remove one electron from the spin-orbital ϕ̃i, namely

the ionization potential2.

The solution of the Hartree-Fock equations in eq.2.12 is absolutely not an easy task, as it requires

computing the real eigenvalues εHFi and the spin orbitals ϕi that depend on both the spatial

coordinates and spin. Anyway, in principle one may introduce a set of known Nbasis spatial basis

functions {χµ}, that typically are not orthogonal, and represent each spin orbital ϕi as a linear

combination of these functions,

ϕi =
Nbasis∑
µ=1

Cµiχµ (2.13)

In this way the problem of calculating the Hartree-Fock molecular orbitals reduces to the problem

of �nding the set of expansion coe�cients of each orbital in the chosen basis set; this means that
1The one-particle Fock operator for the electron 1 in the �eld generated by N electrons reads as

f (1) = −1

2
∇2

r1 +
X
a

1

|r1 −Ra|
+

NX
j

�
ϕ∗j (r2)ϕj (r2) dr2 −

X
j

�
ϕ∗j (r2)ϕi (r2) dr2

2To prove the Koopman theorem one has to write the ground state HF energy EHF0 for a system with N electrons
as,

EHF0 =
1

2

NX
i=1

“
εHFi + ti

”
where ti = 〈i |h| i〉. The energy di�erence between the original N electron system and the one with N-1 electrons,
obtained upon removing the m-th electron from its spin-orbital is

EHF0,N − EHF0,N−1 = tm +

NX
l=1

〈ml | ml〉 − 〈ml | lm〉 = εHFm

When m is the highest occupied orbital, IP = −εHFhomo. Analougously by putting one electron in to the lowest
unoccupied orbital, one may compute the electronic a�nity (EA),

EA = EHF0,N − EHF0,N+1 = −εHFlumo

Note that in both cases the orbital relaxation is not taken into account, since expected to be small when one electron
is added or removed from a su�ciently large N electrons system. Hence, the quasi-particle gap is equal to the
homo-lumo gap, i.e. IP − EA = εHFlumo − εHFhomo.
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the Hartree-Fock energy is now minimized with respect to these coe�cients. For the i-th orbital,

the eq.2.12 can be rewritten as

Nbasis∑
µ

FHFνµ Cµi = εHFi

Nbasis∑
µ

SνµCµi (2.14)

where HHF
νµ and Sνµ give respectively the matrix element and the overlap integral between two

basis functions µ, ν; more compactly a single matrix equation may also be written

HC = SCε. (2.15)

The essence of the Hartree-Fock approximation is that the i-th electron feels a potential due to

the presence of the other electrons in an average way; this means that the potential experienced by

the i-th electrons depends on the other spin orbitals, thus the potential term in the Fock operator

depends on its eigenfunctions. As a consequence, the Hartree-Fock equation in eq.2.12 or equiva-

lently in eq.2.14 is not linear and must be solved iteratively. This iterative procedure starts from

a initial guess (for either the spin orbitals or the coe�cients of the basis expansion) and goes on

with further re�nements up to converge on a certain result: this is the self-consistent �eld (SCF)

method.

2.1.1.1 Open shell molecules

When dealing with closed-shell molecules, it is natural to include pairs of spin orbitals, ϕαi =

φαi (r)σ (α) and ϕβi = φβi (r)σ (β), that are degenerate in their spatial part, namely φαi (r) = φβi (r).

This choice is motivated by the fact that in the ground state the N electrons are coupled in the

N/2 α and β lowest energy orbitals and there is no reason why they should di�er in their spatial

functions. The situation changes in the case of open-shell systems, that is in the presence of unpaired

electrons. In the �rst attempt to generate the ground state wavefunction of an open-shell molecule, a

Slater determinant may be set up that contains the appropriate number of singly occupied molecular

orbitals in addition to the doubly occupied ones. This type of wavefunction belongs to the restricted

open-shell HF (ROHF) formalism, that enforces spatial parts of doubly occupied spin orbitals to be

identical irrespective for the electron spin. Although conceptually simple, the ROHF wavefunction

does not correctly describe the physics of the system as it assumes that α and β electrons respond

identically in the presence of unpaired (α or β) electrons, thus excluding any spin-polarization

e�ect. This neglect has several undesirable consequences: of course, correct spin densities are all

but unaccessible; moreover the wavefunctions are often unstable towards the symmetry breaking. In

a relaxation process, this means that slightly distorted structures surprinsingly turn out to be more

stable than the symmetric ones, due to the presence of fake singularities on the potential energy

surface at the high symmetry points; of course, one has to be aware that under certain conditions,

the lowering of the molecular symmetry is a real e�ect, enforced by the Jahn-Teller theorem (see

for more details Appendix A). The above considerations suggest that a more reliable description
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of the system should rely on a more �exible wavefunction. In the unrestricted HF formalism,

this is attained by allowing the pairs of α and β spin orbitals to di�er in their spatial functions,

namely φαi (r) 6= φβi (r). In this way, the ground state wavefunction succeeds in reproducing the

spin polarization experimentally seen but at the cost of loosing its spin purity, indeed it is still

eigenfunction of the operator Sz but not of S2. More precisely, the expectation value of
〈
S2
〉
for a

UHF wavefunction is always greater than the eigenvalue of the corresponding ROHF wavefunction,

due to the contamination of the higher spin states, that eventually may lead to unphysical results.

2.1.1.2 Correlation energy

It is known that the Hartree-Fock approximation, while remarkably successful in many cases, has

also some limitations. For instance the dissociation of molecules into open-shell fragments cannot

be described by restricted HF method and gives only qualitatively correct but not accurate results

with the unrestricted procedure. The origin of such a problem lies in the basic assumption of the

Hartree-Fock theory, namely that in a given system each electron moves independently from the

others in the static electric �eld generated by the nuclei and all the other electrons. In reality the

electronic motion is strongly in�uenced by the electron-electron repulsion, as suggested by the fact

that the probability of �nding two electrons at certain positions r1 and r2 tends to zero as the two

positions tend to coincide. This observation is consistent with the idea of a hole around each electron

that prevents another electron from occupying the same position at the same time: the so called

Fermi hole correlates the motion of electrons with parallel spins, while the Coulomb hole is active

in the case of electrons with antiparallel spins. Since it is a Slater determinant, by construction the

HF wavefuction satis�es the Pauli exclusion principle and thus includes the electronic correlation

due to the Fermi hole; on the other hand, it does not account for the correlation of the motion

of electrons with opposite spins. In general the correlation energy is quanti�ed as the di�erence

between the exact nonrelativistic energy and Hartree-Fock energy in the limit of a complete basis

set, namely Ecorr = E 0 − EHF0 .

2.1.2 Post-SCF methods

Following from the fact that the Hartree-Fock theory cannot properly account for the electronic

correlation, a number of theoretical methods, the so called post-SCF methods, has been developed

in the attempt to overcome this limit and recover as much as possible of the correlation energy

of a given system. In general the way to improve the HF results passes through the use of a

more �exible wavefunction, that is usually derived from the single determinant HF wavefunction.

There are two main aspects on which one may operate to increase the �exibility of the wavefunction,

namely the number of functions in the basis set and the number of determinants in the wavefunction

itself. In the �rst case, by enlarging the basis set, the quality as well as the total number of the

available molecular orbitals increases; this means that for a reasonably sized basis set, a large part

of the available molecular orbitals, except for those at lowest energy, will not be occupied in the
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ground state HF determinant. Anyway, these virtual orbitals come into play when dealing with the

second approach to improve the description of the wavefunction. In this case indeed, the new Slater

determinants correspond to excited con�gurations and represent alternative ways of distributing

the electrons among the available molecular orbitals. By mixing the excited con�gurations ΨL and

the ground state one Ψ0 = ΨHF
0 , one gets a more �exible and therefore an improved wavefunction

Ψ0′ with some degree of electron correlation:

Ψ0′ = Ψ0 +
∑
L

CLΨL (2.16)

If the weighting coe�cients CL of the excited con�gurations ΨL are variationally optimized, Ψ0′

is the con�guration interaction (CI) wavefunction. In the limit of a complete basis set, if all the

possible excited con�gurations formed with the molecular orbitals are included in the wavefunction,

then the procedure is known as full CI. Note that given a N-electron system and an arbitrary set

of 2K one-electron spin orbitals one can construct
(

2K
N

)
di�erent N-electron Slater determinants.

In general, theoretical methods may be classi�ed depending on: (i) the level of excitations admitted

in the calculations, namely on the number of electrons transferred into originally empty orbitals;

(ii) the way to compute both the coe�cients CL and the energy of Ψ0′ , where common alternatives

are the variational scheme just introduced for the CI method and the many-body perturbation

theory that will be shortly presented in sec.2.1.2.3; (iii) the nature of the reference wavefunction

Ψ0, namely wheter it corresponds to the Hartree-Fock determinant or not.

2.1.2.1 Con�guration interaction (CI)

The level of excitations in the con�gurations ΨL constructed from Ψ0, depend on how many electrons

are promoted to virtual orbitals. If only one electron at a time is excited, one speaks of single

excitations or more simply of singles. However, as stated by the Brillouin's theorem this type of

con�gurations may not mix with variationally optimized Ψ0 wavefunctions in closed-shell molecules

and only special types of singly excited ΨL can mix with Ψ0 in open-shell molecules. In case of two

electrons being promoted, double excitations are obtained. Unlike singles, doubles may directly mix

with the ground state determinant through the two-body Coulomb operator, 1/r12 in a.u. where

r12 is the distance between the two electrons. In a similar way the process continues, for instance

upon the excitation of three and four electrons, triples and quadruples are generated. Once the

excited con�gurations have been selected, two main quantities need to be evaluated: the electron

repulsion integrals 〈Ψ0|V |ΨL〉, where V is 1/r12; and the energy di�erence EL − E0 between the

excited state ΨL and the ground state Ψ0. After that, once known the values of the integrals and

energy di�erences, the energy of the correlated wavefunction Ψ0′ and the coe�cients CL can be

calculated.

As noted before, a full CI calculation produces: a correlated wavefunction which includes all the

possible excited con�guration for a given set of molecular orbitals; for each determinant the corre-

sponding coe�cient CL, obtained upon minimization of the expectation value of the energy of the
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correlated wavefuction as a function of CL. As the number of possible con�gurations raises quickly

with the number of available molecular orbitals, full CI is often not practicable and truncated CI

is preferred. In this approach excited con�gurations are built including excitations up to singles,

doubles, etc. (namely CISD, CID...). While computationally more feasible with respect to full

CI, truncated CI does not recover all correlation energy and it is not size consistent. Note that a

computational method is size consistent if the energy of a system of non-interacting molecules is

equal to the sum of the energies of each fragment computed separately. Due to the limit over the

possible excitations, this is not the case of truncated CI.

2.1.2.2 Complete active space SCF

Wavefuctions like that shown in eq.2.16 are known as multicon�gurational wavefunctions and turn

out to be not just useful but absolutely required in calculations on systems with more than one

unpaired electron (e.g. diradicals). In general the full CI scheme has been proved to give accurate

results, irrespective on the starting molecular orbitals, namely ROHF or UHF, but unfortunately

this requires a high computational cost. This means that full CI calculations may be realistically

carried out only on systems with very few electrons, thus motivating the development of other

theoretical models good for reproduce some of the bene�ts in full CI without paying the entire

cost. This is the case of the complete active space SCF (CASSCF) procedure, in which a sort of

full CI wavefunction is generated by accounting for the electronic excitations in and out a (small)

number of orbitals in the so-called active space. In this way the CASSCF wavefunction turns

out to be a linear combination of Slater determinants generated on the basis of the partition of

the molecular orbitals into active, inactive and external orbitals. As they are unoccupied, the

external orbitals are not present in any of the determinants; on the contrary, the inactive orbitals

are always occupied and constitute the 'stable' part shared by all the determinants; �nally the

remaining electrons in each determinant are placed in active orbitals according to the full list of

con�gurations belonging to the active space in a chosen spin and spatial symmetry. The number of

electrons and orbitals in the active space determines the number of con�gurations, namely of Slater

determinants, in the CASSCF wavefunction that is conventionally referred as CAS(n,m), where n

are the electrons and m the orbitals in the active space3. The CI procedure produces variationally

optimized weighting coe�cients CL for all the con�gurations included in CASSCF wavefunction;

moreover, di�erently from standard CI models, also the coe�cients of the basis functions of all

the molecular orbitals are simultaneously optimized. A converged CASSCF calculation thus yields

a set of coe�cients CL indicating the contribution of each determinant in the total wavefunction,
3The number of con�gurations depends on the number of n active orbitals and N active electrons and on the total

spin S of the function. Accordingly it follows,

NCAS =
2S + 1

n+ 1

„
n+ 1

N/2− S

«„
n+ 1

N/2 + S + 1

«
from which it appears that the number of con�gurations strongly increases along with the size n of the active

space. Therefore, the number of active orbitals is reasonably limited to 10-12 in order to generate computationally
manageable wavefunctions.
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and a set of coe�cients Cµi, where the index µ indicates the basis function and i the molecular

orbital. The optimization of the coe�cients Cµi in all the molecular orbitals ensures that the �nal

wavefunction gives the lowest CI energy within that particular active space. The CASSCF method

has a number of desirable features. First, it introduces correlation among the electrons in the active

space, generating wavefunctions which are eigenfunctions of Ŝ2. Second, analytical derivatives have

been formulated, thus this method may be used for geometry optimizations, location of transition

states and vibrational analysis. Third, the CAS wavefunctions are excellent starting points for

CI or MBPT calculations that include all occupied and virtual molecular orbitals. This allows

to recover the dynamic electron correlation energy which is usually associated to the motion of

electrons outside the active space. Finally, CASSCF allows to model systems which may not be

described, even to a �rst approximation, by a single con�guration as many excited states and singlet

diradicals. Anyway CASSCF calculations present also some disadvantages. First of all, CASSCF

can not be considered as a standard method as there is no universal recipe which tells how to build

the active space. Indeed in many cases the choice is done with a certain degree of arbitrariness

and needs to be guided by good intuition and experience. In geometry optimizations as well as in

the comparison of di�erent systems, the choice of a consistent active space may be fundamental.

Moreover in CASSCF calculations the simultaneous optimization of the basis set coe�cients Cµi

and that of CL, may cause the shapes of the molecular orbitals to strongly depend on the choice of

the active space and to greatly di�er among di�erent electronic states (con�gurations) of a molecule.

This means a loss of transparency with respect to standard CI calculations where all the excited

con�gurations are described in terms of the same set of molecular orbitals. Finally in a CASSCF

study, only the electrons in the active space are correlated while the dynamic correlation energy for

the remaining electrons is not recovered.

2.1.2.3 Many-body perturbation theory (MBPT)

The basic concept behind the MBPT is to model the e�ects of the correlation energy by treating

them as a perturbation to the zero-order reference wavefuction Ψ0. To this end, the correlated

wavefunction Ψ0′ is expanded as Ψ0′ = Ψ0 +Ψ(1) +Ψ(2) + ... and the total energy is E = E0 +E(1) +

E(2) + ..., where the apices indicate the order of the perturbation. For all the Ψ(m) orthogonal to

Ψ0 (namely
〈
Ψ0 | Ψ(m)

〉
= 0), it can be shown that

E(1) = 〈Ψ0|V |Ψ0〉 E(2) = 〈Ψ0|V
∣∣∣Ψ(1)

〉
E(3) = 〈Ψ0|V

∣∣∣Ψ(2)
〉
... (2.17)

where V is again the electron repulsion operator, 1/r12. If the perturbation theory works well

the correction to the energy is expected to decrease as the perturbation order increases, thus

E(1) � E(2) � E(3)... Accordingly, a second order correction is usually su�cient to get good

results. Similarly to the CI procedure, each perturbed wavefunction Ψ(m) is composed by excited

con�gurations ΨL formed from the molecular orbitals (occupied and virtual) of the unperturbed

reference wavefunction Ψ0. By contrast, the weighting coe�cients CL are here determined within
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the perturbation theory and not variationally. For instance, when Ψ(m) = Ψ(1) =
∑

LCLΨL, the

coe�cients CL are de�ned as

CL =
〈Ψ0|V |ΨL〉
EL − E0

. (2.18)

Therefore CL is directly proportional to the interaction energy between Ψ0 and ΨL expressed by the

o�-diagonal matrix element, and inversely proportional to the energy di�erence between these two

electronic states. The contribution of E(1) to the total energy is ignored as it is already included in

the energy of Ψ0, which is the Hartree-Fock energy. Thus the �rst correction to the Hartree-Fock

energy occurs in the second order perturbation theory. This is de�ned as

E(2) =
∑
L

|〈Ψ0|V |ΨL〉|2

E0 − EL
(2.19)

and it is always negative, as E0−EL < 0. In order to calculate E(2) and Ψ(1), the repulsion integrals

need to be computed. In a CISD calculation, the same matrix elements need to be evaluated but

they must be stored to set up the CI matrix; in the so-called direct CI there is no storage but

such elements must be recomputed whenever they are needed. By contrast in computing E(2), once

〈Ψ0|V |ΨL〉 has been processed (computed, squared, divided by the energy di�erence and added

to the sum), it is discarded. Conceptually, higher order corrections are included in a similar way.

Obviously, methods based on the perturbation theory are computationally less demanding than

similar levels of variational CI; they are also size consistent by virtue of to the so-called linked

diagram theorem. Note anyway that MBPT methods implicity assume that electron correlation

may be regarded as a small perturbation to the average �eld model on which HF-SCF theory is

based. For this approach to work, the unperturbed wavefunction needs to be a reasonable zero-

order approximation, otherwise a variational CI treatment is preferred. The perturbation theory

is thus expected to fail if the reference state is a highly spin-contaminated or a symmetry-broken

wavefunction; moreover it cannot deal with systems, like singlet diradicals, which may not be

adequately described by single-con�guration models.

2.1.2.4 Multi-reference perturbation theory

As noted before, MBPT works well if the reference HF-SCF wavefunction is a good zero-order

approximation. Poor results are thus expected for open-shell systems, due to the problematic ROHF

and UHF wavefunctions, and in general for all the systems which cannot be well characterized

by a single-determinantal description. For such kind of systems the use of multicon�gurational

reference wavefunctions represents a signi�cant improvement as it allows to overcome many of these

problems. The second order perturbation treatment applied to CASSCF wavefunctions results in

the CASPT2 procedure. This method has some useful features. First, CASPT2 has the advantage

over CASSCF that the �nal result is less a�ected by the choice of the active space, as in CASPT2

excitations over all the virtual orbitals are included. Second, it allows to recover a large part of

the correlation energy in addition to that already included in the CASSCF wavefunction; for this
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reason, CASPT2 is a very successful method in dealing with excited states, as (i) they often require a

multideterminantal description and (ii) the energy di�erences among them are usually small and thus

correlation energy may become crucial in determining the correct ordering. Finally, the CASPT2

method is substantially less computationally demanding compared to CAS-CISD with the same set

of con�gurations. Anyway, a serious problem associated to CASPT2 calculations comes from the

so called intruder states. These are excitations outside the active space whose contributions to the

CASPT2 wavefunctions are blown out of proportion due to the small energy di�erence (E0 − EL)
at the denominator in the expression for CL. As a consenquence of the presence of such states,

the energy evaluation becomes very inaccurate and the weight of the CASSCF determinants in the

resulting CASPT2 wavefunction becomes small.

The best theoretical approach to study a molecule is mainly determined by the molecule itself.

Single-reference theoretical methods, as truncated CI, CASSCF, MBPT methods..., are adequate

to describe most radicals and closed-shell molecules, as their wavefunctions are well represented by

single con�gurations. Di�erently, singlet diradicals and some excited states of both radicals and

closed-shell molecules are associated to multideterminantal wavefunctions and are better treated by

multi-reference computational methods, as MR-CI, CASPT2,...

2.2 Fundamentals of Density Functional Theory

The density functional theory (DFT) is a theoretical approach to electronic structure calculations

that is becoming a standard in condensed matter and materials physics. It allows to deal with the

hamiltonian of a many body system composed by Nel electrons and Nat atoms, working with the

electron density ρ (r), de�ned as just the three-dimensional single-particle density, instead of the

3N−dimensional (4N if spin is taken into account) wavefunction Ψ (r1, ..rN ) . Within the density-

fuctional theory a practical computation scheme is o�ered by the Kohn-Sham (KS) equations, which

are formally similar to the Hartree-Fock (HF) equations.

2.2.1 Density matrices

In a physical system, the number of electrons per unit volume in a given state is the electron density

of that state. We consider a generic quantum state |Ψ〉 of a single-particle system represented by a

vector in the Hilbert space. Such state may be described by Ψ (r) in coordinate space. Once chosen

a complete basis set {|n〉} where the orthogonality condition 〈n | m〉 = δnm holds, then any state

|Ψ〉 can be expressed in terms of the basis set functions |n〉

|Ψ〉 =
∑
n

Ψn |n〉 (2.20)

The inner product of |Ψ〉 with 〈m| gives the m-th component of |Ψ〉 in the representation of the |n〉,

Ψm = 〈m | Ψ〉 (2.21)
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For a continuous basis set the orthogonality condition reads as
〈
r | r′

〉
= δ

(
r− r

′
)
and the state

|Ψ〉 with its components can be expressed as

|Ψ〉 =
�

Ψ (r) |r〉 dr Ψ (r) = 〈r | Ψ〉 (2.22)

where Ψ (r) is precisely the ordinary wavefunction in coordinate space. A generic operator Â

trasforms the state |Ψ〉 into another state in the Hilbert space

Â |Ψ〉 =
∣∣∣ÂΨ

〉
=
∣∣∣Ψ′〉 (2.23)

while its adjoint gives

〈Ψ| Â† =
〈
ÂΨ
∣∣∣ =

〈
Ψ
′
∣∣∣ (2.24)

Finally we de�ne the projection operator P̂n on a generic state |n〉, as

P̂n = |n〉 〈n| (2.25)

If we apply P̂n on the state |Ψ〉

P̂n |Ψ〉 = |n〉 〈n | Ψ〉 = Ψn |n〉 (2.26)

It can be shown that projector operators are idempotent

P̂n · P̂n = P̂n (2.27)

and that they satis�es the closure relation, indeed being Î the identity operator,

∑
n

|n〉 〈n| =
∑
n

P̂n = Î (2.28)

In the continuous, the closure relation reads as

�
|r〉 〈r| dr =

�
P̂rdr = Î (2.29)

If we consider the e�ect of the operator Â in eq.2.23〈
n
∣∣∣Â∣∣∣Ψ〉 =

∑
n

〈
n
∣∣∣Â∣∣∣n〉 〈n | Ψ〉 =

∑
n

〈
n
∣∣∣Â∣∣∣n〉Ψn =

〈
n | Ψ′

〉
(2.30)

where
〈
n
∣∣∣Â∣∣∣n〉 is the matrix representation of Â in the basis set |n〉. The same relations hold when

the quantum state |Ψ〉 describes a N-particles system, i.e. |Ψ〉 = |ΨN 〉 . In this case the nature of

such particles (fermions or bosons) determines the symmetry of the quantum state |Ψ〉 (symmetric
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or antisymmetric). For a pure quantum state |Ψ〉, the density operator is usually de�ned as:

ρ̂ = |Ψ〉 〈Ψ| (2.31)

In the coordinate space this can be viewed as an element of a matrix, which is usually call the

density matrix

ρ
(
r
′
1, r

′
2, ...r

′
N , r1, r2...rN

)
= Ψ

(
r
′
1, r

′
2, ...r

′
N

)
Ψ∗ (r1, r2...rN ) (2.32)

Note that while |Ψ〉 is de�ned only up to an arbitrary phase factor, ρ̂ is unique for a given state:

ρ̂ = eiφ |Ψ〉 〈Ψ| e−iφ = |Ψ〉 〈Ψ| (2.33)

According to the de�nition in eq.2.25, ρ̂ is a projection operator on the subspace S ⊆ H spanned

by the state |Ψ〉 itself. Hence, ρ̂ is idempotent and hermitian, indeed

〈
n
∣∣ρ̂2
∣∣n〉 = 〈n | Ψ〉 〈Ψ | Ψ〉 〈Ψ | n〉 = 〈n | Ψ〉 〈Ψ | n〉 = 〈n |ρ̂|n〉

⇒ ρ̂2 = ρ̂† = ρ̂ (2.34)

where the state |Ψ〉 is normalized and |n〉 (e.g. |n〉 = |r1, ...rN 〉 is a basis set in which |Ψ〉 can be

decomposed. Since it also satis�es the closure relation, its trace is one

Trρ̂ = 〈n | Ψ〉 〈Ψ | n〉 =
�

Ψ∗ (r1, ...rN ) Ψ (r1, ...rN ) dr1...drN = 1 (2.35)

and in the same way Trρ̂2 = 1.

The expectation value for a generic operator Â, according to the de�nition for a normalized state

|Ψ〉 is 〈
Â
〉

=
〈

Ψ
∣∣∣Â∣∣∣Ψ〉 = 〈Ψ | n〉

〈
n
∣∣∣Â∣∣∣n〉 〈n | Ψ〉 = 〈n | Ψ〉 〈Ψ | n〉

〈
n
∣∣∣Â∣∣∣n〉 (2.36)

where
〈
n
∣∣∣Â∣∣∣n〉 are the matrix elements of Â in the basis |n〉 and thus

〈
Â
〉

= Tr
(
ρ̂Â
)

= Tr
(
Âρ̂
)

(2.37)

When a physical system is not a pure state, it is addressed as a mixed state and it can be character-

ized by a probability distribution over all the accessible pure states. Its density operator is known

as ensemble density operator and it reads as

ρ̂ =
∑
i

pi |Ψi〉 〈Ψi| (2.38)
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where pi is the probability of the system to be found in the state |Ψi〉 and the sum is over all the

accessible pure states. The rule of probability requires that for normalized pure states

pi ≥ 0
∑
i

pi = 1 (2.39)

The trace of ρ̂ is equal to one, indeed chosen an arbitrary complete basis |n〉,

Trρ̂ =
∑
i

∑
n

pi 〈n | Ψi〉 〈Ψi | n〉 =
∑
i

∑
n

pi 〈Ψi | n〉 〈n | Ψi〉 =
∑
i

pi = 1 (2.40)

It is also positive semide�nite in fact

〈n |ρ̂|n〉 =
∑
i

pi 〈n | Ψi〉 〈Ψi | n〉 =
∑
i

pi |〈n | Ψi〉|2 ≥ 0 (2.41)

Di�erently from the pure state, the density operator for a mixed state is not idempotent indeed

ρ̂2 =
∑
i

pi |Ψi〉 〈Ψi| ρ̂ =
∑
ij

pipj |Ψi〉 〈Ψi | Ψj〉 〈Ψj | =

=
∑
ij

pipj |Ψi〉 〈Ψj | δij =
∑
i

p2
i |Ψi〉 〈Ψi| 6= ρ̂ (2.42)

In the same way the trace of ρ̂2 is less than one if pi 6= 0 for more than one state |Ψi〉

Trρ̂2 =
∑
ij

∑
n

pipj 〈n | Ψi〉 〈Ψi | Ψj〉 〈Ψj | n〉 =

∑
ij

∑
n

pipj 〈Ψj | n〉 〈n | Ψi〉 〈Ψi | Ψj〉 =
∑
ij

pipj |〈Ψi | Ψj〉|2 =
∑
i

p2
i

⇒

Trρ̂2 = 1 ∃ only one |Ψi〉 , pi 6= 0

0 ≤ Trρ̂2 ≤ 1 otherwise
(2.43)

So the idempotency condition is necessary and su�cient to identify a physical system as a pure state.

For a mixed state, the expectation value for the observable Â is given by a natural generalization

of eq.2.36,〈
Ψ
∣∣∣Â∣∣∣Ψ〉 =

∑
i

pi

〈
Ψi

∣∣∣Â∣∣∣Ψi

〉
=
∑
i

∑
n

pi 〈Ψi | n〉
〈
n
∣∣∣Â∣∣∣n〉 〈n | Ψi〉 = Tr

(
ρ̂Â
)

(2.44)

2.2.1.1 Reduced density matrices

Up to here, it has been shown that the coordinate representation of the density operator ρ̂, equivalent

to the density matrix ρ in eq.2.32, namely a square matrix with the dimensions equal to the number

of degrees of freedom in the system, contains all the information (observables) of the physical system.

Anyway, since the basic hamiltonian operator is the sum of only 'one-electron' and 'two-electron'
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operators, it is now useful to introduce the concept of the reduced density matrix of order p.

ρp

(
x
′
1x
′
2, ...x

′
p,x1x2...xp

)
=

(
N

p

)�
...

�
ρN

(
x
′
1...x

′
p...xN ,x1...xp...xN

)
dxp+1...dxN (2.45)

where

(
N

p

)
= N !

p!(N−p)! is a binomial coe�cient. In particular,

ρ1

(
x
′
1,x1

)
= N

�
...

�
Ψ
(
x
′
1x2...xN

)
Ψ∗ (x1x2...xN ) dx2..dxN (2.46)

and,

ρ2

(
x
′
1x
′
2,x1x2

)
=
N (N − 1)

2

�
...

�
Ψ
(
x
′
1x
′
2, ...xN

)
Ψ∗ (x1x2...xN ) dx3..dxN (2.47)

They normalize respectively to

Trρ1

(
x
′
1,x1

)
=
�
ρ1 (x1,x1) dx1 = N

Trρ2

(
x
′
1x
′
2,x1x2

)
=
� �

ρ2 (x1x2,x1x2) dx1dx2 =
N (N − 1)

2

(2.48)

Note that the matrices ρ1 and ρ2 correspond to the coordinate space representations of the density

operators ρ̂1 and ρ̂2 acting on the one-particle and two-particle Hilbert spaces. Like ρ̂, ρ̂1 and ρ̂2

are positive semide�nite and hermitian. Antisymmetry of the wavefunction for a fermionic system

requires that the reduced density matrices re�ect this property; thus

ρ2

(
x
′
1x
′
2,x1x2

)
= −ρ2

(
x
′
2x
′
1,x1x2

)
(2.49)

ρ2

(
x
′
1x
′
2,x1x2

)
= −ρ2

(
x
′
1x
′
2,x2x1

)
(2.50)

This implies

ρ2

(
x
′
1x
′
2,x1x2

)
= 0 if x

′
1 = x

′
2 or x1 = x2 (2.51)

This is due to the repulsion between two electrons with the same spin and give rise to the Fermi

correlation hole: this is the probability of �nding two fermions as a function of their separation. This

function goes to zero when the two electrons with the same spin are in the same point, in agreement

with the Pauli exclusion principle. Finally the two operators ρ̂1 and ρ̂2 also admit eigenfuctions

and eigenvalues, indeed

ρ̂1 |ψi〉 = ni |ψi〉 ρ̂2 |θi〉 = gi |θi〉 (2.52)

where the eigenvalues ni and gi are called occupation numbers, while the eigenvectors for ρ̂1 and

ρ̂2 are respectively natural and geminal orbitals. Note that for a mixed state the same properties

hold.

Now consider the expectation value of a generic one-electron operator related to an antisymmetric
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N-body wavefunction Ψ,〈
Ô1

〉
= Tr

(
Ô1ρ1

)
=
�
O1

(
x
′
1,x1

)
ρ1

(
x
′
1,x1

)
dx
′
1dx1 (2.53)

If the one-electron operator is local then〈
Ô1

〉
=
� [

O1 (x1) ρ1

(
x
′
1,x1

)]
x1=x

′
1

dx1 =
�
O1 (x1) ρ (x1) dx1 (2.54)

In the same way for a two-electron operator Ô2〈
Ô2

〉
= Tr

(
Ô2ρ2

)
=
�
O2

(
x
′
1x
′
2,x1x2

)
ρ2

(
x
′
1x
′
2,x1x2

)
dx
′
1dx

′
2dx1dx2 (2.55)

If it is local then 〈
Ô2

〉
=
� [

O2 (x1,x2, ) ρ2

(
x
′
1x
′
2,x1x2

)]
x1=x

′
1,x2=x

′
2

dx1dx2

=
�
O2 (x1,x2, ) ρ2 (x1,x2) dx1dx2

(2.56)

2.2.1.2 Hartree-Fock theory with the density matrix formalism

By using the concepts of reduced density matrices at the �rst and the second order, one can now

write the expectation value of the hamiltonian associated to a system of Nel electrons and Nat

nuclei.

Ĥ =
Nel∑
i=1

−1
2
∇2
i +

1
2

Nel∑
i,j

1
|rij |

−
Nat∑
α

Nel∑
i

Zα
|ri −Rα|

= T̂ + V̂ee + V̂ext (2.57)

Since its expression does not show any explicit dependence on spin variables, one may use here the

spinless density matrices where all the spin coordinates have been ruled out by integration and get

E = −1
2

� [
∇2

1ρ1

(
r1, r

′
1

)
dr1

]
r1=r

′
1

−
∑
α

�
Zα
r1α

ρ (r1) dr1 +
1
2

� �
dr1dr2

ρ2 (r1, r2)
r12

(2.58)

In particular, in the Hartree-Fock approximation, the energy eigenvalue reads as

EHF =
〈

ΨHF
∣∣∣Ô1 + Ô2

∣∣∣ΨHF
〉

=
�
dr

[(
−∇

2
r

2
+ Vext (r)

)
ρ
(
r, r

′
)]

r=r′
+

+
1
2


�

drdr
′ ρ (r) ρ

(
r
′
)

|r− r′ |
−
�

drdr
′ ρ̃
(
r, r

′
)
ρ̃
(
r
′
, r
)

|r− r′ |


(2.59)

Equivalently the total energy EHF0 reads as

EHF0 =
∑
i

εHFi − 1
2


�

drdr
′ ρ (r) ρ

(
r
′
)

|r− r′ |
−
�

drdr
′ ρ̃
(
r, r

′
)
ρ̃
(
r
′
, r
)

|r− r′ |

 (2.60)
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where ρ (r) is the local �rst order reduced density matrix,

ρ (r) =
N∑
i

ϕi (r)ϕ∗i (r) (2.61)

and ρ̃
(
r, r

′
)
is the non-local �rst order reduced density matrix,

ρ̃
(
r, r′

)
=

N∑
i

ϕi (r)ϕ∗i
(
r
′
)
. (2.62)

It is evident that in the calculation of EHF , the second-order reduced matrices are not require as

expected from eq.2.58. Indeed the density matrix of any order is calculable from �rst-order density

matrices,

ρp

(
r
′
1, ...r

′
p, r1...rp

)
=

1
p!

∣∣∣∣∣∣∣∣∣∣∣∣

ρ1

(
r1, r

′
1

)
ρ1

(
r1, r

′
2

)
. . . ρ1

(
r1, r

′
p

)
ρ1

(
r2, r

′
1

)
ρ1

(
r2, r

′
2

)
. . . ρ1

(
r2, r

′
p

)
...

...
. . .

...

ρ1

(
rp, r

′
1

)
ρ1

(
rp, r

′
2

)
. . . ρ1

(
rp, r

′
p

)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.63)

As shown in eqs.2.61 and 2.62 density matrices assume very simple forms when they are derived

from a single determinant. In can be shown that this is consequence of the one to one mapping

existing between a Slater determinant and a density matrix of the form in eq.2.62.

2.2.2 The Hohemberg-Kohn theorems

Recall that for an electronic system described by the hamiltonian in eq.2.57, both the ground state

energy and the ground state wavefuction are determined by the minimization of the energy functional

E [Ψ] with respect to Ψ; moreover, the hamiltonian for a N-electron system is completely �xed by

the the external potential Vext(r), thus N and Vext(r) determine all the ground state properties. In

principle, this means that all the information about the system (observables) may be obtained by

applying the suitable operator to the wavefunction Ψ; anyway in practice, it is very di�cult to deal

with Ψ except for very small systems, as it is a large object depending on 3N variables (4N if the

spin index is included in addition to the spatial coordinates {x, y, z} for all the particles). The use
of density matrices in place of wavefunctions is possible, as they still contain all the information of

the system, but not much easier. So the need of a method based on some smaller representation of

Ψ arose very early in the history of quantum chemistry. The use of the electron density ρ (r) instead

of Ψ would be computationally much more convenient, indeed ρ (r) is a purely three-dimensional

function, compared to the 3N dimensions of Ψ; of course, the integration over all but one spatial

coordinate in the full density matrix induces some loss of information.

The �rst Hohemberg-Kohn theorem legitimizes the use of electron density ρ (r) instead of N and

Vext (r) as basic variable: indeed it assures that a given ρ corresponds to only one physical system,

hence two di�erent Vext will never give the same ρ (r). Moreover, since ρ determines the number
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of electrons, it follows that ρ (r) also determines the ground state wavefunction Ψ and then all the

other properties of the system. The proof of this theorem is very simple. Consider two external

potentials di�ering by more than a constant, Vext 6= V
′
ext + c and the two Hamiltonian H 6= H′

with their ground state eigenfunctions, Ψ0 6= Ψ
′
0. The theorem shows that ρ0 6= ρ

′
0 within these

hypothesis. Indeed

E0 = 〈Ψ0|H |Ψ0〉 E
′
0 =

〈
Ψ
′
0

∣∣∣H′ ∣∣∣Ψ′0〉 (2.64)

and thus,

E0 = 〈Ψ0|H |Ψ0〉 <
〈

Ψ
′
0

∣∣∣H ∣∣∣Ψ′0〉 =
〈

Ψ
′
0

∣∣∣H′ − V ′ext + Vext

∣∣∣Ψ′0〉 =

=
〈

Ψ
′
0

∣∣∣H′ ∣∣∣Ψ′0〉+
〈

Ψ
′
0

∣∣∣Vext − V ′ext∣∣∣Ψ′0〉 = E
′
0 +

�
ρ0 (r)

(
Vext − V

′
ext

)
dr

(2.65)

In the same way

E
′
0 =

〈
Ψ
′
0

∣∣∣H ′ ∣∣∣Ψ′0〉 < 〈Ψ0

∣∣∣H ′∣∣∣Ψ0

〉
=
〈

Ψ0

∣∣∣H − Vext + V
′
ext

∣∣∣Ψ0

〉
=

= 〈Ψ0|H |Ψ0〉 −
〈

Ψ0

∣∣∣Vext − V ′ext∣∣∣Ψ0

〉
= E0 −

�
ρ
′
0 (r)

(
Vext − V

′
ext

)
dr

(2.66)

By summing eqs.2.65 and 2.66 one �nally obtains

�
dr
(
ρ
′
0 (r)− ρ0 (r)

)(
Vext − V

′
ext

)
> 0 (2.67)

which requires Vext 6= V
′
ext and ρ

′
0 (r) 6= ρ0 (r). This result can be summarized as follows:

Ψ0 ↔ ρ0 ↔ Vext (r) (2.68)

thus showing the one to one correspondence between the ground state electron density and the

ground state wavefunction in a given external potential. In this way, the electron density appears

as an extremely powerful tool to describe a certain system, though one has to be aware that ρ (r)

can be easily generate once Ψ is known, but the reverse is not the case. Indeed there exists an

in�nite number of antisymmetric wavefunctions that all give the same ρ (r). The point here is that

one needs to identify the ground state wavefunction Ψρ among those that integrate at a given ρ (r);

then recognize the ground state density ρ0 (r) among all the accessible ρ (r). This procedure can be

performed in two steps. First the space of Ψ is partitioned into subsets of wavefunctions that give

by quadrature the same electron density ρ (r). For each of these subsets, one searches the ground

state Ψ:

Eρ [ρ] = min
Ψ→ρ

〈
Ψ
∣∣∣Ĥ∣∣∣Ψ〉 = min

Ψ→ρ

〈
Ψ
∣∣∣T̂ + V̂ee + V̂ext

∣∣∣Ψ〉
= min

Ψ→ρ

〈
Ψ
∣∣∣T̂ + V̂ee

∣∣∣Ψ〉+
�
drρ (r)Vext (r) = F [ρ] +

�
drρ (r)Vext (r)

(2.69)
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where it has been introduced the universal functional F [ρ] of ρ (r)

F [ρ] = min
Ψ→ρ

〈
Ψ
∣∣∣T̂ + V̂ee

∣∣∣Ψ〉 (2.70)

Note that F [ρ] is de�nited independently on the external potential, which is peculiar of each system,

therefore it is universally valid for every physical system. Once obtained the variational energy for

a given ρ (r), i.e. Eρ [ρ], the constraint over ρ (r) is released and the search proceeds over all the

electron densities:

E0 = min
ρ
Eρ [ρ] = min

ρ

{
F [ρ] +

�
drρ (r)Vext (r)

}
=

= min
ρ

{
min
Ψ→ρ

〈
Ψ
∣∣∣T̂ + V̂ee

∣∣∣Ψ〉+
�
drρ (r)Vext (r)

} (2.71)

This procedure is known as Levy constrained search and it de�nes immediately a variatonal principle

based upon the electron density equivalent to the Rayleigh-Ritz one. It is also an alternative version

(more general) of the second theorem by Hohemberg-Kohn. The variational principle may also be

written as a Lagrange multipliers problem:

δ
[
Eρ [ρ]− µ

(�
drρ (r)−N

)]
δρ

= 0 (2.72)

δEρ [ρ]
δρ

− µ = 0 (2.73)

By substituting Eρ [ρ] with eq.2.69, one gets the �nal Euler-Lagrange equation

∂F [ρ]
∂ρ

+ Vext (r) = µ (2.74)

where µ is the chemical potential, introduced as a Lagrange multiplier.

In conclusion, the �rst theorem states the key role of the electron density, that fully determines the

external potential and thus the hamiltonian; moreover, since it determines the number of electrons,

it follows that also Ψ is determined. In addition, the second theorem shows that all the ground

state properties, particularly the ground state energy, are obtained variationally from ρ (r).

2.2.2.1 v- and N-representability problems

The set of all possible trial electron densities has to be carefully chosen, indeed the ground state

electron density must obey some conditions. In the original formulation of the density functional

theory by Hohemberg and Kohn, the electron density is requested to be v-representable. This means

that it has to be associated with the antisymmetric ground state wavefunction of a hamiltonian

with some external potential Vext (r). From a mathematic point of view this is a very di�cult

problem, indeed the general conditions for a density to be v-representable are still unknown, and
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only for some speci�c densities the v-representability has been proved. However the constrained-

search approach overcomes this issue, since the universal functional F [ρ] used in eq.2.71 results

from the minimization over a set of wavefunctions, that originate from a hamiltonian (which by

de�nition contains an external potential). Hence, the electron densities need only to be associated

with antisymmetric wavefunctions. This is known as the condition of N-representability and it is

satis�ed by any reasonable density. It is consider a weaker condition than the v-representability

one, indeed the former is necessary for the latter.

2.2.3 The Kohn-Sham scheme

The density-functional theory is an exact theory, which proves the existence of an universal func-

tional of the electron density F [ρ] but does not provide any explicit form for it. If one knew the

exact expression of the universal functional F [ρ] then equations eq.2.71 and eq.2.73 would be exact

for the ground state electron density. Unfortunately, F [ρ] is unknown, thus for practical calculations

some approximations are needed. From Hohemberg-Kohn theorems one may write

E [ρ] = T [ρ] + Vee [ρ] +
�
drρ (r)Vext (r) (2.75)

where T [ρ] and Vee [ρ] are not explicitely known. Within the Thomas-Fermi (TF) approximation,

the expression in eq.2.75 is greatily simpli�ed, with of course a great loss of accuracy, and it reads

as

EDFT−TFVext
[ρ] = c

�
drρ

5
3 (r) + EHartree [ρ] +

�
drρ (r)Vext (r) (2.76)

where

T [ρ] = c

�
drρ

5
3 (r)

Vee [ρ] = EHartree [ρ] =
�
drdr

′ ρ (r) ρ
(
r
′
)

|r− r′ |

(2.77)

The solution of eq.2.76 reads as,

∂

∂ρ
EDFT−TFVext

[ρ] =
5
3
cρ

2
3 + V

[ρ]
Hartree (r) + Vext (r)− λ = 0 (2.78)

where λ is the Lagrange multiplier coming from the constraint on the density ρ (r), which is requested

to satisfy
�
ρ (r) dr = N . The solution of Thomas-Fermi equations provides a good description for

high density systems, but not for atoms where the approximations introduced become inadequate.

To solve this problem, one has to refer to the Kohn-Sham scheme. It introduces a new physical

system, an auxiliary system, closely related to the real system, but such that its energy functional

may be easily computed. All the di�erences between the two systems are then collected in a correc-

tive term. The Kohn-Sham ansatz assumes that for every physical system of interacting particles

exists a dummy auxiliary system of noninteracting particles and that they share the same electron
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density ρ. The monodeterminant wavefunction exactly describes N noninteracting electrons, thus

the electron density for the auxiliary system reads as

ρ (r) =
N∑
i

∣∣ϕKSi (r)
∣∣2 (2.79)

where ϕKSi (r) are the Kohn-Sham orbitals. The kinetic energy functional Ts [ρ] is then given by

Ts [ρ] =
∑
i

〈
ϕKSi

∣∣∣∣− ~2

2m
∇2

∣∣∣∣ϕKSi 〉
. (2.80)

One can now rewrite the energy functional for the real system as follows

EDFT−KSVext
[ρ] = Ts [ρ] + J [ρ] +

�
drρ (r)Vext (r) + Exc [ρ] (2.81)

where

J [ρ] = EHartree [ρ] =
�
drdr

′ ρ (r) ρ
(
r
′
)

|r− r′ |
Exc [ρ] = T [ρ]− Ts [ρ] + Vee [ρ]− J [ρ]

(2.82)

The quantity Exc [ρ] is called the exchange-correlation energy: it contains the di�erence between

the kinetic energy of the two systems (T [ρ]− Ts [ρ]), also known as dynamical correlation, and the

nonclassical part of the electron-electron interaction, (Vee [ρ] − J [ρ]). By minimizing eq.2.81 with

respect to the KS orbitals within the usual constraint on the electronic density, it follows

∂EDFT−KSVext〈
∂ϕKSi

∣∣ =
∂Ts

∂
〈
ϕKSi

∣∣ +
[
∂J

∂ρ
+
∂Eext
∂ρ

+
∂Exc
∂ρ

]
∂ρ

∂
〈
ϕKSi

∣∣ = 0 (2.83)

where Eext =
�
drρ (r)Vext (r) and ∂EXC [ρ]

∂ρ = V
[ρ]
xc is the exchange-correlation potential that acts

locally on the wavefuction. The e�ective potential acting on the real system is then de�ned as

V
[ρ]
eff = V

[ρ]
Hartree + Vext + V [ρ]

xc (2.84)

It is important to notice that the �rst Hohemberg-Kohn theorem implies V [ρ]
eff = Ṽext, where Ṽext is

the external potential in the auxiliary system. The minimization of the energy functional leads to{
− ~2

2m
∇2 + V

[ρ]
Hartree (r) + Vext (r) +

∂EXC [ρ]
∂ϕKS∗i (r)

}
ϕKSi (r) =

∑
j

λijϕ
KS
j (r) (2.85)

and after diagonalization, the Kohn-Sham equations are obtained in their canonical form:

HKS
effϕ

KS
i (r) =

{
−1

2
∇2 + V

[ρ]
eff

}
ϕKSi (r) = εKSi ϕKSi (r) (2.86)

where ϕKSi in eqs.2.85-2.86 may be di�erent. The total energy EDFT−KS0 of the system can then
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be expressed as

EDFT−KS0 =
∑
i

εKSi − 1
2
EHartree [ρ]−

�
drρ (r)V [ρ]

xc (r) + Exc [ρ] (2.87)

where the last two terms are added since the functional form of the exchange correlation energy is

unknown (possibly being linear, quadratic...in ρ). Before concluding this section on the Kohn-Sham

scheme it is useful to add some remarks: �rst, by introducing the KS orbitals one may exactly

handle Ts [ρ], which represents the dominant part of the kinetic energy in the real system; this of

course increases the accuracy with respect to the Thomas-Fermi approximation, but it also implies

a larger number of calculations, that is N equations to solve instead of only one. Second, the KS

equations are very similar to Hartree equations, except for the local Veff (r) term, which is more

general in the KS case; thus the two methods need almost the same computational e�ort to deal

with the characteristic equations. This is not true within the Hartree-Fock approximation that is

indeed computationally more expensive because of the nonlocal exchange operator. Finally, one

should be aware that the KS theory is exact in principle and once known the exact form of Exc [ρ],

it would be possible to achieve the exact ρ and E; of course, this is not the case of the HF theory

which, by construction, does not account for the electron correlation e�ects.

According to the original formulation by Kohn and Sham, the electron density shared by the

auxiliary and the real system is de�ned by the set of N lowest eigenstates ϕi with energy εi,

solution of eq.2.86: this assumption holds only for non-interacting v-representable densities and

implies that the two systems share the ground state density. Anyway the variational search for the

true ground state needs to be carried out on functionals de�ned for the larger domain composed of

N-representable densities; this is done within the constrained-search formulation, initially developed

for the Hohemberg-Kohn de�nition of F [ρ]. Accordingly, Ts [ρ] can be written as

Ts [ρ] = min
ΨD→ρ

〈
ΨD

∣∣∣T̂ ∣∣∣ΨD

〉
(2.88)

where the search is over all the monodeterminant antisymmetric functions ΨD. Note that this

de�nition is applicable for all N-representable densities (for the very same reasons shown for F [ρ]

in eq.2.70). By including also multideterminant wavefunctions, one obtains T̃s [ρ] and, due to the

larger set of functions involved, the following relation holds

T̃s [ρ] ≤ Ts [ρ] (2.89)

Anyway it can be shown that for any density ρ that is noninteracting v-representable and is associ-

ated to a nondegenerate ground state, the minimum solution does not change if multideterminant

wavefunctions are included in the search, thus T̃s [ρ] = Ts [ρ]. Indeed if ρ is v-representable, there

will always be a V (r) for which ρ (r) is the non-interacting N-electron ground state density (corre-

sponding to a monodeterminant wavefunction). The N orbitals, coming from the variational search
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in eq.2.88 must ful�ll some conditions, indeed Ω [{ϕi}] =

N∑
i

�
ϕ∗i (r)

[
−1

2
∇2

]
ϕi (r) dr +

�
λ (r)

{
N∑
i

|ϕi (r)|2 − ρ (r)

}
dr−

N∑
ij

εij

�
ϕ∗i (r)ϕj (r) dr

(2.90)

where the function λ (r) and εij are Lagrange multipliers. The former asks that the sum of orbital

densities is equal to the given density ρ (r), while the latter represents the orthonormality constraint.

From the minimization condition δΩ
δϕ∗k(r) = 0, there result the equations

[
−1

2
∇2 + λ (r)

]
ϕk (r) =

N∑
j

εjkϕk (r) (2.91)

and after diagonalization

ĥsϕk (r) = εkϕk (r) (2.92)

This shows that the orbitals involved in the minimization are eigenstates of the one-electron hamilto-

nian with a local potential exactly equal to the lagrangian multiplier λ (r) . For any noninteracting v-

representable density, there exists a potential Veff (r) related to ρ (r) and such that λ (r) = Veff (r).

In this case the eq.2.92 reduces exactly to the original de�nition by Kohn-Sham; of course the op-

timized ϕk orbitals in eq.2.92 are the same as the KS orbitals in eq.2.86. If, on the other hand, ρ

is not noninteracting v-representable, then λ (r) is not the potential related to ρ (r) and equations

in eq.2.92 can not be reduced to the KS equations. In this case, since λ (r) 6= Veff (r), the ϕk
orbitals in eq.2.92 are not equal to the N lowest eigenstates solutions of the KS equations eq.2.86

for the noninteracting system. Hence, these ϕk orbitals do not describe the ground state density

of the auxiliary system, but some excited con�guration. One may conclude that the real and the

auxiliary system share the density ρ (r), but this is the ground state density only for the real sys-

tem. Only if ρ (r) is v-representable, one can be sure that it is the ground state density for both

of them. Equivalently, if ρ (r) is the true ground state of an N-electron interacting system with a

given potential Veff (r) , then it is of course v-representable and equations eq.2.92 are precisely the

Kohn-Sham equations, with λ (r) = Veff (r). Because of their auxiliary nature, the Kohn-Sham or-

bitals have in principle no-physical meaning, indeed they are related to the real system only because

their squares are expected to sum up at the true electron density. In the same way, no physical

meaning is carried by the orbital energies εi and there is no equivalent of the Koopman's theorem,

which could relate the orbital energies to ionization energies. In the limit of exact DFT, there is

one exception though: the eigenvalue of the highest occupied orbital εmax equals the negative of

the ionization energy, because of the exact long-range behaviour of the exact electron density (as

shown in sec. 2.2.4). While the above considerations are all true in a very strict sense, anyway

one should also point out that KS orbitals are eigenfunctions of an one-particle hamiltonian, which

includes all the non-classical e�ects. In this sense, the HF orbitals are much farther away from

the real system, since they neither contain any correlation nor could in principle provide the exact



46 Chapter 2. Theoretical methods

electron density. For this reason, KS orbitals should be legitimated as well as HF orbitals for, e.g.,

reactivity considerations. At last, one has to remark that both KS and HF schemes are based on a

monodeterminant wavefunction, nevertheless, they signi�cantly di�er. In fact the HF method does

not include any non-classical e�ect and correlation can be introduced only through the interaction

among di�erent Slater determinants each of those representing an excited electronic con�guration

(as in CASSCF, CI...). On the other hand, in the KS approach some correlation e�ects are included:

the dynamic correlation comes from the term T [ρ] − Ts [ρ] in the exchange-correlation functional;

while, for the static correlation the issue is more subtle. Indeed here the question about the sense

of using a multi-determinant wavefunction is closely related to whether or not it is correct to use

the lowest N orbitals of the non-interacting system to build the Slater determinant. This is closely

related to the v-representability problem, described above.

2.2.3.1 Kohn-Sham equations in plane wave basis

For �nite systems, like atoms and molecules, it is natural to represent the KS orbitals using a

localized basis set. In the same way, for ideally in�nite periodic systems, like crystalline solids, the

use of a plane waves basis set comes straightforwardly. Plane waves are de�ned as

fPWG (r) =
1√
Ω
eiGr (2.93)

where Ω is the volume of a periodic (super-) cell and G is a vector in the reciprocal space. Note

that plane waves do not depend on the nuclear positions and they are delocalized in space; as a

consequence they form a very unbiased basis set which do not favour certain areas over others.

According to the Bloch's theorem, the eigenstates of a monoelectronic hamiltonian de�ned within a

periodic potential are described by a plane wave eik·r = |k〉 times a periodic function uik (r). Hence

they have the form

ϕik (r) =
1√
Ncell

uik (r) eik·r (2.94)

where Ncell gives the number of cells, r is a real space vector, while the wavevector k is de�ned

in the �rst Brillouin zone. The function uik (r) has the same periodicity of the crystal, namely

uik (r) = uik (r + L); thus its plane waves expansion is a sum over the vectors in the reciprocal

space:

uik (r) =
1√

Ωcell

∑
G

ciGe
iG·r =

∑
G

ciG |G〉 (2.95)

where {G} is the set of reciprocal lattice vectors and Ωcell is the volume of a single cell; note that

the total volume of the crystal is Ω = ΩcellNcell. Note that the subscript i in uik (r) comes from its

periodicity. Indeed uik (r) satis�es the periodic boundary conditions and this generates for each k

a set of i eigenfunctions which are directly connected to the concept of energy bands and form the

set of KS solutions for the given k . Therefore, ϕi (r,k) in eq.2.94 can be rewritten as:

ϕik (r) =
1√
Ω

∑
G

ci,k+G (k) eiG·reik·r =
∑
G

ci,k+G |k + G〉 (2.96)
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Accordingly, the matrix element of the hamiltonian is

∑
G

ci,k+G

〈
k + G

′ |H|k + G
〉

= εici,k+G′ (2.97)

where all the k vectors belong to the �rst Brillouin zone. Each plane wave in the expansion eq.2.96

corresponds to a k
′
outside the Brillouin zone and connected to k by a reciprocal lattice vector

G, thus the following relation holds: k
′

= k + G. In actual calculations the in�nite sums over G

vectors have to be truncated. Moreover the integral over the Brillouin zone has to be approximated

by a �nite sum over a set of k-points as follows,

�
BZ

dk =
∑
k

wk (2.98)

where the contribution of each k is weighted by a coe�cient wk. The number of plane waves in the

basis set is controlled by the energy cuto�, which gives the upper limit to the kinetic energy of the

G vectors. In plane waves the matrix elements of the kinetic energy operator are simply〈
k + G

′
∣∣∣∣−∇2

2

∣∣∣∣k + G
〉

=
1
2
|k + G|2 . (2.99)

thus the G vectors included in the basis are those for which the relation 1
2 |k + G|2 ≤ Ecut holds.

Note that the appropriate value Ecut has to be chosen upon evaluating the convergence of the

calculations. Moreover any periodic local potential can be expanded as a Fourier series

V (r) =
∑
G

V (G) eiG·r and V (G) =
1

Ωcell

�
Ωcell

drV (r) e−iG·r (2.100)

and then its matrix elements read as〈
k + G

′ |V |k + G
〉

=
∑
G

V (G) δG′−G,G =
∑
G

V
(
G
′ −G

)
(2.101)

where from the condition in the δ-function, i.e. G = G
′ −G, it is clear that they are nonzero only

when they di�er by a unitary reciprocal lattice vector G. Concluding, for each k in the Brillouin

zone the electronic problem reads as

∑
G

Hk+G′ ,k+Gci,k+G = εikci,k+G′ (2.102)

in which

Hk+G′ ,k+G =
〈
k + G

′ |H|k + G
〉

=
1
2
|k + G|2 + V

(
G
′ −G

)
(2.103)

In the same framework, the total energy from the Kohn-Sham scheme reads as

E =
1
Nk

∑
ik

wik

{∑
G

c∗
i,k+G′

ci,k+G

[
1
2
|k + G|2 + Vext

(
G
′ −G

)]}
+
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+Ωcell

∑
G

εxc (G) ρ (G) + 2πΩcell

∑
G 6=0

ρ (G)2

G2
+ γEwald +

Ne

Ω

∑
κ

ακ (2.104)

where

ρik (G) =
∑
G,G′

c∗
i,k+G′

ci,k+G ⇒ ρ (G) =
1
Nk

∑
i,k

wikρik (G) (2.105)

Remember that there is a di�erent system of KS equations for each k, therefore the total energy

comes from the summation over all the k vectors in the Brillouin zone. Actually, to speed up the

calculations and without loosing accuracy, one may deal only with the k vectors belonging to the

irreducible Brillouin zone and then weigth their contributions by the appropriate factor wik. Note

that this is allowed by the symmetry of the Brillouin zone: in fact the non-equivalent k vectors are

only those within the irreducible Brillouin zone, which by symmetry transformations generate all

the other k vectors. Consider now the last three terms in eq.2.104. The Coulomb potential and

the Ewald term (γEwald) are both ill-de�ned sums, indeed they diverge at some points. Anyway

γEwald is built in such a way that, when combined with the Coulomb potential, they compensate

each other �nally giving a regular expression. The last term instead accounts for the energies of

the core electrons; due to the frozen core approximation, one may avoid to treat them explicitly

in the calculation but their e�ects need anyway to be included. More details on this topic will be

presented in sec.2.2.8.

2.2.4 Janak theorem and quasiparticle gap

In the Kohn-Sham scheme discussed before it has been supposed that the ground state for a N-

electron system is described by N orbitals only. Actually this is only a special case of more general

forms involving an arbitrary number of orbitals and fractional occupation numbers. In this case the

derivation of the KS equations is not very di�erent since most of the terms depend on the electron

density and not on the orbitals. However the generalized kinetic energy becomes

TJ [ρ] =
∑
i

ni

�
drϕKS∗i (r)

[
−1

2
∇2

]
ϕKSi (r) (2.106)

where Ts [ρ] in eq.2.81 has been substituted by TJ [ρ], J for Janak, who �rst dealt with the gener-

alized KS equations; ni is the occupation of the i-th orbital, which satis�es

∑
i

ni = N ni ∈ [0, 1] (2.107)

and the density ρ (r) is now de�ned as

ρ (r) =
∑
i

niϕ
KS∗
i (r)ϕKSi (r) (2.108)
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The generalized energy functional is thus given by

ẼDFT−KS [ρ] =
∑
i

ni

�
drϕKS∗i (r)

[
−1

2
∇2

]
ϕKSi (r) +

+
�
drρ (r)Vext (r) +

1
2

�
drdr

′ ρ (r) ρ
(
r
′
)

|r− r′ |
+ EXC [ρ]

(2.109)

Thus, the ground state energy can be obtained by minimizing ẼDFT−KS [ρ] with respect to both

ϕKSi and ni. For a �xed set of ni, the energy is minimized by a set of ϕKSi , as follows

∂

∂ϕKS∗i (r)

ẼDFT−KS [ρ]−
∑
ij

λij

[�
ϕKS∗i (r)ϕKSj (r)− δij

] = 0 (2.110)

which leads to [
−1

2
ni∇2 + niVeff (r)

]
ϕKSi (r) = εKS

′
i ϕKSi (r) (2.111)

where εKS
′

i = niεi. Then the equation eq.2.111 reduces to a canonical KS equation[
−1

2
∇2 + Veff (r)

]
ϕKSi (r) = εKSi ϕKSi (r) (2.112)

To examine the dependence of the energy on the orbital occupation, ẼDFT−KS [ρ] is di�erentiated

with respect to the occupation number as follows

∂ẼDFT−KS [ρ]
∂ni

=
〈
ϕKSi

∣∣∣∣−∇2

2

∣∣∣∣ϕKSi 〉
+
� {

∂

∂ρ (r)
[J [ρ] + Exc [ρ] + Eext [ρ]]

∂ρ (r)
∂ni

}
dr =

=
〈
ϕKSi

∣∣∣∣−∇2

2

∣∣∣∣ϕKSi 〉
+
〈
ϕKSi |Veff (r)|ϕKSi

〉
= εi

(2.113)

This result is known as the Janak theorem: it is independent on the approximation to the exchange

correlation functional and it holds also when the total number of electrons N =
∑

i ni is not integer.

It is absolutely not trivial to infer the distribution of ni which minimize the energy. One can try

by setting ni = cos2 θi in agreement with eq.2.107 and then performing the minimization with

respect to θi. The constraint in eq.2.107 is included with the lagrangian multiplier µ representing

the chemical potential at T = 0K.

∂

∂θi

ni 〈ϕKSi ∣∣HKS
eff

∣∣ϕKSi 〉
− µ

∑
j

nj

 =
∂

∂θi

cos2 θiε
KS
i − µ

∑
j

cos2 θj

 = 0 (2.114)

Hence,

sin (2θi)
[
µ− εKSi

]
= 0 (2.115)



50 Chapter 2. Theoretical methods

If εKSi 6= µ then θi = 0, π2 and ni can assume only two values ni = 1, 0 for occupied or unoccupied

orbitals. Only in case the eigenvalue εKSi corresponds to the highest eigenvalue, i.e. εKSi = µ, then

fractional values of ni are allowed. Using the Janak's theorem, the energy of the highest orbital is

expressed as

ẼnN=1
N − ẼnN=0

N−1 =

1�

0

dnN
∂ẼN (nN )
∂nN

=

1�

0

dnNε
KS
N (nN ) (2.116)

where nN is the occupation number of the highest orbital, the subscript of Ẽ gives the total number

of electrons in the system and the subscript of εKS is the label of the orbital to which the energy

refers. In the exact DFT, this �nally gives

1�

0

dnNε
KS
N (nN ) = εKS,nN=1

N = εKSN = −IP (2.117)

and it is known as Perdew result. In a similar way for N+1 electrons the energy of the highest

orbital reads as,

Ẽ
nN+1=1
N+1 − ẼnN+1=0

N = ε
KS,nN+1=1
N+1 = εKSN+1 = −EA (2.118)

The quasiparticle gap, by de�nition (IP − EA), does not match with the homo-lumo gap,

IP − EA = εKSN+1 − εKSN 6= εlumo − εhomo (2.119)

since the orbitalic energies εKSN and εKSN+1 refer to occupied orbitals, while εlumo is the energy of the

(N+1)-th orbital in a system composed by N electrons. Thus

εlumo = ε
nN+1=0
N+1 = ε

nN+1=1
N+1 −4Vxc (2.120)

where 4Vxc is a correction related to the exchange-correlation potential, which is included in the

energy of the orbital when it is occupied. Thus it follows that the quasiparticle gap is underestimated

in the homo-lumo (Kohn-Sham) gap by a quantity 4Vxc,

IP −AE = εKSN+1 − εKSN = εlumo − εhomo +4Vxc (2.121)

2.2.5 Spin-density functional theory

The spin-density functional theory is the natural extension of the density functional theory in

the presence of an external magnetic �eld. It also give important contributions in the absence

of magnetic �eld since it allows to improve the description of the exchange-correlation functional,

through its spin dependence. Indeed the basic variables are the α and β electron densities, ρα (r)

and ρβ (r). Thus, the constrained-search for the ground state energy, reads as

E0 = min
ρα,ρβ

{
F
[
ρα, ρβ

]
+
�
drVext (r)

(
ρα (r) + ρβ (r)

)}
(2.122)
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where

F
[
ρα, ρβ

]
= min

Ψ→ρα,ρβ

〈
Ψ
∣∣∣T̂ + V̂ee

∣∣∣Ψ〉 (2.123)

According to the Kohn-Sham scheme, the universal functional allows to rigorously handle the kinetic-

energy contribution Ts
[
ρα, ρβ

]
and to gather all the unknown terms in the exchange-correlation

energy. In this case the constrained-search de�nition of the kinetic energy term, Ts reads as

Ts

[
ρα, ρβ

]
= min

[∑
iσ

niσ

〈
ϕiσ

∣∣∣∣−∇2

2

∣∣∣∣ϕiσ〉
]

(2.124)

where σ = α, β and the constraint over the σ−electron density (ρσ =
∑

iσ niσ |ϕiσ|
2) holds. In

practice, the occupation numbers niσ are chosen so that the N lowest eigenstates are occupied

(niσ = 1) and the rest are empty (niσ = 0). In the same fashion as in sec.2.2.4 for a �xed set

of niσ, the energy functional is minimized with respect to the orbitals φiσ, that must satisfy the

normalization constraint. The �nal result are the two following sets of KS equations for α and β

electrons:

ĥσeffϕiσ (r) =
[
−1

2
∇2 + V σ

eff (r)
]
ϕiσ (r) = εiσϕiσ (r)

i = 1, ...Nσ

σ = α, β
(2.125)

where

V α
eff =

� ρα
(
r
′
)

|r− r′ |
dr
′
+ Vext (r) +

∂Exc
[
ρα, ρβ

]
∂ρα (r)

(2.126)

and analogously for V β
eff . Note also that the number of α and β electrons is

Nα =
�
drρα (r) Nβ =

�
drρβ (r) N = Nα +Nβ (2.127)

There is also a spin polarized version of the Janak's theorem that reads as ∂E/∂niσ = εiσ.

The spin-polarized density-functional theory compared to the original (spin-compensated) version

has the obvious advantage to be capable of treating many-electron systems when a magnetic �eld is

present. However the major advantage appears with no magnetic �eld. In this case, in the limit of

an exact exchange-correlation functional Exc
[
ρα, ρβ

]
the spin-polarized Kohn-Sham results reduce

to those expected from spin-compensated version. But the exact functional is not known and the

approximated spin-density functional Exc
[
ρα, ρβ

]
is usually a better description of the real system

than Exc [ρ]; this is surely the case of spin-polarized systems, such as open-shell atoms and molecules.

Moreover, the α and β orbitals are obtained self-consistently from eq.2.125, and in principle are

allowed to be di�erent. This �exibility is very useful when dealing with large bond lenghts, providing

an accurate description of molecules close to their dissociation limit. In the presence of a perfect

matching between α and β orbitals, that is the paramagnetic case, the non-interacting kinetic term
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is spin-independent, in fact

Ts

[
ρα, ρβ

]
= Ts [ρα] + Ts

[
ρβ
]

= Ts

[
1
2
ρ,

1
2
ρ

]
= Ts [ρ] (2.128)

On the other hand, the exact exchange-correlation energy functional Exc
[
ρα, ρβ

]
separates into its

components, Ex
[
ρα, ρβ

]
and Ec

[
ρα, ρβ

]
. The exchange term, like the non-interacting kinetic term,

can be easily written as a sum of spin-α and β contributions

Ex

[
ρα, ρβ

]
= Ex

[
1
2
ρ,

1
2
ρ

]
= Ex [ρ] (2.129)

while the correlation term cannot be decomposed into a sum of two di�erent spin contributions,

because the correlation energy contains the e�ects of both like-spin and unlike-spin electron-electron

interactions.

2.2.6 Describing the exchange-correlation functional

2.2.6.1 Local density approximation

With the KS equations the kinetic energy is handled exactly and only the exchange-correlation

energy remains to be determined. It is very important to realize that if the exact form of the

exchange and correlation functional were known, the solution of the KS equations would �nally

lead to the exact ground state energy and the exact electron density, since the method is exact

in principle. The search for an accurate Exc [ρ] has encountered tremendous di�culty and up to

now the exact explicit expression for Exc [ρ] is still not available. Nevertheless many approximated

forms have been proposed in order to specify the KS equations. The simplest approximation is

the so called local-density approximation (LDA) for exchange and correlation energy, based on the

assumption that the real system behaves locally as an homogeneus electron gas, known as the Fermi

gas. This turns out to be a good approximation for metallic systems, but it fails badly for insulators

and semiconductors. Within this approach, the real system is divided into in�nitesimal portions,

each having
�
ρ (r) dr electrons and behaving as an homogeneus gas. The exchange-correlation

energy of the real non uniform system is then obtained as the sum of the contributions from all

these parts.

ELDAxc [ρ] =
�
ρ (r) εxc (ρ) dr (2.130)

where εxc (ρ) is the exchange and correlation energy per particle of a uniform electron gas of density

ρ. The corresponding exchange-correlation potential is given by

V LDA
xc (r) =

∂ELDAxc [ρ]
∂ρ (r)

= εxc (ρ (r)) + ρ (r)
∂εxc (ρ)
∂ρ (r)

. (2.131)

where εxc is a function and not a functional of the electron density. Its analytic form is unknown but

it has been parametrized in several ways, usually based on the separation between the exchange and

correlation contributions, respectively εx and εc. The �rst can be derived from the Dirac exchange
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energy functional, while accurate values for εc come from accurate Monte Carlo calculations by

Adler-Ceperley[19].

In the same fashion, the local spin density approximation (LSDA) has been developed to approxi-

mate the exchange-correlation energy functional for open-shell systems, which are usually treated

within the spin-DFT. In LSDA the real system is described locally by an homogeneous spin-polarized

electron gas and the polarization e�ects are taken into account through the spin polarization pa-

rameter ζ de�ned as

ζ =
ρα − ρβ

ρα + ρβ
(2.132)

Accordingly, two limit cases may be thought, namely ζ = 0 for spin-compensated systems and ζ = 1

for spin-completely-polarized systems. Like within the LDA scheme, in the LSDA the exchange and

correlation contributions to the total functional ELSDAxc

[
ρα, ρβ

]
are separated in ELSDAx

[
ρα, ρβ

]
and ELSDAc

[
ρα, ρβ

]
and then treated independently.

2.2.6.2 Other approaches

The local density approximation is expected to fail when applied to systems with less homogeneus

electron density. More sophisticated functionals are for instance those depending on both the

electron density ρ (r) and the electron density gradient ∇ρ (r). They are still local and are usually

addressed as generalized gradient approximation (GGA) functionals:

EGGAxc [ρ] =
�
ρ (r) εxc (ρ,∇ρ) dr (2.133)

Instead of making local approximations of both the exchange and the correlation energy, another

possibility is to include the exchange e�ects exactly, leaving only the correlation energy to be

approximated. By introducing the exchange energy in the same way as in the HF approximation,

the exchange-correlation energy functional reads as

Exc [ρ] = −1
2

� ρ1

(
r, r

′
)
ρ1

(
r
′
, r
)

|r− r′ |
drdr

′
+ Ec [ρ] (2.134)

and the resulting e�ective potential is

Veff
(
r, r′

)
=

Vext (r) +
� ρ

(
r
′′
)

|r− r′′ |
dr
′′

+
δEc [ρ]
δρ (r)

 δ (r− r
′
)
−
� ρ1

(
r
′
, r
)

|r− r′ |
dr
′

(2.135)

Within this scheme, known as Hartree-Fock-Kohn-Sham method, the characteristic eigenvalue equa-

tions di�er from both the KS equations, due to the presence of a non-local e�ective potential, and

from the Hartree-Fock equations, due to the correlation energy contribution. Interestingly, if the

last were know exactly, the exact energy and electron density would be achieved; moreover by keep-

ing only a fraction of the exact exchange energy, one generates a slightly di�erent class of methods
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based on the so called hybrid functionals. In conclusion, note anyway that due to the high compu-

tational cost in computing the exchange energy, these methods are still not so popular. Of course

many other approximated descriptions exist and an exenstive discussion about several exchange

and correlation functional can be found in literature[24, 81, 87]. For this reason when starting with

a new system, one should know that there is not a functional better than another one, but the

suitable functional can be chosen only after a careful screening over the several possibilities.

2.2.7 Self-interaction correction

It is very important to be aware of the fact that many good results of L(S)DA are due to a

cancellation of errors, since it was shown that this approximation underestimates Ex, while over-

estimating Ec. To get improvements upon the local (spin) density approximation, it is important

to look at the problem of self-interaction, namely the interaction of one electron with itself via the

Coulomb potential. In the hamiltonian in eq.2.57 the electron-electron interaction term excludes

the self-interaction, as it is clearly shown in the Hartree-Fock approximation: in this case indeed the

self-interaction in the Coulomb term cancels exactly with the one in the exchange term. Di�erently,

in the approximated DFT (including LDA, LSDA,..) a spurious self-interaction is contained that

can not be easily ruled out. This problem comes from the classical expression of the Coulomb energy

for a given electron density J [ρ], which allows the unphysical interaction of one electron with itself.

Naturally, the exact expression of Exc [ρ] in the KS equations is expected to perfectly compensate

this error, but for approximate functionals this is not the case. In the limit of no self-interaction

the following requirement over a one-electron system is ful�lled:

Vee [ραi , 0] = J [ραi ] + Exc [ραi , 0] = 0 (2.136)

where ραi is the single electron density for the i-th orbital and ρβi = 0. Unfortunately the expression

in eq.2.136 is true only for the exact functional, otherwise representing an estimate of the self-

interaction contribution and it can be used in the self-interaction corrected (SIC) version of Exc [ρ]

as follows

ESICxc

[
ρα, ρβ

]
= Exc

[
ρα, ρβ

]
−
∑
i

[J [ραi ] + Exc [ραi , 0]] (2.137)

where the SIC procedure would not change the exact functional, if it were known, since in that case

eq.2.136 would be zero.

2.2.8 The pseudopotential method

It is not trivial to map the electronic wavefunction over the volume of interest for the system under

investigation. Indeed even in case of few tens of atoms, a signi�cant e�ort is needed as for each

atom of the system, one has to represent each Kohn-Sham orbital ϕKSi throughout the volume.

Furthermore in the atomic core region, the wavefunctions oscillate strongly due to the high kinetic

energy. This means that one should use a very dense uniform grid or alternatively a very large
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plane wave basis set to be able to give an accurate representation of such wavefunctions. Anyway it

is clear that from a chemical point of view not all the electrons have the same importance. Indeed

the inner (core) electrons are almost chemically inert while the most of reactivity is ruled by the

outer (valence) electrons. A consequence of this observation is the frozen core approximation which

states that the core orbitals can be held �xed while the total energy is minimised. These orbitals are

usually kept in the form they have in the isolated atom as they are almost una�ected by any external

perturbation. The pseudopotential method is widely used to represent the electronic wavefunction

within the DFT theory and it has its foundation on the frozen-core approximation. The key-point of

the pseudopotential method is the substitution of the strong potential exerted by the core electrons

on the valence electrons by a much weaker pseudopotential so that: (i) the core orbitals are taken out

from the explicit treatment, and (ii) the pseudo valence orbitals become smooth with no oscillations

close to the nuclei. In general the potential of an atom is the sum of a nuclear part and two electronic

parts, due to core and valence electrons. The sum of the nuclear plus the core electron potentials

gives the ionic potential. Due to the frozen core approximation, one can just retain this term and

forget about the core wavefunctions and orbital energies. Anyway in the all-electron framework,

the core electrons do not only participate in the potential acting on the valence electrons, but

core orbitals also contribute to the orthogonality constraint. Note that this constraint is crucial

to prevent valence orbitals from collapsing into the core regions during the minimisation processes.

The solution proposed by the pseudopotential method is to replace the true ionic potential with

an ionic pseudopotential, where the valence wavefunctions become pseudo valence wavefunctions.

The pseudopotential is chosen in such a way that the all-electron and pseudo wavefunctions have

the same energies, so that the orthogonality e�ect from the core electrons is retained even without

treating them explicitely. The crucial parameter in the generation of a pseudopotential is the core

radius rc beyond which the true ionic potential and the pseudopotential are equivalent. Inside rc

the all-electron valence orbitals and the pseudo valence orbitals behave di�erently as the last are

nodeless and therefore they do not have oscillations. However both the functions have the same

energy and outside rc they have also the same form. In general a single-atom pseudopotential is

given by

V PP
(
r, r

′
)

=
∞∑
l=1

m∑
l=−m

Y ∗lm (ω)Vl (r) δ
(
r− r

′
)
Ylm

(
ω
′
)

(2.138)

where Ylm (ω) are spherical harmonics and ω Euler angles of the position vector r. Note that

the radial dependence of the potential V PP is given by the radial function Vl (r) that depends on

both the radius r and the angular momentum. This feature is typical of nonlocal pseudopotentials

(also known as angular momemtum-dependent pseudopotentials) while a local pseudopotential only

depends on r.

In order to get the above features, a pseudopotential must satisfy a number of conditions: (i) it has

to be weak compared to the true ionic potential inside rc; (ii) it has to be smooth, thus at the core

radius rc the potential and its derivative should be continous; (iii) �nally it has to be transferable,

thus it has to work properly in di�erent situations, for instance in di�erent chemical environments.
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2.2.8.1 Norm-conserving pseudopotentials

The norm-conserving pseudopotentials as originally introduced by Haman, Schluter and Chiang[8,

36] meet all the general requirements listed above. More precisely, (i) the all-electron wavefunction

ψl and the pseudo wavefunction φl are identical outside rc and (ii) they have equal eigenvalues. In

addition (iii) the pseudo wavefunction and the all-electron wavefunction have the same norm inside

the core region even if they have di�erent form; (iv) also the logarithmic derivatives of the two

wavefunctions and their �rst energy derivatives are equal in the region outside the core radius.

In general the pseudopotential reproduces exactly the all-electron wavefunction only in the ref-

erence con�guration in which it was generated. Anyway it is requested to closely reproduce all-

electron calculations even in di�erent environments. This means that it has to be transferable. A

straightforward method to check transferability is to compare the logarithmic derivatives of all-

electron and pseudo wavefunctions in di�erent systems; anyway more advanced approaches have

been developed[32, 33, 105]. The easiest way to enhance transferability is to reduce the core radius

rc used to generate the pseudopotential and the pseudo wavefunction. However, there are practical

limits on how far one can reduce rc; indeed it must be larger as the outermost node of the all

electron wavefunction in order to generate a nodeless pseudo wavefunction. In fact for rc too close

to the node, the pseudopotential starts to oscillate and thus a larger plane wave basis set is needed

to describe the pseudo wavefunction.

2.2.8.2 PAW and ultrasoft pseudopotentials

For elements with highly localized orbitals, as �rst row and 3d elements, the appropriate core radius

is small and the resulting pseudopotentials require large plane waves basis sets. In the attempt to

avoid large basis sets, compromises are often necessary. One possibility is to reduce the plane

wave cuto�, thus however sacri�cing accuracy and reliability; alternatively the core radius can be

enlarged, but in this way the transferability is diminished.

The ultrasoft pseudopotential method proposed by Vanderbilt[107] gives a possible solution to the

problem. In this method the norm-conservation constraint is relaxed and localized atom-centered

augmentation charges are introduced to make up the resulting wrong charge distribution. These

augmentation charges are de�ned as the charge di�erence between the all-electron and pseudo wave-

functions, and they are usually transformed into pseudo charges. The core radius of the pseudopo-

tential can here be chosen close to the nearest-neighbours distance independently on the position

of the outermost node of the all-electron wavefunction. This allow to signi�cantly reduce the size

of the basis set needed to get reliable results. Only the core radius of the pseudo charges has to be

small enough to reproduce the charge distribution of the all-electron wavefunction accurately. The

pseudo augmentation charges are usually mapped onto a regular grid in real space, which is not

necessarily the same grid used to describe the wavefunctions.

The ultrasoft pseudopotentials can be formally derived from the projector augmented-wave (PAW)

method[58]. In this derivation the key-point is to transform the all-electron external potential of the
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PAW into a norm-conserving pseudopotential. Di�erently from the techniques described above, the

projector augmented-wave method[14] proposes an alternative way to represent the wavefunction

which does not make use of any pseudopotential. The PAW method divides the whole space Ω

into non-overlapping spherical regions around each atom Ωa and interstitial space ΩI , thus giving

Ω = ΩI + ∪aΩa. It is clear that the plane waves description is the ideal choice for the interstitial

region but not for the atomic spheres. To solve the problem, auxilary wavefunctions φ̃i (r) are

generated from the all-electron wavefunction φi (r) via an invertible linear transformation. The new

wavefunctions φ̃i (r) are smooth, so that they can be expanded into a practicable number of plane

waves. It thus comes straightforwardly that the Kohn-Sham problem can be reformulated in terms

of φ̃i (r) and the whole problem can be treated within the plane waves basis set. Moreover in a

given atomic space Ωa, the all-electron wavefunction φi (r) may be described in terms of atomic

centered functions {χaα}; similarly the auxiliary wavefunction φ̃i (r) is associated to the auxiliary

set of atomic centered functions {χ̃aα}. Note that χ̃aα (r) merges into χaα (r) in the interstitial region,

while in the atomic region χ̃aα (r) is smooth, thus it can be expanded in terms of plane waves with a

practicable cuto�. Given these properties of the basis set {χ̃aα}, the resulting wavefunction φ̃i (r) is

smooth inside the atomic sphere, while it equals φi (r) in the interstitial space. The peculiar feature

of the PAW method is that it is in principle an all-electron approach. For practical reasons, the

dimensionality of the system is typically reduced by the frozen core approximation; therefore the

sum over states is restricted to valence electrons only. Anyway the electronic density always includes

contributions from the core electrons and the χ̃aα basis functions have to be orthogonal to the core

states of the atom. The potential term in the total energy expression refers to an arbitrary local

potential localized in the augmentation regions, i.e. inside the atomic spheres Ωa. This contribution

vanishes if a complete expansion in plane waves is done; therefore it can be used to minimise the

truncation errors. In addition in PAW the point charge density of the nuclei and the compensation

charge density inside the atomic regions are introduced.
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Chapter 3

Spin coupling around a carbon vacancy

in graphene

In this chapter we investigate the details of the electronic structure in the neighborhoods of a carbon

atom vacancy in graphene by employing magnetisation-constrained density-functional theory on

periodic slabs, and spin-exact, multi-reference, second-order perturbation theory on a �nite cluster.

The picture that emerges is that of two local magnetic moments (one π-like and one σ-like) decoupled

from the π band and coupled to each other. We �nd that the ground state is a triplet with a planar

equilibrium geometry where an apical C atom opposes a pentagonal ring. This state lies ∼0.2 eV

lower in energy than the open-shell singlet with one spin �ipped, which is a bistable system with

two equivalent equilibrium lattice con�gurations (for the apical C atom above or below the lattice

plane) and a barrier ∼0.1 eV high separating them. Accordingly, a bare carbon-atom vacancy is

predicted to be a spin-one paramagnetic species, but spin-half paramagnetism can be accommodated

if binding to foreign species, ripples, coupling to a substrate, or doping are taken into account.

3.1 Magnetism in graphene: theoretical background and experi-

ments

Magnetism in graphene is a fascinating and highly controversial matter[50]. Early reports on fer-

romagnetic ordering in graphite and graphene[10, 28, 29, 109] have been questioned in the light

of the ubiquitous presence of magnetic contaminants, and measurements under carefully controlled

conditions showed that graphene, like graphite, is strongly diamagnetic with a weak paramagnetic

contribution from adatoms and/or carbon atom vacancies[99]. Simple adsorbates such as �uorine

and missing carbon atoms have been shown to provide a spin-1/2 paramagnetic response[74], though

spin-1 paramagnetism has been reported upon N+ irradiation[3].

In the theoretical perspective, perfect bipartite systems support a number of zero-energy �midgap�

states which is greater or equal than the sublattice imbalance |nA − nB|, where nA,nB are the

number of sites in the two sublattices[31, 41]. When imbalance results from isolated missing pz

orbitals (e.g. for low concentrations of covalently bound adatoms or vacancies) these states decay

59
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slowly (∼ 1/r) from the defects and localize on the locally majority sites[88, 89], as also found by

scanning tunneling microscopy/spectroscopy measurements on irradiated graphite[68]. Thus, these

defects form quasi-localized π moments, which couple to each other either ferromagnetically or anti-

ferromagnetically depending on their lattice position. In fact, with local interactions only, at charge

neutrality (half-�lling) the spin state of the system exactly matches the sublattice imbalance[64],

S = |nA − nB|/2, and thus coupling is ferromagnetic for defects in the same sublattice and an-

tiferromagnetic otherwise. Within the same assumptions (perfect electron-hole symmetry, local

interactions only) coupling between π moments and conduction states has been investigated beyond

mean-�eld approaches by means of dynamical mean �eld theory and found to be ferromagnetic[79],

thereby con�rming that simple adatoms covalently bound to the substrate (e.g. H, F species) behave

as spin-1/2 localized moments. In turn, this also a�ects chemical properties and favours formation

of dimers of balanced type[16, 40].

This simple picture has to be revised for a carbon atom vacancy where, in addition to the above

π midgap state, three σ orbitals are left singly occupied upon vacancy formation, and a struc-

tural instability (Jahn-Teller distortion) arises which breaks electron-hole symmetry, even if nearest

neighbors interactions only are retained. The ensuing lattice re-arrangement leaves two unpaired

electrons, and a magnetic moment in the range 2.0− 1.0µB has been found by (ensemble) density

functional theory (DFT) calculations[2, 22, 63, 80, 113, 115], with a tendency to 1.0µB in the

low-density limit[80]. The latter result (along with the observed vanishing dependence of the en-

ergy on the magnetisation[80]) signals the absence of any magnetic order at experimentally relevant

concentrations, and only apparently con�icts with the the presence of both a σ and a π moment

(see below). Recent experiments have indeed shown that the spin−1/2 paramagnetism of missing

carbon atoms has two contributions[75], from σ and π states respectively, and one of them can

be quenched upon molecular doping and possibly by means of the electric �eld e�ect[75]. Yet,

this remarkable result requires that the unpaired electrons around a vacancy negligibly interact

with each other, in contrast with early reports on spin-1 paramagnetism of irradiated graphene

samples[3]. Proper consideration of σ states, and their possible hybridization with π states when

the substrate is no longer locally planar, e.g. because of ripples or interaction with a substrate[69],

has led to reconsidering the issue of the interaction between the localized magnetic moments and

the conduction electrons[66, 72], though the above mentioned recent experiments[75] seem to rule

out this possibility.

Here, in order to help shed light on the above issues we re-consider in detail the electronic structure

around a carbon atom vacancy in graphene, by employing both conventional DFT methods in peri-

odic models and accurate, spin-exact quantum chemistry methods in a �nite cluster. Such combined

analysis was motivated by the fact that current DFT approaches often prove to be unsatisfactory

to discuss the spin-properties of many-electronic systems, for reasons which essentially lie in the

common abuse of the theory in describing properties other than the ground-state energy by means

of the reference Kohn-Sham non-interacting system. Among the latter, the correct spin state of very

simple systems such as open-shell atoms or the dissociating ground-state H2 molecule, cannot be
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encoded in a single (Kohn-Sham) determinant, irrespectively of the functional used. To this we add

that if fractional occupation of single-particle levels is allowed, as done in ensemble-DFT1, further

problems may arise from the ensemble average, which may cause non-zero magnetic moments to

be apparently quenched when they are actually rotationally averaged, where this case is signaled

by a vanishing dependence of the energy on the magnetic moment. All these problems are easily

detected (and cured) in �nite systems but might also be relevant for localized electrons in extended

systems where their identi�cation is not always trivial, as we argue is here the case for a carbon

atom vacancy in graphene.

To address this kind of problems methods which explicitly handle electron correlations are more

appropriate. Among these, the above mentioned dynamical mean �eld theory[34, 53] seems to be

the most promising in condensed phases, especially if used in conjunction with �rst-principles deter-

mination of lattice parameters and interaction energies [39], and has been successfully applied to a

number of strongly correlated electron problems[34, 53]. In the method one replaces a lattice model

with local interactions by a single-site, open-system problem to be determined self-consistently,

which in turn is conveniently mapped into an Anderson impurity model2 and solved by various

means[34, 53]. In this way, though freezing spatial �uctuations, one captures the important tempo-

ral �uctuations beyond Hartree-Fock theory which dominate for large coordination numbers.
1The ensemble-DFT is a theoretical approach particularly useful to deal with degenerate states, namely in open

shell systems, and with metals, where a number of unoccupied orbitals appear close to the Fermi level. These systems
are considered as mixed states as they cannot be described by a single wavefunction but they need an ensemble of
wavefunctions on which it is possible to de�ne the ensemble density,

ρe =
X
i

pi |Ψi〉 〈Ψi|

where pi is the probability to �nd the system in |Ψi〉 and the sum is over all the accessible pure states. For
|Ψi〉 orthonormal, pi has to be: pi ≥ 0 and

P
i pi = 1. According to the ensemble minimum principle,

P
iEi ≤P

i pi 〈Ψi|HV |Ψi〉, where HV is the hamiltonian operator in the external potential V . Then the procedure is in two
steps: at �rst one has to �nd the energy by minimizing with respect to the wavefunctions in the ensemble, that give
a certain ensemble density ρe

EeV [ρe] = min
Ψi→ρe

X
i

pi 〈Ψi|HV |Ψi〉

then, one has to minimize the energy with respect to an ensemble density ρe that accounts for the N electrons in the
system

EeV = min
ρe→N

EeV [ρe]

thereby leading to the optimized partial occupation of the spin orbitals.
2The Anderson model is useful to deal with a system in which cohexist an impurity, namely a localized state φd,

and a band of states φk. The associated hamiltonian within the second quantization formalism reads as

H =
X
k

εka
†
kak +

X
i=α,β

εdd
†
idi +

X
k

Vkd
“
a†kd+ d†ak

”
+ U

“
d†αdα + d†βdβ

”
where a†k and ak are the creation and annihilation operators in the state φk with on-site energy εk and d†i and di
are the creation and annihilation operators for α and β electrons in the impurity φd state with on-site energy εd.
Moreover, Vkd accounts for the hopping between φk and φd and is responsible for the broadening of the impurity
level φd, while U represents the on-site repulsion due to the double occupation of the φd state. This term U accounts
for the existence of singly occupied states below the Fermi level, in case the double occupation is so repulsive as to
shift them above the Fermi level. This description applies to the case of the carbon vacancy, where the bands of
graphene interact with the localized σ or quasi-localized π states. These behave like impurities and correspond to
singly occupied orbitals placed below the Fermi level; in this case, for a wide interval of geometries of the reconstructed
vacancy, the double occupation is prevented as too much repulsive.



62 Chapter 3. Spin coupling around a carbon vacancy in graphene

Occasionally, one may also make pro�tably use of well-developed quantum chemistry methods to

describe atomic-like features at the expense of introducing a �nite-size model of the system under

investigation. Such methods focus on the full system wavefunction of the zero-temperature case, and

aim at recovering as much correlation energy as possible by means of multi-determinantal functions,

typically following either a variational or a perturbative scheme, or a combination thereof. They

have been recently used, for instance, to investigate the spin state and energetics of a transition

metal atom on graphene [96].

The approach we chose in this work (called CASPT2) belongs to this second class and likely rep-

resents nowadays the best compromise between accuracy and manageability. It is a second-order

perturbative method which di�ers from conventional Möller-Plesset perturbation theory (MPn) in

the choice of the reference problem. Indeed, it uses a multi-determinant reference function to solve,

with a few determinants, the near-degeneracy problems which typically spoil MPn, thus making a

perturbative approach reliable. More accurate methods, from exact diagonalization (in a truncated

single-particle space) to coupled-cluster theory (the gold-standard in quantum chemistry), su�er

from awful scaling problems which prevent their application to any reliable �nite-size graphene

model with a missing carbon atom.

Admittedly, even for CASPT2 the system size one can manage is rather modest and, therefore, in

order to assess the role that extended states may have on the problem, we performed in parallel the

magnetisation constrained DFT study mentioned above. Our approach is thus validated a posteriori

by the ensuing semi-quantitative agreement between the two sets of results, on the light of the com-

plementary limitations of the two strategies. Speci�cally, as detailed below in the following sections,

we investigated the energetics of several substrate geometries close to the equilibrium one, focusing

in particular on the out-of-plane movement of the carbon atom where most of the unpaired electron

density resides. We considered the lowest-energy spin states and found, as expected, that the triplet

is the ground-state and has a planar equilibrium geometry. However, we also found that the singlet

(previously noticed in DFT calculations[69]) is only ∼ 0.2 eV above it, it is stable out-of-plane and

becomes the ground-state for a reasonably small out-of-plane distortion. Hence, we conclude that

both spin-1 and spin-1/2 paramagnetism may in principle arise in irradiated graphene, depending

on local interactions, curvature, etc. of the graphene sheet, in addition to doping or chemical inter-

actions with foreign species.

This chapter is organized as follows: in section 3.2 we outline the Jahn-Teller distortion occurring

in the system and associated to the reconstruction of the vacancy; then in section 3.3 we report

the details of the electronic structure methods adopted in this work and the obtained results are

reported and discussed in sections 3.4 and 3.5.

3.2 Jahn-Teller distortion

The formation of a carbon atom vacancy gives rise to localized states around the vacancy, namely

one π (semilocalized) midgap state and three dangling orbitals in the σ network which result from
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Figure 3.1: lowest energy con�gurations arising from di�erent arrangements of the four unpaired
electron on the vacancy: (a) is the ground state; (b) is based on the electronic transfer from
π (a′′2)→ σ(e′) orbitals; (c) is based on the electronic transfer from σ(e′)→ π (a′′2) orbitals.

breaking the sp2 bonds which hold the carbon atom in place. In the local D3h point symmetry

group which is appropriate to discuss proper and pseudo Jahn-Teller distortions, the �rst belongs

to a′′2 symmetry species, and the latter span a′1 + e′ irreducible representations, a′1 being lowest

in energy since it contains a purely bonding combination of σ orbitals. As illustarted in �g.3.1,

the lowest energy scenarios for the many-body electronic state can be obtained by distributing two

electrons in the e′ and a′′2 states, i.e. starting from con�gurations of the type ..(a′1)2(e′)n1(a′′2)n2

with n1 + n2 = 2. Among these, the one with n1 = n2 = 1 is expected to be lowest in energy and

gives rise to many-body states of E′′ symmetry for both the parallel and antiparallel alignment.

The remaining possibilities with two electrons in the same set of states are pushed up in energy by

a larger Coulomb repulsion and have symmetries 1A′1 +3 A′2 +1 E′ for n1 = 2 and 1A′1 for n2 = 2.

So that, the ground-state is doubly degenerate for both spin alignments and undergoes (proper

or pseudo) Jahn-Teller distortion. As summarized in �g.3.2, this occurs because of coupling with

in-plane e′ vibrations ([E′′]2 = [E′]2 = A′ + E′) which distort the symmetric arrangement of the

carbon atoms around the vacancy. This is a standard E ⊗ e problem which is described by the

so-called tricorn when such vibrations are included up to second-order[12, 13]. This peculiar shape

of the potential energy surface is due to the presence of three degenerate equilibrium con�gurations

with distorted geometries produced by a combination of the two vibrational components Qε and Qθ.

In several recent investigations[2, 22, 63, 80, 113, 115] a reconstructed vacancy with a pentagonal

ring in front of an apical carbon (atom 1 in Fig.3.4) has been found; this is likely associated to the

minimum geometry located along Qθ axis.

Out of plane, e′′ vibrations do not lift degeneracy at �rst-order, but may a�ect energetics at higher

orders, especially if coupling to the low-lying excited states is considered[13]. In this way a pseudo

Jahn-Teller distortion is observed, that here comes along with the traditional one; this means that

the carbon atoms in planar distorted geometry start to vibrate in the normal direction to the

molecular plane, as reported in �g.3.3. This is particularly important here since such distortions are
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Figure 3.2: Qε(left panel) and Qθ(right panel) are the degenerate components of the e′ vibration;
equipotential sections of the adiabatic potential energy surface (APES) of the electronic state E′′

as a function of Qε and Qθ (central panel).

Figure 3.3: (left and right panel) normal modes of the degenerate out of plane vibration e′′; (central
panel) the e′′1 vibration applied to a standard E ⊗ e problem leading to a so called pseudo-JT
problem. Note that the axes representing di�erent normal modes are mutually orthogonal.

qualitatively di�erent for the states ..π1σ1 depending on whether the spins are parallel or antiparallel

to each other. This is evident for the out-of-plane movement of the apical carbon atom, shown as the

e′′1 normal mode in �g.3.3, in the distorted con�guration: the σ and the π states may hybridize to

some extent (and gain energy from double �lling) if the two electrons couple at low-spin, otherwise

they require extra energy to reduce their overlap. As a consequence, the planar structure is expected

to be stable in the triplet state only; in the singlet, a non-planar con�guration with the apical carbon

atom slightly above (or below) the surface plane appears to be more stable. This means that upon

taking into account the distortion along e′′1 in �g.3.3, the adiabatic potential energy surface for the

triplet state still shows three equivalent minima corresponding to planar geometries, while for the

singlet state six equivalent minima corresponding to non-planar geometries are expected. Because

of that, the relative stability of the two spin states is geometry-dependent and its analysis requires

at least investigating the out-of-plane movement of the apical carbon atom. This is described in

sec.3.4, after sec.3.3 has introduced the electronic structures methods and setups adopted, along

with the structural models chosen to investigate the vacancy. The Jahn-Teller theory is introduced

in the appendix A; moreover in appendix B the D3h point symmetry group is described in terms

of symmetry orbitals, normal modes and spin states symmetry for the speci�c case of the carbon

vacancy.
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n 4E (meV ) Mp(µB) dpCC(Å) Mnp(µB) dnCC(Å) hC(Å)

4 27.0 1.642 2.212 0.411 2.232 0.25
5 38.2 1.889 2.126 0.111 2.169 0.28
6 36.3 1.556 2.007 0.444 2.075 0.25
7 30.2 1.556 1.999 0.444 2.026 0.24
8 28.3 1.556 1.985 0.450 1.958 0.23
9 26.9 1.556 1.978 0.446 1.969 0.23
10 27.9 1.556 1.962 0.463 1.952 0.25

Table 3.1: Results of full structural relaxation without constraints on the magnetisation, for a
vacancy in several n×n supercells. ∆E is the energy separation between the metastable non-planar
(Cs) structure and the planar (C2v) minimum, Mnp is the magnetisation of the former and Mp that
of the latter. Also reported the length of newly formed CC bond closing the pentagon (dpCC and
dnCC for planar and non-planar geometries, respectively) and the height hC of the apical carbon
atom in the non-planar con�guration.

3.3 Methods and models

Electronic structure calculations were performed at di�erent correlation levels for di�erent structural

models. Periodic arrangements of vacancies in large unit cells were investigated with standard,

plane-wave based density functional theory calculations, whereas a �nite-size (cluster) model was

judiciously selected and studied with correlated wavefunction methods described below. As already

mentioned, the two models are best considered as complementary to each other, and none of them

is free of problems. On the one hand, the cluster approach su�ers from unvoidable �nite-size e�ects

and related discreteness of the energy spectrum; on the other hand, the periodic arrangement of

defects always favors their ferromagnetic alignment and, in addition, generates -in some regions of

the superlattice Brillouin zone- anomalous midgap states which have truly delocalized character,

i.e. that do not decay as 1/r from the defect position.

3.3.1 Periodic models

Periodic models were studied with plane-wave DFT as implemented in the Vienna ab initio pack-

age suite (VASP)[55, 57]. The exchange-correlation e�ects were treated with the Perdew-Burke-

Ernzerhof (PBE)[84, 85] functional within the generalized gradient approximation (GGA), in the

spin-polarized framework. Kohn-Sham orbitals were expanded on a plane-wave set limited to a 500

eV energy cuto� and core electrons were frozen and replaced by projector-augmented wave (PAW)

potentials[14, 58]. Several n× n graphene supercells with a 20 Å vacuum were initially considered

to model the defective system, from n = 2 to n = 10, by using Γ centered k−point meshes ranging

from 15 × 15 × 1 (for n = 2) to 3 × 3 × 1 for n = 6 − 10, in conjunction with a 0.02 eV wide

Gaussian smearing of the one-particle occupation numbers. These parameters were carefully tested

to give well converged results on the 6× 6 supercell and take the same reasonable values for larger

unit cells. The structure of a vacancy in such cells was fully optimized without constraints on the



66 Chapter 3. Spin coupling around a carbon vacancy in graphene

Figure 3.4: Optimized structure of a carbon vacancy in a 6x6 unit cell. A σ electron (black dots) is
left on the apical carbon 1; the π electron is semilocalized on the majority sites (red dashed circles).

magnetisation and gave a Jahn-Teller distorted planar minimum, with a local3 symmetry C2v and

a C −C bond length in the pentagon of about 2 Å, i.e. smaller than the graphene lattice constant

a = 2.46 Å but much larger than a typical (single) C − C bond (1.54 Å). A total magnetisation of

∼ 1.5 µB was found, in agreement with previous studies[2, 22, 63, 80, 113, 115], and decomposed

into atomic contributions by integrating the magnetisation density over Bader's atomic basins: these

'site integrated' magnetisations (MSI) show that the spin-density localizes around the vacancy (with

reference to the labels in �g.3.4 and for n = 6, we obtainedMSI = 0.896 for the apical carbon atom,

MSI = 0.148 for atoms 2 and 3, MSI = 0.084 for atoms 4 and 5 and MSI = 0.079 for atom 6), in

a way that is consistent with the presence of both a σ and a π contribution. Additionally, starting

with a low-magnetisation guess, for n ≥ 4 we invariably found a metastable spin-polarized solution

with a much smaller magnetisation which converges to a non-planar equilibrium con�guration with

a local symmetry Cs if not carefully handled during the optimization run. Clearly, the presence of

such spurious solution signals the existence of a low-lying energy state with di�erent magnetisation.

The energy separation ∆E between the metastable con�guration and the planar minimum in the

same supercells, along with the resulting magnetisations M and the main geometrical parameters

of the two structures (the length of the newly formed CC bond and the height of the apical C atom

above the surface) are given in table 3.1. Results for the global minimum compare well with those

found in previous studies[2, 22, 63, 80, 113, 115]. Based on table 3.1 we concluded that a 6 × 6

supercell with a 6×6×1 k−point mesh was a good compromise between the need of reducing inter-

action between periodic images and computational manageability. Therefore, further investigations

were performed with this setup.
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Figure 3.5: The molecular model adopted for the wavefunction calculations, along with isosurfaces
of singly occupied σ (left) and π -midgap (right) orbitals for |φ| = 0.015 Å−3/2, as obtained at the
restricted open-shell Hartree-Fock level (S = 1) for the minimum structure.

3.3.2 Finite-size model

The semi-localized character of the electronic states induced by the vacancy makes it realistic the

study of �nite-size models by means of all-electron, correlated wavefunction calculations. The size

(and shape) of the cluster had to be carefully chosen to minimize the e�ects that edges have on

the details of the electronic structure, and small enough that complex many-body wavefunctions

were yet tractable. To this end we considered a reasonably sized Polycyclic Aromatic Hydrocarbon

(PAH) (C53H20), a carbon cluster with a central vacant site which is hydrogen-terminated at the

edges (�g.3.5). Its actual shape was chosen, following the line of reasoning of ref.[67], with the help

of Tight-Binding (TB) calculations in such a way to limit the edge localization which does interfere

with the defect-induced states at the Fermi level. In the chosen structure, edge states were found

su�ciently far in energy from the vacancy-induced states (both at the TB and at the Hartree-Fock

(HF) level) to make us con�dent that the resulting energetics accurately describes the vacancy.

Cluster geometries were selected with a 'cut-out process' starting from the above mentioned 6× 6

supercells, and adding hydrogen atoms to the undercoordinated edge C atoms, without further ge-

ometry re�nement. In this way, comparison between the periodic and the cluster model with the

same local arrangement close to the vacancy was possible.

Accurate results on the �nite model were achieved through all-electron, correlated wavefunction

calculations based on atom-centered basis-sets of the correlation consistent type[106] (cc-pVDZ).

Energy was obtained with the help of the MOLPRO suite of codes[111] by correcting to second or-

der in perturbation theory a 'reference' wavefunction of the Complete Active Space Self-Consistent

Field (CASSCF) type, according to what is known as CASPT2[18, 110]. The CASSCF(n,m) wave-

3In this chapter, all considerations on the symmetry of the pristine and the distorted vacancy have only a local
character that does not apply neither to the whole periodic system nor to the �nite cluster.
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function, which acts as zero-th order state in the perturbation scheme, is a multi-determinant

wavefunction containing all possible excitations of n 'active' electrons in m 'active' orbitals, where

all the orbitals and expansion coe�cients are variationally optimized[51, 112]. For our purposes, we

started with a minimal active space containing the σ and π orbitals localized around the vacancy

(see �g.3.5) and the two electrons occupying them at the HF level, and enlarged it by including

two further π orbitals (one below and one above the Fermi level), i.e. CAS(4,4). Starting from the

Hartree-Fock guess, we fully optimized the active orbitals and the thirty doubly-occupied orbitals

higher in energy, and kept the lowest-lying (doubly occupied) orbitals frozen at the Hartree-Fock

level. With the optimized CASSCF wavefunctions at hand, dynamic correlation was introduced by

including perturbatively the e�ect of single and double excitations out of the con�gurations con-

tained in the selected CAS 'reference' space. More details on CASSCF and CASPT2 theoretical

methods can be found in the chapter 2.

3.4 Results

3.4.1 Periodic calculations

Potential energy curves As shown in tab.3.1 the optimized minimum structure shows an

appreciable magnetisation, in agreement with previous studies [2, 22, 63, 80, 113, 115], which is

compatible with a spin state where two unpaired electrons couple at high spin. The existence

of a metastable solution, on the other hand, signals the presence of a low-energy solution with

di�erent spin coupling, a solution which, in a DFT setting, can only be identi�ed by constraining

the magnetisation, so that it turns out to be the low spin ground-state. This procedure, though not

su�cient for representing de�nite spin states, allows one to mimic as much as possible the desired

electron con�gurations, while keeping the advantages of DFT of dealing with extended states.

We thus performed magnetisation-constrained DFT calculations on the 6× 6 supercell, setting the

(projection of the) magnetic moment to two (zero) Bohr magnetons for the triplet (singlet) case.

Full structural optimizations were then performed for di�erent out-of-plane displacements hC of the

apical carbon, for each 'spin' state, to investigate how these states evolve out of the plane.

The results of such calculations are shown in �g.3.6, referenced to the planar con�guration in the

triplet state, along with the magnetisation-unconstrained curve referenced to its minimum (which

is only 29 meV below that of the constrained triplet curve). It is clear that the latter is a mixture of

the two electronic states, with the triplet prevailing for hC ≈ 0 and the singlet dominant for hC � 0.

Notice here that no miminum other than the planar one appears in �g.3.6 in the spin-relaxed curve,

since care was taken for each hC to obtain the lowest energy solution.

From �g.3.6, we also see that the global minimum belongs to the triplet curve and has a �at geometry

(of C2v symmetry). The singlet curve instead shows two equivalent minima (of Cs symmetry) for

the carbon atom above and below the plane, respectively, ∼ 0.4 Å away from the surface. The

latter thus represents a bi-stable system that crosses the triplet when the carbon atom moves out

by about ∼ 0.5Å, but is otherwise higher in energy. The energy di�erence between the singlet and
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Figure 3.6: Magnetisation-constrained energies as functions of the height hC of the apical carbon
atom above the surface. Filled and empty symbols for M = 2, 0µB, referenced to the minimum
of the M = 2µB case. Also reported as a thick line the results of magnetisation-unconstrained
calculations, referenced to their minimum, and the corresponding magnetisation (dashed line, right
scale).

triplet minima is ∼ 0.18 eV, thus signi�cantly larger than the (unconstrained) 4E for the same

6×6 supercell reported in table 3.1, which referred to 'mixed' electronic states. The singlet minima

are separated by a barrier ∼ 0.2 eV high which lies ∼ 0.4 eV above the triplet. This estimate will

be re�ned in the next section on the basis of more accurate wavefunction calculations.

Before leaving this section we only stress that the curves reported in �g.3.6 refer to a full structural

relaxation (in the given electronic state) with respect to all the degrees of freedom but the height

of the apical carbon atom, and thus di�erent geometries for the triplet and for the singlet typically

result for the same hC value. The di�erences though are minimal as the height of the apical carbon

atom is the main geometrical parameter controlling spin alignment in this system, hence graphs such

as those of �g.3.6 are also representative of vertical energy di�erences. For instance, the pentagon

CC bond length is 2.035 Å in the triplet equilibrium con�guration and increases to 2.081 Å in the

singlet minima, to be compared with dCC = 2.007 Å for the magnetisation-free planar structure

(table 3.1) and dCC = 2.467 Å in pristine graphene.

Potential energy surfaces As outlined in table 3.1, along with the out-of-plane displacement

hC of the apical carbon, the carbon-carbon distance dCC in the pentagonal ring is a relevant aspect

in the reconstructed the vacancy. Indeed the equilibrium geometry of the carbon vacancy results

from an in-plane distortion, that leads to the formation of the weak CC bond in the pentagon; as

shown in �g.3.6, in the low spin con�guration, the in-plane relaxation is accompained by an out-of
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plane distortion that acts on the apical carbon. In the same way as for the hC displacement , we

proceeded to analyse the e�ect of the CC distance in the pentagon on the stability of the system.

To this end, we performed magnetisation-constrained DFT calculations on the 6 × 6 supercell to

�nd the equilibrium geometry of the two spin states for chosen carbon-carbon distances dCC at

certain (�xed) out-of-plane displacements hC of the apical carbon. This led in the end to obtain

two potential energy surfaces (PES) as a function of the height hC and the bond length dCC ,

respectively h and q in the plots in �g.3.7. Note that each surface results from a bicubic spline

interpolation of the grid of data, in which each node has coordinates (h, q). We chose h points in

the interval 0.0−0.58Å and q points in the interval from 0.0−1.2 that corresponds to 2.467−1.949Å

in a way to include all the minima previously found. In the reasonable assumption that dCC and hC

are representative of the collective distortion Qθ and e′′1 in �g.3.3 and that V is the potential energy,

one may associate the relevant con�gurations in the Qθ, Qε, V space to the ones in the q, h, V space

as signalled by coloured dots in �g.3.7. On the potential energy surface generated by Qθ, Qε, the

blue dot represents the undistorted geometry while the red dot sits in one of the equivalent minima;

note that this PES is qualitatively correct for both the spin states. Of course, the plot of such

points in the q, h, V space leads to di�erent results since the equilibrium geometry of the triplet

state is planar, while that of the singlet state is not. Accordingly, it is interesting to notice that on

the singlet surface, close to high symmetry point, the surface is slightly corrugated for both positive

and negative h values. This e�ect is due to the presence of the two other minima on the tricorn

surface, both splitted along the h coordinate in the singlet state.

3.4.2 Wavefunction calculations

As mentioned in section 3.3.2 correlated wavefunction calculations were performed on the geometries

obtained at the DFT level, �t to the cluster model of �g.3.5. We �rst checked that the singlet had

the expected open-shell character at the planar geometry, namely that the wavefunctions read

approximately as

ΨS
h=0 ∝ |...φασφβπ| ± |...φβσφαπ | (3.1)

where φσ and φπ are σ-like and π-like orbitals on the apical carbon atoms, respectively, α and β

denote up and down spin states, |..| is a shorthand for a Slater determinant and the plus (minus)

sign holds for the triplet (singlet) state. For non-planar geometries σ−like and π−like orbitals get
generally mixed, and the singlet displays both open- and closed-shell character. Only if the �rst

dominates the singlet can be considered to be the �same� electronic state of the triplet but with one

spin �ipped, and the singlet-triplet energy separation is meaningful of an exchange coupling.

To check this, we exploited the invariance of the CASSCF wavefunction with respect to rotations

of the active orbitals, and chose orbitals which maximize the overlap (while keeping orthogonality)

with the above φσ and φπ states of the planar case. In this case

ΨS=0
h ≈ c1|...φασφβπ|+ c2|...φβσφαπ |+ c3|...φασφβσ|+ c4|...φαπφβπ| (3.2)
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Figure 3.7: 2D and 3D plot of the potential energy surface for the triplet (left panel) and the singlet
(right panel) state computed as function of the height of the apical carbon h and of the pentagon
CC bond length dCC . In the plot dCC is replaced by q, with q = 1 and q = 0 for the CC distance in
the triplet ground state and in the undistorted geometry, respectively. Coloured dots on the tricorn
surface (central panel) de�ned by Qθ, Qε are projected in the q, h, V space with q ∼ Qθ and V the
potential energy.

Figure 3.8: Variation of the open-shell character of the singlet state as the apical carbon atom moves
out of plane. The symbols give the weight (c2

1 +c2
2)×100 of the coe�cients in the minimal CAS(2,2)

wavefunction with diabatized orbitals described in the main text. The insets show isosurfaces
at |φ| = 0.015 Å−3/2 of the corresponding σ-like CASSCF orbitals for representative values of
hC = 0.0, 0.32, 0.68 Å, from left to right, respectively.
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Figure 3.9: CASPT2 energies as a function of the displacement (hC) of the apical carbon atom
out of the surface plane, for the singlet (open symbols) and the triplet (�lled symbols) states.
Also reported for comparison the magnetisation constrained DFT results of �g.3.6 (dashed lines).
Energies are referenced to the triplet minimum at the corresponding theory level. The inset shows
a blow-up of the hC ≈ 0 region for the singlet.

where c1 and c2 = −c1 represent the open-shell contribution, and c3 and c4 account for the closed-

shell character (c3 = c4 = 0 and c2 = c1 in the triplet). In �g.3.8 we report the evolution of the

weight |c1|2+|c2|2 in the normalized wavefunction, as a measure of the open-shell character in singlet

state. They were obtained from simple CAS(2,2) calculations on the singlet-optimized geometries

-i.e. using just the four-determinant wavefunction described in eq.3.2- but we checked that similar

results hold for more elaborate functions. Evidently, the system is of open-shell type for a wide

range of hC values, comprising the equilibrium one. Only for very large values of hC the system

prefers a closed-shell con�guration with �magnetic� properties turned o� and, correspondingly, the

triplet is pushed higher in energy.

Multi-con�guration SCF wavefunctions obtained distributing 4-electrons in 4-orbitals (CAS(4,4))

were then optimized for several geometries sampled from the singlet and the triplet curves in �g.3.6,

and used as references for perturbative (CASPT2) calculations. The results are shown in �g.3.9,

together with DFT ones for comparison, for several values of the hC coordinate, referenced to the

triplet minimum.

It is evident from �g.3.9 that CASPT2 and DFT results closely parallel each other for the triplet but

di�er substantially in the singlet. In the latter case, a cusp (due to a likely interaction with higher

lying electronic states) is only present at the DFT level, and smooth out at the CASPT2 level,

thereby signaling the presence of an avoided crossing. In fact, the CAS(4,4) space is su�ciently

large to allow us to properly describe a number of quasi-degenerate states, i.e. those obtained by
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placing all the four unpaired electrons of the vacancy in low-lying states.

As expected, ferromagnetic coupling is preferred for most values of the height of the carbon above

the surface, and a crossing results at about hC = 0.5Å; for larger values of hC , the gain in hybridiza-

tion energy overcomes Coulomb repulsion, and the system show increased closed-shell character. A

minimum occurs in the singlet at hC = h0 = 0.38 Å (h0 ≈ 0.4 Å at the DFT level), and is actually

a double minimum, hC = ±h0, on account of the meaning of the hC coordinate. The singlet is thus

a symmetric bistable system with a barrier height of Eb = 0.09 eV.

Exchange (Hund) coupling was obtained by the vertical singlet-triplet energy separation, JH =

∆EST , using the geometries optimized for the triplet, and is shown in �g.3.10 as a function of the

angle θ subtended by the σ dangling bond and the graphene plane. The results closely parallel those

reported in �g.3.9 since, as observed above, the di�erence between singlet and triplet geometries are

minimal. The coupling ranges from JH ∼ 0.27 eV in the planar con�guration to about JH ∼ 0.1 eV

in the equilibrium con�guration of the singlet. Accounting for the zero-point motion of the apical

carbon atom out of the plane, which turns out to have a frequency ω⊥ ≈ 200cm−1, JH ∼ 0.27−0.25

eV seems to be appropriate for the ground-state system.

It is worth stressing at this point, that JH de�ned in this way is the Hund coupling constant related

to the geometry-dependent σ-like and π-like orbitals hosting the unpaired electrons. Its value in

the planar structure, J0
H = JH(θ ≡ 0), gives the Hund coupling constant in the Anderson impurity

model for the vacancy[66], while its dependence on θ (at small angles) simply re�ects the behavior

of the hybridization strength[82] Vσπ =
√

2 tan(θ)
√

(1− 2 tan2(θ)) /3 ∆εsp (∆εsp being the carbon

s− p splitting), as con�rmed by the dashed line in �g.3.10.

Furthermore, despite the limited size (and discreteness of the energy spectrum) we found no in-

dication that the π-midgap state is only marginally occupied, thereby suggesting that the limit

Uσπ � JH/4 applies in the above mentioned Anderson model (Uσπ is the Coulomb repulsion be-

tween electrons in the σ and in the π midgap states).

3.5 Discussion

Computed exchange coupling constants are clearly too large to have a decoupled response from

the two localized electrons to external magnetic �elds. The presence of a low-lying singlet at

energy ∆ above a J-paramagnetic ground-state does a�ect the magnetisation, but only to the

extent it modi�es thermal populations, that is introducing a temperature- and �eld- dependent

correction factor f(β,H) = A(Be−β∆ + A)−1 to the thermally averaged magnetic moment (here

A = sinh[βγH
(
J + 1

2

)
] and B = sinh[βγH2 ], β = 1/kBT as usual, H is the magnetic �eld and γ is

the relevant gyromagnetic ratio). This factor has a distinguishing feature of making the moment no

longer dependent on the reduced �eld βH only, but is hardly appreciable for β∆ & 1 (i.e. T . 2000

K(!) for ∆ ∼ 0.2 eV). Only for β∆� 1 this factor transforms the J = 1 ground-state magnetisation

density into twice that of a J = 1/2 moment. In practice, this limit attains only if ∆ is vanishing
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Figure 3.10: Variation of the Hund coupling constant as a function of the angle subtended by the
σ dangling bond and the graphene plane (�lled symbols). Dashed line is a low-angle weighted-�t of
the data to JH = J0

H − 4A tan2(θ)
(
1− 2 tan2(θ)

)
/3 , which gives J0

H = 0.268 eV and A = 7.59 eV.

small4, since the above (2-electron) 'atomic' picture is challenged at much lower temperatures by

thermal excitations out of/into the π midgap state5. Likewise for doping which can be used to tune

the π state population, as it has been recently shown by molecular adsorption[75].

All this suggests that the bare vacancy in free-standing graphene at low temperature should display

a J = 1 paramagnetic response and results reported by ref.[3] are consistent with this picture.

Decoupled σ and π moments, as those observed under better-controlled conditions by Nair et al.[74,

75], though, are still plausible since the apical carbon atom may be easily stabilized out of the

4This follows from

e−βF1 = e−β4 +
+1∑

Jz=−1

e−βγHJz = 1 + e−βγH + 1 + e+βγH ≡

≡
(
e−

βγH
2 + e

βγH
2

)2

=
(
e−βF1/2

)2
where e−βF1 is the partition function of the system with J = 1 in the presence of a state with J = 0 at energy
4 and F1 is the Helmotz free energy. In this limit, F1 = 2F1/2 and total magnetic moment is obtained from

〈m1〉 = −∂F1

∂H
= −2

∂F1/2

∂H
≡ 2

〈
m1/2

〉
This situation may occur at very high temperatures even for non vanishing ∆: in this case, low temperature
curves for ∆ 6= 0 resemble J = 1 behaviour and high temperature curves resemble (twice) J = 1

2 behaviour.
5Notice though that thermal excitations are not relevant to magnetometry experiments since they are performed

at very low temperatures. This is con�rmed by the fact that, under similar conditions, �ourinated graphene gives
the expected spin− 1

2
response of π moments[74]. Double occupation of the σ state, on the other hand, is prevented

by the large Coulomb repulsion[66], Uσσ ≈ 10 eV, and the binding energy in this state is substantial[80] (εσ ≈ −0.75
eV) to rule out possible excitations out of this state.
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Figure 3.11: Optimized structure of a single hydrogenated vacancy. The CH bond is 1.080 Å long,
and its carbon end lies 0.694 Å above the graphene plane.

surface plane (at about h ∼ 0.3Å where JH ≈ 0), for instance in the presence of a (weakly-binding)

substrate[69] or ripples.

With the same token, spin-half residual moments may arise because of interaction with foreign

species. Vacancies are highly reactive species which easily saturate their dangling σ bonds and

leave a π magnetic moment only. We have checked this by considering adsorption of a single

hydrogen atom, and found that such a process is both thermodynamically and kinetically favoured

at any temperature. A rather large value (typical of a CH bond in saturated hydrocarbons, Eb ≈ 4

eV) is found for the binding energy Eb of a single H atom (Eb = 4.226 eV at the DFT level of

theory in the 6×6 supercell setup), and no barrier appears in the adsorption pro�le, indicating that

the vacancy is a site where facile sticking may occur. The resulting structure is shown in �g.3.11

and has magnetisation M = 0.676µB, compatible with a residual unpaired electron localized into a

hybrid π − σ state. A deeper analysis of single and multiple hydrogenation comprising static and

dynamical aspects will be presented in chapter 4.

Screening of the magnetic impurity (the vacancy) by π−band states (Kondo e�ect) is a more subtle

issue. DFT is not able to handle such highly correlated situations, and the �nite model adopted

for the wavefunction calculations, along with the limited excitations included in the wavefunction,

prevent observation of any pairing between the �impurity� and the π band states. In the �nite size

model, such pairing would be signaled by the presence of singly excited con�gurations where π states

singlet-couple with the impurity π-midgap or σ state. Our wavefunction does include a number of

excitations out of the occupied states in the CAS space and, perturbatively, excitations of the

�core� states at the CASPT2 level, but a detailed analysis of the wavefunction such that presented

above at the CASSCF level is out of question. In the overall triplet state, Kondo singlet-pairing

would be signaled by an increasing delocalization of the spin-density when enlarging the cluster

size (as a consequence of the mixing with band states) but computational cost becomes prohibitive

to check this. Notice though that dynamical mean-�eld theory with local interactions showed no

evidence of quenching of the π−related local magnetic moment[79], in accordance with observations
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of spin-1
2 paramagnetism in �uorinated graphene[74]. In the case of vacancies, screening of the σ

moment is expected only for non planar geometries and, if any, is not compatible with the Curie-law

behaviour observed in refs. [74, 75]. Metallic Kondo screening of spin-1
2 impurities has been used

to explain transport measurements in irradiated graphene at di�erent doping levels[42], including

charge neutrality, but the interpretation has been questioned[43, 47], and the observed logarithmic

increase of resistivity at low temperatures related instead to electron-electron interactions in the

disordered system[5, 48].

3.6 Conclusions

We reported on a detailed analysis of the electronic and geometric changes that occur upon vacancy

formation in graphene, using both DFT and a high-level quantum chemistry method (CASPT2)

to overcome known limitations of DFT. The picture that emerges is that of two local magnetic

moments coupled to each other to give a triplet ground-state, in accordance with a report of spin-1

paramagnetic species[3]. Spin-half paramagnetism[74, 75], though, can arise in many instances.

Vacancies are highly reactive and easily saturate their σ dangling bond in the presence of foreign

species. Also, ripples or (weak) coupling to a substrate may stabilize a non-planar con�guration of

the apical carbon atom, thereby reducing the e�ective Hund coupling constant of the two-electron

system and decoupling the corresponding local moments. This is the likely source of spin-half

paramagnetic behavior observed in refs.[74, 75], where doping has been shown to e�ectively halve

the magnetisation density.

We could not deal with the possible pairing of the magnetic moment with the �conduction� π-band

states, because of the limitations of DFT on one hand and the use of a �nite cluster model (and

limited excitation in the wavefunction) on the other hand. At the above level of theory we do not

have indication, however, of such a coupling. This is consistent with the absence of anomalies in the

measured susceptibility of refs.[74, 75], also at �nite densities, and in that computed (for π-moments

only) with dynamical mean �eld theory in the presence of local interactions[79], and suggests that

further investigation on the transport data measured by ref.[42] is required for the Kondo e�ect in

graphene to be unambiguously identi�ed.



Chapter 4

Poly-hydrogenation of a carbon vacancy

in graphene

In this chapter we study by DFT means the process of hydrogenation of the carbon vacancy,

starting from the bare defect atom up to the case of six hydrogen atoms chemisorbed onto its

nearest neighbours. We initially consider the formation of a mono-hydrogenated vacancy, looking

at the binding energy and the activation barrier. As well, we study a variety of possible mutual

arrangements of the adsorbates at higher coverages discussing their reactivity and local magnetic

moments. Moreover, by using these DFT energies, we build a phase diagram in a broad range of

temperatures and H2 partial pressures and we �nd that the �rst few hydrogen stickings are the most

energetically favourable steps, making defective graphene extremely sensitive to hydrogenation. At

room T and p conditions, the magnetic (M = 1µB) 3H-anti structure is the most stable in agreement

with recent magnetic measurements. In addition, we discuss and compare our results with recent

TEM, STM and µSR experiments and, motivated by the comparison with a µSR experiment, we

carry out a dynamics study on the addition of a second hydrogen atom on a mono-hydrogenated

vacancy as reported in the last part of this chapter. This permits us to �nd the statistically more

relevant con�gurations for the two hydrogen atoms and to further con�rm our results.

4.1 Structure and energetics

4.1.1 Method and system

The structure and the energetics of several possible hydrogenated vacancies in graphene has been

investigated with plane-wave DFT as implemented in the Vienna ab initio package suite (VASP)[55,

57]. To this end, we chose a setup that is a good compromise between the need of a reliable descrip-

tion of isolated (non-interacting) vacancies and the computational manageability. The exchange-

correlation e�ects for both carbon and hydrogen atoms were introduced by the Perdew-Burke-

Ernzerhof (PBE)[84, 85] functional within the generalized gradient approximation (GGA), in the

spin-polarized framework. The Kohn-Sham orbitals were expanded in a plane-wave basis set lim-

ited to a 500 eV energy cuto�, the electrons were described by the projector augmented-wave

77
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(PAW)[14, 58] method, in the limit of frozen core electrons. The hydrogenated carbon vacancy was

modeled by a 6 × 6 supercell with 20 Å vacuum by using a 6 × 6 × 1, Γ centered k-points mesh,

introducing up to six hydrogen atoms. The structure of each hydrogenated vacancy was fully opti-

mized in terms of geometry and spin, and minimum structures were obtained. The binding energy

for the poly-hydrogenation of the bare C vacancy was computed as

∆EHV nH = EV nH − (EV + nEH) (4.1)

∆EH2
V nH = EV nH −

(
EV +

n

2
EH2

)
(4.2)

depending on the reference state being either the H radical in eq.4.1 or gas phase H2 molecules

in eq.4.2. In the same equations, EV is the DFT energy of the isolated vacancy in graphene and

EV nH is the energy of the n-hydrogenated vacancy, with n = 1..6. The reference bare vacancy

is in its equilibrium state obtained upon a relaxation of both the nuclear positions and the total

magnetisation. Both atomic and molecular hydrogen, chosen as hydrogen source, have been modeled

by a cubic cell with a 20 Å side using one Γ centered k-point; the exchange-correlation functional

and the basis set are the same used for the hydrogenated vacancy. The progressive hydrogenation

steps were computed accordingly,

∆EHV nH−1H = EV nH −
(
EV (n−1)H + EH

)
(4.3)

∆EH2
V nH−1H = EV nH −

(
EV (n−1)H +

1
2
EH2

)
(4.4)

where EV nH and EV (n−1)H are the DFT energies of the carbon vacancy with n− and n−1 H atoms

chemisorbed, respectively.

As described in details in chapter 3, a vacancy in graphene forms upon the extraction of a carbon

atom that implies the cleavage of four bonds and leaves four unpaired electrons, three σ and one π,

on the lattice. The σ electrons are tightly localized on the sites C1, C2, C3 in �g.4.1 and behave as

dangling bonds; the π electron instead behaves similarly to π electrons left upon the chemisorption

of monovalent species (H, F, etc.)[16] and in analogy with them it is usually referred as midgap

state. The origin of these states relies on the inherent nature of graphene, that is a bipartite

system, composed by two interpenetrating and equivalent sublattices A and B. Such equivalency is

broken after the introduction of a defect, like a C-vacancy or a chemisorbed species, which removes

one pz orbital from the π-network. In this way the sublattice imbalance turns out to be also an

electronic imbalance and gives rise to singly-occupied electronic states, namely the midgap states.

The number of midgap states is expected to be greater or equal than |nA − nB|, where nA and nB

are the number of sites in the two sublattices[41]. Both theory and experiments proved that these

states localize on the majority sites and decay as ∼ r−1 from the defect[68, 88, 89]. Moreover,

in recent magnetisation measurements[74], graphene samples with adsorbed �uorine atoms showed

an itinerant spin-1/2 paramagnetic response due to the presence of these π unpaired electrons.

However, on the carbon vacancy this simple picture is complicated by the presence of three σ
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Figure 4.1: three σ electrons (black dots) localized on as many carbon atoms and one π electron
(red dotted circles) delocalized on the non defective sublattice. Note that the probability to �nd
the π electron decays like ∼ 1/r with r the distance from the center of the vacancy.

electrons in addition to the π one. Indeed within the D3h symmetry of the pristine vacancy, these

electrons give rise to a doubly degenerate electronic con�guration that in turn implies a Jahn-Teller

instability. As a consequence two carbon atoms on the vacancy get close forming a pentagonal

ring, while the third (apical C) possibly shifts out of the lattice plane. Along with this nuclear

displacement, two σ electrons turn out to be coupled in a low-lying orbital referable to the weak

C-C bond, while the remaining σ and π electron are host by the apical carbon. As reported in

chapter 3, in the ideal situation of a bare vacancy in a free-standing graphene sample, these two

unpaired electrons give rise to a magnetisation of 1.56 µB in the equilibrium planar geometry. It

is important to point out that this non-integer value does not have a real physical meaning, being

due to the intrinsic features of spin-polarized ensemble-DFT calculations. To overcome this limit

we relied on magnetisation-constrained DFT calculations and we found in the end that the ground

state equilibrium geometry is planar and it correponds to a triplet state; anyway,we found also a

non-planar minimum solution corresponding to an open-shell singlet. It is interesting to notice that

recent experiments in refs.[3],[75] have proved the existence of a vacancy magnetism, that originates

from two unpaired electrons. In ref.[75] these have been clearly identi�ed as a π electron and a

σ dangling bond, leading to a decoupled magnetic response that makes the C-vacancy a spin-1/2

paramagnetic center. On the other hand, in ref.[3] the two electrons are found to be coupled in a

triplet con�guration thereby leading to a spin-1 paramagnetic signal. Irrespective of the way they

interact, that strongly depends on the �environment� in which the graphene sample is kept, the σ

and π are expected to be highly reactive towards foreign monovalent species due to their radical

nature. As well, also the two σ electrons coupled in the weak C-C bond in the pentagonal ring, are

predicted to be likely available to react as the carbon-carbon interaction is very weak, as suggested

by relatively long bond length ∼ 2Å, compared to the usual ∼ 1.54Å of the single C-C bond. This

means that four unpaired electrons sit at the vacancy nearest neighbours sites, thereby permitting

the multiple adsorption of hydrogen atoms to easily occur and explaining why the sticking process

is more favoured on such sites than elsewhere around the vacancy or onto 'bulk' carbon atoms.
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Figure 4.2: (a) geometry of the mono-hydrogenated vacancy and (b) electron spin density, mainly
localized on the non defective lattice with a dominant π character.

4.1.2 Adsorption of the �rst hydrogen atom

We start considering the adsorption of the �rst hydrogen atom on the bare vacancy. The binding

energy is ∆EHV 1H=4.19 eV which accounts for the formation of the bond between the hydrogen

atom and a carbon atom of the surface and for the distortion of the graphene lattice, with the

hydrogenated carbon shifted ∼ 0.35 Å out of the surface plane, that drags along its neighbouring

atoms. As shown in �g.4.2a, the pentagonal ring associated to the in-plane reconstruction of the

bare vacancy is still present as the H atom binds to the apical carbon. After the adsorption, a single

π electron is left as shown by the spin density plot in �g.4.2b, and it is responsible for the nonzero

magnetisation equal to 0.56 µB.

In order to get a comprehensive picture of the single hydrogen adsorption, we computed the potential

energy curve as a function of the z coordinate of the hydrogen atom, in such a way to determine

whether the process is activated or not. To this end, both the nuclear positions and the spin

structure of the 6 × 6 supercell with a carbon vacancy and an hydrogen atom on top of C1 have

been relaxed to �nd the equilibrium con�guration for a number of di�erent heigths of the hydrogen

atom. Accordingly, its position was fully optimized in the xy plane, while the z coordinate was

constrained; in the graphene lattice, only the nuclei close to the vacancy were allowed to relax while

all the other were kept �xed. Note anyway that the initial geometry of the graphene lattice was

taken from a previous optimization of the bare system. The chosen setup is equivalent to that used

to study the hydrogenation of the vacancy and reported in sec.4.1.1, except for two aspects: (i)

the empty space that isolates the periodic images along the c axis has been cut from 20 to 10 Å

to reduce the computational cost; (ii) the smearing procedure has been changed from the gaussian

smearing to the tetrahedron method to obtain more accurate energies. In �g.4.3 the energy pro�le

as a function of the z coordinate of the hydrogen atom is shown as a green line and it is referenced to

the energy of the system with the hydrogen atom 4.5 Å far above the surface. It is possible to notice

that the chemisorption is barrierless as a consequence of the crossing at z ∼3.5 Å between a diabatic
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potential energy curve in an asymptotic �high spin� manifold (red line in �g.4.3, with magnetisation

M = 2.7µB) and a diabatic bound �low spin� manifold (blue line in �g.4.3, with magnetisation

M ≤ 1µB ). By following the minimum energy pro�le, one �nds that in the interval between 4.5

and 3.5 Å, the incoming hydrogen has almost no interactions with the surface, indeed the energy of

any equilibrium structure is almost independent on the z value and close to zero. Here, the graphene

sheet remains �at as shown in the inset b and the high magnetisation accounts for the unpaired

electron on the hydrogen atom in addition to the two unpaired electrons on the vacancy (in the

triplet state). When the hydrogen moves beyond the threshold of 3.5 Å, the situation dramatically

changes: the drop in energy accounts for the formation of a C-H bond and for a strong distortion

of the graphene lattice, as indicated by the illustrative geometry in �g.4.3(inset a). In the end, the

residual magnetisation, below 1 µB, is due to the unpaired π electron as apparent from �g.4.2.

4.1.3 Multiple hydrogen adsorption

We have computed equilibrium structures and binding energies for the chemisorption of up to six H

atoms on the three C atoms (C1,C2,C3 in �g.4.1) nearest neighbours of the vacant site. In this way

several di�erent con�gurations can be achieved that can be classi�ed in terms of relative positions

of hydrogen atoms. Accordingly, the geminal con�guration consists of two hydrogen atoms bound

to the same carbon atom, while in the syn or anti arrangements the two hydrogen atoms are on

di�erent carbon atoms and span respectively either the same or the opposite faces of the graphene

layer. Similarly, three hydrogen atoms are syn when they sit on the same face of the graphene sheet,

anti when two of them sit on the opposite faces, geminal when these two are bound to the same

carbon. With four hydrogen atoms on the vacancy, the formation of a geminal pair is unavoidable;

anyway the relative arrangement of the other two hydrogen atoms may still be syn, anti or geminal.

Finally, for the higher hydrogenation levels, namely with �ve and six atoms adsorbed, the possible

arrangement is just one. All these possibilities have been explored, with the only exception of the

tri-hydrogenated syn vacancy for which we could not �nd any stable solution.

4.1.3.1 Lattice structure

The geometrical structure of each hydrogenated vacancy is analysed in terms of hydrogen-carbon,

carbon-carbon and hydrogen-hydrogen bond lenghts; moreover also the displacement of the hy-

drogenated carbon out of the lattice plane is considered. In table 4.1, the C-H bond lenghts are

listed and they vary in the range 1.07 − 1.12 Å, where the highest values in this interval refer to

the geminal pairs as longer bonds permit a reduction of the steric repulsion. It is interesting to

notice that, in any case, such distances are shorter than those found for H chemisorbed on perfect

graphene (1.13 Å in [16]). The spatial con�guration is the most signi�cant parameter in determin-

ing the C-H bond lenght, which is otherwise almost una�ected by the number of hydrogen atoms

bound to the vacancy. The sticking of hydrogen atoms induces a further reconstruction of the

C-vacancy as shown in table 4.2 and table 4.3. The C atom involved in the C-H bond usually
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Figure 4.3: the energy (left axis) and the total magnetisation (right axis) as a function of the z
coordinate of the H atom above the graphene plane. For each optimized geometry, solid and empty
symbols give the energy and the magnetisation, respectively; red and blue symbols are for non-
interacting and strongly interacting systems, respectively. In (a) an illustrative case of the lattice
distortion to form a C-H bond, with the hydrogenated carbon shifted 1.99 Å out of the lattice plane
along with its neighbours and zH = 3.25 Å. In (b) the undistorted structure. In (c) the crossing of
the curves.

moves out of the layer plane as a consequence of its partial rehybridization from sp2 to sp3. When

poly-hydrogenation occurs, the direction of the displacement is determined by the con�guration:

reasonably the carbons are pulled in the same direction for the syn case and in opposite direction

for the anti case. Note that the carbon atom with a geminal pair of hydrogen atoms usually un-

dergoes a smaller displacement than the mono-hydrogenated carbon, because of the opposed e�ect

of the two hydrogen atoms. The C-C distances in table 4.3 suggest that di�erent outcomes should

be encountered depending on the number of hydrogen atoms and their relative positions. We also

note that in the mono-hydrogenated vacancy as well as in the geminal di-hydrogenated vacancy,

the two carbon atoms not involved in the C-H bond form the pentagonal ring by making a weak

C-C bond, whose bond lenght is close to 2 Å, compared to the 2.47 Å of ideal graphene. This

structure is analogous to that of the bare vacancy due to the Jahn-Teller e�ect. In all the other

cases, the presence of at least two hydrogenated carbon atoms prevents the formation of the weak

C-C bond and the pentagonal ring. Here the structural relaxation �nally results in a vacancy where

the C-C distances are all larger than the reference unrelaxed value (2.47 Å). This clearly accounts

for the steric repulsion associated to the presence of several hydrogen atoms. However, in addition

to the in-plane relaxation of the carbon atoms, the hydrogenated vacancy often shows a signi�cant

displacement of the hydrogenated carbons (and their closest neighbours) out of the molecular plane

mainly motivated by their partial orbital rehybridization. Some of these observations are summa-

rized in �g.4.4. The hydrogen-hydrogen distances are reported in table 4.4. In geminal pairs, the

H-H distance is almost una�ected by the total number of atoms adsorbed, in fact it varies between
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C1-H C2-H C3-H
1H 1.08
2H gem 1.11 1.11
2H anti 1.09 1.09
2H syn 1.08 1.08
3H gem 1.11 1.12 1.08
3H anti 1.08 1.07 1.09
4H gem 1.11 1.09 1.10 1.11
4H anti 1.07 1.07 1.10 1.10
4H syn 1.07 1.07 1.11 1.11
5H 1.07 1.11 1.08 1.09 1.10
6H 1.11 1.10 1.11 1.08 1.10 1.09

Table 4.1: C-H bond lenght in Å for hydrogen atoms adsorbed on the carbon atoms of the vacancy.

position C1 position C2 position C3

1H 0.69 -0.03 -0.03
2H gem 0.30 0.07 0.05
2H anti 0.48 -0.44 0.00
2H syn 0.60 0.60 -0.09
3H gem 0.36 0.60 0.12
3H anti 0.68 0.49 -0.34
4H gem 0.29 0.03 −0.09
4H anti 0.48 -0.41 0.05
4H syn 0.80 0.80 0.54
5H 0.79 0.66 0.18
6H 0.32 −0.23 0.00

Table 4.2: out of plane displacement of C atoms along the z coordinate, in Å. In bold type the C
atoms that carry a geminal pair of hydrogen atoms.

1.73−1.79Å, where the lowest and the highest value accounts for the di-hydrogenated and the fully

hydrogenated vacancy respectively. This is consistent with the behaviour of C-H distances in table

4.1 which was found to be essentially independent on the degree of hydrogenation. On the other

hand, general considerations on the distances between syn and anti hydrogen atoms are of course

more complicated and less reliable, since they follow from the reconstruction of the vacancy that

depends on both the number of hydrogen atoms and their spatial con�guration. For this reason

each case needs to be investigated individually.

4.1.3.2 Electronic properties

The magnetisation and the orbital character of the possible unpaired electrons in the C-vacancy at

di�erent stages of hydrogenation is summarized in table 4.5 together with the corresponding spin

densities shown in �g.4.5.

Except for the mono-hydrogenated vacancy, all the other cases correspond to almost pure spin

states, with the total magnetisation between 0 and 2 µB depending on the degree of hydrogenation.

Our calculations show that the residual πC electron, left upon the �rst H adsorption, would couple
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C1-C2 C1-C3 C3-C2

1H 2.72 2.72 1.98
2H gem 2.58 2.58 2.06
2H anti 2.81 2.73 2.72
2H syn 2.80 2.65 2.65
3H gem 2.72 2.62 2.75
3H anti 2.85 2.86 2.81
4H gem 2.64 2.65 2.62
4H anti 2.84 2.73 2.73
4H syn 2.89 2.74 2.74
5H 2.77 2.78 2.70
6H 2.71 2.68 2.67

Table 4.3: C-C distances around the C vacancy, in Å. In bold the C-C distance in the pentagonal
ring that appears when two carbon atoms get close.
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2.852.80
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Figure 4.4: Di�erent aspects of the carbon vacancy in graphene. Note that all the distances are in
Å and carbon and hydrogen atoms are respectively brown and pink. In (a) 2H-syn, (b) 2H-anti, (c)
3H-anti and (d) the 6H structures.

H-H distance gem anti syn
2H gem 1.73
2H anti 1.92
2H syn 1.51
3H gem 1.74 1.81 1.65
3H anti 1.87 2.20 1.42
4H gem 1.75 1.76 1.85 2.85 1.70 1.62
4H anti 1.76 2.14 2.01 2.21 1.47 1.48
4H syn 1.75 1.87 1.87 1.48 1.74 1.74
5H 1.74 1.78 2.94 1.82 2.38 1.75 1.97 1.88 1.58
6H 1.79 1.76 1.77 1.67 2.08 2.67 3.08 1.94 2.80 1.79 1.78 1.49 1.72 1.71 1.50

Table 4.4: H-H distances for geminal, anti and syn pairs, in Å. In the geminal case the values are
quite uniform and essentially independent on the total degree of hydrogenation.
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magnetisation (µB) unpaired electrons left
1H 0.56 πC

2H gem 0.00 none
2H anti 2.00 σ, πC

2H syn 0.00 σ, πC

3H gem 1.00 σ
3H anti 1.00 πC

4H gem 1.92 σ, πH

4H anti 0.00 none
4H syn 0.00 none
5H 1.00 πH

6H 2.00 πH , πH

Table 4.5: total magnetisation in µB and unpaired electrons left on the C-vacancy after the hydro-
genation process.

with that of an H atom giving rise to a closed shell electronic structure only when the latter forms

a geminal pair. On the contrary, an open-shell character is associated to both the anti and syn

dimer con�gurations, where the spin alignment of the two electrons is respectively parallel and

antiparallel. Further on, in presence of three hydrogen atoms, just a single unpaired electron is

left; it occupies the πC or σ orbital depending on the relative arrangement of the adsorbed atoms,

respectively anti or geminal. As expected, when four hydrogen atoms are on the vacancy in anti

or syn con�guration, there are no unpaired electrons left; di�erently the geminal structure involves

two σ dangling bonds on the three available, the midgap πC electron and a further π electron (πH)

made available upon the break of a π bond in the graphene lattice. This means that two unpaired

electrons are left on the vacancy: a σ and a πH . Finally, from this observation it follows that the

�fth hydrogen atom reasonably makes a bond with the σ electron left; moreover, the sixth hydrogen

may be accommodated at the vacancy only upon breaking a further π bond. These results are

shown in �g.4.5, where it is easy to see the πH electrons left on the highly hydrogenated vacancy

as they belong to the defective sublattice unlike the πC electron that localizes on the non-defective

one.

4.1.3.3 Energetic aspects

We consider now the energy balance of the hydrogenation process of the C-vacancy with respect

to atomic and molecular hydrogen. The formation of a C-H bond is always an exothermic process

which generates a certain amount of energy, therefore the di�erence between the DFT energies of

products and reactants (∆EHV nH) with respect to atomic hydrogen is always negative. This is not

true for molecular hydrogen, since in this case the energy balance ∆EH2
V nH also includes the energy

required to break the H2 molecule, ∼ 4.55 eV.
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(a) (b) (c) (d)

(g)(e) (f)

Figure 4.5: spin density for di�erent hydrogenation degrees, due to α (yellow) and β (blue) electrons;
C and H atoms are respectively brown and pink. (a) 1H-vacancy; 2H-vacancy with (b) geminal,
(c) anti and (d) syn arragement of the two H atoms; 3H-vacancy in (e) geminal and (f) anti
con�guration; (g) 4H-vacancy in a global geminal con�guration; (h)-(i) 5H- and 6H-vacancy.

Hydrogenation with H atoms We consider �rst the hydrogenation process with atomic hy-

drogen. In table 4.6 we report the energy di�erence between the bare vacancy, in its ground state

(M=1.56 µB) and the hydrogenated vacancy. Depending on the degree of hydrogenation as well

as on the �nal con�guration, ∆EV nH varies. The largest value is observed for the �rst H atom,

where steric e�ects are minimal; then the energy gain raises up to ∼ 16 eV in the 6H-vacancy. This

process is also illustrated in the scheme in �g.4.6, which shows a detailed landscape of the energy

di�erences for each progressive step of the hydrogenation. Here it is clear how the highest energy

gain is obtained by adsorbing the �rst hydrogen atom, while the lowest is for the adsorption of

the last (sixth) hydrogen to produce the 6H-vacancy. It is interesting to note that the formation

of a geminal pair at each level of the scheme is always the less exothermic event due to steric and

electronic e�ects. Nevertheless some di�erences should be pointed out: indeed when the geminal

pair involves a σ and the πC electron the energy release is close to ∼ 2.40 eV; on the other hand

when a σ and a πH electron are involved the amount of energy is signi�cantly lower and varies

between 1.20 − 1.70 eV. Such di�erence can not only be related to steric factors but reasonably

accounts for the energy needed to break a π-bond and generate the πH electron.

Hydrogenation with H2 molecules The energetics of hydrogenation with respect to molecular

hydrogen is instead shown in table 4.7. From this table, it is possible to recognize the same trend

found for the atomic hydrogen, where the largest average energy per H atom is still associated to

the monohydrogenated vacancy, while the smallest one is for the fully hydrogenated vacancy. The
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4EHV nH
1H -4.19
2H gem -6.61
2H anti -7.53
2H syn -7.28
3H gem -9.96
3H anti -11.36
4H gem -11.53
4H anti -13.74
4H syn -13.75
5H -15.43
6H -16.65

Table 4.6: total energy in eV for poly-hydrogenation computed from eq.4.1 with respect to H atoms
gas as source and the bare vacancy with magnetisation M=1.56 µB.

Figure 4.6: detailed energy di�erences in eV computed according to eq.4.3 for each step in the
hydrogenation process with respect to the con�gurations. Atomic hydrogen is used. The vacancy
is shown as a triangle, the three C atoms are in brown while the adsorbed H atoms are pink.
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4EH2
V nH

1H -1.94
2H gem -2.11
2H anti -3.03
2H syn -2.77
3H gem -3.20
3H anti -4.60
4H gem -2.52
4H anti -4.72
4H syn -4.73
5H -4.17
6H -3.13

Table 4.7: total energy in eV for poly-hydrogenation computed from eq.4.2 with respect to H2 gas
as source and a bare vacancy with magnetisation M=1.56 µB.

Figure 4.7: detailed energy di�erences in eV computed according to eq.4.4 for each step in the
hydrogenation process, by using gaseous H2 as source. The vacancy is shown as in �g.4.6. In blue
positive energy di�erences associated to endothermic adsorption steps.
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absolute values are anyway signi�cantly smaller because of the binding energy of H2. The detailed

energy di�erences reported in �g.4.7 show that, up to the third hydrogen atom, the hydrogenation

process is always enthalpically favoured. On the other hand, for the more hydrogenated vacancies

the energy balance may depend on the �nal con�guration. Indeed the 4H-vacancy is enthalpically

favoured with respect to the 3H-vacancy in the syn and anti con�gurations but is unfavoured in the

geminal one. In the same way, the 5H-vacancy is favoured with respect to the geminal 4H-vacancy

but not to the syn and anti structures. Finally the production of the 6H-vacancy from the 5H one

is anyway endothermic. Note that, as already remarked for the adsorption of atomic hydrogen,

whenever the cleavage of a π-bond is required, an extra-amount of energy is spent.

4.1.4 Discussion

From our results it is clear, that the hydrogenation of a carbon vacancy is a spontaneous process

from both a thermodynamic and a kinetic point of view. The �rst hydrogenation step is barrierless,

and it could occur even at very low H2 partial pressures[46]. As the mono-hydrogenated vacancy

carries one unpaired electron, this process could explain the detection of S=1/2 magnetism in

irradiated graphene samples[74, 75]. In all the cases considered, the adsorption of a second H atom

seems to be preferred in a dimer (either syn or anti) con�guration over the geminal one, as binding

energies are more favourable in the former case, while barriers are very similar, as will be shown in

sec.4.2. This scenario is contradicting recent muon spin resonance (µSR) measurements, which have

found the geminal structure to form preferentially from irradiation of hydrogenated C vacancies[93].

Anyway, by assuming that the three-fold vacancy observed in STM and TEM images may account

for the average over the three possible orientations of the pentagon ring[59, 94], the formation of

a geminal pair that �xes the position of the pentagon might justify the simultaneous detection of

a reconstructed vacancy in ref.[94]. To clarify this issue and �nd out a possible kinetic e�ect on

the formation of a 2H geminal structure, we carried out a molecular dynamics simulation to follow

the entrance of the second hydrogen on both the same (syn entrance) or on the other face (anti

entrance) with respect to the �rst hydrogen adsorbed, as presented in sec.4.2.

In the adsorption of further H atoms, the energy landscape is governed by both geometric and

electronic e�ects, with the latter being dominant. The general trend is to minimize the number

of unpaired electrons at the vacancy site, in the end favouring closed shell (non-magnetic) states.

Thereby, the incoming hydrogen atom preferably binds to one of the σ dangling bonds as these

are tightly localized, thus more likely available to react than the π electrons, delocalized on many

carbon atoms. Once no unpaired σ electrons are left or in the case of a geminal arrangement, the π

electrons come into play. Accordingly, the closed-shell 4H-syn and 4H-anti structures are found to

be thermodynamically more stable then the other structures (4EHV nH = −4.7 eV), with the only

exception of the 3H-anti case (4EHV nH = −4.6 eV), as shown in table 4.7. In this latter structure

the three H atom saturates the dangling bonds, leaving only the midgap electron unpaired.

To evaluate the thermodynamic stability of each n-hydrogenated phase at a chosen temperature
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and pressure, we needed to consider the Gibbs free energy of formation 4Gform(p, T ), which was

computed following the formula

4Gnform(p, T ) = GV nH(p, T )−GV (p, T )− n

2
×G(p, T )H2 (4.5)

Where GV nH(p, T ), GV (p, T ) and G(p, T )H2 are the Gibbs free energies for the n-hydrogenated

vacancy, the bare defect and the H2 molecule respectively. As condensed phases usually show a

much lower dependence on temperature and pressure conditions than the gas phase, we simply use

DFT energies for the �rst two terms in eq.4.5. Assuming for hydrogen an ideal gas dependence on

its partial pressure p, it follows

4Gform(T, p) ∼ EV nH − EV −
n

2
×
[
EH2 +HH2

(
p0, T

)
− TSH2

(
p0, T

)
+RT ln

(
p

p0

)]
(4.6)

where EH2 is the DFT energy of H2, R is the perfect gas constant, SH2

(
p0, T

)
is the standard

entropy at temperature T and standard pressure p0 =1 bar[1] and the enthalpy is written as HH2 =
5
2RT

0+4H0
H2

(
p0, T

)
where4H0

H2

(
p0, T

)
is the H2 molar enthalpy change from T = T0 =298.15 K

and T at the standard pressure p0[1]. With these taken, at �rst we computed the Gibbs free energies

of formation for the various hydrogenated phases under a reasonable H2 pressure and temperature

conditions. Then we consider the lowest Gibbs molar free energies of formation at each temperature

T and pressure p to build a phase diagram. The result is shown in �g.4.8, in which appears that the

bare vacancy is stable in an ideal circular sector spanning the region of high temperature and low

pressure. From this region, by moving along with a decrease of the temperature and/or an increase

of the pressure, the system has the consecutive transitions towards the 1H, the 3H anti and the

4H syn phases. It is interesting to notice that, in these conditions, the 2H phase was not found.

Moreover also high coverage phases were not found, as expected from the energy di�erences shown

in �g.4.7, where, above the third hydrogen, the energy gain starts to reduce up to eventually become

unfavourable. At the typical room-temperature (T∼300 K) and pressure p(H2)=0.55 × 10−6 bar

the 3H-anti structure is the most stable and it would be a possible explanation for the detection of

S=1/2 magnetic moments in irradiated graphene samples[74]. At the typical STM and TEMworking

conditions the column pressure is in the order of p=10−10 bar, but it is not easy to determine the

composition of the gas mixture. Assuming a p(H2)' 10−16 − 10−18 bar our calculations predict

di�erent scenarios depending on the system temperature. STM experiments are often performed

at low temperatures (T ∼ 10 K) where the stable phase is hydrogenated, and to obtain a clean

vacancy defect the samples usually undergo thermal annealing. For TEM instead, assuming a

temperature T=300 K, the 3H-anti phase is still the most favorable and it might correspond to the

three-fold symmetric vacancy recently observed by Robertson and co-workers[94], although the C-C

distances shown in table 4.3 are sensibly larger than those found in the experiment (dCC=2.8 Å vs.

dTEMCC = 2.5 ± 0.1 Å). We also note that the phase boundary with the 1H phase lays not far from

these conditions, suggesting that the reconstructed vacancy also found in the same study [94], could
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Figure 4.8: phase diagram for the hydrogenated C-vacancy in graphene. The diagram was built
including all the structures reported in table 4.5.

be a mono-hydrogenated defect (dCC=1.98-2.72 Å) in which, the presence of the H atom hinders

the switching of the pentagon ring between the three possible orientations. Nevertheless the TEM

experimental conditions are somewhat di�erent from those used in our simulations, especially in

terms of temperature, hence the identi�cation of our computed structures with the observed defects,

though reasonable, remains arguable.

4.2 Dynamics study of hydrogen adsorption on a 1H-vacancy

4.2.1 Method

We studied the entrance of a second hydrogen atom on a mono-hydrogenated carbon vacancy with

ab initio molecular dynamics (AIMD) by using the VASP code[55, 57]. With respect to the position

of the �rst hydrogen atom relatively to the graphene layer, namely above or below the plane, we

considered the entrance of the second hydrogen atom from the same side or from the opposite side.

We refer to these two possibilities as syn and anti, as shown in �g.4.9. Dynamical simulations were

performed sampling the microcanonical (NVE) ensemble with classical trajectories. The Hellmann-

Feynman forces were computed on-the-�y with DFT while the Newton equations of motion were

integrated using the Verlet algorithm with a time step of 0.40 fs for projectile collision energy

Ecoll=0.1 eV. At the beginning of each trajectory the incident atom was set at 4 Å above the

surface plane with monochromatic initial velocity directed along the surface normal. The aiming

points were generated by sampling the xy coordinates of the incident hydrogen within a symmetry

irreducible sector θ = π of the circular area of radius r = 4.2 Å centered on the vacancy. The

surface initial conditions were not sampled in these calculations, in fact the surface atoms and the

adsorbed hydrogen were initially set at rest at their equilibrium positions, determined by a geometry

optimization run using a 0.01 eV/Å threshold on each atomic force, and left free to move during the
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Figure 4.9: C and H atoms are respectively brown and pink. (a) syn entrance: the adsorbed H
atom points towards the incoming H. (b) anti entrance: the adsorbed H atom points in the opposite
direction with respect to the incident H.

whole simulation. These initial conditions imply a surface temperature Ts=0 K. Here the need of

a large number of calculations required to signi�cantly reduce the computational setup. Therefore,

we chose a 4 × 4 supercell consisting of 31 C atoms, with the vacant site at the center of the cell

and one hydrogen atom bound to carbon C1 in �g.4.1 and we set 10Å of vacuum along the c axis to

isolate the periodic images. A 3× 3× 1, Γ centered k-points mesh was used, with a small (0.05 eV)

Gaussian smearing to ensure a fast electronic convergence and correct forces; moreover the true ionic

potential in the frozen core approximation was modeled by ultra-soft pseudopotentials that allowed

to limit the energy cuto� of the plane waves expansion to 300 eV. The exchange and correlation

energy was introduced via the Perdew-Wang (PW91)[86] functional within the generalized gradient

approximation (GGA) in the spin polarized framework. On each of the two faces of the graphene

layer, we run 1192 trajectories, equivalent to 2384 trajectories on the whole circular area surrounding

the center of the vacancy.

4.2.2 Results

When an incident atom hits a generic surface many possible events may occurr and many of them

are described in chapter 1. In the speci�c case of a mono-hydrogenated vacancy, the incoming

hydrogen atom comes close to the surface and then it may be scattered back; alternatively it may

access a reactive channel and form a chemical bond with a carbon atom of the lattice. The relative

position of the two chemisorbed atoms, namely bound to the same carbon or not, allows to classify

the possible outcome as either dimer or geminal pair.

The analysis of the trajectories shows that the incident hydrogen typically makes a bond with C1,

C2 and C3 while no adsorption has been found on C4, C5 and C6. These sites are not nearest

neighbours to the vacancy but they still bear spin density as consequence of the midgap state,

i.e. of the π unpaired electron (see �g.4.2). Accordingly, the absence of sticking in these positions

cannot be justi�ed only by electronic arguments as a sizeable amount of spin density is anyway

available to bind the projectile H atom. Anyway if one consider that the hydrogen adsorption on

graphene implies a partial orbital rehybridization from sp2 to sp3, then it is reasonable to expect

that the undercoordinated sites are favoured over the other sites. Note that the carbon C1 with the
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Figure 4.10: the aiming points of the incident H atoms span a circle centered on the vacancy. In red
the impact coordinates of the incident H that lead to the formation of a geminal pair; in green those
that result in the formation of a dimer; in pink the non reactive aiming points. The chemisorbed
H is blue. In (a) the mono-hydrogenated vacancy in the equilibrium con�guration. In (b) the syn
con�guration and in (c) the anti con�guration.

chemisorbed hydrogen has already an sp3 character and it is located out of the molecular plane as

apparent in �g.4.2.

In the syn entrance, the geminal attachment has a cross section (i.e. a surface area around the

target site in which the reaction occurs) of 3.58Å2, comparable to that of the dimer formation equal

to 5.72 Å2. On the other hand in the anti entrance, the incoming hydrogen may only access the

dimer arrangement while the geminal one is almost inaccessible. This observation can be justi�ed

by considering the relative position of the hydrogenated carbon atom C1 with respect to the lattice

plane and to the incoming hydrogen. Indeed the graphene plane acts somehow as a screen that

deviates the incoming atoms towards the adsorption on C2 and C3. The resulting cross section on

these sites is thus very large, 8.41 Å2.

In �g.4.10 the initial coordinates (aiming points) of the incident atoms are shown with di�erent

colours depending on whether they enter a reactive channel or not. It can be clearly seen that syn

and anti con�gurations are characterized by di�erent reactive areas. More precisely in the syn case

in �g.4.10b two reactive regions appear: one above the C1 carbon leads to the geminal arrangement,

while that between C2 and C3 accounts for the dimers formation. On the other hand in the anti

case in �g.4.10c only one reactive area is found above the vacancy that produces almost exclusively

pairs of dimers. However, the two faces of graphene are both associated to large cross sections,

mainly due to the presence of a remarkable steering e�ect. This implies the existence of a force that

deviates the projectile from its linear motion perpendicular to the surface towards a certain target.

4.2.2.1 Reaction mechanisms

By following few trajectories in details one may deduce the mechanism through which a certain

process occurs. In the following we examine the case of the reactive outcomes upon both the syn
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Figure 4.11: formation of a dimer upon the syn entrance. In (a) the time evolution of the z
coordinate: the incident atom (solid blue line) proceeds toward the surface, it induces a displacement
of the C atom (dashed blue line) on which �nally it gets adsorbed. Incident atoms that do not enter
the reactive channels are normally scattered back (solid green line). In (b) and (c) the xz and yz
planes with the target C atom as a purple circle. The lattice plane is set to 0.

and the anti entrance. In general, when the incoming particle approaches the molecular surface two

alternative processes may occur, namely it may access a reactive channel or it may be scattered back

into the gas phase. In the case of the mono-hydrogenated vacancy the choice occurs at ∼ 2.5Å above

the lattice plane as it is clear from �g.4.11a and �g.4.13a. Anyway if the incident atom succeeds

in entering the reactive channel, then it gets close to the surface and it may induce a relaxation of

the lattice and of the chemisorbed hydrogen; in the end it is trapped on one of the adsorption sites.

Note that the incident hydrogen in syn with the adsorbed one is typically stopped 1− 1.5 Å above

the molecular plane and does not penetrate closer to the surface, as shown in �g.4.11a and �g.4.12a;

on the other hand in the anti con�guration it may reach the surface and possibly cross it through

the hole of the vacancy, before getting adsorbed. Of course, the relative position of the target and

the projectile determines whether the projectile may cross the hole or it is re�ected back; anyway

the higher mobility of the projectile upon the anti entrance originates from the lower hindrance of

the face. A common aspect to all these situations is the presence of a large amount of steering,

that strongly deviates the incident hydrogen from its normal direction towards the target carbon.

This e�ect justi�es the large cross sections and can be clearly seen in �g.4.11b,c and �g.4.12b and

�g.4.13b.

4.2.2.2 Energy barriers for the syn facial adsorption

The energy barriers for the entrance of a second hydrogen atom in the syn-facial con�guration have

been computed by using the nudged elastic band (NEB)[49, 71] method as implemented in VASP.
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Figure 4.12: formation of a geminal pair upon the syn entrance. In (a) the time evolution of the z
coordinate of the C atom (dashed blue line) that is pulled further away from the molecular plane by
interacting with the incident H atom (solid blue line) that �nally makes a bond. The e�ect on the
chemisorbed H (orange solid line) is also shown. The lattice plane is set to 0. In (b) the trajectory
in the yz plane with the C atom as a purple circle.

Figure 4.13: formation of a dimer upon the anti entrance. In (a) the time evolution of the z
coordinate is shown for two trajectories, (i) blue and (ii) red. In (i) the incident H atom (solid
line) passes through the surface before getting adsorbed on its target C (dashed line); while in (ii)
this not occurs. Incident atoms that do not enter the reactive channels are normally scattered back
(solid green line). In (b) the trajectories in yz plane with the C atom as a purple circle. The lattice
plane is set to 0.
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In principle this method allows to �nd the minimum energy path between an initial and a �nal

state by acting on the intermediate con�gurations (images). Each image corresponds to a point on

the energy hyperplane and it is associated to a speci�c geometry of the atoms on their way from

the initial to the �nal state. Each image is allowed to move into the direction perpendicular to

the hypertangent, de�ned as the normal vector between two neighbouring images. In this way the

energy of the images is minimized and the minimum energy path is found. Note that the tangential

motion is impeded only up to �rst order; anyway the introduction of springs allows to control this

motion at higher orders and prevents the images from drifting.

Within the syn-facial scheme for the entrance of the second hydrogen atom, we computed the

energy barriers to form a dimer or a geminal pair, corresponding to the blue and red curve in

�g.4.14, respectively. To this end we chose two trajectories with the appropriate �nal outcome and

we selected as intermediate images a number of geometries visited in the dynamics. In both cases

the initial state consists of the mono-hydrogenated vacancy with the incoming hydrogen at 4 Å from

the lattice plane. In principle the initial and �nal state should be two real minimum structures,

but actually this is not the case for con�gurations reached within a dynamics simulation, thus only

the initial state can be hold really equilibrated, while the �nal state cannot. Anyway this is not

expected to have any relevant in�uence on the position and the shape of the energy barrier for

two main resons: (i) we are interested in the hypothetical energy barrier in the entrance channel,

thus far away from the surface and from the �nal state; (ii) we used a large number of images

(sixteen) between the two reference states. The �g.4.14a shows the energy pro�le as a function of

the z coordinate of the incoming hydrogen, chosen as the reaction coordinate for both the geminal

and the dimer �nal con�guration. In the same frame, the dotted lines represent the magnetisation

pro�les, that go to zero as the incoming hydrogen and the hydrogenated graphene start to interact.

It is interesting to note from �g.4.14b that the incident atom has to overcome an energy barrier

to form the dimer as well as the geminal structure. Due to the small height of the barrier, ∼20
meV, at room temperature the projectile may always access the reactive channel. As expected, the

two barriers are shifted with respect to the z coordinate of the incident atom and this re�ects the

local geometry of the system, indeed the distortion of the lattice close to the hydrogenated carbon

displaces the barrier at higher z values compared to the planar regions. This simply means that the

hydrogen atoms directed towards the hydrogenated carbon C1 (the red area of the geminal product

in �g.4.10a) will enter the reactive channel further away from the surface than those directed upon

C2 or C3 (the green area of the dimer product in �g.4.10a).

4.3 Conclusions

We have studied the energy landscape and the magnetic properties of each of the structures in-

volved in the hydrogenation of a carbon vacancy in free-standing graphene. The driving force for

the hydrogenation process is given by the saturation of σ-dangling bonds and midgap states of the
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Figure 4.14: (a) energy (solid line) and magnetisation (dotted line) with respect to the z coordinate
of the projectile for both the dimer (blue) and the geminal (red) arrangements. The solid circles on
the energy pro�les correspond to the optimized 'images' in the NEB calculation. (b) inset of the
energy curves between 2-4 Å and evidence of the energy barriers.

graphene defect, which can readily couple with incoming radical H atoms to form progressively

hydrogenated structures. Our calculations showed that the overall hydrogenation process is ther-

modynamically favoured and exothermic with respect to both atomic and molecular hydrogen gas

sources at least up to four H atoms. In general we found that at each level of hydrogenation, the

formation of the geminal structure is always less favoured than that of syn or anti con�gurations in

contrast to recent a µSR study on the di-hydrogenated vacancy. In this case we carried out AIMD

simulations to check if the geminal pair was somehow kinetically favoured, but we didn't �nd any

evidence in this sense. Moreover, by extending our DFT results to a thermodynamic modelling, we

found that at room temperature and pressure conditions the magnetic 3H-anti structure (M=1µB)

is the most favoured phase, while the 2H phase cannot be dectected.
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Chapter 5

Eley-Rideal formation of H2 on Ag(111)

The study presented in this chapter inserts in the research �eld on nuclear fusion, as it aims to

describe an important aspect of the production of negative ions, required in the process of plasma

heating. In general, a nuclear fusion reactor needs a heated plasma to work. Many ways are known

to heat plasma, like electric discharges, microwaves and neutral beam injection, where the latter

appears as the best choice, once considered the large volume of plasma to heat. In this way, the

plasma, which is usually con�ned by strong magnetic �elds in a toroidal reactor known as tokamak,

is heated up to desired level by two �uxes of high energy atoms, typically hydrogen isotopes. These

atoms are injected as neutral species (otherwise they could not penetrate the strong magnetic �eld

that con�nes fully ionized plasmas), but they are soon ionized upon bouncing o� the ions already

in the plasma. In this way they transfer energy to the plasma, thus increasing its temperature. The

energetic neutral atom beam is obtained by acceleration and collisional neutralization of negative

ions extracted from a low-temperature plasma source1. In principle both positive and negative ions

might be used, but at the high operation energies (∼ 1 MeV) at which current research aims, the

choice of negative ions seems to be more practicable. This is related to the �nal neutralization step,

that is more easily achieved in case of negative charges. Presently, the generation of negative ions

from cold plasma is based on both a volume and a surface mechanism. In the �rst case, H− ions

are generated in the bulk plasma, where cold electrons (e−cold ∼1 eV) attach vibrationally excited

hydrogen molecules Hv2, thus inducing the dissociation of these molecules in the so-called dissociative

attachment, namely Hv2 +e−cold → H+H−. The point is that this process is reversible, thus to prevent

H from killing H−, it would be useful to remove these H atoms from the bulk, so that to minimize

the losses and possibly improve the gain of negative ions. To this end, two alternative routes are

possible: in the present models, H atoms impinge on the internal walls of the reaction chamber,

which are covered by cesium, likely forming H− ions by electron capture. This process, known

as surface production, easily occurs due to the low ionization energy of the metal, but it has an

important shortcoming following from the volatile nature of cesium: indeed it can easily desorb and
1This is also known as cold plasma and it is usually de�ned at one atmosphere and near room temperature.

This is usually a non-thermal plasma, namely the ions and neutral atoms temperature is signi�cantly lower than the
electronic temperature, Tion � Te, which indeed may be in the order of one eV.
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di�use into the accelerator. Not only does this mean that the cesium coverage has to be replenished

continously, but it may also induce breakdowns and unwanted side-e�ects in the accelarator. In the

attempt to �nd a cesium-free route, an alternative method has been considered aiming to remove H

atoms possibly by sticking on a proper surface. To this end, the use of tantalum, graphite, silver...

has been taken into account. Ideally, this process, known as surface vicinity production, should be

as follows: H atoms easily stick on the surface which has to be stable and sustain a long operation

time; then, through the mediation of the surface, H2 molecules form, possibly in highly excited

states; in the end, upon the desorption, these molecules are available to interact with cold electrons

in the bulk. In general transition metals are a practicable choice as they are stable towards the

erosion of cold plasma and H atoms may easily stick on them[15]. Anyway, if the metal-H binding

energy is too high, the release of H2 molecules is di�cult as indicated by a low cross section[44].

This means that by using this kind of surface the loss of H− ions is minimal due to the trapping

of H atoms, but also the gain of H− ions is minimal as the adsorbed H are not reused. On the

other hand, by using graphite instead of a transition metal, one may likely achieve a large cross

section and a high vibrational excitation for the molecular hydrogen recombination[44, 116], but at

the price of a very small stability under the operative conditions. In this scenario, silver has many

interesting features, indeed it is stable and it has the weakest H-metal binding energy (∼ 2 eV),

that is high enough to favour the sticking of H atoms, as well as low enough to allow the formation

of H2 molecules with a sizeable cross section that mainly accounts for Eley-Rideal and hot-atoms

reaction mechanisms. In the following, upon a general presentation of H-metal systems, we consider

the theoretical methods used to study the formation of H2 molecules on metal surfaces according

to Eley-Rideal reaction mechanism, pointing out both bene�ts and shortcomings. Then we report

and compare the results obtained in terms of reactive cross sections and product molecules.

5.1 Hydrogen atoms on metal surfaces

The abstraction of hydrogen atoms adsorbed on a single crystal surface by means of gaseous hydro-

gen atoms impinging on that surface leads to the formation of H2 molecules, H(g)+H(a) → H2, and

it has been the object of many theoretical as well as experimental studies. This process is expected

to occur according to the Eley-Rideal reaction mechanism[26] that exhibits energetics, kinetics and

dynamics features that are not common to reactions following the alternative and more familiar

Langmuir-Hinshelwood scheme. The energetics of the hydrogen abstraction from metal surfaces

may be roughly estimated by considering that the formation of the H-H bond releases about twice

as the energy in the H-metal bond, thus the reaction is strongly exothermic (over 2 eV). Note that

this energy is available to the product molecule if the dissipation into phonons is not e�ecient; in

this way, the dynamics of the reaction leads to product molecules that immediately desorb from the

surface due the high translational energy and that are vibrationally and rotationally excited. Both

experiments[92] and theory[62] proved that the exothermicity of the reaction is typically distributed

into the internal degrees of freedom of the product molecules.
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In terms of kinetics, the formation of product molecules upon a direct reactive encounter between

the two hydrogen atoms is expected to obeys the exponential rate equation R (t) = R0exp (−σφt),
where R is the rate, σ is the abstraction cross-section, φ is the �ux of gaseous atoms and t is the

time. This means that the product rate is maximun when the �ux of gaseous atoms starts, then

it decays exponentially. Anyway, discrepancies from this ideal behaviour are quite usual: in some

cases for instance the maximum of the product rate is delayed over a �nite time after the opening

of the gaseous �ux; moreover in the D by H abstraction homonuclear product (D2) may form in

addition to the HD molecules.

Upon these observations a new reaction model was proposed based on the concept of hot atoms.

These form when the incident atoms, possibly accelerated by the attractive potential of the surface,

approach that surface. Here, the corrugation of the potential energy surface may cause a mixing

of the translational degrees of freedom of the atoms that �nally ends up with a substantial kinetic

energy parallel to the surface. In ref.[52] it is clearly pointed out that these hot atoms may either

stick on the surface or react with adsorbed species depending on the nature of the metal surface.

Of course, hot atoms can stick only if they loose the excess of energy via phonons or electron-

hole excitations. Anyway, the mass mismatch prevents from an e�ective energy exchange with

phonons; moreover metals with similar mass often show substantially di�erent phenomenologies.

Therefore the energy dissipation more likely occurs via the electronic mechanism, with an electron-

hole excitation probability that is proportional to the squared density of states at the Fermi level

ρ2
EF

. Accordingly, on metals with a low ρEF the sticking is unfavoured and the abstraction kinetics

proceeds along the hot atoms pathway that produces molecules almost indistinguishable from those

obtained in the direct Eley-Rideal scheme. Note that the encounter of hot atoms with adsorbed

particles can open an alternative channel to dissipate energy. Indeed the collision is not always

reactive, but it may simply induce an energy transfer towards the adsorbed species that possibly

start to di�use on the surface as 'secondary' hot atoms.

In this chapter, we report on the formation of hydrogen molecules on the face (111) of crystalline

silver within the Eley-Rideal reaction scheme. This surface is closely packed and it has hexagonal

symmetry. In a recent experimental study[52] the formation of HD molecules by abstration of

deuterium adsorbed on Ag(111) with gaseous hydrogen has been investigated. The choice of the

(111) instead for instance of the (100) face, derives from the experimental fact that the dense

arrangement of nuclei in (111) rules out any complication possibly due to the presence of subsurface

species as well to the surface reconstruction, in the limit of a controlled exposure to gaseous atoms.

Moreover, the product rates measured for a variety of coverages with �xed surface temperature

Ts = 80K and �ux of H atoms φ = 16ML/s, all show the exponential decay common to Eley-Rideal

and hot atom pathways.

An interesting feature, already found for HD formation of graphite, is that a lower surface coverage

implies a larger cross-section. In the case of graphite a cross-section2 of about 10 Å2 was predicted
2The concept of cross section is used in physics to indicate the surface area around a target in which a certain

event is expected to occur. For instance in the case of recombinative processes between an adsorbed atom and a gas
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in theory[101] and measured in experiments[116]. This huge value is due to three main reasons:

(i) deuterium forms a weak bond of only ∼0.7 eV with carbon; (ii) the carbon atom has to pucker

out of the plane to bind H or D. This means that this process is activated, thus the sticking of hot

atoms is unfavoured. Moreover this also implies that (iii) the adsorbed atom on top of a puckered

carbon is nearly 1.8 Å far above the surface. Therefore the incident hydrogen feels the attraction

of this atom very soon approaching the surface and it is steered towards it eventually increasing

the reactive cross section. Note that at high coverage this e�ect is reduced due to the competition

between adjacent adsorbed atoms.

By considering the abstraction of adsorbed hydrogen by gaseous hydrogen as a prototypical case,

in general one may identify two limiting situations[62]: if the incident hydrogen is weakly attracted

by the surface, namely the adsorption energy (Da) is lower than one half of the energy released by

forming a molecule (Dm), i.e. Da < Dm/2, then the reaction is favoured over the trapping; on the

contrary, when Da > Dm/2 the trapping channel becomes energetically more favourable. In the case

of metals, usually Da ∼ Dm/2, thus the trapping and the reactive channels are energetically similar

and the �nal results varies from metal to metal. Note that here the reaction usually occurs within

the hot atom scenario. For small Da, namely when the Eley-Rideal scenario likely applies, the

steering e�ect begins to operate and to increase the reactivity. Here in fact the incoming atom feels

a less strong attraction towards the substrate, thus it is less accelerated and it can more likely access

the minimum energy path towards the product state; note that, as for graphite, the e�ectiveness

of the steering is maximum at low surface coverage where the adsorbed atoms are far apart and do

not overlap their reactive spaces. In a similar way, also the energy of the incident atom Ei may

act on the reaction cross section. In this case, when Ei < Da the reactivity is little a�ected by

the choice of Ei due the acceleration felt by the incoming atom while approaching the surface; on

the other hand once Ei > Da, the reactivity decreases as the incident atom moves too fast to feel

any steering e�ect. The case of Ag-H is somehow borderline indeed it shows both an Ag-H bond

energy of ∼2 eV that should favours the hot atoms scenario and a remarkable enhancement of the

cross section at low coverage that is consistent with the steering e�ect and the Eley-Rideal scheme.

Moreover, the large reaction cross section encountered on the silver surface is also determined by

the small density of states at the Fermi level that makes the energy dissipation une�cient and the

sticking unfavourable[52].

The model system The crystalline structure of silver is face-centered cubic (fcc) and the lattice

constant is a = 4.163Å. The face (111) results from the ABC stacking of the lattice planes, it is

closely packed and it has hexagonal symmetry. On this face there are four high symmetry sites,

namely top, bridge, hollow fcc and hollow hcp as shown in �g.5.1. This means that the hydrogen

atom may stick on the silver surface directly above a silver atom (on top), between two adjacent

phase particle, the reactive cross section correspond to a region, such as, if the incident atom impinges on it, the
reaction takes place otherwise not. Note that the reactive region does not necessarly include the target, for instance
in the limit of non collinear reactions, the cross section usually accounts for the area of a ring possibly centered on
the target atom.
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Figure 5.1: (a) side view of the Ag layers with ABC stacking. (b) In evidence the high symmetry sites
(1) top, (2) bridge, (3) hollow hcp and (4) hollow fcc where target hydrogen sits. (c) Signi�cative
distances.

silver atoms (in bridge), in a threefold hollow site eclipsed with a silver atom either in the second

layer (hcp) or in the third layer (fcc). In this way the coordination increases, thereby it is reasonable

that the hydrogen adsorbs preferably in the hollow site with the fcc con�guration sligthly favoured

(∼ 16meV) over the hcp one. With respect to the bridge and the top positions, the hollow fcc site

is favoured of nearly ∼0.15 eV and ∼0.61 eV respectively3. Of course the adsorption in intermediate

positions is also possible.

5.2 Theory of gas-surface systems

Traditionally the study of gas surface processes is done with the help of molecular dynamics methods

where the positions of the nuclei in the system evolve in time driven by the forces acting on them.

Two alternative perspectives may be identi�ed, that di�er on the way these forces are handled:

in one case, the forces are obtained at each step from the potential energy surface of the system

computed before running the simulation; in the other case, the forces acting on the nuclei are

computed on-the-�y over the simulation, thus for each istantaneous nuclear arrangement.

5.2.1 The quasiclassical trajectory method

In this chapter we report quantum dynamics and quasiclassical trajectory (QCT) results obtained

on the basis of the same external potential energy surface. This has an analytical form and it

is de�ned with a limited number of degrees of freedom chosen as relevant for the system under

investigation. In the case of the Eley-Rideal recombination between an incident gaseous hydrogen

(projectile) and an hydrogen adsorbed in a given site (target) on a rigid surface, in principle the

potential energy surface should be de�ned upon two position vectors ri and rt for the incident

and the target hydrogen atoms. As the interest is on the state of the product molecule, these
3The energy di�erences have been computed in the plane-wave density functional theory approach, by using the

setup described in sec.5.4.1: three layers of silver atoms described by PAW potentials; the exchange-correlation energy
introduced by the PBE functional; the energy cuto� set at 270 eV and a 6× 6× 1 k-points grid.
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positions can be rede�ned in terms of relative position r = rt − ri and center-of-mass position,

R = (mtrt −miri) / (mt +mi) with mt and mi the two masses. At this point the six-dimensional

problem may be reduced to a three-dimensional case by introducing the �at surface approximation,

based on the assumption that the interaction between the atoms and the surface is translationally

invariant on the surface and thus rotationally invariant around a normal axis to the surface; this

means that the di�usion of atoms on this model surface is a non activated process. In the limit

of this approximation, the potential energy can be speci�ed as V (ρ, zt, zi) where ρ is the distance

between the target and the incident atom in the xy plane, while zt and zi are the positions of the

atoms along the z axis. At last, the analytic expression of the potential energy surface is given by a

model potential in which a number of parameters has been optimized to �t in the potential energy

data V (ρ, zt, zi).

5.2.1.1 The potential energy surface

A common type of model potential appropriate to deal with gas-surface processes like recombinative

desorption as well as dissociative adsorption is the modi�ed LEPS (London-Eyring-Polanyi-Sato)

potential[27, 97]. To build the modi�ed LEPS potential of interest in this work, the energy values

for the �tting were obtained by varying the coordinate zi from 0 to 4 Å for each chosen value of

zt and ρ, more precisely for zt equal to 0.91, 1.11 and 1.31 Å and ρ set at 0.00, 0.75 and 0.95Å

along the hollow (fcc) to top direction in �g.5.1. It is crucial to point out here that this choice of ρ

implies that the peculiar features of this high symmetry direction are actually extended to the whole

xy plane as the �at-surface model applies. This is of course a strong approximation but the error

introduced is often acceptable as on metal surfaces (i) the di�usion barriers for hydrogen atoms are

low, just few tenths of eV[90], and (ii) the reactive encounters take place relatively quite far above

the surface where the corrugation e�ects are minimal[91]. Reasonably one might choose more than

one representative direction and make a rotational average over the results obtained along each

direction (weighted for the probability of each direction). The natural choice, in the case of the

Ag(111) surface, would be to investigate the potential energy surface for ρ values along the hollow

to hollow direction in addition to the one hollow to top. In this way the obtained potential energy

surface is no longer attributable to one speci�c direction, but it indirectly accounts for the surface

corrugation even in the �at surface model.

However in this case, for each set of coordinates, the corresponding energy V (ρ, zt, zi) is computed

with plane-wave density functional theory (DFT) as implemented in the VASP package[55, 57].

To this end, the metal surface has been modeled by �ve stacked layers of silver atoms, in which

each layer is a 2 × 2 supercell with four atoms; above the top layer ∼ 22 Å of vacuum were set

along the c axis to prevent any unphysical interactions with the adjacent images. Note that the

positions of the nuclei in the highest two layers were allowed to relax during the calculation. The

exchange-correlation e�ects for both silver and hydrogen atoms were introduced by the Perdew-

Burke-Ernzerhof (PBE) functional[84, 85] within the generalized gradient approximation (GGA),
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in the spin-polarized framework. Moreover, the expansion of Kohn-Sham orbitals in a plane-wave

basis set was limited to a 425 eV energy cuto�; the electrons were described by the projector

augmented-wave (PAW) method[14, 58], in the limit of frozen core electrons. The wave function in

the reciprocal space was de�ned by a 10× 10× 1, M centered k-points mesh4.

5.2.1.2 Main di�erences between quantum and quasiclassical dynamics

It is important to point out that this potential energy surface has been originally constructed in

the group of D. Lemoine[20] to perform quantum dynamics calculations and for this reason only

three degrees of freedom have been taken in account. In this thesis, we chose to keep the same

potential energy surface so that to be able to reproduce those quantum results by using our own

code; moreover this choice allowed us to compare exactly quasiclassical and quantum results so

that to �nd out the possible quantum e�ects in the formation of H2 according to the Eley-Rideal

mechanism. To this end it is useful to sketch out the main di�erences existing between the quantum

and the (quasi)classical approach as used in this thesis. The main point relies on the nature of the

atoms in the system: in the quantum approach they are described in terms of wavefunctions, while in

the quasiclassical approach they are treated as classical objects. Accordingly, in quantum dynamics:

� the dynamics of the system is fully described by the time-dependent Schrödinger equation5

and depends on the potential energy surface of the system itself.

� the target atom initially bound to the surface is represented by an appropriate eigenstate,

corresponding to a certain vibrational state v, while the incoming atom at the starting point

is represented by a wavepacket fully localized in space, namely a set of waves all in phase at the

initial time. Due to the uncertainty principle, this implies that the corresponding momentum

of each wave cannot be determined, namely the wavepacket spreads over a wide range of

energies; as a consequence, the propagation of the wavepacket occurs with some interference

among its components.
4The optimized parameters of the LEPS model potential used in this work, taken from the group of D. Lemoine[20]:
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where the time-dependent wavefunction is splitted into a time evolution operator, i.e. the exponential function, and
in a spatial part corresponding to the initial wavefunction.
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� in the presence of an energy barrier to the formation of the product molecule, a certain amount

of tunneling may be observed; this e�ect allows to obtain a nonzero reaction cross section even

when the incident particle approaches the surface with an amount of energy smaller than such

energy barrier.

� in the end, reactive encounters in quantum dynamics lead to the formation of molecules in a

well-de�nite quantum state, characterized by vibrational and rotational quantum numbers.

On the other hand, in quasiclassical dynamics:

� the dynamics of the nuclei occurs along the same potential energy surface used in the quan-

tum case, but the nuclear coordinates are propagated by solving either the Newton's or the

Hamilton's equations of motion, equivalently6. The output of this process is known as a

trajectory.

� each trajectory corresponds to a speci�c initial state of the incident atom with a well-de�ned

position and momentum; for this reason a classical trajectory has a completely de�nite out-

come, strictly determined by these initial conditions. Naturally, to get quantities of physical

interest (i.e. cross-sections, rates...), one may not refer to a single speci�c situation as it has no

statistical meaning, but it is necessary to average over a number of initial conditions, usually

generated in a random way. By the way this allows also to re�ect the quantum uncertainty,

in the classical limit.

� each trajectory is run independently from the other ones, thus there is no way to account

for the interference among the wavefunctions, observed in the quantum case. In principle, in

the attempt to mimic the quantum interference at the classical level, one might propagate all

together a number of incident atoms with di�erent initial conditions, in such a way that they

can feel each other during the dynamics.

� the classical nature of the particles excludes any tunnelling e�ect, thus in the presence of a

potential energy barrier the quasiclassical cross-section is irremediable doomed to vanish at

su�cently small collision energies.

� the quantum e�ects are partially recovered by assigning an initial position and velocity to the

adsorbed atom, taken from the proper phase space. This choice, that de�nes the quasiclassical

approach, is due to the assumption that the main limit of the classical dynamics comes from

neglecting the vibration of the adsorbed atom, indeed supposed to be at rest in its equilibrium

position. In the quasiclassical model, at the initial time the adsorbed atom has a quantum
6The classical evolution of the nuclear coordinates of each particle is obtained by using the Newton's law

−∇V (R) = MR̈. An alternative method relies on the Hamilton's equations for the position and the momentum:

dp

dt
= −∂H

∂q
;

dq

dt
=
∂H
∂p

where H = H (p,q, t) is the hamiltonian, corresponding to the total energy of the system.
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nature; anyway over the dynamics this atom moves in a continuum of energies as predicted

by the classical equation of motions, thereby loosing its quantum character. In the same

way, the product molecules may explore any energy and any con�guration along the potential

energy surface, thus behaving as classical species. However, in this case, the quantum nature

of the molecules is usually recovered by associating each of them to the closest quantum level,

speci�ed by the vibrational and rotational quantum numbers.

5.2.2 The ab initio molecular dynamics approach

In ab initio molecular dynamics the forces that act on the nuclei are computed at each step of

the simulation and depend on the actual nuclear arrangement. This means that it is fundamental

to reach the electronic convergence at each step to prevent the system from evolving under the

action of fake forces. Of course, this implies a dramatic enhancement of the computational cost

compared to those methods that rely on the external potential energy surface; therefore a key point

in AIMD is often to determine the best setup in terms of model system and computational accuracy

to get reliable results while reducing as much as possible the timings. It is obvious that the main

novelty in AIMD rests on the description of the potential energy for two main reasons: the �rst

is a consequence of the type of potential energy surface chosen for our quantum and quasiclassical

studies, while the second is more general. More precisely, with respect to the �at surface model, the

AIMD approach fully accounts for the surface corrugation, that is the computed energy values for

each con�guration depend on 3N degrees of freedom with N the number of atoms in the system. In

this way a more realistic picture of the system is obtained, that goes beyond the limits of the �at

surface approximation: namely the fact that the features of a chosen direction along the surface, for

instance hollow to top, are overemphasized as this direction is assumed to be rotationally invariant

throughout the xy plane. Anyway, it is important to point out that in principle not only AIMD

can model the surface corrugation, indeed at least in the (quasi)classical trajectory method the

dimensionality of the reference potential energy surface can be likely increased to this end. This

means that the peculiar aspect in AIMD in general does not rely on the proper description of the

surface, but on the fact that the forces computed on-the-�y are able to account for any instantaneous

variation of the system possibly leading to unforeseen outcomes. For further details on this method

the reader is referred to appendix C.

5.3 Formation of H2 molecules: the QCT approach

We used the quasiclassical trajectory method to study the formation of hydrogen molecules on a

silver surface. The QCT method leans on a potential energy surface built in a previous calculation

and included as a set of parameters in the dynamics; as outlined in sec.5.2.1.1 in this case the

potential energy surface has three degrees of freedom and accounts only for the hollow to top

direction across the xy plane. This means that no corrugation is introduced and the �at surface

approximation holds; moreover, the lattice vibrations are not taken into account as the surface
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is assumed to be rigid. It is important to point out that the use of a rigid surface rules out

the possibility of an hydrogen-to-silver energy transfer and this has two main consequences: (i) it

introduces an error, that anyway is expected to be small due to the mass mismatch of the two

species; (ii) it prevents the adsorbate from dissipating its vibrational energy into the substrate.

From this last point it follows that, whenever the vibrational excitation of the adsorbate is taken

into account, e.g. in the quasiclassical model, the substrate has to be described as a rigid surface to

avoid �uctuations in the energy of the target atom. On the other hand, simple classical mechanics

without any zero point-e�ect is appropriate to deal with a non rigid surface. Note that following

from the experimental evidences in ref.[52], here the role of the electron-hole excitations in the metal

atoms is neglected and a simple adiabatic picture of the collision dynamics is given.

The quasiclassical dynamics method was used to study the system composed by an adsorbate either

at rest or in its vibrational ground state v = 0 and an incident atom initially moving along the

surface normal with collision energy in the interval 0.01-4.0 eV. It was found that while approaching

the substrate, the incident atom may (i) react, (ii) be trapped on the surface, (iii) induce the

desorption of the adsorbate or (iv) be scattered back into the gas phase. In each case the actual

outcome depends on a number of factors, like the collision energy, the impact parameter and the

e�ciency of the energy transfer. Note that in the assumption of a rigid surface, the incident atom

has only one way to dissipate part of its energy, that is by transfer to the adsorbate. In this process,

the adsorbate may simply start to vibrate in its place or it may acquire energy enough to di�use

on the surface, form a molecule or desorb escaping from the potential well. In the meanwhile, if

the incident atom has dissipated the proper amount of its energy, it may populate a truly bound

state, otherwise it is doomed to return into the gas phase: note that such event possibly occurs after

some time in which the atom is temporatily trapped into an unstable state. It is quite obvious that

this metastable species can be addressed as hot atom; anyway, also the bound species has an hot

atom character as it is not in thermal equilibrium with the substrate: this means that its energy

is below the dissociation threshold but above the di�usion barrier[70]. Note that the �at surface

approximation assumes that no barrier to di�usion exists, thus that the surface is �at.

5.3.1 Computational details

The Eley-Rideal formation of hydrogen molecules is studied with the homemade code TRAJ[83, 104].

For each energy in the interval 0.025−4.0 eV we run 105 trajectories with a uniform sampling of the

8× 8Å2 unit cell. The projectile atom was initially placed 10 Å above the surface with the velocity

vector along the surface normal; each trajectory is propagated until the �nal analysis returns the

same �nal state for �ve consecutive times. The �rst analysis is performed after about ∼ 726 fs

(3 · 104 a.u.) when the projectile has initial energy in the interval 0.025− 1.0 eV and after ∼ 242 fs

(104 a.u.) in the interval 1.025 − 4.0 eV. The hamilton equations of motion were integrated using

the Nordsieck numerical integrator with a time step of 0.006 fs (0.25 a.u.) for all the projectile

collision energies.
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Figure 5.2: The Eley-Rideal cross-section as a function of the collision energy of the incident particle.
Solid lines result from quasiclassical (v = 0) initial conditions of the target atom, while dashed lines
accounts for classical trajectories with the target atom initially at rest (ZPE = 0).

5.3.2 Results

Both hydrogen and deuterium atoms were chosen as incident and adsorbed species and all the

possible combinations were considered. The initial conditions of the target were sampled only in the

vibrational ground state v = 0, as the excited states are not accessible in the ordinary experimental

conditions; indeed in ref.[52], the adsorption of hydrogen and deuterium on the surface was achieved

upon admitting a �ux of atoms to the silver surface at ∼ 80 K.

The cross sections of the Eley-Rideal reaction are reported in �g.5.2. In general the curves di�er

depending on the nature of the incident and the target atom; anyway the formation of homonuclear

products, namely H2 and D2, shows a similar tendency. Note anyway that in a qualitative perspec-

tive, the reaction cross section behaves in the same way in all the cases: at low collision energy,

below ∼ 0.4 eV, it rapidly increases up to a maximum value and then it decreases. More precisely,

the cross section vanishes at high collision energy in the case of the abstraction of deuterium by an

incident hydrogen; on the other hand, in the reversed case the cross section only slightly decreases

by increasing the collision energy. The classical situation was studied in the case of hydrogen im-

pinging on the surface with either hydrogen or deuterium adsorbed on it. Here the target atom

is assumed to be at rest in its equilibrium position 0.944 Å above the surface, as taken from the

potential energy surface. Of course, this approximation introduces an error that has been evaluated

in the case of the abstraction of either hydrogen or deuterium leading to H2 and HD molecules.

Accordingly, the vibrational motion of the atom on the surface seems to be almost irrelevant at low

collision energy, that is below ∼ 0.5 eV in the case of hydrogen and below ∼ 1.1 eV for deuterium;

on the other hand at higher energies, the classical model returns a cross section that follows almost

parallely the quasiclassical one up to ∼ 4 eV for the H2 formation and at least up to ∼ 3 eV in the

case of HD, but that overestimates the quasiclassical cross section up to ∼ 50%.
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5.3.2.1 Reaction mechanisms

As can be seen in �g.5.3a, at low collision energy, the incident atom feels the corrugation of the

potential as it moves slowly towards the surface and it may possibly access the minimum energy

path. In this way the cross section increases since more trajectories with high impact parameter,

namely req < b < 2req where req = 0.767Å is the equilibrium distance in the H2 molecule, can

be captured by the adsorbed hydrogen. On the other hand, at small b, the incident hydrogen is

initially attracted towards the target; then by further approaching the surface the distance between

the two atoms becomes smaller than req and eventually the incident hydrogen is scattered away

from the target. Anyway, the projectile has probably trasferred part of its energy to the target,

thus it unlikely returns into the gas phase while it more probably becomes trapped on the surface

with a hot atom character. In the end, for b ≥ 2req the incident hydrogen still slightly deviates from

the normal direction possibly following the minimum energy path and it is �nally back re�ected into

the gas phase by the repulsive potential once the distance between this hydrogen and the surface

has become smaller than about ∼ 1Å.

In general, by increasing the collision energy, the incident atom feels the corrugation of the potential

energy surface more weakly in the entrance channel, so that it unlikely will be able to �nd out the

minimum energy path leading to a certain outcome. As shown in �g.5.3b-c the increase of the

collision energy up to 1 eV and further on up to 4 eV results in a decrease of the reaction cross

section due to the fact that fast-moving projectiles with high impact parameter cannot be captured

by the attractive potential of the target atom. Normally at high b the incoming hydrogen proceeds

along the normal direction up to the surface, then it is re�ected back by the repulsive potential

and it returns into the gas phase; in a similar way, at small b while approaching the surface, the

projectile gets close to the target atom and it is scattered away by the repulsive potential when the

distance between them becomes smaller than req. Trajectories with impact parameter in the interval

req < b < 2req are typically slightly deviated towards the target while the projectile approaches

the surface, then they may lead to a reactive encounter that typically occurs upon a bounce of the

projectile on the surface.

In general at normal incidence, the use of a �at surface, that is rotationally invariant around the

normal to the surface, allows to de�ne the probability of reaction as a function of the impact

parameter. This reaction probability, also known as opacity function, is related to the reactive

cross section by σr = 2π
�∞

0 Pr (b) bdb where Pr (b) is the opacity and b is the impact parameter.

Note that the integral is actually limited to the sampled area and that b acts as a weighting factor,

thereby trajectories at high impact parameters are responsible for most of the reactivity. The opacity

function for a given collision energy in �g.5.3d represents the fraction of reactive trajectories for

each impact parameter in the interval from 0 to 3 Å from the target, being 0.01 Å the separation

between the impact parameters. For each of them, we run 400 trajectories by randomly sampling

the phase space of the target atom in the vibrational ground state v = 0 (on the potential energy

surface in ref.[20]) in terms of position and velocity along the z axis normal to the surface. In the
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Figure 5.3: (a)(b)(c) representatives set of classical trajectories in the (ρ, zi) plane for di�erent col-
lision energies; solid bold and dashed lines are for reactive and nonreactive trajectories, respectively.
(d) QCT (v = 0) opacity functions computed at the same collision energies as for the trajectories
(with the same choice of colours). The surface level is set to zero. In the inset on right the lenght
scale in Å drawn along the hollow to top direction; as indicated by the red shaded area, this peculiar
direction is assumed to generate the xy plane by rotation around the surface normal.

end, as illustrated in �g.5.3d the increase in the collision energy narrows the reactive interval in

terms of impact parameter and it reduces the reaction probability. Note that at all the energies

considered a nonzero contribution to the quasicollinear reactivity is present that anyway has an

almost negligible in�uence on the total cross section.

The e�ect of the initial energy of the projectile on the reactivity, for instance on the formation of H2

molecules, has been studied at collision energy equal to 0.1, 1 or 4 eV and impact parameter equal

to b = 0.95Å with the adsorbed atom in v = 0; for each value of Ecoll, we followed 400 quasiclassical

trajectories by choosing at random the initial conditions of the target, in terms of position and

velocity along the z axis normal to the surface. These coordinates give an energy equal to that of

the desired quantum vibrational state, in this case v = 0, and are obtained from the potential used

for the dynamics. Moreover, the choice of this impact parameter is appropriate to investigate the

reasons of the narrowing of the reactive interval with the increase of the energy; this is because such

b falls on the region where clear di�erences on the three collision energies appear.

In �g.5.4 we plot phase space points of the target hydrogen at the initial time t = 0 (blue ellipse)

and in correspondence of the �rst turning point of the incident atom (orange non regular shape) for

all the energies considered; the green dots indicate the position and velocity of trajectories with an

eventual reactive outcome. Note that due to the anharmonicity of the potential, the phase space

points at t = 0 with the target atom in v = 0 do not have a perfect elliptical shape, that would be

indeed typical of the harmonic case; anyway here the deviation is small since close to the bottom

of the well the anharmonicity is very weak. On the other hand, at the time the projectile has its
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Figure 5.4: phase space points of the target hydrogen as found in 400 quasiclassical trajectories:
the target hydrogen is in v = 0; the impact parameter of the incoming hydrogen is b = 0.95Å at
di�erent collision energies. The regular shape (almost elliptical) contains the initial conditions of
the target randomly chosen (blue and green dots); in the other shape, each point gives position and
velocity of the target at the �rst turning point of the incident H (orange and green dots); in any
case, green dots de�ne the target H in trajectories with an eventual reactive outcome.

�rst bounce on the surface, the phase space points of the target atom are distributed in di�erent

ways depending on the collision energy of the projectile. This energy indeed determines the speed

at which the incident atom proceeds, thus the path to the surface followed by this atom and its

interaction with the target. Naturally as shown in �g.5.3b-c at high collision energy, the incident

hydrogen moves too fast to be able to �nd out the minimum energy path to the surface, so that

it typically proceeds along the normal direction and a reaction may occur upon a bounce on the

surface. More precisely, at Ecoll ∼ 4 eV, the projectile has the turning point located below the

surface level, where it may penetrate due to its large energy; in the same time the target hydrogen

moves away from the surface with a positive velocity. To react this atom needs to be ∼ 1.2 Å far

above the surface with a velocity of at least∼ 0.06 Å/fs. Similarly, at Ecoll = 1 eV the reaction

occurs for the target atom placed at least ∼ 1.4Å far on the surface with a speed above ∼ 0.04Å/fs.

As shown in �g.5.3a, upon a further decrease in the collision energy down to Ecoll = 0.1 eV, the

incoming atom feels the corrugation of the potential energy surface and it deviates towards the

target while getting close to the surface. This induces the target atom to step away from the

surface, in such a way that the reaction likely occurs for atoms above ∼ 1.6 Å and with a velocity

of ∼ 0.02 Å/fs.

In conclusion a fast-moving projectile hits the surface and it is rapidly back re�ected; while returning

into the gas phase, it can capture the target atom provided this is not too tightly bound and it has

a su�ciently large speed along the z axis. The energy transfer is fundamental for a slow-moving

projectile: this is generally deviated from its direction by the attraction of the target, thus it hits

the surface and bounces o� it in the nearby of the target; for this reason the reactive encounter may

take place only if the target atom has a z coordinate large enough that does not hinder the rebound

of the projectile and does not de�ect it away in a trapped state with a main speed component



5.3. Formation of H2 molecules: the QCT approach 113

Figure 5.5: (a) reaction cross section as function of Ecoll on a logaritmic scale for 105 classical
trajectories (dashed blue line) and 105 quasiclassical trajectories for v = 0 (orange solid line); (b)
cross section for the trapping of hot atoms as function of Ecoll on a logaritmic scale with the same
sets of trajectories as in (a).

parallel to the surface. Of course in all these cases the formation of a molecule implies an energy

transfer from the incoming atom to the adsorbed one in the entrance channel; anyway this process is

expected to be quite ine�cient at Ecoll & 1 eV where the high energy incident particle 'glides' above

the surface corrugation. Note that in this regime, as the collision energy increases, the position and

velocity of the target become more and more relevant for the e�ciency of the energy transfer, as can

be deduced from the distribution of the reactive coordinates (green dots) in �g.5.4; this observation

may reasonably justify the increasingly (huge) di�erence between the classical and the quasiclassical

cross section in the same energy interval.

5.3.2.2 The drop in cross section at low collision energy

On the basis of the above considerations the drop in the cross section at low collision energy is

somehow unexpected. In the attempt to understand the origin of such behaviour we performed

classical and quasiclassical (v = 0) calculations to study the formation of hydrogen molecules in the

energy interval Ecoll = 0.1 − 10 meV. We chose the same parameters used for the higher collision

energies except for the time of the �nal analysis that has been delayed (the �rst analysis is done

after 7257 fs from the beginnig) in order to handle the slow rate of the projectile. The decrease in

the collision energy up to 0.1 meV results in a decrease of the reactive cross section that anyway

remains sizeable as shown in �g.5.5a. This allowed us to exclude the existence of any energy barrier

as in that case the cross section would have vanished; moreover the result appears to be almost

independent on the initial conditions of the adsorbed hydrogen as the inclusion of the zero point

energy has not changed the picture. Interestingly, �g.5.5b shows that the drop in the reaction

cross section is accompained by an increase in the cross section for the trapping of hot atoms on

the surface. These species are free to move along the surface as in the limit of a �at surface the

di�usion process is not activated, anyway they do not have enough energy to leave the surface and
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Figure 5.6: Representative trajectories in the very low collision energy regime. The plots are the
same as in �g.5.3.

return into the gas phase. By considering �g.5.6 some conclusions may be drawn. First, the opacity

function is nonzero in the quasicollinear case, that anyway hardly a�ects the reaction cross section,

and in the region close to req. Note that in this case the increase in the collision energy results in a

shift of the opacity fuction at higher impact parameters. Second, in this very low energy regime the

incident atom moves slowly and it can always access the minimum energy path towards the surface;

in this way it possibly deviates from the normal direction. This implies that for impact parameters

slightly above the equilibrium distance req, the projectile is driven far away from the target atom

and it presumably becomes trapped on the surface in the form of an hot atom. So that, the drop of

the cross section at low collision energy indicates the presence of an alternative path that becomes

accessible only in this energy range and that carries the projectile far away from the adsorbed atom.

5.3.2.3 Comparison between quasiclassical and quantum results

As introduced in sec.5.2.1.2 by comparing quasiclassical and quantum results obtained on the same

potential energy surface one may �nd some di�erences that have a quantum origin. In this way,

from �g.5.7 it emerges that quantum and quasiclassical methods give the same result in terms of

formation of HD molecules upon the reaction between an adsorbed deuterium atom and an incident

hydrogen atom; on the other hand in the case of H2 molecules, the agreement between the two

approaches is quite good up to collision energies of ∼ 0.5 eV, as shown in the inset in �g.5.7 then

the two cross sections become clearly di�erent: up to ∼ 2 eV, the quasiclassical cross section is lower

than the quantum one, beyond this threshold the situation is reversed. This observation is consistent

with the fact that, being lighter, the hydrogen atom is predicted to show a quantum nature more

pronounced that the deuterium atom. As well, quantum and QCT results are almost equivalent in

the low energy regime, thus indicating that the ER process is not activated: indeed, in the presence
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Figure 5.7: The Eley-Rideal cross-section as a function of the collision energy of the incident particle.
Solid and dashed lines account for quasiclassical and quantum results respectively, with the target
(hydrogen or deuterium) atom in v = 0. The inset show the region at low collision energy.

of a barrier, a certain amount of tunneling would have a�ected the quantum description. Once

excluded the presence of an activation barrier, the origin of the discrepancy between quantum and

quasiclassical results may be found in the fact that both bond formation and bond breaking involves

quantized states, especially in the presence of light atoms. For these reason, clear di�erences are

predicted (i) in the reactive case, where the adsorbed atom passes from a bound state on the surface

to another bound state in the molecule, (ii) in the formation of hot atoms, where the incident atom

initially unbound becomes trapped in a high energy state of the potential well and (iii) in the

collision induced desorption, where the adsorbed atom is pushed out from its bound state upon the

collision with the incoming atom.

In the end, we chose to investigate the possible e�ect of the vibrational excitation of the target on

both quantum and QCT �nal results. Of course, this aspect does not have a real physical interest

as in the ordinary experimental conditions only the vibrational ground state is populated, anyway

an intriguing observation has been done upon placing the adsorbed atom in an excited vibrational

state, that is from v = 1 to v = 5. As shown in �g.5.8, it turns out that the two theroretical

methods produce almost equivalent results, provided the adsorbed atom belongs to a vibrational

odd state, while the agreement is much worse if the target atom is in a vibrational even state. Up

to now an explanation of this e�ect is still lacking.

5.4 Formation of H2 molecules: the AIMD approach

5.4.1 The choice of the setup

In parallel to the quasiclassical trajectory method we also investigated the Eley-Rideal formation of

hydrogen molecules with ab initio molecular dynamics (AIMD) as implemented in the VASP[56, 57]
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Figure 5.8: reaction cross section as a function of the collision energy of the incident hydrogen;
the target hydrogen is in a vibrational state with (a) even quantum number or (b) odd quantum
number.

package. Dynamical simulations were performed sampling the microcanonical (NVE) ensemble with

classical trajectories. The Hellmann-Feynman forces were computed on-the-�y with DFT while the

Newton equations of motion were integrated using a Verlet algorithm with a time step of 0.40 fs

for all the projectile collision energies in the interval Ecoll=0.01-0.4 eV. At the beginning of each

trajectory the incident atom was set at ∼ 4 Å above the surface plane with monochromatic initial

velocity directed along the surface normal. The aiming points were generated by sampling at random

the xy coordinates of the incident hydrogen within a symmetry irreducible sector θ = π/3 of the

hexagonal area of side r = 1.7Å centered on the target in the adsorption site. The initial conditions

of the surface atoms and of the adsorbed hydrogen were not sampled in these calculations, in fact

they both were initially set at rest at their equilibrium positions. These were determined by a

geometry optimization run using a 1 meV threshold on the total free energy relaxing the positions

of the top layer atoms and the position of the hydrogen; these atoms were also left free to move

during the whole simulation. Note that these initial conditions imply a surface temperature Ts=0

K.

Here the need of a large number of calculations to get statistically meaningful data required to

reduce the computational setup and this has been done on the basis of a careful selection of the

number of layers in the slab and the number of k-points as will be shown in sec.5.4.1.2. Eventually,

we chose a 2× 2 supercell to model each layer of the metal and we ended up with 12 silver atoms in

a sample composed by three layers; the target hydrogen atom was seated in the fcc hollow site and

the vacuum along the c axis was set to ∼ 12Å to isolate the periodic images. A 6×6×1, Γ centered

k-points mesh was chosen upon a careful selection, with 1 eV Gaussian smearing that is appropriate

when dealing with metals. Moreover the Kohn-Sham orbitals were expanded in a plane-wave basis

set limited to a 270 eV energy cuto� and the electrons were described by the projector augmented-

wave (PAW) method, in the limit of frozen core electrons. The exchange and correlation energy
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Figure 5.9: (a) top direction and (b) bridge direction. Only trajectories close to the reactive zone
are shown: solid red lines and dashed black lines are for reactive and non reactive trajectories
respectively. The surface level is set to zero.

was introduced via the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient

approximation (GGA), in the spin-polarized framework. In the chosen surface sector we run 400

trajectories equivalent to 2400 trajectories on the whole hexagonal area surrounding the target

hydrogen.

5.4.1.1 The two limiting directions

The Ag(111) surface has two nonequivalent directions corresponding to symmetry axes in the xy

plane: hollow to hollow (fcc to hcp) and hollow to top. In our case, we investigated these two

directions in terms of reactivity in order to evaluate the importance of the surface corrugation, thus

to estimate the implicit error in the �at surface approximation. As shown in �g.5.9, we found that

most of the reactivity is concentrated along the hollow to top direction, 0.65-1.10 Å far from the

target atom, seated in the fcc hollow site. In fact, by considering the other direction, we only found

a small amount of reactivity beyond the bridge at around one Å from the target; note that in this

region the surface is more open in correspondence of the hollow hcp site, thus the incident hydrogen

may likely cross the surface and possibly either be re�ected by the atoms in the second layer or

di�use subsurface. Also the reaction is found to occur in a di�erent way along the two directions

due to the di�erent surface structure; a detailed description of the reaction mechanisms will be

given in sec.5.4.2 for di�erent initial collision energies.

At last, note that a small amount of reactivity is always encountered in the quasi collinear region,

for ρ → 0; anyway this contribution has almost no e�ect on the reaction cross section and it is

almost equivalent in both the directions.
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Figure 5.10: reactivity in the hollow to top direction for Ecoll = 0.1 eV as a function of b (the
quasicollinear contribution is ignored). AIMD reactive impact parameters (�lled dots) along the
hollow to top direction on a silver slab composed by three, four and �ve layers of atoms, respectively
3L, 4L, 5L in the �gure; each of them is described by a 4 × 4 × 1 and 6 × 6 × 1 k-points meshes,
respectively 4k and 6k in the �gure; the blue dots have been computed according to the same setup
in sec.5.2.1.1, namely a cuto� of 425 eV and a10×10×1 k-points mesh, 10k in the �gure; the line of
small red dots indicates the reactive interval obtained with the CT method. All the AIMD reactive
cross sections σ in Å2 are compared with the CT result (this accounts also for the quasicollinear
contribution).

5.4.1.2 The number of layers and k-points

Of course the forces acting on the atoms are responsible for the �nal outcome of each trajectory,

thus they are requested to be as accurate as possible to get a reliable picture of the system. For

this reason we proved the number of k-points and the number of layers as expected to a�ect the

description of the potential felt by the atoms and we found that both the aspects are relevant.

Indeed, in the case of Ecoll = 0.1 eV, we studied the reactivity towards the formation of hydrogen

molecules along the most reactive hollow to top direction at impact parameters b in the interval

req < b < 2req and we found that the reactive region is shifted by varying the number of layers

in the metal slab, namely three, four or �ve layers, and the k-points mesh, namely 4 × 4 × 1 and

6× 6× 1. The results are reported in �g.5.10. For each case the reactive cross section is computed7

in the assumption that the result in terms of reaction probability along the speci�c hollow to top

direction might be valid throughout the whole surface. This is somehow related to the �at surface

approximation used to construct the PES for the CT method. Anyway here the motion of any

incident atom is driven by forces computed on-the-�y, thus in principle the particle may experience
7The reaction cross section is computed as

σr = πPr (b1) b14b+ πPr (bN ) bN4b+ 2π
PN−1
i=2 Pr (bi) bi4b

where i labels the impact parameters in interval considered, Pr (bi) is the reaction probability, that here is just 1 or
0 for each bi depending on the �nal outcome of the trajectory, whether it is reactive or not, and 4b is the width of
the interval centered on bi.
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the surface corrugation as soon as it deviates from the given direction. Upon comparing the di�erent

setups, the natural choice is the slab made by three layers of silver with 6× 6× 1 k-points: in fact

this well reproduces the �ve layers system with the same k-points grid, taken as a benchmark, at a

signi�cantly lower computational cost.

It is important to notice that independently on the number of metal layers in the slab and by using

a 6× 6× 1 grid of k-points, the reactive cross section computed in the interval req − 2req di�ers up

to ∼ 20% from the one found with the CT method taken as reference, that anyway includes also the

small quasicollinear contribution. In the attempt to explain the origin of this di�erent reactivity

along the same direction, at �rst we looked for the possible drawbacks in the reduced setup. To this

end, we computed a number of trajectories by using a setup equal to the one originally adopted to

generate the potential energy surface in sec.5.2.1.1, except for the position of the 10×10×1 k-points

grid that here is centered in the Γ point on the surface, in order to better exploit the hexagonal

symmetry of the lattice, while originally was M -centered. As shown by the blue dots in �g.5.10

the result is almost equivalent to the one obtained from both the three and the �ve layers system,

with an energy cuto� of 270 eV and a 6× 6× 1 grid of k-points, thus making unlikely the idea that

the chosen setup may account for the di�erent response from the ab initio MD and the classical

trajectory study. Once redimensioned the in�uence of the reduced setup on our �nal results and

considering that the surface corrugation might not be so relevant in the limit of the speci�c hollow

to top direction, we looked at the possible consequences in the use of a non rigid surface. In our ab

initio MD approach the surface atoms are allowed to move, thus the incident atom may trasfer part

of its energy to them, while bouncing on the surface. This energy loss is expected to contribute to

the observed displacement of the reactive interval as suggested by �g.5.3 and �g.5.6, in which it is

shown that, at least at collision energies below ∼1 eV, the decrease in the collision energy shifts the

reactive region at lower impact parameters. As a further check, we considered the H2 formation on

a rigid surface and we found that the cross section is increased by ∼0.3 Å2 in the case of a �ve layers

slab with a 6× 6× 1 k-points grid. Accordingly, the energy dissipation into the surface degrees of

freedom, though rather ine�cient due to the mass mismatch between hydrogen and metal atoms,

turned out to be relevant in the �nal outcome.

At last, to validate our setup over the whole surface, we considered the reactivity of hydrogen

atoms impinging around the target in the xy plane at Ecoll=0.1eV in the case of a three layers

and a �ve layers slab and we found that the reaction cross sections are 1.52 ± 0.15Å2 and 1.93 ±
0.16Å2respectively. Thus, by taking as a benchmark the �ve layers system, at this collision energy

the smaller setup underestimates the reaction cross section of about 20%, thus meaning that the

reactive area is closer to the target. This is evident in �g.5.11 in which the initial coordinates (i.e.

aiming points) of the incident atom leading to an eventual reactive outcome are reported for both

the systems.



120 Chapter 5. Eley-Rideal formation of H2 on Ag(111)

Figure 5.11: comparison of the reactive aiming points on a �ve layers slab (blue dots) and on a
three layers slab (red dots). The target hydrogen in the hollow fcc site (green atom).

Figure 5.12: (a) position of the target H in blue in the fcc hollow site. (b) and (c) aiming points
for the incident H with energy 0.01 and 0.4 eV respectively. Di�erent colours indicate incoming H
atoms that react (red) with the target, di�use along the surface more that ∼ 3Å far away from the
target (pink) possibly spending some time also below the surface layer (green).

5.4.2 Results

Once chosen the starting setup, we followed 400 trajectories for di�erent collision energies between

0.01-0.4 eV to evaluate the variation of the reaction cross section. As evident from �g.5.12, at low

collision energy (0.01 eV) the reactive region is small and it slightly varies throughout the xy plane;

on the contrary, at higher collision energies the reactive region is gradually broadened and in the

meanwhile it tends to gather around the hollow to top direction while the region close to the bridge

becomes almost non reactive. This suggests that the e�ect of the surface corrugation is di�erent

depending on the energy of the incoming particle. This observation is not unexpected and it can

reasonably be explained considering that, by increasing the collision energy, the projectile may get

closer to the surface, in such a way to feel more closely the potential of the surface atoms.

To better understand the variation in terms of reactivity across the surface, we followed in details

few representative cases, chosen as close to the two limiting directions, for di�erent energies of

the incident hydrogen, Ecoll=0.01,0.1 and 0.4 eV. As shown in �g.5.13, di�erences in the reaction

mechanisms are encountered that depend on the initial position as well as on the energy of the

incident atom.

In general, the atom directed along the hollow to top direction proceeds towards the surface up to

∼ 1 Å far above it, then it may either react with the adsorbed hydrogen or be re�ected far away
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Figure 5.13: plots of the z coordinate of the incident atom as a function of the distance between the
two hydrogens in the xy plane. The top line shows reactive (red solid line) and non reactive (black
dashed line) trajectories along the hollow to top direction; the bottom line shows reactive trajectories
close to the bridge (blue solid line) for an incident atom with (a) Ecoll=0.01eV , (b)Ecoll=0.1eV and
(c) Ecoll=0.4eV . The surface level is set to zero.

from it; on the other hand, the particle directed along hollow to hollow direction may get closer

to the surface, typically less than ∼ 1 Å far above it, before either reacting or going away. Note

that in this second direction for ρ > 0.85 Å, thus in the region beyond the bridge, the incident

hydrogen may possibly glide on the surface driven by the energy gradient towards the hcp hollow

site and then be re�ected back to target by the repulsive potentials of a surface atom. Of course,

all the events along this direction are quite rare especially at high collision energy. It is important

to point out that in all the cases, while approaching the surface the incident atom interacts with

the adsorbed hydrogen, thereby deviating from the normal direction; this e�ect is found to be more

evident at low collision energy.

5.5 Formation of H2 molecules: comparison of AIMD and CT re-

sults

Results obtained with ab initio molecular dynamics and with the classical trajectory method have

been compared in �g.5.14. It is clear that the choice of one rather than the other method gives

remarkably di�erent cross sections at the same collision energy. Of course, this is not unexpected

and it mainly derives from the two alternative ways to deal with the potential energy and thus to �nd

the forces acting on the atoms. As outlined in sec.5.2.2, in AIMD the forces are computed on-the-�y,

thus they account for the instantaneous position of all the atoms and they re�ect the corrugation

of the surface. This allows to get a realistic description of the motion of the (hydrogen) atoms,

including energy barriers to the di�usion throughout the surface and permitting the energy transfer
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Figure 5.14: (a)reactive cross section from CT (dashed line) and AIMD (solid line) calculations; (b)
di�erences in the cross section between these two approaches.

to phonons. On the other hand, in the classical trajectory method the potential energy surface is

computed before running the trajectories and it is assumed to be �at and rigid; by construction this

potential is de�ned along the hollow to top direction, that generates the whole surface by rotation

around the z axis normal to the surface itself (see par.5.2.1.1). Of course this is an approximation,

that anyway allows to dramatically reduce the computational cost; moreover the AIMD approach is

in principle more accurate, but in practice it becomes computationally feasible only upon a drastic

reduction of the setup quality, thus including a certain amount of approximation also in this case.

As illustrated in �g.5.14 we limited our comparison to the low energy regime, where the classical

trajectory method has been found to well reproduce the quasiclassical (v = 0) results, thereby we

coud reasonably assume the target to be at rest in its equilibrium position. In �g.5.14a classical and

AIMD cross sections are reported and both reproduce the drop in the cross section at low collision

energy. Anyway, the reactive cross sections found by the two methods di�er of ∼1-1.5 Å2 in the

interval of energy considered. As shown in �g.5.14b, such di�erence tends to increase together with

the collision energy of the incident atom; this is consistent with the observation that the surface

corrugation becomes more relevant as the collision energy increases.

In �g.5.15 both CT and AIMD reactive aiming points are reported at Ecoll = 0.01 and Ecoll=0.4

eV. On the basis of the potential energy surface used in the CT method, it is not surprising that

the reactive region in this case forms a ring, whose width and radius depends on the initial energy

of the projectile. On the contrary, the AIMD method clearly accounts for the e�ect of the surface

corrugation: this is more pronounced at collision energy Ecoll=0.4 eV, where it produces a clear

localization of the reactive region around the hollow to top direction along with a reduction of

the reactivity close to the hollow to hollow direction. However, it is evident from �g.5.15 that

the two methods do not only di�er in terms of surface corrugation included, but even in terms

of reactive impact parameters, as already outlined in �g.5.10. Indeed within the CT method, the
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Figure 5.15: reactive aiming points for the formation of H2 in classical trajectory dynamics (blue
dots) and ab initio molecular dynamics (red dots) at collision energy, Ecoll = 0.01 eV (left panel)
and Ecoll = 0.4 eV (right panel). In green the target hydrogen in the hollow fcc site.

reactive interval is placed farther away from the target atom compared to the reactive region found

in AIMD, as in this last case, the incoming hydrogen transfers part of its energy to the surface

upon bouncing on it. Obviously, this contributes to the di�erence between the two cross sections.

Anyway, in the energy range considered here, the increase in the collision energy enhances the

overlap between the two reactive regions. Accordingly, it is reasonable to a�rm that an increase of

the collision energy up to 0.4 eV allows the incoming atom to have a stronger feeling of the surface

corrugation, that thereby becomes the main responsible for the di�erence between AIMD and CT

cross sections. On the other hand, the �at surface approximation becomes at least qualitatively

correct at very low collision energy ∼ 0.01 eV, as the incident atom may not get too close to the

surface so that to feel the corrugation of the surface potential. In this limit the two methods give

di�erent responses mainly due to the relative positions of the reactive impact parameters.

5.6 Analysis of H2 molecules

5.6.1 H2 molecules in the QCT method

Along with the reaction cross section shown in �g.5.2, we also obtained the average vibrational

(〈v〉) and rotational (〈j〉) quantum numbers for the homonuclear, H2 and D2, and heteronuclear

HD molecules; these results are reported in �g.5.16 as a function of the collision energy of the

projectile. In general, an increase in the collision energy results into an increase of the average

vibrational and rotational excitation. For instance, quasiclassical (v = 0) calculations show that, in

H2 molecules, 〈v〉 increases from ∼1 to ∼8 when the collision energy of the projectile passes from few

tenths of eV up to 4 eV; in the same energy range, 〈j〉 varies from ∼8 to ∼14. On the other hand, in

the classical approach, the average vibrational excitation of H2 molecules varies from less than ∼1
to ∼6, while the average rotational excitation ranges between ∼7 and ∼18. Moreover, in �g.5.17

we plotted the vibrational and rotational quantum numbers as a function of the impact parameter

b for some representative values of the collision energy, namely 0.1, 1 and 4 eV. In the quasiclassical

scheme, v (b, Ecoll) and j (b, Ecoll) are obtained by averaging over 400 trajectories generated for
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Figure 5.16: average vibrational (a) and rotational (b) quantum numbers as a function of the
collision energy.

each b and Ecoll by randomly choosing the initial conditions (position and velocity) of the target

atom in the ground vibrational state. Of course, in the classical scheme the average over the initial

conditions of the target is not involved, as it is assumed to be initially at rest in the equilibrium

position. These results are reported in �g.5.17; here the plateau correspond to regions in which the

reaction probability is null, and do not actually represent molecules belonging to v = 0 or j = 0.

As shown in this �gure, if the vibrational energy of the target atom in v = 0 is taken into account,

the reactive interval in terms of impact parameter b is found to be larger than the corresponding

classical result, for each of the collision energies considered. Note that the probability to form H2

molecules is nonzero for impact parameters in req < b < 2req and in the quasicollinear region and,

as already outlined, the reactive interval broadens when the collision energy decreases. Moreover,

�g.5.17 shows that, for a given impact parameter, the vibrational and rotational excitation increases,

as the collision energy increases; also, for a given energy, molecules in highly excited rotational and

vibrational states usually form at the boundaries of the reactive interval.

5.6.1.1 Comparison with H2 and HD molecules from quantum dynamics

The analysis of the product molecules H2 and HD in terms of vibrational and rotational average

quantum numbers is shown in �g.5.18 for both the quantum and the quasiclassical approach. In the

same way as for the reactive cross sections in �g.5.7, at low collision energy (approximately below

∼ 0.5 eV) the agreement between the results is good for H2 as well as for HD, while it tends to get

worse as the energy is raised. In the case of H2 it is interesting to notice that beyond the threshold

of ∼ 2 eV, namely where the collision induced desorption starts to take place, the quasiclassical H2

molecules show an average vibrational quantum number 〈v〉 higher that the corresponding quantum
data. This is consistent with the picture emerging from �g.5.7, namely that the quasiclassical

approach compared to the quantum approach predicts a higher reactive cross section, likely related

to a less e�cient collision induced desorption. In this way, the formation of highly excited QCT
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Figure 5.17: average vibrational (a) and rotational (b) quantum numbers as a function of the impact
parameter from quasiclassical (v = 0) calculations. Vibrational (c) and rotational (d) quantum
numbers from classical calculations. Results refer to di�erent collision energies, namely Ecoll =0.1
eV (green line), Ecoll =1 eV (blue line) and Ecoll =4 eV (red line).

molecules may possibly be explained. On the other hand, the good agreement on the 〈j〉 values
proves that the vibrational excitation of these molecules in the quasiclassical study is not associated

to a parallel increase in the average rotational excitation.

5.6.2 H2 molecules in AIMD

The distribution of the H2 molecules into rotational states in the interval j = 0− 14 is reported in

�g.5.18 as a function of the vibrational excitation of the molecules themselves at di�erent collision

energies of the incident atom. In all the cases, most of the molecules form in the ground vibrational

state and there is a decreasing probability to �nd molecules in the higher excited states; on the other

hand, the rotational excitation is quite relevant at all the energies considered. This last observation

suggests that the formation of H2 molecules mainly occurs with a noncollinear mechanism, namely

when the incident atom proceeds towards the surface at a certain distance ρ (in the xy plane) from

the target atom. The point is that the incoming hydrogen moves towards the silver surface along

the normal direction and, except for very low collision energies, it only weakly deviates towards the

target; in this way the projectile gets close to the surface before forming the molecule. Once on the

surface at an appropriate distance from the target, a molecule may form that likely rotates around

the normal to the surface (in the so-called helicopter fashion, opposed to cartwheel fashion in which
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Figure 5.18: analysis of H2 and HD product molecules: comparison between the average (a) vibra-
tional and (b) rotational quantum numbers obtained from quasiclassical and quantum calculations
with the target atom originally in v = 0.

Figure 5.19: normalized probability P (j) as a function of the rotational quantum number j in
di�erent vibrational states as indicated by the colours at collision energies (a)Ecoll = 0.01 eV,
(b)Ecoll = 0.1 eV and (c)Ecoll = 0.4 eV.

the molecule rotates around an axis parallel to the surface). In this limit, the main interest is in the

projection of r and v in the xy plane, and a large r is associated to a large j8. Moreover, also the

low vibrational excitation is consistent with this picture, as high vibrational states become likely

populated when the reaction occurs upon a direct encounter between the two atoms, namely in the

quasicollinear region or in the noncollinear region if the projectile is strongly deviated towards the

target, before reaching the surface.

8This follows from the relation ˛̨
J2
˛̨
∝ j(j + 1)

with the angular momentum vector J de�ned as J = r×µv, where µ is the reduced mass of the two atoms and v is
the angular velocity.
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5.6.2.1 Comparison with classical trajectory results

We compared the H2 molecules that form by modeling the Eley-Rideal reaction with ab initio

molecular dynamics and in the classical trajectory scheme. To this end we consider the average

vibrational and rotational quantum numbers as a function of the collision energy of the incoming

atom in the interval between 0.01-0.4 eV. Due to the high computational cost of AIMD, one may

a�ord only a small number of trajectories for each energy and we found that 400 trajectories

generated in the surface sector described in sec.5.4.1 were su�cient to get converged reactive cross

sections. Anyway, the number of reactive trajectories was found to be too small (less than ∼
100/400) at any collision energy to produce accurate results in the analysis of the product molecules.

In this way, the 〈v〉 values of H2 molecules from AIMD trajectories in �g.5.19a do not show the

clear increasing tendency associated to the quasiclassical results, anyway this may not even be ruled

out due to the uncertainty in the AIMD data. Moreover, the AIMD data are enough to show that

the Eley-Rideal reaction on the Ag(111) surface forms H2 molecules in a low vibrational state. In

the same fashion also the 〈j〉 values in �g.5.19b emerging from the AIMD study are not accurate,

even if also in this case they are enough to con�rm that these product molecules are characterized

by a high rotational excitation. On a qualitative level, the lower vibrational excitation, compared

to the CT results, may be a consequence of two facts: �rst, the incoming atom usually bounces

on the surface, before reacting, and in this way it may dissipate part of its energy into the surface

phonons; anyway, though possible, the e�ectiveness of this dissipative channel is limited by the mass

mismatch between hydrogen and silver atoms. Second, due to the surface corrugation, the incident

atom transfers part of its kinetic energy, initially associated to the motion along the surface normal,

in the motion parallel to the surface, thereby reducing the amount of energy available to form

vibrationally excited molecules. In the end, this kinetic energy accounting for the motion in the

xy plane may in turn be transferred to the product molecules in the form of rotational excitation,

thereby explaining the higher rotational excitation of the AIMD molecules compared to the ones

obtained within the �at surface approximation.

5.7 Conclusions

We studied the formation of hydrogen molecules on the Ag(111) surface in the single-adsorbate case,

by using (quasi)classical dynamics on a reference potential[20] and ab initio molecular dynamics.

Beyond the inherent di�erences in the two methods, initially pointed out, we obtained large cross-

sections for the Eley-Rideal reaction and product molecules with relatively low vibrational and high

rotational excitation. Such distribution of the internal energy of molecules was found to be indicative

of the reactive scheme, mainly based on a non-collinear geometry, with only a small quasi-collinear

reactivity. Moreover, the reaction was found to occur typically upon a bounce of the incident atom

on the surface. In this way, the energy exchange between the incident atom and the surface, allowed
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Figure 5.20: comparison between average (a) vibrational and (b) rotational quantum numbers of the
H2 molecules obtained in AIMD (red line with standard deviation) and in the classical trajectory
method (blue line).

in the ab initio MD study while ignored in (quasi)classical study due to the model PES adopted,

becomes relevant to determine the �nal outcome of each trajectory. The comparison between the

two methods has been done in the low energy regime, between 0.01-0.4 eV, where we could safely

ignore the target vibration. In this way we could evaluate the e�ect of the surface corrugation on

the reaction and we found that the speci�c potential energy surface used in the QCT study leads

in any case to an overestimate of the real cross section. As well we compared our results with the

experimental work in ref.[52], in which the cross section was computed in the case of the D by H

abstraction at di�erent D coverages. By decreasing the surface coverage, it was found that the

reaction cross section raises, up to σ = 4.5Å2 at the lowest coverage considered (∼ 0.03 ML), upon

admitting a polychromatic �ux of H atoms (with no indication on the temperature of the beam)

at the surface temperature of 80 K. As the experimental conditions are somewhat di�erent from

those used in our simulations, we could compare the experimental cross section with our theoretical

results only at a qualitative level. In this way we found some di�erences suggesting that the �nal

outcome may be likely in�uenced by the surface temperature, the incident angle of the incoming

particles and the surface precoverage, in addition to the dependence on the collision energy, the

surface relaxation and the vibrational excitation of the adsorbed atom already investigated in our

study.



Appendix A

The Jahn-Teller theory

A.1 The adiabatic approximation

In order to introduce the basic concepts of the Jahn-Teller theory[12? ], we �rst consider the basic

expressions for the changes in the electron-nuclear interactions due to nuclear motions, i.e. vibronic

interactions, in degenerate and non-degenerate electronic states.

From the Schrödinger equation, the electron-nuclear interaction is treated by:

(H− E) Ψ (r,Q) = 0 (A.1)

where Ψ (r,Q) is the full wavefunction, r represents the whole set of coordinates of the electrons

ri with i = 1, 2...n and Q is the whole set of nuclear coordinates Qα with α = 1, 2...N , H is the

hamiltonian operator and E is the total energy of the system. Except for very simple systems,

composed by few nuclei and electrons, the exact solution of eq.(A.1) is extremely di�cult and one

has usually to look for approximate solutions, resulting from simpli�ed descriptions of the original

system. Among these, one of the most successful, as both conceptually simple and widely applicable,

is the adiabatic approximation, based on the inequality between electrons and nuclei masses, that

re�ects in a substantial di�erence in their relative speeds. Accordingly, one may assume that a

relaxed distribution of the electronic cloud Ψ (r,Q) follows each istantaneous con�guration Q of

the nuclei, meaning that the nuclei move in the average �eld of the electrons. This allows to split

the search of the energy of the system into two steps: �rst the electronic part of the Schrödinger

equation is computed for each of the �xed Q coordinates, then the obtained mean electron energy

is used as the potential energy in which nuclear displacements take place. Thereby, the global

hamiltonian in eq.(A.1) is divided in:

H = Hr +HQ + V (r,Q) , (A.2)

where Hr is the electronic part and includes the kinetic energy of the electrons and the electron-

electron interactions, HQ is the nuclear part including the kinetic energy of the nuclei and V (r,Q)

is the potential energy including the internuclear repulsion and the interaction between electrons

129
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and nuclei. The V (r,Q) operator can be expanded as a series about the reference position Qα =

Qα0 = 0, where {Qα} is the set of symmetrized displacements described later.

V (r,Q) = V (r, 0) +
∑
α

(∂V/∂Qα)0Qα +
1
2

∑
α,β

(
∂2V/∂Qα∂Qβ

)
0
QαQβ + ... (A.3)

By assuming only the �rst term of this expansion as the potential energy of the electrons in the

�eld of nuclei �xed at Qα = 0, one can solve the electronic part of the Schrödinger equation:(
Hr + V (r, 0)− ε′k

)
ϕk (r) = 0 (A.4)

where ε
′
k and ϕk (r) are respectively the energy and the eigenfunction of the electronic state k in the

given nuclear con�guration Qα = 0. Then the full Schrödinger equation is considered to account

for the e�ects of the nuclear motion on the solutions of eq.A.4. To this end, the total wavefuction

Ψ (r,Q) is rewritten in terms of the electronic functions ϕk (r):

Ψ (r,Q) =
∑
k

χk (Q)ϕk (r) (A.5)

where the coe�ents χk (Q) depend on the Q coordinates. After some simple transformations, the

Schrödinger equation becomes:

(HQ + εk(Q)− E)χk(Q) +
∑
m 6=k

Wkm (Q)χm (Q) = 0 (A.6)

where Wkm(Q) is the electronic matrix element

Wkm(Q) = 〈ϕk (r) |W (r,Q)|ϕm (r)〉 (A.7)

representing the vibronic interactions, i.e. the part of V (r,Q) which depends on Q only, since the

dependence on r has been ruled out by integration. Indeed:

W (r,Q) = V (r,Q)− V (r, 0) =
∑
α

(∂V/∂Qα)0Qα +
1
2

∑
α,β

(
∂2V/∂Qα∂Qβ

)
0
QαQβ + ... (A.8)

and εk(Q) = ε
′
k + Wkk (Q) is the potential energy of the nuclei in the mean �eld on electrons in

the state ϕk (r) . If the vibronic mixing, namely the coupling between electronic states due to the

nuclear motion here represented by Wkm in eq.(A.6), may be set down to zero, then the system of

equation decouples and it decomposes in a simple set of equations:

(HQ + εk(Q)− E)χk(Q) = 0 k = 1, 2, 3... (A.9)

This is the crude adiabatic approximation known as the Born-Oppenheimer approximation and

εk (Q) is the adiabatic potential energy surface (APES) of each state k. Of course, such description
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is valid only as far as the vibronic mixing of di�erent electronic states can be ignored, that is

~ω �
∣∣∣ε′m − ε′k∣∣∣ (A.10)

where ~ω is the energy quantum of vibrations in the electronic state under consideration (k or m)

and ε
′
m, ε

′
k are solutions of eq. A.4. This is a criterion of validity of the adiabatic approximation,

that applies to stable electronic states with localized vibrations; obviously it does not hold with

degenerate or pseudodegenerate electronic states.

In the limit of non-interacting electronic states, a more accurate description is given by the full

adiabatic approximation. In this case the electronic part of the Schrödinger equation includes the

electron-nuclear interactions in the whole range of nuclear coordinates, thus modifying eq.(A.4) as

follows: (
Hr + V (r,Q)− ε′k (Q)

)
ϕk (r,Q) = 0 (A.11)

with the electronic eigenfunction no more independent on Q. The global wavefunction is now

Ψ (r,Q) =
∑

k ϕk (r,Q)χk (Q) and, instead of Wkm in eq.(A.6), one gets the operator of nonadia-

bacity Λkm basically due to the fact that the kinetic operator HQ now applies to ϕ (r,Q) too,

(HQ + εk (Q)− E)χk (Q) +
∑
m6=k

Λkmχm (Q) = 0 (A.12)

with

Λkm = −~
2

2∑
α

(
1
Mα

2 〈ϕk |∇|ϕm〉∇+
〈
ϕk
∣∣∇2

∣∣ϕm〉)χm (Q) = 0 (A.13)

and Mα the nuclear mass. If the electronic state is nondegenerate and the condition in eq.(A.10)

applies, the vibronic coupling terms may be neglected and only Λkk terms survive: this is the case of

the full adiabatic approximation. On the other hand, if such condition is not satis�ed, the vibronic

coupling terms included in Λkm may not be ignored. They are related to the kinetic operatorHQ and

they account for the rate at which the wavefuction changes due to nuclear displacements Qα, that

is higher in the regions where the energies of the two electronic states are closer. Anyway, for strong

vibronic coupling the electronic wavefunctions and, as a consequence, the o�-diagonal nonadiabatic

corrections may have singularities which complicate the solution of (A.12), thus making it useful

to apply an adiabatic-to-diabatic matrix transformation. This is chosen in such a way to generate

smooth wavefuctions with respect to Q that are no longer solutions of the electronic problem, a

diagonal matrix form for the kinetic energy and o�-diagonal elements for potential energy, which

vary smoothly with Q.

However, when the adiabacity criterion does not hold and the adiabatic approximation is not

valid, as in the presence of (pseudo)degenerate or strongly interacting states, the criterion in

eq.(A.10) may not be retained and the Jahn-Teller theory comes into play. The basic lines of

this theory will be presented in the following section, upon choosing as appropriate starting point

the set of equations in eq.(A.6) with Wkm instead of Λkm.
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A.2 Vibronic interactions and vibronic coupling constants

The original formulation of the Jahn-Teller (JT) e�ect as proposed by the authors of the paper

in 1937[45] is: �...the nuclear con�guration of any nonlinear polyatomic system in a degenerate

electronic state is unstable with respect to nuclear displacements that lower the symmetry and

remove the degeneracy.� This former statement has been further re�ned during the years, but

what has remained is the idea that degeneracy or pseudodegeneracy produce a strong interaction

between the electronic and nuclear motion that result in series of observable e�ects known as JT

vibronic coupling e�ects. A more rigourous formulation reads as: �..If the APES of a polyatomic

system has two or more branches that intersect in one point (degeneracy point Qα = 0) then

at least one of them has no extremum at this point.� And �nally, a further general formulation

states: �..the necessary and su�cient condition of instability (lack of minimum on the APES) of

the high-symmetry con�guration of any polyatomic system is the presence of two or more electronic

states that are either degenerate in this con�guration, or non-degenerate but su�ciently strongly

interacting under the nuclear displacements in the direction of instability�.

In the limit in which these de�nitions apply, that is for strongly interacting (possibly degenerate

or pseudodegenerate) solutions of the electronic Schrödinger equation within the Born-Oppenheimer

approximation, the mixing interactions among the electronic states are included asWkm in eq.(A.6).

Linear and quadratic terms of the expansion in eq.(A.8) are usually enough to properly describe

the system provided a suitable reference con�guration has been chosen. In general, the reference

con�guration corresponds to the highly symmetric nuclear arrangement in which the electronic term

is degenerate; similarly, also for pseudodegenerate states the high symmetry of the nuclear posi-

tions remains a good criterion. Starting from the reference geometry, the nuclear displacements are

depicted by normal coordinates that are in turn related to the symmetrized coordinates, namely

collective nuclear displacements that transform into each other under the group operations1. A

symmetrized displacement is e�ectively a normal coordinate if it spans an irreducible represen-

tation that occurs only once in the given molecular point group; otherwise, if the symmetrized

displacement spans an irreducible representation (irrep) that occurs more than once in that point

group (for instance T
′
2 and T

′′
2 in the Td group) then the normal coordinate is a linear combination

of symmetrized displacements spanning the same irreps.

The operator of vibronic interactions in normal coordinates reads as

W (r,Q) =
∑
Γγ

(∂V/∂QΓγ)0QΓγ +
∑

Γ′γ′,Γ′′γ′′

(
∂2V/∂QΓ′γ′∂QΓ′′γ′′

)
0
QΓ′γ′QΓ′′γ′′ + ... (A.14)

where Γ is the irreducible representation de�ning a generic nuclear displacement, f -fold degenerate,

where the subscript γ is the 'line' of matrix f × f and thus the f -th component of the normal

coordinate. As shown in eq.(A.7), the linear vibronic coupling costants are given by the matrix

1It is well known that in a system of N atoms, the number of vibrational degrees of freedom as well as of
symmetrized displacement is 3N − 6 or 3N − 5 for linear arrangements.
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elements of W (r,Q). Following from the Wigner-Eckart theorem the general formulation is

F
(ΓγΓ′γ′)

Γγ
=
〈

Γγ
∣∣∣(∂V/∂QΓγ

)
0

∣∣∣Γ′γ′〉 = F
(ΓΓ′)

Γ

〈
ΓγΓ′γ′|Γγ

〉
(A.15)

where
〈
ΓγΓ′γ′|Γγ

〉
is a Clebsh-Gordan coe�cient available from tabular data. In this way, if at

least one linear vibronic constant is known, all the other can be easily calculated. Of course, if Γ

and Γ′ are nondegenerate, the general expression in eq.(A.15) reduces to

F
(ΓΓ′)

Γ
=
〈
Γ
∣∣(∂V/∂QΓ

)
0

∣∣ |Γ′〉 . (A.16)

Irrespective of the degeneracy, the group theory predicts that:

� the o�-diagonal terms (Γ 6= Γ′) are nonzero if and only if Γ× Γ′ = Γ,

� the diagonal terms (Γ = Γ′) are nonzero if the symmetric product [Γ× Γ] contains Γ, i.e.

Γ ∈ [Γ× Γ].

Anyway, within this scenario the degeneracy plays a fundamental role. For nondegenerate states,

since [Γ× Γ] = Γ × Γ = A1, the electrons can induce nuclear displacements only in the direction

of the total symmetric mode, thus without a�ecting the symmetry of the system. In case Γ or Γ′

or both of them are degenerate, also Γ may be degenerate and the symmetric product contains

nontotally symmetric representations in addition to symmetric one. For instance, in D3h and

D4h point symmetry groups for the E irrep the symmetric products read as [E × E] → A1 + E

and [E × E] → A1 + B1 + B2, respectively. This implies that a symmetric nuclear con�guration

undergoes nontotally symmetric distortions, driven by the electrons in a degenerate state. Note

that this is exactly the prediction of the Jahn-Teller theorem.

In principle one can introduce in a way similar to eqs.(A.15)-(A.16) also the quadratic coupling

constants, GΓΓ′

Γγ
, but a full derivation of such terms is beyond the aim of this appendix. However,

it is interesting to point out that some of these constants, usually referred to as force constants,

represent the curvature of the APES and they are de�ned as follows:

GΓΓ
Γ

= KΓΓ
0Γ

=
1
2

〈
Γ
∣∣∣(∂2V/∂Q2

Γ

)
0

∣∣∣Γ〉 (A.17)

A.3 The Jahn-Teller theorem

Whenever by solving the Schrödinger equation in eq.(A.4), one �nds f -fold degenerate solutions, i.e.

f states ϕk (r) with k = 1, 2...f and energy ε′k = ε0, the adiabatic approximation no longer applies.

As a consequence, the energy levels ε′k are expected to vary under the nuclear displacementsQΓγ 6= 0,

as predicted on a semiquantitative level by the Jahn-Teller theorem. This relies on a perturbative

approach and, for su�ciently small nuclear displacements QΓγ , it returns εk (Q), solutions of the
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secular equation: ∣∣∣∣∣∣∣∣∣∣
W11 − ε W12 ... W1f

W21 W22 − ε ... W2f

...
...

...
...

Wf1 Wf2 ... Wff − ε

∣∣∣∣∣∣∣∣∣∣
= 0 (A.18)

where Wij are the matrix elements of the operator in eq.(A.14) calculated with the wavefunctions

of the degenerate term. Here only the nuclear displacements that lower the global symmetry of the

system are taken into accounts, thus the totally symmetric displacement is not included. As well, by

truncating the expansion in eq.(A.14) at the �rst order in the assumption that higher contributions

are irrelevant for small displacements QΓγ , it results

Wij =
∑
Γγ

〈
i
∣∣(∂V/∂QΓγ)0

∣∣ j〉QΓγ (A.19)

that according to eq.(A.15) reads as:

WΓγΓγ′ =
∑
Γγ

〈
Γ
∣∣(∂V/∂QΓ

)
0

∣∣Γ〉 〈ΓγΓγ′ | Γγ
〉
QΓγ =

∑
Γγ

FΓΓ
Γ

〈
ΓγΓγ′ | Γγ

〉
QΓγ . (A.20)

If at least one of the linear vibronic constants F is nonzero, then at least one of the roots of

the secular equation contains linear terms in the displacement QΓγ and the APES εk (Q) has no

minimum at the point QΓγ = 0. It is worth noticing that the lack of a minimum along the QΓγ

coordinate, does not directly implies the instability of the nuclear con�guration; in the same way

the nonzero F term may not be associated to a distorting force along the Q direction. In fact,

close to the point of degeneracy, the adiabatic approximation is no longer valid and ε (Q) looses

the meaning of potential energy surface of the nuclei in the mean �eld of electrons. Thereby, in

principle the lack of a minimum results in a variety of e�ects where the structural distortion is one

of the most important.

Every time the Jahn-Teller theorem applies, namely for polyatomic systems in degenerate elec-

tronic states that can vibronically couple to one or several types of nuclear displacements, one refers

to as a Jahn-Teller problem. Upon predicting the JT-active displacements for the electronic state

under investigation, one may �nd the stable con�guration of the nuclei and their dynamics in the

presence of the JT e�ect by computing the εk (Q) values. These are de�ned as follows (omitting

the symmetry label Γ of the electronic state):

εk (Q) =
1
2

∑
Γγ

KΓQ
2
Γγ + εvk (Q) (A.21)

where a more comprehensive description is given here by including up to the second order terms

in eq.(A.14). The εvk (Q) values are the roots of the secular equation (
∥∥∥W v

γγ′ − εvI
∥∥∥ = 0, with

γ, γ′ = 1, 2...f ) from which the KΓ terms, known as force constants and de�ned in eq.(A.17),

have been separated. In the region of nuclear con�gurations far from the point of degeneracy,
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especially near the minima of the APES, the energy gap between di�erent branches of the APES

can be su�ciently large even for strong vibronic coupling. Thereby in this case the adiabatic

approximation holds and one may look at the nuclei as moving along the potential energy surface.

Note that this qualitative picture is often in very good agreement with the numerical solutions of

the vibronic equations in eq.(A.6).

A.3.1 The E ⊗ e problem

Consider now the speci�c Jahn-Teller problem E ⊗ e, where E indicates the electronic state and e

refers to the nuclear displacement. This applies to systems with a symmetry axis of third-order in

which doubly degenerate electronic states E are possible and for which the group theory predicts

[E × E] = A1 + E. From eq.(A.2), the electronic part of the total hamiltonian is given by

Hel = H0 +
2∑

α=1

WαQα +
1
2

2∑
α,β=1

WαβQαQβ (A.22)

whereQα = {Q1, Q2} are the symmetrized coordinates,Wα = (∂V/∂Qα)0,Wαβ =
(
∂2V/∂Qα∂Qβ

)
0
,

Qαβ = QαQβ and H0 = Hr + V (r, 0). Close to the high symmetry point at Qα = 0, a doubly

degenerate electronic state is described by the eigenvalues εk=1,2 (Q) of the (second order) matrix

H =

∣∣∣∣∣ ε′1 0
0 ε′2

∣∣∣∣∣+
+

∣∣∣∣∣
∑

α 〈1 |Wα| 1〉Qα + 1
2

∑
αβ 〈1 |Wαβ| 1〉Qαβ

∑
α 〈1 |Wα| 2〉Qα + 1

2

∑
αβ 〈1 |Wαβ| 2〉Qαβ∑

α 〈2 |Wα| 1〉Qα + 1
2

∑
αβ 〈2 |Wαβ| 1〉Qαβ

∑
α 〈2 |Wα| 2〉Qα + 1

2

∑
αβ 〈2 |Wαβ| 2〉Qαβ

∣∣∣∣∣
(A.23)

where {|1〉 , |2〉} are the electronic states, that form the basis of the irreducible representation ΓE .

If there are nonzero linear terms in the matrix in eq.(A.23), the reference con�guration is not

stationary. This occurs for Γα ∈ Γ[E×E], where Γ[E×E] is the set of irreducible representations

arising from the symmetric product of the electronic wavefuction at the reference con�guration. By

properly choosing {|1〉 , |2〉} it follows:

FE = 〈1 |W1| 1〉 = −〈2 |W1| 2〉 = −〈1 |W2| 2〉

KE =
1
2
〈1 |W11 +W22| 1〉 =

1
2
〈2 |W11 +W22| 2〉

GE =
1
2
〈1 |W12| 2〉 =

1
4
〈1 |W11 −W22| 1〉 = −1

4
〈2 |W11 −W22| 2〉

〈1 |W2| 1〉 = 〈2 |W2| 2〉 = 〈1 |W1| 2〉 = 0

〈1 |W12| 1〉 = 〈2 |W12| 2〉 = 0

〈1 |W11| 2〉 = 〈1 |W22| 2〉 = 0

And therefore,

〈1 |W11| 1〉 = 〈2 |W22| 2〉 = KE + 2GE
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〈1 |W22| 1〉 = 〈2 |W11| 2〉 = KE − 2GE

Finally, it results

H = ε′I +

∣∣∣∣∣∣∣
FEQ1 +

1
2
AQ2

1 +
1
2
BQ2

2 − FEQ2 + 2GEQ1Q2

−FEQ2 + 2GEQ1 − FEQ1 +
1
2
BQ2

1 +
1
2
AQ2

2

∣∣∣∣∣∣∣ (A.24)

with A = KE + 2GE and B = KE − 2GE , thus

=
(
ε′ +

1
2
KE

(
Q2

1 +Q2
2

))
I +

∣∣∣∣∣ FEQ1 +GE
(
Q2

1 −Q2
2

)
−FEQ2 + 2GEQ1Q2

−FEQ2 + 2GEQ1Q2 −FEQ1 −GE
(
Q2

1 −Q2
2

) ∣∣∣∣∣ (A.25)

By transforming the cartesian coordinates {Q1, Q2} into polar coordinates, namely Q1 = ρ cosφ

and Q2 = ρ sinφ, the eigenvalues of the perturbation become

ε± (ρ, φ) =
1
2
KEρ

2 ± ρ
√
F 2
E +G2

Eρ
2 + 2FEGEρ cos (3φ) (A.26)

and two possibilities arise in the limit of

� cos (3φ) = +1 and φ = 0, 2
3π,

4
3π

� cos (3φ) = −1 and φ = π
3 , π,

5
3π.

For FEGE > 0, φ = 0, 2
3π,

4
3π indicate the directions of three equivalent minima on the APES and

φ = π
3 , π,

5
3π indicate the direction of three equivalent saddle points; for FEGE < 0 the opposite

holds.

Consider now the speci�c case of φ = 0, π3 to get the position of the two non-equivalent stationary

points and their energy. Along φ = 0, for FEGE > 0, the eigenvalues are

ε+ (ρ, 0) =
1
2

(KE + 2GE) ρ2 + FEρ; ε− (ρ, 0) =
1
2

(KE − 2GE) ρ2 − FEρ (A.27)

For ρ > 0 only the lowest branch of the APES has a minimum, provided KE > 2GE

∂ε− (ρ, 0)
∂ρ

= (KE − 2GE) ρ− FE (A.28)

ρmin =
FE

KE − 2GE
; ε− (ρmin, 0) = −

F 2
E

2 (KE − 2GE)
. (A.29)

This de�nes the Jahn-Teller stabilization energy as

EJT =
F 2
E

2 (KE − 2GE)
=

F 2
E

2k0
−

(A.30)

where k0
− = KE − 2GE = ∂2ε−(ρ,0)

∂ρ2 . Hence, knowing k0
− and EJT means to know FE .

Looking now along φ = π/3 for FEGE > 0,

ε± (ρ, π/3) =
1
2
KEρ

2 ± ρ
√
F 2
E +G2

Eρ
2 − 2FEGEρ =

1
2
KEρ

2 ± ρ |FE −GEρ| (A.31)
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and two cases appear depending on ρ

ε+ (ρ, π/3) =

1
2 (KE + 2GE) ρ2 − ρFE ρ > FE/GE

1
2 (KE − 2GE) ρ2 + ρFE ρ < FE/GE

(A.32)

ε− (ρ, π/3) =

1
2 (KE − 2GE) ρ2 + ρFE ρ > FE/GE

1
2 (KE + 2GE) ρ2 − ρFE ρ < FE/GE

(A.33)

Consider ρ = FE/GE large enough and look at ρ < ρ, without dealing with the additional conical

intersection developing at the point ρ; thus the lowest sheet has a minimum at

ρmin =
FE

KE + 2GE
(A.34)

εmin = ε− (ρmin, π/3) = −
F 2
E

2(KE + 2GE)
(A.35)

The saddle point energy thus has a separation δ from the minimum at φ = 0

δ = −
F 2
E

2(KE − 2GE)
+

F 2
E

2(KE + 2GE)
=

4GEF 2
E

2(K2
E − 4G2

E)
=

4GEEJT
KE + 2GE

=
4GEEJT
k
π/3
−

(A.36)

where kπ/3− = KE+2GE = ∂2ε−(ρ,π/3)
∂ρ2 is the radial curvature of the APES along this direction. Note

that the knowledge of k0
−, k

π/3
− and EJT allows one to determine the vibronic constants (FE , GE , KE)

and hence all the branches of the energy surface:

FE =
√

2k0
−EJT GE =

k
π/3
− − k0

−
4

KE =
k
π/3
− + k0

−
2

(A.37)

Some conclusions can be drawn by looking at ε− (Q1, 0) = 1
2KEQ

2
1 − |Q1| |FE +GEQ1| , and espe-

cially that:

ε− (Q1, 0) =


1
2 (KE − 2GE)Q2

1 −Q1FE Q1 > 0
1
2 (KE + 2GE)Q2

1 +Q1FE − FE
GE

< Q1 < 0
1
2 (KE − 2GE)Q2

1 −Q1FE Q1 < − FE
GE

(A.38)

The behaviour of ε− (Q1, 0) is summarized in �g.(A.1).

A.4 The pseudo Jahn-Teller e�ect

In this section a brief introduction on the pseudo Jahn-Teller e�ect is given that may take place,

in principle, for any system without a priori limitations. For the sake of simplicity, the case of

a nondegenerate ground state vibronically coupled to nondegenerate excited states is considered.

Here the coupling is still enclosed in the Wkm (Q) term in eq.(A.6); for small couplings it can safely

be ignored, thus restoring the usual adiabatic approximation. Anyway in many cases the vibronic
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Figure A.1: The APES along the Q1 coordinate. The red curve shows a minimum for Q1 > 0 (for
φ = 0) and it is a global minimum on the surface. The black curve shows a minimum for Q1 < 0
(for φ = π) and it is a saddle point on the surface. The three regions in (A.38) appear clearly:
v′′ is the curvature of the lower curve ε− (Q1, 0); C and C ′ label respectively the 'main' and the
'additional' conical intersection; δ is the energy di�erence between the two minima.

coupling is su�ciently strong to make the ground-state unstable, within the pseudo Jahn-Teller

scheme. Consider for instance the case of two nondegenerate states Γ and Γ′ separated by an

energy gap 2∆ where the vibronic contributions εvk (Q) are obtained by solving the secular equation

(
∥∥∥W v

γγ′ − εvI
∥∥∥ = 0, with γ, γ′ = 1, 2...f ). Assuming that only one coordinate QΓ satis�es the

criterion Γ = Γ× Γ′ and including only linear terms in the vibronic interaction, one gets

W =

∣∣∣∣∣ −∆ FQ

FQ ∆

∣∣∣∣∣ (A.39)

where F is the o�-diagonal linear vibronic constant F =
〈
Γ
∣∣(∂V/∂QΓ

)
0

∣∣Γ′〉 . After solving the

secular equation and assuming K0 = KΓ
0 = KΓ′

0 , from eq.(A.21) it follows

εk (Q) =
1
2
K0Q

2 ±
(
∆2 + F 2Q2

) 1
2 . (A.40)

Then expanding the second term2 in Q,

εk (Q) =
1
2
(
K0 ± F 2/∆

)
Q2 ±∆∓ 1

8
(
F 4/∆3

)
Q4 ± ... (A.41)

From this expression it is evident that the vibronic coupling changes the curvature (the term in

Q2) in di�erent ways for the two states: it increases in the upper level, while it decreases in the

lower one. Anyway until the curvature is positive, i.e. ∆ > F 2/K0 the minima of both states are

at Q = 0 as in the absence of vibronic mixing: this is the weak pseudo Jahn-Teller e�ect. Instead,

if ∆ < F 2/K0 the curvature of the lower curve becomes negative and the system becomes unstable

with respect to displacements along Q. This is the strong pseudo Jahn-Teller e�ect, that gives an

2(1 + x)1/2 = 1 + 1
2
x− 1

8
x2 + ...
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APES with two minima at

±Q0 =
√

2
[(
F 2/K2

0

)
−
(
∆2/F 2

)] 1
2 , (A.42)

the JT stabilization energy is

EJT =
F 2

K0
−∆

(
1− ∆K0

F 2

)
(A.43)

and the curvature at this two minima points is

K = K0

[
1−

(
∆K0

F 2

)2
]
. (A.44)

Note that when ∆ = F 2/K0, the curvature is zero everywhere. Considering now the case where

K0Γ 6= K0Γ′ , we get the following two expressions for the curvature in the lower and upper curve

respectively

KΓ
Γ

= KΓ
0Γ
−
∣∣∣FΓΓ′

Γ

∣∣∣2 /∆ (A.45)

KΓ′

Γ
= KΓ′

0Γ
+
∣∣∣FΓΓ′

Γ

∣∣∣2 /∆ (A.46)

The F term is nonzero only if Γ ∈ Γ× Γ′ and thus only selected excited states can couple with the

groundstate (or more generally with lower energy states) leading to instability. Including all the

excited states with the suitable symmetry, the condition of instability becomes as follows:

∑
Γ′

∣∣∣FΓΓ′

Γ

∣∣∣2 /∆ΓΓ′ > KΓ
0Γ
. (A.47)

When degenerate states are involved, the pseudo Jahn-Teller problem becomes more complicated, as

it basically turns into a Jahn-Teller plus pseudo-Jahn-Teller one. Consider as an example a system

with trigonal symmetry D3h, in which a ground state with E′′ symmetry and an nondegenerate

excited state with symmetry A′1 are coupled by a vibration with e′′ symmetry. The pseudo Jahn-

Teller problem associated to this case is (E′′ +A′1)⊗ e′′. It is actually composed by a JT problem

E′′⊗(a′1 + e′) for the ground state and PJT problem (E′′ +A′1)⊗e′′. In conclusion the PJT problem

for this system is (E′′ +A′1)⊗ (a′1 + e′ + e′′).
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Appendix B

Group theory

B.1 Basic concepts on the linear representation theory of �nite

groups

A group G is an abstract mathematical object composed by a set of elements together with an

operation, the group law. To form a group the generic group operation and the elements must

satisfy four conditions: closure, associativity, identity and invertiblity. They are de�ned as:

� closure: for all a, b in G, the result of the operation, a · b, is also in G;

� associativity : for all a, b and c in G, (a · b) · c = a · (b · c);

� identity element : there exists an element (and it is unique) e in G, such that for every element

a in G, the equation e · a = a · e = a holds;

� inverse element : for each a in G, there exists an element a−1 in G such that a·a−1 = a−1 ·a = e.

This appendix deals in particular with �nite groups that are composed by a �nite set of elements;

the number of elements is the order of the group. Moreover a group can be partionned into non

overlapping subsets of elements that form conjugate classes. In general for any two elements a and

b of the group, the equation a · b = b · a may not be true. Groups, for which a · b = b · a always

holds, are called abelian.

In mathematics, group representations allow to describe abstract groups in terms of linear trans-

formations of vector spaces; in particular, they can be used to represent the elements of a group

as matrices. In this way the operation of the group can be represented by matrix multiplication.

Some basic de�nitions need to be introduced at this point[78].

B.1.1 General de�nitions

Isomorphism Two groups G1 and G2 with elements {Gi} and with certain group operations are

isomorphic if there exists a one to one correspondence T between the elements of G1 and the elements

of G2, i.e. T : G1 → G2,

Ga ∈ G1  T (Ga) ∈ G2 (B.1)

141
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and this correspondence preserves the group operations, namely multiplying and then mapping gives

the same result as �rst mapping and then multiplying

T (GaGb) = T (Ga)T (Gb) (B.2)

Homomorphism G1 is homomorphic to G2 if there exists a many to one correspondence T that

preserves the group operations and satis�es the assumptions in eqs.B.1,B.2. Note that here for any

element of G1 there must be one and only one element of G2, but the inverse is not required. In

fact for a given element F ∈ G2 there can be more than one element in G1; if this is not the case,

then the homomorphism is an isomorphism. Notice that any group is homomorphic to the simplest

group E ≡ {1} containing only the identity.

The set of non-singular n×n matrices Mn forms a group where important subgroups are the set of

real matrices, unitary matrices and orthogonal matrices. These Mn matrices are also morphisms,

as they map the non-singular transformations of vectors from a n-dimensional space εn to another.

These vectors are de�ned in a chosen basis {|ei〉} in the space εn; each matrix M̂ ∈ Mn operating

on them produces an isomorphism of εn with itself, namely an automorphism,

M̂ |ei〉 =
n∑
j=1

|ej〉Mji (B.3)

where M̂εn ' εn means that the transformed space is isomorphic to εn, while M̂εn = εn means that

the transformed space is exactly εn, as in eq.B.3 where the transformed vectors are combination

of the original vectors and M is non-singular. Unitary matrices represent automorphism of Hilbert

spaces, as they preserve both the linear structure and the scalar products; real matrices refer to real

vector spaces and orthogonal matrices to real Hilbert spaces.

Representations Formally, a representation means a homomorphism from a group to the group

of automorphism of an object. If the object is a vector space, then one has a linear representation.

Accordingly, the representation Γ is a homomorphism from the group G to the group of matrices

Mn, automorphisms of the space εn. This reads as

Γ : G →Mn (B.4)

Ga  Γ (Ga) = Ma (B.5)

GaGb = Gc ⇒MaMb = Mc (B.6)

where Γ (1) = I. In other words, any n-dimensional space εn whereMn is a group of automorphisms

forms a vector space where G applies. Since the matrices Mn are de�ned on a basis, one looks for a

basis of the representation. More generally, for a given representation, one identi�es a set of generic
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operators O operating in the space εn, where they de�ne an automorphism. They are related to

the matrices Mn as,

Γ̂ : G → O (εn) (B.7)

Ga  Γ̂ (Ga) = M̂a (B.8)

where by applying M̂a on some preferred basis, one obtains

M̂a |ei〉 =
n∑
j=1

|ej〉 (Ma)ij (B.9)

A change of basis amounts to a transformation of Γ into an equivalent representation Γ′ according

to

Γ′ = O−1ΓO (B.10)

where O is the matrix for the change of basis and B.9 holds for any element of the representation.

Thus, the homomorphism Γ̂ can be �xed once and for all for a given εn irrespective of the basis

where Mn is de�ned.

The trace of a representation matrix

Tr {M (G)} =
n∑
j=1

(M)jj (G) = χ (G) (B.11)

is the character of G. The traces of all the matrices Tr {M (G)} of a representation de�nes the

character as a fuction over the group. It can be shown that (i) the character of a representation

M (G) is invariant to basis transformation; (ii) it is the same for all the elements of a conjugate

class; (iii) the character of the identity is equal to the dimension of the space associated to the

representation n.

Direct sum of vector spaces Given ε1 and ε2 two vector spaces, one may form a third space

called the direct sum and denoted as ε1 ⊕ ε2 by setting:

ε1 ⊕ ε2 3 |u〉 = (|u1〉 , |u2〉) ∀ |u1〉 ∈ ε1; ∀ |u2〉 ∈ ε2 (B.12)

and

(|u1〉 , |u2〉) + (|v1〉 , |v2〉) = (|u1〉+ |v1〉 , |u2〉+ |v2〉) (B.13)

λ (|u1〉 , |u2〉) = (λ |u1〉 , λ |u2〉) . (B.14)

Note that (01, 02) is the zero of ε1 ⊕ ε2. For convenience one can write |u〉 = |u1〉 ⊕ |u2〉, since the
properties in eqs.B.13,B.14 are similar to those satis�ed by an ordinary sum operation.
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Direct sum of operators If M̂1 and M̂2 are operators acting in ε1 and ε2 respectively, the direct

sum M̂ = M̂1 ⊕ M̂2 can be formed, which is an operator in the direct sum space ε1 ⊕ ε2 de�ned as(
M̂1 ⊕ M̂2

)
|u1〉 ⊕ |u2〉 = M̂1 |u1〉 ⊕ M̂2 |u2〉 (B.15)

from which follows that M̂1 ⊕ M̂2 is linear.

Direct sum of representations Given two representations Γ̂1 and Γ̂2 of a group G into the

automorphisms O (ε1), O (ε2) of two vector spaces ε1 and ε2, the sum of the representations is

de�ned element by element as direct sum of operators:(
Γ̂1 ⊕ Γ̂2

)
(G) = Γ̂1 (G)⊕ Γ̂2 (G) ∀G ∈ G (B.16)

This de�nes a novel representation Γ̂ of G into the automorphisms O (ε1 ⊕ ε2) of ε1 ⊕ ε2.

B.1.2 Irreducible representations

By de�nition a representation Γ̂ of a group G requires a vector space ε which is invariant under the

group, symbolically as Gε = ε. Note that what actually operates on the elements of ε is an operator

Γ̂ (G) related to G ∈ G and not G itself. The representation Γ̂ is reducible if the space ε can be

decoupled into invariant subspaces ε1, ε2, ...εk, as follows1:

ε =
∑⊕

α εα (B.17)

Gεα = εα (B.18)

The set of subspaces {εα} performs a decomposition if and only if

{εα} ∩ {εβ} = {0} α 6= β (B.19)

and span {∪αεα} = span {ε} = ε, provided εα are linear spaces. The representation Γ̂ is irreducible

if the only invariant subspaces are {0} and ε itself. On the other hand, the matrix representation

of a reducible representation takes a block diagonal form

Γ̂ =


Γ̂1 0 0 0
0 Γ̂2 0 0

0 0
. . . 0

0 0 0 Γ̂k

 (B.20)

1The sum ⊕ in eq.B.17 is the internal direct sum, i.e. the sum of subobjects of a common object, as opposite to
the external one, i.e. the sum of objects that are not subobjects of a common object. Anyway they are essentially
equivalent.
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and the reduction procedure amounts to �nd a basis {|ei,α〉}i,α such as

{|ei,α〉}i,α = ∪α {|ei,α〉}fαi (B.21)

span {|ei,α〉}fαi = εα

where α is the index of the irreducible representation; i goes from 1 to fα, fα being the dimensionality

of the space for the α representation. Note that the same Γ̂α may occurr more then once in a given

decomposition. Hence, generally

Γ̂ =
∑⊕

αnαΓ̂α (B.22)

where nα is the number of equivalent Γ̂α contained in the decomposition of Γ̂ into irreducible

representations.

B.1.3 Schur's lemma (I) and (II)

Schur's lemma (I): if Γ̂α and Γ̂β are two irreducible representations of the group G and S is a map

from εb to εa, such as

Γ̂αS = SΓ̂β (B.23)

which means as usual Γ̂α (G)S = SΓ̂β (G) for any G ∈ G, then this implies: S = 0 or S not singular.

Proof : let ε̃ be the kernel of S, i.e. Sε̃ = {0}. Adding ε̃ on both sides of eq.B.23, it follows

Γ̂αSε̃ = Γ̂α {0} = {0} ≡ S
(

Γ̂β ε̃
)

(B.24)

which requires Γ̂β ε̃ = ε̃ to be valid. This means that ε̃ is an invariant subspace of εb and thus ε̃ = εb

or ε̃ = {0} since Γ̂β is irreducible. In the �rst case kerS coincides with εb thus ImS = {0}; it follows
that there is no mapping between εa and εb thus S = 0. In the second case S is invertible and there

exists S−1: ImS ⊂ εa → εb such that ∀y ∈ ImS it follows that S−1y = x and thus Sx = y.

Corollary : if Γ̂α and Γ̂β are two irreducible representations of the group G and there exists a nonzero
S that maps from εb to εa and obeys Γ̂αS = SΓ̂β , then the two representations are equivalent

Γ̂α ≡ Γ̂β .

Proof : adding εb on both sides of eq.B.23, it follows

Γ̂α (Sεb) = SΓ̂βεb ≡ Sεb (B.25)

this implies that Sεb is invariant thus, except for S = 0, Sεb ≡ εa follows from the fact that Γ̂α is

irreducible; in this case ImS ≡ εa. Hence for S 6= 0, Γ̂α is equivalent to Γ̂β .

In conclusion from the Schur's lemma (I) and the corollary, it results that: S = 0, if Γ̂α is not

equivalent to Γ̂β ; S = 0 or S 6= 0 (not singular), if Γ̂α ≡ Γ̂β .

Schur's lemma (II): given two equivalent irreducible representations Γ̂α ≡ Γ̂β and Γ̂αS = Γ̂βS, then

either S = 0 or S = λ1, λ ∈ C.
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Proof : adding −λΓα to both sides of eq.B.23 with λ ∈ C one obtains,

Γ̂αS − λΓ̂α = SΓβ − λΓα (B.26)

Since Γ̂α ≡ Γ̂β ,

Γ̂α (S − λ) = (S − λ) Γα. (B.27)

Consider now λ an eigenvalue of S and Vλ its eigenspace,

Γ̂α (S − λ)Vλ = Γ̂α {0} = {0} = (S − λ)
(

Γ̂αVλ
)

(B.28)

Thus Γ̂αVλ ⊂ Vλ, which means that Vλ is an invariant subspace. It follows that either Vλ = {0} or
Vλ = εα since Γ̂α is irreducible. The �rst case is not possible since Vλ is by hypothesis an eigenspace

and thus the equation is satis�ed only if S ≡ λ1α. One only assumes that an eigenvalue exists but

this is always guaranteed in �nite-dimensional spaces.

B.1.4 Orthogonality theorems

Consider the two matrix representations Γα and Γβ of the �nite group G and suppose for simplicity

that they are both unitary. This can always be realized in the Hilbert spaces εα and εβ by introducing

orthonormal basis. Let γαk (G) be the column vector

γαk (G) =


Γα1k (G)
Γα2k (G)

...

Γαfαk (G)

 = {Γαik (G)}fαi=1 (B.29)

where, k is the column index of the matrix representation, G is an element of the group and fα is

the dimensionality of the irreducible representation α. In the same way γβl (G) is generated with

the help of the β representation. Hence,

Γα (G) γαk
(
G
′
)

=
{(

Γα (G) Γα
(
G
′
))

ik

}fα
i=1

=
{

Γαik
(
G
′′
)}fα

i=1
≡ γαk

(
G
′′
)

(B.30)

where G
′′

= GG
′
. Analogously,

γβ†l

(
G
′
)

Γβ† (G) = γβ†l

(
G
′
)

Γβ
(
G−1

)
= γβ†l

(
GG

′
)
. (B.31)

Let then Skl be the fα × fβ matrix

Skl =
∑
G

γk (G) γ†l (G) . (B.32)
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Then,
Γ̂α (G)Skl =

∑
G′

Γ̂α (G) γαk
(
G′
)
γβ†l

(
G
′
)

=
∑
G′′

γαk

(
G
′′
)
γβ†l

(
G−1G

′′
)

=

=
∑
G′′

γαk

(
G
′′
)
γβ†l

(
G
′′
)

Γ̂β (G) ≡ SklΓ̂β (G)
(B.33)

for any G ∈ G. From Schur's lemma (I) it follows that for two non equivalent irreducible represen-

tations, i.e. α 6= β

Sklij =
∑
G

Γαik (G) Γβ∗jl (G) = 0 (B.34)

For α = β, that is Γα ≡ Γβ , the Schur's lemma (II) predicts that Skl = λkl1α and in particular

trSkl = λklfα. (B.35)

The trace reads as

trSkl = tr

{∑
G

Γαik (G) Γαlj
(
G−1

)}
=
∑
i

∑
G

Γαli
(
G−1

)
Γαik (G) =

=

(∑
G

Γα
(
G−1

)
Γα (G)

)
lk

=
∑
G

1αδlk ≡ gδlk

(B.36)

where g is the order of the group. Hence λkl ≡ g/fαδlk. For α = β it follows

Sklij =
∑
G

Γαik (G) Γα∗jl (G) =
g

fα
δijδkl (B.37)

This leads to the so called Orthogonality Theorem,

∑
G

Γαik (G) Γβ∗jl (G) =
g

fα
δαβδijδkl. (B.38)

Finally by de�ning the character χ of the representation α for each element G according to eq.B.11,

one has

χα (G) = tr (Γα (G)) =
∑
k

Γαkk (G) (B.39)

∑
G

χα (G)χβ∗ (G) =
g

fα
δαβ

∑
k,l

δklδkl ≡ gδαβ (B.40)

For a chosen representation Γα, according to eq.B.39, one may calculate the character of each

element of the group thus de�ning the vector of characters. From eq.B.40 it follows that in non

equivalent irreducible representations the vectors of characters are orthogonal; while equivalent

irreducible representations share the same vector of characters. Moreover for each element of the

group one may build a vector of characters in all the available irreducible representations of the

group. Elements with the same vector of character through all the irreducible representations form

a conjugate class. The total number of elements in the group corresponds to the order of the

group g; while the number of conjugate classes gives to the number of non equivalent irreducible
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representations.

By using the vectors of characters one may also rewrite the relation in eq.B.22 in a more practical

way. Indeed the vector of characters of a reducible representation is simply the sum of the vectors of

characters of the irreducible representations from which it originates. Thus it is easy to decompose

a reducible representation Γ into its corresponding Γα components, by projecting the vector of

characters of the reducible representation on the basis vectors of the irreducible representations. In

this case the contribution nα of Γα is given by:

nα =
1
g

∑
G∈G

χ∗α (G)χ (G) (B.41)

where g is the order of the group and χ (G) is the trace of the G-th element of the reducible

representation. Note that this process is known as spectral analysis of representations.

B.1.5 Symmetric and antisymmentric products

When α = β the product representation ζij = ψαi φ
α
j naturally splits into

[ζij ] = ψαi φ
α
j + ψαj φ

α
i = [ζji] (B.42)

and

{ζij} = ψαi φ
α
j − ψαj φαi = −{ζji} (B.43)

where {ψi} , {φi} are basis functions for the representation α. The former eq.B.42 represents the

symmetric product, while the latter eq.B.43 is the antisymmetric product and it makes sense only

when ψi 6= φj . Then applying a group operation Γ̂ (G) to eq.B.42 gives

Γ̂ (G) [ζij ] =
∑
k,l

(ψαkφ
α
l Γki (G) Γlj (G) + ψαl φ

α
kΓlj (G) Γki (G)) =

∑
k,l

[ζkl] Γki (G) Γlj (G) (B.44)

where Γki,lj (G) are elements of the matrix representation for each G in the group. Analogously

Γ̂ (G) {ζij} =
∑
k,l

{ζkl}Γki (G) Γlj (G) (B.45)

From eqs.B.42,B.43 it follows,

Γ̂ (G) [ζij ] =
∑
k,l

[ζkl] Γki (G) Γlj (G) =
∑
l,k

[ζlk] Γlj (G) Γki (G) =

=
∑
k,l

[ζkl] Γkj (G) Γli (G) = Γ̂ (G) [ζji]
(B.46)

and
Γ̂ (G) {ζij} =

∑
k,l

{ζkl}Γki (G) Γlj (G) =
∑
l,k

{ζlk}Γlj (G) Γki (G) =

= −
∑
k,l

{ζkl}Γkj (G) Γli (G) = −Γ̂ (G) {ζji}
(B.47)
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Hence

Γ̂ (G) [ζij ] =
∑
k,l

[ζkl]
Γki (G) Γlj (G) + Γkj (G) Γli (G)

2
(B.48)

Γ̂ (G) {ζij} =
∑
k,l

{ζkl}
Γki (G) Γlj (G)− Γkj (G) Γli (G)

2
(B.49)

[χ⊗ χ] (G) =
∑
i,j

Γii (G) Γjj (G) + Γij (G) Γji (G)
2

=

(
χ2 (G) + χ

(
G2
))

2
(B.50)

{χ⊗ χ} (G) =
∑
i,j

Γii (G) Γjj (G)− Γij (G) Γji (G)
2

=

(
χ2 (G)− χ

(
G2
))

2
(B.51)

B.1.6 Projectors

For a representation in a chosen space, one then has to determine a suitable basis formed by elements

that transform under the group elements in the chosen representation. These basis elements are

linearly independent in the case of irreducible representations. Now let be Γα the unitary matrix

irreducible representation of the group G and Γ̂α its corresponding operator representation in a

given Hilbert space. Consider the operator

Ω̂α
ij =

∑
G

Γα∗ij (G) Γ̂ (G) =
∑
G

Γαij
(
G−1

)
Γ̂ (G) (B.52)

Upon applying Γ̂ (G), it follows

Γ̂ (G) Ω̂α
ij =

∑
G′ Γ

α∗
ij

(
G
′
)

Γ̂ (G) Γ̂
(
G
′
)

=
∑

G′′ Γ
α∗
ij

(
G−1G

′′
)

Γ̂
(
G
′′
)
≡

≡
∑

m

∑
G′′ Γ

α∗
im

(
G−1

)
Γα∗mj

(
G
′′
)

Γ̂
(
G
′′
)

=
∑

m Γαim (G) Ω̂α
mj .

(B.53)

Then by using the orthogonality theorem one obtains

Ω̂β
klΩ̂

α
ij =

∑
G Γβ∗kl (G) Γ̂ (G)

∑
G′ Γ

α∗
ij

(
G
′
)

Γ̂
(
G
′
)

=

=
∑

G,G′′ Γ
β∗
kl (G) Γ̂

(
G
′′
)

Γα∗ij
(
G−1G

′′
)

=

=
∑

m

∑
G,G′′ Γ

β∗
kl (G) Γα∗im

(
G−1

)
Γα∗mj

(
G
′′
)

Γ̂
(
G
′′
)

=

=
∑

m

∑
G Γβ∗kl (G) Γαim (G) Ω̂α

mj = g
fα

∑
m δαβδlmδkiΩ̂

α
mj = g

fα
δαβδkiΩ̂α

lj

(B.54)

In the case of the irreducible representation Γα, the diagonal elements of eq.B.54 are

Ω̂α
kkΩ̂

α
ii =

g

fα
δkiΩ̂α

ik (B.55)

from which derives Ω̂α
kk = g

fα
and one can prove

d∑
α=1

fα∑
k=1

fα
g

Ω̂α
kk = 1 (B.56)
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meaning that each element can be decomposed in terms of the di�erent irreducible representations.

In the Hilbert space, the operators Ω̂α
mj form a unitary matrix2: the columns of this matrix applied

on a �xed object ϕ provide the basis functions of the representation. This means that for any

�xed i, the operators
{

Ω̂α
1i, Ω̂

α
2i, ...Ω̂

α
fαi

}
can be applied on ϕ to generate fα basis fuctions with the

appropriate symmetry
Φα

1 = Ω̂α
1iϕ =

∑
G Γ1i

(
G−1

)
Γ̂ (G)ϕ

...

Φα
fα

= Ω̂α
fαi
ϕ =

∑
G Γfαi

(
G−1

)
Γ̂ (G)ϕ

(B.57)

thus forming a basis of the irreducible fα-dimensional representation Γα. Once the basis functions

are available, one may generate new functions with the proper symmetry simply by applying the

group elements,

Γ̂ (G) Ω̂α
ijϕ =

∑
m

Γαim (G) Ω̂α
mjϕ. (B.58)

B.2 Analysis of the group of symmetry D3h

This part shows how to recover information on a given symmetry group by analysing the correspond-

ing character table that contains the values of the characters of the irreducible representations of

the group as obtained from eq.B.39. For any �nite group, the columns of the table are labeled by

the conjugate classes, while the rows by the irreducible representations. These tables are square,

meaning that the number of independent irreducible representations equals that of conjugate classes.

Note that for point symmetry groups the table often contains additional information that it is useful

when dealing with molecular applications. Here is described the case of the D3h point symmentry

group and its character table is shown in table B.1. For further examples see ref.[7] and ref.[21].

From the character table, the order of the group g can be easily obtained. According to the de�ni-

tion given in eq.B.40, g is equal to the sum of (χα (G))2 for any α belonging to the group. By the

choice of α = A
′
1, it follows:

g = 1 · χ2 (E) + 2 · χ2 (C3) + 3 · χ2 (C2) + 1 · χ2 (σh) + 2 · χ2 (S3) + 3 · χ2 (σv) =
= 1 + 2 + 3 + 1 + 2 + 3 = 12

(B.59)

As a consenquence of the fact that the elements of the group are distributed into conjugate classes,

each term (χα (G))2 is multiplied by a factor corresponding to the number of elements in the class.
2In general for non unitary matrices, eq.B.52 reads as

Ω̂αij =
X
G

Γα∗ij (G) Γ̂ (G) =
X
G

Γαji
`
G−1´ Γ̂ (G) ;

accordingly eq.B.53 is

Γ̂ (G) Ω̂αij =
X
m

Γαmi (G) Ω̂αmj

and eq.B.54 is

Ω̂βklΩ̂
α
ij =

g

fα
δαβδliΩ̂

α
kj
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D3h E 2C3 3C2 σh 2S3 3σv g = 12
A
′
1 1 1 1 1 1 1

A
′
2 1 1 -1 1 1 -1 Rz

E
′

2 -1 0 2 -1 0 (x, y)
A
′′
1 1 1 1 -1 -1 -1

A
′′
2 1 1 -1 -1 -1 1 z

E
′′

2 -1 0 -2 1 0 (Rx, Ry)

Table B.1: Character table for the D3h point group.

Figure B.1: Symmetry elements of the D3h point group. (a) axis, (b) planes and roto-re�ection
axis.

The simplest system belonging to the D3h symmetry group is the equilater triangle. The group

operations are de�ned as in �g.B.1.

By applying some simple concepts of the group theory, one may generate basis functions with the de-

sired symmetry starting from a chosen set of functions; here the case of a simple triangular molecule

is considered and it is shown how to create appropriate basis functions by linear combination of

the functions in a certain set. Molecular orbitals, that span irreducible representations of the point

group, generally result from the linear combination of atomic orbitals. Moreover, molecular vibra-

tions are represented by basis functions, the so called normal modes, that are constructed from unit

vectors aligned along the x, y, z axis. In a similar way also the molecular rotations are obtained.

In the end, it is shown how to �nd the electronic state for a given orbital occupation; this is also

related to the electronic spin orientation that determines the �nal spin state.

B.2.1 Basis functions of s atomic orbitals

First of all consider the set of functions {φA, φB, φC}, corresponding to three s-orbitals located at

the vertices of the triangle. Under the symmetry operations, they behave as follows (each orbital

contributes +1 if it remains in its original position, 0 otherwise):

E 2C3 3C2 σh 2S3 3σv
3 0 1 3 0 1
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Figure B.2: Representation of the C+
3 rotation in the (x, y) plane.

This is a reducible representation Γ for the D3h point group and it can be decomposed in a direct

sum of irreducible representations Γα by applying eq.B.22 and eq.B.41. In this case, one �nds that

Γ = ΓA
′
1 ⊕ ΓE

′
. (B.60)

Now one has to linearly combine the set of atomic orbitals {φA, φB, φC} to generate the basis

functions with symmetry A
′
1 and E

′
respectively. To this extent eq.B.57 has to be used, hence one

�rst applies the symmetry operations to φC chosen as generator and it results:

E C+
3 C−3 C

′
2 C

′′
2 C

′′′
2 σh S+

3 S−3 σ
′
v σ

′′
v σ

′′′
v

φC φA φB φC φA φB φC φA φB φC φA φB

Then these functions are multiplied by the Γαij
(
G−1

)
according to eq.B.57; within the D3h point

group such coe�cients belong to unitary matrices with real elements thus the following holds

Γαij
(
G−1

)
= Γα∗ij (G) = Γαij (G)

Note that if α is a one-dimensional irreducible representation, then

Γαij (G) = χα (G) . (B.61)

The basis function with A
′
1 symmetry �nally reads as:

ΦA
′
1 =

1√
3

(φA + φB + φC) . (B.62)

Consider now the E
′
symmetry. The matrix representation of this two-dimensional irreducible

representation is in the plane (x, y) and thus it describes how these vectors transform under the

symmetry operations. By way of example, here the matrix representation for the C+
3 (clockwise)

rotation is shown in �g.B.2.

Hence, by applying C+
3

ux = cosα→ cos
(
α− 2

3π
)

= −1
2 cosα+

√
3

2 sinα

uy = sinα→ sin
(
α− 2

3π
)

= −1
2 sinα−

√
3

2 cosα
(B.63)
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Thus, ∣∣∣∣∣ −1
2

√
3

2

−
√

3
2 −1

2

∣∣∣∣∣
C+

3

In the same way all the other matrices can be obtained:∣∣∣∣∣1 0
0 1

∣∣∣∣∣
E,σh

∣∣∣∣∣ −1
2

√
3

2

−
√

3
2 −1

2

∣∣∣∣∣
C+

3 ,S
+
3

∣∣∣∣∣−1
2 −

√
3

2√
3

2 −1
2

∣∣∣∣∣
C−3 ,S

−
3∣∣∣∣∣−1 0

0 1

∣∣∣∣∣
C
′
2,σ
′
v

∣∣∣∣∣ 1
2

√
3

2√
3

2 −1
2

∣∣∣∣∣
C
′′
2 ,σ
′′
v

∣∣∣∣∣ 1
2 −

√
3

2

−
√

3
2 −1

2

∣∣∣∣∣
C
′′′
2 ,σ′′′v

(B.64)

As shown in eq.B.64, normally one may deal with only the symmetry elements E, C+
3 , C

−
3 , C

′
2,

C
′′
2 ,C

′′′
2 as the remaining behave in the same way in the (x, y) plane. However, to generate basis

functions with symmetry E
′
, one needs the row vectors ΓE

′

ij (G); thus by choosing the �rst row of

matrices in eq.B.64, namely i = 1 and j = 1, 2, it results

G E C+
3 C−3 C

′
2 C

′′
2 C

′′′
2

Γ̂ (G) φC φA φB φC φA φB

ΓE
′

11 (G) 1 −1
2 −1

2 −1 1
2

1
2

ΓE
′

12 (G) 0
√

3
2 −

√
3

2 0
√

3
2 −

√
3

2

and the sum over all G results in:

ΓE
′

11 : ΦE
′

1 = 0

ΓE
′

12 : ΦE
′

2 =
√

3 (φA − φB)
(B.65)

The linear combination goes to zero for ΓE
′

11 , thus one may try with the second row of matrices in

eq.B.64. Hence,

G E C+
3 C−3 C

′
2 C

′′
2 C

′′′
2

Γ̂ (G) φC φA φB φC φA φB

ΓE
′

21 (G) 0
√

3
2 −

√
3

2 0
√

3
2 −

√
3

2

ΓE
′

22 (G) 1 −1
2 −1

2 1 −1
2 −1

2

and again, the sum over G gives:

ΓE
′

21 : ΦE
′

1 =
√

3 (φA − φB)

ΓE
′

22 : ΦE
′

2 = 2φC − φB − φA
(B.66)

Once normalized, the two basis function with symmetry E
′
appear as:

ΓE
′

21 : ΦE
′

1 = 1√
2

(φA − φB)

ΓE
′

22 : ΦE
′

2 = 1√
6

(2φC − φB − φA)
(B.67)

In �g.B.3 the basis functions for the s-orbitals are reported.
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Figure B.3: Basis functions arising from the linear combination of s-orbitals for a triatomic system
within the D3h point group.

B.2.2 Basis functions of pz atomic orbitals

In the same way, upon choosing a set of functions {φA, φB, φC}, corresponding to three pz-orbitals
located at the vertices of the triangle, one �rst has to check how they behave under the symmetry

operations,

E 2C3 3C2 σh 2S3 3σv
3 0 -1 -3 0 1

Note that each orbital contributes +1 or -1 if it remains in its original position with respectively

the same or opposite sign, 0 otherwise. This reducible representation can be decomposed in the

following direct sum,

Γ = ΓA
′′
2 ⊕ ΓE

′′
. (B.68)

To generate the basis functions with symmetry A
′′
2 and E

′′
one has to linearly combine the set of

atomic orbitals {φA, φB, φC} as shown in eq.B.57. By applying the symmetry operations to φC

chosen as generator, it results:

E C+
3 C−3 C

′
2 C

′′
2 C

′′′
2 σh S+

3 S−3 σ
′
v σ

′′
v σ

′′′
v

φC φA φB −φC −φA −φB −φC −φA −φB φC φA φB

Then these functions are multiplied by Γαij (G). Following from eq.B.61, the basis function with A
′′
2

symmetry is

ΦA
′′
2 =

1√
3

(φA + φB + φC) . (B.69)

To generate the two basis functions of E
′′
symmetry one can still use the 2×2 matrices for the (x, y)

transformations under the symmetry operations in eq.B.64. Note that these matrices span the E
′

irreducible representation, thus they need to be 'adapted' to the E
′′
case. This can be simply done

multiplying by −1 those matrices in E
′′
with 'opposite' character compared to E

′
. Now performing

the steps described above for i = 1, one �rst gets
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Figure B.4: Basis functions arising from the linear combination of pz-orbitals for a triatomic system
within the D3h point group.

G E C+
3 C−3 C

′
2 C

′′
2 C

′′′
2 σh S+

3 S−3 σ
′
v σ

′′
v σ

′′′
v

Γ̂ (G) φC φA φB −φC −φA −φB −φC −φA −φB φC φA φB

ΓE
′′

11 (G) 1 −1
2 −1

2 −1 1
2

1
2 −1 1

2
1
2 1 −1

2 −1
2

ΓE
′′

12 (G) 0
√

3
2 −

√
3

2 0
√

3
2 −

√
3

2 0
√

3
2 −

√
3

2 0 −
√

3
2

√
3

2

and then making the sum over all the G and normalizing:

ΓE
′′

11 : ΦE
′′

1 = 2φC − φB − φA → 1√
6

(2φC − φB − φA)

ΓE
′′

12 : ΦE
′′

2 = 1√
2

(φA − φB)
(B.70)

In �g.B.4 the basis functions for the pz-orbitals are reported.

B.2.3 Basis functions of vibrational, rotational and translational modes

Also the analysis of the normal modes is based on eq.B.57. In this case, the natural choice is a set

of unitary vectors
{
eAi , e

B
i , e

C
i

}3

i=1
aligned along x, y, z and centered respectively at the vertices A,

B, C. At �rst, one has to describe the behaviour of these vectors under the symmetry operations,

E 2C3 3C2 σh 2S3 3σv
9 0 -1 3 0 1

then this reducible representation needs to be decomposed in the following direct sum,

Γ = ΓA
′
1 ⊕ ΓA

′
2 ⊕ 2ΓE

′
⊕ ΓA

′′
2 ⊕ ΓE

′′
. (B.71)

It contains not only the vibrational normal modes, but also translations and rotations. With the

help of the table of characters it is possible to distinguish among them. The rotations, labeled

as Rx, Ry and Rz in table B.1, span respectively the irreducible representation E
′′
and A

′
2; the

translations, labeled as x, y and z in table B.1, span respectively the irreducible representation E
′

and A
′′
2 . In conclusion in addition to three rotational and three translational modes, three normal

(vibrational) modes remain and they have A
′
1 and E

′
symmetry3. To generate basis functions with

3The number of normal modes in nonlinear molecules is 3N − 6 where N is the total number of atoms, three are
the degree of freedom of each atom along the x, y, z, axis and six are the possible rigid rotations and translations of
the molecule along the x, y, z, axis. In case of linear molecules, the number of normal modes is given by 3N − 5.
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the appropriate symmetry one has to proceed in the same way as for s and pz orbitals. Thus, at

�rst a generator is chosen, in this case the vector eC1 , and then it is transformed under the symmetry

operations of the group. It belongs to the plane (x, y) and it is therefore expected to transform

according to the matrices E
′
in eq.B.64. Again one may deal only with the �rst six symmetry

elements since the last are exactly equivalent in the (x, y) plane and then obtain:

G E C+
3 C−3 C

′
2 C

′′
2 C

′′′
2

Γ̂ (G) eC1 −1
2e
B
1 −

√
3

2 e
B
2 −1

2e
A
1 +

√
3

2 e
A
2 −eC1 1

2e
B
1 +

√
3

2 e
B
2

1
2e
A
1 −

√
3

2 e
A
2

These elements are now multiplied by the corresponding character in the A
′
1 representation, χ

A
′
1 (G);

then they are summed over G and �nally give ΦA
′
1 = 0. This simply means that eC1 is not a good

generator for this irreducible representation, hence one tries eC2 and proceed as before. Note that

the choice of eC2 actually implies to choose the second column in the matrices E
′
in eq.B.64

G E C+
3 C−3 C

′
2 C

′′
2 C

′′′
2

Γ̂ (G) eC2

√
3

2 e
B
1 − 1

2e
B
2 −

√
3

2 e
A
1 − 1

2e
A
2 eC2

√
3

2 e
B
1 − 1

2e
B
2 −

√
3

2 e
A
1 − 1

2e
A
2

Hence,

ΦA
′
1 = 2eC2 +

√
3eB1 − eB2 −

√
3eA1 − eA2 . (B.72)

After normalization,

ΦA
′
1 =

1√
12

(
2eC2 +

√
3eB1 − eB2 −

√
3eA1 − eA2

)
. (B.73)

For basis functions with E
′
symmetry, one refers to the matrices in eq.B.64 and uses coe�cients

from the �rst row when the generator is eC1 ,

G E C+
3 C−3 C

′
2 C

′′
2 C

′′′
2

Γ̂ (G) eC1 −1
2e
B
1 −

√
3

2 e
B
2 −1

2e
A
1 +

√
3

2 e
A
2 −eC1 1

2e
B
1 +

√
3

2 e
B
2

1
2e
A
1 −

√
3

2 e
A
2

ΓE
′

11 (G) 1 −1
2 −1

2 -1 1
2

1
2

ΓE
′

12 (G) 0
√

3
2 −

√
3

2 0
√

3
2 −

√
3

2

Then the sum over all G reads as:

ΦE
′

1 = 2eC1 + 1
2e
B
1 +

√
3

2 e
B
2 + 1

2e
A
1 −

√
3

2 e
A
2

ΦE
′

2 = 0

(B.74)

Again since ΦE
′

2 = 0, one adopts the coe�cients from the second row in eq.B.64 and thus uses the

vector eC2 as generator. From this choice, it follows

G E C+
3 C−3 C

′
2 C

′′
2 C

′′′
2

Γ̂ (G) eC2

√
3

2 e
B
1 − 1

2e
B
2 −

√
3

2 e
A
1 − 1

2e
A
2 eC2

√
3

2 e
B
1 − 1

2e
B
2 −

√
3

2 e
A
1 − 1

2e
A
2

ΓE
′

21 (G) 0
√

3
2 −

√
3

2 0
√

3
2 −

√
3

2

ΓE
′

22 (G) 1 −1
2 −1

2 1 −1
2 −1

2



B.2. Analysis of the group of symmetry D3h 157

ΦE
′

1 = 3
2e
B
1 −

√
3

2 e
B
2 + 3

2e
A
1 +

√
3

2 e
A
2

ΦE
′

2 = 2eC2 −
√

3
2 e

B
1 + 1

2e
B
2 +

√
3

2 e
A
1 + 1

2e
A
2

(B.75)

These two vibrational coordinates transform into each other but contain also translations along x

and y axis, since they span the same irreducible representation E
′
. Therefore, they are of the form

Φi = αΦV
i + βΦT

i (B.76)

where
(
ΦT

1 ,Φ
T
2

)
are translational coordinates, α and β are coe�cients independent on i. The latter

reads as

ΦT
1 =

1√
3

(
eA1 + eB1 + eC1

)
(B.77)

ΦT
2 =

1√
3

(
eA2 + eB2 + eC2

)
(B.78)

Using the scalar product in the con�guration space (R6 in plane or R9 in general), it results

β = Φ∗1ΦT
1 =

3
2
√

3
+

3
2
√

3
=
√

3 ≡ Φ∗2ΦT
2 (B.79)

Hence,

αΦV
1 = Φ1 −

√
3ΦT

1 =
1
2
eA1 +

√
3

2
eA2 +

1
2
eB1 −

√
3

2
eB2 − eC1 (B.80)

αΦV
2 = Φ2 −

√
3ΦT

2 =
√

3
2
eA1 −

1
2
eA2 −

√
3

2
eB1 −

1
2
eB2 + eC2 (B.81)

These are the unnormalized vibrational coordinates; after normalization, they read as

Φ̃V
1 =

1√
3

{
1
2
eA1 +

√
3

2
eA2 +

1
2
eB1 −

√
3

2
eB2 − eC1

}
=

1√
3



1
2√
3

2
1
2

−
√

3
2

−1
0


(B.82)

Φ̃V
2 =

1√
3

{√
3

2
eA1 −

1
2
eA2 −

√
3

2
eB1 −

1
2
eB2 + eC2

}
=

1√
3



√
3

2

−1
2

−
√

3
2

−1
2

0
1


(B.83)

where the latter are unit vectors in the six-dimensional con�guration space appropriate for the

triatomic system in 2D, here modeled by the equilater triangle. The three normal modes are

summarized in �g.B.5.

Up to here only the translational coordinates for displacements along the x and y axis within E
′
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Figure B.5: Normal modes for a triatomic system with D3h symmetry.

have been introduced. The displacement along the z axis spans the irreducible representation A
′′
2 .

The choice of eC3 as generator gives

G E C+
3 C−3 C

′
2 C

′′
2 C

′′′
2 σh S+

3 S−3 σ
′
v σ

′′
v σ

′′′
v

Γ̂ (G) eC3 eB3 eA3 −eC3 −eB3 −eA3 −eC3 −eB3 −eA3 eC3 eB3 eA3

χA
′′
2 (G) 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1

and the �nal normalized result is

ΦA
′′
2

Tz
=

1√
3

(
eC3 + eB3 + eA3

)
(B.84)

Finally the rotational coordinates are considered, that span the irreducible representations A
′
2, for

the rotation around the z axis (Rz), and E
′′
, for the rotations around the x and y axis (Rx, Ry).

For A
′
2 we choose again eC1 as generator, since the rotation around the z axis takes place in the

(x, y) plane. The behaviour of eC1 under the symmetry operations reads as

G E C+
3 C−3 C

′
2 C

′′
2 C

′′′
2

Γ̂ (G) eC1 −1
2e
B
1 −

√
3

2 e
B
2 −1

2e
A
1 +

√
3

2 e
A
2 −eC1 1

2e
B
1 +

√
3

2 e
B
2

1
2e
A
1 −

√
3

2 e
A
2

χA
′
2 (G) 1 1 1 -1 -1 -1

Multiplying by the characters of A
′
2 and then summing, the rotation along z reads as,

ΦA
′
2

Rz
= 2eC1 − eB1 −

√
3eB2 − eA1 +

√
3eA2 (B.85)

The two basis functions for the rotations Rx, Ry belong to the E
′′
irreducible representation and,

both have a component along the z axis. In this case, by selecting eC3 as generator, one obtains

G E C+
3 C−3 C

′
2 C

′′
2 C

′′′
2 σh S+

3 S−3 σ
′
v σ

′′
v σ

′′′
v

Γ̂ (G) eC3 eB3 eA3 −eC3 −eB3 −eA3 −eC3 −eB3 −eA3 eC3 eB3 eA3

ΓE
′′

11 (G) 1 −1
2 −1

2 -1 1
2

1
2 -1 1

2
1
2 -1 1

2
1
2

ΓE
′′

12 (G) 0
√

3
2 −

√
3

2 0
√

3
2 −

√
3

2 0 −
√

3
2

√
3

2 0
√

3
2 −

√
3

2

ΦE
′′

1 = 2eC3 − eB3 − eA3 ΦE
′′

2 =
√

3
(
eB3 − eA3

)
(B.86)
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Figure B.6: Rotations for a triatomic system with D3h symmetry.

After normalization,

ΦE
′′

1 =
1√
6

(
2eC3 − eB3 − eA3

)
ΦE
′′

2 =
1√
2

(
eB3 − eA3

)
. (B.87)

In �g.B.6 all the rotations are summarized.

Some further comments can be done on the analysis just performed. For example, to get the

contributions of the two degenerate vibrational coordinates (E
′
) to a given distorted con�guration,

one refers to the vectors {uA, uB, uC} giving the displacement in the (x, y) plane of the atom A, B,

and C respectively. They are de�ned as

u =

 uA

uB

uC

 =



eA1 − eA?1

eA2 − eA?2

eB1 − eB?1

eB2 − eB?2

eC1 − eC?1

eC2 − eC?2


(B.88)

where
(
eA?1 , eA?2 , eB?1 , eB?2 , eC?1 , eC?2

)
is a reference symmetric con�guration. Given u, the two

contributions come from the scalar product between u itself and the vector corresponding to each

vibration:

Q1 =
(

Φ̃V
1

)t
u Q2 =

(
Φ̃V

2

)t
u (B.89)

The path u (q), where q ∈ R depends on all the coordinates a�ecting the system, has thus a

projection on the E
′
plane generated by the two orthogonal vibrations Φ̃V

1 and Φ̃V
2

uE′ (q) = Q1 (q) Φ̃V
1 +Q2 (q) Φ̃V

2 (B.90)

Note that the symmetric displacement with symmetry A
′
1 gives uE′ (q) = 0, namely its projection

onto the E
′
plane of the two non-symmetric normal modes is null. More generally, Q⊥ is any other

coordinate orthogonal to the space E
′
spanned by the two vibrations, hence it can be the symmetric

stretching (A
′
1), a rotation around the x or y axis (E

′′
), a rotation (A

′
2) or a translation around

the z axis (A
′′
2). For a triatomic system only the symmetric stretching may a�ect the energy. This



160 Chapter B. Group theory

possibility implies that many di�erent curves could be obtained for the same path, depending on

the values of the other coordinates (in this case the components Q⊥ representing the symmetric

stretching). In particular one is often interested in the conical intersection point, which is placed

at the crossing of the two axis Q1 and Q2. The position of this point may result by minimizing the

energy of the system with respect to all the coordinates Q⊥ for Q1 = Q2 = 0.

B.2.4 Spin state symmetry

A slightly more subtle question is how to predict the spin state of an electronic system with a

certain spatial symmetry, depending of course on the orbitals occupied but also on the presence

of degeneracy. In general the overall electronic state is obtained by the direct product among the

irreducible representations correponding to occupied orbitals. This procedure is straightforward if

no degenerate orbitals are included, otherwise it is rather more complicated. A concrete example

may help to clarify this concept. Consider again the triatomic system with D3h symmetry and

suppose it has four electrons distributed in the orbitals as follows

a
′
1(2)e

′
(n1)a

′′
2(n2) (B.91)

where a
′
1 and e

′
are the in plane σ orbitals derived respectively in eq.B.62 and eq.B.67, a

′′
2 is the

lowest lying π orbital derived in eq.B.69, and n1 and n2 are integers giving the orbital occupation.

Three di�erent scenarios can arise from eq.B.91: (i) n1 = n2 = 1; (ii) n1 = 0 and n2 = 2; (iii)

n1 = 2 and n2 = 0. The direct product of close-shell orbitals (doubly occupied) gives always the

totally symmetric representation A
′
1, thus the electronic con�guration is simply determined by the

partially occupied orbitals. In the �rst case,

n1 = n2 = 1 −→ e
′
a
′′
2 = E

′′
(B.92)

the two electrons may align with parallel or antiparallel spin and �nally give the electronic spin

state 1,3E
′′
. The second scenario reduces to a close-shell case, indeed no fractional occupation is

present, and as expected it turns out to be

n1 = 0, n2 = 2 −→
(
a
′′
2

)2
= A

′
1 (B.93)

where only the singlet alignment is allowed, 1A
′
1. The last case shows degenerate orbitals with a

partial occupation, where the direct product e
′
e
′
generates a reducible representation Γ,

D3h E 2C3 3C2 σh 2S3 3σv
e
′

2 -1 0 2 -1 0(
e
′
)2

4 1 0 4 1 0

that can be decomposed into pure symmetry components by using eq.B.41

Γ = ΓA
′
1 ⊕ ΓA

′
2 ⊕ ΓE

′
. (B.94)
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To attribute the correct spin state (singlet or triplet) to the spatial simmetries A
′
1, A

′
2 and E

′
, we

need to use a projector P̂ , similar to that already introduced in eq.B.57

P̂Γα =
∑
G

χΓα (G) Γ̂ (G) (B.95)

This projector, applied to a determinantal function of the form |φiφj |, generates a sum of determi-

nants with coe�cients given by the corresponding matrix representation for α:

P̂Γα |φiφj | =
∑
G

∑
kl

χΓα (G) Γik (G) Γjl (G) |φkφl| . (B.96)

Coming back to the e
′
e
′
problem, we start investigating the triplet case applying the projector to∣∣∣e′1αe′2α∣∣∣:

P̂Γα

∣∣∣e′1αe′2α∣∣∣ =
∑
G

χΓα (G)
{

Γ11 (G) Γ21 (G)
∣∣∣e′1αe′1α∣∣∣+ Γ11 (G) Γ22 (G)

∣∣∣e′1αe′2α∣∣∣+
+Γ12 (G) Γ21 (G)

∣∣∣e′2αe′1α∣∣∣+ +Γ12 (G) Γ22 (G)
∣∣∣e′2αe′2α∣∣∣} (B.97)

Thus, excluding the �rst and the last term because of the Pauli exclusion principle, eq.B.97 reduces

to

P̂Γα

∣∣∣e′1αe′2α∣∣∣ =
∑
G

χΓα (G) (Γ11 (G) Γ22 (G)− Γ12 (G) Γ21 (G))
∣∣∣e′1αe′2α∣∣∣ . (B.98)

In a similar way, the projector applied on
∣∣∣e′1βe′2β∣∣∣ gives

P̂Γα

∣∣∣e′1βe′2β∣∣∣ =
∑
G

χΓα (G) (Γ11 (G) Γ22 (G)− Γ12 (G) Γ21 (G))
∣∣∣e′1βe′2β∣∣∣ . (B.99)

Finally the use of 1√
2

{∣∣∣e′1αe′2β∣∣∣+
∣∣∣e′1βe′2α∣∣∣} as generator gives

P̂Γα
1√
2

{∣∣∣e′1αe′2β∣∣∣+
∣∣∣e′1βe′2α∣∣∣} =∑

G χΓα (G) (Γ11 (G) Γ22 (G)− Γ12 (G) Γ21 (G)) 1√
2

{∣∣∣e′1αe′2β∣∣∣+
∣∣∣e′1βe′2α∣∣∣} (B.100)

Now, looking at the matrix elements within the E
′
irreducible representation in eq.B.64, one

computes the coe�cients for each symmetry operations in the triplet wavefunctions. Setting

A (G) = Γ11 (G) Γ22 (G) and B (G) = Γ12 (G) Γ21 (G), it results

G E C+
3 C−3 C

′
2 C

′′
2 C

′′′
2

A 1 1
4

1
4 -1 −1

4 −1
4

B 0 −3
4 −3

4 0 3
4

3
4

A−B 1 1 1 -1 -1 -1

Then multiplying the quantity A (G) − B (G) by the characters of the irreducible representations

A
′
1, A

′
2 and E

′
, it follows
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G E 2C3 3C2 σh 2S3 3σv Sum

A−B 1 1 -1 1 1 -1

χA
′
1 (A−B) 1 1 -1 1 1 -1 0

χA
′
2 (A−B) 1 1 1 1 1 1 12

χE
′
(A−B) 2 -1 0 2 -1 0 0

and a nonzero coe�cient results only for A
′
2 . This allows to conclude that the triplet function is of

pure 3A
′
2 symmetry and after normalization it becomes

ΦA
′
2 =

1√
2

{∣∣∣e′1αe′2β∣∣∣+
∣∣∣e′1βe′2α∣∣∣} (B.101)

Now the singlet state is studied, starting with
∣∣∣e′1αe′1β∣∣∣ as generator,

P̂Γα

∣∣∣e′1αe′1β∣∣∣ =
∑
G

χΓα (G)
{

Γ11 (G) Γ11 (G)
∣∣∣e′1αe′1β∣∣∣+

+Γ12 (G) Γ12 (G)
∣∣∣e′2αe′2β∣∣∣+ Γ11 (G) Γ12 (G)

(∣∣∣e′1αe′2β∣∣∣− ∣∣∣e′1βe′2α∣∣∣)} (B.102)

then with
∣∣∣e′2αe′2β∣∣∣,

P̂Γα

∣∣∣e′2αe′2β∣∣∣ =
∑
G

χΓα (G)
{

Γ21 (G) Γ21 (G)
∣∣∣e′1αe′1β∣∣∣+

Γ22 (G) Γ22 (G)
∣∣∣e′2αe′2β∣∣∣+ Γ22 (G) Γ21 (G)

(∣∣∣e′1αe′2β∣∣∣− ∣∣∣e′1βe′2α∣∣∣)} (B.103)

and �nally with 1√
2

(∣∣∣e′1αe′2β∣∣∣− ∣∣∣e′1βe′2α∣∣∣)
P̂Γα

1√
2

{∣∣∣e′1αe′2β∣∣∣− ∣∣∣e′1βe′2α∣∣∣} =

=
∑

G χΓα (G)
{√

2Γ11 (G) Γ21 (G)
∣∣∣e′1αe′1β∣∣∣+

√
2Γ12 (G) Γ22 (G)

∣∣∣e′2αe′2β∣∣∣+
+ 1√

2
(Γ11 (G) Γ22 (G) + Γ12 (G) Γ21 (G))

(∣∣∣e′1αe′2β∣∣∣− ∣∣∣e′1βe′2α∣∣∣)} .
(B.104)

Afterwards, proceeding as before, one looks at the three singlet wavefuctions. In the �rst case, it is

G E C+
3 C−3 C

′
2 C

′′
2 C

′′′
2

Γ2
11 1 1

4
1
4 1 1

4
1
4

Γ2
12 0 3

4
3
4 0 3

4
3
4

Γ11Γ12 0 −
√

3
4

√
3

4 0
√

3
4 -

√
3

4

then by multiplication with the characters of the irreducible representations A
′
1, A

′
2 and E

′
, it

follows
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G E C+
3 C−3 C

′
2 C

′′
2 C

′′′
2 2 · Sum

χA
′
1Γ2

11 1 1
4

1
4 1 1

4
1
4 6

χA
′
1Γ2

12 0 3
4

3
4 0 3

4
3
4 6

χA
′
1Γ11Γ12 0 −

√
3

4

√
3

4 0
√

3
4 -

√
3

4 0

G E C+
3 C−3 C

′
2 C

′′
2 C

′′′
2 2 · Sum

χA
′
2Γ2

11 1 1
4

1
4 -1 −1

4 −1
4 0

χA
′
2Γ2

12 0 3
4

3
4 0 −3

4 −3
4 0

χA
′
2Γ11Γ12 0 −

√
3

4

√
3

4 0 −
√

3
4

√
3

4 0

G E C+
3 C−3 C

′
2 C

′′
2 C

′′′
2 2 · Sum

χE
′
Γ2

11 2 −1
4 −1

4 1 0 0 3

χE
′
Γ2

12 0 −3
4 −3

4 0 0 0 -3

χE
′
Γ11Γ12 0

√
3

4 −
√

3
4 0 0 0 0

Note that the �nal sum is multiplied by a factor of two just to account for the remaining six

symmetry elements. Nonzero coe�cients have been found for the irreducible representations A
′
1

and E
′
, which can thus be labeled as 1A

′
1 and 1E

′
. After normalization they can be written as

ΦA
′
1 =

1√
2

{∣∣∣e′1αe′1β∣∣∣+
∣∣∣e′2αe′2β∣∣∣} (B.105)

ΦE
′

=
1√
2

{∣∣∣e′1αe′1β∣∣∣− ∣∣∣e′2αe′2β∣∣∣} (B.106)

Likewise, for the second case one �nds nonzero coe�cients only for the irreducible representations

A
′
1 and E

′
, which can thus be labeled as 1A

′
1 and 1E

′
. After normalization the functions can be

written as

ΦA
′
1 =

1√
2

{∣∣∣e′1αe′1β∣∣∣+
∣∣∣e′2αe′2β∣∣∣} (B.107)

ΦE
′

1 =
1√
2

{∣∣∣e′2αe′2β∣∣∣− ∣∣∣e′1αe′1β∣∣∣} (B.108)

In the end, the last singlet fuctions gives,

G E C+
3 C−3 C

′
2 C

′′
2 C

′′′
2

Γ11Γ21 0
√

3
4 −

√
3

4 0
√

3
4 −

√
3

4

Γ22Γ12 0 −
√

3
4

√
3

4 0 −
√

3
4

√
3

4

Γ11Γ22 1 1
4

1
4 -1 −1

4 −1
4

Γ12Γ21 0 −3
4 −3

4 0 3
4

3
4
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then by multiplication with the characters of the irreducible representations A
′
1, A

′
2 and E

′

G E C+
3 C−3 C

′
2 C

′′
2 C

′′′
2 2 · Sum

χA
′
1Γ11Γ21 0

√
3

4 −
√

3
4 0

√
3

4 −
√

3
4 0

χA
′
1Γ22Γ12 0 −

√
3

4

√
3

4 0 −
√

3
4

√
3

4 0

χA
′
1Γ11Γ22 1 1

4
1
4 -1 −1

4 −1
4 0

χA
′
1Γ12Γ21 0 −3

4 −3
4 0 3

4
3
4 0

G E C+
3 C−3 C

′
2 C

′′
2 C

′′′
2 2 · Sum

χA
′
2Γ11Γ21 0

√
3

4 −
√

3
4 0 −

√
3

4

√
3

4 0

χA
′
2Γ22Γ12 0 −

√
3

4

√
3

4 0
√

3
4 −

√
3

4 0

χA
′
2Γ11Γ22 1 1

4
1
4 1 1

4
1
4 6

χA
′
2Γ12Γ21 0 −3

4 −3
4 0 −3

4 −3
4 -6

G E C+
3 C−3 C

′
2 C

′′
2 C

′′′
2 2 · Sum

χE
′
Γ11Γ21 0 −

√
3

4

√
3

4 0 0 0 0

χE
′
Γ22Γ12 0

√
3

4 −
√

3
4 0 0 0 0

χE
′
Γ11Γ22 2 1

4
1
4 0 0 0 3

χE
′
Γ12Γ21 0 3

4
3
4 0 0 0 3

Nonzero coe�cients have been found for the irreducible representations A
′
2 and E

′
. But in the �rst

case the function vanishes as the two coe�cients cancel, thus after normalization the function reads

as

ΦE
′

2 =
1√
2

{∣∣∣e′1αe′2β∣∣∣− ∣∣∣e′1βe′2α∣∣∣} (B.109)

thus again one �nds1E
′
.

In summary the application of the projector in eq.B.96 to suitable determinantal functions gives,

for the triplet state

�
3A
′
2 =

{∣∣∣e′1αe′2α∣∣∣ ; ∣∣∣e′1βe′2β∣∣∣ ; 1√
2

[∣∣∣e′1αe′2β∣∣∣+
∣∣∣e′1βe′2α∣∣∣]}

while for the singlet state

�
1A
′
1 = 1√

2

[∣∣∣e′1αe′1β∣∣∣+
∣∣∣e′2αe′2β∣∣∣]

�
1E
′

= 1√
2

[∣∣∣e′1αe′1β∣∣∣− ∣∣∣e′2αe′2β∣∣∣] 1E
′′

= 1√
2

[∣∣∣e′1αe′2β∣∣∣− ∣∣∣e′1βe′2α∣∣∣] .
In conclusion, this section showed the scheme to generate determinantal wavefuctions with the

correct spatial and spin symmetry in the presence of partially occupied degenerate orbitals. In

the �rst step, one has to perform the direct product of the open shell orbitals, that gives rise to a
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con�guration spanning the Γ representation. This is reducible, thus the second step is the spectral

analysis of Γ to �nd the spatial symmetry components, namely the irreducible representations that

form Γ. Finally, once the possible spatial symmetries are known, one has to form determinantal

wavefunctions for each spin state. Note that not all the space-spin symmetry combinations are

allowed, indeed some vanish due to the antisymmetry as embodied in the determinants. This

is indeed the case of the above example where the 1A
′
2,

3A
′
1,

3E
′
con�gurations do not appear.

However, when non equivalent sets of degenerate orbitals are used, e.g. orbitals with symmetry e′

and e′′, none option is excluded, thus the spatial symmetries in the direct product may sustain any

spin con�gurations.
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Appendix C

ab initio molecular dynamics

Molecular dynamics (MD) simulations allow one to follow the time evolution of a given system and

thus to get a description at atomic level of the processes that occur, like chemical reactions and

physical transformations. The crucial point in any molecular dynamics scheme is the description

of the interatomic interactions. Typically the full potential is splitted in a sum of many terms,

accounting for two-body and many-body interactions, short-range and long-range interactions, elec-

trostatic and non-electrostatic interactions, ... The traditional route in molecular dynamics is to

determine these terms in advance, before starting the simulation. Anyway one has to be aware

that the use of a �xed prede�ned potential implies serious drawbacks especially in dealing with

chemically complex systems, that are made by many di�erent types of atoms and molecules, with a

huge number of interactions to parameterize. Moreover, if modi�cations in the electronic structure

as well as in the bonding pattern occur during the course of the simulation, the initial parameters

may turn out to be uncorrect. Similarly, any small modi�cation of the system, for instance the

substitution of one atomic species, usually is accompained by huge e�orts to update the potential

terms, as the potential parameters are de�ned for a speci�c system.

Another point of view in the traditional molecular dynamics is given by a class of methodologies

where a global potential energy surface is built in a �rst step either empirically, semi-empirically or

based on electronic structure calculations. Then it is �tted to a suitable analytical form and �nally

the dynamics evolution of the nuclei along this surface is generated according to a classical, quasi-

classical or quantum-mechanical model. The main task within this framework is the construction

of the potential energy surface which is done by mapping the space of the coordinates and may be

extremely demanding from the computational point view. In principle given an unconstrained N

body system, 3N-6 degrees of freedom need to be investigated; by including at least 10 points along

each coordinate, the number of calculations required is in the order of 103N−6.

The �eld of traditional molecular dynamics was extended by a family of techniques known as ab

initio molecular dynamics (AIMD). The novelty in AIMD relies on the way to handle the potential

energy. Indeed in this case the dynamics of the system is not guided by a prede�ned potential

but the forces acting on the nuclei are determined on-the-�y via electronic structure calculations as

the trajectory is generated. In this way the electronic variables become active degrees of freedom

167



168 Chapter C. ab initio molecular dynamics

with interaction potentials computed at each step of the simulation. This allows one to follow the

evolution of chemically complex systems as well as of those which drastically change their electronic

structure during the dynamics. Anyway this also implies that the approximation is shifted from

the way to introduce the potential terms to the way to solve the electronic structure. In fact AIMD

makes the connection between classical molecular dynamics based on the Newton's equations and

ab initio electronic structure calculations based on the approximated solution of the Schrodinger

equation mainly via Hartree-Fock or density functional theory schemes. Apart from its clear advan-

tages, the ab initio foundation of molecular dynamics comes along with shorter correlation lenghts

and relaxation times compared to the ones a�ordable in the classical framework; furthermore it

excludes the possibility to get a clear physical picture as well as to drive the processes by playing

with the potential parameters. On the other hand, the lack of a prede�ned physical model allows

one to see the real physics of a system with possibly unforeseen phenomena.

In many cases a rough estimate of the computational cost of a dynamics simulation can be useful to

evaluate wheter it is convenient or not the use of one method rather another one. To this end sup-

pose that in an AIMD simulation 10n independent trajectories are necessary to statistically sample

over the initial conditions; in addition 10M steps are needed for each trajectory. It thus results that

10M+n steps have to be done. Then, in the assumption that a single step in AIMD costs (computa-

tionally) as much as a single-point electronic structure calculation, it is possible to compare AIMD

and molecular dynamics methods based on the preliminary construction of the potential energy

surface. Naturally, the size of the system, i.e. the number of atoms N, is the decisive factor in the

construction of a potential energy surface: for large N, this can be done only by lowering the dimen-

sionality of the surface, thus reducing the number of degrees of freedom through the introduction

of some constraints. On the other hand, in ab initio molecular dynamics the computational time

is imposed by the statistical accuracy in terms of number of trajectories and number of steps in

each trajectory. In summary for su�ciently small systems, computing the potential energy surface

is preferable than following trajectories on-the-�y and it scales as 10M+n; by contrast for systems

large and complex enough, AIMD is favoured by a factor of ∼ 10N .

C.1 Derivation of classical molecular dynamics

The aim of this section is to show how the basic concepts of classical molecular dynamics, namely

the Newton's equation and the potential energy in which nuclei move, may be derived from the

Schrödinger equation. Note that two alternative approaches may be followed in such derivation and

in both of them nuclei need to be approximated as classical particles. The starting point is the

non-relativistic time-dependent Schrödinger equation

i~
∂

∂t
Φ (r,R, t) = HΦ (r,R, t) (C.1)
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where the wavefunction Φ depends on the electronic and nuclear coordinates, carried by the vectors

r and R, and on the time t. The full hamiltonian operator H is de�ned as

H = −
Nat∑
I

1
2MI

∇2
I + E (R) (C.2)

where the �rst term provides the kinetic energy of the nuclei in the potential E (R). The total

electronic energy E is evaluated for a given nuclear con�guration by applying the electronic hamil-

tonian operator1. The exact solution of the corresponding time-independent electronic Schrödinger

equation

HeΨk (r,R) = Ek (R) Ψk (r,R) (C.3)

is known for clamped nuclei at position {R}. Here the spectrum of He is assumed to be descrete

and the eigenfunctions to be orthonormalized. Once known all the adiabatic functions at all the

nuclear coordinates {R}, the total wavefunction can be expanded in terms of the complete set of

eigenfunctions {Ψl} of He,

Φ (r,R, t) =
∞∑
l=0

Ψl (r,R)χl (R, t) (C.4)

where the nuclear wavefunctions {χl} may be interpreted as time-dependent weighting coe�cients.

By using eq.C.4 in the time-dependent Schröndinger equation, after multiplication by Ψ∗k (r,R) and

integration over the electronic coordinates r, a set of coupled equations is obtained[
−

Nat∑
I

1
2MI

∇2
I + Ek (R)

]
χk +

∑
l

Cklχl = i~
∂

∂t
χk (C.5)

where Ek includes the electronic energy and the nuclear repulsion for a given con�guration, and Ckl is
the exact nonadiabatic coupling operator2. If one considers only the diagonal term Ckk, the coupling

between di�erent electronic terms vanishes and eq.C.5 results in the adiabatic approximation, where

Ckk depends only on the single curve Ψk and thus it simply represents a correction to the adiabatic

eigenvalue Ek. Correspondingly the coupled wavefunction in eq.C.4 becomes simply the direct

product of an electronic and a nuclear wavefunction3. In the ultimate simpli�cation also the diagonal
1The electronic hamiltonian operator He,

He (r,R) = −1

2

NelX
i

∇2
i −

NatX
I

NelX
i

ZI
|RI − ri|

+

NelX
i<j

1

|ri − rj |
+

NatX
I<J

ZIZJ
|RI −RJ |

.

depends explicitly on the electronic coordinates and parametrically on the nuclear ones. Here the four components
respectively represent the electronic kinetic energy, the electron-nuclear attraction, the electron-electron repulsion
and the nuclear-nuclear repulsion. Note that for a given con�guration the last term is a constant contribution.

2Ckl =
�

Ψ∗k

h
−
P
I

1
2MI
∇2
I

i
Ψldr +

P
I

1
MI

˘�
Ψ∗k [−∇I ] Ψldr

¯
∇I

3 "
−
NatX
I

1

2MI
∇2
I + Ek (R) + Ckk

#
χk = i~ ∂

∂t
χk and Φ (r,R, t) ≈ Ψk (r,R)χk (R, t)
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coupling term is neglected, thereby generating the famous Born-Oppenheimer approximation4.

C.1.1 Time-independent Schrödinger equation: Born-Oppenheimer MD

Once stated the Born-Oppenheimer approximation, which works safely in many physical situations,

in the next step the nuclei have to be represented as classical particles. This is a change of perspective

in view of the application of the classical equations of motion. To this end, the nuclear wavefunction

is conveniently rewritten as

χk (R, t) = Ak (R, t) eiSk(R,t)/~ (C.6)

in terms of amplitude Ak and phase Sk. Note that both of them are real. After transforming the

nuclear wavefunction in the BO approximation accordingly to the de�nition in eq.C.6, two equations

result corresponding to the real and the imaginary part:

Re :
∂Sk
∂t

+
∑
I

1
2MI

(∇ISk)2 + Ek = ~2
∑
I

1
2MI

∇2
IAk
Ak

(C.7)

Im :
∂Ak
∂t

+
∑
I

1
2MI

Ak
(
∇2
ISk
)

+
∑
I

1
MI

(∇IAk) (∇ISk) = 0 (C.8)

After multiplication by 2Ak, the relation for the amplitude in eq.C.8 may be rewritten as a continuity

equation
∂ρk
∂t

+
∑
I

∇IJk,I = 0 (C.9)

with ρk = |χk|2 ≡ A2
k and the current density Jk,I = A2

k (∇ISk) /MI . This equation ensures locally

the conservation of the particle probability density |χk|2 of the nuclei in the presence of a �ux.

The relation of the phase in eq.C.7 will now be analysed. By eliminating the term multiplied by ~2

within the classical limit ~→ 0, the equation becomes isomorphic to the equation of motion in the

Hamilton-Jacobi formulation of classical mechanics:

∂Sk
∂t

+Hk (R, {∇ISk}) = 0 (C.10)

with the classical Hamilton function in terms of generalized nuclear coordinates and conjugate

momenta

Hk (R,P) = T (P) + Vk (R) (C.11)

with T and Vk representing the kinetic and the potential contribution. To ful�ll the energy conser-

vation requirement,
∂Sk
∂t

= − (T + Ek) = −E totk = constant (C.12)

4It is also known as the crude adiabatic approximation,"
−
NatX
I

1

2MI
∇2
I + Ek (R)

#
χk = i~ ∂

∂t
χk
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Following from PI ≡ ∇ISk = MIJk,I/ρk and the relation between Sk and the total energy in

eq.C.12, the Newton's motion equation ṖI = −∇IVk (R) may be written as

ṖI = −∇IEk or MIR̈I (t) = −∇IV BO
k (R (t)) (C.13)

for each decoupled electronic state k. This means that the nuclei move according to classical

mechanics feeling the e�ective Born-Oppenheimer potential V BO
k , namely they move along the

adiabatic potential energy surface Ek. Such surface has been determined quantum mechanically by

solving the time-independent electronic Schrödinger equation for a given set of nuclear coordinates,

R. Thus, this means that the time dependence of the electronic structure is imposed by the

nuclear classical dynamics as the electronic hamiltonian parametrically depends on the nuclear

con�guration. Note that V BO
k is obtained as the minimum of the expectation value 〈He〉 at each

step of the nuclear propagation5. As the forces acting on the nuclei are determined from the BO

energies, this branch of ab initio molecular dynamics is also known as Born-Oppenheimer MD.

C.1.2 Time-dependent Schrödinger equation: Ehrenfest MD

An alternative derivation deals with the electronic problem by solving the time-dependent Schrödinger

equation. At variance with Born-Oppenheimer MD, this implies that the electronic structure does

not just depend on the nuclear con�guration at time t, but electrons have their intrinsic dynamics.

In this case the total wavefunction Φ (r,R, t) is separated as

Φ (r,R, t) ≈ Ψ (r, t)χ (R, t) exp

 i
~

t�

t0

Ẽe

(
t
′
)
dt
′

 (C.14)

where the electronic and nuclear wavefunctions are orthonormal at each time t ; the last term is

a phase factor introduced to get simple �nal equations. Note that, independently from the phase

factor, the product description of the total wavefunction is di�erent from the Born expression even

in terms of a single adiabatic state Ψk. The total hamiltonian operator applied to the wavefuction in

eq.C.14, after multipling by Ψ∗ and χ∗ and integrating over the electronic and nuclear coordinates,

�nally yields the equations for the electronic and nuclear motion. These set of equations consti-
5Considering the ground state Ψ0, the electronic structure and the nuclear propagation are described as

HeΨ0 = E0Ψ0 and MIR̈I (t) = −∇I min
Ψ0
{〈Ψ0|He |Ψ0〉} .

If the ground state wavefunction is described within the Hartree-Fock approximation as a single Slater determinant
Ψ0 = 1/

√
N ! det {φi}, the two equations become

HHFe φi =
X
ij

Λijφj and MIR̈I (t) = −∇I min
{φi}

n
〈Ψ0|HHFe |Ψ0〉

o
and analogously within the Kohn-Sham density functional theory

HKSe φi =
X
ij

Λijφj and MIR̈I (t) = −∇I min
{φi}

n
〈Ψ0|HKSe |Ψ0〉

o
.
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tute the basis of the time-dependent self-consistent �eld (TDSCF) method introduced by Dirac in

1930[23].

i~
∂Ψ
∂t

= −
∑
i

~2

2me
∇2
iΨ +

{�
χ∗ (R, t)Ve−n (r,R)χ (R, t) dR

}
Ψ = HeΨ (C.15)

i~
∂χ

∂t
= −

∑
I

~2

2MI
∇2
Iχ+

{�
Ψ∗ (r, t)He (r,R) Ψ (r, t) dr

}
χ (C.16)

It results that both electrons and nuclei move in time-dependent e�ective potentials, where elec-

tronic motion is determined by the mean-�eld potential generated by nuclei and the opposite holds

for the nuclear motion. At this point, nuclei have again to be approximated as classical particles,

but now in the presence of electrons which are quantum particles moving in time. This can be done

following the same approach already used to derive Born-Oppenheimer molecular dynamics. Ac-

cordingly the nuclear wavefunction is conveniently rewritten as in eq.C.6; then the full hamiltonian

of eq.C.2 applies and two equations are carried out in terms of amplitude and phase of the nuclear

wavefunction χ. In the classical limit ~→ 0, the phase expression is

∂S

∂t
+
∑
I

1
2MI

(∇IS)2 +
�

Ψ∗HeΨdr = 0. (C.17)

Correspondigly, the Newton's equations of motion of the classical nuclei are

ṖI = −∇I
�

Ψ∗HeΨdr or MIR̈I (t) = −∇IV E
e (R (t)) (C.18)

where the nuclei behave as classical particles and move according to the classical mechanics in an

e�ective potential V E
e known as Ehrenfest potential. This is the solution of the time-dependent elec-

tronic Schrödinger equation and it represents the mean-�eld potential averaged over the electronic

degrees of freedom in which nuclei move, V E
e = 〈Ψ|He |Ψ〉. Note that it is computed on-the-�y

for each nuclear con�guration R (t). The TDSCF equation that describes the electronic motion

has still a quantum appearence, as it contains the nuclear wavefunction χ (R, t) instead of just the

nuclear positions R (t). Anyway, by replacing |χ (R, t)|2 with
∏
I δ (RI −RI (t)) in the classical

limit ~→ 0, the electronic time-dependent wavefunction becomes

i~
∂Ψ
∂t

= −
∑
i

~2

2me
∇2
iΨ + Ve−n (r,R (t)) Ψ = He (r,R (t)) Ψ (r,R, t) . (C.19)

Note that upon the classical reduction, He depends parametrically on the classical nuclear positions

at time t, R (t).

C.1.3 Overview of the two methods

Here the ab initio molecular dynamics approach has been presented as based on the simultaneous

solution of the Newton's equation for the nuclei and the Schrödinger equation for the electrons.

This is a mixed quantum-classical approach as the electrons behave like quantum objects while
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nuclei have been approximated by classical particles. Two alternatives derivations have been shown

that di�er in some aspects. In the case of the Born-Oppenheimer MD approach, (i) the electronic

structure is described within the time-independent Schrödinger equation and (ii) the expectation

value of the electronic hamiltonian has to be minimized at each step in the nuclear propagation;

moreover (iii) transitions between electronic states are not contemplated. On the other hand, in the

Ehrenfest MD version, (i) the electronic system evolves in time according to the time-dependent

Schrödinger equation; (ii) a wavefunction that minimizes 〈He〉 in the initial con�guration will stay

in its ground state as the nuclei move, due to the unitarity of the wavefunction propagation; �nally,

(iii) transitions between electronic states are taken into account and the electronic wave function

may be expanded as a sum over the electronic states weigthed by time-dependent coe�cients,

Ψ (r,R, t) =
∞∑
l=0

cl (t) Ψl (r,R) . (C.20)

Typically a suitable set of basis functions {Ψl} consists of the eigenfunctions generated by solving

the Schrödinger equation within the Born-Oppenheimer approximation for nuclei at R at time t.

Accordingly the quantum-classical coupled equations for electron-nuclear dynamics may be rewritten

as,

MIR̈I (t) = −∇I
∑
k

|ck (t)|2Ek = −
∑
k

|ck (t)|2∇IEk +
∑
k,l

c∗kcl (Ek − El)
�

Ψ∗k∇IΨldr (C.21)

i~
∂Ψ
∂t

= i~
∂ck (t)
∂t

+
∑
l

cl (t)
�

Ψ∗k
∂

∂t
Ψldr = Ekck (t) (C.22)

where the coupling between di�erent electronic states is taken into account. Note that if only the

ground state wavefunction is included in the expansion for Ψ (r,R, t) then the Ehrenfest potential

exactly reduces to the ground state Born-Oppenheimer potential6 and the equations of motion

become

MIR̈I (t) = −∇I 〈Ψ0|He |Ψ0〉 and i~
∂Ψ
∂t

= HeΨ0. (C.23)

In Ehrenfest dynamics the time scale and thus the time step to integrate the equations of motion is

determined by the intrinsic dynamics of the electrons, which are faster than nuclei. The time step has

to be as large as possible, allowing at the same time to properly integrate the electronic equations of

motion. Contrary to that, in Born-Oppenheimer dynamics there is no electronic intrinsic dynamics
6The possibility to fully decouple the electronic and the nuclear problem justi�es the classical (as well as quasi-

classical and quantum) molecular dynamics approach based on the global potential energy surface. Indeed, as the
electronic and nuclear dynamics are fully decoupled, one may think at �rst to solve the Schrödinger equation for
many di�erent nuclear con�gurations; then �t the data to yield an analytical form of the global potential energy
surface; �nally use the forces associated to such surface to propagate the nuclei, starting from many di�erent initial
conditions. Anyway the construction of a global potential energy surface may turn out to be prohibitively costly
for large systems. In this case the global potential can be approximated by a truncated expansion of many-body
contributions depending on the nuclear coordinates. This potential is usually named force-�eld. It introduces a
relevant simplication as the electronic degrees of freedom are replaced by a set of interaction potentials, typically two
or three-body terms. As a consequence the problem reduces to purely classical mechanics and the dimensionality
bottleneck is circumvented. Anyway the new potential provides a less realistic picture of chemical situations.
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and thus the length of the time step is fully determined by the nuclear motion. As nuclei move

slower than electrons, a larger time step may be used. However this means that the electronic

structure problem has to be solved self-consistently at each molecular dynamics step, whereas this

is avoided in the Ehrenfest dynamics where the wavefunction is automatically kept at its minimum

as the nuclei are propagated. From the above considerations one may conclude that the ideal ab

initio molecular dynamics method should: integrate the equations of motion on a (long) time scale

set by the nuclear dynamics and avoid the self-consistent minimization step to get the electronic

structure for each given nuclear arrangement. This may be done by exploiting the smooth time

evolution of the wavefunction in the case of electrons with intrinsic dynamics.

C.1.4 Car-Parrinello molecular dynamics

Car-Parrinello molecular dynamics is here very shortly presented as a non-obvious method which

combines the better features of both Ehrenfest and Born-Oppenheimer molecular dynamics. The

basic idea of the Car-Parrinello approach is to take advantage of the di�erent time scale on which

electronic and nuclear dynamics take place. The quantum-classical problem is mapped on a purely

classical system with two di�erent energy scales, loosing in this way the physical time information

of the quantum electron dynamics. An important aspect derives from the fact that the electronic

energy is not only a function of the nuclear coodinates R, but it is also a functional of Ψ0 and thus

of the basis functions {φi} used to construct Ψ0, e.g. the set of spin-orbitals in a Slater determinant.

This suggests the idea that a functional derivative with respect to the functions {φi} may be read as

the force acting on the orbitals, analogously to the case of classical mechanics where the derivative

of a suitable Lagrangian with respect to the nuclear positions gives the forces acting on the nuclei.

By including some possible constraints, the general Lagrangian reads as

LCP =
∑
I

1
2
MIṘ2

I +
∑
i

µ
〈
φ̇i|φ̇i

〉
− 〈Ψ0|He |Ψ0〉+ constraints (C.24)

where the �rst term gives the kinetic energy of the nuclei; the second one refers to the kinetic

energy of orbitals and the �ctitious mass µ has been assigned to the orbital degrees of freedom;

�nally the third one is the potential energy. In the derivation of LCP with respect to nuclear and

orbitals positions the following holds ∂LCP
∂RI

= d
dt
∂LCP
∂ṘI

and δLCP
δφi∗ = d

dt
δLCP
δφ̇i∗

. Accordingly the generic

Car-Parrinello equations of motion are obtained

MIR̈I (t) = − ∂

∂RI
〈Ψ0|He |Ψ0〉+

∂

∂RI
{constraints} (C.25)

µφ̈i (t) = − δ

δφ∗i
〈Ψ0|He |Ψ0〉+

δ

δφ∗i
{constraints} (C.26)

As in general the constraints depend on the nuclear coordinates as well as on the set of orbitals,

the above equations lead in the end to constrained forces.

In the Car-Parrinello dynamics, nuclei propagate with an istantaneous real temperature that is

proportional to their kinetic energy ∝
∑

IMIṘ2
I ; in the same way the orbitals evolve in time
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at a �ctitious temperature ∝
∑

i µ
〈
φ̇i|φ̇i

〉
. In this model the electronic temperature indicates

how far is the electronic system from its istantaneous minimum energy; thereby the electronic

wavefunction will remain close to the ground state, namely the initial condition, provided the

�ctitious temperature remains low during the simulation. Typically this case is characterized by

bound oscillations of the �ctitious kinetic energy around a constant value. The physical reason for

such behaviour is that the nuclei and electrons are dynamically separated, their vibrational states

do not overlap and thus the energy transfer between them is prohibitively slow. In practice this

aspect is controlled by the �ctitious mass µ which indeed appears in the expression for the �ctious

temperature. The choice of µ is strictly connected to the choice of the time step and it results as a

compromise between two aspects: (i) the need to stay close to the Born-Oppenheimer surface, that

implies a low �ctitious temperature, µ → 0 and a small time step to follow such a fast dynamics

and (ii) the need to use a time step as large as possible to integrate the nuclear equation.

C.2 Forces acting on the nuclei

All dynamics studies rely on the calculation of the forces that act on the nuclei and drive their

propagation. The accurate evaluation of such forces is crucial to get reliable dynamics results. The

numerical evaluation of the force

FI = −∇I 〈Ψ0|He |Ψ0〉 (C.27)

as �nite-di�erences of the total electronic energy it too costly and too inaccurate for molecular

dynamics. Thus the analytical approach is followed and the force turns out to be the sum of three

contributions,

∇I 〈Ψ0|He |Ψ0〉 = 〈∇IΨ0|He |Ψ0〉+ 〈Ψ0| ∇IHe |Ψ0〉+ 〈Ψ0|He |∇IΨ0〉 . (C.28)

If the wavefunction is an exact eigenfunction of the hamiltonian operator and it is expanded in a

complete basis set, the Hellmann-Feynman theorem applies and the force becomes

FHFTI = −〈Ψ0| ∇IHe |Ψ0〉 . (C.29)

It holds also for variational wavefunctions, such as Hartree-Fock or Kohn-Sham wavefunctions, pro-

vided a complete basis set is used. If one considers a single Slater determinant, Ψ0 = 1/
√
N ! det {φi},

the spin orbitals φi can be expanded in terms of a set of basis functions {fν} as φi =
∑

ν ciνfν (r,R).

The basis functions might depend explicitly on the nuclear positions as in the case of atom-centered

orbitals, whereas the expansion coe�cients always have an implicit dependence. As a consequence

the derivative of the orbitals reads as

∇Iφi =
∑
ν

(∇Iciν) fν (r,R) +
∑
ν

ciν (∇Ifν (r,R)) . (C.30)
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AIMD Localized basis Originless basis

BO FHFTI + F IBSI + FNSCI FHFTI + FNSCI

E FHFTI + F IBSI FHFTI

CP FHFTI + F IBSI FHFTI

Table C.1: forces acting on the nuclei in Born-Oppenheimer (BO), Ehrenfest (E) and Car-Parrinello

(CP) molecular dynamics scheme for di�erent basis sets.

Following from eq.C.30, the contributions to the force coming from the derivative of the wavefunction

in eq.C.28 can be seen as two terms. The �rst is the incomplete-basis-set correction and it contains

the gradients of the basis functions. It is usually named Pulay force and it reads as

F IBSI =
∑
iµν

(
〈∇Ifν |HNSCe − εi |fµ〉+ 〈fν |HNSCe − εi |∇Ifµ〉

)
(C.31)

where HNSCe is the non-self consistent one-particle Hamiltonian. The second term is the non-self-

consistency correction to the force,

FNSCI = −
�
dr (∇In)

(
V SCF − V NSC

)
. (C.32)

which depends on the di�erence between the self-consistent and the non-self consistent potential

energy and on the charge density n. In conclusion the total force needed for dynamics calculations

is FI = FHFTI + F IBSI + FNSCI . Note that the Pulay force in eq.C.31 would be zero in the limit

of a complete basis set; anyway it also vanishes with originless basis functions, like plane waves, if

the number of such functions is kept �xed. The point related to the non-self-consistency correction

in eq.C.32 is more subtle. This term vanishes only if self-consistency is reached, that is only

if the wavefunction Ψ0 is an eigenfunction of the hamiltonian within the given �nite basis set;

as in numerical calculations this can never occur, the correction FNSCI can never be suppressed.

Anyway in Car-Parrinello as well as in Ehrenfest molecular dynamics schemes the self-consistency

is never required: indeed, to compute the forces acting on the nuclei, one merely needs to evaluate

the expression〈Ψ0|He |Ψ0〉, where Ψ0 is just a wavefunction of the Hamiltonian at time t. As a

consequence, the non-self consistency correction to the force turns out to be irrelevant in these

two methods. Of course, this is not the case in Born-Oppenheimer molecular dynamics, where the

expectation value of He has to be minimized with respect to Ψ0 for each nuclear con�guration before

computing the forces. All these considerations are summarized in table C.1.

C.2.1 The Hellmann-Feynman theorem

Under the hypothesis of a wavefunction which is de�ned in a complete basis set and it is eigenfunction

of the hamiltonian operator, the Hellmann-Feynmann theorem may be easily derived. Indeed given

the generic hamiltonian operator Ĥλ that depends on the parameter λ and its eigenfunction Ψ (λ)

that depends implicitly on the same parameter λ, the energy derivative is
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dE

dλ
=

d
〈

Ψ
(
λ
′
)∣∣∣

dλ′
Ĥλ

∣∣∣Ψ(λ′)〉+

〈
Ψ (λ)

∣∣∣∣∣dĤλ

dλ

∣∣∣∣∣Ψ (λ)

〉
+
〈

Ψ
(
λ
′
)∣∣∣ Ĥλ

d
∣∣∣Ψ(λ′)〉
dλ′


λ=λ′

(C.33)

If the Hamiltonian is hermitian, one may write

=


〈

Ψ (λ)

∣∣∣∣∣dĤλ

dλ

∣∣∣∣∣Ψ (λ)

〉
+ Eλ

d
〈

Ψ
(
λ
′
)∣∣∣

dλ′

∣∣∣Ψ(λ′)〉+
〈

Ψ
(
λ
′
)∣∣∣ d

∣∣∣Ψ(λ′)〉
dλ′


λ=λ′

=

=

{〈
Ψ (λ)

∣∣∣∣∣dĤλ

dλ

∣∣∣∣∣Ψ (λ)

〉
+ Eλ

d

dλ′

〈
Ψ
(
λ
′
)
| Ψ
(
λ
′
)〉}

λ=λ′

(C.34)

The second term in C.34 vanishes, because
〈

Ψ
(
λ
′
)
| Ψ
(
λ
′
)〉

is a normalization constant and the

only term retained gives the Hellmann-Feynman force

FHFTλ = −

〈
Ψ (λ)

∣∣∣∣∣dĤλ

dλ

∣∣∣∣∣Ψ (λ)

〉
. (C.35)

The Hellmann-Feynman theorem has its natural application in computing the forces that act on

the nuclei. Thus it is typically invoked in the search of the minimum on a potential energy surface

and in ab initio molecular dynamics. In the �rst case the nuclei move along the potential energy

surface up to reach the equilibrium position where the forces are ideally null; instead in AIMD the

nuclei are usually propagated until the outcome of the trajectory is clear. This means until the

event occurred is clearly classi�able; for instance in gas-surface systems one may encounter many

alternatives processes, namely reaction, dissociation, scattering, adsorption, etc... Basically in both

the cases the procedure consists of (i) a preliminary step in which the total energy is minimised

with respect to the electronic wavefunction for the initial con�guration of the nuclei {RI}; followed
by (ii) the computation of the forces acting on the nuclei. Then (iii) according to these forces the

nuclei are moved in the new con�guration
{

R
′
I

}
by using a chosen algorithm. After that for any

following nuclear arrangement
{

R
′
I

}
, this procedure repeats. Note that the total energy has to

be minimised with respect to the electronic wavefunction for each con�guration
{

R
′
I

}
6= {RI} if

a Born-Oppenheimer MD or a geometry optimisation is performed, while in Car-Parrinello and

Ehrenfest MD the energy minimisation is required only at the very �rst step. Here the generic

parameter λ corresponds to the coordinates of the nuclei. Given the hamiltonian operator

Ĥ = T̂ + V̂ee −
Nel∑
i

Nat∑
α

Zα
|ri −Rα|

+
Nat∑
α

Nat∑
β>α

ZαZβ
|Rα −Rβ|

(C.36)

the force acting on the nucleus I along the x-direction is given by

FI = − ∂E

∂XI
=

〈
Ψ

∣∣∣∣∣ dĤdXI

∣∣∣∣∣Ψ
〉

(C.37)
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where only the electron-nucleus and nucleus-nucleus interactions in the hamiltonian contributes to

its derivative,

dĤ

dXI
= ZI

Nel∑
i

xi −XI

|ri −RI |3
− ZI

Nat∑
J 6=I

ZJ
(XJ −XIγ)
|RJ −RI |3

(C.38)

Finally, inserting eq.C.38 into eq.C.35, one gets the force acting on the I nucleus in term of the

electron density ρ (r), the atomic coordinates and nuclear charges:

FI = ZI

�
x−XI

|r−RI |3
ρ (r) dr− ZI

Nat∑
J 6=I

ZJ
(XJ −XI)
|RJ −RI |3

(C.39)

C.3 The Verlet algorithm

In molecular dynamics the nuclei of a given system move due to the forces that act on them. Time

dependent properties can be obtained by integrating the equations of motion for the particles in

the system. In the simplest cases a good description of the time evolution of the system under

investigation may be given by the Newton's law, that reads as

R̈I = −∇VI ({RI}) /MI (C.40)

Anyway this means that one has to solve a set of �rst and second order di�erential equations to get

the time evolution of the positions and momenta of every particle in the system. Except for very

small system, the analytical integration of the equations of motion is a very di�cult task, thus one

typically prefers a numerical method. In this case the derivatives involved are discretized, namely

they are estimated using the �nite di�erences method. Consider here the generic function f that

is a function of time and choose a step δt to follow its evolution. The value of the function at time

t+ δt and t− δt, read as

f (t+ δt) = f (t) + δtf
′
(t) +

(δt)2

2
f
′′

(t) + ...

f (t− δt) = f (t)− δtf ′ (t) +
(δt)2

2
f
′′

(t) + ...

(C.41)

By summing the two equations in eq.C.41, one �nally gets

f (t+ δt) = 2f (t)− f (t− δt) + (δt)2 f
′′

(t) +O
(

(δt)4
)

(C.42)

In molecular dynamics one wants to know the position of each nucleus as a function of the time;

thus the function RI is introduced that gives the position of atom I at di�erent times. The eq.C.42

now reads as

RI (t+ δt) = 2RI (t)−RI (t− δt) + (δt)2 R̈I (t) +O
(

(δt)4
)

(C.43)
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and, by inserting eq.C.43 in the Newton's equations of motion, one gets

RI (t+ δt) +RI (t− δt)− 2RI (t)
(δt)2 ' −∇VI ({RI (t)}) /MI = aI (t) (C.44)

or alternatively

RI (t+ δt) ' 2RI (t)−RI (t− δt) + aI (t) (δt)2 (C.45)

that gives the position of the particle I-th at time t + δt provided the positions at time t and

t − δt as well as the force acting on the particle at time t are known. This is the Verlet algorithm

that actually represents one of the most widely used propagation scheme in molecular dynamics

simulations. This approach has many useful features indeed it is robust and it conserves the linear

momentum; it is centered, since t+δt and t−δt play the same role; and it is time reversible, namely

one may come back to the origin following the very same trajectory by reverting the sign of time and

momentum. A limit in this algorithm is that velocities are not computed as they are not necessary

for the algorithm to work. To evaluate the time evolution of velocity dependent properties or the

average kinetic energy, one can estimate the velocity

vI (t) ' RI (t+ δt)−RI (t− δt)
2δt

. (C.46)

Anyway note that here the velocity belongs to the time step prior to the one used for the position.

A possible solution is apported by the so called velocity Verlet algorithm that is mathematically

identical to the original Verlet algorithm in the sense that it generates the same trajectory. It is

based on

RI (t+ δt) = RI (t) + vI (t) δt+
aI (t)

2
(δt)2

vI(t+ δt) = vI(t) +
aI(t) + aI(t+ δt)

2
δt

(C.47)

Schematically, the velocity Verlet algorithm proceeds as follows: �rst, the new position at time t+δt

is calculated; then the acceleration at time t+ δt is evaluated from the force according to eq.C.40;

�nally the velocity at time t+ δt is computed. Once all the quantities are known, one restarts from

the �rst stage.

Before concluding it is important to point out that the time step δt is an important parameter in

the setup of a molecular dynamics simulation. For this reason it has to be properly chosen in such

way to be (i) as small as possible, so that to generate a small error (even if possibly additive) at

each step of the dynamics and (ii) as large as possible, so that to reduce the number of steps, thus

the computational cost, needed to conclude a trajectory.
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