
UNIVERSITÀ DEGLI STUDI DI MILANO
FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E

NATURALI

DOTTORATO DI RICERCA IN INFORMATICA
XXVI Ciclo

Discovering anomalous behaviors by advanced
program analysis techniques

Relatore: Prof. Danilo Mauro Bruschi
Correlatore: Dr. Lorenzo Cavallaro
Coordinatore del Dottorato: Prof. Ernesto Damiani

Tesi di: Alessandro Reina
Matricola: R09030

Anno Accademico 2012/2013

UNIVERSITÀ DEGLI STUDI DI MILANO
FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E

NATURALI

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE
Cycle XXVI

Discovering anomalous behaviors by advanced
program analysis techniques

Advisor: Prof. Danilo Mauro Bruschi
Co-Advisor: Dr. Lorenzo Cavallaro
PhD Coordinator: Prof. Ernesto Damiani

PhD Candidate: Alessandro Reina
ID: R09030

Academic Year 2012/2013

Abstract of the dissertation

Discovering anomalous behaviors by advanced program analysis techniques

by
Alessandro Reina

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

Università degli Studi di Milano
2012/2013

As soon as a technology started to be used by the masses, ended up as a target of
the investigation of bad guys that write malicious software with the only and ex-
plicit intent to damage users and take control of their systems to perform different
types of fraud. Malicious programs, in fact, are a serious threat for the security
and privacy of billions of users. The bad guys are the main characters of this
unstoppable threat which improves as the time goes by. At the beginning it was
pure computer vandalism, then turned into petty theft followed by cybercrime, cy-
ber espionage, and finally gray market business. Cybercrime is a very dangerous
threat which consists of, for instance, stealing credentials of bank accounts, send-
ing SMS to premium number, stealing user sensitive information, using resources
of infected computer to develop e.g., spam business, DoS, botnets, etc. The in-
terest of the cybercrime is to intentionally create malicious programs for its own
interest, mostly lucrative. Hence, due to the malicious activity, cybercriminals
have all the interest in not being detected during the attack, and developing their
programs to be always more resilient against anti-malware solution. As a proof
that this is a dangerous threat, the FBI reported a decline in physical crime and an
increase of cybercrime [1].

ii

In order to deal with the increasing number of exploits found in legacy code
and to detect malicious code which leverages every subtle hardware and software
detail to escape from malware analysis tools, the security research community
started to develop and improve various code analysis techniques (static, dynamic
or both), with the aim to detect the different forms of stealthy malware and to
individuate security bugs in legacy code. Despite the improvement of the research
solutions, yet the current ones are inadequate to face new stealthy and mobile
malware.

Following such a line of research, in this dissertation1, we present new pro-
gram analysis techniques that aim to improve the analysis environment and deal
with mobile malware.

To perform malware analysis, behavior analysis technique is the prominent:
the actions that a program is performing during its real-time execution are col-
lected to understand its behavior. Nevertheless, they suffer of some limitations.

State-of-the-Art malware analysis solutions rely on emulated execution envi-
ronment to prevent the host to get infected, quickly recover to a pristine state,
and easily collect process information. A drawback of these solutions is the non-
transparency, that is, the execution environment does not faithfully emulate the
physical end-user environment, which could lead to end up with incomplete re-
sults. In fact, malicious programs could detect when they are monitored in such
environment, and thus modifying their behavior to mislead the analysis and avoid
detection. On the contrary, a faithful emulator would drastically reduce the chance
of detection of the analysis environment from the analyzed malware. To this end,
we present EmuFuzzer, a novel testing methodology specific for CPU emulators,
based on fuzzing to verify whether the CPU is properly emulated or not.

Another shortcoming regards the stimulation of the analyzed application. It is
not uncommon that an application exhibit certain behaviors only when exercised
with specific events (i.e., button click, insert text, socket connection, etc.). This
flaw is even exacerbated when analyzing mobile application. At this aim, we intro-
duce CopperDroid, a program analysis tool built on top of QEMU to automatically
perform out-of-the-box dynamic behavior analysis of Android malware. To this
end, CopperDroid presents a unified analysis to characterize low-level OS-specific
and high-level Android-specific behaviors.

1All the technical work in this dissertation has been done before joining FireEye, Inc. and UC
Berkeley.

iii

Thanks for having believed in me

Contents

1 Introduction 1
1.1 Dissertation Contributions . 4
1.2 Dissertation organization . 6

2 Architecture Preliminaries 7
2.1 IA-32 Intel Architecture . 7
2.2 The ARM Architecture . 10

3 A methodology for testing CPU emulators 11
3.1 Related Literature . 13

3.1.1 Software Testing . 13
3.1.2 Emulators and Computer Security 14

3.2 Overview . 15
3.2.1 CPU Emulators . 15
3.2.2 Faithful CPU Emulation 15
3.2.3 Fuzzing and Differential Testing of CPU Emulators 16

3.3 EmuFuzzer . 18
3.3.1 Test Case Generation . 19
3.3.2 The Decoder . 23
3.3.3 Test Case Execution . 28

3.4 Evaluation . 32
3.4.1 A Glimpse at the Implementation 33
3.4.2 Experimental Setup . 34
3.4.3 Evaluation of Test Case Generation 34
3.4.4 Testing of IA-32 Emulators 35

v

4 On Reconstructing Android Malware Behaviors 40
4.1 The Android System . 42

4.1.1 Application components 43
4.1.2 Manifests . 44
4.1.3 Native Interface . 44
4.1.4 Zygote . 45
4.1.5 Binder: IPC and RPC . 45

4.2 Related Literature . 46
4.2.1 Current Techniques . 46

4.3 CopperDroid . 49
4.3.1 CopperDroid Architecture 50
4.3.2 Processes and Threads 51
4.3.3 Tracking System Call Invocations 51
4.3.4 Automatic AIDL Unmarshalling 52
4.3.5 Resource Reconstructor 55
4.3.6 Path Coverage . 56
4.3.7 Suspicious Behaviors . 59

4.4 Evaluation . 61
4.4.1 Performance Evaluation 63

5 On the Privacy of Real-World Friend-Finder Services 69
5.1 Background . 69
5.2 Attack description . 71

5.2.1 Scenario definition . 71
5.2.2 “Known distances” attack 71
5.2.3 “Unknown distances” attack 72

5.3 Attack automation . 73
5.3.1 Development of ad-hoc client 74
5.3.2 Attack Algorithm . 75

5.4 Privacy Implications . 76
5.4.1 “Who is there?” attack 76
5.4.2 “Where is Alice?” attack 76
5.4.3 “Follow Alice” attack . 77

5.5 Ethical Considerations . 77
5.6 Conclusions . 78

6 Future directions 80
6.1 A methodology for testing CPU emulators 80
6.2 On Reconstructing Android Malware Behaviors 81

vi

7 Conclusion 82
7.1 A methodology for testing CPU emulators 82
7.2 On Reconstructing Android Malware Behaviors 83

vii

1
Introduction

W ith the term malware, or malicious software, it is identified any piece
of code explicitly designed with the intent to cause damage to tar-
gets (i.e., users, companies or even authorities) and compromise their

systems to perform frauds or espionage. Specifically, the NIST [2] defines it as:

“Malware, also known as malicious code and malicious software,
refers to a program that is inserted into a system, usually covertly,
with the intent of compromising the confidentiality, integrity, or avail-
ability of the victim’s data, applications, or operating system or oth-
erwise annoying or disrupting the victim.”

Malware have become the widespread and significant threat to most systems.
Even thought they just born as computer vandalism, nowadays the main interest
addresses the user’s privacy violation. This risk, in fact, has become one of the
major concern of companies and authorities as this form of malicious software
monitors personal activities and conduct financial frauds. Even though for the last
two decades the cybercrime mainly has targeted commodity PCs, with the advent
and the steep increase of mobile devices, a new resource of interest for criminals
comes to life. As depicted in Figure 1.1, the number of mobile threats impact-
ing our daily life is skyrocketing. In fact, criminals realized that, thanks to their
diffusion (750 million of activated android devices in 2013 [3]), mobile devices
can turn into a remarkable resource of income by spreading mobile malware to
perform any kind of illegal activity.

Mobile malware introduce new form of threats: malware shopping spree which
make profit by buying applications on the store without the user permission; NFC
worms which use the NFC capabilities to propagate and steal money; SMS trojan
which fool the user into sending SMS to premium number; Aggressive Advertis-
ing that forces the redirection of the user to website with advertisement; Spyware

1

CHAPTER 1. INTRODUCTION

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

2,000

12,000

22,000

32,000

42,000

52,000

62,000
To

ta
lM

ob
ile

M
al

w
ar

e
Sa

m
pl

es

Period

Figure 1.1: Mobile Threats (source: McAfee [4])

which steal personal and sensitive information, etc. This brief list shows that users
don’t have to drop their guard and the lucrative aspect of the malware dominates
in the target of a criminal.

Another security aspect that is worth noting affects BYOD (Bring Your Own
Device). Companies provide remote access to various services, including the crit-
ical ones, to their employees and partners to improve productivity and reduce the
operating costs. As long as the IT maintained the control over the end-user de-
vices, the security concerns were still negligible worries. However, in the last
couple of years, companies have allowed user to bring and use their own insecure
devices to get access to enterprise applications. This turned out to be a signifi-
cant risk. Indeed, is fairly easy for a malware to steal user credentials, takeover
the user enterprise account and eventually get access to the corporate sensitive
information. This is even aggravate by the unawareness of the end-user about the
security risks due to jailbreak a device, install third party apps, unpatch software,
do not locking a device or using even benign applications that actually required
a set of permissions that lead to sensitive information leakage. Moreover, due to
lack of software update released by the vendor and, sometimes, the impossibility
to wipe-out a device when is stolen or lost, the security threat becomes a very
tough task to deal with.

Thus, the mobile world is not free of threats. On the contrary, it is getting even
worse than the PCs world and performing detailed analysis of mobile applications
became essential. The malicious software needs to be recognized as soon as it
starts to spread to quickly develop new defence strategies. To this end, static and
dynamic analysis techniques are employed.

2

CHAPTER 1. INTRODUCTION

Static analysis is the analysis of a program that is performed without execut-
ing it, but only reasoning on the binary code or source code if available [5, 6].
Unfortunately, the application of static analysis to malicious programs suffers of
theoretical limitations that prevent precision of the overall results [7]. In fact, it
can be easily fooled with encryption, polymorphism, metamorphism or different
kind of code obfuscation techniques [8]. Dynamic analysis techniques come in
handy to tackle these problems. These techniques should guarantee full code cov-
erage, which means that every possible execution path of the analyzed program
has to be observed. Nevertheless, this problem can be reduced to the halting prob-
lem and hence impossible to achieve. In fact, dynamic approaches can only reason
on a limited number of program paths, i.e., the ones observed during the program
execution. This leads to consider a malware a benign application if it does not
exhibit its malicious behavior during the execution. For example, keylogger starts
logging whenever a keyboard button is pressed or bank credentials are stolen if a
user visit a specific bank website. This limitation forces the use of heuristics to
improve code coverage, but, obviously, this does not come without any flaw (e.g.,
non negligible run-time overhead). State of the art solutions try to enhance heuris-
tic approaches by exploring interesting paths, mostly leveraging taint-analysis and
symbolic execution [9, 10]. Nevertheless, such information flow analyses tech-
niques can be defeated by simple but powerful evasion techniques [11, 12]. Even
with its shortcomings, dynamic analysis is actually the technique currently em-
ployed for pursuing malware behavior analysis [13, 14]. A suspicious program
should be considered malicious if it exhibits a malicious behavior regardless of
its binary representation. Generally, dynamic behavior analysis is performed in
isolated execution environment to prevent the host to get infected, quickly recover
to a pristine state, easily collect program information, and thereby safely analyze
the application. This implies the need of an isolated execution environment which
provides full-transparency and bulletproof separation between host and guest. In
other words, a program running in this environment should not be able to infer that
is not natively executed. This is a very hard task to achieve. Thus, by leveraging
discrepancies between the emulated and native environment, authors of malware
incorporate special pieces of code (red-pills) in their malicious programs to verify
if they are executed in an emulated environment, and obfuscate their behavior if
they suspect their execution is actually monitored.

Despite the improvement of the research solutions, yet the current ones are
inadequate to face new stealthy mobile malware.

Following such a line of research, in this dissertation we present new program
analysis techniques that aim to improve the analysis environment and deal with
mobile malware.

3

CHAPTER 1. INTRODUCTION

1.1 Dissertation Contributions
As explained above, analysts employ CPU emulators as an execution environment
to perform any kind of dynamic program analysis. A CPU emulator is a software
system that simulates a hardware CPU. Emulators are widely used by computer
scientists for various kind of activities (e.g., debugging, profiling, and malware
analysis). Although no theoretical limitation prevents developing an emulator
that faithfully emulates a physical CPU, writing a fully featured emulator is a
very challenging and error prone task. Modern CISC architectures have a very
rich instruction set. Some instructions lack proper specifications, and others may
have undefined effects in corner cases. In the first part of this dissertation we
present a testing methodology specific for CPU emulators, based on fuzzing. The
emulator is “stressed” with specially crafted test cases, to verify whether the CPU
is properly emulated or not. Improper behaviors of the emulator are detected
by running the same test case concurrently on the emulated and on the physical
CPUs and by comparing the state of the two after the execution. Differences in
the final state testify defects in the code of the emulator. We implemented this
methodology in a prototype (named as EmuFuzzer), analyzed five state-of-the-art
IA-32 emulators (QEMU, Valgrind, Pin, BOCHS, and JPC), and found several
defects in each of them, some of which can prevent proper execution of programs.

To further support and motivate the importance of this technique, we can con-
sider that mobile devices that boast of thousands of applications in their respective
vendor markets, require the developers to rely on emulators to test their applica-
tions during the software development life-cycle.

Besides this novel testing methodology, which basically addresses the execu-
tion environment, new program analysis technique are required to analyze mobile
applications. Specifically, with more than 500 million of activations reported in
Q3 2012, Android mobile devices are becoming ubiquitous and trends confirm
this is unlikely to slow down. App stores, such as Google Play, drive the entire
economy of mobile applications. Unfortunately, high turnovers and access to sen-
sitive data have soon attracted the interests of cybercriminals with malware now
hitting Android devices at an alarming rising pace. In the second part of this dis-
sertation we present CopperDroid, an approach built on top of QEMU to automat-
ically perform out-of-the-box dynamic behavioral analysis of Android malware.
To this end, CopperDroid presents a unified analysis to characterize low-level OS-
specific and high-level Android-specific behaviors. Based on the observation that
such behaviors are however achieved through the invocation of system calls, Cop-
perDroid’s VM-based dynamic system call-centric analysis is able to faithfully
describe the behavior of Android malware whether it is initiated from Java, JNI or
native code execution. We carried out extensive experiments to assess the effec-
tiveness of our analyses on three different Android malware data set: one of more

4

CHAPTER 1. INTRODUCTION

than 1,200 samples belonging to 49 Android malware families (Android Malware
Genome Project), one containing about 400 samples over 13 families (Contagio
project) and a last one, previously unanalyzed, made of more than 1,300 samples,
provided by McAfee. Our experiments show that CopperDroid’s unified system
call-based analysis faithfully describes OS- and Android-specific behaviors and a
proper malware stimulation strategy (e.g., sending SMS, placing calls) success-
fully discloses additional behaviors on a non-negligible portion of the analyzed
malware samples.

CopperDroid does not just address analysis of malicious programs, but also
allows to perform a deep and detailed analysis of every application. To stress the
advantages of such a solution, we present the analysis of a location aware mobile
application as a case-study. We show that even benign applications can lead to
privacy leakage when the involved sensitive information are not subjected to any
sort of protection to provide privacy data retention. This is mainly due to the
developer awareness and consideration of possible attacks. Privacy protection in
the deployment of location based services is a hot topic both in CS research and in
the development of mobile applications. We consider a location based service that
currently has hundreds of millions of users and we show a software that is able
to discover their exact positions, by only using information publicly disclosed by
the service. Our software does not exploit a specific limitation of the considered
service. Rather this contribution shows that there is an entire class of services that
is subject to the attack we present.

This dissertation presents novel solutions that aim to provide new approaches
and overcome the shortcomings as well as enhance and improve current dynamic
program analysis techniques. To summarize, we make the following contribu-
tions:

A methodology for testing CPU emulators. Lorenzo Martignoni, Roberto
Paleari, Alessandro Reina, Giampaolo Fresi Roglia, Danilo Bruschi. ACM Trans-
actions on Software Engineering and Methodology 2013 (TOSEM 2013)

A System Call-Centric Analysis and Stimulation Technique to Automatically
Reconstruct the Behaviors of Android Malware. Alessandro Reina, Aristide
Fattori, Lorenzo Cavallaro. 6th European Workshop on Systems Security (EU-
ROSEC 2013)

Automatic Reconstruction of Android Malware Behaviors. Kimberly Tam,
Alessandro Reina, Aristide Fattori, Lorenzo Cavallaro. 18th European Symposium
on Research in Computer Security. (Abstract - ESORICS 2013)

5

CHAPTER 1. INTRODUCTION

On the Privacy of Real-World Friend-Finder Services. Aristide Fattori,
Alessandro Reina, Andrea Gerino, Sergio Mascetti. 14th International Confer-
ence on Mobile Data Management (MDM 2013)

1.2 Dissertation organization
The dissertation is organized as follows.

Chapter 2 briefly reviews the main fundamental features of the Intel IA-32 and
ARM architectures.

Chapter 3 presents EmuFuzzer, a novel testing methodology based on fuzzing
specific for CPU emulators. We describe our algorithms for test-case generation
and how test cases are run to detect if an emulator is not faithfully emulating the
CPU. We evaluate our methodology by presenting the results of the testing of five
CPU emulators.

Chapter 4 introduces CopperDroid, a program analysis tool build on the top
of QEMU to automatically perform out-of-the-box dynamic behavior analysis of
Android malware. We describe our stimulation technique to perform path cover-
age and we experimentally evaluate our solution.

Chapter 5 presents a use-case of CopperDroid which is employed to analyze a
benign application that actually threatens the user-privacy.

Chapter 6 discusses limitations and future works.
Chapter 7 concludes the dissertation.

6

2
Architecture Preliminaries

T he program analysis solutions discussed and explained in this dissertation,
even though closely related in their aim, concern different architectures.
To this end, we briefly review the background of IA-32 and ARM archi-

tectures necessary to understand the following chapters.

2.1 IA-32 Intel Architecture
The IA-32 refers to a family of 32-bit Intel processors that are widely used in
many multi-purpose environments because of their facilities and performance. In
this section we provide a brief introduction to the IA-32 architecture. For further
details, an interested reader can refer elsewhere [15].

IA-32 is a CISC architecture, with an incredible number of different instruc-
tions and a complex encoding scheme. Instruction length can vary from 1 to 17
bytes. The format of an Intel x86 instruction is depicted in Figure 2.1. An instruc-
tion is composed of different fields: it starts with up to 4 prefixes, followed by an
opcode, an addressing specifier (i.e., ModR/M and SIB fields), a displacement and
an immediate data field [15]. Opcodes are encoded with one, two, or three bytes,
but three extra bits of the ModR/M field can be used to denote certain opcodes. In
total, the instruction set is composed of more than 700 possible values of the op-
code field. The ModR/M field is used in many instructions to specify non-implicit
operands: the Mod and R/M sub-fields are used in combination to specify either
registry operands or to encode addressing modes, while the Reg/Opcode sub-field
can either specify a register number or, as mentioned before, additional bits of op-
code information. The SIB byte is used with certain configurations of the ModR/M
field, to specify base-plus-index or scale-plus-index addressing forms. The SIB
field is in turn partitioned in three sub-fields: Scale, Index, and Base, speci-

7

CHAPTER 2. ARCHITECTURE PRELIMINARIES

Prefixes
(up to 4)

Opcode ModR/M SIB Displacement Immediate

1 byte each 1-3 bytes 1 byte
(optional)

1 byte
(optional)

0,1,2 or 4 bytes 0,1,2 or 4 bytes

Mod Reg/Opcode R/M

7 6 5 3 2 0

Scale Index Base

7 6 5 3 2 0

Figure 2.1: Intel x86 instruction format

fying respectively the scale factor, the index register, and the base register. Fi-
nally, the optional addressing displacement and immediate operands are encoded
in the Displacement and Immediate fields respectively. Since the encoding of
the ModR/M and SIB bytes is not trivial at all, the Intel x86 specification provides
tables describing the semantics of the 256 possible values each of these two bytes
might assume. In conclusion, it is easy to see that elementary decoding opera-
tions, such as determining the length of an instruction, require decoding the entire
instruction format and interpreting the various fields correctly. In recent years, the
advent of several instruction extensions (e.g., Multiple Math eXtension (MMX)
and Streaming SIMD Extensions (SSE)) contributed to make the instruction set
even more complicated.

The IA-32 architecture supports four basic operating modes: real-address
mode, protected mode, virtual-8086 mode, and system management mode. The
operating mode of the processor determines which instructions and architectural
features are available. Every operating mode implies a well-defined set of in-
structions and semantics, and some instructions behave differently depending on
the mode. For example, instruction can raise different exceptions and can up-
date flags and registers differently when executed in the protected mode and when
executed in the virtual-8086 mode.

Any task or program running on an IA-32 processor is given a set of resources
for storing code, data, state information, and for executing instructions. These
resources constitute the basic execution environment and they are used by both
the operating system and users’ applications. The resources of the basic execution
environment are identified as follows:

• Address space: any task or program can address a 32-bit linear address
space;

8

CHAPTER 2. ARCHITECTURE PRELIMINARIES

• Basic program execution environment: the eight general-purpose regis-
ters (eax, ecx, edx, ebx, esp, ebp, esi, edi), the six segment registers (cs,
ss, ds, es, fs, gs), the eflags register, and the eip register comprise a
basic execution environment in which to execute a set of general-purpose
instructions;

• Stack: to support procedure or subroutine calls and the passing of parame-
ters between procedure and subroutines;

• x87 FPU registers: this set of registers provides an execution environment
for floating point operations;

• MMX registers and XMM registers: registers used by dedicated instruc-
tions designed for accelerating multimedia and communication applications.

In addition to these resources, the IA-32 architecture provides the following
resources as part of its system-level architecture.

• I/O ports: the IA-32 architecture supports a transfer of data to and from
input/output ports;

• Control register: the five control registers (cr0 through cr4) determine
the operating mode of the processor and the characteristics of the currently
executing task;

• Memory management register: the gdtr, idtr, task register, and ldtr

specify the locations of data structures used in protected mode memory
management;

• Debug register: the debug registers (db0 through db7) control and allow
monitoring of the processor’s debugging operations;

• Memory type range registers: the memory type range registers are used
to assign memory type to regions of memory such as: uncacheable, write
combining, write through, write back, and write protected type;

• Machine specific registers: the processor provides a variety of machine
specific registers (MSR) that are used to control and report on processor
performance;

• Machine check registers: the machine check registers consist of a set of
control, status, and error-reporting MSRs that are used to detect and report
on hardware (machine) errors. Specifically the IA-32 processors implement
a machine check architecture that provides a mechanism for detecting and
reporting errors such as: system bus errors, ECC errors, parity errors, cache
errors, and TLB errors.

9

CHAPTER 2. ARCHITECTURE PRELIMINARIES

CPU emulators have to offer an execution environment suitable for running
an application or even a commodity operating system. Given the complexity of
IA-32 architecture, fully featured CPU emulators for this architecture are complex
pieces of software. Our claim is that this complexity is the cause of a large number
of defects.

2.2 The ARM Architecture
ARM processors [16] are the de-facto standard commodity CPUs for embedded
systems, mostly because of their appealing features: low-power consumptions,
high-code density, performance, small chip size and low-cost solutions. ARM
is a 32-bit load-store architecture with 4-bytes instruction length and 18 active
registers (i.e., 16 data registers and 2 processor status registers). ARM is not a
pure RISC architecture because of the constraints of its application. In addition to
RISC, it provides variable cycle execution for certain instructions (e.g., load-store
instructions cycles depend on the number of registers involved), inline hardware
barrel shifter to expand capability of many instructions, thumb 16-bit instruction
set to increase code density, conditional execution to reduce branch instructions
and DSP instructions. ARM general purpose registers, identified with r followed
by the number of the registers, hold either data or address. Special-purpose reg-
isters, r13, r14 and r15, are designed to respectively represent the stack pointer
(sp), the link register (lr) that contains the return address and the program counter
(pc). The current program status register, cpsr, is a 32-bit register designed to
monitor and control internal operations: flags, status, extension and control. The
processor mode, whose value is contained in the cpsr, is the equivalent of the
privilege level of Intel x86 and amd64 architectures and determines which regis-
ter are active and the access rights to the cpsr itself. Each of the seven processor
modes is either privileged or non-privileged. The former allows full read-write
access to the cpsr register while the latter allows read access to the control field
of the cpsr and read-write to the conditional flags. Each processor mode has its
own banked registers (i.e., a subset of the active registers) the are replaced
with the current ones when happens a mode change. Specifically, there is one
non-privileged mode, user, and six privileged modes abort, fast interrupt
request, interrupt request, supervisor, system and undefined 1.

1For sake of simplicity, you can consider Intel ring3 privilege level as the ARM user proces-
sor mode, and Intel ring0 privilege level as the ARM supervisor processor mode.

10

3
A methodology for testing CPU emulators

I n Computer Science, the term “emulator” is typically used to denote a piece
of software that simulates a hardware system [17]. Different hardware sys-
tems can be simulated: a device [18], a CPU (Pin [19] and Valgrind [20]),

and even an entire PC system (QEMU [21], BOCHS [22], JPC [23], and Sim-
ics [24]). Emulators are widely used today for many applications: development,
debugging, profiling, security analysis, etc. For example, the NetBSD AMD64
port was initially developed using an emulator [25].

The Church-Turing thesis implies that any effective computational method can
be emulated within any other. Consequently, any hardware system can be emu-
lated via a program written with a standard programming language. Despite the
absence of any theoretical limitation that prevents the development of a correct
and complete emulator, from the practical point of view, the development of such
a software is very challenging. This is particularly true for CPU emulators, that
simulate a physical CPU. Indeed, the instruction set of a modern CISC CPU is
very rich and complex. Moreover, the official documentation of CPUs often lacks
the description of the semantics of certain instructions in certain corner cases and
sometimes contains inaccuracies (or ambiguities). Although several good tools
and debugging techniques exist [26], developers of CPU emulators have no spe-
cific technique that can help them to verify whether their software emulates the
CPU by following precisely the specification of the vendors. As CPU emulators
are employed for a large variety of applications, defects in their code might have
cascading implications. Imagine, for example, what consequences the existence
of any defect in the emulator used for porting NetBSD to AMD64 would have had
on the reliability of the final product.

Assuming that the physical CPU is correct by definition, the ideal CPU emula-
tor has to mimic exactly the behavior of the physical CPU it is emulating. On the
contrary, an approximate emulator deviates, in certain situations, from the behav-

11

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

ior of the physical CPU. There are particular examples of approximate emulators
in literature [27–31]. Our goal is to develop a general automatic technique to
discover deviations between the behavior of an emulator and of the correspond-
ing physical CPU. In particular, we are interested in investigating deviations (i.e.,
state of the CPU registers and contents of the memory) which could modify the
behavior of a program in an emulated environment. On the other hand, we are
not interested in deviations that lead only to internal differences in the state (e.g.,
differences in the state of CPU caches), because these differences do not affect the
behavior of the programs running inside the emulated environment.

In this dissertation we present a fully automated and black-box testing method-
ology for CPU emulators, based on fuzzing [32]. Roughly speaking such a method-
ology works as follows. Initially we automatically generate a very large number
of test cases. Strictly speaking, a test case is a single CPU instruction together
with an initial environment configuration (CPU registers and memory contents); a
more formal definition of a test case is given in section 3.2.3. These test cases are
subsequently executed both on the physical CPU and on the emulated CPU. Any
difference detected in the configurations of the two environments (e.g., register
values or memory contents) at the end of the execution of a test case, is consid-
ered a witness of an incorrect behavior of the emulator. Given the unmanageable
size of the test case space, we adopt two strategies for generating test cases: purely
random test case generation and hybrid algorithmic/random test case generation.
The latter guarantees that each instruction in the instruction set is tested at least in
some selected execution contexts. We have implemented this testing methodology
in a prototype for IA-32, named as EmuFuzzer, and used it to test five state-of-the-
art emulators: BOCHS [22], QEMU [21], Pin [19], Valgrind [20], and JPC [23].
Although Pin and Valgrind are dynamic instrumentation tools, their internal ar-
chitecture resembles, in all details, the architecture of traditional emulators and
therefore they can suffer from the same problems. We found several deviations in
the behaviors of each of the five emulators. Some examples of the deviations we
found in these state-of-the-art emulators are reported in Table 3.11. As an exam-
ple, let us consider the instruction add $0x1,(%eax), which adds the immediate
0x1 to the byte pointed by the register eax. Assuming that the original value of the
byte is 0xcf, the execution of the instruction on the physical CPU, and on four of
the tested emulators, provides the result 0xd0. In QEMU, instead, the value is not
updated correctly for a certain encoding of the instruction. We also discovered in-
structions that are correctly executed in the native environment but freeze QEMU
and instructions that are not supported by Valgrind and thus generate exceptions.
On the other hand we also found instructions that are executed by Pin and BOCHS
but that cause exceptions on the physical CPU. The results obtained witness the

1In this dissertation we use IA-32 assembly and we adopt the AT&T syntax.

12

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

Table 3.1: Examples of instructions that behave differently when executed in the physical
CPU and when executed in an emulated CPU (that emulates an IA-32 CPU). For each
instruction, we report the behavior of the physical CPU and the behavior of the emulators
(differences are highlighted)

Instruction IA-32 QEMU Valgrind Pin BOCHS JPC
lock fcos illegal instr. lock ignored no diff. no diff. no diff. lock ignored

int1 trap no diff. illegal instr. no diff. general prot. fault not supported
fld1 fpuip= eip fpuip= 0 fpuip= 0 FPU virtualized2 no diff. fpuip= 0

add $0x1,(%eax) (%eax) = 0xd0 (%eax) = 0xcf no diff. no diff. no diff. no diff.
pop %fs %esp = 0xbfdbb108 no diff. no diff. %esp = 0xbfdbb106 no diff. segment not present

pop 0xffffffff %esp = 0xbffffe44 no diff. no diff. no diff. %esp = 0xbffffe48 no diff.

difficulty of writing a fully featured and specification-compliant CPU emulator,
but also prove the effectiveness and importance of our testing methodology.

The main contributions of this work are as follows:

• a fully automated testing methodology, based on fuzz-testing, specific for
CPU emulators;

• an optimized algorithm for test case generation that systematically explores
the instruction set, while minimizing redundancy;

• a prototype implementation of our testing methodology for IA-32 emula-
tors;

• an extensive testing of five IA-32 emulators that resulted in the discovery of
several defects in each of them, some of which represent serious bugs.

3.1 Related Literature

3.1.1 Software Testing
Fuzz-testing has been introduced by Miller et al. [32], and it is still widely used
for testing different types of applications. Originally, fuzz-testing consisted of
feeding applications purely random input data and detecting which inputs were
able to crash an application, or to cause unexpected behaviors. Today, this testing
methodology is used to test many different types of applications; for example,
GUI applications, web applications, scripts, and kernel drivers [33].

As certain applications require inputs with particular format (e.g., a XML doc-
ument or a well formed Java program), pure randomly generated inputs cannot

2PIN virtualizes the physical FPU, so floating point instructions are executed natively rather
than being emulated.

13

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

guarantee a reasonable coverage of the code of the application under analysis. Re-
cently developed testing techniques typically leverage domain specific knowledge
and use this knowledge, optionally in tandem with a random component, to drive
inputs generation [34–36]. An alternative approach to improve the completeness
of the testing consists of building constraints that describe what properties are re-
quired for the input to trigger the execution of particular program paths, and in
using a constraint solver to find inputs with these properties [37–42]. In this dis-
sertation we presents a fuzz-testing methodology specific for CPU emulators that
leverages both pure random inputs generation and domain knowledge to improve
the completeness of the analysis.

In our previous works, we explored the idea of using mechanically gener-
ated tests and to compare the behavior of two components to detect deviations
imputable to bugs [43–45]. This approach is known in literature as differential
testing [46–49]. EmuFuzzer adopts differential testing to detect if the tested CPU
emulator behaves unfaithfully with respect to the physical CPU emulated.

3.1.2 Emulators and Computer Security
CPU emulators are widely used in computer security for various purposes. One
of the most common applications is malware analysis [14, 50]. Emulators allow
fine-grained monitoring of the execution of a suspicious programs and to infer
high-level behaviors. Furthermore they allow to isolate the execution and to eas-
ily checkpoint and restore the state of the environment. Malware authors, aware
of the techniques used to analyze malware, aim at defeating those techniques such
that their software can survive longer. To defeat dynamic behavioral analysis
based on emulators, they typically introduce malware routines able to detect if a
program is executed in an emulated or in a physical environment. As the average
user targeted by the malware does not use emulators, the presence of an emulated
environment likely indicates that the program is being analyzed. Thus, if the mali-
cious program detects the presence of an emulator, it starts to behave innocuously
such that the analysis does not detect any malicious behavior. Several researchers
have analyzed state-of-the-art emulators to find unfaithful behaviors that could be
used to write specific detection routines [28, 30, 31, 51]. Unfortunately for them,
their results were obtained through a manual scrutiny of the source code or rudi-
mentary fuzzers, and thus the results are largely incomplete. The testing technique
presented in this dissertation can be used to find automatically a large class of the
unfaithful behaviors that a miscreant could use to detect the presence of an em-
ulated CPU. This information could then be used to harden an emulator, to the
point that it satisfies the requirements for undetectability identified by Dinaburg
et al. [52].

14

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

3.2 Overview
This section describes how CPU emulators work, formalizes our notion of faithful
emulation of a physical CPU, and sketches the idea behind our testing methodol-
ogy.

3.2.1 CPU Emulators
By CPU emulator we mean a piece of software system that simulates the execution
environment offered by a physical CPU. The execution of a binary program P is
emulated when each instruction of P is executed by a CPU emulator. Inside a
CPU emulator instructions are typically executed using either interpretation or
just-in-time translation. Here, we are only interested in emulators adopting the
former strategy, in such case instructions are executed by mimicking in every
detail the behavior of the physical CPU, obviously operating on the resources of
the emulated execution environment.

The execution environment can be properly emulated even if some internal
components of the physical CPU are not considered (e.g., the instruction cache):
as these components are used transparently by the physical CPU, no program can
access them. Similarly, emulated execution environments can contain extra, but
transparent, components not found in hardware execution environments (e.g., the
cache used to store translated code).

3.2.2 Faithful CPU Emulation
Given a physical CPU CP, we denote with CE a software CPU emulator that
emulatesCP. Our ideal goal is to automatically analyze a givenCE to tell whether
it faithfully emulates CP. In other words we would like to tell if CE behaves
equivalently to CP, in the sense that any attempt to execute a valid (or invalid)
instruction results in the same behavior in both CP and CE . In the following we
introduce some definitions which will help us to precisely define this equivalence
notion.

Let N be the number of bits used by a CPU C for representing its memory
addresses as well as the registers contents. A state s of C is represented by the
following tuple s = (pc,R,M,E) where

• pc ∈ {0, . . . ,2N−1}∪halt;

• R =< r1, . . . ,rk >; ri ∈ {0, . . . ,2N−1} is the value contained in the ith CPU
register;

15

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

• M =< b0, . . . ,b2N−1 >; bi ∈ {0, . . . ,255} is the contents of the ith memory
byte;

• E ∈ {⊥, illegal instruction, division by zero, general protection fault, . . .}
denotes the exception that occurred during the execution of the last instruc-
tion; the special exception state ⊥ indicates that no exception occurred.

We denote by S the set of all states of a CPU. The behavior of a CPU C
is modeled by a transition system (S ,δC), where δC : S → S is the state-
transition function which maps a CPU state s = (pc,R,M,E) into a new state
s′ = (pc′,R′,M′,E ′) by executing the instruction whose address is specified by the
pc. The transition function δ is defined as follows:

δC (pc,R,M,E) def
=

(pc,R,M,E) if pc = halt∨E 6=⊥,
(pc,R,M,E ′) if an exception occurs,
(pc′,R′,M′,⊥) otherwise.

When E ′ 6=⊥ the contents of the registers R′, of the memory M′ and of pc′ are
updated according to the semantics of the executed instruction. On the other side,
if an exception occurs, then we assume for simplicity3 that δC (pc,R,M,E) =
(pc,R,M,E ′). When the last instruction of a program is executed, the program
counter is set to halt, and from that point on the state of the environment is not
updated anymore.

We can now formally define what it means for CE to be a faithful emulator of
CP. Intuitively,CE faithfully emulatesCP if the state-transition function δCE that
modelsCE is semantically equivalent to the function δCP that modelsCP. That is,
for each possible state s ∈ S , δCP and δCE always transition into the same state.
More formally, CE faithfully emulates CP iff:

∀s ∈S : δCP(s) = δCE (s).

3.2.3 Fuzzing and Differential Testing of CPU Emulators
Given a physical CPU CP and an emulator CE , proving that CE faithfully em-
ulates CP is unfeasible as it requires the verification of a huge number of states.
Thus, our aim is to find witnesses of the fact that an emulator CE does not faith-
fully emulate CP.

We achieve this goal by generating a number of test cases, i.e., CPU states
s = (pc,R,M,E), and looking for a test case s̄ which proves that CE unfaithfully

3Exceptions actually modify CPU registers and memory. However, in our model, when an
exception occurs execution is interrupted, so these modifications can be safely ignored.

16

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

CPU state (R)
eax 0x00000000
esp 0xbfe7d4e4
fs 0x007b

Memory state (M)
0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...
0xbfe7d4e0 aa bb cc dd

Exception state (E)
⊥

s

CE

CPU state (R)
eax 0x00000000
esp 0xbfe7d4e4
fs 0x007b

Memory state (M)
0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...
0xbfe7d4e0 aa bb cc dd

Exception state (E)
⊥

s

CP

CPU state (R)
eax 0x00000001
esp 0xbfe7d4e4
fs 0x007b

Memory state (M)
0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...
0xbfe7d4e0 aa bb cc dd

Exception state (E)
⊥

s′

CE

δCE (s)

CPU state (R)
eax 0x00000001
esp 0xbfe7d4e4
fs 0x007b

Memory state (M)
0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...
0xbfe7d4e0 aa bb cc dd

Exception state (E)
⊥

s′

CP

δCP (s)

(a)

CPU state (R)
eax 0x00000001
esp 0xbfe7d4e4
fs 0x007b

Memory state (M)
0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...
0xbfe7d4e0 aa bb cc dd

Exception state (E)
⊥

s

CE

CPU state (R)
eax 0x00000001
esp 0xbfe7d4e4
fs 0x007b

Memory state (M)
0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...
0xbfe7d4e0 aa bb cc dd

Exception state (E)
⊥

s

CP

CPU state (R)
eax 0x00000001
esp 0xbfe7d4e0
fs 0x007b

Memory state (M)
0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...

0xbfe7d4e0 7b 00 00 00

Exception state (E)
⊥

s′

CE

δCE (s)

CPU state (R)
eax 0x00000001
esp 0xbfe7d4e0
fs 0x007b

Memory state (M)
0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...

0xbfe7d4e0 7b 00 cc dd

Exception state (E)
⊥

s′

CP

δCP (s)

(b)

Figure 3.1: An example of our testing methodology with two different test cases (s and
s): (a) no deviation in the behavior is observed, (b) the words at the top of the stack differ
(highlighted in gray).

emulates CP i.e.4:
s̄ ∈S : δCP(s̄) 6= δCE (s̄).

Our approach for finding s̄ is based on fuzzing [32] (for test case generation)
and differential testing [46] (to compare δCP(s) against δCE (s)). Once a test case
s has been generated we set the state of both CP and CE to s. Then we execute
the instruction pointed by pc in both CP and CE . At the end of the execution
of the instruction, we compare the final state. If no difference is found, then
δCP(s) = δCE (s) holds. On the other hand, a difference in the final state proves
that δCP(s) 6= δCE (s) and therefore that CE does not faithfully emulate CP.

4Here we assume that δ is a function (hence deterministic) for a specific CPU model. Indeed,
even if for some instructions the CPU specifications are not completely defined, it turns out that,
given an initial state, the behavior of any instruction is deterministic. Obviously, CPU undefined
behaviors are not documented in the released specifications, therefore emulators do not simulate
them.

17

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

Figure 3.1 shows an example of our testing methodology5. We run two dif-
ferent test cases, namely s and s. To ease the presentation, in the figure we report
only the relevant state information (three registers and the contents of few memory
locations) and we represent the program counter by underlining the instruction it
is pointing to. Furthermore, when the states of the two environments do not differ,
we graphically overlap them. The first test case s (Figure 3.1(a)) consists of exe-
cuting the instruction mov $0x1, %eax. We set the state of CP and CE to s and
we execute in both the instruction pointed by the program counter. As there is no
difference in the final states, we conclude that δCE (s) = δCP(s). The second test
case s (Figure 3.1(b)) consists of executing the instruction push %fs, that saves
the segment register fs on the stack. Although the register is 16 bits wide, the
IA-32 specification dictates that, when operating in 32-bit mode, the CPU has to
reserve 32 bits of the stack for the store. In the example we observe thatCP leaves
the upper 16 bits of the stack untouched, whileCE overwrites them with zero (the
different bytes are highlighted in the figure). The two final states differ because
the contents of their memory differs, consequently, δCP(s) 6= δCE (s). That proves
that CE does not faithfully emulate CP.

3.3 EmuFuzzer
The development of the approach briefly described in the previous section requires
overcoming two major difficulties. First, as the potential number of states in which
an emulator should be tested is prohibitively large, we have to focus our efforts on
selecting a small subset of states, which maximizes the completeness of the test-
ing. Second, the detection of deviations in the behaviors of the two environments
requires us to properly setup and inspect their state at the end of the execution of
each test case. Thus, we need to develop a mechanism to efficiently initialize and
compare the state of the two environments. In this section we provide a detailed
description of how these difficulties have been overcome.

Although the methodology we are proposing is architecture independent, our
implementation, called EmuFuzzer, is currently specific for IA-32. This choice
is solely motivated by our limited hardware availability. Nevertheless, minor
changes to the implementation would be sufficient to port it to different archi-
tectures. To ease the development, the current version of the prototype runs en-
tirely in user-space and thus can only verify the correctness of the emulation of
unprivileged instructions and whether privileged instructions are correctly prohib-
ited. EmuFuzzer deals with two different types of emulators: process emulators
that emulate a single process at a time (e.g., Valgrind, PIN, and QEMU), and

5This example reflects a real defect we have found in QEMU using our testing methodology.

18

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

whole-system emulators that emulate an entire system (e.g., BOCHS, JPC, and
QEMU6).

3.3.1 Test Case Generation
As just mentioned, in our testing methodology, a test case s = (pc,R,M,⊥) is a
state of the environment under test. The memory contains the code that will be ex-
ecuted by the CPU, as well as the corresponding data part of which is contained in
R. To generate test cases we adopt two strategies: (i) random test case generation,
where both data and code are random, and (ii) CPU-assisted test case generation,
where data is random, and code is generated algorithmically, with the support of
the physical and of the emulated CPUs. The advantage of using two different
strategies is a better coverage of the test case space. Test cases are generated by
an assembly program, which contains instructions for environment initialization,
i.e., memory and registers, and loads into the test case memory one single instruc-
tion, i.e., the instruction we want to test. Figure 3.2 shows a C pseudocode of
such a program. This program initializes the state of the environment, by loading
the memory content (lines 6–10) and the data in the CPU registers (lines 12–15),
and subsequently it triggers the execution of the code of the test case (line 19).
The program is compiled with appropriate compiler flags to generate a tiny self-
contained executable (i.e., that does not use any shared library).

There are other possible approaches to generate the code of test cases. For
example, one can generate assembly instructions and then compile them with
an assembler or use a disassembler to detect which sequences of bytes encode
a legal instruction. However, limitations of the assembler or of the disassembler
negatively impact on the completeness of the generated test cases. Besides our
approach, detailed in the following, none of the ones just mentioned can guaran-
tee no false-negative (i.e., that a sequence of bytes encoding a valid instruction is
considered invalid).

3.3.1.1 Random Test Case Generation

In random test case generation, both data and code of the test case are generated
randomly. The memory is initialized by mapping a file filled with random data.
For simplicity, the same file is mapped multiple times at consecutive addresses
until the entire user-portion of the address space is allocated. To avoid a useless
waste of memory, the file is lazily mapped in memory, such that physical memory
pages are allocated only if they are accessed. The CPU registers are also initialized
with random values. As we work in user-space, we cannot allocate the entire

6QEMU supports both whole-system and process emulation.

19

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

1 void main() {
2 void *p;
3 // Code of the test case
4 char code[] = "\xB8\xEF\xBE\xAD\xDE";
5

6 // Initialize the memory with random data
7 for (p = 0x0; p < FILE_SIZE; p += PAGE_SIZE) {
8 f = open(FILE_WITH_RANDOM_DATA, O_RDWR);
9 mmap(p, PAGE_SIZE, ..., MAP_FIXED, f, 0);

10 }
11

12 // Initialize the registers with random data
13 asm("mov RANDOM, %eax");
14 asm("mov RANDOM, %ebx");
15 asm("mov RANDOM, %ecx");
16 ...
17

18 // Execute the code of the test case (pc = code)
19 ((void(*)()) code)();
20 }

Figure 3.2: Pseudocode of the program which generates a test case.

address space because a part of it is reserved for the kernel. Therefore, to minimize
page faults when registers are used to dereference memory locations, we make
sure the value of general purpose registers fall around the middle of the allocated
user address space. The rationale is to maximize the probability that, for any
instruction, memory operands refer to valid locations. Obviously, code generated
with this random approach might contain more than one instruction.

3.3.1.2 CPU-assisted Test Case Generation

A thorough testing of an emulator requires us to verify that each possible instruc-
tion is emulated faithfully. Unfortunately, the pure random test case generation
approach presented earlier is very unlikely to cover the entire instruction set of
the architecture (the majority of CPU instructions require operands encoded us-
ing specific encoding and others have opcodes of multiple bytes). Ideally, we
would have to enumerate and test all possible instances of instructions (i.e., com-
binations of opcodes and operands). Clearly this is not feasible. To narrow the
problem space, we identify all supported instructions and then we test the emula-
tor using only few peculiar instances of each instruction. That is, for each opcode
we generate test cases by combining the opcodes with some predefined operand

20

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

65 66

05

00

00......ff

............ff

00......ff

67

00

00 . 02 . . . fd . ff

add
$0x00,

%ax

add
$0x02,

%ax

add
$0xfd,

%ax

add
$0xff,

%ax

(a)

65 66

05

00

00......ff

............ff

00......ff

67

00

00 . 02 . . a0 . . ff

add
$0x00,

%ax

add
$0x02,

%ax

add
$0xa0,

%ax

add
$0xff,

%ax

op
co

de
op

er
an

d

(b)

Figure 3.3: Example of CPU-assisted test case generation for the opcode 6605 (mov
imm16,%ax): (a) naïve and (b) optimized generation (paths in gray are not explored).

values. As in random-test case generation, the data of the test case are random.

Naïve Exploration of the Instruction Set Our algorithm for generating the
code of a test case leverages both the physical and the emulated CPUs, in order
to identify byte sequences representing valid instructions. We call our algorithm
CPU-assisted test case generation. The algorithm enumerates the sequences of
bytes and discards all the sequences that do not represent valid code. The CPU
is the oracle that tells us if a sequence of bytes encodes a valid instruction or not:
sequences that raise illegal instruction exceptions do not represent valid code. We
run our algorithm on the physical and on the emulated CPUs and then we take
the union of the two sets of valid instructions found. The sequences of bytes that
cannot be executed on both CPUs are discarded because they do not represent in-

21

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

teresting test cases: we know in advance that the CPUs will behave equivalently
(i.e., E ′ = illegal instruction). On the other hand, a sequence of bytes that can
be executed on at least one of the two CPUs is considered interesting because it
can lead to one of the following situations: (i) it represents a valid instruction for
one CPU and an invalid instruction for the other; (ii) it encodes a valid instruction
for both CPUs but, once executed, causes the CPUs to transition to two different
states.

Optimized Exploration of the Instruction Set We can imagine representing
all valid CPU instructions as a tree, where the root is the empty sequence of bytes
and the nodes on the path from the root to the leaves represent the various bytes
that compose the instruction. Figure 3.3(a) shows an example of such a tree. Our
algorithm exploits a particular property of this tree in order to optimize the traver-
sal and to avoid the generation of redundant test cases: the majority of instructions
have one or more operands and thus multiple sequences of bytes, sharing the same
prefix, encode the same instruction, but with different operands. In the following
we describe an example of the optimized instruction set exploration; further de-
tails are then given in Section 3.3.2.

As an example, let us consider the 216 sequences of bytes from 66050000 to
6605FFFF that represent the same instruction, add imm16,%ax, with just differ-
ent values of the 16-bit immediate operand. Figure 3.3(a) shows the tree repre-
sentation of the bytes that encode this instruction. The sub-tree rooted at node 05
encodes all the valid operands of the instruction. Without any insight on the for-
mat of the instruction, one has to traverse in depth-first ordering the entire sub-tree
and to assume that each path represents a different instruction. Then, for each tra-
versed path, a test case must be generated. Our algorithm, by traversing only few
paths of the sub-tree rooted at node 05, is able to infer the format of the instruc-
tion: (i) the existence of the operand, (ii) which bytes of the instruction encode
the opcode and which ones encode the operand, and (iii) the type of the operand.
Once the instruction has been decoded (in the case of the example the opcode is
6605 and it is followed by a 16-bit immediate), without having to traverse the
remaining paths, our algorithm generates a minimal set of test cases with a very
high coverage of all the possible behaviors of the instruction. These test cases are
generated by fixing the bytes of the opcode and varying the bytes of the operand.
The intent is to select operand values that more likely generate the larger class
of behaviors (e.g., to cause an overflow or to cause an operation with carry). For
example, for the opcode 6605, our algorithm decodes the instruction by explor-
ing only 0.5% of the total number of paths and generates only 56 test cases. The
optimized tree traversal is shown in Figure 3.3(b), where paths in gray are those
that do not need to be explored. The heuristics on which our rudimentary, but

22

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

faithful, instructions decoder is built on is described in section 3.3.2. It is worth
noting that, unlike traditional disassemblers, we decode instructions without any
prior knowledge of their format. Thus, we can infer which bytes of an instruction
represent the opcode, but we do not know which high-level instruction (e.g., add)
is associated with the opcode.

3.3.2 The Decoder
The optimised traversal algorithm, just described in Section 3.3.1.2, requires the
ability to decode an instruction, and to identify its opcode and operands. Such a
task is undertaken by a specific module (less than 500 lines of code) which we
named the decoder. The decoder uses the CPU as an oracle: given a sequence of
bytes, the CPU tells us if that sequence encodes a valid instruction or not [43].
The decoding is trial-based: we mutate an executable sequence of bytes, we query
the oracle to see which mutations are valid and which are not, and from the re-
sult of the queries we infer the format of the instruction. Mutations are gener-
ated following specific schemes that reflect the ones used by the CPU to encode
operands [15].

In the following we briefly describe how the decoder infers the length of an
instruction and the format of non-implicit operands, assuming to know only the
encoding schemes used to encode operands.

3.3.2.1 Determining Instruction Length

For determining the length of a given instruction the decoder exploits the fact that
the CPU fetches, and decodes, the bytes of the instruction incrementally. Given
an arbitrary sequence of bytes B = b1 . . .bn, the first goal is to detect if the bytes
represent a valid instruction. The decoder executes the input string B in a specially
crafted execution environment, such that every fetch of the bytes composing the
instruction can be observed.

The decoder partitions B into subsequences of incremental length (B1 = b1,
B2 = b1b2, . . . , Bn = b1 . . .bn) and then executes one subsequence after another,
using single-stepping. The goal is to intercept the fetch of the various bytes of the
instruction, which is achieved by placing the ith subsequence Bi (with i = 1 . . .n)
in memory such that it overlaps two adjacent memory pages, m and m′. The first i
bytes are located at the end of m, and the remaining (n− i) bytes at the beginning of
m′. The two pages have special permissions: m allows read and execute accesses,
while m′ prohibits any access. When the instruction is executed, the i bytes in
the first page are fetched incrementally by the CPU. If the instruction is longer
than i bytes, the CPU will try to fetch the next byte, (i+ 1)th, and will raise a
page fault exception (where the faulty address corresponds to the base address of

23

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

m′) because the page containing the byte being read, m′, is not accessible. In this
case the decoder repeats the process with the string Bi+1, that is placing the i+1th

bytes at the end of m and the remaining at m′. On the other hand, if the instruction
contained in the page m has the correct length, it will be executed by the CPU
without accessing the bytes in m′. In such a situation the instruction can be both
valid and invalid. The instruction is valid if it is executed without causing any
exception; it is also valid if the CPU raises a page fault (in this case the faulty
address does not correspond to the base address of m′) or a general protection
fault exception. A page fault exception occurs if the instruction tries to read or
write data from the memory; a general protection fault exception is raised if the
instruction has improper operands. The instruction is invalid instead, if the CPU
raises an illegal instruction exception. In both cases the decoder returns.

Figure 3.4 shows our CPU-assisted decoder in action on two different se-
quences of bytes, one valid and one invalid. The first sequence is B = 88 b7 53
10 fa ca ..., corresponding to the instruction mov %dh, $0xcafa1053(%edi).
The decoder allocates two adjacent memory pages and removes any permission
from the second one. Then, it starts with the first subsequence B1 = 88. The byte
is positioned at the end of the page and then executed through single stepping.
The CPU fetches and tries to decode the instruction but, since the instruction is
longer than one byte, it tries to fetch the next bytes from the protected page, rais-
ing a page fault. The decoder detects the fault and concludes that the instruction
is longer than one byte (in our example the faulty address is 0x20000, the base ad-
dress of the second page). It repeats the procedure with B2 = 88 b7 and gets the
same result. It tries again with B3, B4, B5, and finally tries with six bytes. Since
the instruction is six bytes long, the CPU executes the instruction without access-
ing the protected memory page. However, the instruction writes into the memory
and thus causes a page fault. As in this case the faulty address (0x78378943)
differs from the address of the protected page, our decoder can decide that the
instruction is valid and that it is six bytes long. It is worth noting that a sequence
of bytes cannot encode, at the same time, a valid instruction and a prefix of a
longer instruction. Indeed, such a situation would be ambiguous for the CPU. The
third byte sequence in the example of Figure 3.4(b) is B = f0 00 c0 ... and
represents an invalid instruction. Exactly as before, our decoder executes the first
two subsequences B1 and B2 and detects that the instruction is potentially longer
because the CPU fetches a third byte from the protected page. When B3 is exe-
cuted, the CPU does not fetch more bytes but instead raises an illegal instruction
exception, testifying that B3 is neither a valid instruction, nor a valid prefix for
longer instructions.

24

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

B = 88 b7 53 10 fa ca ... (valid, six bytes long)

B1

0x1f000 0x1ffff 0x20000 0x20fff

88 b7 53 10 fa ca ...

page fault (execution) at address 0x20000→ longer

B2

0x1f000 0x1ffff 0x20000 0x20fff

88 b7 53 10 fa ca ...

page fault (execution) at address 0x20000→ longer

B6

0x1f000 0x1ffff 0x20000 0x20fff

88 b7 53 10 fa ca ...

page fault (write) at address 0x78378943→ valid

(a)

B = f0 00 c0 ... (invalid)

B1

0x1f000 0x1ffff 0x20000 0x20fff

f0 00 c0 ...

page fault (execution) at address 0x20000→ longer

B2

0x1f000 0x1ffff 0x20000 0x20fff

f0 00 c0 ...

page fault (execution) at address 0x20000→ longer

B3

0x1f000 0x1ffff 0x20000 0x20fff

f0 00 c0 ...

invalid instruction at address 0x1fffd→ invalid

readable and
executable page

non-readable and
non-executable page

(b)

Figure 3.4: Computation of the length of instructions using our CPU-assisted instruction
decoder: (a) valid and (b) invalid instructions.

3.3.2.2 Decoding Non-implicit Operands

Once the decoder finds the length of an instruction the decoder tries to infer
the type and the value of the non-implicit operands of the instruction (i.e., the
operands that are not implicitly encoded in the opcode of the instruction). The

25

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

technique used by our decoder to achieve this goal is an extension of the technique
described in the previous paragraphs. Currently, our CPU-assisted decoder is ca-
pable of decoding addressing-form specifier operands and immediate operands.

Any Intel x86 instruction (Figure 2.1) is composed of an optional prefix, an
opcode, and optional operands. To ease the presentation we assume that the in-
structions have no prefix; in practice, prefixes are detected using a white-list and
considered part of the opcode. Given an instruction, encoded by the sequence of
bytes B = b1 . . .bn, the format of the operands is detected by performing a series
of tests on some instructions derived by changing the bytes of B that follow the
opcode and represent the operands of the instruction. If the opcode is j bytes
long, the remaining n− j bytes represent the operands. Each type of operand is
encoded using a different encoding: immediate operands (Imm) are encoded as
is, addressing-form specifier operands (Addr) are encoded using ModR/M and SIB
encoding, and Imm∪Addr 6= Imm∩Addr (i.e., an immediate operand does not
necessarily represent a valid addressing-form specifier operand, and vice versa).
Therefore, given an instruction encoded by the sequence of bytes B = b1 . . .bn, we
expect a new sequence B′= b1 . . .b jb′j+1 . . .b

′
m, where b′j+1 . . .b

′
m represents a new

operand of the same type of b j+1 . . .bm, to be valid. Contrarily, we expect another
sequence of bytes B = b1 . . .b jb j+1 . . .bm, where b j+1 . . .bm represent an operand
of a different type, to be invalid. Therefore, if an instruction with a j bytes long
opcode has an immediate operand, then the following holds:

∀b′j+1 . . .b
′
m ∈ Imm,B′ = b1 . . .b jb′j+1 . . .b

′
m is valid.

In other words, the bytes following the opcode encode an immediate operand if
the combination of the opcode with all the possible immediate operands always
gives valid instructions. Fortunately, with few tests it is possible to estimate if the
previous equation holds. In fact, it is sufficient to verify if it holds for a small
number of operands in Imm \ Addr. The same applies for an instruction with
an addressing-form specifier operand. Our current prototype of the decoder uses
only five tests to decode addressing-form specifier operands and four to detect 32-
bit immediate operands. Basically, in order to infer if an instruction refers to an
operand in memory, we use specific configurations of the ModR/M and SIB fields
(e.g., [EAX], [EAX]+disp, [EBP]+disp, etc.). Since the opcode can have a
variable length (from one to three bytes), our CPU-assisted decoder performs the
aforementioned tests with opcodes of incremental length (i.e., j = 1,2,3).

Figure 3.5 shows some of the tests performed by our CPU-assisted instruction
decoder to infer the format of the operands of two instructions: the first instruction
has an addressing-form specifier operand and the second one a 32-bit immediate
operand. For the first instruction, the decoder initially assumes that the opcode is
one byte long, and performs the analysis of the remaining bytes to detect if they

26

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

B = 88 b7 53 10 fa ca
mov %dh, $0xcafa1053(%edi)

B′2

0x1f000 0x1ffff 0x20000 0x20fff

88 00 53 10 fa ca

page fault (write) at address 0x00→ valid

B′3

0x1f000 0x1ffff 0x20000 0x20fff

88 40 00 10 fa ca

page fault (write) at address 0x000→ valid

B′4

0x1f000 0x1ffff 0x20000 0x20fff

88 44 25 00 fa ca

page fault (write) at address 0x00→ valid

B′7

0x1f000 0x1ffff 0x20000 0x20fff

88 04 25 00 00 00 00

page fault (write) at address 0x00→ valid
test passed→ operand is an addressing-form specifier

(a)

B = 05 12 34 56 78
add $0x78563412, %eax

B′2

0x1f000 0x1ffff 0x20000 0x20fff

05 00 34 56 78

page fault (execution) at address 0x20000→ longer
test failed→ operand is not an addressing-form specifier

B′5

0x1f000 0x1ffff 0x20000 0x20fff

05 00 00 00 01

no exception→ valid

B′′5

0x1f000 0x1ffff 0x20000 0x20fff

05 00 00 00 02

no exception→ valid

B
′′′···
5

0x1f000 0x1ffff 0x20000 0x20fff

05 00 00 00 255

no exception→ valid
test passed→ operand is a 32-bit immediate

(b)

Figure 3.5: Decoding of non-implicit operands using our CPU-assisted instruction de-
coder: instructions with (a) addressing-form specifier operand and (b) immediate operand.

27

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

encode an addressing-form specifier operand. To do that it combines the opcode
88 with other valid addressing-form specifier operands of variable length, some of
which cannot be interpreted as immediate operands. The first test consists of re-
placing the alleged operand with a single byte operand and in executing the result-
ing string. The CPU successfully executes the instruction. The same procedure is
repeated with operands of different length (two, three, and seven bytes). All the
sequences of bytes are found to encode valid instructions; every execution of the
tested instructions raise a page fault exception where the faulty address does not
correspond to the base address of the protected page. Therefore, the input instruc-
tion is composed of a single byte opcode followed by an addressing-form specifier
operand (b7 53 10 fa ca, in Figure 3.5). The same procedure is applied also to
the second instruction. The addressing-form specifier operand decoding fails, so
the decoder attempts to verify whether the last four bytes of the instruction encode
a 32-bit immediate. All tests performed are passed.

3.3.3 Test Case Execution
Given a test case, we have to execute it both on the physical and emulated CPUs
and then compare their state at the end of the execution. In order to perform such a
task we have developed two different applications, the first one denoted by E runs
on the emulator and the second one, denoted by P will run on the physical CPU
as a user space application. Initially, we start the execution of the test case on the
emulator. As soon as the initialization of the state of the emulator is completed,
it is replicated to the physical CPU. As registers and memory are initialized with
random values, replication is required to guarantee that test cases are executed
on the physical and emulated environments starting from the same initial state.
Then, the code of the test case is executed in the two environments and, at the
end of the execution, we compare the final state. In the remainder of this section
we describe the main steps performed for the execution of a test case and we will
also provide details on the strategy we adopted for instrumenting the emulator
and the physical environment in order to execute respectively the programs E and
P. For simplicity, the details that follow are specific for the testing of process
emulators. Nonetheless, the implementation for testing whole-system emulators
only requires the addition of introspection capabilities to isolate the execution of
the test case program [53].

3.3.3.1 Executing a Test Case

The execution flow of a test case is summarized in Figure 3.6 and described in
detail in the following paragraphs, where the following notation will be adopted.
The state of the emulator CE prior and after the execution of a test case respec-

28

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

tively sE = (pcE , RE , ME , EE) and s′E = (pc′E , R′E , M′E , E ′E). Similarly, for CP,
we use respectively sP = (pcP, RP, MP, EP) and s′P = (pc′P, R′P, M′P, E ′P).

Setup of the Emulated Execution Environment The CPU emulator is started
and it begins to execute the program E generating and executing the test case (LE1)
until the state of the environment is completely initialized (LE2). In other words, E
is executed without interference until the execution reaches pcE , i.e., the address
of the code of the test case (see line 19, Figure 3.2). E initializes the emulator
memory by mapping a file filled with random data. For simplicity, the same file is
mapped multiple times at consecutive addresses until the entire user-portion of the
address space is allocated. To avoid a useless waste of memory, the file is lazily
mapped in memory, such that physical memory pages are allocated only if they
are accessed. As we discussed in section 3.3.1.1, CPU registers are also initialized
with random values.

Setup of the Physical Execution Environment When the state of the emulated
environment has been set up (i.e., when the execution has reached pcE), the initial
state, sE = (pcE , RE , ME , EE), can be replicated into the physical environment.
The emulator notifies and transfers the state of the CPU registers to P (LE3). Ini-
tially, the exception state EE is always assumed to be ⊥. Note that the memory
state of the physical CPU MP is not synchronized with the emulated CPU. At the
beginning, only the memory page containing the code of the test case is copied
into the physical environment (LP1 and LE4). The remaining memory pages are
instead synchronized on-demand the first time they are accessed, as it will be
explained in detail in the next paragraph. At this point we have that RE = RP,
EE = EP =⊥, but ME 6= MP (the only page that is synchronized is the one with
the code).

Test Case Execution on the Physical CPU The execution of the code of the
test case on the physical CPU starts, beginning from program address pcP = pcE
(LP3). P besides an initialization routine, to set up the execution environment, also
contains a finalization routine, to save the content of the registers; moreover, test
cases instructions are patched to avoid unwanted control transfers. For further de-
tails see section 3.3.3.3. During the execution of the code, the following situations
may occur:

i execution of the code of the test case terminates;

ii a page-fault exception caused by an access to a missing page occurs;

iii a page-fault exception caused by a write access to a non-writable page occurs;

29

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

iv any other exception occurs.

Situation (i) indicates that the entire code of the test case is executed successfully.
That means that the instruction in the test case was valid and did not generate any
fatal CPU exception. The first type of page-fault exceptions (ii) allows us to syn-
chronize lazily the memory containing the data of the test case at the first access.
During the initialization phase (LP2) all the memory pages of the physical environ-
ment, but that containing the code (and few others containing the code to run the
logic), are protected to prevent any access. Consequently, if an instruction of the
test case tries to access the memory, we intercept the access through the page fault
exception and we retrieve the entire memory page from the emulated environment
(LP4 and LE5). All data pages retrieved are initially marked as read-only to catch
future write accesses. After that, the execution of the code of the test case on the
physical CPU is resumed (LP5). The second type of page-fault exceptions (iii)
allows us to intercept write accesses to the memory. Written pages are the only
pages that can differ from one environment to the other. Therefore, after a faulty
write operation we flag the memory page as written. Then, the page is marked
as writable and the execution is resumed (LP6 and LP7). Obviously, depending on
the code of the test case, situations (ii) and (iii) may occur repeatedly or may not
occur at all during the analysis. Finally, the occurrence of any other exception (iv)
indicates that the execution of the code of the test case cannot be completed be-
cause the CPU is unable to execute an instruction. When the execution of the code
of the test case on the physical CPU terminates, because of (i) or (iv), P regains
the control of the execution, immediately saves the state of the environment for
future comparisons (LP8), and restores the state of the CPU prior to the execution
of the test case.

Test Case Execution on the Emulated CPU The execution of the code of the
test case in the emulated environment, previously stopped at pcE (LE2), can now
be safely resumed. The execution of the code in the emulated environment must
follow the execution in the physical environment and cannot be concurrent with
it. This is because in the physical environment the state of the memory is syn-
chronized on-demand and thus the initial state of the memory ME must remain
untouched until the physical CPU completes the execution of the test case. When
this happens the execution is resumed and it terminates when all the code of the
test case is executed or an exception occurs (LE6).

Comparison of the Final State When the emulator and the physical environ-
ments have completed the execution of the test case we can compare their state
(s′E = (pc′E , R′E , M′E , E ′E) and s′P = (pc′P, R′P, M′P, E ′P)). The comparison is per-
formed by P. The emulator notifies P and then transfers the program counter

30

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

pc′E , the current state of the CPU registers R′E , and the exception state E ′P (LE7).
To compare s′E and s′P it is not necessary to compare the entire address space: P
fetches only the contents of the pages that have been marked as written (LP10 and
LE8). At this point s′E is compared with s′P (LP11). If s′E differs from s′P, we record
the test case and the difference(s) produced.

3.3.3.2 Embedding the Logic in the CPU Emulator

Program E is run directly in the emulator under analysis. The emulator is extended
to include the code of E. We embed the code leveraging the instrumentation API
provided by the majority of the emulators. The main functionalities of the embed-
ded code are the following. First, it allows to intercept the beginning and the end
of the execution of each instruction (or basic block, depending on the emulator) of
the emulated program. If the code of the test case contains multiple instructions,
all basic blocks (or instructions) are intercepted and contribute to the testing. We
assume the code used to initialize the environment is always correctly emulated
and thus we do not test it nor we intercept its execution. Second, the embedded
code allows to intercept the exceptions that may occur during the execution of the
test case. Third, it provides an interface to access the values of the registers of the
CPU and the contents of the memory of the emulator.

3.3.3.3 Running the Logic on the Physical CPU

On the physical CPU, the test case is run through a user-space program that im-
plements the various steps described in 3.3.3.1. An initialization routine (LP2 in
Figure 3.6), is used to set up the registers of the CPU, to register signal handlers
to catch page faults and the other run-time exceptions that can arise during the
execution of the test case, and to transfer the control to the code of the test case.
The code of the test case is executed as a shellcode [54] and consequently we
must be sure it does not contain any dangerous control transfer instruction that
would prevent us from regain the control of the execution (e.g., jumps, function
calls, system calls). Given the approaches we use to generate the code of the test
cases, we cannot prevent the generation of such dangerous test cases. Therefore,
we rely on a traditional disassembler to analyze the code of the test case, identify
dangerous control transfer instructions, and patch the code to regain the control of
the execution (e.g., by modifying the target address of direct jump instructions)7.
To prevent endless loops caused by failures of this analysis, we put a limit on the
maximum CPU time available for the execution of a test case and we interrupt the
execution if the limit is exceeded. In the current implementation, this limit is set

7If the disassembler failed to detect dangerous control transfer instructions, we could not be
able to regain the control of the execution properly.

31

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

Table 3.2: Results of the evaluation: number of distinct mnemonic opcodes (OP) and
number of test cases (TC) that triggered deviations in the behavior between the tested
emulators and the baseline physical CPU.

Deviation type QEMU Valgrind Pin BOCHS JPC
OP TC OP TC OP TC OP TC OP TC

R
CPU flags 39 1362 13 684 22 2180 2 2686 33 4088
CPU general 3 142 8 141 3 18 8 8 27 657
FPU 179 41738 157 39473 0 0 71 1631 185 43024

M memory state 34 1586 10 420 0 0 1 2 46 2122

E
not supported 2 1120 334 11513 2 12 0 0 8 1998
over supported 97 1859 10 716 0 0 5 8 124 1930
other 126 6069 41 6184 20 34 45 113 132 5935

Total 405 53926 529 59135 43 2245 130 4469 482 59354

to 5s, and has been determined experimentally to guarantee detection of endless
loops. At the end of the code of the test case we append a finalization routine (LP8
in Figure 3.6), that is used to save the contents of the registers for future com-
parison, to restore their original contents, and to resume the normal execution of
the remaining steps of the logic. Exceptions other than page-faults interrupt the
execution of the test case. The handlers of these exceptions record the exception
occurred and overwrite the faulty instruction and the following ones with nops, to
allow the execution to reach the finalization routine to save the final state of the
environment.

In the approach just described the program P and the test case share the same
address space. Therefore, the state of the memory in the physical environment
differs slightly from the state of the memory in the emulated environment: some
memory pages are used to store the code and the data of the user-space program,
through which we run the test case. If the code of the test case accesses any of
these pages, we would notice a spurious difference in the state of the two environ-
ments. Considering that the occurrence of such event is highly improbable, we
decided to neglect this problem, to avoid complicating the implementation.

3.4 Evaluation
This section presents the results we obtained by testing five IA-32 emulators with
EmuFuzzer: three process emulators (QEMU, Valgrind, and Pin) and two system
emulator (BOCHS and JPC). Specifically, we chose QEMU and BOCHS because
they are the most widely used IA-32 emulators, Valgrind and Pin because, despite
them being dynamic instrumentation tools, their internal architecture resembles

32

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

the architecture of a traditional emulator, and finally JPC because it is an IA-
32 emulator fully developed in Java language and therefore portable on several
platforms and devices (e.g., mobile devices).

We generated a large number of test cases, evaluated their quality, and fed
them to the five emulators. None of the emulators tested turned out to be faith-
ful. In each of them we found different classes of defects: small deviations in the
contents of the status register after arithmetical and logical operations, improper
exception raising, incorrect decoding of instructions, and even crash of the emu-
lator. Our experimental results lead to the following conclusions: (i) developing
a CPU emulator is actually very challenging, (ii) developers of these software
would highly benefit from specialized testing methodology, and (iii) EmuFuzzer
proved to be a very effective tool for testing CPU emulators.

3.4.1 A Glimpse at the Implementation
The current EmuFuzzer implementation consists of three interconnected compo-
nents: a coordinator and two drivers (one for the physical CPU, and one for the
emulator under analysis). The coordinator supervises the execution of a test case.
The driver that controls the execution on the physical CPU is independent from
any specific emulator. On the contrary, the driver for CPU emulator augments a
specific emulator with the features needed to intercept the execution of a single
instruction and to inspect the execution state; this driver is obviously emulator-
specific, and we implemented a different emulator driver for each CPU emulator
we considered in our experiments.

For a given test case, s, the coordinator first leverages the emulator driver to
set up the emulated execution environment: CPU registers and memory locations
are initialized as specified by s. Subsequently, as just mentioned in section 3.3.3,
the coordinator starts executing the test case on the physical processor. Such an
execution may require the setting of some CPU registers or memory locations, that
are thus fetched from the emulated environment and replicated into the physical
one. Once the execution of the test case completes, the processor final state δCP(s)
is dumped to a file. At this point the coordinator starts the execution of s on the
emulator. Also in this case the final state of the computation, δCE (s) will be
dumped to a file. Then, the coordinator compares δCP(s) and δCE (s).

The coordinator is written in Python (∼ 750 non-comment lines of code),
while the CPU driver consists of roughly 1200 non-comment lines of C++ code.
Finally, emulator drivers are written in the same language of the target emulator,
typically C. On average, an emulator driver requires about 450 non-comment lines
of code (of these, 350 lines are emulator-independent and are shared between all
emulator drivers). Communication between the coordinator and the drivers relies
on the XML-RPC protocol.

33

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

3.4.2 Experimental Setup
We performed the evaluation of our testing methodology and tool using an Intel
Pentium 4 (3.0 GHz), running Debian GNU/Linux with kernel 2.6.26, as base-
line physical CPU. The physical CPU supported the following features: MMX,
SSE, SSE2, and SSE3. We tested the following release of each emulator, namely:
QEMU 0.9.1, Valgrind 3.3.1, Pin 2.5-23100, JPC 2.4, and BOCHS 2.3.7. The
features of the physical machine were compatible with the features of the tested
emulators with few exceptions, which we identified at the end of the testing, us-
ing a traditional disassembler, and ignored (for example, BOCHS also supports
SSE4).

3.4.3 Evaluation of Test Case Generation
We generated about 3 million test cases, 70% of which using our CPU-assisted
algorithm and the remaining 30% randomly. We empirically estimated the com-
pleteness of the set of instructions covered by the generated test cases by disassem-
bling the code of the test cases, by counting the number of different instructions
found (operands were ignored), and by comparing this number with the total num-
ber of mnemonic instructions recognized by the disassembler. The randomly gen-
erated test cases covered about 75% of the total number of instructions, while the
test cases generated using our CPU-assisted algorithm covered about 62%. Over-
all, about 81% of the instructions supported by the disassembler were included in
the test cases used for the evaluation. It is worth noting that in several cases our
test cases contained valid instructions not recognized by the disassembler.

The implementation of our CPU-assisted algorithm is not complete and lacks
support for all instructions with prefixes. For example, currently our algorithm
does not generate test cases involving instructions operating on 16-bits operands.
We have empirically estimated that instructions with prefixes represent more than
25% of the instructions space. Therefore, a complete implementation of the al-
gorithm would allow to achieve a nearly total coverage. We speculate that the
high coverage of randomly generated test cases is due to the fact that the IA-32
instruction set is very dense and consequently a random bytes stream can be inter-
preted as a series of valid instructions with high probability. Nevertheless, during
our empirical evaluation we reached a local optimum from which it was impossi-
ble to move away, even after having generated hundreds of thousands of new test
cases. The CPU-assisted algorithm instead does not suffer this kind of problem:
a complete implementation would allow to generate a finite number of test cases
exercising all instructions in multiple corner cases.

34

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

3.4.4 Testing of IA-32 Emulators
The five CPU emulators were tested using a small subset (∼10%) of the generated
test cases, selected randomly. The whole testing took about a day for all the
emulators but JPC, at the speed of around 15 test cases per second (JPC alone
took several days to run all the test cases). Table 3.2 reports the results of our
experiments. Behavioral differences found are grouped into three categories: CPU
registers state (R), memory state (M), and exception state (E). Differences in the
state of the registers are further separated according to the type of the registers:
status (CPU flags), general purpose and segment (CPU general), and floating-
point (FPU). Differences in the exception state are separated in: legal instructions
not supported by the emulator (not supported), illegal instructions valid for the
emulator (over supported), and other deviations in the exception state (other). As
an example, the last class includes instructions that expect aligned operands but
execute without any exception even if the constraint is not satisfied. For each
emulator and type of deviation, the table reports the number of distinct mnemonic
opcodes leading to the identification of that particular type of deviation (opcodes)
and the number of test cases proving the deviation (test cases). It is worth pointing
out that different combinations of prefixes and opcodes are considered as different
mnemonic opcodes. For each distinct opcode that produced a particular type of
deviation, we verified and confirmed manually the correctness of at least one of
the results found.

The results demonstrate the effectiveness of the proposed testing methodology.
For each emulator we found several mnemonic opcodes not faithfully emulated:
405 in QEMU, 529 in Valgrind, 43 in Pin, 130 in BOCHS and 482 in JPC. It is
worth noting that some of the deviations found might be caused by too lax specifi-
cations of the physical CPU. For example, the manufacturer documentation of the
add instruction precisely states the effect of the instruction on the status register,
while the documentation of the and instruction only states the effect on some bits
of the status register, while leaving undefined the value the remaining bits [15].
Our reference of the specification is the CPU itself and consequently, with respect
to our definition of faithful emulation, any deviation has to be considered a tangi-
ble defect. Indeed, for each deviation discovered by EmuFuzzer it is possible to
write a program that executes correctly in the physical CPU, but crashes in the
emulated CPU (or vice versa). We manually transformed some of the problem-
atic test cases into this kind of programs and verified the correctness of our claim.
The remarkable number of defects found also witnesses the difficulty of develop-
ing a fully featured and specification-compliant CPU emulator and motivates our
conviction about the need of a proper testing methodology.

The following paragraphs summarize the defects we found in each emulator.
The description is very brief because the intent is not criticize the implementation

35

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

of the tested emulators, but just to show the strength of EmuFuzzer at detecting
various classes of defects.

In [55] we release all the improper behaviors we detected in the emulators
supported by EmuFuzzer. Developers were informed about the defects found in
their emulators, providing them with the corresponding test cases.

3.4.4.1 QEMU

A number of arithmetical and logical instructions are not properly executed by the
emulator because of an error in the routine responsible for decoding certain encod-
ing of memory operands (e.g., or %edi, 0x67(%ebx) encoded as 087ce367);
the instructions reference the wrong memory locations and thus compute the wrong
results. The emulator accepts several illegal combinations of prefixes and opcodes
and executes the instruction ignoring the prefixes (e.g., lock fcos). Floating-
point instructions that require properly aligned memory operands are executed
without raising any exception even when the operands are not aligned, because the
decoding routine does not perform alignment checking (e.g., fxsave 0x00012345).
Segments registers, which are 16 bits wide, are emulated as 32-bit registers (the
unused bits are set to zero), thus producing deviations when they are stored in
other 32-bits registers and in memory (e.g., push %fs). Some arithmetic and
logical instructions do not faithfully update the status register. Finally, we found
sequences of bytes that freeze and others that crash the emulator (e.g., xgetbv).

3.4.4.2 Valgrind

Some instructions have multiple equivalent encodings (i.e., two different opcodes
encode the same instruction) but the emulator does not recognize all the encod-
ings and thus the instructions are considered illegal (e.g., addb $0x47, %ah with
opcode 82). Several legal privileged instructions, when invoked with insuffi-
cient privileges, do not raise the appropriate exceptions (e.g., mov (%ecx), %cr3
raises an illegal operation exception instead of a general protection fault). On the
physical CPU, each instruction is executed atomically and, consequently, when
an exception occurs the state of the memory and of the registers correspond to the
state preceding the execution of the instruction. On Valgrind instead, instructions
are not executed atomically because they are translated into several intermediate
instructions. Consequently, if an exception occurs in the middle of the execution
of an instruction, the state of the memory and of the registers might differ from
the state prior to the execution of the instruction (e.g., idiv (%ecx) when the
divisor is zero). As in QEMU, some logical instructions do not faithfully update
the status register.

36

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

3.4.4.3 Pin

Not all exceptions are properly handled (i.e., trap and illegal instruction excep-
tions); Pin does not notify the emulated program about these exceptions. Several
legal instructions that raise a general protection fault on the physical CPU are ex-
ecuted without generating any exception on Pin (e.g., add %ah, %fs:(%ebx)).
When segment registers are stored (and removed) in the stack, the stack pointer
is not updated properly: a double-word should be reserved on the stack for these
registers, but Pin reserves a single word (e.g., push %fs). The FPU appears to be
virtualized (i.e., the floating-point code is executed directly on the physical FPU)
and, as expected, no deviation is detected in the execution of FPU instructions.
As in Valgrind and QEMU, some logical instructions do not faithfully update the
status register.

3.4.4.4 BOCHS

Certain floating-point instructions alter the state of some registers of the FPU and
other instructions compute results that differ from those computed by the FPU of
the physical CPU (e.g., fadd %st0, %st7). If an exception occurs in the middle
of the execution of an instruction manipulating the stack, the initial contents of the
stack pointer corresponds to that we would have if the instruction were success-
fully executed (e.g., pop 0xffffffff). Some instructions do not raise the proper
exception (e.g., int1 raises a general protection fault instead of a trap exception).
As in Valgrind, QEMU, and Pin, some logical instruction do not faithfully update
the status register, although the number of such instruction is smaller than the
number of instructions affected by this problem in the other emulators.

3.4.4.5 JPC

Conversely to the other emulators, which are written in C and C++, JPC is fully
developed in Java. It turned out that one of the main problems we had to deal
with for testing this emulator was its poor performances executing test cases: JPC
is approximately 75% slower than any other emulator. A description of the main
deviations found follows. Segment registers, which are 16-bits wide, are em-
ulated as 32-bit registers. This implies deviations when segment registers are
stored in other 32-bits registers and in memory (e.g., push %gs). Several legal
privileged instructions, when invoked with insufficient privileges, do not raise the
appropriate exceptions (e.g., mov (%ecx), %cr0 and mov %cr3, %eax are cor-
rectly executed when the CPU is in user mode without raising a general protection
fault exception). As in QEMU, the emulator accepts illegal combination of pre-
fixes and executes the instruction ignoring them (e.g., lock fcos). Moreover, not
all exceptions are properly handled (i.e., illegal instruction exceptions) and some

37

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

instructions do not raise the appropriate exception. To conclude, we found sev-
eral sequences of bytes that crash the emulator (e.g., bound %eax, (%ebx) and
int1).

38

CHAPTER 3. A METHODOLOGY FOR TESTING CPU EMULATORS

Emulated CPU
(CE)

Physical CPU
(CP)

LE1: create t.c. process

LE2: execute t.c. init code (stop at pcE)
LE3: copy initial state sE

LP1: fetch page p1 (p1 = pcE &∼ 0xFFF)

LE4: page p1

LP2: initialization (sP = sE)

LP3: execute t.c. code

LP4: fetch missing page p2

LE5: page p2

LP5: execute t.c. code

LP6: allow writes to page p2

LP7: execute t.c. code

LP8: finalization (save s′P)

LP9: execution completed

LE6: execute t.c. code

LE7: copy final state s′E

LP10: fetch modified page p2

LE8: page p2

LP11: compare s′P with s′E

Figure 3.6: Logic of the execution of a test case (t.c., for short). denotes the execution
of the test case and denotes the execution of the code of the logic.

39

4
On Reconstructing Android Malware Behaviors

W ith more than 500 million of activations reported in Q3 2012, Android
mobile devices are becoming ubiquitous and trends show that such a
pace is unlikely slowing down [56]. Android devices are extremely

appealing: powerful, with a functional and easy-to-use user interface to access
sensitive user and enterprise data, they can easily replace traditional computing
devices, especially when information is mostly consumed rather than produced.

Application marketplaces, such as Google Play and the Apple App Store, drive
the entire economy of mobile applications. For instance, with more than 600,000
applications installed, Google Play has generated revenues of about 237M USD
per year [57]. Such a wealth and quite unique ecosystem with high turnovers and
access to sensitive data have unfortunately also attracted the interests of cyber-
criminals, with malware now hitting Android devices at an alarmingly rising pace.
Users privacy breaches (e.g., access to address book and GPS coordinates) [58],
monetization through premium SMS and calls [58], and colluding malware to by-
pass 2-factor authentication schemes [59] are all real threats rather than a fictional
forecasting. Recent studies back easily such statements up, reporting how mobile
marketplaces have been abused to host malware or legitimate-resembling applica-
tions embedding malicious components [60].

Unfortunately, the nature of Android applications makes it hard, if not impos-
sible, to rely on existing VM-based dynamic malware analysis systems as is. In
fact, Android applications are generally written in the Java programming language
and executed on top of the Dalvik virtual machine [61], but native code invocation
is however possible via JNI or Linux ELF binary execution. This mixed environ-
ment seems to suggest the need to reconstruct and keep in sync out-of-the-box
semantics through virtual machine introspection (VMI) [62] for both the OS and
Dalvik views, as recently shown in [63]. On the one hand, OS-level semantics
(e.g., writing to a file, executing a program) would allow to characterize JNI or

40

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

native ELF-induced behaviors, while Dalvik-level semantics would enable to dis-
close high-level Android-specific behaviors (e.g., sending an SMS). While true
in principle, we observe that even high-level Android-specific behaviors are in-
deed achieved via system call invocations, underneath. In fact, as described later,
Android applications may interact with the system via well-defined system call-
initiated IPC and RPC invocations to carry out their tasks.

In this work we present CopperDroid, an approach built on top of QEMU [64]
to automatically perform out-of-the-box dynamic behavioral analysis of Android
malware. To this end, CopperDroid presents a unified analysis to characterize
low-level OS-specific (e.g., opening and writing to a file, executing a program)
and high-level Android-specific (e.g., accessing personal information, sending an
SMS) behaviors. In particular, based on the observation that such behaviors are all
achieved through the invocation of system calls, CopperDroid’s VMI-based sys-
tem call-centric analysis faithfully describes Android malware behavior whether
it is initiated from Java, JNI or ELF code.

A preliminary description of CopperDroid, focused on introducing our system
call-centric analysis as well as its effectiveness evaluation on well-known yet out-
dated Android malware datasets appeared recently in our workshop paper [65].
Conversely, in this dissertation, we present our mature research effort and im-
provements over [65] whose contributions can be summarized as follows:

1. We describe the design and implementation of a unified dynamic analy-
sis technique to characterize the behavior of Android malware. Our anal-
ysis is able to automatically describe low-level OS-specific and high-level
Android-specific behaviors of Android malware by observing and analyzing
system call invocations, including IPC and RPC interactions—of paramount
importance on Android—carried out as system calls underneath. To auto-
mate the analysis of Android’s IPC and RPC channel, we design and im-
plement a novel technique that avoids—or reduces to a bare minimum in a
limited number of cases—the amount of manual analysis needed to recon-
struct remote invocations and their parameters.

2. Based on the observation that Android applications are inherently user-
driven and feature a number of implicit but well-defined entry points, we
describe the design and implementation of a stimulation approach aimed at
disclosing additional malware behaviors.

3. We build a data dependency graph over the set of observed system calls, and
perform forward slicing to select all instructions dependent on a particular
open-related system call [66]. An interesting side-effect of such an analysis
is the ability to automatically recreate the resource associated with a stream
of sliced system calls, which, depending on the resource, can be fed back to

41

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

CopperDroid (e.g., Android app created at run-time), downloaded for further
inspection, or submitted to other analysis systems.

4. We provide a thorough evaluation of CopperDroid’s analysis on more than
1,200 malware samples belonging to 49 Android malware families as pro-
vided by the Android Malware Genome Project [67], about 400 samples
over 12 Android malware families from the Contagio project [68], and more
than 1,300 samples from McAfee, divided in roughly 115 families. Our
experiments show that CopperDroid is able to automatically and faithfully
describe the behavior of the samples in our datasets. Furthermore, Copper-
Droid confirms the importance of a proper malware stimulation approach
(e.g., sending SMS, placing calls), which allowed us to disclose an average
of, respectively: 28% of unique additional behaviors on 60% of malware
samples in the first set, 22% on more than 70% of samples in the second
set, and 28% on 61% of samples of the last set.

We believe CopperDroid’s unified analysis contributes effectively to improve
the state-of-the-art in analyzing the behavior of Android malware.

As further described in Section 4.3.6, CopperDroid relies on a simple-yet-
effective stimulation technique that is able to improve basic dynamic analysis
coverage and discover additional behaviors with low overheads.

Although a non-negligible implementation effort, we however consider the
framework we developed and briefly describe in Section 4.3 as a mere yet nec-
essary mechanism to carry out our actual contributions, i.e., CopperDroid’s VMI-
based system call-centric analysis—whose automatic IPC/RPC dissection is a key
aspect—malware stimulation approach, and evaluation on large data sets.

Availability
CopperDroid is available at http://copperdroid.isg.rhul.ac.uk, where users
can submit samples to be analyzed. Results contains behavioral analysis (both in
HTML and JSON format, for easy parsing) and many ancillary information.

4.1 The Android System
Android applications are typically written in the Java programming language and
then deployed as Android Packages archive (APKs). Every APK is considered to
be a self-contained application that can be logically decomposed into one or more
components. Each component is generally designed to fulfill a specific application
task (e.g., GUI-related actions, notification receiver) and it is invoked either by the
user or the OS.

42

http://copperdroid.isg.rhul.ac.uk

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

According to the Android security model [69], each application runs in a sep-
arate userspace process, as an instance of the Dalvik virtual machine (DVM) [61],
usually with a distinct user and group ID.

Applications must declare upfront the set of permissions (usually associated
with additional group IDs) they wish to use. The user is informed at installation-
time about the permissions the application is asking for, which gives him the final
possibility to grant or deny the application installation. Because Android appli-
cations can also execute native code(e.g., via JNI), a number of trusted Android
system services, along with the kernel, take care of starting a policy validation
mechanism (which eventually will grant or deny specific permissions) [70]. An-
droid applications are executed within their own instance of the DVM, without
any possibility (except in the case of exploits) to get out of it and influence other
applications. At a lower level, this corresponds to having a distinct process for
each application. By doing so, the Android system creates a secure environment
in which applications are sandboxed and strictly checked, against a permission
system that will be later explained, and cannot access other applications and the
system itself, without explicitly requiring it.

Permission-based security systems are generally effective, but understanding
all the complexities of a fine-grained permission system may force developers
to carelessly request too many permissions, exposing users to unneeded warn-
ings and potentially loosening the effectiveness of the policy enforcement pro-
cess [70, 71]. Furthermore, Barrera et al. reported that a number of privileges
that can be specified in an APK are too coarse-grained while others are too fine-
grained and hard to interpret [72]. This may lead to a misuse of the underlying
privilege systems that may potentially lower the overall level of security of An-
droid applications.

4.1.1 Application components
Although isolated within their own sandboxed environment, Android applications
can interact with other applications, and with the system, through a well-defined
API. A number of components can make up an application. In particular, Android
defines activities, services, content providers, and broadcast receivers.

Activities provide a window the user can interact with. For instance, GUI
elements needed to write a text, view a map, or send an email are all provided by
activities. Services are similar to Unix dæmons; they run in the background and
do not provide GUI element nor user interactions. For instance, a typical service
component performs asynchronous network operations. Content providers define
a storage-agnostic abstraction to transparently access data. They also perform
access control, defining who can access data and how. Finally, broadcast receivers
are components that listen (and respond) to broadcast events from the system.

43

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

<uses-permission android:name="[...].RECEIVE_SMS" />
<uses-permission android:name="[...].INTERNET" />
...
<receiver android:name=".SMSReceiver">
<intent-filter>
<action android:name="..Telephony.SMS_RECEIVED" />

...

Figure 4.1: Example of Manifest file.

Whenever such events occur, the receiver is notified by the system and performs
operations in response to the event (e.g., hide user notifications upon reception of
SMS messages).

Activities, services, and broadcast receivers are activated by intents, i.e., asyn-
chronous messages exchanged between individual components to request an ac-
tion. Activity and service intents specify actions to be performed. Conversely,
broadcast receiver intents define the received event and are delivered to the inter-
ested broadcast receivers.

4.1.2 Manifests
Android manifests are XML files that must be included in every APK. A manifest
declares application components as well as the set of permissions the application
requests along with the hardware and software features the application uses. In
addition, a manifest may include intent filters, i.e., the set of intents the application
is willing to handle.

Figure 4.1 reports a stripped-down Android manifest of a fictional but realistic
application. The manifest shows the application requires permission to receive
SMS and to access the Internet. Furthermore, it declares a broadcast receiver
component (class SMSReceiver) that will respond to SMS_RECEIVED intents.

Android manifests contain a number of interesting information that can indeed
provide preliminary insights about an application maliciousness [73].

4.1.3 Native Interface
While the main technology to develop android application is Java, it is possible to
embed small pieces of native code (C, C++), compiled as shared libraries that are
dynamically loaded at runtime. Once loaded, native functions can be invoked by
Java code and are subject to the same restrictions. Benign applications use native
code to perform CPU-bound operations (e.g., a physical engine) that require little
interaction with other components. Malicious apps, on the other hand, are known
to leverage native code to perform low-level operations such as triggering vulner-
abilities to escale privileges or obfuscating the app’s code [58]. As an alternative

44

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

way to execute native ARM code, an app could include an ELF into its resources
and later execute it.

4.1.4 Zygote
As we briefly stated in Section 4.1, every application is sandboxed and is executed
by an instance of the Dalvik virtual machine (DVM) [61]. However, cold-starting
a new DVM for every application would be too time consuming. To prevent this,
Android uses a concept called Zygote to enable both sharing of code and fast
startup of new instances. The Zygote is started at boot time, it initializes a DVM
(that consequently loads every resource it requires) and waits for requests from
runtime processes. Upon such requests, the Zygote produces (forks) a new in-
stance of the pre-loaded DVM. By doing so, the DVM startup time is minimized
as every resource is duplicated by the fork operation.

4.1.5 Binder: IPC and RPC
The Android system implements the principle of least privilege by providing a
sandbox for each installed application. One process must not manipulate the data
of another process and can access only the components the system granted the re-
quested permissions for. Nevertheless, often, applications need a way to commu-
nicate to each other and share data, e.g., an application can request the permission
to send SMS through the appropriate service.

The Android OS and applications strongly rely on interprocess communica-
tion (IPC) and remote procedure calls (RPCs). To this end, Android relies on
Binder, a custom implementation of the OpenBinder protocol [74]. The Binder
protocol is quite complex, therefore in the following we highlight only the infor-
mation needed to understand CopperDroid’s analysis.

Just like any other RPC mechanism, Binder allows a Java process (e.g., an
application) to invoke methods of remote objects (e.g., services) as if they were
local methods, through synchronous calls. This is transparent to the caller and all
the underlying details (e.g., message forwarding to receivers, start or stop of pro-
cesses) are handled by the Binder protocol during the remote invocation. To work
properly, the caller application must know the remotely-callable methods with pa-
rameters. When a service needs to provide a binding, it must define a client-server
interface that allows applications to bind and interact with it; such an interface is
called bound service. If the service is used by other applications or across sep-
arate processes and requires multithreading, then the interface is usually defined
by means of the Android interface definition language (AIDL). Once defined, an
AIDL file is used to automatically generate client- and server-side code in the
form of a proxy class, used by a caller, and a stub class, extended by the callee to

45

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

implement the logic of the service. The AIDL files of core Android services are
available online. As described later, CopperDroid relies on such interfaces to au-
tomatically infer the interactions between applications from low-level events. Al-
though a few AIDL files may be missing (e.g., custom services), CopperDroid has
never experienced such an issue in our current experiments and we are nonethe-
less investigating automatic reverse engineering technique to overcome such an
issue. AIDL performs all the work to decompose objects into primitives that can
be marshalled across processes. Any kind of request and data exchanged among
clients and services go through Binder, whose thorough analysis allows therefore
to identify Android-specific behaviors (e.g., sending an SMS and accessing pri-
vate information).

Specifically, when IPC is performed from processA to processB , the calling
thread inA will wait until the next available thread in the thread pool ofB replies
with the results. The calling thread returns as soon as it receives such results. The
data sent in the transaction is a Parcel, a buffer of flattened data and meta-data
information. Dispatching of the message betweenA andB takes place by means
of a ioctl system call handled by the Binder kernel driver.

4.2 Related Literature
In this section we cite and compare against the most relevant work we believe
directly relates with CopperDroid.

4.2.1 Current Techniques
DroidScope [63] is a framework to create dynamic analysis tools for Android mal-
ware that trades off simplicity and efficiency for transparency: as an out-of-the-
box approach, it instruments the Android emulator, but it may incur high overhead
(for instance, when taint-tracking is enabled). DroidScope leverages VMI (Virtual
Machine Introspection) [62] to gather information about the system and exposes
hooks and a set of APIs, which enable the development of plugins to perform
both fine and coarse-grained analyses (e.g., system call, single instruction tracing,
and taint tracking). Differently from CopperDroid, DroidScope just offers a set of
hooks that can be used to build analysis to intercept interesting events but does
not perform any behavioral analysis per-se. For example, a tool leveraging Droid-
Scope can intercept every system call executed on an Android system, but would
still need to do its own VMI to inspect the parameters of each call. Following
this principle, CopperDroid could have been built on top of DroidScope, but at the
time we implemented it, the DroidScope framework was not publicly available.
Moreover, the main focus of our research is not to illustrate how to build a frame-

46

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

work or a clever VMI technique for Android systems, but rather to point out how
a proper system call-centric analysis—which includes a thorough IPC and RPC
Binder-related protocol analysis—and stimulation technique can comprehensively
expose Android malware behaviors, as shown by our extensive evaluation.

Enck et al. presents TaintDroid [75], a framework to enable dynamic taint
analysis of Android applications. TaintDroid’s main goal is to track how sensitive
information flow between the system and applications or between applications to
automatically identify leaks. Because of the complexity of the Android system,
TaintDroid relies on different levels of instrumentation to perform its analyses. For
example, to propagate taint information through native methods and IPC, Taint-
Droid patches JNI call bridges and the Binder IPC library. TaintDroid is both
extremely effective, as it allows to propagate tainting between many different lev-
els, and efficient, as it does that with a very low overhead. Unfortunately, the
price to pay is low resiliency and transparency: modifying internal components
of Android inevitably exposes TaintDroid to a series of detection and evasions
techniques. For instance, even applications with standard privileges can detect
TaintDroid’s presence by calculating checksums over instrumented and readable
components. Moreover, TaintDroid cannot track taintedness of native code. Con-
versely, applications that can escalate their privileges can go even further: iden-
tifying and disabling TaintDroid’s hooks and analysis. Furthermore, the decision
of modifying internal components also exposes TaintDroid to the problems deriv-
ing from constantly adapting the analysis code to an highly-mutable architecture,
such as the Android OS.

DroidBox is a dynamic Android malware analyzer [76]. While similar in con-
cept, CopperDroid and DroidBox have a main difference: the latter does not per-
form out-of-the-box analyses but leverages custom instrumentation of the Android
system and kernel to track a sample’s behavior, relying on TaintDroid to perform
taint tracking of sensitive information [75]. Results of the analysis are produced
through Android’s standard logging mechanism (e.g., logcat), augmented to in-
clude information about suspicious behaviors. Extended log messages are then
parsed offline. Using TaintDroid and instrumenting Android’s internal compo-
nents makes DroidBox prone to the problems of in-the-box analyses: malware
can detect and evade the analyses or, worse, even disabling them.

Andrubis [77] is an extension to the Anubis dynamic malware analysis system
to analyze Android malware [78, 79]. According to its web site, it is mainly built
on top of both TaintDroid [75] and DroidBox [76] and it thus shares their weak-
nesses (mainly due to operating “into-the-box”). In addition, Andrubis does not
perform any stimulation-based analysis, limiting its effectiveness in discovering
interesting Android-specific behaviors.

Aurasium [80] is a technique (and a tool) that enables dynamic and fine-
grained policy enforcement of Android applications. To intercept relevant events,

47

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

Aurasium instruments single applications, rather than adopting system-level hooks.
Working at the application level, however, exposes Aurasium to easy detection or
evasion attacks by malicious Android applications. For example, regular applica-
tions can rely on native code to detect and disable hooks in the global offset table
even without privilege escalation exploits. Aurasium’s authors state that their ap-
proach can prevent such attacks by intercepting dlopen invocations needed to
load native libraries. It is however unclear how benign and malicious code can
be distinguished, as this policy cannot be lightheartedly delegated to Aurasium’s
end-users. Conversely, CopperDroid’s VMI-based system call-centric analysis is
resilient to such evasions.

Google Bouncer [81], as its name suggests, is a service that “bounces” ma-
licious applications off from the official Google Play (market). Little is known
about it, except that it is a QEMU-based dynamic analysis framework. All the
other information come from reverse-engineering attempts [82] and it is thus im-
possible to compare it against our approach.

SmartDroid [83] leverages a hybrid analyses that statically identify paths that
lead to suspicious actions (e.g., accessing sensitive data) and dynamically deter-
mine UI elements that take the execution flow down paths identified by the static
analysis. To this end, the authors instrument both the Android emulator and An-
droid’s internal components to infer which UI elements can trigger suspicious
behaviors. They furthermore evaluate SmartDroid on a testbed of 7 different
malware samples. Unfortunately, SmartDroid is vulnerable to obfuscation and
reflection, which make it hard—if not impossible—to statically determine every
possible execution path. Conversely, CopperDroid’s dynamic analysis is resilient
to static obfuscation and reflection attempts.

Anand et al. propose ACTEve [84], an algorithm that leverages concolic exe-
cution to automatically generate input events for smartphone applications. ACTEve
is fully automatic: it does not require a learning phase (such as capture-and-replay
approaches) and uses novel techniques to prevent the path-explosion problem.

We acknowledge that although CopperDroid’s stimulations are proper, its ap-
proach is a best-effort attempt and could benefit from state-of-the-art techniques.
We however must keep in mind the overhead such techniques may introduce. For
instance, the aforementioned work (i.e., [83, 84]) do not seem to pay much at-
tention about performance issues. SmartDroid [83] reports no overhead measure-
ments and the average running time of ACTEve as reported in [84] falls within
the range of hours, which makes it ill-suited to automated large scale analyses.

48

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

4.3 CopperDroid
Our goal is to provide to the analyst a transparent environment to automatically
perform out-of-the-box dynamic behavioral analysis of any kind of Android ap-
plications (and, for this work, we are specifically interested in Android malware).
To this end, CopperDroid presents a unified analysis to characterize low-level OS-
specific behaviors (e.g., writing to a file, executing a program) and high-level
Android-specific (e.g., accessing personal data, sending an SMS) behaviors.

In particular, based on the observation that such behaviors are all achieved
through the invocation of system calls, CopperDroid’s VMI-based system call-
centric analysis faithfully describes Android malware behavior whether it is initi-
ated from Java, JNI or ELF code.

Android applications rely on IPC mechanism due to both operating system de-
sign and the need to interoperate among services. An application that requires, for
instance, to send an SMS, must perform a remote method invocation of the cor-
responding service. Any exchanged message between the client and service takes
place via the Binder protocol, which is implemented as a kernel driver. Therefore,
when an application needs to perform IPC, it has to invoke the appropriate ioctl
system call to allow Binder to dispatch the requested action to the corresponding
service and viceversa. Android Binder marshalls and unmarshalls the content of
the IPC message, i.e. a Parcel object, based on the information provided in the
AIDL (see Section 4.1.5).

To this end, we provide and implement in CopperDroid a novel technique to
perform automatic unmarshalling of any AIDL available on the system. This al-
lows to easily retrieve a human and error-free representation of the content of
the IPC message, which is of paramount importance to describe and understand
Android-specific behaviors (e.g., sending an SMS, accessing private information).
Android malware low-level OS-related behaviors (e.g., opening and writing to a
file, creating a process, sending network data) are of course achieved through sys-
tem calls and therefore intercepted1 by CopperDroid unified analysis.

In other words, any representative application behavior is the union of low
and high level information identified by system calls, parameters and Binder un-
marshalled data. This result highlights and emphasizes the strength of an unified
analysis: a mere system call tracking would not provide any behavior insight if
were not combined with Binder information.

1The CopperDroid emulator intercepts system calls and extracts their parameters—Binder is a
specific case of such.

49

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

Automatic Reconstruction of Android Malware Behaviors
Kimberly Tam

Information Security Group
Royal Holloway University of London

Aristide Fattori, Alessandro Reina
Dipartimento di Informatica

Università degli Studi di Milano

Lorenzo Cavallaro
Information Security Group

Royal Holloway University of London

I. INTRODUCTION

With the rising number of mobile platform devices and
users [5], a large number of cyberattacks are now focused on
Android devices. This shift has resulted in a large, growing
pool of mobile malware requiring quick and accurate analysis
to determine the proper course of action. To this end, we
recently presented CopperDroid [6], an approach built on top
of QEMU [1] to automatically perform out-of-the-box dynamic
behavioral analysis of Android malware. Based on the observa-
tion that all interesting Android actions are eventually carried out
through system calls, CopperDroid presents a unified system call-
centric analysis able to capture both low-level OS-specific (e.g.,
writing to a file, spawning a process) and high-level Android-
specific (e.g., sending an SMS, placing a phone call) behaviors.
In particular, high-level Android behaviors are implemented
through the binder protocol, an efficient IPC/RPC mechanism
carried out via ioctl system calls. It is important to note that
Android objects involved in this IPC/RPC communication are
marshalled (i.e., serialized) and sent to the right endpoint via
ioctl, so the requested task may be carried out.

Although CopperDroid analysis may generate a vast number of
interesting events, we continuously aspire to capture and abstract
high-leveled core behaviors through these events. In particular, it
would be desirable to automatically 1) group related sequences of
system calls to express a more abstract-yet-meaningful behavior
(e.g., an open system call, a sequence of writes on the same
resource interleaved by unrelated system calls, a dup-like system
call on the same resource would result in a file creation behavior
of a specific resource), and 2) unmarshal (i.e., deserialize) the
binder-related blob of data (known as parcel) to acquire a
comprehensive understanding of the observed Android-specific
behavior under analysis. To this end, we make the following
contributions:

1) We build a data dependency graph over the set of observed
system calls, and perform forward slicing to select all
instructions dependent on a particular open-related system
call [7]. An interesting side-effect of such an analysis is
the ability to automatically recreate the resource associated
with a stream of sliced system calls, which, depending
on the resource, can be fed back to CopperDroid (e.g.,
Android app created at run-time), downloaded for further
inspection, or submitted to other analysis systems.

2) Whenever a binder transaction is observed (i.e., ioctl
call with a BINDER_WRITE_READ command), we rely on
an Oracle (a Java application running in an unedited An-
droid emulator alongside CopperDroid) to analyze at run-
time, through Java reflection, all the complex marshalled
Java objects involved in the binder communication, and
return their unmarshalled version to CopperDroid.

In the following, we detail the aforementioned analyses.

II. RESOURCE RECONSTRUCTOR

The purpose of the resource reconstructor is twofold: to map
a stream of related low-level events to a more meaningful high-
level behavior, and to recreate any file a sample software may
have created.

1 [c5b02000-35-35-zygote] fork() = 0x125
2 [c5b02000-35-35-zygote] getpgid(0x41) = 0x23
3 [c5b02000-35-35-zygote] setpgid(0x125, 0x23) = 0x0
4 [c1c18000-293-293-zygote] getuid32() = 0x0

5 [c1c18000-293-293-zygote] open(/sdcard/tasks, 0x20242, 0x1b6) = 0x13

6 [c1c18000-293-293-zygote] fstat64(0x13, 0xbef7f910) = 0x0
7 [c1c18000-293-293-zygote] mprotect(0x40008000, 0x1000, 0x3) = 0x0
8 [c1c18000-293-293-zygote] mprotect(0x40008000, 0x1000, 0x1) = 0x0

9 [c1c18000-293-293-zygote] write(0x13 - /sdcard/tasks, 0xa24c0 ‘0’, 0x1) = 0x1

10 [c1c18000-293-293-zygote] close(0x13) = 0x0

11 [c1c18000-293-293-zygote] prctl(0x8, 0x1, 0x0, 0x0, 0x0) = 0x0
12 [c1c18000-293-293-zygote] setgroups32(0x2, 0xbef7fa20) = 0x0
13 [c1c18000-293-293-zygote] setgid32(0x2722) = 0x0

Fig. 1. Trace File will System Calls and Parameters

By implementing data dependencies within a stream of low-
level system calls, including their parameters, CopperDroid is
capable of abstracting high-level behaviors such as file accesses.
We capture these notions of behavior by first intercepting all
system calls between the candidate application in the left em-
ulator of Figure 2 and the system. A sample stream of system
calls, as seen by the analysis block in Figure 2, is provided for
consideration in Listing II. In this example, initial analysis by
the CopperDroid “System Call Tracking” block is capable of
detecting a file access action from the highlighted lines, however,
with the addition of forward slicing and data dependencies in the
embedded reconstructor, not only will the file access be detected,
but the file “tasks” will be recreated in the sdcard directory with
the value “0” written to it.

More specifically, as the reconstructor performs forward slic-
ing on the stack of system calls, it selects the set of instructions
associated with each file opening and re-creates their effects. As
each system call is emulated, meta data such as flags, process and
group process IDs, are retained as the contents of the recreated
file are edited accordingly. This is essential as each set of system
calls, including instructions such as open/close (fd, flags, and
mode), write/writev (new text, fd, fd’s mode, fd’s offset), lseek

CopperDroid Emulator

Android OS

Dalvik

Android/Linux Kernel Android Emulator

Unmarshal Oracle App

CopperDroid Analysis

Interface
Token

Identifier

Binder
Analysis

System
Call

Tracking

Resource
Reconstruction

Unmarsh-
alled

Params

RSP
TCP

Fig. 2. Information flow between CopperDroid emulator running and
stimulating an application, the CopperDroid Analysis tool, and an
unedited Android emulator running the unmarshalling Oracle application.Figure 4.2: CopperDroid Architecture.

4.3.1 CopperDroid Architecture
The architecture of CopperDroid is shown in Figure 4.2.

Our whole Android system runs on top of a modified Android emulator (the
CopperDroid emulator), which is built on top of QEMU [64]. To this end, we have
enhanced (i.e., instrumented) the Android emulator to enable system call tracking
and support our out-of-the-box system call-centric analyses. As Figure 4.2 shows,
all our analyses are executed outside the CopperDroid emulator and we rely on
virtual machine introspection (VMI) [62] to fill the semantic gap between our
emulator and the Android OS.

To allow for a flexible host-to-emulator communication and introspection,
CopperDroid leverages the remote serial protocol (RSP) of the GNU debugger [85]
(see Figure 4.2). The Android emulator provides GDB support via GDB stubs to
developers. A GDB stub is an implementation of RSP, which enables the target
machine to communicate with the host machine on which a remote GDB session
with a client is established. Therefore, any client that is able to communicate over
RSP can debug the target machine. Please note that this does not modify any-
how the analyzed Android system, nor it can be detected by apps running inside
CopperDroid’s emulator.

Relying on RSP allows for an interesting twofold way of analyzing malicious
samples. Analysts can in fact opt for manual (through a debugger) or automatic
analyses, allowing them to choose between the one that better fits their specific
needs of the moment. For instance, a manual analysis may be the best initial
choice for a quick-and-dirty examination of an unknown sample, which can even-
tually drive the analyst to develop a thorough analysis as a CopperDroid’s plugin
written in the Python programming language.

50

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

4.3.2 Processes and Threads
In addition to tracking system calls, CopperDroid provides information about all
the processes and threads running on the system. Not only this allows an analyst to
maintain an up-to-date view of the system state (e.g., knowing whether a malware
spawns other processes or kill existing ones, for instance, as part of a privilege
escalation exploit), but it is also of primary importance to allow for a thorough
IPC and RPC analysis, as explained in the next section.

As outlined in Section 4.1, each Android application executed on the OS is
encapsulated in a Dalvik VM, which runs as a user-space process with its own
kernel process descriptor. Such a descriptor is identified by a task_struct Linux
kernel data structure, which contains important process-related information.

The Linux kernel identifies a process with a process ID (PID), stored at a
specific offset within the task_struct. Linux associates a distinct PID to each
process or lightweight process. A lightweight process is similar to a regular one,
but it shares a unique thread group leader and resources with other lightweight
processes of a given process. The thread group leader ID (TGID) is also stored at a
specific offset within the task_struct, which is itself a field of the thread_info
structure.

To gather information about all the processes and threads running (or ready to
run) on the system, CopperDroid must retrieve the address of the current process’
thread_info variable (through which is possible to retrieve all the other running
or ready-to-run threads and processes). Such an address coincides with the bottom
of the pages shared with the kernel stack. To retrieve such an address, similarly
to the approach adopted by the Linux kernel, CopperDroid masks out the 13 least
significant bits of the kernel stack pointer.

It is worth noting that CopperDroid strives to be as transparent as possible,
working properly even in the absence of any kernel or debugging symbols. It only
relies on the knowledge of a limited number of well-known offsets within the main
kernel data structures (e.g., thread_info) to retrieve the semantic information
mentioned above.

4.3.3 Tracking System Call Invocations
Tracking system call invocations is at the basis of virtually all the dynamic mal-
ware behavioral analysis systems [78, 86, 87]. Most—if not all—of such systems
implement a form of VMI to track system call invocations on a virtual x86 CPU.
Although similar, the ARM architecture underlying the Android emulator—and
therefore CopperDroid—presents a few details that may challenge VMI-based sys-
tem call invocations tracking and are thus worth to rough out.

The ARM ISA provides the swi instruction for invoking system calls, which

51

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

causes the well-known user-to-kernel transition by triggering a software interrupt.
Once the swi instruction is executed, the cpsr register is set to supervisor mode
with the program counter register pointing to the system call handler. To track sys-
tem call invocations, we instrument QEMU when the swi instruction is executed.
That instruction is not (dynamically) binary translated and can therefore easily
be intercepted when QEMU handles the proper software interrupt. To allow trad-
ing off completeness for performances, our instrumentation allows to dynamically
choose a set of processes and system calls of relevance. When the swi instruction
is intercepted, we check if a system call is actually being invoked, if that is in the
list of the to-be-tracked system calls, and if the current process is in the list of the
to-be-monitored processes. If such conditions hold, our CopperDroid-modified
emulator raises a debug interrupt which causes the GDB stub to notify the Cop-
perDroid analysis component, running outside the instrumented emulator, that a
system call is about to start executing. Of course, it is also of paramount impor-
tance to detect when a system call is about to return as that allows to save its return
value, which enriches the analysis with additional semantic information. Usually,
the return address of a system call invocation instruction swi is saved in the link
register lr. While it seems natural to set a breakpoint at that address to retrieve
the system call return value, a number of system calls may actually not return at
all (e.g., exit, execve). Therefore, instead of relying on a cumbersome heuris-
tic, the generic approach CopperDroid adopts is to intercept CPU privilege-level
transitions.

In particular, CopperDroid detects whenever the cpsr register switches from
supervisor to user mode (cpsr_write), which allows to uniformly retrieve system
call return values, if any.

4.3.4 Automatic AIDL Unmarshalling
As outlined in Section 4.1.5, the Android system heavily relies on kernel imple-
mented IPC and RPC channels to carry out tasks and (some) permission-related
policy enforcement. Therefore, tracking and dissecting the communications that
happen over this media is a key aspect for reconstructing high-level Android-
specific behaviors. Although recently explored to enforce user-authorized security
policies [80], to the best of our knowledge, CopperDroid is the first approach to
carry out a detailed analysis of such communication channels to comprehensively
characterize OS-specific and Android-specific behaviors of malicious Android ap-
plications.

Let us consider an application that sends an SMS as our running example.
From a high-level perspective (e.g., Java methods), sending an SMS roughly cor-
responds to obtaining a reference to an instance of the class SmsManager, the
phone SMS manager, and sending the SMS out by invoking the method

52

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

write_size

write_consumed

write_buffer

...

BC_* Params BC_TR Params BC_* Params

target

code

uid
...

buffer

InterfaceToken Param 1 Param 2 ...

ioctl(binder_fd, BINDER_WRITE_READ, &binder_write_read);

Figure 4.3: Parameters of a BINDER_WRITE_READ ioctl.

sendTextMessage on the instance, with the destination phone number and the
text message as the method’s arguments. This corresponds to locating the Binder
service isms and remotely invoking its sendText method with proper arguments.

Conversely, from a low-level perspective, the same actions correspond to the
sender application invoking two ioctl system calls on /dev/binder: one to lo-
cate the service and the other to invoke its method. CopperDroid thoroughly intro-
spects the arguments of each binder-related ioctl system call to reconstruct the
remote invocation. This allows to identify the invoked method and its parameters,
enabling de-facto to infer the high-level semantic of the operation. Although the
Binder protocol implements other ioctls, the BINDER_WRITE_READ is the most
important one as it allows to transfer data between processes. Figure 4.3 depicts
a few details about the parameter of these ioctls. As can be observed, they may
embed one or more operations for the Binder protocol. These operations are stored
sequentially in the write_buffer field of the ioctl’s last argument.

In particular, we focus our analysis on Binder transactions, i.e., IPC operations
that actually transfer data (also responsible for RPC). To identify them, Copper-
Droid parses the memory structures passed as a parameter to the ioctl system
call and identifies BC_TRANSACTION and BC_REPLY (see [65] for further details).

However, just intercepting transactions may be of limited use when it comes
to understand Android-specific behaviors. In fact, the Binder ioctl-provided raw
data that flow throughout transactions are in the form of Parcel (marshalled)
objects. Moreover, every interface the client and service both agree upon has its
own set of predefined methods signature. As the Android framework counts about

53

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

Listing 4.1: Oracle Android Application
Parcel unparcel = Parcel.obtain();
// 1) Receive byte array ‘‘data’’ and string list ‘‘types’’
RunTCPSocket();

for (String type : types) {
unparcel.unmarshall(data, offset, data.length);
// 2a) Unmarshall Primitives and Primitive Arrays
if (‘‘double’’.equals(type)) {unparcel.readDouble();}
if (‘‘string’’.equals(type)) {unparcel.readString(); }
if (‘‘BooleanArray’’.equals(type)) {
Arrays.toString(parcel.createBooleanArray()); }

// 2b) Unmarshall Class Objects
Class cl = Class.forName(type);
Parcelable g=unparcel.readParcelable(cl.getClassLoader());
Field CT = cl.getDeclaredField(‘‘CREATOR’’);
Creator creator = (Creator) CT.get(g);
Object unparceled = creator.createFromParcel(unparcel);

// Update string list ‘‘out’’ and ‘‘offset’’
}

// 3) Send Unmarshalled String Representations
runTcpSend(out);

300 AIDL interfaces, manual unmarshalling is unfeasible.
To understand our novel proposed automatic unmarshalling technique con-

sider the relationship between the unmarshaller and CopperDroid in Figure 4.2.
CopperDroid first acquires, at run-time, IPC/RPC binder related data from the

leftmost emulator, then redirects the data to our constructed Oracle application
residing in the rightmost emulator. It is important to note that, while the leftmost
emulator has been altered to fit CopperDroid’s needs, the emulator running the Or-
acle is a separate, unaltered Android emulator preventing local privileged malware
from altering communications from CopperDroid to hide itself. This redirection is
split into two sets of data of 1) marshalled data derived from binder communica-
tion by the CopperDroid “Binder Analysis” block and 2) a matching list of prim-
itive types and class names corresponding to the sequence of marshalled data,
created through the utilization of intercepted AIDL tokens, or identifiers. Once
acquired, and with the use of Java reflection, the Oracle is able to unmarshal all
the complex serialized Java objects, returning all string representations of unmar-
shalled data to CopperDroid for further Android-specific behavioral analysis.

In detail, the Oracle Android application may unmarshal the binder commu-
nication in two unique ways, depending on whether the type of data is a primitive
type or a class object. White iterating through the list of types and class names, if
the type is identified as primitive, the correct read function provided by Parcel is
implemented. Part 2a of Listing 4.1 shows an example of reading both primitive
and primitive data arrays from a parcel. Alternatively, for unmarshalling class ob-
jects, Parcel provides Parcelable methods that allow objects to both write and
read themselves into Parcels. Listing 4.1 part 2b depicts the unmarshalling of an
Intent class object; including both the class type and the class data.

54

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

Unlike primitives, to unmarshal a class instance, the Oracle application re-
quires Java reflection [88] and the “creator” type before reading the remaining
class data: in our example, the class data of an Android Intent entails a class
name, action, and extras. The creator field is similar to the “type” already pro-
vided by CopperDroid, but is only implemented when unmarshalling class objects.
Moreover, the creator field must be readable if the Oracle is to correctly construct
the new object and propagate the new object with the remaining class data. We can
see this in Listing 4.1, where the type “Intent” is used in Oracle step 2b to manip-
ulate parcelable protocols and acquire that class object’s Parcelable.Creator,
and then the creator is properly used construct the new object and read in its data.

Once either a primitive or class type has been unmarshalled, the string rep-
resentation is appended to an output string list, and the marshalled data offset is
updated to point of the next unmarshalled item. Additionally, the Oracle iterates
to the next type or class name on the given list. This can be seen in the for loop
encasing Listing 4.1 step 2 in our Oracle. This automated multi-threaded Oracle
relieves us of the daunting manual effort of unmarshalling all 300 possible AIDL
interfaces, and handles multiple large requests both quickly and accurately.

4.3.5 Resource Reconstructor
The purpose of our resource reconstructor [89] is twofold: to map a stream of
related low-level events to a more meaningful high-level behavior, and to recreate
any file a sample software may have created.

By implementing data dependencies within a stream of low-level system calls,
including their parameters, CopperDroid is capable of abstracting high-level be-
haviors such as file accesses. We capture these notions of behavior by first in-
tercepting all system calls between the candidate application in the left emulator
of Figure 4.2 and the system. A sample stream of system calls, as seen by the
analysis block in Figure 4.2, is provided for consideration in Listing 4.2. In this
example, initial analysis by the CopperDroid “System Call Tracking” block is ca-
pable of detecting a file access action from the highlighted lines, however, with the
addition of forward slicing and data dependencies in the embedded reconstructor,
not only will the file access be detected, but the file “tasks” will be recreated in
the sdcard directory with the value “0” written to it.

More specifically, as the reconstructor performs forward slicing on the stack
of system calls, it selects the set of instructions associated with each file opening
and re-creates their effects. As each system call is emulated, meta data such as
flags, process and group process IDs, are retained as the contents of the recreated
file are edited accordingly. This is essential as each set of system calls, including
instructions such as open/close (fd, flags, and mode), write/writev (new text, fd,
fd’s mode, fd’s offset), lseek (fd, fd’s offset), dup (old fd, new fd, flags, mode,

55

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

Listing 4.2: Trace File will System Calls and Parameters
[c5b02000-35-35-zygote] fork() = 0x125
[c5b02000-35-35-zygote] getpgid(0x41) = 0x23
[c5b02000-35-35-zygote] setpgid(0x125, 0x23) = 0x0
[c1c18000-293-293-zygote] getuid32() = 0x0

[c1c18000-293-293-zygote] open(/sdcard/tasks, 0x20242, 0x1b6) = 0x13

[c1c18000-293-293-zygote] fstat64(0x13, 0xbef7f910) = 0x0
[c1c18000-293-293-zygote] mprotect(0x40008000, 0x1000, 0x3) = 0x0
[c1c18000-293-293-zygote] mprotect(0x40008000, 0x1000, 0x1) = 0x0

[c1c18000-293-293-zygote] write(0x13 - /sdcard/tasks, 0xa24c0 ‘0’, 0x1) = 0x1

[c1c18000-293-293-zygote] close(0x13) = 0x0

[c1c18000-293-293-zygote] prctl(0x8, 0x1, 0x0, 0x0, 0x0) = 0x0
[c1c18000-293-293-zygote] setgroups32(0x2, 0xbef7fa20) = 0x0
[c1c18000-293-293-zygote] setgid32(0x2722) = 0x0

new offset), and unlink (fd)1, must share some of the same meta data as depicted
by data dependencies (e.g. file descriptors).

This process of automatically grouping related sequences of low-level sys-
tem calls allows us to abstract more meaningful high-level behaviors, such as file
recreation. Using real world samples we were able condense large traces into
high-level behaviors, recreate malicious files such as rageagainstthecage [90] or
other applications, which can be fed back into CopperDroid to uncover additional
exhibited behaviors and its intended use.

4.3.6 Path Coverage
Although effective, a simple install-then-execute dynamic analysis may miss a
number of interesting (malicious) behaviors. On the one hand, this problem
has long been affecting traditional dynamic analysis approaches as non-exercised
paths are simply not analyzed. If such paths host additional (or the only) mali-
cious behaviors, then any dynamic analysis would fail unless proper, but gener-
ally expensive and complex exploration techniques are adopted [91, 92]. On the
other hand, this problem is exacerbated by the fact that mobile applications are
inherently user driven and interaction with applications is generally necessary to
increase coverage. For instance, let us consider an application with a manifest
similar to the one depicted in Figure 4.1. After installation, the application would
only react to the reception of SMS, showing no interesting nor additional behav-
iors otherwise.

Traditional executables have a single entry point, while Android applications
may have multiple ones. Most applications have a main activity, but ancillary
activities may be triggered by the system or by other applications and the execu-

1Unlink is not fully recreated, as that would remove files we are interested in. However, the
attempt itself is an action worth noting, therefore files are simply renamed to reflect this system
call.

56

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

Stimulation Type Parameters Cond.

1 Received SMS Text, from number Ø
2 Incoming call From number, duration Ø
3 Tapping Coordinates, pause
4 Location update Geospatial coordinates Ø
5 Battery status Amount of battery Ø
6 Keyboard input Typed text
7 Phone Reboot - Ø

Table 4.1: Main stimulations and parameters. A Ø identifies a conditional stimulation.

tion may reach them without flowing through the main. To address such coverage
problem, CopperDroid implements a novel approach (based on extracting infor-
mation from the malware Manifest) to artificially stimulate the analyzed mal-
ware with a number of events of interest. For example, injecting events such
as phone calls and reception of SMS texts would lead to the execution of the
registered application’s broadcast receivers. Another example that comes from
our experience with Android Malware is the BOOT_RECEIVED intent, that many
samples use to get executed as soon as the victim system is booted (much like
\CurrentVersion\Run registry keys on Windows systems).

The Android emulator offers the possibility to inject a considerable number
of artificial events to stimulate a running application. These range from very low-
level hardware-related events (e.g., loss of the 3G signal) to higher-level ones (e.g.,
incoming calls, SMS). CopperDroid could adopt a fuzzing-like stimulation strat-
egy and trigger all the events that could be of interest for the analyses, ignoring
information that can be extracted from the target application. That would unfortu-
nately be of limited effect because of the underlying Android security model and
permission system, which can instead be leveraged to carry out a fine-grained tar-
geted stimulation strategy. To this end, CopperDroid examines applications man-
ifest to extract events and permission-related information to drive the malware
stimulation approach.

There are a few exceptions to the aforementioned must-declare-everything
rule. Tapping and keyboard interactions are implicit and allowed to every Android
application. Therefore, a limited number of stimulation are always performed, re-
gardless whether they are declared in the application manifest. Furthermore, an
application could dynamically register a broadcast receiver for custom events at
run-time. CopperDroid is able to intercept such operations and add a proper stim-
ulation for the newly registered receiver.

To perform its custom stimulation, CopperDroid leverages the Android emu-
lator capabilities to inject a number of artificial events into the emulated system.
In particular, CopperDroid leverages Monkeyrunner, a tool that provides an out-
of-the-box API to control an Android device or emulator, through the Python

57

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

Behavior
Exec

external
application

Shell Generic

Privilege
escalation

Install
APK

Access
Personal

Info.

SMS

Contacts

Phone
Info.

Location

Network
Access

HTTP

DNS

Other

SMS Send

Make Call Alter FS

Figure 4.4: Hierarchical map of behaviors.

programming language [93].
A summary of the main events CopperDroid handles is reported in Table 4.1,

which also shows the parameters that can be customized for each event. The last
column of the table points out whether the stimulation depends on the manifest-
extraction mechanism or dynamic triggering.

58

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

4.3.7 Suspicious Behaviors
Up to here, we have not yet defined what we consider to be a suspicious behavior2.
To this end, we manually examined the results of CopperDroid’s analyses (i.e.,
system call invocations tracking and Binder analysis) on a number of randomly
selected Android malware extracted from the samples sets at our disposal [67,68].

Figure 4.4 shows the insights of our examination, which allowed us to iden-
tify six macro class of suspicious behaviors. Each class contains one or more
behavioral model, which is defined by a set of actions. Actions are traced through
CopperDroid and can belong to any level of behavior abstraction (e.g., OS-specific
and Android-specific behaviors).

Interestingly, some behaviors are well-known and shared with the world of
non-mobile malware. Others, such as those under the “Accessing Personal Info.”
class, are instead inherently specific to the mobile ecosystem.

Every terminating class in the map corresponds to a behavioral model that
can be expressed by an arbitrary number of actions, depending on its specific
complexity. The complexity of these elements is very variable. Some are defined
as a single system call, such as execve. Others, such as “SMS Send” or those
under “Access Personal Info”, are defined as a set of transactions of the Binder
protocol. Yet others are defined as multiple consecutive system calls. For instance,
outgoing HTTP traffic is modeled as a graph with a connect system call, followed
by an arbitrary number of send-like system calls, whose payload is parsed to
detect HTTP messages, possibly interleaved by a number of arbitrary unrelated
non-socket system calls.

Terminating classes do not forcibly correspond to just one of the aforemen-
tioned models but may also contain a set of them. To clarify, consider the follow-
ing two examples:
execve(’pm’,[’pm’, ’install’, ’-r’, ’New.apk’],...);

Intent intent = new Intent(Intent.ACTION_VIEW);
intent.setDataAndType(Uri.fromFile(\
new File("/mnt/sdcard/New.apk")), \

"application/vnd.android.package-archive");
startActivity(intent);

CopperDroid recognizes actions triggered by both these snippets of code as be-
longing to the class “Install APK”, but yet they are very diverse (respectively, a
system call and a Binder protocol transaction).

The behavioral map in Figure 4.4 has been built on top of the experiments
conducted on a large corpus of malware, but we are well-aware that it is very
hard, if not impossible, for it to be complete.

2It is worth noting that CopperDroid is able to automatically reconstruct the whole behavior of
an Android malware, being it suspicious or not.

59

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

Currently we do not perform malware detection. Nevertheless, CopperDroid
tries to address the semantic gap problem in behavioral monitoring by classify-
ing actions into high behavioral classes. To achieve this, we observe temporal
sequence of system calls, their parameters and the use of system resources. Based
on these information we are able to abstract OS-specific and Android-specific be-
haviors into high-level behaviors, identified with classes. At the time of writing,
we rely on our custom regular expression behavioral patterns and detection en-
gine to identify behavioral models. Figures 4.5 and 4.6 show examples of reports
provided by our CopperDroid web service.

Figure 4.5: Application Trace: Binder information and unmarshalled data

Figure 4.6: Application Trace: Command Execution and File System Access

Defining and formalizing additional behaviors as well as adopting a more so-
phisticated and resilient abstract behavior language [94,95] are part of our ongoing
research effort.

60

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

Criterion Gdl. Respected Criterion Gdl. Respected

Removed Goodware A.1 3 Described NAT B.5 7

Balanced Families A.2 7 Interpreted FPs/FNs B.6 7

Separated Datasets A.3 7 Interpreted TPs B.7 7

Higher Privileges A.4 3 Removed moot samples C.1 3

Mitigated Artifacts A.5 3 Used Many Families C.1 3

Avoided Overlays A.6 3 Real-world FPs/TPs exp. C.2 7

Listed Malware B.1 3 Used multiple OSes C.3 7

Listed Malware Families B.2 3 Added user interaction C.4 3

Described Sampling B.3 7 Allowed Internet C.5 3

Mentioned OS B.4 3

Table 4.2: Prudent guidelines, as defined in [96].

4.4 Evaluation
Our experimental setup is as follows. We ran an unmodified Android Ginger-
bread image3 on top of our CopperDroid-enhanced emulator. The system was
customized to include personal information, such as contacts, SMS texts, call logs,
and pictures to mimic as closely as possible a real device. Each analyzed malware
sample was installed in the emulator and traced until a timeout was reached. At
the end of the analysis, a clean execution environment was restored to prevent cor-
ruptions and side-effects caused by installing more than one malware sample in
the same system. To limit noisy results, each sample was executed and analyzed
6 times: thrice without stimulation and thrice with stimulation; results of single
executions were then merged.

As shown in Table 4.2, our experiments were designed to comply as much
as possible with recently presented guidelines when performing experiments on
malware [96]. Please note that most of the unmet principles were out of scope to
CopperDroid (e.g., no FPs nor TPs are reported as currently CopperDroid does not
perform any classification nor detection), while a few others simply required addi-
tional time (e.g., C.3). However, contrarily to related work (e.g., DroidScope [63]
and Aurasium [80]), CopperDroid is independent on the underlying Android sys-
tem it analyzes (for instance, we have successfully ported CopperDroid to the
latest Android version, already). Part of our future plans is to analyze our data set
in such new settings to explore whether and how the behavior of Android malware
is influenced by different OS versions.

We performed a threefold experiment on three different malware datasets: two
publicly available [67, 68] and one provided by McAfee [97], respectively com-

3As of March 2013, Gingerbread is still the most widespread Android version.

61

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

Malware Dataset Samples w/ Add. Behaviors Avg. Increment Std. Dev

Genome 752/1226 (60%) 2.9/10.3 (28.1%) 2.4/11.8
Contagio 289/395 (73%) 5.2/23.6 (22.0%) 3.3/19.8
McAfee UK 836/1365 (61%) 6.5/22.8 (28.5%) 9.5/30.1

Table 4.3: Summary of stimulation results, per dataset.

Malware Samples w/ Add. Behavior Incr. Behavior
Family Behaviors w/o Stim. w/ Stim.

LVedu 33/56 26.93 5.2 (19%)
PJApps 36/39 27.41 6.1 (22%)
BaseBridge 10/12 4.5 3.3 (73%)
SMSTrack 4/4 33.5 60.5 (180.6%)
Foncy 2/2 1 4 (400%)

Table 4.4: Excerpt from the overall McAfee samples analysis.

posed of 1,226, 395 and 1,365 samples, counting more than 2,900 samples.
To evaluate the effectiveness of CopperDroid stimulation approach we pro-

ceeded as follows. First, we analyzed all the samples without external stimulation.
Then, we performed the stimulation-driven analysis of the same malware sets, as
outlined in Section 4.3.6.

A summary of the effects of the stimulation on the three datasets is presented
in Table 4.3. The results of our analysis on the new McAfee dataset4(in Table 4.6)
shows 836 out of 1365 (61%) McAfee samples exhibited additional suspicious
behaviors (see Section 4.3.7 for what we consider to be a suspicious behavior)
and, on average, the number of additional behaviors was roughly 6.5, out of an
average number of exhibited behaviors of 22.8, observed during non-stimulated
executions.

Table 4.4 reports an excerpt of the results of CopperDroid analysis on the
McAfee dataset (the complete results are reported in Table 4.6). To exemplify,
let us consider the second row. The malware family PJApps contains 39 samples
of which 36 exhibited additional behaviors when stimulated by the stimulation-
driven CopperDroid analysis. More precisely, during the non-stimulated execu-
tions, we observed an average of 27.41 behaviors for each sample of the family,
while the stimulated executions allowed to discover an average of 6.1 additional,
previously unseen, behaviors.

During the analysis of the McAfee dataset, more than 10% of the samples did
not exhibit any behavior, regardless of the stimulation technique adopted. Nearly

4We would like to point out that the dataset provided by [67, 68] are 1-year old, while the
McAfee dataset evaluated for this dissertation was snapshotted on Feb 2013.

62

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

Behavior Class Stimulation: 7 Stimulation: 3

FS Access 889/1365 (65.13%) 912/1365 (66.81%)
Access Personal Info. 558/1365 (40.88%) 903/1365 (66.15%)
Network Access 457/1365 (33.48%) 461/1365 (33.77%)
Exec. External Appf. 171/1365 (12.52%) 171/1365 (12.52%)
Send SMS 38/1365 (2.78%) 42/1365 (3.08%)
Make/Alter Call 1/1365 (0.07%) 55/1365 (4.03%)

Table 4.5: Overall behavior breakdown of McAfee samples.

half of these samples did so because they could not get installed successfully on
the CopperDroid-enhanced emulator, while the other half stayed likely dormant
or did not exhibit any interesting behavior until CopperDroid analysis timeout hit
(due to code coverage issue or VM evasions, for instance). Reasons are manifold,
and investigating such issues is part of our ongoing research effort. However, it
is worth noting that such limitations are not specific to CopperDroid, but are open
issues of dynamic analysis or VM-based techniques [98], in general.

As we discussed in Section 4.2, solutions to improve code coverage may be
built on top of symbolic execution [84, 99], for instance, but unfortunately they
do not scale well and are ill-suited to perform large scale analyses such as those
performed by CopperDroid.

Table 4.5 reports the overall breakdown of the observed behaviors (see Fig-
ure 4.4) on McAfee dataset. Each row identifies the class of behavior and how
many samples over the total exhibited at least one occurrence of such behavior,
without and with stimulation, respectively. As can be observed the two most influ-
enced behavioral class are Access Personal Information and Make/Alter Call. The
first is triggered by a non-negligible number of samples that receive an incoming
message sent by CopperDroid stimulation technique (and exhibit an access to the
user’s personal information, otherwise hidden). The latter is mostly due to a set
of malware that, whenever a call is received, hide its notification to the user.

4.4.1 Performance Evaluation
In this section we present an evaluation of CopperDroid’s introduced overhead
obtained through a number of different experiments conducted on a GNU/Linux
Debian 64-bit system equipped with an Intel 3.30GHz core (i5) and 3GB of RAM.
Benchmarking a multi-layered system, such as Android, in conjunction with a
complex technique, such as CopperDroid (and in an emulated environment), can
be a rather complicated task. For example, traditional benchmarking suites based
on measuring I/O operations are affected by caching mechanisms of emulated

63

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

environments. On the other hand, CPU-intensive benchmarks are meaningless
with respect to the overhead introduced by CopperDroid, as it mainly operates on
system calls.

To address such issues, we performed two different benchmarking experi-
ments. The first is a macrobenchmark that tests the overhead introduced by Cop-
perDroid on common Android-specific actions, such as accessing contacts and
sending SMS texts. Because such actions are performed via the Binder protocol,
these tests give a good evaluation of the overhead caused by CopperDroid’s Binder
analysis infrastructure. The second set of experiments is a microbenchmark that
measures the computational time CopperDroid needs to analyze a subset of inter-
esting system calls.

To execute the first set of benchmark, we created a fictional Android applica-
tion that performs generic tasks, such as sending (SEND_SMS) and reading (SMS) of
SMS texts, accessing local account information (GET_ACC), and reading all con-
tacts (CONTACTS). We then ran the test application a sufficient number of iterations
(i.e., 100 times) and collected the average time required to perform these opera-
tions under 3 different settings: on an unmodified Android emulator (i.e., without
CopperDroid—baseline), on a CopperDroid-enhanced emulator with CopperDroid
configured to monitor the test application (the common setting when analyzing
a piece of malware—CD (targeted)), and on a CopperDroid-enhanced emulator
with CopperDroid configured to track system-wide events (CD (full)). Results
are reported in Figure 4.7 (A). As can be observed, the overhead introduced by
the targeted analysis is relatively low, respectively ≈ 26%, ≈ 32%, ≈ 24% and
≈ 20%. On the other hand, system-wide analyses increase the overhead consider-
ably (>2x) because of the number of Android components that are concurrently
analyzed.

The second set of experiments measures the average time required to inspect
a subset of interesting system calls analyzed by CopperDroid. This experiment
collected more than 150,000 system calls obtained by instructing the system to
run applications subjected to arbitrary (and artificial) workloads. As tracking a
system call requires to intercept entry and exit execution points, we report such
measures separately, as shown in Figure 4.7 (B) (the average times are 0.092ms
for entry and 0.091ms for exit).

64

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

(A)

(B)

Figure 4.7: Binder Macrobenchmark (A) and System Call Microbenchmark (B).

Malware Family Samples w/ Add. Behaviors Behavior w/o Stim. Incr. Behavior w/ Stim.

Ackposts 1/1 4 3(75%)
Actrack 1/1 4 1(25%)
AndroidSMS 2/2 0 1(⊥)
Anserver 13/21 16.48 5.2(32%)
ApkMon 1/2 49 1(2%)
AppHnd 4/4 37.25 16.8(45%)
AreSpy 1/1 11 6(55%)
Arspam 1/1 3 2(67%)
BackReg 1/1 78 12(15%)
Backscript 2/6 9.67 19.5(202%)
BaseBridge 10/12 4.5 3.3(73%)
Bgyoulu 3/5 17.6 4(23%)
BookFri 1/1 15 4(27%)
Carotap 2/2 4 3(75%)
Coolpaperleek 1/1 55 4(7%)
Crusewin 4/4 6.25 8.5(136%)
Dialer 0/1 1 0(0%)
DiutesEx 23/43 26.58 8.9(33%)
DIYAds 18/18 163.72 37.6(23%)
DougaLeaker 16/16 4 1.6(40%)

65

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

Drad 5/5 10.6 6(57%)
Drd.* 30/32 24.74 7.55(31%)
DroidDeluxe 1/1 9 1(11%)
DroidKungFu 63/85 31.02 6.1(20%)
DropDialer 2/11 0 1.5(⊥)
Ecobatry 1/1 25 1(4%)
EICAR 0/2 1.5 0(0%)
Enesoluty 1/1 11 2(18%)
EvoRoot 0/1 0 0(⊥)
Fake.* 314/677 6.39 5.69(89%)
Fladstep 1/1 176 80(45%)
FlashRec 1/2 8 3(38%)
FndNCll 1/1 36 2(6%)
Foncy 2/2 1 4(400%)
FoncyDropper 1/1 23 1(4%)
FrictSpy 8/9 7.56 10(132%)
Frogonal 2/2 27.5 2.5(9%)
Frutk 1/1 73 17(23%)
FunsBot 2/2 5 2(40%)
Gamex 1/1 11 2(18%)
GamexDropper 1/1 8 1(13%)
Geinimi 11/19 23.68 12.4(52%)
GGeeGame 1/1 62 6(10%)
GoldDream 7/8 31.12 9.9(32%)
GoldenEagle 1/1 0 7(⊥)
GoneSixty 11/11 16.64 5.5(33%)
GpsNake 0/1 1 0(0%)
HippoSMS 1/1 16 4(25%)
Hnway 0/1 49 0(0%)
Imlog 5/6 19 9.2(48%)
IMWebViewer 1/1 94 11(12%)
InstBBridge 0/1 9 0(0%)
J 7/13 30.96 3.65(12%)
Jifake 1/5 1 4(400%)
Jmsonez 2/2 11.5 12(104%)
LdBolt 8/8 46.62 7.8(17%)
LoggerKid 4/4 4.5 2(44%)
Logkare 0/1 0 0(⊥)
LoveTrp 1/1 5 6(120%)
LVedu 33/56 26.93 5.2(19%)
Maistealer 1/1 8 1(13%)
Malebook 1/1 94 14(15%)
Mania 1/2 0.5 2(400%)
MarketPay 1/1 98 7(7%)
Mob.* 11/11 43.67 9.75(22%)
Moghava 1/1 0 2(⊥)
MoneyFone 1/1 0 3(⊥)
Nandrobox 1/1 0 4(⊥)
Netisend 1/1 8 4(50%)

66

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

NickiSpy 2/2 71 10.5(15%)
NotCompatible 0/1 7 0(0%)
Nyearleaker 1/1 23 5(22%)
OneClickFraud 22/22 16.27 17.2(106%)
PdaSpy 1/4 0 1(⊥)
PJApps 36/39 27.41 6.1(22%)
Qicsomos 0/1 15 0(0%)
QieTing 1/1 0 4(⊥)
QuoteDoor 0/1 6 0(0%)
RecCaller 1/1 2 4(200%)
RootSmart 2/2 17 9(53%)
RuFraud 4/6 4.5 5(111%)
SGSpy 1/1 60 39(65%)
SGSpyAct 0/1 0 0(⊥)
ShdBreak 0/1 28 0(0%)
SilentWap 3/3 2 5(250%)
SMS.* 16/21 4.77 8.59(180%)
Sngo 1/1 65 2(3%)
Spitmo 2/2 0 9(⊥)
SpyBubb 2/2 25.5 20(78%)
Spytrack 1/1 20 8(40%)
Stamper 1/1 63 7(11%)
SteamyScr 2/2 25.5 8.5(33%)
Steek 15/15 8.4 2.1(25%)
Stiniter 0/1 3 0(0%)
Sumzand 0/3 7 0(0%)
SusetupTool 0/1 0 0(⊥)
Sxjspy 1/1 24 4(17%)
TattoHack 1/2 6 1(17%)
Tcent 1/1 0 17(⊥)
ToorKing 1/1 37 6(16%)
ToorSatp 3/8 7.5 1.3(17%)
Toplank 6/9 37.44 6(16%)
Twikabot 1/1 0 12(⊥)
TypStu 4/6 0.83 1(120%)
UranaiCall 1/1 51 13(25%)
VDLoader 10/10 43.7 8.8(20%)
Vidro 1/1 58 16(28%)
Voldbrk 9/17 48.82 1.2(2%)
WalkTxt 1/1 14 2(14%)
Wapaxy 2/2 0 9(⊥)
Woobooleaker 1/1 5 2(40%)
XanitreSpy 9/9 27.11 5.9(22%)
XobSms 1/1 28 15(54%)
YiCha 10/10 21.5 4.6(21%)
Zitmo 3/3 2.67 5.7(213%)

67

CHAPTER 4. ON RECONSTRUCTING ANDROID MALWARE BEHAVIORS

Overall 836/1365 22.78 6.54(28.7%)

Table 4.6: Details of the stimulation results.

68

5
On the Privacy of Real-World Friend-Finder

Services

C opperDroid does not only address malware analysis, but allows to auto-
matically perform out-of-the-box dynamic analysis of any kind of An-
droid applications. To highlight the advantages of such a solution, we

present the analysis of a location aware mobile application as a case-study. The
analysis results show that even a benign application can lead to privacy leakage
when the involved sensitive information are not subjected to any sort of protec-
tion to provide privacy data retention. In this context, the malicious author will
not force the user to install any malware, instead leverages application privacy
leakage to precisely identify the location of the users using this service.

5.1 Background
Friend finders are popular services that allow a user to discover, through her mo-
bile device, people that are in the vicinity. We classify these services into four
groups, based on two main technical dimension. First, some friend finders allow
each user to know the position of other users, for example showing them on a map.
We name these services “explicit position” friend finders1. In contrast, “implicit
position” friend finders only show location-related information, without providing
users’ precise position2. For instance, these services only show users closer than
a given distance threshold. The second distinguishing technicality is how users
are related to each other: in “closed buddies” services, a user is informed about
the position (or related information) of other users in a list of “friends”, that must

1Examples are “Find my friend”, and “Google Latitude”.
2Examples are PCube, SKOUT, and Badoo.

69

CHAPTER 5. ON THE PRIVACY OF REAL-WORLD FRIEND-FINDER SERVICES

explicitly and mutually confirm their willingness to be in such a list. For example,
when using Google Latitude, a user can define the set of other users who are al-
lowed to see her position on the map. Vice versa, in a “open buddies” approach,
all users are considered as “friends”. For example, SKOUT provides a user with
the distances from all nearby users.

When using “explicit position” friend finder services, users are well-aware that
their position is being publicly disclosed to other users of the service. In contrast, a
user of a “implicit position” service would expect her position to be protected from
free disclosure to other users. In some “closed buddies” services this is actually
the case. For example in PCube users have a fine control over the information
they disclose to their friends [100]. Overall, most of the scientific contributions
addressing this problem consider “closed buddies” services [101–104].

In this work we consider commercial friend finder services that are “open bud-
dies” and “implicit position”. We show that these services provide a deceitful form
of privacy protection. Indeed, while a user’s position is not directly transmitted to
other users, it is possible to compute the position by elaborating the information
that the service provider publicly discloses to any user. In particular, we consider
one of the most popular dating services that uses a friend finder as one of its func-
tionality. The service declares to have more than a hundred of millions of users in
total. Since the attacks that we describe may endanger the privacy of the users of
this service, we will not report its name but will only refer to it as “the Service”.

To perform such attack, we conducted the analysis of the “the Service” by
means of CopperDroid. However, no explicit results and report are provided in
order to do not leak details of the analyzed service that could lead to the inden-
tification of the commercial application. Nontheless, this attack show how Cop-
perDroid can be employed for analyzing also benign applications, and that also
those that are considered benign can lead to privacy leakage when the involved
sensitive information are not subjected to any sort of protection to provide privacy
data retention.

To summarize, we provide the following three main contributions.
1) We describe two different attacks to obtain the position of any user and we
give an example of how to perform the attacks manually, i.e., without any ad-hoc
software (see Section 5.2).
2) We show how the attacks can be fully automated, through the use of an ad-hoc
client that can compute, in a few seconds, the position of any user in a given area
(see Section 5.3).
3) We describe how the identification of the position of a user in a given area can
be used as a primitive to develop even more threatening attacks (see Section 5.4).

70

CHAPTER 5. ON THE PRIVACY OF REAL-WORLD FRIEND-FINDER SERVICES

5.2 Attack description
In this section we first clarify our reference scenario (Section 5.2.1) and then
we describe two attacks that disclose the precise location of a target user (Sec-
tions 5.2.2 and 5.2.3).

5.2.1 Scenario definition
A source person s is using the Service. Another person t (target) is using the same
service and is located in the vicinity of s in the sense that t is shown to s as a
nearby user. User s is the adversary, as she aims at obtaining the position of t with
the highest possible precision. To achieve this, s can collude with one or more
buddies c1 . . .cn. In the following, we denote with s, t and ci both the actors of the
scenario and their positions. We also denote with d(i, j) the distance between two
users.

To perform the attack, s relies on the knowledge derived by herself and by the
colluding buddies from the use of the service. Also, s can use information about
her location and the location of colluding buddies ci as well as data derived from
this, like d(s,ci).

In this work we distinguish two attacks. For some target users, the mobile
client of the Service shows the distance of the target from the source user. The
distance value is approximated to the upper bound of the distance from t, which
we denote with d(s, t). In this case, we use a “known distances” attack to retrieve
the position of t. In other cases the client does not show the distance of the target
from the source user. We call the attack in this case the “unknown distances”
attack.

5.2.2 “Known distances” attack
Given the upper bound of the distance d(s, t), s can derive that t is located in the
circle centered in the position of s with radius d(s, t). Clearly, if s also knows
d(c1, t) for a colluding buddy c1, then it is possible to further restrict the position
of t to the intersection of the two circles (see Figure 5.1(a)). This is similar to
a trilateration attack [105], with the main difference that the exact distance is
unknown. If there are more colluding buddies, the position of t can be identified
with less approximation (see Figure 5.1(b)).

Although the above attack is straightforward from a theoretical point of view,
a number of issues could arise in its practical application: errors due to GPS,
approximations in the server-side distance computation, delays in the service pro-
visioning, and so on. To evaluate the feasibility of this attack in practice, we kept

71

CHAPTER 5. ON THE PRIVACY OF REAL-WORLD FRIEND-FINDER SERVICES

the target user in a fixed position and we used several observations from a mov-
ing source user s to simulate a set of colluding buddies. In our experience with
the Service, three observations are sufficient to locate t with a good approxima-
tion. For example, in Figure 5.1(a) t is located in an area of less than 0.05km2

while in Figure 5.1(b) the area is about 500m2.

(a) Two observation points (b) Three observation points

Figure 5.1: “Manual” execution of the “known distances” attack.

5.2.3 “Unknown distances” attack
When the distance of the target from the source user is unknown, it is not possible
to directly compute d(s, t). However, we now show how this value can be derived
by exploiting the fact that the client shows to the user s the list L of nearby users,
ordered according to their distance from s.

In this case, s can discover the approximate distance to t by colluding with
another user c as follows: c starts from s moving away from this position, while
s periodically monitors L as well as the distance between s and c. As long as c
precedes t in the list of users, s knows that c is closer than t. When c happens to
be after t in L, then d(s, t) < d(s,c). Since d(s,c) is known, s actually discovers
d(s, t). Once the approximated distance is discovered, the “known distance” attack
can be used to discover the position of t. Note that in this attack we are implicitly
assuming that t is not moving during the time of the attack. In Section 5.3 we show
that this assumption is not necessary while performing the automated attack.

Example 1 At time T = 0, c is located in the same position as s, hence c is the
first element of L (see Figure 5.2(a)). At time T = 1, c has moved at a distance

72

CHAPTER 5. ON THE PRIVACY OF REAL-WORLD FRIEND-FINDER SERVICES

of 250m from s, but still precedes t in L (see Figure 5.2(b)). At time T = 2, c is
shown in L after t and the distance between c and s is 280m (see Figure 5.2(c)).
The adversary concludes that the distance between s and t is between 250m and
280m and hence t is located in the gray area of Figure 5.2(d).

(a) T = 0 (b) T = 1

(c) T = 2 (d) Information acquired about t

Figure 5.2: Example of “unknown distances” attack.

5.3 Attack automation
The attack we illustrate in Section 5.2 is conducted by a human agent by interact-
ing manually with the Service. Manual interaction, however, greatly undermine
the scalability of the attack. Even assuming that the human user has the ability to
feed false location information to the Service (i.e., she must not physically move to
different real-world locations during the attack), manually performing every step
needed during the attack may be cumbersome. For this reason, we investigated
how to automate the attacks to our target service. To achieve this, we developed

73

CHAPTER 5. ON THE PRIVACY OF REAL-WORLD FRIEND-FINDER SERVICES

a software agent that automatically communicates with the service provider, pre-
tending to be a mobile client in use by a real user.

5.3.1 Development of ad-hoc client
To develop an ad-hoc client it is first necessary to figure out how a real client com-
municates with its service provider. To this end, we installed the application on
an Android 2.2 system, running inside the Android Emulator [106] and we con-
figured it to connect to the Service with a user that we had previously registered.
Then, using the Android SDK functions we “placed” the device in a geographical
location and we used the client to update the location and to retrieve nearby users.
We repeated this operation several times, each time “placing” the device in a dif-
ferent position. While doing this we captured the network traffic produced by the
device and we analyzed it to understand the communication protocol.

By means of CopperDroid and by observing the network traffic we identified
a known, non-textual, protocol used to efficiently exchange marhsalled data over
a network connection. Since this protocol makes it possible to define ad-hoc data
types, we create a CopperDroid plug-in to enhance the automatic AIDL unmar-
shalling to correctly identify different messages. Eventually, we identified most
of the messages and we also realized that, for some requests, the service provider
does not require authentication, making it possible to obtain important informa-
tion without registering any user.

After understanding the communication protocol, we developed a Python ap-
plication capable of communicating with the service provider to compute the fol-
lowing primitive:

U = getNearby(lat, lon, δ)

The primitive takes as input a geographical location 〈lat, lon〉 and a distance
δ, returning a setU of users reported by the Service as located at most at distance
δ from 〈lat, lon〉.

We observed that the Service does not adopt any security measure, such as en-
cryption, to protect the network traffic generated by its users while using the client.
Adopting such a solution, for example by migrating the communication protocol
over HTTPS, would undoubtedly increase the overall security of the service, for
example preventing an external adversary from sniffing the network traffic. How-
ever, note that this is not a limitation of our attack. Indeed, there are many ways
we could still retrieve the information we need about the communication proto-
col. A clever attacker, for example, can reverse engineer the target application to
view the source code responsible for the communication protocol. Otherwise, if
the application or its user fails to properly validate the SSL certificate, a Man-in-
the-Middle [107] attack can be conducted to trick the application into using a fake

74

CHAPTER 5. ON THE PRIVACY OF REAL-WORLD FRIEND-FINDER SERVICES

certificate, customly created by the attacker that can, consequently, decrypt HTTPS
traffic. We adopted the latter technique to understand the communication protocol
of two friend finder services.

5.3.2 Attack Algorithm
While developing the ad-hoc Python client, we noticed, by means of Copper-
Droid and its automatic AIDL unmarshalling feature, how data exchanged through
the Service’s client and server include the precise distance between the client’s
position and nearby users. Figure 5.3 shows an opportunely anonymized selected
piece of trace of the application3.

Figure 5.3: Application Trace

Thus, we customized the getNearby() function to return such piece of infor-
mation too.

Figure 5.4: Source points chosen by the automated attack.

When precise distances between users are known, the location of the target
can be obtained with trilateration. First, we use the getNearby() function from a

3We do not disclose the unmarshalled data to avoid leakage of application details.

75

CHAPTER 5. ON THE PRIVACY OF REAL-WORLD FRIEND-FINDER SERVICES

source position s0 to get the list of nearby users among which we chose the target t.
Since the service provides precise distances, we acquire the value d(s0, t). We then
choose a point s1 on the circle centered in s0 with radius d(s0, t) (see Figure 5.4).
Again, we use getNearby() to retrieve d(s1, t). Now, let s2 and s3 be the two
intersections between the two circles centered in s0 and s1 with radius d(s0, t) and
d(s1, t), respectively. We use getNearby() for the third time to compute d(s2, t):
if the result is close to zero, then we conclude that t is close to s2, otherwise t is
close to s3.

This algorithm has the advantage of being simple from a conceptual point of
view and to require a constant number of executions of the getNearby() primitive;
hence, it has a short execution time (a couple of seconds, in our experiments,
mainly due to network latency). Also, the position of t can be obtained with high
precision. In our experiments, the average error is in the order of a few meters
(always less than 10m).

5.4 Privacy Implications
As shown is Section 5.3 it is possible to automate the privacy attacks described in
Section 5.2 to discover the position of a target user t under the assumption that t
is located close to the source user s. In this section we show how this can be used
to achieve three threatening privacy attacks.

5.4.1 “Who is there?” attack
The aim of the “Who is there?” attack is to understand who resides in a given
location. Intuitively this attack is particularly threatening when the presence in
the chosen location discloses personal data about the user. For example if the ad-
versary chooses a place of worship as target location she can infer, with a certain
likelihood, the religious belief of the people at that location. Repeating the obser-
vation and checking who is present in that location several times can increase the
probability of a correct guess. Technically, the attack can be simply performed by
positioning s at the target location and retrieving the users that are closer than a
given threshold distance with the getNearby() primitive.

5.4.2 “Where is Alice?” attack
Let us consider an adversary that wants to stalk a target user t. Since the ap-
proximate position of t is unknown, we cannot directly use the automated attacks
presented in Section 5.3 because we do not know where to place s0. In practice,

76

CHAPTER 5. ON THE PRIVACY OF REAL-WORLD FRIEND-FINDER SERVICES

we first need to find a position s0 such that t is “near-by”. Then, we can use the
attacks shown in Section 5.3.

To find the position of s0, we iteratively use the getNearby() primitive to
“search” for t. In theory, this can be achieved by starting from a given random
position and retrieving the nearby users. If t is not in the result, the adversary can
chose a new random source position retrieving nearby users to that point. Even-
tually the location of the target user is found. Clearly, several optimizations are
possible. in area where t has already been searched.

In practice, such an attack requires to issue a large number of requests and to
retrieve a number of users linear in the total number of users of the service. In
our automated attack, we observed that it is possible to retrieve from the service
provider about 250 users per second. This means that searching t in a million of
users takes about one hour. If the service has hundreds of millions of users this
attack is impractical, unless we have some clues about t like profile information
(that can be used as filters) or the region where t is likely to be located. For
example, considering only female users aged between 20 and 25 years, we have
been able to retrieve users in an area of 13km centered in Milan in about half a
second.

5.4.3 “Follow Alice” attack
By periodically repeating the “Where is Alice?” attack and storing the results it
is possible, after some time, to identify the set of places visited by a target user t.
From this “trace”, the attacker can discover t’s home address and workplace and
potentially spot t’s real identity.

Clearly the “trace” of places visited by t contains only the locations sent to the
service providers by t’s client. Most of the services currently available (including
the Service) use clients that send location updates in response to user-initiated
actions like log-ins, searches for nearby users or explicit requests. However,
some clients allow the user to enable automatic location updates hence periodi-
cally sending the user’s location to the service provider, in some cases even when
the application is in background. This is a more threatening situation, since a user
can be unaware of being disclosing her position.

5.5 Ethical Considerations
Our purpose in this work is to demonstrate how an attacker can leverage publicly
available information provided by a commercial friend finder service in order
to precisely infer the position of an arbitrary and unaware user. In our attack
we do not violate or hack any system. Actually, our objective is not to show

77

CHAPTER 5. ON THE PRIVACY OF REAL-WORLD FRIEND-FINDER SERVICES

security vulnerabilities in the considered services, but rather to show that it is
possible to create an application that pretends to be a client and use it to automate
privacy attacks. More specifically, our privacy attack is performed according to
the following principles:

1. the attacker does not anyhow compromise the servers of the service provider
or retrieve otherwise unavailable information;

2. the attacker does not interact with her target of choice (e.g., tricking him to
visit a specially crafted web page);

3. every information that the attacker uses to infer the position of her target(s)
is available either to registered or unregistered users of the service.

This being said, when performing the experiments that are required to proof the
soundness of our work, the privacy of real users of the Service must be taken
into high consideration. To this end, during our analyses, we targeted only users
under our direct control and users of whom we had previously got an explicit
authorization.

5.6 Conclusions
In this contribution we have shown that users participating in a “open-buddy”
friend finder expose their locations to the public, even if this information is not
explicitly given to other users. Indeed, we showed that, after creating an ad-hoc
client, it is relatively easy to use public information to spot a user’s positions and
even to follow a target. While we have developed our ad-hoc client for a desktop
computer, it would be possible to run similar code on a mobile device, enabling
accessible “on the move” attacks.

The defense against the attack we presented is non trivial. Technically, this
is due to the fact that in an “open-buddies” friend finder some location-related
information need to be disclosed to the public and the malicious use of this infor-
mation can easily lead to discover the actual position of the target user. So far, we
did not devise any security-related solution to prevent the adversary from learning
the communication protocol and actually we have been able to understand and
replicate all the protocols of the many service that we investigated. Probably a
partial solution to the problem would consist in rendering the attacks more com-
plicated by identifying the attack patterns (e.g., series of requests) and blocking
them. However this can hardly be a general solution to the problem.

Similarly, we have not been able to identify any data-management solution
to prevent these attacks. One approach that partially enhances users’ privacy is

78

CHAPTER 5. ON THE PRIVACY OF REAL-WORLD FRIEND-FINDER SERVICES

to disclose only approximate position (like the ZIP code, for example). Some
services actually implement this solution. While this information is intuitively
less sensible than the exact location, disclosing it still causes some privacy issues.
Another limit of this solution is that it trades-off privacy for computed distance
precision, causing a decrease in the quality of the service.

We have one last consideration about the users’ perception of the above prob-
lems. We created and published a non-technical video to briefly present the above
results to end-users4. The video was seen by less than 400 persons. We identified
two reasons for this unsatisfying result. First, despite our effort, we had not been
able to advertise the video to the correct audience or to make it sufficiently clear.
Second, we collected comments showing that apparently people do not have the
perception of how much their privacy in endangered by automated attacks. While
this is not a strictly technical problem (rather it is a sociological one) we argue
that it should be taken into account while devising privacy-preserving solutions.

4http://watchyourstep.everywaretechnologies.com/

79

http://watchyourstep.everywaretechnologies.com/

6
Future directions

I n the previous chapters we presented our reasearch work towards to over-
come some of the limitations and drawbacks of the current program analysis
techniques to perform malware behavior analysis. However, the improve-

ments provided with our novel techniques are not free of limitations. In this chap-
ter we discuss about possible enhancements and extensions aim to augment the
capabilities of our solutions in order to provide better and reliable malware anal-
ysis results.

6.1 A methodology for testing CPU emulators
EmuFuzzer currently supports IA-32 architecture only. We plan to extend Emu-
Fuzzer to new CPU emulators and architectures. Specifically, pushed by the in-
creasing mobile devices and embedded systems diffusion, ARM architecture is
becoming one of the most popular and ubiquitous. Therefore, we would like to
improve EmuFuzzer by supporting also ARM architecture. Besides the benefits
that could be provided to the emulator by this solution, another main but implicit
advantage is related to the security. As all of us know, Android applications run on
ARM CPU and are tested on QEMU. QEMU is the environment adopted by many
techniques, such as CopperDroid and Google Bouncer [51], to perform dynamic
analysis of Android applications. As it happens for x86 architecture, authors of
malware leverage discrepancies between the emulated and native environment to
evade monitoring. Thus, by means of this extension to EmuFuzzer we could po-
tentially find bugs also on ARM emulators and, thereby, performing the analysis
limiting the risk to be circumvented.

80

CHAPTER 6. FUTURE DIRECTIONS

6.2 On Reconstructing Android Malware Behaviors
CopperDroid unmarshaller uses reflection, Parcel, and Parcelable protocols
to unmarshal the method parameters of the binder communication. Using Cop-
perDroid and our resource reconstructor (implementing data dependency and for-
ward slicing on low-level traces to group system calls with their associated open
commands), we are able to automatically reconstruct high-level Android-specific
behavior. In the future we hope to continue to develop CopperDroid’s Android
malware detection and analysis, possibly by including graph-mining to differen-
tiate between core malicious and benign behaviors [108]. Condensing and sum-
marizing many low-level Android actions into a few high level actions has many
advantages with known graph-mining solutions. However, many challenges still
exist and addressing them is part of our ongoing research effort. For instance, we
can augment the discovery of application behaviors with an hybrid solution which
consists of a combination of both static and dynamic analysis. Static analysis
could be used to find out possible suspected execution paths that otherwise would
be hard to dinamically trigger. Moreover, we would like to enhance our stimula-
tion technique by driving the stimulation based on the application layout without
being invasive to instrument the application itself. Finally, we plan to analyze our
malware data sets in order to evaluate how the behavior of Android malware is
influenced by different OS versions.

81

7
Conclusion

M alware threaten our daily life and work, spreading from commodity
PC to the nowadays ubiquitous smartphone devices that all of us keep
in their pocket. Unfortunately, malicious users are always a step ahead

of researchers trying to overcome any line of defence and leverage solutions lim-
itations to strengthen their malicious software to last longer undetected.

Though malware analysis and program analysis techniques are part of a long-
standing research work, yet they are not ready to face the analysis of malware for
mobile devices. Moreover, the analysis environment, which is the base on which
a program analysis is performed, lacks of transparency and struggles to faithfully
emulate the physical CPU. This limits the precision of the final results. In addition,
to deal with the path coverage halting problem, the need of new approaches and
heuristics arises. This problem affects not only traditional applications, but even
more mobile applications. Due to their nature, user-interaction is mandatory to
exercise the application in order to observe the application behaviors.

In this dissertation, we proposed novel techniques to address one of the main
problem of the current era that affects our daily life: “cybercrime”. The research
work focused on discovering anomalous behaviors by advanced program analysis
techniques and improving the effectiveness of the state-of-art analysis environ-
ment.

7.1 A methodology for testing CPU emulators
CPU emulators are complex pieces of software. In this work, we presented a test-
ing methodology for CPU emulators, based on fuzzing. Emulators are tested by
generating test case programs and by executing them on the emulated and on the
physical CPU. As the physical CPU is assumed to follow perfectly the specifi-

82

CHAPTER 7. CONCLUSION

cations, defects in the emulators can be detected by comparing the state of the
emulator with that of the physical CPU, after the execution of the test case pro-
gram. The proposed methodology has been implemented in a prototype, named
as EmuFuzzer, and it was used to test five state-of-the-art IA-32 CPU emulators.
EmuFuzzer discovered minor and major defects in each of the tested emulators,
thus demonstrating the effectiveness of the proposed approach.

7.2 On Reconstructing Android Malware Behaviors
In this work we proposed CopperDroid, a VM-based dynamic system call-centric
analysis and stimulation technique to automatically reconstruct the behaviors (OS-
specific and Android-specific) of Android malware. We evaluated the perfor-
mance and effectiveness of our analysis on a large data set of more than 2,900
real world Android malware. Results show how proper external events can actu-
ally influence Android malware and lead to the discovery of additional behaviors.

83

Acknowledgements

Getting a PhD means being thankful to the people that have crossed my street
. . . how many . . . I gotta be formal, at least for the first paragraph. First, I would
like to thank my advisor, Prof. DAnilo Bruschi, for his support and suggestions.
He has always something good to say. I am also very grateful to my external
referees, Prof. Davide Balzarotti, Prof. Giovanni Vigna and Prof. Dawn Song for
the time they spent reading this dissertation and their comments that contributed
to improve it. In the limbo between formal and informal there’s Gigi Sullivan
(aka Lorenzo Cavallaro). I could write a long essay about him. He’s great. He
motivated me a lot. Thanks dude. A big thanks to Lorenzo Martignoni: a mentor
and person that change your life. Finally Roberto Paleari a hyper-skilled guy that
doesn’t need to get introduced and that really helped me a lot during my PhD.

Now we’re in the messy side, the informal one. There are so many people I’d
like to thank and not enough space. Anyway, folks, here’s your turn. I want to
thank and remember all those who represent the LaSER crew: Aristide Fattori -
my PhD colleague and partner in crime -, Mattia Pagnozzi (Crostatina) - speech-
less -, Stefano Bianchi Mazzone (il Pelato) - g0t r00t -, Luca Guerra (bruciato)
- still reversing? -, Lorenzo Flore (Lollacci) - hangover? -, Mauro Cascella (il
Casce) - RSP is not an Italian word -, Srdjan Matic (Smatic) - don’t spam -, Fabio
Pagani (il Nerd) - pio pio - Andrea Orsini (Winnie) - Dr Jekyll and Mr Hyde -,
Salvatore Borgia (salvo) - gentoo addicted and hardware dependent -, Federica De
Val (la tipa del tipo) - best web 400 -, Erik Calligari - SSL man but doesn’t like to
stay in the middle -, and last but not least the LaSER mascot Fabio Pedretti (Joe
B.) - you’re our PR and party man - ... and again Danilo Bruschi (il DB) - folks,
he’s the best :) - how many times he made us ROTFL with his jokes?

84

CHAPTER 7. CONCLUSION

Finally, in the lovely and loving side, there are the most important persons of
my life. First of all, the essential, Chiara. She has always unconditionally believed
in me. We began the university together, we met on that bench, and we’re still
here, together. Well. . . set on that bench there was also my brother. . . actually he
isn’t but basically we met the first time when we were 3 years old, Massimiliano
Oldani (sgrakkyu). He is always there when you need. To conclude, I wish to
thank my family for their help and support.

85

Bibliography

[1] W. Whitson, “Robberies decrease as cyber crime increases,
FBI says.” http://www.wmbfnews.com/story/20972727/
robberies-decrease-as-cyber-crime-increases-fbi-says,
2013.

[2] P. M. Mell, K. Kent, and J. Nusbaum, “Sp 800-83. guide to malware inci-
dent prevention and handling,” tech. rep., Gaithersburg, MD, United States,
2005.

[3] L. Page, “Update from the CEO.” http://googleblog.blogspot.it/
2013/03/update-from-ceo.html, 2013.

[4] McAfee, Inc., “Mcafee threats report: First quarter 2013,” tech. rep.,
McAfee, Inc., 2013.

[5] M. D. Preda, M. Christodorescu, S. Jha, and S. Debray, “A semantics-based
approach to malware detection,” SIGPLAN Not., vol. 42, pp. 377–388, Jan.
2007.

[6] M. Christodorescu and S. Jha, “Static analysis of executables to detect ma-
licious patterns,” in Proceedings of the 12th conference on USENIX Secu-
rity Symposium - Volume 12, SSYM’03, (Berkeley, CA, USA), pp. 12–12,
USENIX Association, 2003.

[7] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware
detection,” in ACSAC, pp. 421–430, 2007.

86

http://www.wmbfnews.com/story/20972727/robberies-decrease-as-cyber-crime-increases-fbi-says
http://www.wmbfnews.com/story/20972727/robberies-decrease-as-cyber-crime-increases-fbi-says
http://googleblog.blogspot.it/2013/03/update-from-ceo.html
http://googleblog.blogspot.it/2013/03/update-from-ceo.html

BIBLIOGRAPHY

[8] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel, “A view on
current malware behaviors,” in Proceedings of the 2nd USENIX conference
on Large-scale exploits and emergent threats: botnets, spyware, worms,
and more, LEET’09, (Berkeley, CA, USA), pp. 8–8, USENIX Association,
2009.

[9] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths
for malware analysis,” in Proceedings of the 2007 IEEE Symposium on
Security and Privacy, SP ’07, (Washington, DC, USA), pp. 231–245, IEEE
Computer Society, 2007.

[10] D. Brumley, C. Hartwig, M. G. Kang, Z. Liang, J. Newsome, P. Poosankam,
D. Song, and H. Yin, “Bitscope: Automatically dissecting malicious bina-
ries,” tech. rep., In CMU-CS-07-133, 2007.

[11] L. Cavallaro, P. Saxena, and R. Sekar, “On the limits of information flow
techniques for malware analysis and containment,” in Proceedings of the
5th international conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, DIMVA ’08, (Berlin, Heidelberg), pp. 143–163,
Springer-Verlag, 2008.

[12] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Impeding malware analysis
using conditional code obfuscation,” in NDSS, 2008.

[13] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena, “Bitblaze: A new approach
to computer security via binary analysis,” in Proceedings of the 4th Inter-
national Conference on Information Systems Security, ICISS ’08, (Berlin,
Heidelberg), pp. 1–25, Springer-Verlag, 2008.

[14] U. Bayer, C. Kruegel, and E. Kirda, “TTAnalyze: A Tool for Analyzing
Malware,” in 15th European Institute for Computer Antivirus Research An-
nual Conference (EICAR 2006), (Hamburg, Germany), 2006.

[15] Intel, Intel 64 and IA-32 Architectures Software Developer’s Manual, Nov.
2008. Instruction Set Reference.

[16] A. Sloss, D. Symes, and C. Wright, ARM system developer’s guide: de-
signing and optimizing system software. Morgan Kaufmann, 2004.

[17] H. A. Lichstein, “When Should You Emulate?,” Datamation, vol. 11,
pp. 205–210, 1969.

87

BIBLIOGRAPHY

[18] Google Inc., “Android emulator,” 2011. http://code.google.com/
android/reference/emulator.html.

[19] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, “Pin: building customized program analy-
sis tools with dynamic instrumentation,” in Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and implementa-
tion (PLDI), (Chicago, IL, USA), ACM, 2005.

[20] N. Nethercote, Dynamic Binary Analysis and Instrumentation. PhD thesis,
Computer Laboratory, University of Cambridge, United Kingdom, Nov.
2004.

[21] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proceed-
ings of the annual conference on USENIX Annual Technical Conference,
USENIX Association, 2005.

[22] K. P. Lawton, “Bochs: A portable pc emulator for unix/x,” Linux J.,
vol. 1996, Sept. 1996.

[23] I. Preston, R. Newman, and J. Tseng, “JPC: The Pure Java x86 PC Emula-
tor,” 2007.

[24] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A Full Sys-
tem Simulation Platform,” Computer, vol. 35, pp. 50–58, 2002.

[25] “NetBSD/amd64,” 2011. http://www.netbsd.org/ports/amd64/.

[26] G. J. Myers, The Art of Software Testing. John Wiley & Sons, 1978.

[27] P. Ferrie, “Attacks on Virtual Machine Emulators,” tech. rep., Symantec
Advanced Threat Research, 2006.

[28] T. Ormandy, “An Empirical Study into the Security Exposure to Host of
Hostile Virtualized Environments,” in Proceedings of CanSecWest Applied
Security Conference, 2007.

[29] D. Quist and V. Smith, “Detecting the Presence of Virtual Machines Using
the Local Data Table,” 2006.

[30] J. Rutkowska, “Red Pill. . . or how to detect VMM using (almost) one CPU
instruction,” 2004.

88

http://code.google.com/android/reference/emulator.html
http://code.google.com/android/reference/emulator.html
http://www.netbsd.org/ports/amd64/

BIBLIOGRAPHY

[31] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting System Emulators,” in
Proceedings of Information Security Conference (ISC 2007), (Valparaíso,
Chile), Springer-Verlag, 2007.

[32] B. P. Miller, L. Fredrikson, and B. So, “An Empirical Study of the Relia-
bility of UNIX Utilities,” Communications of the ACM, vol. 33, December
1990.

[33] J. DeMott, “The Evolving Art of Fuzzing,” 2006.

[34] B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automated testing of
refactoring engines,” in Proceedings of the 6th joint meeting of the Eu-
ropean Software Engineering Conference and the ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, (Cavtat near
Dubrovnik, Croatia), ACM, Sept. 2007.

[35] R. Kaksonen, “ A Functional Method for Assessing Protocol Implementa-
tion Security,” tech. rep., VTT Electronics, 2001.

[36] M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force Vulnerability
Discovery. Addison-Wesley Professional, 2007.

[37] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler, “EXE:
Automatically Generating Inputs of Death,” in Proceedings of the 13th
ACM conference on Computer and communications security, (Alexandria,
Virginia, USA), ACM, 2006.

[38] P. Godefroid, M. Y. Levin, and D. Molnar, “Automated Whitebox Fuzz
Testing,” in Proceedings of the Network and Distributed System Security
Symposium, NDSS, (San Diego, California, USA), The Internet Society,
2008.

[39] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing engine
for C,” in Proceedings of the 10th European software engineering confer-
ence, (Lisbon, Portugal), ACM, 2005.

[40] R. Majumdar and K. Sen, “Hybrid Concolic Testing,” in Proceedings of
the 29th international conference on Software Engineering (ICSE), IEEE
Computer Society, 2007.

[41] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen, “Directed test
suite augmentation: techniques and tradeoffs,” in Proceedings of the 18th
ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, pp. 257–266, 2010.

89

BIBLIOGRAPHY

[42] R. A. Santelices and M. J. Harrold, “Exploiting program dependencies for
scalable multiple-path symbolic execution,” in International Symposium on
Software Testing and Analysis (ISSTA 2010), (Trento, Italy), pp. 195–206,
ACM, July 2010.

[43] R. Paleari, L. Martignoni, G. Fresi Roglia, and D. Bruschi, “N-version dis-
assembly: differential testing of x86 disassemblers,” in Proceedings of the
2010 International Symposium on Testing and Analysis (ISSTA), (Trento,
Italy), ACM, 2010.

[44] L. Martignoni, R. Paleari, G. Fresi Roglia, and D. Bruschi, “Testing CPU
emulators,” in Proceedings of the 2009 International Conference on Soft-
ware Testing and Analysis (ISSTA), (Chicago, Illinois, USA), pp. 261–272,
ACM, 2009.

[45] L. Martignoni, R. Paleari, G. Fresi Roglia, and D. Bruschi, “Testing system
virtual machines,” in Proceedings of the 2010 International Symposium on
Testing and Analysis (ISSTA), (Trento, Italy), 2010.

[46] W. M. McKeeman, “Differential Testing for Software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998.

[47] S. K. Lahiri, K. Vaswani, and C. A. R. Hoare, “Differential static analysis:
opportunities, applications, and challenges,” in Proceedings of the Work-
shop on Future of Software Engineering Research (FoSER 2010), (Santa
Fe, New Mexico, USA), pp. 201–204, ACM, Nov 2010.

[48] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu, “Differential
symbolic execution,” in Proceedings of the 16th ACM SIGSOFT Interna-
tional Symposium on Foundations of software engineering, (Atlanta, Geor-
gia, USA), pp. 226–237, ACM, 2008.

[49] K. Taneja, T. Xie, N. Tillmann, J. de Halleux, and P. de Halleux, “eXpress:
guided path exploration for efficient regression test generation,” in Proc.
2011 International Symposium on Software Testing and Analysis (ISSTA
2011), (Toronto, ON, Canada), ACM, 2011.

[50] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. C. Mitchell, “A
Layered Architecture for Detecting Malicious Behaviors,” in Proceedings
of the International Symposium on Recent Advances in Intrusion Detec-
tion (RAID), Lecture Notes in Computer Science, (Berlin, Heidelberg),
Springer, Sept. 2008.

90

BIBLIOGRAPHY

[51] J. Oberheide and C. Miller, “Dissecting the Android Bouncer,” (Brooklyn,
USA), SummerCon, 2012. http://jon.oberheide.org/files/summercon12-
bouncer.pdf.

[52] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware Analysis
via Hardware Virtualization Extensions,” in Proceedings of the 15th ACM
conference on Computer and communications security, (Alexandria, Vir-
ginia, USA), ACM, 2008.

[53] T. Garfinkel and M. Rosenblum, “A Virtual Machine Introspection Based
Architecture for Intrusion Detection,” in Proceedings of Network and
Distributed Systems Security Symposium, NDSS, (San Diego, California,
USA), The Internet Society, Feb. 2003.

[54] J. Koziol, D. Litchfield, D. Aitel, C. Anley, S. Eren, N. Mehta, and R. Has-
sell, The Shellcoder’s Handbook: Discovering and Exploiting Security
Holes. John Wiley & Sons, 2004.

[55] R. Paleari, L. Martignoni, A. Reina, G. Fresi Roglia, and D. Bruschi,
“EmuFuzzer Red-Pills Archive,” 2011. http://security.di.unimi.
it/emufuzzer.html.

[56] T. Mai, “Android Reaches 500 Million Activations Worldwide.”
http://www.tomshardware.com/news/Google-Android-Activation-half-
billion-Sales,17556.html, 2012.

[57] M. Egele, “Invited talk: The state of mobile security,” in DIMVA, 2012.

[58] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and
evolution,” in Proc. of the IEEE Symposium on Security and Privacy, 2012.

[59] D. Desai, “Malware Analysis Report: Trojan: AndroidOS/Zitmo,”
Semptember 2011. http://www.kindsight.net/sites/default/
files/android_trojan_zitmo_final_pdf_17585.pdf.

[60] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smart-
phone applications in third-party android marketplaces,” in Proc. of CO-
DASPY, 2012.

[61] D. Bornstein, “Dalvik VM internals,” in Google I/O, 2008.

[62] T. Garfinkel and M. Rosenblum, “A Virtual Machine Introspection Based
Architecture for Intrusion Detection,” in Proc. of NDSS, 2003.

91

http://security.di.unimi.it/emufuzzer.html
http://security.di.unimi.it/emufuzzer.html
http://www.kindsight.net/sites/default/files/android_trojan_zitmo_final_pdf_17585.pdf
http://www.kindsight.net/sites/default/files/android_trojan_zitmo_final_pdf_17585.pdf

BIBLIOGRAPHY

[63] L.-K. Yan and H. Yin, “DroidScope: Seamlessly Reconstructing OS and
Dalvik Semantic Views for Dynamic Android Malware Analysis,” in Proc.
of USENIX Security, 2012.

[64] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proc. of
USENIX ATC, 2005.

[65] A. Reina, A. Fattori, and L. Cavallaro, “A system call-centric analysis and
stimulation technique to automatically reconstruct android malware behav-
iors,” in Proceedings of the 6th European Workshop on System Security
(EUROSEC), (Prague, Czech Republic), April 2013.

[66] X. Zhang, R. Gupta, and Y. Zhang, “Precise dynamic slicing algorithms,” in
Proceedings of the 25th International Conference on Software Engineering,
ICSE ’03, (Washington, DC, USA), pp. 319–329, IEEE Computer Society,
2003.

[67] Y. Zhou and X. Jiang, “Android Malware Genome Project.” http://www.
malgenomeproject.org/.

[68] Contagio Mobile, “Mila Parkour.” http://contagiominidump.
blogspot.com.

[69] Android, “Android developer reference.” http://developer.android.
com/reference/packages.html.

[70] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permis-
sions demystified,” in Proc. of CCS, 2011.

[71] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Permission evolution in
the android ecosystem,” in Proc. of ACSAC, 2012.

[72] D. Barrera, H. Kayacik, P. van Oorschot, and A. Somayaji, “A method-
ology for empirical analysis of permission-based security models and its
application to android,” in Proc. of CCS, 2010.

[73] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my market:
Detecting malicious apps in official and alternative android markets,” in
Proc. of NDSS, 2012.

[74] Palmsource Inc., “Open binder documentation.” http://www.
angryredplanet.com/~hackbod/openbinder/docs/html/index.
html.

92

http://www.malgenomeproject.org/
http://www.malgenomeproject.org/
http://contagiominidump.blogspot.com
http://contagiominidump.blogspot.com
http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/index.html
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/index.html
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/index.html

BIBLIOGRAPHY

[75] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel, and A. Sheth,
“Taintdroid: an information-flow tracking system for realtime privacy mon-
itoring on smartphones,” in Proc. of USENIX OSDI, 2010.

[76] The Honeynet Project, “Droidbox.” https://code.google.com/p/
droidbox/.

[77] “Andrubis: A tool for analyzing unknown android applications.” http:
//anubis.iseclab.org/.

[78] Iseclab, “Anubis.” http://anubis.iseclab.org.

[79] U. Bayer, C. Kruegel, and E. Kirda, “Ttanalyze: A tool for analyzing mal-
ware,” in Proc. of EICAR, 2006.

[80] R. Xu, H. Saıdi, and R. Anderson, “Aurasium: Practical policy enforcement
for android applications,” in Proc. of USENIX Security, 2012.

[81] H. Lockheimer, “Bouncer.” http://googlemobile.blogspot.it/
2012/02/android-and-security.html.

[82] J. Oberheide and C. Miller, “Dissecting the Android’s Bouncer,”
SummerCon, 2012. http://jon.oberheide.org/files/
summercon12-bouncer.pdf.

[83] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smart-
Droid: an automatic system for revealing UI-based trigger conditions in
Android applications,” in Proc. of SPSM, 2012.

[84] S. Anand, M. Naik, H. Yang, and M. Harrold, “Automated concolic testing
of smartphone apps,” in Proc. of FSE, 2012.

[85] B. Gatliff, “Embedding with gnu: the gdb remote serial protocol.”
http://www.huihoo.org/mirrors/pub/embed/document/debugger/
ew_GDB_RSP.pdf, 1999.

[86] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic malware
analysis using cwsandbox,” Proc. of the IEEE Symposium on Security &
Privacy, 2007.

[87] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda, “Ac-
cessMiner: Using system-centric models for malware protection,” in Proc.
of CCS, 2010.

[88] J. Jenkov, “Java reflection tutorial,”

93

https://code.google.com/p/droidbox/
https://code.google.com/p/droidbox/
http://anubis.iseclab.org/
http://anubis.iseclab.org/
http://anubis.iseclab.org
http://googlemobile.blogspot.it/2012/02/android-and-security.html
http://googlemobile.blogspot.it/2012/02/android-and-security.html
http://jon.oberheide.org/files/summercon12-bouncer.pdf
http://jon.oberheide.org/files/summercon12-bouncer.pdf
http://www.huihoo.org/mirrors/pub/embed/document/debugger/ew_GDB_RSP.pdf
http://www.huihoo.org/mirrors/pub/embed/document/debugger/ew_GDB_RSP.pdf

BIBLIOGRAPHY

[89] K. Tam, A. Reina, A. Fattori, and L. Cavallaro, “Automatic reconstruction
of android malware behaviors,” in ESORICS, Springer, 2013.

[90] D. Cogen, “Universal android rooting procedure (rage method),” October
26, 2010.

[91] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and H. Yin, “Au-
tomatically identifying trigger-based behavior in malware,” Botnet Detec-
tion, 2008.

[92] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths
for malware analysis,” in Proc. of the IEEE Symposium on Security and
Privacy, 2007.

[93] Android, “Monkeyrunner.” http://developer.android.com/tools/
help/monkeyrunner_concepts.html.

[94] “Specification language for code behavior,” 2008.

[95] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. Mitchell, “A Lay-
ered Architecture for Detecting Malicious Behaviors,” in Proceedings of
the International Symposium on Recent Advances in Intrusion Detection,
RAID, Cambridge, Massachusetts, USA., Lecture Notes in Computer Sci-
ence, Springer, Sept. 2008.

[96] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson, N. Pohlmann,
H. Bos, and M. van Steen, “Prudent practices for designing malware ex-
periments: Status quo and outlook,” in Proceedings of the 33rd IEEE Sym-
posium on Security and Privacy (S&P), (San Francisco, California, USA),
2012.

[97] McAfee, “Mcafee.” http://www.mcafee.com.

[98] L. Martignoni, R. Paleari, G. Roglia, and D. Bruschi, “Testing CPU emu-
lators,” in Proc. of ISSTA, 2009.

[99] C. Cadar, D. Dunbar, and D. R. Engler, “Klee: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs,”
in Draves and van Renesse [128], pp. 209–224.

[100] S. Mascetti, D. Freni, C. Bettini, X. S. Wang, and S. Jajodia, “Pri-
vacy in geo-social networks: proximity notification with untrusted service
providers and curious buddies,” The VLDB Journal, vol. 20, no. 4, 2011.

94

http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html

BIBLIOGRAPHY

[101] G. Zhong, I. Goldberg, and U. Hengartner, “Louis, Lester and Pierre:
Three protocols for location privacy,” in Privacy Enhancing Technologies,
vol. LNCS 4776, pp. 62–76, Springer, 2007.

[102] L. Šikšnys, J. R. Thomsen, S. Šaltenis, M. L. Yiu, and O. Andersen, “A
location privacy aware friend locator,” in Proc. of the 11th Int. Symposium
on Spatial and Temporal Databases, LNCS, Springer, 2009.

[103] L. Šikšnys, J. R. Thomsen, S. Šaltenis, and M. L. Yiu, “Private and flexible
proximity detection in mobile social networks,” in Proc. of the 11th Int.
Conf. on Mobile Data Management, IEEE Comp. Soc., 2010.

[104] S. Mascetti, C. Bettini, and D. Freni, “Longitude: Centralized privacy-
preserving computation of users’ proximity,” in Proc. of 6th VLDB work-
shop on Secure Data Management, LNCS, Springer, 2009.

[105] H. L. Groginsky, “Position estimation using only multiple simultaneous
range measurements,” Aeronautical and Navigational Electronics, IRE
Transactions on, vol. ANE-6, pp. 178 –187, sept. 1959.

[106] “Android SDK.” http://developer.android.com/sdk/index.html.

[107] A. Ornaghi and M. Valleri, “Man in the middle attacks,” in Blackhat Con-
ference Europe, 2003.

[108] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and X. Yan, “Synthe-
sizing near-optimal malware specifications from suspicious behaviors,” in
Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP ’10,
(Washington, DC, USA), pp. 45–60, IEEE Computer Society, 2010.

[109] D. Bruschi, L. Cavallaro, and A. Lanzi, “Diversified Process Replicae for
Defeating Memory Error Exploits,” in 3rd International Workshop on In-
formation Assurance (WIA 2007), (San Diego, California, USA), IEEE
Computer Society, 2007.

[110] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
, Nguyen-Tuong, and J. Hiser, “N-variant systems: a secretless framework
for security through diversity,” in Proceedings of the 15th conference on
USENIX Security Symposium, (Berkeley, CA, USA), USENIX Association,
2006.

[111] J. E. Forrester and B. P. Miller, “An Empirical Study of the Robustness of
Windows NT Applications Using Random Testing,” in Proceedings of the
4th USENIX Windows Systems Symposium, Sept. 2000.

95

http://developer.android.com/sdk/index.html

BIBLIOGRAPHY

[112] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed whitebox
fuzzing,” in International Conference on Software Engineering (ICSE
2009), (Vancouver, Canada), 2009.

[113] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in Proceedings of the ACM SIGPLAN 2008 Conference on Pro-
gramming Language Design and Implementation (PLDI’08), (Tucson, AZ,
USA), June 9–11, 2008.

[114] Intel Corporation, “Intel Software Development Emulator,”
2011. http://software.intel.com/en-us/articles/
intel-software-development-emulator/.

[115] A. Lanzi, L. Martignoni, M. Monga, and R. Paleari, “A Smart Fuzzer for
x86 Executables,” in Proceedings of the 3rd International Workshop on
Software Engineering for Secure Systems, SESS, Minneapolis, MN, USA.,
ACM, May 2007.

[116] B. P. Miller, G. Cooksey, and F. Moore, “An empirical study of the robust-
ness of MacOS applications using random testing,” SIGOPS Oper. Syst.
Rev., vol. 41, no. 1, 2007.

[117] B. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A. Natarajan, and
J. Steidl, “Fuzz Revisited: A Re-examination of the Reliability of UNIX
Utilities and Services,” tech. rep., University of Wisconsin-Madison, April
1995.

[118] J. Newsome and D. Song, “Dynamic Taint Analysis for Automatic Detec-
tion, Analysis, and Signature Generation of Exploits on Commodity Soft-
ware,” in Proceedings of the 12th Annual Network and Distributed System
Security Symposium (NDSS ’ 05), Feb. 2005.

[119] J. S. Robin and C. E. Irvine, “Analysis of the intel pentium’s ability to
support a secure virtual machine monitor,” in Proceedings of the 9th con-
ference on USENIX Security Symposium (SSYMM’00), (Denver, Colorado),
USENIX Association, 2000.

[120] V. Sieh and K. Buchacker, “UMLinux - A Versatile SWIFI Tool,” in Pro-
ceedings of the 4th European Dependable Computing Conference on De-
pendable Computing (EDCC-4), 2002.

[121] Sun Microsystem, “VirtualBox,” 2011. http://www.virtualbox.org.

96

http://software.intel.com/en-us/articles/intel-software-development-emulator/
http://software.intel.com/en-us/articles/intel-software-development-emulator/
http://www.virtualbox.org

BIBLIOGRAPHY

[122] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic malware
analysis using CWSandbox,” IEEE Security & Privacy, vol. 5, no. 2, 2007.

[123] K. Taneja, T. Xie, N. Tillmann, J. de Halleux, and W. Schulte, “Guided path
exploration for regression test generation,” in Companion Proceedings of
the 31th International Conference on Software Engineering (ICSE 2009),
New Ideas and Emerging Results, pp. 311–314, May 2009.

[124] A. Slowinska and H. Bos, “Pointless tainting?: evaluating the practicality
of pointer tainting,” in Schröder-Preikschat et al. [125], pp. 61–74.

[125] W. Schröder-Preikschat, J. Wilkes, and R. Isaacs, eds., Proceedings of the
2009 EuroSys Conference, Nuremberg, Germany, April 1-3, 2009, ACM,
2009.

[126] L. Cavallaro, P. Saxena, and R. Sekar, “On the limits of information
flow techniques for malware analysis and containment,” in Zamboni [127],
pp. 143–163.

[127] D. Zamboni, ed., Detection of Intrusions and Malware, and Vulnerabil-
ity Assessment, 5th International Conference, DIMVA 2008, Paris, France,
July 10-11, 2008. Proceedings, vol. 5137 of Lecture Notes in Computer
Science, Springer, 2008.

[128] R. Draves and R. van Renesse, eds., 8th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2008, December 8-10, 2008,
San Diego, California, USA, Proceedings, USENIX Association, 2008.

[129] A. Srivastava, A. Lanzi, J. T. Giffin, and D. Balzarotti, “Operating System
Interface Obfuscation and the Revealing of Hidden Operations,” in Proc. of
DIMVA, 2011.

[130] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song, “Juxtapp: A
scalable system for detecting code reuse among android applications,” in
Proc. of DIMVA, 2012.

[131] W. Enck, “Defending users against smartphone apps: Techniques and fu-
ture directions,” in Proc. of ICISS, 2011.

[132] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef, M. Deb-
babi, and L. Wang, “On the analysis of the zeus botnet crimeware toolkit,”
in Proc. of PST, 2010.

[133] Android, “Android Documentation.” http://developer.android.com/
guide/components/index.html.

97

http://developer.android.com/guide/components/index.html
http://developer.android.com/guide/components/index.html

BIBLIOGRAPHY

[134] Kaspersky, “Teamwork: How the ZitMo Trojan Bypasses Online Banking
Security,” October 2011. http://www.kaspersky.com/about/news/
virus/2011/Teamwork_How_the_ZitMo_Trojan_Bypasses_Online_
Banking_Security.

[135] Symantec, “Android.Gmaster,” August 2011. http://www.
symantec.com/security_response/writeup.jsp?docid=
2011-082404-5049-99&tabid=2.

[136] VMware Inc., “VMware.” http://vmware.com/.

[137] X. Jiang and X. Wang, “"Out-of-the-Box" Monitoring of VM-Based High-
Interaction Honeypots,” in Proc. of RAID, 2007.

[138] J. Rutkowska, “Red pill... or how to detect VMM using (almost) one CPU
instruction,” 2004. http://invisiblethings.org/papers/redpill.
html.

[139] Google I/O 2012, “Android: More than 400 million devices activated so far
âĂŞ daily activation crosses 1 million.”

[140] S. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using se-
quences of system calls,” Journal of Computer Security, 1998.

[141] PassMark Software, “PassMark Android.” http://www.passmark.com/.

[142] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically generating
signatures for polymorphic worms,” in Proc. of the IEEE Symposium on
Security and Privacy, 2005.

[143] R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of http-based
malware and signature generation using malicious network traces,” in Proc.
of the USENIX NSDI, 2010.

[144] C. U. Center for International Earth Science Information Net-
work (CIESIN) and C. I. de Agricultura Tropical (CIAT), “Gridded pop-
ulation of the world, version 3 (gpwv3),” 2005.

[145] C. Bettini, S. Jajodia, P. Samarati, and X. S. Wang, Privacy in Location-
Based Applications, vol. 5599 of Lecture Notes in Computer Science.
Springer, 2009.

[146] G. Ghinita, “Private queries and trajectory anonymization: a dual perspec-
tive on location privacy,” Trans. Data Privacy, vol. 2, no. 1, 2009.

98

http://www.kaspersky.com/about/news/virus/2011/Teamwork_How_the_ZitMo_Trojan_Bypasses_Online_Banking_Security
http://www.kaspersky.com/about/news/virus/2011/Teamwork_How_the_ZitMo_Trojan_Bypasses_Online_Banking_Security
http://www.kaspersky.com/about/news/virus/2011/Teamwork_How_the_ZitMo_Trojan_Bypasses_Online_Banking_Security
http://www.symantec.com/security_response/writeup.jsp?docid=2011-082404-5049-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-082404-5049-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-082404-5049-99&tabid=2
http://vmware.com/
http://invisiblethings. org/papers/redpill. html
http://invisiblethings. org/papers/redpill. html
http://www.passmark.com/

BIBLIOGRAPHY

[147] G. Ghinita, C. R. Vicente, N. Shang, and E. Bertino, “Privacy-preserving
matching of spatial datasets with protection against background knowl-
edge,” in Proc. of the 18th SIGSPATIAL Int. Conf. on Advances in Geo-
graphic Information Systems, GIS ’10, ACM, 2010.

[148] H. Hu and J. Xu, “Non-exposure location anonymity,” in Proc. of the 25th
Int. Conf. on Data Engineering, IEEE Computer Society, 2009.

[149] K. Liu, C. Giannella, and H. Kargupta, “An attacker’s view of distance pre-
serving maps for privacy preserving data mining,” in Proc. of the 10th Eur.
Conf. on Principles and Practice of Knowledge Discovery in Databases
(PKDD), vol. LNCS 4213, Springer, 2006.

[150] P. Ruppel, G. Treu, A. Küpper, and C. Linnhoff-Popien, “Anonymous user
tracking for location-based community services,” in Proc. of the Second
International Workshop on Location- and Context-Awareness, vol. LNCS
3987, pp. 116–133, Springer, 2006.

[151] R. Sibson, “SLINK: an optimally efficient algorithm for the single-link
cluster method,” The Computer Journal, vol. 16, no. 1, pp. 30–34, 1973.

[152] “Institut national de la statistique et des études économiques.” http://
www.insee.fr/.

[153] “Australian bureau of statistics.” http://www.abs.gov.au.

[154] M. Scannapieco, I. Figotin, E. Bertino, and A. K. Elmagarmid, “Privacy
preserving schema and data matching,” in Proc. of the 2007 ACM SIGMOD
Int. Conf. on Management of data, ACM, 2007.

[155] S. Mascetti, L. Bertolaja, and C. Bettini, “Location privacy attacks based on
distance and density information,” in Proc. of the 20th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems,
ACM, 2012.

[156] W. K. Wong, D. W.-l. Cheung, B. Kao, and N. Mamoulis, “Secure knn
computation on encrypted databases,” in Proc. of the 2009 Int. Conf. on
Management of data, SIGMOD ’09, ACM, 2009.

[157] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and X. Yan, “Synthe-
sizing near-optimal malware specifications from suspicious behaviors,” in
Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP ’10,
(Washington, DC, USA), pp. 45–60, IEEE Computer Society, 2010.

99

http://www.insee.fr/
http://www.insee.fr/
http://www.abs.gov.au

	1 Introduction
	1.1 Dissertation Contributions
	1.2 Dissertation organization

	2 Architecture Preliminaries
	2.1 IA-32 Intel Architecture
	2.2 The ARM Architecture

	3 A methodology for testing CPU emulators
	3.1 Related Literature
	3.1.1 Software Testing
	3.1.2 Emulators and Computer Security

	3.2 Overview
	3.2.1 CPU Emulators
	3.2.2 Faithful CPU Emulation
	3.2.3 Fuzzing and Differential Testing of CPU Emulators

	3.3 EmuFuzzer
	3.3.1 Test Case Generation
	3.3.2 The Decoder
	3.3.3 Test Case Execution

	3.4 Evaluation
	3.4.1 A Glimpse at the Implementation
	3.4.2 Experimental Setup
	3.4.3 Evaluation of Test Case Generation
	3.4.4 Testing of IA-32 Emulators

	4 On Reconstructing Android Malware Behaviors
	4.1 The Android System
	4.1.1 Application components
	4.1.2 Manifests
	4.1.3 Native Interface
	4.1.4 Zygote
	4.1.5 Binder: IPC and RPC

	4.2 Related Literature
	4.2.1 Current Techniques

	4.3 CopperDroid
	4.3.1 CopperDroid Architecture
	4.3.2 Processes and Threads
	4.3.3 Tracking System Call Invocations
	4.3.4 Automatic AIDL Unmarshalling
	4.3.5 Resource Reconstructor
	4.3.6 Path Coverage
	4.3.7 Suspicious Behaviors

	4.4 Evaluation
	4.4.1 Performance Evaluation

	5 On the Privacy of Real-World Friend-Finder Services
	5.1 Background
	5.2 Attack description
	5.2.1 Scenario definition
	5.2.2 ``Known distances'' attack
	5.2.3 ``Unknown distances'' attack

	5.3 Attack automation
	5.3.1 Development of ad-hoc client
	5.3.2 Attack Algorithm

	5.4 Privacy Implications
	5.4.1 ``Who is there?'' attack
	5.4.2 ``Where is Alice?'' attack
	5.4.3 ``Follow Alice'' attack

	5.5 Ethical Considerations
	5.6 Conclusions

	6 Future directions
	6.1 A methodology for testing CPU emulators
	6.2 On Reconstructing Android Malware Behaviors

	7 Conclusion
	7.1 A methodology for testing CPU emulators
	7.2 On Reconstructing Android Malware Behaviors

