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ABSTRACT 

Forkhead box P3 (FOXP3), a gene member of the forkhead/winged-helix family of 

transcription regulators, is implicated in regulating immune system development and 

function. This gene has been found to be of crucial importance for the generation of 

CD4+CD25+ regulatory T cells (Tregs). Tregs express both the full-length FOXP3 and Δ2FOXP3 

natural splice variant. In addition to its expression in the lymphocyte lineage, studies have 

recently described FOXP3 expression in non-hematopoietic-derived cells, including 

cancerous or normal epithelial cells of multiple lineages and origins. 

The role of FOXP3 in cancer cells is still unclear. Our immunohistochemical (IHC) and 

statistical analyses of archival material from two old series of breast cancer patients 

indicated that the expression of FOXP3 in tumor cells is an independent strong prognostic 

factor for distant metastases. The impact of FOXP3 on patient survival has been confirmed 

by our IHC analysis on chemotherapy-treated breast cancer patients. In fact, FOXP3 positive 

patients had poorer disease-free survival compared to FOXP3-negative patients. 

To investigate FOXP3 role in breast cancer, its expression was assessed in a panel of breast 

carcinoma cell lines and in human primary breast carcinoma samples by Western blot 

analyses. Full lenght FOXP3 was detected in all human breast cancer samples and breast 

cancer cell lines analyzed, whereas the Δ2FOXP3 isoform was visible solely in human breast 

tumors. The involvement of ∆2FOXP3 in breast cancer and the possibility that this isoform 

could have a different role from that of full length FOXP3 in breast cancer progression has 

been investigated. WTFOXP3 or ∆2FOXP3 overexpression was induced in MDA-MB-231 

breast cancer cell line. Both WTFOXP3 and Δ2FOXP3 overexpression significantly increased 

in vitro migration and invasion capability of breast cancer cells, whilst inhibiting breast 

cancer cell proliferation. Taking advantage of these in vitro results and to further investigate 

in vivo role of FOXP3 in breast cancer metastasis, the metastatic capability of WTFOXP3- or 

Δ2FOXP3-overexpressing MDA-MB-231 breast cancer cells was investigated. The mean 

number of spontaneous lung metastases was superimposable in WTFOXP3- and Δ2FOXP3-

overexpressing tumor bearing mice (mean±SD: 12.5±27.4 and 10.3±18.1, for WTFOXP3- and 

Δ2FOXP3-MDA-MB-231-injected mice, respectively). These findings do not support a role of 

Δ2FOXP3 isoform in promoting breast cancer metastasis. 

In our IHC analyses of breast carcinoma specimens subcellular staining of FOXP3 was 

observed to be cytoplasmic or cytoplasmic/nuclear. Since the role of FOXP3 is transcription 



 5 

regulation, which mainly occurs in the nucleus, a cytoplasmic FOXP3 localization could affect 

its biological role. Thus the hypothesis that FOXP3 in tumor cells may have distinct biological 

activities and prognostic values according to its subcellular localization was investigated. 

Metastatic capability of two breast cancer cell clones with inducible FOXP3 expression and 

with different FOXP3 subcellular localization was evaluated. FOXP3 overexpression in breast 

cancer cells with a predominantly nuclear FOXP3 localization led to a significant reduction in 

the number of both spontaneous and experimental lung metastases compared to controls 

(mice in which FOXP3 overexpression was not induced). Contrarily, in mice injected with 

breast cancer cells which showed a predominantly cytoplasmic FOXP3 localization, FOXP3 

overexpression in tumor cells led to a significant increase in the number of lung metastatic 

lesions compared to control group. 

These results suggested that nuclear FOXP3 localization enable its transcriptional activity, 

resulting in an onco-suppressive effect, while its cytoplasmic localization unable this 

transcription factor to perform its biological functions, resulting in an opposite in vivo effect. 

Our findings indicate that FOXP3 subcellular localization in breast tumor cells is an important 

determinant of prognosis, supporting the involvement of this transcription factor in breast 

cancer metastasis. Additional studies are in progress to confirm these data and to better 

understand the molecular mechanisms involved in FOXP3 role in driving breast cancer 

metastasis. 
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1. Breast cancer 

1.1 Rational for the proposed research 

Breast cancer is the most common non-skin cancer in women and the second most common 

cause of cancer-related death in women. Multiple factors ranging from age, family history, 

and obesity to lifestyle factors such as alcohol consumption, smoking and exposure to 

carcinogens have been shown to contribute to susceptibility to breast cancer [Gray et al., 

2009]. Breast cancer causes 450,000 deaths each year worldwide, mainly as a result of 

metastatic spread of the disease. Metastasis is the process in which the cancer cells 

dissociate from the primary tumor and localize to distant or secondary sites within the body. 

The five year survival rate is 98% in cases where breast cancer remains localized; however, 

when a breast cancer has metastasized the five year survival rate reduces to 26% [Jemal et 

al., 2007]. Thus, a better understanding of the molecular mechanisms underlying metastasis 

is one of the most important issues in cancer research. The detection of molecular markers 

for prediction of metastatic potential of cancer cells will contribute to the creation of new 

principles for prevention, diagnosis and therapy of metastasis. 

 

1.2 Breast cancer epidemiology  

Breast cancer is the most common cancer among women worldwide and it is also the 

leading cause of cancer-related mortality [American Cancer Society, 2011; Jemal et al., 

2011]. An estimated total of 1,384,000 females were diagnosed with breast cancer globally 

in 2008 [Ferlay et al., 2010], corresponding to 42.3 new cases per 100,000 population 

[Ahmad et al., 2001]. This represented the 23% of all invasive cancers diagnosed amongst 

females that year, and compared to the 2002 estimates [Parkin et al., 2005] there was an 

increase in terms of both the number of cases and the incidence rate (1,152,000 and 

40.4/100,000 in 2002, respectively). Although the overall number of new diagnoses were 

similar in more developed countries compared to less developed countries, incidence rates 

were almost two and a half times higher in the former (71.7/100,000 and 29.3/100,000, 

respectively) [Ferlay et al., 2010]. Breast cancer had the highest incidence of any cancer 

amongst females in most regions of the world, with the exception of several countries in 

Eastern and Western Africa as well as parts of Central and South America and Southern Asia. 

The differences in incidence are due to variations in environmental factors rather than 

genetic factors [Hoover, 2012], as demonstrated by migrant studies which show an 

increased risk for migrants moving from a low-risk to a high-risk country [Tyczynski et al., 
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1994] and that the risk increases from generation to generation [Ziegler et al., 1993]. Thus, 

parallel with the progress of the developing countries and the adoption of a more 

westernized lifestyle, incidence of breast cancer is also increasing in these countries [Bray et 

al., 2004]. 

The range of mortality rates is much less (approximately 6-19 per 100,000) because of the 

more favorable survival of breast cancer in high-incidence developed regions. 

As a result, breast cancer ranks as the fifth cause of death from cancer overall, but it is still 

the most frequent cause of cancer death in women in both developing and developed 

regions. 

 
1.3 Breast cancer classification  

Breast cancer can be classified by different aspects each of one influences treatment, 

response and prognosis. A full classification of breast cancer includes histopathological type, 

grade, stage, receptor status, and gene expression patterns. 

 
 Histopathology 

Breast cancer is divided into non-invasive and invasive (infiltrating) carcinoma. 

Breast carcinoma in situ (CIS) comprise a heterogenous group of lesions, covering a wide 

spectrum of clinical conditions and histopathological changes. With respect to biological 

behavior, CIS range from lesions with a very low malignant potential to biologically 

aggressive lesions with a substantial risk of progression into invasive carcinoma (IC). Studies 

of CIS indicate that approximately a third will subsequently develop IC. Autopsy studies 

indicate that CIS is frequently occurring and it was estimated that about 20% of all women 

will develop CIS during lifetime [Ottesen, 2003]. Two main types of CIS are described: ductal 

carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS). Ductal carcinoma in situ (DCIS) 

is considerably more common than its lobular carcinoma in situ (LCIS) counterpart and 

encompasses a heterogeneous group of tumors. DCIS has traditionally been further sub-

classified based on the architectural features of the tumor which has given rise to five well 

recognized subtypes: Comedo, Cribiform, Micropapillary, Papillary and Solid. 

Invasive carcinomas are a heterogeneous group of tumors differentiated into histological 

subtypes. The major invasive tumor types include infiltrating ductal (70–80% of all invasive 

lesions), invasive lobular, ductal/lobular, mucinous, tubular, medullary and papillary 

carcinomas [Li et al., 2005]. 

http://en.wikipedia.org/wiki/Breast_cancer_classification#Histopathology
http://en.wikipedia.org/wiki/Breast_cancer_classification#Grade
http://en.wikipedia.org/wiki/Breast_cancer_classification#Receptor_status
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 Grade 

The neoplastic grading is a measure of tumor cell anaplasia and indicated how closely the 

tumor cells resemble the tissue from the organ of origin. The grading method in most 

widespread clinical use presently is the Nottingham combined histologic grading system 

(NHG). In this system, the degree of tubule formation, nuclear grade, and mitotic rate are 

each assigned a value of 1 to 3; these values are then added together to produce assigned 

scores from 3 to 9. Tumors with total scores of 3 to 5 are categorized as grade 1; those with 

scores of 6 and 7 are grade 2, and those with scores of 8 and 9 are grade 3. 

Pathologists describe tumor cells as well differentiated (grade 1), moderately differentiated 

(grade 2), and poorly differentiated (grade 3) as the cells progressively lose the features seen 

in normal breast cells. Grade 1 tumors have better prognosis than tumors of grade 3. 

NHG correlates well with 10-year survival, and has been shown to be an independent factor 

in prediction of prognosis [Rakha et al., 2008; Razavi et al., 2005]. 

 Stage 

The most well-established clinically used prognostic marker in breast cancer is the Tumor, 

Node and Metastasis staging system (TNM) (Table 1). TNM staging is a measure of how far 

the tumor has spread and summarizes information about three important features of the 

tumor, namely size, lymph node status and distant metastasis. These variables are scored, 

and the tumor is classified into one of five different stages (0; in situ, I, II, III and IV), with the 

highest stage correlating to a worse prognosis. Lymph node involvement is the single most 

powerful predictor of prognosis in patients who do not have distant metastasis [Carter et al., 

1989]. In fact, the number of metastatic lymph nodes strongly and negatively influences 

survival [Goldhirsch et al., 2001].  

 Receptor status  

Breast cancers can be categorized based on estrogen receptor (ER), progesterone receptor 

(PR), and human epidermal growth factor receptor 2 (HER2) status. 

The hormone receptor ERα, is expressed in 70-80% of all breast tumors (ER+) the majority of 

which are also positive for PR (PR+), since this receptor is upregulated in response to ER-

signalling. ER-status is the most important factor influencing response to endocrine therapy. 

However, has been recently demonstrated that PR was a stronger predictor of treatment 

response than the ER. In fact, both recurrence-free and overall survival improved 

significantly on tamoxifen treatment in patients with tumors showing >75% PR-positive 

http://en.wikipedia.org/wiki/Breast_cancer_classification#TNM_system
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nuclei [Ferno et al., 2000; Stendahl et al., 2006]. Apart from predicting response to 

endocrine therapy, hormone-receptor status also influences prognosis; hormone receptor-

positive cancers conferring a survival advantage compared to hormone receptor-negative 

cancers [Mansour et al., 1994]. 

Human epidermal growth factor receptor 2 (HER2) (also known as HER2-neu and ERBB2) is 

amplified in 10-30% of all breast cancer cases. HER2 mediates growth, differentiation, and 

survival of cells. Women whose tumors overexpress HER2 have a more aggressive disease 

than women whose tumors do not overexpress HER2, both with respect to disease-free and 

overall survival [Slamon et al., 1987]. 

Tumors that are ER-, PR-, and HER2-negative are referred to as triple-negative tumors and 

account for 15-20% of all newly diagnosed breast cancers [Metzger-Filho et al., 2012]. Triple-

negative breast cancers (TNBC) have a higher probability of relapse and poorer overall 

survival in the first years after breast cancer diagnosis compared to other types of breast 

cancer [Metzger-Filho et al., 2012].  

 Molecular subtypes of breast cancer 

A discovery which has had a major impact in directing breast cancer research is the existence 

of molecularly distinct breast tumor subtypes with pervasive differences in their gene 

expression patterns (figure 1) [Perou et al., 2000]. The molecular portrait that classify the 

different subtypes reflect differences in the intrinsic biology, such as growth rate, activation 

of intracellular pathways and cellular composition, clinical presentation, histopathological 

feature, outcome, and response to systemic therapies [Perou et al., 200; Reis-Filho et al., 

2011; Sorlie et al., 2001, 2003, 2004;].  

The five original subtypes were the luminal A, luminal B, basal-like, HER2, and the normal 

breast-like subtype [Perou et al., 2000, Sorlie et al., 2001]. The claudin-low and molecular 

apocrine subtypes were identified later on [Farmer et al., 2005; Herschkowitz et al., 2007]. 

Luminal A tumors are mostly ER-positive, they have a low proliferation rate, and they are of 

low grade. 

Luminal B tumors are also mostly ER-positive but may express low levels of hormone 

receptors. They are usually of high grade and have a high proliferation rate.  

The basal-like subtype is often characterized by triple-negative tumors, high levels of 

expression of proliferation-related genes, and expression of genes associated with basal and 

myoepithelial cells. 
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The HER2-enriched group displays amplification and high expression of the HER2 gene and it 

is generally represented by ER-negative breast cancers. 

The normal breast-like subtype shows expression of many genes expressed by adipose tissue 

and other non-epithelial cell types, strong expression of basal epithelial genes, and low 

expression of luminal epithelial genes. 

The claudin-low tumors are ER/negative carcinoma characterized by down-regulation of 

genes involved in cell adhesion, are more enriched in epithelial-to-mesenchymal transition 

features, and express stem cell-associated genes [Reis-Filho et al., 2011]. 

The apocrine subtype is usually ER-negative but it expresses androgen receptors and 

androgen receptor-associated genes, and has histological features suggestive of apocrine 

differentiation [Doane et al., 2006; Farmer et al., 2005]. 

The molecular subgroups harbor prognostic value; patients with luminal A tumors have 

better prognosis than patients with other tumor subtypes (particularly luminal B and basal-

like). On the contrary, basal-like and ERBB2+ subtypes associated with the shortest survival 

times and the shortest relapse-free survival [Hu et al., 2006; O'Brien et al., 2010; Perou et al., 

2000; Sorlie et al., 2001] (figure 2). 

 

 

 
Figure 1. Molecular classification of breast cancers 
Hierarchical clustering of 115 tumor tissues and 7 nonmalignant tissues using the intrinsic gene set.  
A scaled-down representation of the entire cluster of 534 genes and 122 tissue samples based on similarities in 
gene expression.  Gene expression profiling  divided breast cancers into 5 distinct molecular classes or intrinsic 
subtypes, termed luminal A, luminal B, HER2-enriched, basal-like and normal-like subtypes. 
Adapted from Sorlie et al., 2006. 
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Figure 2. Survival probability according to breast cancer subtype 
Kaplan-Meier curves of disease-free survival and overall survival based on the UNC337 database. 
Dark blue, luminal A; light blue, luminal B; red, basal-like; pink, HER2-enriched; yellow, claudin-low. 
Adapted from Cadoo et al., 2013. 

 
 
1.4 Risk factors associated with breast cancer 
 
 Age 

Breast cancer incidence increases with age and it is relatively rare in women less than 40 

years of age, after which the incidence increases greatly [Adami et al., 2008]. Conversely, the 

rate of the age-specific incidence rises sharply until around 50 years of age (i.e. around 

menopause), after which the increase is less pronounced, suggesting that hormones are 

important to breast cancer development [Adami et al., 2008; Pike et al., 1983].  

 Endogenous hormones 

Breast cancer is influenced by many hormonally related factors and it has therefore long 

been assumed that high levels of endogenous sex hormones are partially at fault. This was 

also corroborated by the Endogenous Hormones and Breast Cancer Collaborative Group 

which showed that postmenopausal women who had increased levels of endogenous sex 

hormones, also were at higher risk of breast cancer and there was a dose-response 

relationship [Key et al., 2002]. 

A relationship has been observed between higher levels of free estradiol during the follicular 

phase and breast cancer risk in premenopausal women [Eliassen et al., 2006]. 
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 Hereditability 

A family history of breast cancer in a first-degree relative increases risk of breast cancer by 

approximately 2-fold [Pharoah et al., 1997], and a family history of more than one first-

degree relative confers an even greater risk. Approximately 16% of breast cancers in women 

with a positive family history are thought to arise due to mutations in the high penetrance 

susceptibility genes BRCA1 and BRCA2 [Breast Cancer Study Group, 2000]. High penetrance 

susceptibility genes are characterized by the fact that carriers have a high likelihood of 

developing disease. The lifetime risk of developing breast cancer is 45-65% for carriers of 

BRCA1 and BRCA2 mutations [Antoniou et al., 2003]. There are four other known high 

penetrance genes associated with breast cancer, TP53, PTEN, STK11, and CDH1, but 

mutations in these genes are very rare. Together all six genes are only believed to account 

for 20% of the familial risk of breast cancer. Four, intermediate penetrance genes have also 

been identified: CHEK2, ATM, BRIP1 and PALB2. These genes increase breast cancer risk by 

2-4 fold but are also believed to be uncommon [Stratton et al., 2008]. 

 Reproductive factors 

Age at menarche influences breast cancer risk, where older age decreases risk [Kelsey et al., 

1993]. The opposite is true for age at menopause, where older age at menopause increases 

risk of breast cancer [Collaborative Group on Hormonal Factors in Breast Cancer, 1997]. 

Hence, the longer a woman has menstrual cycles, the higher her risk of breast cancer. An 

early age at first full-term pregnancy and number of full-term pregnancies both have 

protective effects on breast cancer risk, independent of each other [Ewertz et al., 1990]. The 

reason for this is thought to be that mammary gland cells are undifferentiated until first 

pregnancy, and that each pregnancy decreases the number of undifferentiated cells. 

However, the effect of pregnancy is dual; a full-term pregnancy increases breast cancer risk 

immediately after birth, but the risk then gradually diminuishes, and in the long-term, 

imparts a protective effect. Breast-feeding also has a protective effect on breast cancer risk 

independent of age at first birth and parity [Collaborative Group on Hormonal Factors in 

Breast Cancer, 2002; Key et al., 2002]. 

 Exogenous hormones 

The use of combined oral contraceptives is related to an increase in breast cancer risk of 

about 25% but is only associated with current or recent use. 10 years after cessation there 
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seems to be no increased risk [Key et al., 2002]. Hormone-replacement therapy, given as a 

combination of estrogen and progesterone or estrogen alone, increases breast cancer risk, 

where combination treatment increases risk the most [Narod et al., 2011]. Risk also 

increases with duration, e.g. in women on combination therapy, breast cancer risk increases 

by 7.6%/year [Lee et al., 2005]. 

 Lifestyle factors 

Two recent International Agency for Research on Cancer (IARC) Monographs considered the 

effect of alcohol drinking in cancer etiology, and concluded that female breast cancer is 

causally related to alcohol consumption [IARC, 2010; Secretan et al., 2009]. A small but 

significant increase of the order of 4% in the risk of breast cancer is already present at 

intakes of up to one alcoholic drink/day. Heavy alcohol consumption, defined as three or 

more drinks/day, is associated with an increased risk by 40–50% [Mezzetti et al., 1998]. 

Although not initially considered to be a tobacco-related cancer [IARC, 2004; United States 

Public Health Service, 2004], breast cancer has been the subject of well over 100 studies of 

tobacco-related risk. Consensus has been building that active smoking is likely to pose a 

modest risk for breast cancer. Contributing to that view is evolving evidence for biologic 

plausibility, risk estimates from large well designed human health studies, evidence from 

pooled and meta-analyses, and evidence for higher risk in more susceptible subsets of the 

population. Highlighted from the literature on active smoking and breast cancer is the 

importance of timing, with evidence for increased risk among women who initiated smoking 

at an early age and/or who smoked heavily prior to a first full term pregnancy. This is 

complemented by increasing evidence for host susceptibility associated with genetic 

polymorphisms involved in tobacco metabolism [Reynolds, 2013]. 

A decrease in the risk of breast cancer of approximately 25% among the most physically 

active women compared with the less active women. All types of activity and both moderate 

and vigorous intensity activity were associated with a reduction in the risk of breast cancer. 

Physical activity reduced the risk for breast cancer among all categories of Body Mass Index 

except obese women [Friedenreich et al., 2008]. 
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1.5 Management of breast cancer 
 
Management of breast cancer depends on tumor stage, tumor size, the expression of 

hormone and growth factor receptors on the tumor cells, and patient factors. 

 
 Surgery 

Surgery is considered the primary treatment for breast cancer. The aims of surgery include 

complete resection of the primary tumor, with negative margins to reduce the risk of local 

recurrences, and pathologic staging of the tumor and axillary lymph nodes (ALN) to provide 

necessary prognostic information. Lumpectomy (partial or segmental mastectomy) is 

defined as complete surgical resection of a primary tumor with a goal of achieving widely 

negative margins (ideally 1 cm). A total mastectomy involves complete removal of all breast 

tissue. Complete mastectomy is used less frequently, since breast-conserving surgery in 

combination with radiotherapy has been shown to be an adequate alternative [Wapnir et 

al., 2011]. ALN dissection is the gold standard as part of initial management to detect 

regional nodal metastasis. ALN status can serve as an indicator to likely presence of systemic 

disease, assist in locoregional control of disease and determine the need for further adjuvant 

therapy [Ahmed et al., 2013]. Over the last few decades, ALN dissection has changed from 

therapeutic clearance of the ALN to selective sentinel lymph node dissection (SLND). The 

sentinel lymph node is defined as the first node that receives lymphatic drainage from the 

affected breast. It is the node most likely to harbor metastases. Sentinel node biopsy (SNB) 

allows accurate axillary staging of patients with invasive breast cancer and a clinically 

negative axilla. SNB has less morbidity and fewer complications than traditional axillary 

lymph node dissection (ALND) [Wilke et al., 2006]. According to ASCO guidelines [Lyman et 

al., 2005] patients with a sentinel lymph node biopsy result indicating that they are free from 

metastatic disease may avoid ALND. SLN can be used in conjunction with both mastectomy 

and breast conservation. ALND should be performed when sentinel node mapping fails to 

identify the sentinel node or when non sentinel nodes are clinically suspicious. SLND alone 

has shown excellent locoregional control of disease in patients with breast cancer [Giuliano 

et al., 2000; Reitman et al., 2003; Schrenk et al. 2001]. 

 Radiotherapy 

Radiation is the international standard treatment in order to reduce the risk of local relapse. 

Radiotherapy is applied to all patients who have gone through breast-conserving surgery 
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and a majority of mastectomized patients with affected lymph nodes. A meta-analysis by the 

Early Breast Cancer Trialists’ Collaborative Group in 2011 showed adjuvant radiotherapy 

after breast-conserving therapy to reduce the relative risk of recurrence by 50%, the largest 

effect being seen on local recurrences. The proportional benefit was similar regardless of 

other prognostic factors such as lymph node status, tumor size or the patient’s age. The 

benefit of radiotherapy is thus dependent on the patient’s inherent risk of recurrence.  

 Systemic treatment  

Systemic treatment includes chemotherapy, endocrine treatment and targeted drugs, such 

as antibodies. Treatment can be given neo-adjuvantly, adjuvantly or for palliation. In the 

neo-adjuvant setting the primary goal is to reduce the size of the tumor, making it operable. 

Adjuvant therapy is given postoperatively to eradicate micro-metastases and to reduce the 

risk of recurrence. Generally, adjuvant therapy is considered if the risk of recurrence is 

higher than 20-30%. In the palliative setting, the purpose of treatment is to shrink 

metastases, reduce symptoms and prolong life. 

With the purpose to reduce the risk of undetected deposits of disease to develop into a 

clinical recurrence, adjuvant chemotherapy is administered and results in improved relapse-

free and overall survival in the general breast cancer population. 

Adjuvant chemotherapy is today recommended for most patients with lymph-node-positive 

disease [Swedish Breast Cancer Group, 2011]. Furthermore, adjuvant chemotherapy is being 

offered increasingly over time to node-negative patients, with grade, tumor size, ER status, 

and younger age the most significant factors influencing chemotherapy recommendations 

[Elder et al., 2011]. Adjuvant treatment with poly-chemotherapy resulted in about 36% 

breast cancer mortality rate reduction versus no chemotherapy [Early Breast Cancer Trialists' 

Collaborative Group, 2012]. Poly-chemotherapy has also proven to be more effective than 

single-agent regimes in neo-adjuvant and adjuvant settings [Early Breast Cancer Trialists' 

Collaborative Group, 1992]. The reasons for this are the potential synergetic effects and the 

different toxicity profiles, allowing more intense treatment. Taxanes, such as paclitaxel and 

docetaxel, are well established drugs for metastatic breast cancer and are comparable to 

anthracyclines when administered as monotherapy. However, the addition of a taxane to 

anthracycline-based therapy has been shown to improve distant recurrence rates as well as 

overall survival in the adjuvant setting [De Laurentiis et al., 2008]. 
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 Targeted therapy  

The term “targeted therapy” is generally used to describe treatment disrupting specific 

molecules involved in carcinogenesis and tumor growth, rather than generally affecting 

rapidly dividing cells, as is the case in most traditional forms of chemotherapy. Current 

treatment options for breast cancer are moving toward nontoxic, potent targeted therapies 

that can be tailored to an individual patient’s tumor. There are now targeted therapeutic 

options available for the majority of breast cancer subtypes, exploiting the differing drivers 

of carcinogenesis within these individual tumors. A greater understanding of the underlying 

biology of breast cancer has resulted in the identification of a number of molecular targets 

and development of novel therapeutics. Among them are tyrosine kinase inhibitors (TKIs) 

directed at a number of targets (HER1, HER2, HER3, IGF receptor [IGFR], C-MET, FGF 

receptor [FGFR]), inhibitors of intracellular signaling pathways (PI3K, AKT, mammalian target 

of rapamycin [mTOR], ERK), angiogenesis inhibitors, and agents that interfere with DNA 

repair. Some of these agents have shown remarkable activity and have already become part 

of the standard of care in patients with breast cancer (exemplified by the anti-HER2 agents 

Trastuzumab and Lapatinib). Others have shown clinical activity but are not yet approved for 

clinical practice. 

ER- and PR-positive breast cancers have been the prime example of cancer amenable to 

targeted drug approaches. Estrogen-focused therapies remain pivotal to the treatment of 

this disease. The ER pathway can be targeted by inhibiting the ER (Tamoxifen), or by 

removing the ligand estrogen (oophorectomy or aromatase inhibitors (AIs)). 

The ER modulator Tamoxifen has been demonstrated to improve survival among women 

with early and advanced breast cancer and further improvements have been provided by 

aromatase inhibitors and the ER-degrading agent Fulvestrant [Gibson et al., 2009; Gradishar, 

2010; Robertson et al., 2009]. In premenopausal patients the ovaries are the main source of 

estrogen, while in postmenopausal women estrogen is predominantly produced by 

aromatization of adrenal and ovarian androgens in the liver, muscle and fat tissue. AIs block 

this aromatization in peripheral tissue, although they do not affect the production of 

estrogen in the ovaries. Hence, AIs are only effective in postmenopausal patients, while 

Tamoxifen can be used for all women regardless of menopausal status. Long-term efficacy of 

Tamoxifen and AIs is limited by relapse of disease and development of resistance. 
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The monoclonal antibody Trastuzumab is directed against the HER2 oncogene. Patients 

overexpressing HER2 have a poorer prognosis and an increased risk of metastasis.  

Trastuzumab in combination or sequence with cytotoxic chemotherapy significally improves 

the prognosis of patients with HER2-overexpressing early breast cancer and is now routinely 

offered to this population mostly in combination with adjuvant chemotherapy [Piccart-

Gebhart et al. 2005; Romond et al., 2005]. Similarly, the dual HER1 and HER2 TKI Lapatinib 

has been approved for the therapy of patients whose disease has progressed on 

Trastuzumab [Baselga and Swain, 2009]. In addition to the approved agents, there are a 

number of novel strategies against HER2 that have shown activity in tumors that have 

progressed during treatment. Pertuzumab is a recombinant humanized monoclonal antibody 

directed against the dimerization domain II of HER2 extracellular domain that is required for 

ligand-dependent dimerization with HER3 [Baselga and Swain, 2009]. The combination of 

Pertuzumab and Trastuzumab among patients with metastatic HER2-positive breast cancer 

who had experienced progression during prior Trastuzumab therapy demonstrated a clinical 

benefit rate of 50%. 

To date, unlike other molecular subtypes of invasive breast cancer, validated targeted 

therapies are unavailable for triple negative breast cancer patients. 

 
1.6 Triple negative breast cancer 

 
Triple-negative breast cancer (TNBC) is defined by the lack of estrogen receptors, 

progesterone receptors and by human epidermal growth factor receptor 2–negative status 

and accounts for 15% to 20% of newly diagnosed breast cancer cases [Bauer et al., 2007]. 

TNBC is associated with African American ethnicity, younger age, advanced stage at 

diagnosis, and poorer outcome when compared to other breast cancer subtypes. The 

majority of TNBCs are invasive ductal carcinoma, but less common histologic subtypes (ie, 

medullary, metaplastic, and adenoid cystic) share the TNBC phenotypic characteristics 

[Jacquemier et al., 2005; Livasi et al., 2006]. 

TNBC is a heterogeneous disease and can be further classified on the molecular level into 

two main subgroups, basal-like and claudin-low. 80% of basal like breast cancers are also 

triple negative breast cancers and 80% of triple-negative breast cancers are also basal like 

breast cancers [Foulkes et al., 2010; Lehmann et al., 2011]. At the morphology level, TNBC 

and basal-like tumors share similar characteristics [Rakha et al., 2009]. Larger tumor size, 
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high grade, presence of geographic necrosis, pushing borders of invasion, and stromal 

lymphocytic infiltrate are characteristics commonly reported [Fulford et al., 2006; Livasy et 

al., 2006]. Moreover, an important phenotypic overlap is present between BRCA1-associated 

tumors and TNBC/basal-like cancers. BRCA1 is an important breast-cancer susceptibility 

gene. IHC-based studies also classify 80% to 90% of BRCA1-associated tumors as TNBC 

and/or basal-like breast cancers [Arnes et al., 2005; Foulkes et al., 2003; Lakhani et al., 

2005]. In addition, both triple-negative and basal-like breast cancers are more likely than 

other breast cancer types to metastasize to viscera, particularly to the lungs and brain, and 

are less likely to metastasize to bone [Foulkes et al., 2010]. 

A minority subtype of TNBC, termed claudin-low, has recently been identified in non-basal 

TNBCs. Claudin-low TNBC cells are uniquely characterized by low to absent expression of 

epithelial cell–cell adhesion proteins, differentiated luminal cell surface markers, and 

enrichment of epithelial-to-mesenchymal transition markers, immune response genes and 

cancer stem cell-like features [Prat et al., 2010]. 

TNBCs have a poor outcome compared to the other subtypes of breast cancer [Chavez et al., 

2010]. The shape of the survival curve for patients with triple-negative or basal-like breast 

cancer differs from that for patients with other types of breast cancer: there is a sharp 

decrease in survival during the first 3 to 5 years after diagnosis, but distant relapse after this 

time is much less common (figure 3) [Foulkes et al., 2010]. 

 
 

 
 
Figure 3. The hazard rates for distant recurrence of triple-negative breast cancer and non–triple-negative 
breast cancer 
 Adapted from Foulkes et al., 2010. 
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TNBCs cause a disproportionate number of breast cancer deaths. This poor prognosis is due 

to intrinsic aggressiveness and lack of treatment options, especially targeted therapies 

[Foulkes et al., 2010; Lehmann et al., 2011]. The lack of identified molecular targets in the 

majority of TNBCs implies that chemotherapy remains the treatment of choice for patients 

with TNBC. Current best standard of care chemotherapy regimens for early breast cancer are 

third-generation regimens, which include an anthracycline and taxane-based regimen 

[O'Toole et al., 2013]. Neoadjuvant studies have shown that TNBC is highly chemotherapy 

sensitive. Despite this high chemotherapy sensitivity, treatment of TNBC remains 

challenging, and on recurrence, patients with TNBC have worse survival outcomes than 

patients with hormone receptor–positive breast cancer subtypes [Carey, 2010; Foulkes et al., 

2010]. While there may be some benefit in the adjuvant setting, once metastatic disease 

develops, chemotherapy responses in TNBC are not sustained with a median survival in 

patients with metastatic TNBC of only 6 months; consequently there is a pressing need to 

identify new targets for treating patients with TNBC [O'Toole et al., 2013]. Molecular 

processes and biological drivers that have been targeted in TNBC include vascular 

endothelial growth factor, inefficient DNA repair mechanisms (ie, PARP), the epidermal 

growth factor, mammalian target of rapamycin (mTOR), Src oncogene pathway, histone 

deacetylase, and androgen receptor. In general, clinical introduction of these molecules is 

hampered by a lack of predictive biomarkers [Brouckaert et al., 2012]. 

Anyway, because of the heterogeneity of TNBC tumors, it is unlikely that any single 

treatment will be efficacious in all TNBC patients. The most effective treatment approach for 

these patients is likely to be a combination of targeted therapies or combined targeted 

therapy with cytotoxic agents [Duffy et al., 2012]. 
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2. Metastasis 

 

2.1 The metastatic cascade 

The process of metastasis is a highly complex and dynamic event that requires tumor cells to 

dissociate from the primary tumor mass and moving to localize to distant or secondary sites 

(figure 4) [Carter et al., 1989]. The metastatic process consists of a series of steps all of 

which must be successfully completed to give rise to a metastatic tumor. The inability to 

perform any of the steps in the metastatic process leads to metastatic failure [Fidler et al., 

2002]. 

The first step of the metastatic cascade is represented by epithelial to mesenchymal 

transition, in which tumor cells originating from the primary tumor acquire fibroblastoid 

characteristics that increase their motility and allow them to invade epithelial and basal 

membranes [Kalluri and Weinberg, 2009].  As a primary tumor grows, it needs to develop a 

blood supply that can support its metabolic needs, a process called angiogenesis. These new 

blood vessels can also provide an escape route by which cells can leave the tumor and enter 

into the body's circulatory blood system, known as intravasation [Wyckoff et al., 2000]. 

Tumor cells might also enter the blood circulatory system indirectly via the lymphatic system 

[Hunter et al., 2008; Talmadge et al., 2010]. 

Tumor cells that entered the lymphatic vessels give rise to lymph node metastasis most 

often occurring in the ipsilateral axilla, whereas hematogenic/systemic spread usually gives 

rise to metastasis in the bones, lungs, liver, or brain. Tumor cells need to survive in the 

circulation until they can arrest in a new organ; here, they might extravasate from the 

circulation into the surrounding tissue. Once in the new site, cells must initiate and maintain 

growth to form pre-angiogenic micrometastases; this growth must be sustained by the 

development of new blood vessels in order for a macroscopic tumor to form [Iiizumi et al., 

2008]. 
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Figure 4. Schematic representation of the hematogenous metastasis 
A) Escape of cancer cells from a primary tumor, and arrest in secondary sites. Cells that are able to escape from 
a primary tumor into the blood circulation are then carried by the flow to secondary sites, where they are 
arrested by size restriction in small capillaries in the new organ. Examples shown are cells arrested in muscle 
and in liver.  
B) Possible fates of cancer cells in a secondary site, following the arrival of circulating cancer cells in an organ. 
Cancer cells can exist in a secondary site as solitary cells, small pre-angiogenic metastases or larger vascularized 
metastases. At each step, only a subset will proceed, and the remainder of cells might either go into a state of 
dormancy, or die. Only a proportion of vascularized metastases are clinically detectable, and solitary cells and 
micrometastases are generally clinically undetectable. 
Adapted from Carter et al., 1989. 
 
 

2.2 Inefficiency of metastatic process 

Metastasis is an inefficient process; it has been estimated that only about 0.01% of cancer 

cells that enter the circulation will eventually survive and give rise to micrometastases [Joyce 

and Pollard, 2009]. Large numbers of cancer cells might be detected in the blood in cancer 

patients, and yet very few of these develop into overt metastases. 

Many in vivo studies [Cameron et al., 2000; Chambers et al., 2000, 2001; Luzzi et al., 1998; 

Varghese et al., 2002] have led to the conclusion that early steps in the hematogenous 

metastatic process, from the time that cancer cells enter the bloodstream until they 

extravasate into secondary organs, are completed efficiently. By contrast, subsequent steps 

in the metastatic process are completed inefficiently, with only a small subset of cancer cells 

in a secondary site initiating cell division to form micrometastases, and only a small 



 23 

proportion of these micrometastases persisting to become vascularized and progressively 

growing macroscopic metastases. Regulation of growth of a subpopulation of cells that 

arrested in an organ was therefore responsible for the overall metastatic inefficiency. In all 

cases, the initial arrest of cells was very efficient, but the initiation and persistence of growth 

was much less efficient. Metastatic inefficiency seems to be due primarily to the regulation 

of cancer-cell growth in secondary sites. 

 
2.3 Clinical features of breast cancer metastasis 

Approximately 10–15% of patients with breast cancer has an aggressive disease and 

develops distant metastases within 3 years after the detection of the primary tumor. 

However, the manifestation of metastases at distant sites 10 years or more after the initial 

diagnosis is also not unusual [Hellman et al., 2000]. Approximately one-third of women with 

breast tumors that have not spread to the lymph nodes develop distant metastases, and 

about one-third of patients with breast tumors that have spread to the lymph nodes remain 

free of distant metastases 10 years after therapy [Hellman, 1994; Rosen et al., 1989]. 

Patients with breast cancer are therefore at risk of experiencing metastasis for their entire 

lifetime. The heterogeneous nature of breast cancer metastasis makes it difficult not only to 

define cure for this disease, but also to assess risk factors for metastasis. Although some of 

the morphologically distinct, special types of breast tumor, which represent 5–10% of all 

breast cancers, have certain favorable prognostic features; histological typing in general is 

only a weak prognostic marker of metastasis risk [Tavassoli et al., 2003]. Traditional 

pathologic factors, such as histologic type, histologic grade, LVI, tumor size, and axillary 

lymph node status, together with hormone receptor status and HER2 status, represent the 

principal means for assessing prognosis and determining the likelihood of therapeutic 

response in patients with breast cancers [Carter et al., 1989; Elston et al., 1991; Koscielny et 

al., 1984; Page, 1991; Rosen et al., 1989]. Today, the traditional prognostic markers are able 

to confidently identify the group of approximately 30% of patients, who are most likely to 

have either a very favorable or a very poor outcome. For the remaining 70% of patients, of 

whom approximately 30% will still develop metastases, new prognostic markers are needed 

to help identify low-risk and high-risk groups, to pinpoint those patients who are most likely 

to benefit from systemic adjuvant treatment. 
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3. FOXP3 

FOXP3 is a gene involved in immune system responses and it functions as the master 

regulator in the development and function of regulatory T cells (Tregs) [Fontenot et al., 

2003, Hori and Sakaguchi, 2004, Khattri et al., 2001; Sakaguchi et al., 2008]. Treg cells are 

the main effectors the body uses to fight autoimmunity by suppressing auto-reactive 

lymphocytes which escape negative selection in the thymus. Tregs were initially defined as 

immunosuppressive CD4+ T cells expressing constitutively the subunit of the interleukin 2 

receptor (CD25) on their surface (CD4+CD25high FOXP3+ cells) [Sakaguchi, 2005, Setoguchi et 

al., 2005]. The nuclear expression of FOXP3 is now considered as the most specific marker 

for these cells, which is essential for development of immune tolerance [Sakaguchi, 2005, 

Setoguchi et al., 2005]. However, it should be emphasized that not all FOXP3 positive T cells 

are necessarily Treg cells and their activity may depend on the level of FOXP3 expression and 

on FOXP3 isoforms expressed [Liu et al., 2006]. 

The IL-7 receptor CD127 is another excellent marker of Tregs cells in human peripheral 

blood. This cell surface marker is expressed at low levels on the majority of Tregs and 

distinguishes up to 10% of CD4+ T cells as potential Treg cells. FOXP3 expression in this T cell 

subset controls CD127 expression: the more FOXP3 expression, the less CD127. 

CD4+CD25+CD127low FOXP3 positive cells are highly suppressive [Liu W et al., 2006]. 

Alterations in numbers of Tregs expressing FOXP3 have been found in various pathological 

conditions. Loss of FOXP3 functions in mice and human leads to Tregs deficiency, resulting in 

lethal autoaggressive lymphoproliferation. On the contrary, the up-regulation of FOXP3 

expression on T cells has led to marked reductions in autoimmune disease severity in models 

of diabetes, multiple sclerosis, asthma, inflammatory bowel disease, thyroiditis and renal 

disease in animal studies [Xia et al., 2007]. High levels of Tregs have been reported in 

peripheral blood, lymph nodes, tumor specimens, and ascites of patients with different 

types of cancer, suggesting a role for these cells in cancer progression. Tumor patients have 

a local relative excess of FOXP3 positive Tregs, which inhibits the body's self defence 

[Mizukami et al., 2008]. 

Several studies have recently described the expression of FOXP3 in non-hematopoietic 

derived cells, including normal epithelial cells and cancer cells of multiple lineages and of 

different tissue origins. 
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3.1 Forkhead proteins 

Forkhead proteins are a large family of functionally different transcription factors that have 

been implicated in a variety of cellular processes [Kaufmann and Knochel, 1996]. All 

members of the forkhead family contain a characteristic DNA-binding forkhead-box (FKH) 

domain which acts as both a transcriptional activator and repressor of genes involved in 

embryonic development, speech and language development, and regulation of the immune 

system [Coffer and Burgering, 2004]. The FKH domain is highly conserved and consists of 

approximately 100 amino acids of helix–turn–helix class proteins which produce three alpha 

helices, beta strands and two loops, or “wings” [Kaestner et al., 2000]. Outside this 

conserved domain, forkhead proteins are different in sequence, structure, and function. 

 

Nomenclature for the forkhead proteins 

In the past twenty years, more than 100 members of the forkhead transcription-factor 

family have been identified. This led to a revision of the nomenclature used to identify these 

proteins. The term FOX was used to describe all chordate transcription factors containing 

the DNA-binding FKH domain. A phylogenetic analysis has resulted in the definition of 15 

classes for all known FOX proteins, so these transcription factors are classified in terms of 

structure and not function. The term FOX is followed by a letter denoting one of the 15 

subclasses (A to Q) agreed on by phylogenetic analysis, and finally, a number was used to 

define each member of the subclass [Kaestner et al., 2000]. Therefore, the actual name of 

any Fox protein is “Fox, subclass N, member X”, or for example, FoxP3. The convention for 

naming human FKH proteins is that all letters are capitalised (eg. FOXP3) while, in mice, only 

the first letter is capitalized (Foxp3); the first letter and the subclass is capitalised for all 

other chordates (FoxP3) [Kaestner et al., 2000; Kim, 2007]. Italic script is used to describe 

the gene. 

 
3.2 FOXP3 gene  

The FOXP3 gene is well conserved in mammals [Ziegler and Buckner, 2006]. It is located on 

the X chromosome at Xp11.23 and it is submitted to X chromosome inactivation [Bennett et 

al., 2001; Wang et al., 2009]. The gene contains 11 coding exons (exons 1-11) and 3 non 

coding exons [Bennett et al., 2001]. The two 5’ non coding exons are located significantly up-

stream of the coding exons and are spliced into a common non coding exon [Floess et al., 

2007; Kaur et al., 2010; Lal and Bromberg, 2009; Smith et al., 2006]. 
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FOXP3 gene mutations  

The FOXP3 gene was initially discovered in mice with the X-linked recessive 

immunodysregulation and severe autoimmunity now known as scurfy [Chatila et al., 2000]. 

An aminoacid insertion in exon 8 leads to the scurfy phenotype in mice [Bennett et al., 

2001a]. FOXP3 was also found to be mutated in the human IPEX (Immunodysregulation 

Polyendocrinopathy Enteropathy X-linked) syndrome [Bennett et al., 2001a, 2001b; Bennett 

and Ochs, 2001]. Both scurfy and IPEX are considered fatal, often leading to death by 

overwhelming autoimmunity by 3 weeks (scurfy) or 2 years (IPEX). Consistent with these 

findings, FOXP3 has been sequenced in a large cohort of patients with phenotypic features 

of IPEX and numerous FOXP3 mutations were found [Lopez et al., 2006]. About 60% of IPEX 

patients have missense mutations in exons 9, 10, and 11 [Bennett et al., 2001a; Harbuz et 

al., 2010; Owen et al., 2003; Rubio-Cabezas et al., 2009; Torgerson et al., 2007]. In breast 

cancer patients, a total of 27 somatic mutations in all 11 coding exons and intron-exon 

boundary regions have been identified in 36% of 65 patients by PCR [Zuo et al., 2007a, 

2007b]. Interestingly, the mutations are not randomly distributed in FOXP3 gene and the 

overwhelming majority of them are either in the functional domains or within intron 11 [Zuo 

et al., 2007a]. 

Polymorphisms of the FOXP3 gene, including single nucleotide polymorphisms (SNP) and 

microsatellite polymorphisms have been reported in patients with autoimmune diseases or 

cancers [Lin et al., 2011]. Reported polymorphisms include SNPs in the promoter region, in 

the intron regions, and downstream of the coding regions, and microsatellite polymorphism 

in the promoter region, and in the intron region [Lan et al., 2010]. While most of the 

polymorphisms seem to be clinically irrelevant, a few alleles show weak clinical correlation 

with autoimmune diseases [Inoue et al., 2010; Wang et al., 2010].  

 
3.3 FOXP3 protein  

FOXP3 gene encodes FOXP3 protein, which is 431-amino acid long. FOXP3 molecular weight 

is 47 KDa. It contains four potential functional domains named repressor, zinc finger, leucine 

zipper and FKH domains (figure 5).  

Repressor domain appears to be the main region responsible for the repression of target 

genes. Many studies showed that mutations in this domain were responsible for a 

significantly increased transcriptional activity of the protein [Nair et al., 2013].  
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The zinc finger domain is located centrally in the protein. To date, no role has been clearly 

defined for this region. 

Leucine zipper structures are involved in protein-protein interactions, often leading to 

homo- and hetero-oligomerization. Many FKH proteins have been found to homo- or hetero-

oligomerize, including FOXP3. It has been reported that FOXP3 self-associates and can 

complex with FOXP1, and that the ability to form these interactions is elemental for normal 

protein function [Li et al., 2007]. IPEX patients with deletions in this region suffer from 

severe disease due to the inability of FOXP3 to self-associate, and/or associate with other 

forkhead family members such as FOXP1 [Li et al., 2007]. 

The FKH domain, whose structure has been previously described, is critical for both DNA 

binding and FOXP3 nuclear localization [Ziegler, 2006].  FOXP3 interacts with DNA at 

consensus sequences found within the promoters of several genes [Schubert et al., 2001]. 

Reporter and chromatin immunoprecipitation assays indicated that FOXP3 binds such 

sequences in the promoters of IL-2, CD25, CTLA-4 and CD127 genes [Wu et al., 2006].  The 

value of the FKH region should not be underestimated, as a protein lacking this region failed 

to translocate to the nucleus thereby preventing interaction with DNA. 

FOXP3 protein has a relatively short half-life of approximately 21 min as it undergoes rapid 

polyubiquitination and proteosomal degradation [Lee et al., 2008]. 

 
FOXP3 protein isoforms 

The FOXP3 protein is highly conserved [Lal et al., 2009; Sadlon et al., 2010; Zheng et al., 

2010]. To understand FOXP3 function it is critical to realize that, in contrast with mouse 

Tregs in which FOXP3 is only expressed as a full-length protein, human Treg cells express 

both full/length protein and three splice variants [Aarts-Riemens et al., 2008; Allan et al., 

2005; Kaur et al., 2010; Smith et al., 2006; Ziegler, 2006] (figure 5). 

The longest form (wild-type FOXP3, WTFOXP3) resembles the murine full-length FOXP3. 

The main deletional isoform (∆2 isoform, ∆2FOXP3) lacks exon 2 (aa 71–105), which is part 

of the repressor domain in the FOXP3 protein. It has been proposed that ∆2FOXP3 acts as a 

dominant negative isoform [Li et al., 2007; Xu et al., 2010]. 

Both WTFOXP3 and ∆2FOXP3 are expressed in approximately equal proportion in human 

Tregs [Yagi et al., 2004].  

Another splice variant of FOXP3, called ∆7FOXP3, has been identified in ex vivo CD4+CD25+ T 

cells and CD8+ regulatory T cell clones [Kaur et al., 2010]. ∆7FOXP3 lacks the 81 bp region 
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that encodes exon 7 of FOXP3, which is a part of the leucine zipper domain of the protein. 

Since this motif is commonly used as structural dimerization element, mutations in exon 7 

have been linked to IPEX syndrome, suggested to be caused by impaired dimerization of the 

FOXP3 protein. The absence of exon 7 abrogates the suppressive function of Tregs [Kaur et 

al., 2010]. 

Human Tregs can also express ∆2∆7FOXP3 isoform that lacks both exon 2 and exon 7 (aa 

245–272) [Mailer et al., 2009]. This isoform is expressed at relatively low-copy number in 

naturally occurring Tregs. ∆2∆7FOXP3 could play a role in regulating the function of the 

other FOXP3 isoforms and may be involved in cancer pathogenesis, as it is overexpressed by 

certain malignant cells [Kaur et al., 2010; Mailer et al., 2009]. 

 

 
 
Figure 5. FOXP3 structure and splice variant forms in regulatory T cells 
Schematic structure of FOXP3 protein and exon organization in full length (FL) and in FOXP3 splice variants 
described in Tregs. ZnF, zinc finger domain; Zip, leucine zipper domain. 
Adapted from Triulzi et al., 2012. 
 

 
3.4 FOXP3 subcellular localization 

FOXP3 protein is synthesized in the cytoplasm of cells and then actively transported to the 

nucleus. As a transcription factor, the ability to transport to the nucleus is a pre-requisite for 

the effective functioning of FOXP3; it has been demonstrated that FOXP3 nuclear localization 

is required for transcriptional repression [Lopes et al., 2006]. FOXP3 is expressed 

constitutively within the nucleus of Tregs and of those normal FOXP3-expressing epithelial 

cells [Sakaguchi et al., 2005]. Despite this, few reports have comprehensively studied factors 

involved in the transportation of human FOXP3 from the cytoplasm to the nucleus. Due to 

the size limitation of nuclear pores, proteins above ≈40 KDa of size use an active transport 

machinery in the presence of specific transport signals to pass the nuclear envelope in either 

direction [Nigg et al. 1997]. 
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FOXP3 is localized in different subcellular compartments in conventional human CD4+ T cells 

and Treg cells [Magg et al., 2012]. The nuclear-cytoplasmic shuttling of FOXP3 can be 

attributed to a nuclear localization signal (NLS) [Lopes et al., 2006] and to two newly 

identified nuclear export sequences (NESs) [Magg et al., 2012]. 

A C-terminal fragment of FOXP3 containing the entire DNA binding region FKH with short 

flanking sequences at each end was found to be both necessary and sufficient for import of 

FOXP3 to the nucleus. This domain appears to act as the primary targeting sequence [Lopes 

et al., 2006]. Mutation of two basic amino acids to acidic amino acids (K415/416E) within this 

NLS (414RKKR417) near the C-terminal end of the FKH domain abrogates nuclear import of 

FOXP3 [Lopes et al., 2006]. 

In human FOXP3 two separate leucine-rich regions (NES1 and NES2) have been identified, 

which match with the consensus export signal, previously reported to be present in many 

nucleo-cytoplasmic shuttling proteins [Henderson et al., 2000]. The first NES (NES1) lies in 

the exon 1-2 boundary zone while the second NES (NES2) localizes within the leucine-zipper 

domain and is encoded by exons 6 and 7. NES1 and NES2 are both affected by alternative 

splicing of exons 2 and 7, respectively [Smith et al., 2006; Walker et al., 2003]. In theory, 

both NESs could have a differential impact on subcellular distribution of the alternatively 

spliced human FOXP3 isoforms. Disruption of both export sequences almost entirely 

prevented nucleo-cytoplasmic redistribution. 

These results show that the alternative FOXP3 isoforms localize differently in primary human 

T cells according to the presence or absence of the respective nuclear export signals. While 

WTFOXP3 rapidly shuttled from the nucleus to the cytoplasm, the isoforms ∆2FOXP3 and 

∆7FOXP3, lacking either of the two NESs translocated to the cytoplasm with slower kinetics. 

The isoform ∆2∆7FOXP3, lacking both export sequences, localized to the nucleus [Magg et 

al., 2012]. 
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4. FOXP3 and Cancer 
 
4.1 Regulatory T cells and cancer 

Regulatory T cells, which represent about 5% of circulating CD4+ T lymphocytes in the 

human peripheral blood, comprise several functionally distinct cell subsets [Duhen et al., 

2012]. Tregs are responsible for maintaining immune responses in balance and preventing 

excessive and dangerous immune reactivity. Tregs are divided into natural Tregs, which are 

thymically derived T cells, and inducible Tregs, which upregulate FOXP3 expression and are 

derived in the periphery from naive CD4+ T-cell precursors under tolerogenic conditions. 

Tregs are highly enriched in the tumor microenvironment and are well known for their roles 

in tumor progression. In fact, they are considered to be important for limiting antitumor 

immune responses resulting in peripheral tolerance of cancer cells. The mechanisms of 

immune regulation mediated by Tregs are: secretion of soluble or membrane-tethered 

immunosuppressive molecules, direct cytolytic activity, metabolic disruption, and 

suppression of dendritic cells. Recently, the role of Tregs beyond immune suppression in 

tumors has been investigated; Tregs are directly involved in promoting angiogenic 

reprogramming of the tumor microenvironment [Facciabene et al., 2011], highlighting a 

multifaceted role for Tregs in promoting cancer through tumor immune escape and 

angiogenesis. 

An increased number of Tregs has been shown in a multitude of cancers, including 

melanoma, ovarian, breast, colorectal, lung, and pancreatic cancers [Zou, 2006]. Regulatory 

CD4+CD25+ T cells were increased in tumor sites in non–small cell lung (NSCLC) and ovarian 

cancers, and these cells secreted  large amounts of TGF-b that inhibited CD8+ effector T-cell 

in vitro functions [Woo et al., 2001]. In a study on ovarian cancer patients, Tregs that were 

isolated from the tumor site, ascites, or peripheral blood were equally able to suppress 

tumor-antigen–specific immune responses, suggesting that Tregs contribute to the 

promotion of ovarian cancer, likely due to their enhanced recruitment or local expansion 

rather than an enhanced suppressive capacity acquired in the tumor microenvironment 

[Curiel et al., 2004]. 

In breast cancers the percentage of Treg cells increases in parallel with the disease stage, 

from normal to DCIS and from DCIS to invasive carcinoma [Bates et al., 2006]. In patients 

with invasive carcinoma the presence of high numbers of FOXP3 positive T cells predicts 

worse relapse-free survival and decreased overall patient survival [Bates et al., 2006], and 
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may indicate that the presence of Treg cells promotes tumour progression by inhibiting 

immunosuppression.  

FOXP3 expression in Treg cells may result in impaired immunological function with 

maintenance of low-level chronic inflammation. Chronic inflammation may predispose to 

cancer. Increased and sustained inflammation may provide a mechanism for involvement of 

FOXP3 in cancer development. Mutation of an X-linked cancer suppressor gene, such as 

FOXP3, in females may result in its mosaic expression. In Tregs, the mosaic FOXP3 expression 

produces an elevated expression of inflammatory cytokines, sustaining inflammation 

[Medema and Burgering, 2007].  

Increased numbers of Tregs in tumors have been associated with poor survival in many solid 

tumors, including breast [Bates et al., 2006], gastric [Sasada et al., 2003], and ovarian 

cancers [Sato et al., 2005]. 

As regards breast cancer, it has been observed that poor prognostic factors (negative 

hormonal receptor status, high tumor grade, and nodal involvement) were associated with a 

significantly higher number of CD3, CD8, and FOXP3 expressing cells in the infiltrate [Ladoire 

et al., 2008]. Chemotherapy resulted in a decrease in FOXP3 positive cells in the infiltrate, 

whereas the level of CD8 and CD3 infiltrate remained unchanged [Ladoire et al., 2008]. 

Pathologic complete response to chemotherapy was found to be associated with an absence 

of immunosuppressive FOXP3 cells and the presence of a high number of CD8+ T cells and 

cytotoxic cells in cancer infiltrate. Since Tregs are potential inhibitors of anti-tumor 

response, the infiltration by FOXP3+ Tregs may be associated with increased relapse and 

shorter survival of patients with both in situ and invasive breast cancer [Generali et al., 

2009]. 

Recently, a new explanation for the association of CD4+ T-cell and Treg cell markers with a 

more aggressive behaviour in advanced breast cancers has been proposed, by 

demonstrating that tumour-infiltrating CD4+CD25+FOXP3+ Treg cells are a major source of 

RANKL, which stimulates the metastatic progression of RANK-expressing breast carcinoma 

cells [Tan et al., 2010]. The pro-metastatic function of T cells can be replaced by exogenous 

RANKL [Tan et al., 2010]. 

Thus, since Treg cells play an important role in the establishment of aggressive tumor 

phenotypes, targeting these cells is a promising approach for cancer immunotherapy. Such 

approaches could include local depletion of Tregs in the tumor mass and attenuation of 

Tregs function [Sakaguchi et al., 2008]. 
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4.2 FOXP3 expression in normal and malignant cells 

The transcription factor FOXP3 is well known marker of CD4+CD25+ regulatory T cells. 

Recently, FOXP3 expression has been described in normal cells and in non-hematopoietic-

derived cancer cells, suggesting that FOXP3 exerts a broader function than that on Tregs. 

FOXP3 expression has been demonstrated in different histological types of cancer (breast, 

melanoma, urinary bladder, tongue, gastric, esophageal, pancreas, colorectal, stomach, 

thyroid, glioma and NSCLC). 

Several studies have examined FOXP3 expression in normal and malignant breast epithelial 

cells: there are opposing reports indicating that its expression in breast cancer decreased 

[Zuo et al., 2007a, 2007b], increased [Gupta et al., 2007; Merlo et al., 2009; Ohara et al., 

2009; Won et al., 2013], or not changed in breast cancer compared to the normal epithelium 

[Zuo et al., 2007a, 2007b].  

Zuo and colleagues [Zuo et al., 2007b] analyzed FOXP3 expression in human breast cancer 

patient samples and reported that 21% of 275 analyzed samples expressed FOXP3 within 

tumor cells, whereas FOXP3 expression was found in 80% of the normal cells. In this study 

only nuclear positivity for FOXP3 was scored as a positive result. Similarly, considering 

nuclear FOX3 staining in a large series of breast cancers, FOXP3 expression was only found in 

16 out of 1547 samples (1%) [Droeser et al., 2013]. 

Different results were obtained by our group by evaluating FOX3 expression in 397 primary 

breast cancer specimens from Milan 3 and Milan 1 trials. FOXP3 stained positive in the 

majority of the breast cancer tissue examined (57% and 73% in the Milan 3 and 1 trials, 

respectively). Both cytoplasmic and nuclear staining was scored as a positive result. Always 

considering both cytoplasmic and nuclear staining, positive tumoral FOXP3 expression has 

been observed in 38.6% (105/272) of breast carcinomas, while normal breast ducts and acini 

were negative for FOXP3 expression [Won et al., 2013]. 

Quantitation of FOXP3 transcripts has been performed in breast carcinoma samples and in 

their adjacent normal tissue. According to FOXP3 protein expression in breast cancer 

specimens, the relative FOXP3 mRNA amount in breast carcinoma was significantly 

upregulated when compared to normal breast tissue expression [Gupta et al., 2007; Ohara 

et al., 2009]. 

Studies performed on other tissues have produced data showing a distribution of FOXP3 

expression restricted only to cancer cells. For example, there was no detectable expression 

of FOXP3 in normal duct cells of the pancreas whereas FOXP3 was readily detectable in 
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pancreatic cancer cells [Hinz et al., 2007]. FOXP3 is widely expressed in human melanoma 

cells and cell lines but not in normal human melanocytes [Ebert et al., 2008]. FOXP3 over-

expression has been also demonstrated in esophageal cancer cells, while normal esophageal 

mucosal cells did not express FOXP3 [Wang et al., 2012]. No FOXP3 expression was observed 

in the cells of normal brain tissue, whereas FOXP3 protein expression has been detected in 

40 human glioma samples [Wang et al., 2013]. The positive rate of FOXP3 expression in non-

small cell lung cancer (54.7%) was significantly higher than that of normal lung tissue [Fu et 

al., 2013]. 

In contrast to these findings, Wang and colleagues found that FOXP3 was expressed in 100% 

of epithelial cells in healthy prostate samples, while 68.5% of prostate cancer samples failed 

to express detectable levels of FOXP3. Furthermore, in samples with clearly identifiable 

prostate epithelial neoplasia, there was a significant reduction in FOXP3 mRNA levels [Wang 

et al., 2009]. Similar findings have been reported in samples of ovarian cancer where FOXP3 

protein was clearly identifiable in normal ovarian epithelial samples, but weak or no 

expression was found in malignant samples [Zhang and Sun, 2010]. 

 

4.3 FOXP3 protein isoforms in cancer cells 

Besides full-length FOXP3 expression, some types of cancers predominantly express FOXP3 

splice variants in addition to those occurring in non-transformed cells. In cutaneous 

melanomas, in some breast and ovarian cancers, and malignant T cells of Sezary syndrome, 

specific splice variants of the FOXP3, such as ∆2FOXP3, ∆2∆3FOXP3, ∆2∆7FOXP3 and ∆8, 

were reported to be preferably expressed [Kaur et al., 2010; Smith et al., 2006]. The 

∆2∆3FOXP3 splice variant results in a truncated FOXP3 with a premature stop codon, and 

therefore might contribute to the malignant progression of cells [Wang et al., 2009]. 

 

4.4 Genes involved in carcinogenesis regulated by FOXP3 

In vitro studies indicate an important role of FOXP3 in controlling oncogenic factors in 

epithelial cells by regulating the expression of a number of genes implicated in cancer, 

including both tumor suppressor and oncogenes. In particular, FOXP3 was reported to inhibit 

breast tumor growth through directly repressing the transcription activity of HER2, SKP2, 

and c-MYC while inducing the transcription activity of LATS2 and p21 tumor suppressor 

genes (figure 6). 
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Figure 6. Signaling pathways of FOXP3 in epithelial cells 
 FOXP3 suppresses breast cancer and prostate cancer growth by inducing tumor-suppressor genes and 
repressing oncogenes. The genes are direct targets for FOXP3 and their regulation is essential for growth 
inhibition by FOXP3. 
Adapted from Katoh et al., 2010. 

 

 ErbB2/HER2 

FOXP3 can repress HER2 transcription in human breast cancers by directly binding to the 

ErbB2 gene promoter [Zuo et al., 2007b]. Loss of nuclear FOXP3 contributes to HER2 

overexpression in breast cancer [Mahmoud et al., 2010; Zuo et al., 2007b]. Analysis of 

malignant breast cancer cell lines with significantly reduced levels of FOXP3 revealed an 

overexpression of HER2 transcripts in breast cancer cells compared to normal epithelial cells. 

Finally, when WTFOXP3 was silenced using siRNA in normal mammary epithelial cells, a 7-

fold increase was observed in ErbB2 mRNA and cell-surface expression of HER2. These data 

suggest that FOXP3 can influence mammary carcinogenesis [Zuo et al., 2007b]. 

 SKP2  

S-phase kinase-associated protein 2 (SKP2) has been reported in a wide variety of cancers 

[Nakayama and Nakayama, 2006] and it is overexpressed in nearly 50 % of breast cancers 

[Sonoda et al., 2006]. Such cancers have a poorer prognosis than those not overexpressing 

SKP2 [Radke et al., 2005; Signoretti et al., 2002]. SKP2 is expressed during S and G2 phases of 

the cell cycle and regulates p27 degradation, thus facilitating cell cycle progression. The 

expression of SKP2 and FOXP3 has been investigated in malignant human breast tissues. It 

was found that 56% of FOXP3 negative samples overexpressed SKP2. These findings suggest 

that FOXP3 is able to reduce SKP2 expression. FOXP3 directly represses SKP2 expression by 
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binding to specific regions within the SKP2 gene, and a deletion in either binding site results 

in an increased level of SKP2 expression [Zuo et al., 2007a]. 

 C-Myc 

C-Myc is a sequence-specific transcription factor and an important player in various cellular 

processes including cell cycle and apoptosis. It is overexpressed in more than 30% of all 

human cancers and in 80% of prostate cancers [Grandori et al., 2000]. Overexpression of c-

Myc contributes to more aggressive and poorly differentiated cancer phenotypes. FOXP3 is 

able to repress the expression of c-Myc [Wang et al., 2009]. A clear correlation between 

FOXP3 and c-Myc was demonstrated by knocking down FOXP3 expression in human prostate 

cells leading to an increase in both c-Myc transcripts and protein and, consequently, an 

increased rate of proliferation. Corresponding to this, when FOXP3 was transfected into 

human prostate cancer cell lines, the expression of c-Myc was almost completely abrogated 

[Wang et al., 2009]. 

 LATS2  

LATS2 is an enzyme of the Hippo-pathway [Li et al., 2011]. This pathway largely contributes 

to regulating cell cycle, cell proliferation and apoptosis by suppressing the expression of 

oncogenic YAP. LATS2 is significantly downregulated in breast [Takahashi et al., 2005], 

prostate [Powzaniuk et al., 2004], and brain [Jiang et al., 2006] cancers. FOXP3 is a direct 

transcriptional activator of LATS2 in epithelial cells of the prostate and breast where 

mutations in FOXP3 often result in decreased levels of LATS2 [Li et al., 2011]. When 

WTFOXP3 is transfected into MCF-7 breast cancer cells, there was a significant increase in 

LATS2 expression. 

 p21   

p21 is a protein encoded by the CDKN1A gene. p21 causes cell cycle arrest in the G1 phase 

and, therefore, is important in cell cycle progression [Xiong et al., 1993]. The expression of 

p21 has been implicated in many forms of cancer, particularly breast cancers [Pinto et al., 

2005]. FOXP3 can upregulate p21 expression [Liu et al., 2009]. A specific FOXP3 binding site 

in the intron 1 is essential for p21 induction by FOXP3. FOXP3 binding to intron 1 of CDKN1A 

gene increases H3 histone acetylation. This acetylation reduces histone deacetylases HDAC2- 

and HDAC4-binding affinity increasing the expression of CDKN1A gene [Liu et al., 2009]. 

When FOXP3 was knocked down in MCF-7 breast cancer cells and in human mammary 

epithelial cells, there was a decrease in the expression of p21 transcripts and protein [Liu et 
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al., 2009]. Furthermore, when human breast cancer samples were assessed for FOXP3 and 

p21 expression, only 30% of FOXP3 negative cases expressed p21 [Liu et al., 2009]. 

 
Together, all these data from in vitro studies increasingly point to the critical role of FOXP3 

as a tumor suppressor in at least breast and prostate carcinoma cellular models (table 1) 

[Triulzi et al., 2013]. 

 

                      

Cancer cell model Histotype FOXP3 target 
FOXP3-mediated 

biological effect 
 Ref 

 

Mm-TSA_FOXP3 
Hs-MCF7_FOXP3 
Hs-SKBR3_FOXP3 

 

Breast 

 

*HER2 

repression 

 

Growth inhibition 

  

Zuo et al (2007b) 

Mm-TSA_FOXP3 

Hs-MCF7_FOXP3  

Breast *SKP2 

repression 

Growth inhibition  Zuo et al (2007a) 

Hs-MCF7_FOXP3 Breast *p21 induction Growth inhibition  Liu et al (2009) 

Mm-TSA_FOXP3 

Hs-MCF7_FOXP3 

Breast *LATS2 

induction 

Growth inhibition  Li et al (2011) 

Hs-BT459_FOXP3 

Hs-MDA-MB-231_FOXP3 

Breast *SATB1 

repression 

N.A.  McInnes et al (2011) 

Hs-PC3_FOXP3 

Hs-DU145_FOXP3 

 

Prostate *c-MYC 

repression 

Growth inhibition  Wang et al (2009) 

Hs-SKOV3_FOXP3 Ovary MMP2 

repression 

uPA repression 

Growth, migration 

and invasion 

inhibition 

 Zhang et al (2010) 

 
Table 1. FOXP3 ectopic expression in vitro models and biological effects 
*Direct regulation demonstrated by CHIP or luciferase analysis. N.A.: Not Available; CFA: colony formation 
assay; WH: wound healing; MTA: Matrigel Transwell assay. 
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4.5 FOXP3 in mouse models 

In order to analyze FOXP3 expression in different tissues in the absence of regulatory T cells, 

FOXP3 expression has been investigated in Rag2-/- mice, which lack T lymphocytes [Chen et 

al., 2008]. FOXP3 mRNA and protein were detected in mammary, bronchial, and prostate 

epithelial cells, but not in intestine, kidney, liver, or heart. No evidence of FOXP3 was found 

in epithelial cells of Rag2-/- scurfy (FOXP3sf/sf) mice, used as negative control, which carry a 

naturally occurring mutation in FOXP3 that results in an early stop codon and missing FOXP3 

mRNA and protein expression (table 2). 

A role for FOXP3 as a tumor suppressor gene in human cancers has been suggested in a 

study of female mice heterozygous for the scurfy mutation of FOXP3 (BALB/c FOXP3sf/+) and 

showing a high rate of cancer development [Zuo et al., 2007b]. About 60% of the tumors 

were mammary carcinomas. Normal epithelial cells transcribed mostly the wild-type FOXP3 

allele, while the cancer cells transcribed the mutant allele, resulting in FOXP3 expression 

only in normal mammary epithelium (table 2). 

In another mouse model, Wang et al. (2009) showed that mice carrying prostate-specific 

ablations of FOXP3 (FOXP3flox/y; PB-Cre4+) developed prostatic hyperplasia and prostatic 

intraepithelial neoplasms that are putative precancerous prostate lesions, suggesting a 

direct link between the lack of FOXP3 and malignant transformation (table 2). 

These results suggest that loss of FOXP3 in mammary and prostatic epithelial tissues leads to 

tumor formation. 

 

Mouse model FOXP3-mediated features Ref 

 

BALB/c, Rag2
−/− 

and 

Rag2
−/− 

FOXP3
 sf/sf 

 

Specific FOXP3 expression in mammary, bronchial and 

prostate epithelial cells in Rag2
-/-

 mice. 

 

Chen et al (2008) 

BALB/c FOXP3 
sf/+

 Development of mammary carcinomas, lymphomas, 

hepatomas and sarcomas.  

FOXP3 expression only in normal epithelial cells. 

Zuo et al (2007b) 

FOXP3
fl/y

; PB-Cre4
+ 

(FOXP3 prostatic specific 

ablation) 

Development of prostatic hyperplasia and intraepithelial 

neoplasm. 

Wang et al (2009) 

 
Table 2. FOXP3 expression and correlation with tumor onset in three mouse models 
sf: scurfy; fl: flox 

 

 



 38 

4.6 FOXP3 expression correlates with prognosis in human cancer 

In sharp contrast to a putative onco-suppressor role for FOXP3, many recent studies on 

FOXP3 expression in different histological types of cancer have correlated FOXP3 expression 

in tumor cell with poor prognosis (table 3). 

Merlo and colleagues demonstrated for the first time a significantly increased expression of 

FOXP3 by breast cancer cells. Immunohistochemical (IHC) and statistical analyses of archival 

material from two series of breast cancer patients (Milano 1 and Milano 3 trials) indicated 

that the expression of FOXP3 in tumors was inversely associated with patient survival and 

the risk increased with increasing FOXP3 staining intensity (log-rank p<0.0001; figure 7A). 

Comparison of overall survival of Milan 3 trial patients whose tumors showed positive 

immunoreactivity with anti-FOXP3 antibody (weak and strong; n=105) versus patients with 

tumors showing no FOXP3 staining (n=78) revealed a striking univariate association between 

these parameters (p<0.0001; figure 7B). FOXP3 was also a strong prognostic factor for 

distant metastasis-free survival (p=0.0001; figure 7C), but not for local recurrence incidence 

risk (figure 7D). 

Moreover, multivariate analysis revealed a similar hazard ratio for FOXP3 expression and 

lymph node positivity: the 10-year survival probability of node-negative/FOXP3-negative 

patients was 100%; node-negative/FOXP3-positive patients had survival rates similar to 

those of node-positive/FOXP3-negative patients (82%); and when both markers were 

positive, the survival probability was around 40% [Merlo et al., 2009]. To note, in most 

breast carcinomas, FOXP3 staining was localized predominantly in the cytoplasm, although 

both cytoplasmic and nuclear staining was present in some specimens and a few showed 

only nuclear staining. 
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Figure 7. FOXP3 prognostic significance in breast cancer Milan 3 trial  
 (A) Association between FOXP3 strong, weak and negative staining intensity with overall survival. Association 
between FOXP3 positive and negative staining (B) with overall survival, (C) distant metastasis (DM)-free 
survival, (D) and local recurrence incidence. P values were calculated with use of the log-rank test. 

 
 

Recently, high mRNA FOXP3 levels were demonstrated to significantly associate with higher 

risk of recurrence in TNBC and in ER-positive/HER2-negative breast cancer subgroups, 

whereas no differences were found in HER2-positive tumors expressing or not FOXP3 [Nair 

et al., 2013]. 

In another recent study FOXP3 expression has been also evaluated in 183 breast cancer 

patients using IHC assay of tissue microarray. Out of all breast cancer samples, 132 tumors 

were scored as FOXP3 negative, 33 as weak positive, and 18 as strong positive. FOXP3 

staining was localized in the cytoplasm only or both the cytoplasm and nucleus in all tumor 

specimens. Both FOXP3-weak-positive and strong-positive patients were associated with 

significantly higher nuclear grade, higher histologic grade and more negative ER status 

compared to FOXP3-negative patients. The proportion of TNBC is higher in FOXP3 positive 

patients than in FOXP3 negative patients. FOXP3-strong-positive patients had slightly poorer 

disease-free survival (DFS) and disease-specific survival (DSS) compared to FOXP3-negative 

or FOXP3-weak-positive patients, though the differences were not statistically significant. 
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However, in the node-positive subgroup, patients with strong FOXP3 expression have 

significantly shorter DFS and DSS, whereas FOXP3-negative and FOXP3-weak-positive 

patients showed similar favorable prognoses [Kim et al., 2013]. 

In another study positive tumoral FOXP3 expression was observed in 38% of breast 

carcinomas. FOXP3 positivity was significantly related to a higher histological grade, positive 

p53 expression, and higher Ki67 expression [Won et al., 2013]. 

FOXP3 expression has been associated to poorer survival when it was expressed in urinary 

bladder tumor cells. No significant differences were observed between the cytoplasmic, 

nuclear, and cytoplasmic/nuclear staining groups in terms of patient survival [Winerdal et 

al., 2011]. 

To determine whether FOXP3 expression in tongue squamous cell carcinoma (TSCC) cells 

could correlate with tumor progression, IHC analysis was done in TSCC samples. FOXP3 

positivity in tumor cells was detected in 59% of cases, with heterogeneous subcellular 

staining ranging from cytoplasmic to nuclear. FOXP3 expression in TSCC cells was associated 

with pathologic differentiation (p=0.04) and T stage (p=0.000), while it was inversely 

associated with patient survival. Notably, it was not associated with local recurrence, 

confirming that FOXP3 might drive metastasis [Liang et al., 2011]. 

A study on non-small-cell lung cancer (NSCLC) patients revealed tumor cell FOXP3 expression 

in 31% of analyzed specimens [Tao et al., 2012]. While the mainly cytoplasmic expression of 

FOXP3 in lung cancer cells per se was not associated with either lymph node positivity or 

with survival in this study, another IHC analysis of NSCLC tissue [Dimitrakopoulos et al., 

2011], in which the consistently nuclear FOXP3 staining was stronger in tumor cells than in 

adjacent normal bronchial epithelium, did find a correlation between FOXP3 positivity in 

cancer cells and lymph node metastases. 

Recently, also Fu et al. (2013) detected FOXP3 immunostaining in NSCLC cells, which 

primarily exhibited diffuse staining in the cytoplasm alone, in both the nucleus and the 

cytoplasm, or the nucleus alone [Fu et al., 2013]. FOXP3 expression in patients with lymph 

node metastasis was significantly higher than in patients without lymph node metastasis, 

and FOXP3 percent positive rate rose with an increase in TNM staging. These results suggest 

that FOXP3 expression correlates with NSCLC metastasis and poor prognosis. 

IHC staining of FOXP3 was performed to examine the association of FOXP3 expression with 

clinic-pathological features of 194 patients with gastric cancer who underwent surgical 

resection. FOXP3 expression was localized often (79.3%) in the nuclei of signet ring cell 
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carcinoma tissues [Yoshii et al., 2012]. Few FOXP3-positive tumor cells were detected in 

poorly differentiated adenocarcinomas, and none were detected in well and moderately 

differentiated adenocarcinomas. FOXP3 expression was significantly associated with node 

involvement and TNM stage IV. The 3-year survival rate of patients with positive expression 

of FOXP3 in tumor tissue was 74.3% whereas in patients whose tumors did not express 

FOXP3 was 86.5%, indicating a potential association of FOXP3 with poor prognosis. In this 

study it was demonstrated that signet ring cell carcinoma cells might have a Treg-like 

activity, which would allow them to escape from immune surveillance, thereby resulting in 

cancer progression such as lymph node metastasis [Yoshii et al., 2012]. 

The frequency of FOXP3 positive cancer cells in primary tumors correlated with the 

incidence of lymph node metastases in gastric tumor specimens [Wang et al., 2010]. In these 

samples FOXP3 staining was detected in the nucleus of peritumoral epithelial cells and in the 

nucleus/cytoplasm of some gastric cancer cells. 

A correlation between FOXP3 expression and lymph node metastases incidence was also 

reported for esophageal squamous carcinoma [Xue et al., 2010], where FOXP3 mRNA and 

protein expression was not only higher in tumors than in normal mucosa, but also higher in 

advanced stages than in early stages. FOXP3 expression was found in 48% of esophageal 

cancer tissues. This overexpression had a significant correlation between tumor staging and 

lymph node metastasis. The FOXP3 negative group showed significantly better overall 

survival than the overexpressing group (32.3% vs. 13.8%, p=0.001). Cox regression analysis 

showed that tumor stage and FOXP3 protein expression were independent prognostic risk 

factors [Wang et al., 2012]. 

IHC detection of FOXP3 expression in human melanoma cells [Quaglino et al., 2011] revealed 

that FOXP3 expression was significantly associated with visceral spread after treatment; in 

fact, samples from five of seven patients with visceral progression showed positive FOXP3 

staining, while none of eight patients with lower or negative FOXP3 staining developed 

visceral metastases. 

FOXP3 expression has been correlated with prognosis even in colorectal cancer (CRC) 

patients. Kim et al. (2013) provided for the first time evidence of a significantly increased 

tumor-related expression of FOXP3 in CRC cells. FOXP3 positive cancer cells were detected in 

60 out of 65 CRC patients by IHC analysis. Among all patients, those with high FOXP3 

expression levels in cancer cells had a poorer prognosis than those with low FOXP3 

expression levels (p<0.001) [Kim et al., 2013]. 
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In vitro, FOXP3 expression by tumor cells has been correlated with the inhibition of T-cell 

proliferation, indicating that cancer cells may share growth-suppressive effects with Tregs 

and that mimicking Tregs functions may represent a novel mechanism of immune evasion 

[Grimmig et al., 2013]. 

FOXP3 expression has been detected also in glioma cancer cells. IHC analysis detected 

FOXP3 in 35 out of the 40 glioma patients and high levels of FOXP3 were observed in 26 out 

of the 27 high-grade glioma samples. Statistical analysis suggested that the up-regulation of 

FOXP3 was significantly correlated with the histologic grade of glioma and that patients with 

high expression of FOXP3 protein exhibited a poorer prognosis than those with low FOXP3 

expression [Wang et al., 2012]. 

All these data point to the association between FOXP3 expression in tumor cells and poor 

patient prognosis. Notably, FOXP3 has not been associated with local recurrence but only 

with a possible role in driving metastatic spread. 

In contrast with these findings, Ladoire and colleague detected cytoplasmic FOXP3-

expressing tumor cells by immunohistochemistry in 103 patients with primary invasive 

HER2-overexpressing breast treated with neo-adjuvant chemotherapy, with or without 

Trastuzumab. FOXP3 expression was associated with better relapse-free and overall survival 

and was independent of other clinic-pathological variables. This study raises the question of 

whether the putative suppressive role of FOXP3 in cancer cells depends on the oncogenic 

pathways involved in breast tumor cell growth; indeed, in the subgroup of Trastuzumab-

treated patients, FOXP3 expression did not correlate with prognosis [Ladoire et al., 2011]. 
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Cancer histotype N° FOXP3 pos                       
/Tot (%) 

FOXP3 
localization 

    Prognosis  Ref 

Prostate  29/92 (31)           N N.A. Wang et al (2009) 

Ovary 0/27 (0) - N.A. Zhang et al (2010) 

Pancreas  24/39 (61)      C and N N.A. Hinz et al (2007) 

Breast  261/397 (66) C and N Poor (DM-FS) Merlo et al (2009) 

Breast, HER2+  59/113 (52) C Good (DFS and OS) Ladoire et al (2011) 

Breast  405/1097 (37) C Good (OS and LN) Ladoire et al (2012) 

Breast, TN 

HER2- ER+ 

70/285 (25) 

267/832 (33) 

RNA Poor (DFS) Nair et al (2013) 

 

Breast (LN+) 51/183 (28) C and N Poor (DFS) Kim et al (2013) 

Breast 105/272 (39) C and N N.A. Won et al (2013) 

Urinary bladder  17/37 (46) C and N Poor (OS) Winerdal et al (2011) 

Tongue  48/81 (59) C and N Poor (OS) Liang et al (2011) 

NSCLC  22/44 (50) N Poor (LN metastases) Dimitrakopoulos et al (2011) 

NSCLC  27/87 (31) C No prognostic Tao et al (2012) 

NSCLC 29/53 (55) C and N Poor (LN) Fu et al (2013) 

Gastric  71/122 (58) C and N Poor (LN metastases) Wang et al (2010) 

Stomach 49/92 (60) N Poor (LN) Yoshii et al (2012) 

Esophageal  80/112 (71) C and N Poor (LN metastases) Xue et al (2010) 

Esophageal 29/60 (48) - Poor (OS and LN) Wang et al (2012) 

Melanoma  5/15 (33) C Poor (visceral 
metastases) 

Quaglino et al (2011) 

Colorectal 60/65 (92) C Poor (OS and LN)   Kim et al (2013) 

Cervical 32/40 (80) N No prognostic (LN) Zeng et al (2012) 

Thyroid 244/266(90%) C N.A Cunha et al (2012) 

Glioma 35/40 (87) N Poor (OS) Wang et al (2013) 

 
Table 3. FOXP3 expression, subcellular localization, and prognosis in different human cancer histotypes.  
C: cytoplasm; N: nucleus; N.A.: not available; DM-FS: distant metastasis-free survival; DSF: disease-free survival; 
OS: overall survival; LN: lymph node. 
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4.7 FOXP3 supports metastatic process: GSEA analysis 

The lack of experimental evidences demonstrating a loss of tumor suppressor function due 

to FOXP3 mutated forms and their correlation with prognosis, leaves open the hypothesis of 

a possible pro-metastatic role of FOXP3. Consistent with this hypothesis GeneSet Enrichment 

Analysis (GSEA) performed at the National Cancer Institute of Milan [Triulzi et al., 2013] 

evidenced that the expression of several genes implicated in cell migration and metastasis 

was induced by FOXP3.  In particular, an enrichment of molecules involved in the pathway of 

TGFβ, in epithelial to mesenchymal transition (EMT), and in focal adhesions was found. 

Moreover, an enrichment in cell cycle pathway-related molecules was found in FOXP3-

negative cells, consistent with already published results which suggested a role of FOXP3 in 

inhibiting cancer cell proliferation. 

The apparently discrepant role of FOXP3 in breast tumors might reflect the fact that 

metastatic potential and high proliferation rates are two different necessary, but not always 

coexistent, aspects of tumor progression, at least during the acquisition of invasive and 

migratory properties possibly driven by an EMT program leading to low proliferative 

potential. Thus, FOXP3, like other onco-suppressor proteins [Evdokimova et al., 2009], may 

play a positive role in tumor progression by reducing cell proliferation but thereby support 

the program of epithelial-mesenchymal transition and survival spread of disseminated 

metastatic cells [Triulzi et al., 2013]. 
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1. Triple negative breast cancer specimens and patients 
 

Tumor samples from 81 women with confirmed triple negative breast carcinomas were 

obtained in the form of formalin-fixed paraffin embedded (FFPE) blocks. All tumor 

specimens have been previously scored for breast cancer markers (ER, PR and HER2 status) 

and other characteristics. 

All patients have received adiuvant chemotherapy. 

Patients had agreed with the use of samples from their tumors for investigations. 

 

2. Cell culture 

Human breast cancer cell lines MDA-MB-231, HCC1937, MCF7, SKBr3, MDA-MB-468, BT474, 

MDA-MB-361 were purchased from ATCC (Rockville, MD). MDA-MB-231, MCF7 and SKBr3 

cell lines were maintained in RPMI 1640 medium (Invitrogen). MDA-MB-468, BT474 and 

MDA-MB-361 cell lines were maintained in DMEM (Dulbecco's modified Eagle's medium); 

HCC1937 cell line was maintained in RPMI 1640 medium with 1 mM sodium pyruvate, 1% 

non essential amino acids and 10 mM Hepes. Each medium was supplemented with 10% 

fetal bovine serum (FBS) and 2 mM glutamine (both from Sigma-Aldrich). Cells were 

maintained at 37°C in a 5% CO2 in air atmosphere. 

Human Tet-Off MDA-MB-231 recipient cells were grown in RPMI 1640 medium containing 

10% Tet system-approved FBS (Clontech) and 500 μg/ml G418 (Clontech). Human Tet-Off 

MDA-MB-231-WTFOXP3 and Tet-Off MDA-MB-231-Δ2FOXP3 cells were grown in RPMI 1640 

medium containing 10% Tet system-approved FBS (Clontech),  300 μg/ml G418 (Clontech), 

200 μg/ml hygromycin and 100 ng/ml doxycycline (Clontech). 

 

3. Vectors  

3.1 Generation of WTFOXP3-pcDNA3 and Δ2FOXP3-pcDNA3 vectors 

The human full-length FOXP3 and Δ2FOXP3 cDNA was cloned into the expression vector 

pcDNA3.1 (Invitrogen Corp., Carlsbad, CA, USA) according to standard methodology. 

WTFOXP3 and Δ2FOXP3 cdna was amplified from two pCMV6-XL4-FOXP3 vectors (Origene, 

Rockville, MD) by PCR. For PCR amplification specific primers were used: FOXP3 5’-

AAGGATCCATGGACTACAAGGACGACGACGACAAGCCCAACCCCAGGCCTGGC-3’ (forward 

primer) and FOXP3 5’-AAGATATCTCAGGGGCCAGGTGTAGGG -3’ (reverse primer). 
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Subsequently, PCR products and pcDNA3.1 empty vector were digested with EcoRV and 

BamHI enzymes (New England Biolabs, Ipswich, MA), and cDNA was ligated into pcDNA3.1 to 

produce the WTFOXP3-pcDNA3 and Δ2FOXP3-pcDNA3 expression vectors. 

 

3.2 Tet-Off system 

The first critical component of the Tet System is the regulatory protein, based on Tetracyclin 

repressor protein (TetR). In the Tet-Off System, this 37-kDa protein is a fusion of amino acids 

1–207 of TetR and the C-terminal 127 amino acids of the Herpes simplex virus VP16 

activation domain. Addition of the VP16 domain converts the TetR from a transcriptional 

repressor to a transcriptional activator, and the resulting hybrid protein is known as the 

tetracycline-controlled transactivator (tTA). tTA is encoded by the pTet-Off regulator 

plasmid, which also includes a neomycin-resistance gene to permit selection of stably 

transfected cells. 

The second critical component is the response plasmid which expresses the gene of interest 

under control of the tetracycline-response element (TRE). TRE located just upstream of the 

CMV promoter. This CMV promoter lacks the strong enhancer elements normally associated 

with the CMV immediate early promoter. Because these enhancer elements are missing, 

there is extremely low background expression of the gene of interest from the TRE in the 

absence of binding by the TetR domain of tTA. 

The ultimate goal in setting up a functional Tet System is creating a double stable Tet cell 

line which contains both the regulatory and response plasmids. When cells contain both the 

regulatory (pTet-Off) and the response (pTRE-Gene of interest) vectors, the gene of interest 

is only expressed upon binding of the tTA protein to the TRE. tTA binds the TRE and activates 

transcription in the absence of tetracycline (Tc) or doxycycline (DOXI). With the Tet-Off 

system, it is necessary to keep Tc or DOXI in the medium to maintain the native (off) state. 

Because Tc and DOXI have relatively short half-lives, Tc or DOXI was added to the medium at 

least every 48 hours to suppress the expression of the interest gene. 

 

3.3 Generation of Tet-Off MDA-MB-231 recipient cell clones 

MDA-MB-231 cells were stably transfected with pTet-Off regulator plasmid and selected in 

the presence of 500 μg/ml G418 in the culture medium. The resistant clones were assayed 

for luciferase activity. 
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3.4 Luciferase activity assay 

To verify inducible system functionality Tet-Off MDA-MB-231 recipient cells were seeded on 

48-well plates. When a cell confluence of 90% was achieved cells were transiently co-

transfected with pTRE2hyg-Luc (0.2µg/well) plasmid (Clontech), which contains the Firefly 

Luciferase encoding gene, and with pRL-TK (Promega) (0.07µg/well) plasmid, which contains 

Renilla Luciferase gene, using Lipofectamine 2000 (Invitrogen). Cells were maintained in 

culture medium with or without doxycycline for 48 hours and then collected to performe 

luciferase activity assay. Firefly and Renilla luciferase activities were measured with Dual-Glo 

Luciferase Assay System Kit (Promega), according to the manufacturer’s instructions. 

Relative luciferase activity was calculated as ratio between Firefly luciferase and Renilla 

luciferase activity. The Tet-Off MDA-MB-231 #23 clone with the lowest background and the 

highest induction of luciferase in response to doxycycline was selected. 

 

3.5 Generation of inducible WTFOXP3-pTRE2hyg and Δ2FOXP3-pTRE2hyg vectors 

The human full-length FOXP3 and Δ2FOXP3 cDNA was cloned into the expression vector 

pTRE2hyg (Clontech, Mountain View, CA) according to standard methodology. WTFOXP3 and 

Δ2FOXP3 cdna was amplified from two pCMV6-XL4-FOXP3 vectors (OriGene, Rockville, MD) 

by PCR. For PCR amplification specific primers were used: FOXP3 5’-

GCTAGCATGGACTACAAGGACGACGACGACAAGCCCAACCCCAGGCCTGGC-3’ (forward primer) 

and FOXP3 5’-AAGATATCTCAGGGGCCAGGTGTAGGG -3’ (reverse primer). 

Subsequently, PCR products and pTRE2hyg empty vector were digested with EcoRV and NheI 

enzymes (New England Biolabs, Ipswich, MA), and cDNA was ligated into pTRE2hyg to 

produce the expression vectors WTFOXP3-pTRE2hyg and Δ2FOXP3- pTRE2hyg. 

 

3.6 Generation of inducible bulk population and single clones 

For stable transfection Tet-Off MDA-MB-231 #23 cells were seeded on a 100mm dish. When 

cell confluence of approximately 90% was achieved cells were transfected with WTFOXP3-

pTRE2hyg or Δ2FOXP3-pTRE2hyg plasmid using Lipofectamine 2000 (Invitrogen) according to 

modified manufacturer’s instructions. To obtain bulk populations, 48 hours post-transfection 

either 300 μg/ml G418 and 200 μg/ml hygromycin (Sigma Aldrich) was added to the medium 

in the presence of 100 ng/ml doxycycline. After 16 days all antibiotic-resistant clones were 

pooled and analyzed for FOXP3 expression induction. 
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To generate single stable clones, 48 hours post-transfection cells were washed, trypsinized 

and divided onto three 10mm plates. Either 300 μg/ml G418 and 200 μg/ml hygromycin 

(Sigma Aldrich) was added to the medium in the presence of 100 ng/ml doxycycline. After 15 

days, antibiotic-resistant single clones were selected and FOXP3 inducible expression was 

analyzed. 

 

3.7 Analysis of inducible FOXP3 expression 

In order to verify the modulation of FOXP3 expression by doxycycline, cells were grown in 

the selective medium containing or not 100 ng/ml doxycycline. After 48 hours cells were 

trypsinized and collected for Western blot analysis. 

 

4. Immunohistochemistry 
 
4.1 FOXP3 staining 

FFPE tissue samples were deparaffinized and rehydrated. The endogenous peroxydase 

activity was blocked with 3% hydrogen peroxide in methanol for 30 minutes. Antigen 

retrieval was carried out by heating slides for 6 minutes at 95°C in 5 mM citrate acid buffer 

(pH 6.0). Non-specific binding was blocked with 1% human albumin for 30 minutes at room 

temperature. The slides were subsequently incubated overnight at 4°C with rat anti-human 

FOXP3 antibody, clone PCH101 (dilution 1:250; eBioscience, San Diego, CA). Subsequently, 

sections were washed in two changes of Phosphate Buffered Saline (PBS) solution for 5 

minutes per wash, then covered in biotinylated rabbit anti-rat secondary antibody (dilution 

1:200, DAKO) for 30 minutes and washed as before. Sections were covered with streptavidin 

(diluition 1:300; DAKO) for 30 minutes and washed. Color was developed by 5 minutes 

incubation with 3,3’-diaminobenzidine and sections were washed for 5 minutes in running 

tap water. Slides were counterstained with Mayer’s hematoxylin for 1 minute, then 

dehydrated through a series of alcohol concentrations, cleared in xylene and mounted. 

Expression of FOXP3 was evaluated independently by two pathologists both blinded to the 

clinic-pathologic data. Discrepancies between the two observers were reviewed jointly to 

reach consensus. 

 

4.2 Vimentin staining 

Vimentin staining on FFPE sections of lungs was performed using Vector Mouse on Mouse 

(M.O.M.TM) Kits according to the manufacturer’s instructions. Slides were incubated with 
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mouse anti-human vimentin antibody clone V9 (dilution 1:400; DAKO) for 1 hour at room 

temperature. Color was developed by 5 minutes incubation with 3,3’-diaminobenzidine and 

sections were washed for 5 minutes in running tap water. Slides were counterstained with 

Mayer’s hematoxylin for 1 minute, then dehydrated through a series of alcohol 

concentrations, cleared in xylene and mounted. 

 

5. PCR  

5.1 RNA extraction  

Total RNA was isolated from breast cancer cells using Trizol Reagent (Invitrogen) and from 

FFPE sections of human breast carcinomas using RNeasy Mini Kit (Qiagen Inc., Hilden, 

Germany) according to the manufacturer’s instructions. 

RNA was quantified by nanodrop (Biophotometer, Eppendorf, Hamburg, Germany) at 260 

nm and 280 nm. The 260/280 ratio provides an estimate of nucleic acid purity. Pure 

preparations of RNA have OD 260/280 values of 1.8 and 2.0 respectively.  

 
5.2 Reverse Transcription  
 
First strand cDNA synthesis was performed using Superscript III RNase H Reverse 

Transcriptase. 5µg of total RNA was incubated at 65°C for 5 minutes with 1μl Oligo(dT)20  

(50µM) (Invitrogen Life Technologies, MD, USA),  1µl of 10 mM deoxynucleotide tri-

phosphate Mix (Invitrogen Life Technologies, MD, USA), and distilled water was added to the 

volume of 13 µl. This mixture was then incubated on ice for at least 1 minute. Then 4µl of 5X 

First Strand Buffer, 1µl of 0.1M DTT, 1µl RNAseOUT (Recombinant RNAse Inhibitor 40U/µl) 

and 1 µl of Superscript III (200U/µl, ScriptTM III Reverse Transcriptase, Invitrogen Life 

Technologies, MD, USA) were added and mixed by pipetting. The mixture was reverse 

transcribed at 50-55°C for 50 minutes, before inactivating at 70°C for 15 minutes, prior to 

cooling. 

 

5.3 Standard PCR 

Standard PCR on cDNA from human breast cancer specimens was carried out using FOXP3 

5’-GCCCTTGGACAAGGACCCGATG-3’ (forward primer) and FOXP3 5’-

CATTTGCCAGCAGTGGGTAGGA-3’ (reverse primer). PCR involved 30 cycles of 95°C for 20 

minutes, 62°C for 30 seconds, 72°C for 1 minute, followed by 10 minutes at 72°C prior to 

cooling. 
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A standard 20 μl reaction for a PCR was performed:  1 μl deoxynucleoside triphosphate 

solution, 2 μl of 10x PCR buffer concentrate, 0.5 μl of Taq polymerase enzyme, 1 μl (10 

pmol), forward primer solution, 1 μl (10 pmol), reverse primer solution, 1 μl (50 mM) MgCl2, 

2 μl (1 ng) template DNA, dH2O to make up to 20 μl.  PCR products were resolved using 1% 

agarose gel electrophoresis. 

 

5.4 Quantitative Real-Time PCR 

Quantitative Real-Time PCR for FOXP3 was performed using ABI Prism 7900 Real-Time PCR 

instrument (Applied Biosystems). For amplification, 4.5 μL of cDNA were incubated with 10 

μL of SYBR Green PCR Master Mix (Applied Biosystem), and with sense and reverse primers 

at a final concentration of 10 pmol/μL. The reaction mixture was brought up to a final 

volume of 20 μL with RNase-free distilled water. The human housekeeping gene GAPDH was 

used as endogenous control. Thermocycling conditions were: 50°C for 2 minutes; 95°C for 10 

minutes; 95°C for 15 seconds and 60°C for 1 minute for 40 cycles. 

Reaction was carried out using FOXP3 (forward primer) 5’-GCCCTTGGACAAGGACCCGATG-3’ 

and FOXP3 (reverse primer) 5’-CATTTGCCAGCAGTGGGTAGGA-3’, GAPDH (forward primer) 

5’-CATGGCCTCCAAGGAGTAAG-3’ and GAPDH (reverse primer) 5’-

GACTGAGTGTGGCAGGGAC-3’. The amplification was carried out and analyzed using an ABI 

Prism 7900HT Sequence Detection System Software (Applied Biosystem). To rule out 

contamination from buffers and tubes, a negative control with water instead of the cDNA 

template was used on every plate. We used a relative quantification method (ΔΔCt method) 

to calculate the gene expression values as described (User Bulletin No. 2, Applied 

Biosystems). In brief, the amplification plot is the plot of fluorescence versus PCR number. 

The threshold cycle value (Ct) is the fractional PCR cycle number at which the fluorescent 

signal reached the detection threshold. Therefore, cDNA copy number and Ct are inversely 

related. Data were analyzed with the Sequence Detector System (SDS) software version 2.1 

(ABI) and Ct value was automatically converted to fold change RQ value. The Fold change 

was calculated by applying the equation (RQ) = 2−(ΔΔCT) . For each sample, ΔCT represents the 

difference between CT of each target gene and the internal control gene (GAPDH). For each 

specific gene ΔΔCT represents the difference between ΔCT of the different samples and the 

control. For each control sample ΔΔCT=0 and 20=1, by definition. Using this method, data are 

presented as differences in gene expression (relative gene expression) normalized to an 

endogenous reference gene and relative to a control group. 
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6. Western blot 
 

Proteins were extracted from breast cancer cells by sonication in a lysis buffer (Tris HCl 0.1 

M + SDS 4%). Mechanical microdissection with the same lysis buffer was performed on 

frozen primary tumors from SCID mice and on human breast tumor specimens. Lysates were 

centrifuged at 12,000 rpm for 10 minutes to collect the supernatants. Protein concentrations 

were quantified using BCA Protein Assay Kit (Thermo scientific). Whole-protein extracts are 

separated by electrophoresis on pre-casted polyacrylamide gels (Life Technologies Italia, 

Monza, Italy) and then transferred to PVDF membranes (Millipore, Billerica, MA). Non-

specific binding was blocked with 5% fat-free milk for 1 hour at room temperature. The 

membrane was then incubated with rat anti-human FOXP3 antibody clone PCH101 (dilution 

1:250; eBioscience, San Diego, CA) or mouse anti-human vinculin antibody (dilution 1:10000; 

Sigma-Aldrich, MO, USA) overnight at 4°C. After three washes with PBS+ buffer, the 

membranes were incubated with the horseradish peroxidase-conjugated secondary 

antibodies (dilution 1:5000; Amersham Pharmacia Biotech, Piscataway, NJ) for 1 hour at 

room temperature. After 3 washes with PBS buffer, proteins are detected using 

chemiluminescence ECL Western blot (Amersham Pharmacia Biotech, Piscataway, NJ) 

according to the manufacturer’s instructions. Blots were then analyzed by Quantity One® 

software (Bio-Rad, CA, USA) following the User’s Guide. Western blot for vinculin expression 

was used as loading control. 

 

7. Immunofluorescence  

To determine FOXP3 localization and induction in breast cancer cells, MDA-MB-231 cells 

grown in vitro were fixed and permeabilized. Afterwards cells were stained with rat anti-

human FOXP3 antibody clone PCH101 (dilution 1:100; eBioscience, San Diego, CA) for 1 hour 

at room temperature and then incubated with anti rat 555 Alexafluor-conjugated secondary 

antibody (dilution 1:1000; Invitrogen). Nuclei were visualized by DRAQ5. Coverslips were 

mounted on glass slides using Prolong (Calbiochem, San Diego, CA) and examined with 

confocal microscope (Microradiance 2000, BioRad) equipped with Argon (488 nm), Green 

HeNe (543 nm) and Red diode (633 nm) lasers. Images were obtained using a X60 oil 

immersion lens (512x512 pixels) and analyzed using Image-Pro Plus v. 7.0.1 

(MediaCybenetics) software.  
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8. In vitro assays 
 
8.1 Transient transfection 

MDA-MB-231 cells were plated into 6-well plates and allowed to adhere for 24 hours. The 

transfection of WTFOXP3-pcDNA3, Δ2FOXP3-pcDNA3 or empty vectors (as negative control) 

was performed using Lipofectamine-2000 (Invitrogen) according to the manufacturer’s 

recommendation. After 5 hours of transfection the culture medium with serum was added. 

Migration and invasion assays were carried out 48 hours post-transfection. 

 

8.2 Migration assay 
 

 A transwell (8μm pore size; Costar, Corning, USA) assay was used to analyze cell migration. 

1×105 cells/well were placed in the upper chambers in serum-free RPMI-1640 medium, and 

the lower chambers were filled with RPMI-1640 supplemented with 10% FBS. Following 

incubation for 24 hours at 37°C, non-migrating cells on the top surface of the membrane 

were removed with a cotton swab. The membranes were fixed with absolute ethanol for 20 

minutes at -20°C, stained with sulforhodamine b for 30 minutes and then washed with acetic 

acid 1% in water. Images of migrated cells were captured using an optical microscope and 

quantified with ImageJ program. 

 

8.3 Invasion assay 

Cell invasion assay was performed using a transwell plate (8 μm pore size; Costar, Corning, 

USA) coated with Matrigel (Becton Dickinson, NJ, USA). Briefly, Matrigel was diluted to a 

concentration of 2mg/ml, and 50μl of this solution were placed into a polycarbonate filter 

and air-dried. Filters were placed into wells and 700μl of RPMI-1640 culture medium 

supplemented with 10% FBS were added into the lower chamber. Cells were resuspended in 

serum-free RPMI-1640 medium and 1×105 cells in 0.2ml defined medium were plated into 

the upper chamber. Following incubation for 48 hours at 37°C, cells that did not penetrate 

the pores of the membrane were removed with a cotton swab. The membranes were fixed 

with absolute ethanol for 20 minutes at -20°C, stained with sulforhodamine b for 30 minutes 

and then washed with acetic acid 1% in water.  Images of invaded cells were captured using 

an optical microscope and quantified with ImageJ program. 
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8.4 Stable transfection and proliferation assay 

MDA-MB-231 cells were seeded in 100mm dishes, and transfected with 6μg of WTFOXP3-

pcDNA3,  Δ2FOXP3-pcDNA3 or empty vector (as control) using Lipofectamine-2000 

(Invitrogen, Carlsbad, CA, USA) for 48 hours without antibiotic selection. Transfected cells 

were plated into 6-well plates at a density of 200 cells/well and cultured in medium 

containing 800 μg/ml G418 (Sigma, St. Louis, MO) until all the cells in the non-transfected 

control culture were killed. The antibiotic-resistant cells were maintained in the medium 

containing G418. Three weeks after the onset of drug selection, cells were fixed and stained 

with Toluidine Blue. Colonies were taken imaged and quantified using ImageJ program. 

 

9. In vivo assays 

9.1 Mice 

All experiments were carried out using 8- to 10-week-old Several Combined Immuno 

Deficiency female (SCID) mice (Charles River, Calco, Italy). Mice were maintained in laminar 

flow rooms at constant temperature and humidity, with food and water given ad libitum. 

Experiments were approved by the Ethics Committee for Animal Experimentation of the 

Fondazione IRCCS Istituto Nazionale Tumori of Milan according to institutional guidelines. 

 

9.2 Metastatic assays 

For spontaneous metastatic assay, tumor cells in exponential growth phase were harvested 

using trypsin then washed and resuspended in Ca2+- and Mg2+ -free PBS, to give a dose of 

5×106 cells in 100μl. 100μl of matrigel were added to these cells immediately before 

injection into the mammary fat pad of mice. Mice were then monitored for overall health 

and total body weight. Tumor-bearing mice are given water containing doxycycline. When 

tumors reach a volume of ~150 mm3, FOXP3 was induced in half of injected mice by removal 

of doxycycline from water. Tumor volume was measured twice weekly using a caliper, 

applying the formula 0.5 x d12 x d2, where d1 and d2 are the smaller and larger diameters, 

respectively. For experimental metastatic assay mice were injected with 1 × 106 cells in 

100μl Ca2+- and Mg2+ -free PBS through lateral tail vein injection. The injected cells were 

induced or non-induced to express FOXP3 in mice given water with or without doxycycline. 

At the end of the experiments mice were euthanized and autopsied. To evaluate the 

regulation of FOXP3 expression through doxycycline in spontaneous metastatic assay 

primary tumors were frozen in liquid nitrogen and stored at -80°C for Western blot analysis. 
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For the evaluation of spontaneous and experimental metastases lungs were removed, fixed 

in 10% buffered formalin and embedded in paraffin. 5μm-thick sections stained with 

hematoxylin/eosin were examined by IHC using anti-human vimentin antibody. 

 

10. Statistical analyses 
 
Disease-free survival (DFS) was defined as the time elapsed from date of diagnosis to the 

date of first recurrence, loco-regional or systemic. Survival functions were assessed using the 

Kaplan-Meier estimator, while log-rank test was used to compare survival distributions. All 

the analyses on triple negative breast cancer cohort were conducted using SAS software 

(SAS Institute Inc, Cary, NC).  

Data obtained in in vitro and in vivo experiments were analyzed with Graph Pad Prism 

(GraphPad Software, Inc., San Diego) and evaluated using Student’s t-test. 

Two-sided p values lower than .05 were considered statistically significant.  
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1. FOXP3 expression in triple-negative breast cancer correlates with poor prognosis 

Data obtained in our previous retrospective study [Merlo et al., 2009] were related to old 

trials performed in 1973-1980 (Milano 1) and 1987-1989 (Milano 3). In these trials only 

lymph node-positive patients have been treated with chemotherapy after surgical resection 

of tumor, whereas node-negative patients (≈60% of trial patients) did not receive any 

chemotherapic treatment until relapse. Since data from a cohort of triple negative breast 

cancer (TNBC) cases were available in our laboratory, we evaluated FOXP3 expression in 81 

paraffin-embedded primary TNBC specimens in order to confirm Milano 1 and Milano 3 trial 

data in a cohort of chemotherapy-treated breast cancer patients. 

TNBC subtype accounts for 15% to 20% of newly diagnosed breast cancer cases. This breast 

cancer subtype tends to relapse with distant metastases rather than local recurrences [Lin et 

al., 2008]. TNBC patients have an increased risk of distant recurrence following diagnosis 

compared to other breast cancer subtypes [Dent et al., 2007] and show a peak of recurrence 

1–3 years after the initial diagnosis with a quick drop thereafter [Foulkes et al., 2010].  

The clinic-pathological characteristics of all triple negative breast cancer patients are 

summarized in table 4. Expression of FOXP3 was evaluated independently by two 

pathologists both blinded to the clinic-pathologic data. Discrepancies between the two 

observers were reviewed jointly to reach consensus. Out of all tumor specimens 

immunostained for FOXP3, 34 were scored as negative, 25 as weak positive, and 22 as strong 

positive. In most breast carcinomas, FOXP3 staining was localized predominantly in the 

cytoplasm, whereas the other specimens showed both cytoplasmic and nuclear staining 

(figure 8). 

 

Figure 8. FOXP3 subcellular localization in triple negative breast cancer specimens. 

Immunohistochemical staining of paraffin-embedded triple negative breast cancer tissue revealed FOXP3 

expression in triple negative breast cancer cells. FOXP3 positive staining was localized predominantly in the 

cytoplasm (A) or both in cytoplasm and nucleus (B). 
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FOXP3 expression in triple negative breast tumors was associated with worse prognosis. 

Figure 9 shows the Kaplan-Meier curve for the disease-free survival of patients according to 

FOXP3 expression status. FOXP3 positive patients (weak and strong FOXP3 positivity; n=47) 

had poorer disease-free survival compared to FOXP3-negative patients (n=34) (p=0.014 by 

Cox proportional hazards model; HR 2.619, 95% CI 1.175-5.842). 

 

 

Figure 9. Disease-free survival according to FOXP3 expression in triple negative breast cancer patients 

Survival analysis according to FOXP3 expression. Kaplan-Meier curve for disease-free survival according to 

FOXP3 expression status in all patients. * p value was calculated using the log-rank test comparing FOXP3-

weak/strong-positive patients vs. FOXP3-negative patients. 

 

To determine whether FOXP3 expression was associated with the clinical characteristics of 

triple negative breast cancer, we correlated its expression with age, lymph node positivity, 

tumor size and grade, necrosis, calcification, multifocality, DCIS and cytokeratines 5/6 

positivity. The frequency of clinic-pathological characteristics and FOXP3 expression, 

grouped according to the presence (weak and strong) or absence of FOXP3 immunostaining 

are listed in table 5. Positive FOXP3 expression was significantly correlated with lymph node 

positivity (p=0.0269), while no association was found with age or other pathologic 

parameters.  
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 Characteristic Number/Total %   

  
Age >50 years 
 

                            

57/94 

           

     60 

  

 Lymph node  
positivity 

34/81            42   

     

 Tumor size >2.0 cm                     37/94    39   

 Tumor grade III                            81/93                    87 

Necrosis                                        72/89                    81 

Calcification                                 26/82                    32 

  

 

     

Multifocality                                20/86                    23 

DCIS                                              31/87                     36 

  

 Cytokeratines 5/6                      57/90                     63                                 

positivity 

 

  

 

Table 4. Clinic-pathologic characteristics of triple negative breast cancer patients 

 

 

Characteristic 

FOXP3 neg  

Number/Total (%) 

       FOXP3 pos  

  Number/Total (%)
 

 

p* 

Age > 50 years 20/34 (61) 28/47 (60) ns 

Lymph nodes positivity 9/34 (27) 24/47 (52) 0.0269 

Tumor size >2.0 cm 13/34 (39) 25/47 (40) ns 

Tumor grade III 29/34 (86) 41/47 (87) ns 

Necrosis 

Calcification 

Multifocality 

DCIS 

Cytokeratines 5/6 positivity 

25/34 (74) 

9/34 (28) 

8/34 (23) 

12/34 (37) 

19/34 (57) 

40/47 (85) 

16/47 (34) 

12/47 (24) 

16/47 (35) 

31/47 (67) 

ns 

ns 

ns 

ns 

ns 

 

Table 5. Correlation of FOXP3 expression with clinic-pathologic characteristics of 81 triple negative breast 

cancer patients. 
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In agreement with the results obtained in the previous analyses of FOXP3 expression in 

breast cancer patients (Milano 3 and Milano 1 trials), our results indicated that FOXP3 

expression correlated with a higher risk of relapse in triple negative breast cancer patients 

treated with current oncological therapies. 

2. FOXP3 expression in human breast cancer and in breast cancer cell lines 

In the light of the results previously obtained we set out to further investigate the role of 

FOXP3 in breast cancer through in vitro and in vivo experiments. 

To investigate the feasibility of using breast carcinoma cell lines as in vivo and in vitro 

models, first of all we assessed FOXP3 expression in a panel of breast carcinoma cell lines 

with different molecular characteristics and in human IHC FOXP3-positive primary breast 

carcinoma samples. 

Whole-cell lysates were obtained from MDA-MB-231, MDA-MB-468, HCC1937 triple 

negative cell lines, MCF-7 (ER+/PR+) cells, BT474 and MDA-MB-361 (ER+/PR+/HER2+) cells 

and HER2-overexpressing SKBr3 cell line and from frozen human breast cancer specimens. 

Western blot analysis showed FOXP3 expression in breast cancer cell lines (figure 10A) and 

human breast cancer samples (figure 10B). As shown in figure 10C quantitative analysis of 

Western blot showed that FOXP3 levels both in cancer cell lines and in carcinoma samples 

were drastically lower than in Treg cells used as positive control. Human breast cancer 

samples had a 33-fold reduction in FOXP3 protein levels in comparison to Tregs, whereas a 

5000-fold reduction in FOXP3 levels with respect to Tregs was found in tumor cell lines. 

Thus, FOXP3 expression in human breast cancer samples was significantly higher (300-fold 

increase) than in breast cancer cell lines. 
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Figure 10. FOXP3 expression in human breast cancer and in breast cancer cell lines 

Western blot analyses of FOXP3 expression in breast carcinoma cell lines (A) and in human primary breast 

carcinoma samples (B), using vinculin as loading control. C) Quantitative analysis of Western blot results, with 

FOXP3 levels expressed as percentage with respect to positive control (Tregs). For breast cancer cell lines, data 

are mean±SD of 2 independent experiments. ***p<0.0001 by unpaired t-test.  

FOXP3 expression in breast cancer cells has been examined also at the mRNA level. RNA was 

isolated from MDA-MB-231, MCF-7, SKBr3, MDA-MB-468, HCC1937 and BT474 breast cancer 

cell lines. Following cDNA synthesis, cell lines were subjected to quantitative real-time PCR. 

The housekeeping gene GAPDH was used as control. FOXP3 mRNA was revealed in all tumor 

cell lines analyzed, although at very low levels, and the amount of FOXP3 mRNA was 

drastically lower in cancer cell lines (1000-fold reduction) than in Treg cells (figure 11). These 

data were consistent with FOXP3 protein expression analysis data. 

 

Figure 11. FOXP3 mRNA expression in breast cancer cell lines 
FOXP3 mRNA expression in a panel of breast cancer cell lines quantified by real-time PCR. Results were 
normalized to GAPDH. Graph bars represent FOXP3 mRNA amount expressed as relative levels with respect to 
Tregs (Tregs=1). Results are representative of three independent experiments. Error bars represent SD; 
***p<0.0001 by unpaired t-test. 
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A detailed analysis of Western blot results (figures 10A e 10B) revealed that the protein ran 

as a closely spaced doublet in Tregs and human breast cancer lysates, whereas a single band 

was detected in the lysates of all breast cancer cell lines. The upper isoform represented the 

full lenght FOXP3 (WTFOXP3), whereas the lower isoform represented the main deletional 

isoform ∆2FOXP3 lacking exon 2 (amino acids 71–105) described in naïve human CD4+ T cells 

and CD4+CD25+ regulatory T cells [Allan et al., 2005; Li et al., 2007; Xu et al., 2010]. Deletion 

of exon 2 is predicted to result in an approximately 4-kDa decrease in the molecular weight 

of FOXP3, which corresponds to the lower band detected in lysates from human breast 

cancer specimens [Allan et al., 2005]. Moreover, the molecular weight of the ∆2FOXP3 

isoform appears identical to that of the lower band in Tregs, further supporting our 

hypothesis regarding its identity. RT-PCR was performed to confirm the presence of both 

WTFOXP3 and ∆2FOXP3 isoforms in human breast cancer samples. RNA was isolated from 

human breast cancer samples previously analyzed for FOXP3 expression by Western blot 

analysis. Following cDNA synthesis, samples were subjected to standard PCR. Tregs cDNA 

was used as positive control. As shown in figure 12, both WTFOXP3 and ∆2FOXP3 transcripts 

were identified in all human breast cancer specimens analyzed. 

 

 

Figure 12. FOXP3 mRNA expression in human breast cancer 

Human breast cancer samples were tested for FOXP3 mRNA expression. The reaction performed using specific FOXP3 

forward and reverse primers revealed both WTFOXP3 and ∆2FOXP3 mRNA expression in all human breast cancer samples 

studied. The reaction with Tregs cDNA (positive control) confirmed the product size of ≈600bp and ≈500bp for WTFOXP3 

and ∆2FOXP3, respectively. 
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The biological role of Δ2FOXP3 isoform has been investigated in CD4+CD25- T cells. Data 

suggest that Δ2FOXP3 possesses transcriptional repressor activity toward the IL-2 promoter 

in CD4+ T cells [Allan et al., 2005]. Moreover, FOXP3-transduced T cells were tested for their 

ability to proliferate in response to immobilized anti-CD3 mAbs. The antiproliferative effect 

was significantly lower in Δ2FOXP3-transfected cells than in T cells overexpressing WTFOXP3. 

Finally, Δ2FOXP3 overexpression showed a moderate decrease in IL-2 production in 

comparison to WTFOXP3-transduced T cells which showed a significantly reduced capacity to 

produce IL-2 upon activation. Together these results indicate that the two isoforms may 

have distinct functions in vivo [Allan et al., 2005].  

∆2FOXP3 isoform is overexpressed by certain malignant cells; for example, in an aggressive 

variant of cutaneous T cell lymphoma (Sezary Syndrome) the transformed T cells express 

∆2FOXP3 isoform.  To our knowledge, in current literature no data exist on the biological 

role of this splice variant in cancer cells. 

 

Given these preliminary results we reasoned as following: 

i) Since we demonstrated that many breast cancer cell lines, representing different breast 

cancer subtypes, expressed significantly lower levels of FOXP3 than primary human breast 

cancer samples, we assumed that the overexpression of FOXP3 in breast cancer cell lines 

could be a chance to mimic in vivo conditions; 

ii) Since WTFOXP3 was detected in all human breast cancer and breast cancer cell lines 

analyzed, whereas the Δ2FOXP3 isoform was visible solely in human breast tumors, we 

asked whether FOXP3 role in human breast cancer may depend on ∆2FOXP3 isoform and in 

particular if this isoform can have a different biological role than full length FOXP3 in breast 

cancer progression. 

 

 

 

 

 

 

 

 

 



 64 

3. Triple-negative breast cancer cell line as in vitro and in vivo tumor model  

In order to investigate FOXP3 function in breast cancer and its involvement in promoting 

metastasis, we attempted to stably overexpress FOXP3 in breast cancer cells. Among several 

available mammalian inducible expression systems, the Tet-off system has been successfully 

used in different cell lines [Gossen et al., 1995; Weng et al., 1998]. For this reason our initial 

efforts were to use the Tet-Off system to generate stable FOXP3 expressing breast cancer 

cells. Among breast cancer cell lines, we choose the human breast cancer cell line MDA-MB-

231 for its biological characteristics. 

The MDA-MB-231 breast cancer cell line was obtained from a patient in 1973 at M.D. 

Anderson Cancer Center. With epithelial-like morphology, the MDA-MB-231 breast cancer 

cells appear phenotypically as spindle shaped cells. In vitro, the MDA-MB-231 cell line has an 

invasive phenotype and it has abundant activity in the Boyden chamber invasion assay. The 

MDA-MB-231 cell line is also able to grow on agarose, an indicator of transformation and 

tumorigenicity, and displays a relatively high colony forming efficiency. Moreover, this 

established breast adenocarcinoma cell line is widely used by the scientific community for 

studying in vivo metastasis based on its ability to grow orthotopic tumors in athymic mice 

able to spontaneously metastasize to other organs. Few established breast cancer cell lines 

metastasize in mice, and among them most only in experimental settings, for example via 

tail vein bypassing the crucial and physiologically relevant steps of migration and invasion 

inside the primary tumor. 

Moreover, we selected this breast cancer cell line as cellular model since, as previously 

shown, a significant association between FOXP3 expression and decreased disease-free 

survival (p=0.014) was found in triple negative breast cancer specimens. 
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4. Role of FOXP3 in breast cancer metastasis: in vitro assays 

As active migration and invasion of tumor cells are pre-requisites for tumor-cell metastasis, 

we sought to identify the effects of FOXP3 overexpression on MDA-MB-231 cell migration 

and invasion capability. Furthermore, we also investigated FOXP3 overexpression effect on 

MDA-MB-231 cell growth. 

Prior to establishing Tet-Off bulk cultures with an inducible FOXP3 expression, we 

investigated the effect of FOXP3 overexpression in transiently transfected MDA-MB-231 

cells. To this purpose, MDA-MB-231 cells were transfected with the pcDNA3 plasmid 

encoding WTFOXP3 (WTFOXP3-pcDNA3 cells), Δ2FOXP3 (Δ2FOXP3-pcDNA3 cells), or the 

corresponding empty vector (mock cells). Western blot analysis indicated that FOXP3 protein 

expression was increased in both WTFOXP3-pcDNA3 and Δ2FOXP3-pcDNA3 transfected cells 

(figure 13). 

 

 

 

Figure 13. Western blot analysis of FOXP3 expression in MDA-MB-231 FOXP3-transfected cells 

 Western blot analysis of FOXP3 expression in WTFOXP3-, Δ2FOXP3- and empty vector (ф)-transfected MDA-

MB-231 cells. Vinculin served as a loading control. 

 

4.1 FOXP3 enhances MDA-MB-231 cancer cell migration capability 

The migration assay was carried out using a transwell membrane. WTFOXP3-pcDNA3 cells, 

Δ2FOXP3-pcDNA3 cells and mock cells were detached from the tissue culture plates, 

resuspended in serum-free RPMI 1640 medium (1×105 cells/well), and then loaded to the 

upper side of the chamber. Serum containing RPMI 1640 medium was added to the lower 

chamber. After 24 hours of incubation, filter inserts were removed from the wells. Cells on 

the upper surface of the filter were removed using cotton swabs. Those on the lower surface 

were fixed with absolute ethanol in PBS and stained with sulforhodamine B (SRB). Images of 
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migrated cells were captured using an optical microscope and quantified with ImageJ 

program. 

Overexpression of WTFOXP3 and Δ2FOXP3 in MDA-MB-231 cells induced a 2.3-fold and 1.8-

fold increase, respectively, in the migration rate compared to matching mock cells (figure 

14). The increase was statistically significant (p=0.01 and p=0.03 for WTFOXP3- and 

Δ2FOXP3-transfected cells, respectively). 

 

 

Figure 14. Promotion of MDA-MB-231 cell migration by FOXP3 overexpression 

Representative images of migrated cells in mock cells (A1 and B1), WTFOXP3- (A2) and Δ2FOXP3- (B2) 
transfected cells using the transwell migration assay. C) A diagram of the migrated cells, as determined by 
using an optical microscope and the ImageJ program for quantification of migrated cells. Data are mean±SD of 
the ratio between the number of migrated WTFOXP3-/Δ2FOXP3- and empty vector-transfected cells (Ratio=1, 
red line). Results are representative of 3 independent experiments. * p<0.05; ** p<0.01 by unpaired t-test vs 
empty vector-transfected cells. 
  
 
 

4.2 FOXP3 enhances MDA-MB-231 cancer cell invasion capability 

The cell invasion assay was performed using a transwell chamber coated with matrigel. 

WTFOXP3-pcDNA3, Δ2FOXP3-pcDNA3 and mock cells were plated into the upper chamber at 

a density of 1 × 105 cells/well with serum-free medium, while the lower chamber contained 

medium with 10% FBS. When the cells were allowed to invade the matrigel for 

approximately 48 hours, the invasive cells were fixed with absolute ethanol and stained 

using SRB, while the non-invasive cells were scraped with cotton tips. Finally, the invasive 

cells were taken imaged and quantified using ImageJ program. WTFOXP3-pcDNA3 and 

Δ2FOXP3-pcDNA3 cells showed a 2.6-fold (p=0.03) and 3.4-fold (p=0.02) penetration rate 

through the matrigel-coated membrane compared to mock cells (figure 15), indicating that 

FOXP3 significantly increased the invasion ability of MDA-MB-231 cells. 



 67 

 

 

 
 
Figure 15. Promotion of MDA-MB-231 cell invasion by FOXP3 overexpression 
Representative images of invasive cells in mock cells (A1 and B1), WTFOXP3- (A2) and Δ2FOXP3- (B2) 
transfected cells using the matrigel invasion assay. C) A diagram of the invasive cells, as determined by using an 
optical microscope and the ImageJ program for quantification of invaded cells. Data are mean±SD of the ratio 
between the number of invaded WTFOXP3- or Δ2FOXP3- and empty vector-transfected cells (Ratio=1, red line). 
Results are representative of 3 independent experiments. * p<0.05 by unpaired t-test vs empty vector-
transfected cells.  

 

4.3 FOXP3 inhibits MDA-MB-231 cell growth 

To assess whether FOXP3 had a functional effect on MDA-MB-231 breast cancer cell growth, 

colony forming assay on WTFOXP3-pcDNA3 cells, Δ2FOXP3-pcDNA3 cells and mock cells was 

performed. 48 hours after transfection cells were plated into 6-well plates at a density of 

200 cells/well and maintained in a selective medium containing antibiotic. Only those cells 

which have integrated the plasmid survived, since they contained the drug resistant gene. 

The medium was refreshed every three days. After 3 weeks of cell culture under antibiotic 

selection, culture dishes were stained with Toluidine Blue and the number of colonies was 

evaluated. As shown in figure 16, WTFOXP3 and Δ2FOXP3 overexpression consistently 

decreased the ability of breast cancer cells to form colonies. WTFOXP3-pcDNA3 and 

Δ2FOXP3-pcDNA3 cells had a 1.5- and 2-fold reduction in colony number, respectively, 

compared to mock cells (p<0.01 by unpaired t-test) (figure 16). 

In agreement with already published data supporting the role for FOXP3 as an onco-

suppressor gene in human cancer [Liu et al., 2009; Zuo et al., 2007a; Zuo et al., 2007b], our 

results demonstrated a significant growth-inhibitory activity of FOXP3 on breast cancer cells.  
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Figure 16. Inhibition of MDA-MB-231 cell colony number by FOXP3 overexpression 
A) Representative images of colony assay showing the inhibition of colony formation in MDA-MB-231 cells after 
transfection with a vector encoding WTFOXP3, Δ2FOXP3 or with the empty vector. B) A diagram of colony 
number reduction, as determined by using the ImageJ program for quantification of the number of colonies. 
The number of colonies for each cell clone is expressed as percentage compared with matching empty vector 
transfected cells (100%). Results are representative of 3 independent experiments. Error bars = standard 
deviation. ** p<0.01 by unpaired t-test vs mock cells. 

 

Our in vitro results demonstrated that both WTFOXP3 and Δ2FOXP3 isoforms significantly 

increased migration and invasion capability of breast cancer cells. Taking advantage of the 

correlation between FOXP3 and poor prognosis in triple negative breast cancer patients, and 

considering the pro-migratory and pro-invasive effect of transient FOXP3 overexpression in 

triple negative breast cancer cells, to further investigate in vivo role of FOXP3 in breast 

cancer metastasis, we planned to build an inducible Tet-Off construct that stably expressed 

FOXP3. The inducible system provides tight and inducible gene expression so that it is 

possible to induce high expression of FOXP3 gene in vivo. Moreover, for our in vivo 

experiments we generated a mixed cell population stably expressing FOXP3 to ensure that 

the in vivo effect of FOXP3 expression was not related to the intrinsic characteristic of a 

single selected clone. 

 

5. Generation of a vector for inducible FOXP3 expression in triple negative breast cancer 

cells 

We generated two constructs (pTRE2hyg-WTFOXP3 and pTRE2hyg-Δ2FOXP3) that stably 

expressed our gene of interest in an inducible Tet-Off system so as to be able to regulate 

FOXP3 transcription through the use of tetracyclines. The entire cDNA of WTFOXP3 or 

Δ2FOXP3 was cloned into the pTRE2hyg plasmid within the multiple cloning site (MCS) 

sequence. The plasmid contains the Tet response element (TRE) sequence which makes it 

responsive to the tTA protein of the Tet-Off system. In the absence of tetracycline tTA 

protein binds to the promoter and activates transcription. The TRE sequence also contains a 
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part of the Citomegalovirus promoter able to ensure high expression of the gene of interest 

cloned downstream. 

To verify the functionality of the inducible system in MDA-MB-231 recipient cell clone (Tet-

Off MDA-MB-231 #23 clone), previously transfected with the pTet-Off Advanced plasmid, 

the plasmid containing the reporter gene pTRE2hyg Firefly Luciferase (pTRE2hyg-Luc) and 

the control plasmid pRL-SV40 containing the sequence of the Renilla Luciferase reporter 

gene were co-transfected into Tet-Off MDA-MB-231 #23 cells. 48 hours after transfection, 

the cells maintained in culture in the presence or absence of doxycycline (DOXI) (100ng/ml) 

were detached with trypsin and collected for assessment of luciferase activity. In the Tet-Off 

system, doxycycline represses the expression of the gene placed under control of the TRE 

sequence. Luciferase assay indicates that cells grown in the absence of doxycycline (DOXI-) 

exhibit greater luciferase activity than those grown in the presence of doxycycline (DOXI+) 

(figure 17). So, we concluded that in the Tet-Off MDA-MB-231 cells the inducible system 

functioned and that these cells can be used to create a model with inducible expression of 

FOXP3. 

 

 
 
 
Figure 17. Functionality of Tet-Off system in recipient MDA-MB-231 
cells 
MDA-MB-231 cells were transfected with pTRE2hyg-Luc vector and 
maintained in culture in the presence or absence of doxycycline 
(100ng/ml). Cells maintained in the presence of doxycycline (DOXI+) 
showed a luciferase activity significantly lower than that detected in 
cells grown in the absence of doxycycline (DOXI-). Bars indicate 
standard deviation calculated on three replicates ***: p <0.001. 
 
 
 

 
 

5.1 Generation of stable cell populations with inducible expression of FOXP3  

The pTRE2hyg-WTFOXP3 and pTRE2hyg-Δ2FOXP3 plasmids containing the coding sequence 

of WTFOXP3 and Δ2FOXP3, respectively, were transfected into recipient Tet-Off MDA-MB-

231 cells. Stably transfected cells (Tet-Off MDA-MB-231-WTFOXP3 and Tet-Off MDA-MB-

231-Δ2FOXP3) were maintained in the selective medium. The result was a stable cell mixed 

population (bulk culture). In order to verify the modulation of FOXP3 expression by 

doxycycline, these cells were grown in the selective medium containing or not doxycycline. 

After 48 hours cells were trypsinized and lysed. FOXP3 expression in total lysates was 
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analyzed by Western blot (figure 18). Data showed that a 4-fold and 7-fold increased 

expression of FOXP3 in Tet-Off MDA-MB-231-WTFOXP3 and Tet-Off MDA-MB-231-Δ2FOXP3 

bulk cultures, respectively, was induced after doxycycline removal from the culture medium. 

These results demonstrated an efficient doxycycline-mediated induction of both WTFOXP3 

and Δ2FOXP3 isoform expression in stably transfected MDA-MB-231 breast cancer cells. Also 

immunofluorescence analysis showed a strong induction of FOXP3 expression in both 

WTFOXP3- and Δ2FOXP3-transfected cells. In almost all tumor cells a nuclear localization of 

FOXP3 protein was observed (figure 19). 

So, this inducible model has been employed in our further investigation on the involvement 

of FOXP3 in breast cancer metastatic process. 

 

 

Figure 18. Western blot analysis of FOXP3 expression induction in MDA-MB-231 cells 
Western blot analysis of FOXP3 expression in WTFOXP3- (A) or Δ2FOXP3-(B) stably transfected MDA-MB-231 

cells with (DOXI+) or without (DOXI-) doxycycline induction. Vinculin served as a loading control. 

 

 

 

Figure 19. Immunofluorescence analysis of FOXP3 expression induction in MDA-MB-231 cells 

Immunofluorescence analysis of FOXP3 expression in WTFOXP3- (A) or Δ2FOXP3- (B) stably transfected MDA-

MB-231 cells with (DOXI+) or without (DOXI-) doxycycline induction. Merged images: DRAQ5; FOXP3. 
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6. Role of FOXP3 in breast cancer metastasis: in vivo assays 

To demonstrate FOXP3 involvement in breast cancer metastasis, we aimed to correlate 

FOXP3 expression with the ability of FOXP3-overexpressing breast cancer cells to form 

spontaneous lung metastases. 

 

6.1 Effect of WTFOXP3 over-expression in MDA-MB-231 breast cancer cells on 

spontaneous lung metastases 

To assess the role of WTFOXP3 on spontaneous lung metastases 5x106 Tet-Off MDA-MB-

231-WTFOXP3 cells, grown in the presence of doxycycline in the culture medium were 

resuspended in Matrigel, which promotes the rooting and growth of tumor cells in vivo, and 

injected into the mammary fat pad of 16 female Severe Combined Immunodeficient (SCID) 

mice. Since we previously observed that FOXP3 inhibits tumor cell proliferation in vitro, we 

decided to suppress FOXP3 expression until the appearance of a palpable tumor. To this aim 

all mice received doxycycline (1mg/ml) in their drinking water, until tumor volume reached a 

mean size of 150 mm3. Then mice were randomized into two groups: one was provided with 

drinking water (DOXI-) and the other was provided with doxycycline (1mg/ml) (DOXI+) in 

drinking water ad libitum for the duration of the experiment. Tumor volume was measured 

twice weekly using a caliper, applying the formula 0.5 x d12 x d2, where d1 and d2 are the 

smaller and larger diameters, respectively. Doxycycline treatment had no effect on the 

animal weight, and 30 days after tumor cell injection, primary tumors showed comparable 

volume in the two mice groups (figure 20B). At this time primary mammary tumors and lungs 

were surgically removed. 

Western blots of tissue extracts from primary tumors showed that FOXP3 expression was 

higher in tumors from DOXI- mice compared with tumors in DOXI+ mice, indicating that 

regulation of FOXP3 expression through doxycycline was maintained in vivo (figure 20A). 

Lung metastases were analyzed on formalin-fixed paraffin-embedded lung sections 

immunostained with anti-vimentin antibody. An average number of metastatic lesions of 

12.5 ± 27.4 (mean±SD) was observed in mice not doxycycline-treated (DOXI-) and an average 

number of 35.8 ± 24.6 (mean±SD) metastases was observed in doxycycline-treated mice 

(DOXI+) (figure 20C). The difference in the number of lung metastases between DOXI+ and 

DOXI- groups did not reach significance (p=0.09). 
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Figure 20. Effect of WTFOXP3 expression in MDA-MB-231 breast cancer cells on spontaneous lung 
metastases  
A) Western blot analysis of FOXP3 expression in tumors grown in mice injected with Tet-Off MDA-MB-231-
WTFOXP3 cells. Results are representative of 16 injected-mice, treated (n=8) or not (n=8) with doxycycline. 
B) Tumor volume against time after injection of Tet-Off MDA-MB-231-WTFOXP3 cells. Doxycycline treatment 
did not affect tumor growth. Each point represents the mean ± standard deviation of the mean.  
C) Number of lung metastases at 30 days after injection of Tet-Off MDA-MB-231-WTFOXP3 cells into the 
mammary fat pad. For each mouse, lung metastases were evaluated as the mean number in 3 microscopic 
fields (3.0 X 3.0 mm

2
) randomly selected in each histological section stained with α-human vimentin antibody 

to detect breast carcinoma cells.  
 
 

6.2 Effect of Δ2FOXP3 overexpression in MDA-MB-231 breast cancer cells on spontaneous 

lung metastases 

At the same time, to evaluate Δ2FOXP3 isoform potential to contribute to breast cancer 

metastasis, we performed the same experimental protocol used to investigate WTFOXP3 

isoform role in spontaneous metastasis assay. 5x106 Tet-Off MDA-MB-231-Δ2FOXP3 bulk 

culture cells grown in the presence of doxycycline in the medium were resuspended in 

matrigel and injected into the mammary fat pad of 16 female SCID mice. All mice received 

doxycycline (1mg/ml) in their drinking water, until tumor volume reached a mean size of 150 

mm3. Then mice were randomized into two groups (8 mice per group): one was provided 

with drinking water (DOXI-) and the other was provided with doxycycline (1mg/ml) (DOXI+) 

in drinking water ad libitum for the duration of the experiment. Doxycycline treatment had 

no effect on the animal weight, and 30 days after tumor cell injection, primary tumors 
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showed comparable volume in the two mice groups (figure 21B). At this time primary 

mammary tumors and lungs were surgically removed. 

Compared to doxycycline-treated mice, primary tumors grown in mice watered without 

doxycycline displayed a significant increase in FOXP3 expression, indicating that regulation of 

FOXP3 expression through doxycycline was maintained in vivo (figure 21A). Lung 

colonization was measured at the assay endpoint by IHC analysis of formalin-fixed paraffin-

embedded lung sections. The average number of metastatic tumors was 33.9±32.7 

(mean±SD) in doxycycline-treated mice and 10.3±18.1 (mean±SD) in not doxycycline-treated 

mice (figure 21C). The difference in the number of lung metastases between DOXI+ and 

DOXI- groups did not reach significance (p=0.12). 

 

 

Figure 21. Δ2FOXP3 expression in MDA-MB-231 breast cancer cells  enhances spontaneous lung metastases 

A) Western blot analysis of FOXP3 expression in tumors grown in mice injected with Tet-Off MDA-MB-231-
Δ2FOXP3 cells. Results are representative of 16 injected-mice, treated (n=8) or not (n=8) with doxycycline. 
B) Tumor volume against time after injection of Tet-Off MDA-MB-231-Δ2FOXP3 cells. Doxycycline treatment 
did not affect tumor growth. Each point represents the mean ± standard deviation of the mean.  
C) Number of lung metastases at 30 days after injection of Tet-Off MDA-MB-231-Δ2FOXP3 cells the mammary 
fat pad. For each mouse, lung metastases were evaluated as the mean number in 3 microscopic fields (3.0 X 3.0 
mm

2
) randomly selected in each histological section stained with α-human vimentin antibody to detect breast 

carcinoma cells.  
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These findings do not support a role of Δ2FOXP3 isoform in promoting breast cancer 

metastasis, suggesting that the hypothesis of Δ2FOXP3 role in metastatic process does not 

look right. 

Moreover, in vivo results suggested that WTFOXP3 and Δ2FOXP3 isoforms have a similar 

biological effect when expressed in a triple-negative breast cancer cell line in terms of 

spontaneous metastasis induction since the mean number of spontaneous lung metastases 

was superimposable in WTFOXP3- and Δ2FOXP3-overexpressing tumor bearing mice (12.5 

and 10.3 for WTFOXP3- and Δ2FOXP3-MDA-MB-231 injected mice, respectively).  The 

decrease, although not statistically significant, in the number of spontaneous lung 

metastases with both FOXP3 isoforms, is in contrast with the pro-metastatic role of FOXP3 

previously emerged from our immunohistochemical analyses of breast cancer patient 

specimens.  

 

7. FOXP3 subcellular localization in cancer cells and its biological role 

The nuclear expression of FOXP3 in human benign breast tissue is well documented [Chen et 

al., 2008]. However FOXP3 localization in cancerous epithelia is less definitive.  

Zuo et al. (2007b) assessed the subcellular distribution of FOXP3 in human breast cancer 

patient samples and reported that 21% of 275 breast cancer samples expressed only nuclear 

FOXP3 within the epithelial cells of the tumor, whereas 80% of the non-malignant cells 

expressed nuclear FOXP3. 

Conversely, other reports, including ours, described a cytoplasmic FOXP3 staining of tumor 

cells in several types of cancer [Hinz et al., 2007; Karanikas et al., 2008; Ladoire et al., 2011; 

Merlo et al., 2009; Winerdal et al., 2011]. Our IHC analysis of breast carcinoma specimens 

(Milano 1 and Milano 3 trials) showed that FOXP3 positive staining was localized 

predominantly in the cytoplasm, although both cytoplasmic and nuclear staining was 

present in some specimens and a few specimens showed only nuclear staining. A similar 

heterogeneous FOXP3 localization in breast cancer cells has emerged in our recent analysis 

of TNBC cohort. Out of 47 breast cancer specimens scored as positive for FOXP3, 28 showed 

FOXP3 staining predominantly in the cytoplasm, while in 19 specimens both cytoplasmic and 

nuclear staining was present (figure 8). 

While our investigation on FOXP3 role proceeded, many studies on different cancer types 

provided evidences for a strong correlation of elevated FOXP3 expression in cancer cells with 
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poor prognosis, particularly with metastasis [Fu et al., 2013; Kim et al., 2013; Liang et al., 

2011; Quaglino et al., 2011; Xue et al., 2010; Wang et al., 2010; Winerdal et al., 2011]. 

Similarly to what observed in our IHC analyses on human breast cancer specimens, even in 

all these studies FOXP3 localization in tumor cells was reported to range from predominantly 

cytoplasmic to both cytoplasmic and nuclear. 

It’s currently difficult to interpret the significance of FOXP3 cytoplasmic localization; 

however, since the role of FOXP3 is transcription regulation, which mainly occurs in the 

nucleus, cytoplasmic FOXP3 localization could affect its biological role (see review Triulzi et 

al., 2013). Thus, we hypothesized that a cytoplasmic ‘‘non functional’’ localization of FOXP3 

protein could explain the discrepancy between the onco-suppressive role of FOXP3 in our in 

vivo experiments, performed with transfected cells showing FOXP3 nuclear localization 

(figure 19), and the worse prognosis of patients with FOXP3-positive tumors. 

In the light of these considerations we decided to investigate whether FOXP3 in tumor cells 

may have distinct biological activities and prognostic values according to its subcellular 

localization. 

 

8. Selection of stable Tet-Off MDA-MB-231 WTFOXP3 clones with cytoplasmic localization 

of FOXP3 protein  

Since the immunofluorescence staining previously performed on Tet-Off MDA-MB 231 WT 

FOXP3 bulk culture showed the presence of some, although few, cells expressing FOXP3 in 

the cytoplasm, in order to investigate whether FOXP3 overexpression could play a different 

role on breast cancer metastasis depending on its subcellular localization, the construct 

expressing WTFOXP3 under the control of the Tet-Off promoter was newly transfected into 

Tet-Off MDA-MB-231 recipient cells. FOXP3-transfected cells were diluted in a 96-well plate 

to seed only one cell per well, and grown in a selective culture medium. Several stable 

clones were obtained and screened for FOXP3 expression by Western blot in order to verify 

the modulation of FOXP3 expression by doxycycline. Depending on the individual clone an 

increased expression of FOXP3, ranging from 1- to 7-fold, was observed after doxycycline 

removal from the culture medium (data not shown). Among the clones showing a high 

induction of FOXP3 levels, we searched for clones with a predominantly cytoplasmic 

localization of the protein. To this aim immunofluorescence assay was perfomed on cells in 

which FOXP3 expression was regulated by doxycycline. Tet-Off MDA-MB-231-WTFOXP3#1 
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clone which showed a predominantly cytoplasmic FOXP3 localization was selected. The 

metastatic capability of Tet-Off MDA-MB-231-WTFOXP3#1 clone was evaluated and 

compared to that of Tet-Off MDA-MB-231-WTFOXP3#4 clone, which showed a 

predominantly nuclear FOXP3 localization, and selected for a FOXP3 induction similar to Tet-

Off MDA-MB-231-WTFOXP3#1 clone (figure 22). 

 

 

 

Figure 22. FOXP3 expression and subcellular localization in MDA-MB-231 stable clones 

A) Western blot analysis showed the induction of FOXP3 expression in Tet-Off MDA-MB-231-WTFOXP3#1 clone 

and Tet-Off MDA-MB-231-WTFOXP3#4 clone. FOXP3 expression levels were compared after 48 hours of culture 

in the presence (DOXI+) or absence (DOXI−) of doxycycline. Vinculin was used as loading control. 

B) Immunofluorescence analysis of FOXP3 expression in Tet-Off MDA-MB-231-WTFOXP3#1 clone and Tet-Off 

MDA-MB-231-WTFOXP3#4 clone cells, in which FOXP3 expression was induced upon doxycycline removal from 

the culture medium. Merged images: DRAQ5; FOXP3. 
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8.1 Correlation between FOXP3 subcellular localization in stable MDA-MB-231 clones and 

metastatic capability in vivo 

We evaluated the in vivo effect of FOXP3 overexpression in Tet-Off WTFOXP3#1 and Tet-Off 

WTFOXP3#4 cells by performing both spontaneous and experimental metastasis assays, 

using the same conditions as described above. 

In spontaneous metastasis assay cells were injected into the mammary fat pad of 20 female 

SCID mice. FOXP3 expression was induced in primary tumors of not doxycycline-treated mice 

(figures 23A and 24A). Tumor size was monitored for 30 days after tumor cell injection, then 

tumors were harvested and lungs were resected for analyses. As shown in figures 23B and 

24B tumor growth was not affected by doxycycline treatment. 

FOXP3 overexpression in Tet-Off WTFOXP3#4 cell-injected mice (DOXI-) led to a significantly 

reduced number of spontaneous lung metastases after a 30-day period (p=0.01) (figure 23C). 

The average number of metastatic lesions decreased from 4.6±4.4 (mean±SD) in 

doxycycline-watered mice to 0.7±1.5 (mean±SD) in not doxycycline-treated mice. 

On the contrary, a significant increase (p=0.04) in the number of lung metastases was 

observed in Tet-Off WTFOXP3#1 cell-injected mice bearing FOXP3-overexpressing tumors 

(DOXI-) versus controls. The mean number of metastases was 4.8±6.4 and 16.4±15.9 

(mean±SD) in doxycycline-treated and not doxycycline-treated mice groups respectively 

(figure 24C). 

Similar results were obtained by performing experimental metastasis assay. 

FOXP3 overexpression in Tet-Off WTFOXP3#4 cell-injected mice (DOXI-) led to a significant 

reduction in the number of experimental lung metastases (p=0.01) (figure 23D). The average 

number of metastatic lesions decreased from 55±7.1 (mean±SD) in doxycycline-watered 

mice to 29.3±19 (mean±SD) in not doxycycline-treated mice. 

On the contrary, a significant increase (p=0.02) in the number of experimental lung 

metastases was observed in Tet-Off WTFOXP3#1 cell-injected mice bearing FOXP3-

overexpressing tumors (DOXI-) versus controls. The mean number of metastases was 0.4±0.8 

and 9.8±9.7 (mean±SD) in doxycycline-treated and not doxycycline-treated mice groups, 

respectively (figure 24D). 
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Figure 23. Predominantly nuclear FOXP3 expression in MDA-MB-231-WTFOXP3#4 clone inhibits both 
spontaneous and experimental lung metastases 
A) Western blot analysis of FOXP3 expression in tumors grown in mice injected with Tet-Off MDA-MB-231-
WTFOXP3#4 cells into the mammary fat pad. Results are representative of 20 injected-mice, treated (n=10) or 
not (n=10) with doxycycline. B) Tumor volume against time after injection of Tet-Off MDA-MB-231-WTFOXP3#4 
cells. Doxycycline treatment did not affect tumor growth. Each point represents the mean ± standard 
deviation.  
C)  Number of lung metastases at 30 days after injection of Tet-Off MDA-MB-231-WTFOXP3#4 cells into the 
mammary fat pad. D) Number of lung metastases at 21 days after i.v. injection of Tet-Off MDA-MB-231-
WTFOXP3#4 cells into the mice lateral tail vein. For each mouse, lung metastases were evaluated as the mean 
number in 3 microscopic fields (3.0 X 3.0 mm

2
) randomly selected in each histological section stained with α-

human vimentin antibody to detect breast carcinoma cells. * p<0.05; ** p<0.01 by unpaired t-test. 
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Figure 24. Predominantly cytoplasmic FOXP3 expression in MDA-MB-231-WTFOXP3#1 clone enhances both 
spontaneous and experimental lung metastases 
Western blot analysis of FOXP3 expression in tumors grown in mice injected with Tet-Off MDA-MB-231-
WTFOXP3#1 cells into the mammary fat pad. Results are representative of 20 injected-mice, treated (n=10) or 
not (n=10) with doxycycline. B) Tumor volume against time after injection of Tet-Off MDA-MB-231-WTFOXP3#1 
cells. Doxycycline treatment did not affect tumor growth. Each point represents the mean ± standard 
deviation. C)  Number of lung metastases at 30 days after injection of Tet-Off MDA-MB-231-WTFOXP3#1 cells 
into the mammary fat pad.  D) Number of lung metastases at 21 days after i.v. injection of Tet-Off MDA-MB-
231-WTFOXP3#1 cells into the mice lateral tail vein. For each mouse, lung metastases were evaluated as the 
mean number in 3 microscopic fields (3.0 X 3.0 mm

2
) randomly selected in each histological section stained 

with α-human vimentin antibody to detect breast carcinoma cells. * p<0.05 by unpaired t-test. 
 
 

The evaluation of metastatic capability of two clones with different FOXP3 subcellular 

localization led to opposite results. A significant decreased number of both spontaneous and 

experimental lung metastases was observed in mice injected with Tet-Off WTFOXP3#4 cells 

which showed a predominantly nuclear FOXP3 localization. On the other hand, when mice 

were injected with Tet-Off WTFOXP3#1 cells which showed a predominantly cytoplasmic 

FOXP3 localization a significant increased number of both spontaneous and experimental 

lung metastatic tumors was observed. 

These results support our hypothesis that FOXP3 discrepant role in breast cancer metastasis 

may be due to its different subcellular localization. When FOXP3 localized in the nucleus it 

can play its transcriptional activity, resulting in an onco-suppressive effect, while its 

cytoplasmic localization unabled this transcription factor to perform its biological functions, 

leading to an opposite in vivo effect. 
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FUTURE PERSPECTIVES 

Our findings indicate that FOXP3 subcellular localization in breast tumor cells is an important 

determinant of prognosis, supporting the involvement of this transcription factor in breast 

cancer metastasis. To further investigate the biological significance of FOXP3 cytoplasmic 

localization we generated a stable FOXP3-transfected MDA-MB-231 cell bulk population with 

a forced localization of FOXP3 to the cytoplasm. 

FOXP3 nuclear localization was found to be dependent on the presence of the FKH domain. 

In particular, a C-terminal fragment of FOXP3 containing the entire FKH domain with short 

flanking sequences at each end was found to be both necessary and sufficient for import of 

FOXP3 to the nucleus [Lopes et al., 2006].  Mutation of two amino acids within this nuclear 

localization signal (NLS) domain abrogates nuclear import of FOXP3 [Lopes et al., 2006]. 

By targeted mutation at specific sites within NLS region we created a single mutant construct 

(mutWTFOXP3-pTre2hyg). This vector expresses FOXP3 full-length protein carrying a specific 

amino acid mutation in the FKH domain that impairs its nuclear localization. MutWTFOXP3-

pTre2hyg vector was then stably expressed in Tet-Off-MDA-MB-231 breast cancer cells, so as 

to be able to regulate FOXP3 transcription through the use of doxycycline. Preliminary in 

vitro investigations on mutWTFOXP3-MDA-MB-231 cells in which FOXP3 localized in the 

cytoplasm are ongoing. We aimed to evaluate both spontaneous and experimental 

metastatic capability of mutWTFOXP3 MDA-MB-231 cells to confirm whether FOXP3 

cytoplasmic localization enhances breast cancer metastasis. 
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The transcription factor FOXP3 is an X-linked gene well known for its crucial importance in 

the generation of CD4+CD25+ regulatory T cells (Tregs). Although expression of this 

transcriptional factor specifically characterizes naturally occurring Tregs, it is now clear that 

FOXP3 is also expressed by many tumor cells including breast cancer cells. Despite increasing 

knowledge about the biology of FOXP3, the significance of its expression in human cancer 

cells is not clearly understood. 

FOXP3 is reported to repress the transcription of HER2 oncogene in human breast cancer by 

directly binding to the ErbB2 gene promoter; moreover, FOXP3 is able to bind to specific 

regions within the SKP2 gene directly repressing its expression [Zuo et al., 2007a; Zuo et al., 

2007b]. FOXP3 is also been described to be a transcriptional activator of LATS2 and p21 

tumor suppressor genes in breast epithelial cells [Liu et al., 2009; Li et al., 2011]. 

It has been also reported that FOXP3 expression in cancer cells may be a predictive 

biomarker of anthracycline efficacy, since FOXP3 expression in breast cancer cells was 

associated with a better overall survival in patients treated with anthracycline-based 

chemotherapy but not in those treated with sequential anthracycline-taxane therapy 

[Ladoire et al., 2011, 2012]. 

In sharp contrast to a putative onco-suppressor role for FOXP3, several studies had 

correlated FOXP3 expression in different histological types of cancer with poor prognosis, 

and particularly with metastasis [Bates at al., 2006; Gobert et al., 2009; Jaberipour et al., 

2010; Mansfield et al., 2009; Merlo et al., 2009]. Our previous retrospective study conducted 

on human primary breast carcinoma specimens from Milano 1 and Milano 3 trials 

demonstrated for the first time a significantly inverse association between FOXP3 expression 

in breast cancer cells and patient survival. FOXP3 was also a strong prognostic factor for 

distant metastasis-free survival, but was not a significant predictor of local recurrence 

incidence risk [Merlo et al., 2009]. Since Milano 1 (1973-1980) and Milano 3 (1987-1989) 

trial lymph node-positive patients (≈ 40%) received adjuvant chemotherapy or hormone 

therapy after surgery, whereas node-negative patients have been treated at the time of 

relapse, we aimed to confirm the impact of FOXP3 on breast cancer survival in a cohort of 

breast cancer patients (2002-2006) all treated with post-surgical chemotherapy according to 

current oncological treatment guidelines. The choice to focus our analyses on triple negative 

breast cancers (TNBC) was based on the fact that this highly aggressive cancer subtype, with 

a particularly poor prognosis [Dent et al., 2009], usually presents a short  
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disease-free interval after surgery and adjuvant treatment and tends to relapse with distant 

metastases rather than local recurrences [Lin et al., 2008]. 

FOXP3 expression was evaluated in primary TNBC specimens from adiuvantly-treated 

patients and subsequently correlated to patient clinical characteristics and survival. FOXP3 

positive patients had poorer disease-free survival compared to FOXP3-negative patients, 

confirming the significant impact of FOXP3 on the outcome of breast cancer patients even in 

this particular breast carcinoma subtype. 

This data has been recently confirmed by Nair and colleagues [Nair et al., 2013]. In this study 

the correlation between FOXP3 gene expression and patient disease-free survival was 

determined in three different breast cancer subtypes (TNBC, ER+/HER2- and HER2+ breast 

cancers). FOXP3 expression was found to significantly associate with higher risk of 

recurrence in TNBC and ER+/HER2-negative breast cancer subgroups, whereas no 

differences were found in HER2+ tumors expressing or not FOXP3. 

In the light of all these results which confirmed the association between FOXP3 expression 

and poor prognosis, we decided to further investigate the role of FOXP3 in breast cancer 

through in vitro and in vivo experiments. FOXP3 expression was assessed in a panel of 

different breast carcinoma cell lines, including triple negative breast cancer cell lines, and in 

human IHC FOXP3-positive primary breast carcinoma specimens. Quantitative analysis of 

Western blot showed that FOXP3 expression level in all human breast cancer cell lines was 

significantly lower than in human breast cancer specimens. Thus, we assumed that the 

overexpression of FOXP3 in breast cancer cell lines could be a chance to mimic in vivo 

conditions. Since our previous results showed an association between FOXP3 expression and 

poor outcome in triple negative breast cancer patients we decided to keep on our 

investigations on FOXP3 role in this specific breast cancer subtype. MDA-MB-231 cell line, 

which showed very low level of FOXP3 expression, has been selected as cellular model in our 

in vitro and in vivo experiments, and stably transfected to overexpress FOXP3. 

Western blot analysis revealed that all breast cancer cell lines expressed only full-length 

FOXP3, whereas human breast cancers expressed both the full-length FOXP3 and the main 

deletional isoform ∆2FOXP3. The biological role of Δ2FOXP3 splice variant that completely 

lacks the second coding exon has been investigated in CD4+CD25- T cells. Since human 

CD4+CD25+ Tregs, which constitutively expressed high levels of both WTFOXP3 and Δ2FOXP3 

isoforms do not produce detectable amounts of most cytokines, including IL-2, Allan and 

colleagues investigated whether ectopic expression of WTFOXP3 and/or Δ2FOXP3 in 
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CD4+CD25- T cells resulted in a Treg-like phenotype. Δ2FOXP3-transfected T cells only 

moderately reduced IL-2 production in comparison to WTFOXP3-transduced T cells that 

showed a significantly reduced capacity to produce IL-2 upon activation. Further analyses in 

Δ2FOXP3-transfected Jurkat T cells indicated that Δ2FOXP3 possesses a transcriptional 

repressor activity toward the human IL-2 promoter. Finally, transduced T cells were tested 

for their ability to proliferate in response to immobilized anti-CD3 mAbs, based on 

incorporation of tritiated thymidine. The antiproliferative effect was significantly lower in 

Δ2FOXP3-transfected cells than in T cells overexpressing WTFOXP3 (proliferation rate 

30%±11% and 64%±41% in WTFOXP3- and Δ2FOXP-transfected cells, respectively). Together 

these finding suggested that the two FOXP3 isoforms may have distinct functions in vivo 

[Allan et al., 2005].  

In current literature ∆2FOXP3 isoform expression has been reported in cancer cells, e.g 

melanoma cells and malignant T cells of Sezary syndrome; however, to the best of our 

knowledge, no data exist on the biological role of this splice variant in cancer cells. We 

hypothesized that ∆2FOXP3 isoform could have a distinct role from that of the full-length 

protein in breast cancer progression. 

Conflicting results were obtained by investigating the effects of WTFOXP3 and Δ2FOXP3 

overexpression in triple negative breast cancer cells on proliferative, migratory and invasive 

cell capabilities in vitro. On the one hand a significant growth-inhibitory activity of both 

WTFOXP3 and Δ2FOXP3 on breast cancer cells was observed in agreement with already 

published data supporting the role for FOXP3 as a tumor-suppressor gene in human cancer 

[Zuo et al., 2007b; Zuo et al., 2007a; Liu et al., 2009]; on the other side WTFOXP3 and 

Δ2FOXP3 isoform expression was found to significantly increase migration and invasion 

capability of breast cancer cells. 

Considering the pro-migratory and pro-invasive effect of transient FOXP3 overexpression in 

triple negative breast cancer cells, we further investigated the in vivo role of each FOXP3 

isoform in breast cancer metastasis exploiting a stable cell mixed population (bulk culture) 

with an inducible expression of WTFOXP3 or Δ2FOXP3. To correlate FOXP3 expression with 

the ability of FOXP3-overexpressing breast cancer cells to form spontaneous lung 

metastases, mice were injected with bulk culture cells and FOXP3 expression in tumor-

bearing mice was regulated by doxycycline removal or administration in drinking water. 

In mice injected with WTFOXP3-transfected cells the average number of lung metastases 

decreased from 35.8±24.6 (mean±SD) in doxycycline-watered mice to 12.5±27.4 in not 
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doxycycline-treated mice. Similarly, the number of lung spontaneous metastases in 

Δ2FOXP3-transfected mice was 33.9±32.7 and 10.3±18.1 in doxycycline-treated and not-

treated mice, respectively. 

The number of spontaneous lung metastases was very similar in WTFOXP3- and Δ2FOXP3-

overexpressing tumor-bearing mice. These findings do not support a role of Δ2FOXP3 

isoform in promoting breast cancer metastasis. 

Further, the induction of both WTFOXP3 and Δ2FOXP3 isoforms led to a decrease in the 

number of spontaneous lung metastases. This inhibition of metastatic capability is in 

contrast with the pro-metastatic role of FOXP3 previously emerged from our 

immunohistochemical analyses of breast cancer patient specimens. 

While our investigation on FOXP3 role proceeded, many studies on different cancer types 

provided evidences that patients with FOXP3 positive tumors have a significantly shorter 

progression free survival and/or overall survival compared to patients with FOXP3 negative 

tumors [Fu et al., 2013; Liang et al., 2011; Nair et al., 2013; Quaglino et al., 2011; Xue et al., 

2010; Wang et al., 2010; Winerdal et al., 2011]. As regards breast cancer, FOXP3 expression 

has been recently analyzed in 183 patients by Kim and colleagues (2013). FOXP3-strong-

positive patients showed a significantly shorter disease-free survival than FOXP3-negative 

and weak-positive patients, which had similar favorable prognoses, indicating that strong 

FOXP3 expression is an important prognostic factor for recurrence and poor survival [Kim et 

al., 2013]. Consistent with our IHC analyses of breast carcinoma specimens from Milano 1 

and Milano 3 trials [Merlo et al., 2009] and from a cohort of triple negative breast cancer 

patients, in all these studies subcellular staining of FOXP3 was found to be heterogeneous, 

ranging from cytoplasmic to both cytoplasmic and nuclear and, in few cases, only nuclear. 

The mechanism underlying FOXP3 cytoplasmic localization is still under investigation. 

Chen et al. demonstrated that in Treg cells, TCR-mediated post-translational modifications 

could mediate the regulation function, and influence the subcellular distribution of FOXP3; 

they revealed a change in the subcellular localization of FOXP3 from a more 

cytoplasmic/perinuclear to a nuclear expression pattern in Tregs activated with anti-

CD3/anti-CD28 antibodies [Chen et al., 2006]. FOXP3 contains at least three distinct 

functional domains, including forkhead (FKH) domain, a leucine zipper, and a zinc finger. The 

FKH domain is critical for nuclear localization. FOXP3 with mutations at the carboxyl end of 

the FKH domain (two lysine residues (K415 and K416) to glutamic acid), when expressed in T 

cell lines, is localized to the cytoplasm [Lopes et al., 2006].  
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The fact that many tumors display cytoplasmic staining may be a result of defects in the 

nuclear localization signals of FOXP3, possibly due to acquired mutations. Mutations have 

been found in breast cancer, with numerous single base-pair changes detected in 23 out of 

65 human breast carcinoma samples [Zuo et al., 2007b]. Frequent FOXP3 gene mutations 

and deletions, together with post-translational modifications and splice variations may result 

in cytoplasmic localization of FOXP3 protein in breast cancer cells, and the cytoplasmic 

function may differ from nuclear function [Wang et al., 2009; Hancock et al. 2009].  

Since the role of FOXP3 is transcription regulation, which mainly occurs in the nucleus, a 

cytoplasmic FOXP3 localization could affect its biological role. The concept that FOXP3 

cytoplasmic localization unables this transcription factor to perform its onco-suppressive 

functions has been suggested by two very recent studies. 

The subcellular localization of FOXP3 within tumor infiltrating CD4+ T cells has been found to 

be predictive of recurrence in a cohort of oral squamous cell carcinoma patients [Weed et 

al., 2013]. CD4+ T cells showed a mutually exclusive FOXP3 expression in both cellular 

compartments, suggesting that two well defined subsets of FOXP3+ CD4+ T cells infiltrated 

the tumor. CD4+ T cells expressing FOXP3 in the cytoplasm were indicative of a favorable 

prognosis (no recurrence within three years) whereas a high concentration of CD4+ T cells 

showing nuclear FOXP3 localization was strongly associated with recurrence [Weed et al., 

2013]. 

Moreover, Takenaka et al. (2013) reported a heterogeneous subcellular localization of 

FOXP3 in breast cancer cells, similarly to what we have reported in our IHC analyses. 

Cytoplasmic FOXP3 expression in tumor cells was significantly associated with larger tumor 

size and the presence of metastatic lymph nodes. The prognostic value of tumor-cell FOXP3 

expression was determined according to FOXP3 subcellular localization. Nuclear FOXP3 

expression was significantly associated with an improved overall survival in breast cancer 

patients, whereas cytoplasmic FOXP3 expression in tumor cells was found to significantly 

associate with poor overall survival [Takenaka et al., 2013]. 

Our evaluation of the metastatic capability of two FOXP3-overexpressing clones with 

different FOXP3 subcellular localization supported the hypothesis that failure of FOXP3 

localization in the nucleus of cancer cells may contribute to tumorigenesis by inactivating its 

tumor-suppressive function. In fact, a significant decrease in the number of both 

spontaneous and experimental lung metastases was observed in mice injected with breast 

cancer cells showing a predominantly nuclear FOXP3 localization. Contrarily, when mice 
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were injected with breast cancer cells which showed a predominantly cytoplasmic FOXP3 

localization a significant increase in the number of both spontaneous and experimental lung 

metastatic tumors was observed. 

Taken together, these results suggested that FOXP3 intracellular localization is an important 

factor to be considered when assessing FOXP3 prognostic significance, confirming our 

hypothesis. 

In conclusion, results of this thesis indicate that FOXP3 expression in breast cancer cells has 

crucial function in the development of metastases and suggest that its role depends on 

subcellular localization. Studies are ongoing to confirm the importance of FOXP3 subcellular 

localization in breast cancer. 

Moreover, further investigations are required to identify the underlying mechanism(s) by 

which FOXP3 expression in breast cancer cells affects prognosis. The discovery of genes, 

molecules and/or cellular functions regulated by FOXP3 in tumor cells would afford the 

rational explanation of its role. The proof of FOXP3 pro-metastatic function would support 

FOXP3-targeted therapeutic strategies for breast cancer. However, since FOXP3 expression 

in Tregs has a crucial role of in regulating autoimmunity, the identification of molecules that 

are expressed/functional in tumor cells but not in Tregs would provide an avenue to develop 

potential therapeutic targets other than FOXP3 itself. The identification of other potential 

targets of FOXP3-dependent pathways may provide additional candidates for intervention in 

breast cancer. 
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