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1. Extended abstract 

Trace analysis [1] (i.e. the analysis of analytes  in concentration low enough to cause difficulty, 

generally under 1 ppm) albeit very challenging, in the last years has shown a tremendous 

growth, prompted by the urgent need of many International Organizations (US Environmental 

Protection Agency EPA, U.S. Food and Drug Administration FDA, European Food Safety 

Authority EFSA, World Health Organization WHO) looking for new analytical techniques for the 

detection of different molecules in different and increasingly more complex matrixes. Trace 

analysis is therefore a basic and fundamental technique in many scientific and technological 

areas, from the environmental monitoring, the food safety and the clinical diagnosis to the 

national security and the forensic investigation. 

The determination of trace analytes requires reliable and robust analytical methods 

characterized by high level of sensitivity, precision, accuracy, selectivity and specificity. Among 

different analytical techniques suitable for this purpose, such as mass spectrometry, which is 

characterized by high accuracy and sensitivity and low limits of detection, electroanalytical 

techniques and particularly those based on pulsed voltammetry, seem to be a promising 

independent alternative in terms of very high precision, accuracy and sensitivity, simplicity of 

use, portability, easy automation and possibility of on-line and on-site monitoring without 

sample pre-treatments and low costs. These methods are no more confined to the detection of 

inorganic species and have been already and successfully employed for the determination of 

organic compounds and environmental carcinogens [2, 3, 4], as the Jirí Barek UNESCO 
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Laboratory of Environmental Electrochemistry and the Trace Element Satellite Centre haves 

amply demonstrated in the last decades. 

In this context, two quite recent technological developments have enhanced the chances of 

progress and growth of electroanalitycal methodologies for trace analysis: 

 the screen-printing microfabrication technology [5, 6], which offers the possibility of large-

scale mass production of extremely inexpensive, disposable and reproducible 

electrochemical sensors increasing the potentialities of the voltammetric techniques, since 

it allows to work with small amounts of samples, considerably reducing the analytical costs 

and facilitating on-line and on-site monitoring;  

 the use of nanosized and/or nanostructured materials sometimes combined with the use 

of polymeric materials for the modification of electrodes, with the aim of increasing the 

affinity for the analyte, increasing sensitivity, lowering the limits of detection and 

minimizing or completely avoiding interferences. 

This PhD thesis has sought to provide a contribution in this framework, trying to enhance the 

technological potentialities of electroanalytical methodologies in the field of inorganic and 

organic trace analysis, with the use of screen-printed electrodes and electrodes modified by 

nanomaterials and/or polymeric membranes.  

SCREEN-PRINTED electrodes 

Different types of screen-printed electrodes (SPEs) were employed for the determination of 

organic and inorganic carcinogenic hazardous compounds, included in the Priority Pollutants 
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List of many countries. In particular, the following analytes have been the subject of the study: 

furan, benzidines, chromium and arsenic.  

Furan, a volatile oxygen-containing heterocyclic compound, was classified as a possible human 

carcinogen by the International Agency for Research on Cancer (IARC) in 1995, with the liver as 

primary target organ. It is unintentionally produced, together with dioxin, during most forms of 

combustion. For this reason, it falls into the Organic Persistent Pollutants list of Stockholm 

Convention. It is also formed during the thermal degradation of carbohydrates in foods [7], 

such as jarred baby foods, coffee, canned meat and toasted bread. The standard analytical 

procedure [8] for the detection of furan is based on GC/MS, which reaches the very low 

detection limits required by the analytical problem, but it is affected by results overestimation 

since furan can be produced during the heating required by the technique.  

A new electroanalytical method based on Square Wave Voltammetry (frequency of 100-200 Hz) 

at Pt disk and Pt-SPE covered by Nafion was studied. Furan shows an oxidation peak in 

acetonitrile at 1.85-1.95 V (SCE) for Pt disk and 1.95 V (SCE) for Pt-SPE. Both electrodes display a 

good linear correlation in the dynamic range between 1.02 ppm and 68.07 ppm. Pt disk 

presents a problem of saturation for higher concentration. The detection limits are quite good 

(0.11 ppm for Pt disk and 0.52 ppm for Pt-SPE), while apparent recovery factors (in both cases > 

95%) are better than those determined for the conventional GC/MS method. The applicability 

of the new method in a real matrix was tested using Pt-SPE covered with Nafion membrane for 

experiments in coffee, spiked with known quantities of furan. Good calibration plot (R2 = 0.997) 

and apparent recovery factor (102 %) were obtained also in this case.  
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Figure 1.1. Square Wave Voltammetries of furan in acetonitrile with TBAP 0.1 M on Pt-SPE (a) and linear 
relationship between peak height and furan concentration (b). 
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Carbon-based Screen-Printed Electrodes (C-SPE) in comparison with Glassy Carbon electrodes. 

Cyclic voltammograms of these molecules show that the reaction is a bielectronic chemical and 

electrochemical reversible one for benzidine, o-tolidine and tetrametylbenzidine, while it is 

monoelectronic and irreversible for o-toluidine. The four molecules display different peak 

potential position, due to the presence or absence of electrodonating groups, 

tetrametylbenzidine characterized by the lower peak potential, followed by o-tolidine, 

benzidine and finally o-toluidine. In the case of the detection with DPV and C-SPE, all molecules 

show excellent linearity in the linear dynamic range 2 ppb-18 ppb (R2 > 0.9), high accuracy (with 

apparent recovery factors very close to 100%) and very low detection limits (0.33 ppb for 

benzidine, 1.45 ppb for tetrametylbenzidine, 0.43 ppb for o-tolidine and 123 ppb for o-

toluidine). Since the innovative technique seems to be very reliable and each molecule presents 

a different peak position, an interesting research development was the study of the behaviour 

of the mixture of the four molecules. Cyclic voltammograms show that they can be revealed at 

the same time and that their response remains linear and with a good correlation (R2 > 0.99), 

also when they are present contemporaneously. Preliminary results using DPV display four 

observable peaks.  

 

Figure 1.2. Cyclic (a) and differential pulse (b) voltammograms of all benzidines. 
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Chromium, particularly its hexavalent species, is a carcinogenic and mutagenic pollutant and it 

is located in the Priority Pollutants List of many countries. It is employed in several industrial 

processes (metal plating, leather tanning, paint making) and it can be especially found in waste 

waters. Therefore, in recent years, many efforts have been made to develop efficient and 

accurate techniques for its determination [13]. For this purpose mercury electrodes are widely 

used in association with voltammetric stripping techniques preceded by cathodic or anodic 

preconcentration steps, especially in the presence of chromium complexing agents. Nowadays, 

mercury tends to be replaced by other less toxic materials [14]. A promising alternative seems 

to be the environmentally friendly bismuth electrode [15, 16], since it presents an 

electrochemical behaviour very similar to mercury, in particular in the wide cathodic potential 

window.  

Commercially available bismuth Screen-Printed Electrodes (Bi-SPE) were employed using 

Square Wave Voltammetry (SWV) to develop a new technique for the detection of Cr(VI), using 

pyrocatechol violet (PCV) as Cr(VI) complexing agent and electroactive probe and HEDTA as 

Cr(III) complexing agent to remove possible Cr(III) interferences. This innovative method was 

compared with the traditional procedure based on Differential Pulse Adsorptive Stripping 

Voltammetry (DPAdSV) at Hanging-Mercury Drop Electrode (HMDE). Many differences can be 

envisaged: first of all, PCV displays at Bi-SPE an intensive reduction peak at -1.18 V, which 

increases for consecutive additions of Cr(VI), in contrast with the decrease observed in the case 

of HMDE in the same conditions. This behaviour can be explained assuming that the complex 

Cr(VI)-PCV is electroactive at Bi-SPE and non-electroactive at HMDE. Secondly, PCV at Bi-SPE 

can be revealed without stripping, which is instead a necessary step required when adopting 
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HMDE. The new method shows a very good linearity range (R2 = 0.996) and accuracy (Apparent 

Recovery Factors around 102%) and its limit of detection is an order of magnitude lower than 

that using HMDE (0.28 ppb against 2.8 ppb). The applicability of the new optimized procedure 

was tested analyzing samples coming from Cr(VI) photocatalysis in liquid phase to follow the 

photoreduction of Cr(VI) from a concentration of 2.8 ppm to the complete disappearance. The 

analysis was performed with an analyte addition method (three addition of the sample) after a 

calibration plot built with 8 standard additions. This method allows distinguishing the 

performances of different types of photocatalysts. The same test was also performed at HMDE 

for comparison: the new technique displays better results since it is less affected by 

interferences of the complex matrix.  

  

Figure 1.3. SW voltammograms at Bi-SPE for consecutive additions of Cr(VI) solution. Inset: calibration plots with 
(open circles) and without (full circles) HEDTA. Cr(VI) disappearance in T_400 photocatalytic test monitored by 
HDME and Bi-SPE. 
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fungicides, insecticides, pesticides. Chronic arsenic exposure can cause a lot of health diseases, 

such as skin lesions, cancers, cardio-vascular system problems. For these reasons, many 

methods characterized by pros and cons are present in the Literature for As detection [17]. 

In this work, Gold-based screen-printed electrodes (Au-SPE) were used for the determination of 

As by Linear Sweep Voltammetry with a preconcentration step and a cleaning procedure. Citric 

acid was employed as supporting electrolyte instead of hydrochloric acid, which caused 

electrode damaging, and good calibration plots were obtained in the range 4.9-59 ppb, in 

particular for gold nanoparticles-based screen-printed electrodes. The optimized method was 

applied to As detection during its photocatalytic oxidation by titanium dioxide, allowing to 

discriminate among different types of photocatalysts. 

 

Figure 1.4. Calibration plots of Au-SPE and AuNP-SPE obtained for consecutive additions of As(III) solution. 
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nanomaterials appeared to be very promising for application in the field of sensors and 

biosensors. Among different types of nanomaterials, carbon nanotubes, metal and 

semiconductive nanoparticles, show very interesting properties and features for 

electrochemical performances and were chosen for the modification of electrodes to be used in 

selected trace electroanalytical applications. 

All the new modified electrodes were firstly characterized and studied by Cyclic Voltammetry 

(CV) and Electrochemical Impedance Spectroscopy (EIS), in the presence or in the absence of a 

model probe molecule, in order to obtain important information about electrochemical 

properties and the behaviour of the electrode in solution and with the redox probe. After the 

characterization study, some electrodes were used as sensors for the determination of relevant 

compounds or pollutants at trace level. 

Carbon nanotubes (CNT) [18, 19] are extensively employed in the electroanalytical field, due to 

their large surface area, electrocatalytic activity, fast electron transfer rate and easy 

functionalization. Since the procedure of purification with acids plays an important role for 

electrode performance, initially, a detailed study on different purification procedures was 

performed. 24 h sulfonitric mixture treatment appeared to be the best procedure for our CNTs 

yielding to materials characterized by an high metal nanoparticles removal, high amount of 

covalent acidity (responsible of CNTs activity), high surface area and mesoporosity. Moreover, 

the final removal of amorphous carbon by NaOH treatment highly improved the reversibility of 

the final electrodic device and favoured the diffusion mechanism of the process. The best type 
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of purified and activated CNTs was employed for applications in electroanalysis, in particular in 

the determination of some previously studied pollutants: o-toluidine, benzidine and furan.  

 

Figure 1.5. Cyclic voltammograms of CNTs after different purification methods. 
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recovery factors and repeatability in comparison with the previously optimized technique based 

on C-SPE.  

In the case of furan, preliminary promising results were obtained with deposition of Pt 

nanoparticles on carbon nanotubes by cyclic voltammetry, but optimization of nanoparticles 

deposition procedure and application of other voltammetric techniques are still needed and are 

currently under investigation. 

Metal and semiconductor nanoparticles [20] present unique peculiar properties, dependent on 

their size and shape, very different from bulk materials, such as high active surface area, high 

surface-to-volume ratio, selectivity, easy functionalization and electrocatalysis, and for these 

reasons they are extensively employed in electroanalysis. In this work, gold, silver and titanium 

dioxide nanoparticles were studied and characterized.  

Gold nanoparticles, synthesized by colloidal procedure with or without a protective polymer on 

carbon nanotubes as support, showed in comparison with CNTs, an increase in the peak current 

and capacitance, followed by the decrease of charge transfer resistance. The polymer, if the 

content of gold is low, is detrimental for the electrochemical behaviour, probably because it 

isolates too much the gold nanoparticles. The best results were obtained with 1% Au or 5% Au-

Polymer. The optimized electrode was tested for the determination of glycerol obtaining really 

promising preliminary results using cyclic voltammetry.  
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Figure 1.6. Cyclic voltammograms of Au (left) and Ag (right) nanoparticles and carbon nanotubes modified 
electrodes. 
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Figure 1.7. Cyclic voltammograms of silver nanoparticles (left) and titania nanorods (right) modified electrodes. 
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sensors [21, 22, 23]. Indeed, they can act as electron donors/acceptors, adding to the high 

conductivity, an electrocatalytic effect and a possibility of redox-mediation, showing both 

electronic and ionic conductivity in contact with the electrolyte solution.  

Brilliant Green (BG), belonging to the triphenylmethane family, was chosen as electroactive 

polymer for the production of modified electrodes, in combination with CNTs and PEDOT [24], 

another non-redox electron conducting polymer. CNTs in combination with PEDOT gave the 

best electrochemical performance in terms of capacitance and low resistance, but when the 

determination of hydrogen peroxide was considered, electrode with CNTs and polyBG gave the 

best results for the presence of the redox centre (LoD around 30 ppb). This electrode was also 

tested as biosensor for glucose and ethanol, immobilizing on the electrode glucose oxidase 

(GOx) and alcohol oxidase (AlOx), respectively and showing very good results in comparison 

with the biosensors of the Literature, with limit of detections of 2 ppm for glucose and 1 ppm 

for ethanol. Moreover, the influence of oxygen was studied, obtaining better results in its 

presence for glucose detection and in its absence for ethanol determination, probably due to 

the aerobic or anaerobic character of the enzyme bacterium.  

 

Figure 1.8. Amperometric detection of hydrogen peroxide (left) and calibration plots obtained for glucose 
(centre) and ethanol (right) in different atmospheres. 
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Proton conducting polymers show a cation/proton conductivity along the polymer backbone 

thanks to the presence of carboxylated or sulfonated groups with a cationic counter ion, whose 

mobility can be increased by water swelling. For this peculiarity, they present low electrical 

resistance (obtained increasing ion exchange capacity and water content and decreasing 

membrane thickness), high permeoselectivity for anions and non-ionized molecules, good 

mechanical and chemical stability over long periods. Their properties depend on many factors, 

such as the chemical nature of the polymer backbone, the polymer molecular weight and 

molecular weight distribution, the nature of the solvent used for casting and the possible 

presence of residual solvent in the polymeric film.  

Poly(aryl ether sulfone) (PES) was studied as a new material for the production of modified 

electrodes in comparison with Nafion. For its characterization, different parameters have been 

studied: the quantity and the form of the polymer, its storage, its method of drying and the 

casting solvent. In particular, 1 % linear PES in the acidic form, dried at 25 °C in oven, dissolved 

in N-Methylpyrrolidone, showed the best performance, superior to Nafion. These polymers 

presented a very interesting behaviour, since without the redox probe, capacitance was 

comparable to glassy carbon, while when the redox probe was present, capacitance increased 

of two orders of magnitude and diffusion of the probe changed, probably due to variation of 

diffusion mechanism in the polymeric structure. 
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Figure 1.9. Cyclic voltammograms of linear 1 % PES in different solvents and comparison with Nafion and glassy 
carbon.  

Future developments will consider the applications of these new interesting systems for the 

detection of various important analytes or pollutants. Furthermore, new types of sensors and 

biosensors based on different types of the advanced materials studied and their combination 

will be considered. 

[1] D.T. Pierce, J.X. Zhao, Trace Analysis with Nanomaterials, Wiley-VCH, Weinheim (Germany), (2010)                                                  
[2] J. Zima, I. Svancara, J. Barek, K. Vytras, Crit. Rev. Anal. Chem. 2009, 39, 204-227                                                                                      
[3] J. Barek, K. Peckova, V. Vyskocil, Current Anal. Chem. 2008, 4, 242-249                                                                                                      
[4] J. Barek, J. Cvacka, A. Muck, V. Quaiserovà, J. Zima, Fres. J. Anal. Chem. 2001, 369, 556-562                                                                 
[5] M. Alvarez-Icaza, U. Bilitewski, Anal. Chem. 1993, 65, 525A-533A                                                                                                               
[6] J. Wang, B. Tian, V.B. Nascimento, L. 2000, 12, 1293-129                                                                                                                                             
[7] J.A. Maga, CRC Crit. Rev. Food Sci. and Nutrition 1979, 11, 355-400                                                                                                            
[8] J. Vranová, Z. Ciesarová, Czech J. Food Sci. 2009, 27, 1-10                                                                                                                             
[9] K.-T. Chung, S.-C. Chen, L. D. Claxton, Mutation Research 2006, 612, 58–76                                                                                           
[10] T.J. Haley, Clin. Toxicol. 1975, 8, 13–42                                                                                                                                                         
[11] J. Barek, A. Berka, Z. Tocksteinov, J. Zima, Talanta 1986, 33, 811-815                                                                                                     
[12] J. Barek, J. Cvacka, A. Muck, V. Quaiserovà, J. Zima, Electroanalysis 2001, 13, 799-803                                                                      
[13] V. Gomez, M.P. Callao, TrAC, Trends Anal. Chem. 2006, 25, 1006–1015                                                                                                     
[14] Directive 2008/51/EC                                                                                                                                                                                            
[15] I. Svancara, C. Prior, S.B. Hocévar, J. Wang, Electroanalysis  2010, 22, 1405–1420                                                                                 
[16] J. Barek, K. Peckova, V. Vyskocil, Curr. Anal. Chem. 2008, 42, 42–249                                                                                                       
[17] V.K. Sharma, M. Sohn, Environ. Int. 2009, 35, 743                                                                                                                                      
[18] C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, M. Nath, ChemPhysChem, 2001, 2, 78-105                                                                                                                                                         
[19] J. J. Gooding, Electrochimica Acta, 2005, 50, 3049-3060                                                                                                                           
[20] L. Rassaei, M. Amiri, C.M. Cirtiu, M. Sillanpaa, F. Marken, M. Sillanpaa, Trends in Analytical Chemistry, 2011, 30 (11), 1705-
1715   [21] M.E. Ghica, C.M.A. Brett, Electroanalysis, 2006, 18, No. 8, 748-756                                                                                                                   
[22] M.M. Barsan, E.M. Pinto, C.M.A. Brett, Electrochimica Acta, 2008, 53, 3973-3982                                                                                                                                                                                          
[23] M.E. Ghica, C.M.A. Brett, Journal of Electroanalytical Chemistry, 2009, 629, 35-42                                                                             
[24] X. Crispin, F.L.E. Jakobsson, A. Crispin, P.C.M. Grim, P. Andersson, A. Volodin, C. Van Haesendonck, M. Van der Auweraer, 
W.R. Salaneck, M. Berggren, Chem. Mater., 2006, 18, 4353-4360 

-0.6 -0.4 -0.2 0.0 0.2

-4

-2

0

2

4

 

 

j 
/ 
m

A
 c

m
-2

E vs.SCE / V

 Glassy Carbon

 Nafion

 NMP

 DMSO

 DMF



22 
 

2. Introduction

2.1. Trace analysis 

Trace analysis (Pierce & Zhao, 2010) is the analysis of analytes in concentration low enough to 

cause difficulty, generally few ppm or even ppb. Trace analysis is a fundamental research field 

with important fallouts, from the environmental monitoring and national security, to food 

safety, clinical diagnosis and forensic investigation. In particular, it finds applications galore in 

water quality control for the determination of water pollutants, such as toxic metals, 

carcinogenic organic compounds, explosives, synthetic chemicals, pharmaceuticals, illicit drugs, 

cosmetics, personal care products and food supplements.     

In this context, sensitive and robust analytical methodologies are essential, requiring the 

fundamental properties of high sensitivity, low detection limits, wide linear dynamic range, high 

selectivity, short response time, good reversibility and long-term stability. These characteristics 

can be obtained by using chemical sensors (Bănică, 2012), which are self-contained devices 

capable of providing real-time analytical information about a test sample containing the target 

species, the analytes. The chemical sensor integrates in the same device two important 

functions: recognition and transduction. The first function allows the analyte interacting in a 

more or less selective way with the recognition or sensing element; the second one consists on 

the sensor conversion of changes in physical or chemical properties of the sensing element into 

a measurable physical quantity. The first chemical sensor was the glass electrode for pH 

determination. A particular class of very selective and specific chemical sensors, which are 
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growing in importance, are the biosensors, characterized by a recognition system based on a 

biochemical/biological mechanisms.  

Trace analysis based on the use of sensors and biosensors, has shown, in the last years, a 

tremendous growth, particularly prompted by the urgent need of many International 

Organizations (US Environmental Protection Agency EPA, U.S. Food and Drug Administration 

FDA, European Food Safety Authority EFSA, World Health Organization WHO) looking for new 

analytical techniques for the detection of different molecules in different and increasingly more 

complex matrixes and thanks to the development of new cross-disciplinary ideas among 

different fields, supported by the extensive research of novel high-tech materials and new 

methodologies.  

2.2. Electroanalytical techniques 

In the field of sensors and biosensors for trace analysis, electrochemical methodologies and 

techniques are really fundamental (Bănică, 2012). Electroanalysis (Lubert & Kalcher, 2010) is 

based on the measurement of electrical quantities, such as current, potential or charge, and 

allows the determination of different species in solution, expecially aqueous, both 

quantitatively and qualitatively.  

Electroanalytical techniques (Bard & Faulkner, 2001; Bard, 2007; C. M. A. Brett & Oliveira Brett, 

1993) can be divided into three classes, considering the measured electrical quantity: 

volt/amperometry, potentiometry and conductimetry (C. M. a. Brett, 2001; Hanrahan, Patil, & 

Wang, 2004). The first class is based on an applied potential between a reference and a working 

electrode, causing the oxidation or reduction of an electroactive species. The applied potential 
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is the driving force for the electron transfer reaction and the resulting current is the direct 

measure of the rate of electron transfer reaction, proportional to the target analyte 

concentration. The second class converts an ion-recognition event into a potential signal, 

calculated as the difference between the ion-selective electrode and the reference electrode, 

which is a function of species activity. The third class permits the determination of charge 

concentration through measurement of solution resistance. Clearly, all the three types of 

electroanalytical techniques can be influenced by the nature of the analyte, the type of 

electrode and the choice of the electrolyte.  

For application in trace analysis, amperometry and voltammetry are the most employed 

techniques (Pierce & Zhao, 2010), since the possibility to choose and tune the applied potential 

together with the chance to vary the electrode material allows high selectivity, specificity and 

even speciation. Moreover, electrochemical instrumentation permits not only high sensitivity 

and low detection limits, but also the possibilities of real time data treatment, portability and 

sensor miniaturization (C. M. a. Brett, 2001). Furthermore, electrodes can show all the 

properties of an ideal sensor: high specificity for the target analyte, sensitivity to changes in 

target species concentration, fast response time, extended lifetime, small size with the 

possibility of low cost manufacture (Liza Rassaei et al., 2011). For all these reasons, 

electrochemical techniques can be used as alternative methodologies, possibly in combination 

with other detection methods (chromatography, luminescence, spectroscopy), showing low 

cost, easiness of use, accuracy and reliability. Furthermore, these techniques are no more 

confined to the detection of inorganic species and have been already and successfully 

employed for the determination of organic compounds and environmental carcinogens, as the 
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Jirí Barek UNESCO Laboratory of Environmental Electrochemistry and the Trace Element 

Satellite Centre has widely demonstrated in the last decades (Jiri Barek, Peckova, & Vyskocil, 

2008; Jiří Zima, Švancara, Barek, & Vytřas, 2009). 

2.3. Aim of the thesis 

In this involving and challenging context, this PhD thesis has sought to provide a contribution 

for both the above correlated fields, trying to enhance the technological potentialities of 

electroanalytical methodologies for inorganic and organic trace analysis with the use of two 

quite recent technological developments, which showed the chances of progress and growth in 

this area:  

 the screen-printing microfabrication technology, which offers the possibility of large-scale 

mass production of extremely inexpensive, disposable and reproducible electrochemical 

sensors. These devices increase the potentialities of the voltammetric techniques, since 

they allow to work with small amounts of samples, considerably reducing the analytical 

costs and facilitating on-line and on-site monitoring;  

 the use of nanosized and/or nanostructured materials, possibly combined with the use of 

polymeric membranes for the modification of electrodes, with the aim of increasing the 

affinity for the analyte, improving sensitivity, lowering the limits of detection and 

minimizing or completely avoiding interferences. 
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3. Screen-Printed-Electrodes 

3.1. Introduction 

In the very last years, recent improvements in electroanalytical chemistry have been brought by 

the screen-printing microfabrication technology (Metters, Kadara, & Banks, 2011). This 

technique is based on the use of a screen, in particular a porous woven mesh, where a stencil is 

formed and a thixotropic fluid is forced on the mesh, which defines the shape and the size of 

the desired electrode. The thixotropic fluid is an ink with high viscosity and it is composed by 

graphite, carbon black, solvents and a polymeric binder. After this operation, the screen is 

pressed on the desired substrate, usually ceramic material, to obtain the desired device. The 

thickness of the layer can be modulated between 20 to 100 μm. This printing procedure has 

been commonly used for large-scale production of extremely inexpensive, disposable and yet 

highly reproducible electrochemical sensors, increasing the potentialities of the voltammetric 

methods (Joseph Wang, Tian, Nascimento, & Angnes, 1998).  

Screen-printed electrodes are complete electrochemical cells (Figure 3.1), since they are usually 

composed by three electrodes: a working electrode of the desired material, a pseudo-reference 

electrode, usually of silver, and a counter electrode, normally of carbon. SPEs can be designed 

in different ways and configurations, according to specific aims; for example with two working 

electrodes or as array of electrodes. 

These devices present several advantages with respect to conventional bulk electrodes: 

easiness of use, low cost, good precision and accuracy, high sensitivities and low detection 
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limits, portability, disposability, the possibility to work with small amounts of samples and the 

adaptability to specific target analytes (Metters et al., 2011). SPEs may also constitute an 

interesting, reliable and low-cost choice to be used as electrochemical detector for 

chromatography, particularly HPLC. 

They can also be modified with various types of compounds, such as nanomaterials, metal 

nanoparticles, mediators and metal oxide, like bismuth oxide, paving the way for interesting 

potential applications in clinical and environmental fields, in aqueous or non-aqueous solvents. 

SPEs find application in routine water quality tests, for the monitoring of pH, dissolved oxygen, 

nitrite and phosphate, in environmental pollutant analysis (M. Li, Li, Li, & Long, 2012) of organic 

compounds, such as phenols, pesticides, herbicides and polyaromatic hydrocarbons, and of 

heavy metals, such as Pb(II), Cd(II), Hg(II) and As(III), in the determination of gas pollutants (CO, 

NOx and VOCs) and in the medical field (Alvarez-lcaza & Bilitewski, 1993; Serena Laschi, Fránek, 

& Mascini, 2000), for the detection of bacteria, drugs and antibiotic residues. 

 

Figure 3.1. Screen-printed electrode scheme 

In this chapter, different types of commercially available screen-printed electrodes were 

studied to find new electroanalytical methodologies for the determination of various 

pollutants, organic and inorganic, in food matrix or water: 
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 Platinum-based SPEs for the determination of furan in water and coffee; 

 Carbon-based and Platinum-based SPEs for the determination of benzidine and its 

derivatives in water; 

 Bismuth oxide-based SPEs for the determination of Chromium (VI) in water; 

 Gold-based SPEs for the determination of Arsenic (III) in water.  



29 
 

3.2. Platinum-based electrodes: Furan determination 

3.2.1. Furan 

Furan (Figure 3.2) is a volatile oxygen eterocyclic compound which is unintentionally produced, 

together by dioxin, during different forms of combustion, such as municipal or medical wastes 

burning, backyard trash burning and industrial processes (Stockholm Convention on Organic 

Persistent Pollutants). It is also a trace contaminant in herbicides, in wood preservatives and in 

foods, where it is also responsible, together with its derivatives (furaldehyde, furfuryl alcohol), 

of their flavour. Furan is produced by commercial or domestic heat treatment, when thermal 

degradation of carbohydrates takes place, and for this reason it can be found in canned, jarred 

and roasted foods, like coffee or jarred baby foods. 

The International Agency for Research on Cancer (IARC, 1995) has classified furan as possible 

human carcinogen, with the liver as primary target organ, after oral application. For this reason, 

a limit of 1 × 10-3 mg/kg a day is defined as the Reference Dose for Chronic Oral Exposure stated 

by the United States Environmental Protection Agency (US EPA). Moreover, several reports on 

the occurrence of furan in food were published by many healthcare international agencies 

(European Food and Safety Authority, US Food and Drug Administration (US FDA), Swiss Federal 

Office of Public Health), regarding also the available analytical methodologies for its 

determination. The scarce available data about its presence in food and about its reliable risk 

assessment has urged the need of new improved analytical methodologies. 

Many analytical methods have been tested for furan determination in food and they can be 

resumed in two different approaches, the first based on head-space-GC/MS and the second on 
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solid-phase microextraction-GC/MS (Altaki, Santos, & Galceran, 2007; Goldmann, Périsset, 

Scanlan, & Stadler, 2005; La Pera et al., 2009). These methods are rapid and highly sensitive, 

but they require high-cost instrumentation and qualified personnel. Another problem is the 

possible generation of furan during analysis, due to the heating of the foodstuff required by the 

methodology, which can affect the final results. 

In the Literature, only few examples on the electrochemical activity of furan are reported. 

Furan has been characterized in acetonitrile by electrochemical methods, particularly because 

of its use as starting monomer for the electrochemical polymerization of conducting films 

(Demirboğa & Önal, 1999). The determination of furanics (furaldehyde and furfuryl alcohol) in 

transformer oils with amperometric techniques is reported in two cases, but in this case furan 

was found to be non-electroactive (Bosworth, Setford, Heywood, & Saini, 2001).  

In this context, electroanalytical techniques for the detection of furan could offer a good 

alternative to other analytical methods and, in particular, the use of screen-printed electrodes 

could allow a rapid, portable and low cost determination.  

 

Figure 3.2. Chemical structure of furan 
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3.2.2. Materials and methods 

Acetonitrile was chosen as solvent and 0.1 M tetrabuthylammonium perchlorate (TBAP) as 

supporting electrolyte, referring to (Demirboğa & Önal, 1999; Groenendaal, Zotti, Aubert, 

Waybright, & Reynolds, 2003).  

Among different working materials tested, only Pt disk electrode presented an electrochemical 

response in acetonitrile, and was chosen to develop the new electroanalytical methodology for 

the determination of furan. 

Two types of Pt-based electrodes were used: 

 Pt disk electrode 

 Platinum Screen-Printed Electrode (Pt-SPE) with or without Nafion membrane, used to 

prevent electrode fouling. 

The voltammetric technique used was Square Wave Voltammetry (SWV). 

3.2.3. Results and Discussion 

Furan at Pt electrode shows a chemical and electrochemical irreversible oxidation peak at 1.945 

V (SCE). Square Wave Voltammetry was chosen as electroanalytical technique among the other 

voltammetric or amperometric tested, because it provided the best performances: high 

intensity of the signal and high sensitivity. 

SWV parameters were optimized, in particular the frequency value, that strongly affects the 

voltammetric response. The peak height and consequently the sensitivity increases by 
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increasing the frequency, but it is accompanied by an enhancement of the background noise. 

Different tests in the range 10-500 Hz were performed, concluding that the frequencies of 100 

and 200 Hz appear to be the best choice. The optimized parameters are presented in Table 3.1. 

Table 3.1. Square Wave Voltammetric parameters 

Parameter Value 

Purging time (s) 60 

Equilibration time (s) 10 

Frequency (Hz) 100-200 

Start potential (V) 1.50 

End potential (V) 2.40 

Step potential (V) 0.005 

Amplitude (V) 0.05 

 

Calibration plots were obtained under the optimized conditions with consecutive additions of 

0.01 M furan. The peak at 1.945 V (SCE) increases linearly with furan concentration for both 

electrodes in the range 1-70 ppm, as shown in Figure 3.3 and Figure 3.4. Calibration plots show 

good linear correlation, better for peak height than for peak area. Saturation was reached at 70 

ppm in the case of Pt bulk electrode. 
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Figure 3.3. Square Wave Voltammetries of furan in acetonitrile with TBAP 0.1 M on Pt disk electrode (a) and 
linear relationship between peak height and furan concentration (b). 

 

Figure 3.4. Square Wave Voltammetries of furan in acetonitrile with TBAP 0.1 M on Pt-SPE (a) and linear 
relationship between peak height and furan concentration (b). 

Table 3.2-3.3-3.4-3.5 report the analytical parameters of the tested methodologies. In this 

context, the cross-validated correlation coefficients R2
CV (Currie, 1995) are considered to 

evaluate the effective predictive power of the proposed method in comparison with the fitting 

power described by R2. Both R2 present values very close to 1. LoD and LoQ are good and better 

for Pt disk. Apparent recovery factors were calculated measuring three different concentrations 

and present values close to 100 %. Repeatability was also tested, reaching quite good values of 

1.6 1.8 2.0 2.2 2.4
0.00

0.03

0.06

0.09

0.12

0.15

 

 




E vs. SCE / V 

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

 

 




c
furan

 / ppm

1.7 1.8 1.9 2.0 2.1
0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

E vs. SCE / V 




 

 

 

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
0.0000

0.0005

0.0010

0.0015

0.0020

 

 




c
furan

 / ppm

a) b) 

a) b) 



34 
 

RSD %, particularly if compared with the results obtained with other non-electroanalytical 

methodologies (Altaki et al., 2007; Goldmann et al., 2005; La Pera et al., 2009).  

The use of Nafion (Gouveia-caridade, Brett, & Liess, 2006) membrane to cover the electrodes 

had no-influence on the analytical parameters, as indicated by the very similar values, but it can 

prevent electrode fouling (Demirboğa & Önal, 1999).  

Table 3.2. Analytical features of the proposed new method, using a Pt disk electrode, in the lower concentration 
range at a 100 Hz SW frequency. 

cfuran / 
ppm 

Peak 
LoD / 
ppm 

LoQ / 
ppm 

R2 R2
cv 

S / (A mol-1 
dm3) 

RSD
% 

Apparent
Recovery 
Factor % 

2.05 
Height 

0.09 1.37 0.997 0.994 0.138 ± 0.003 4.4 102.1 
4.08       101.2 
5.43       99.1 

2.05 
Area 

0.27 1.37 0.991 0.980 0.029 ± 0.001 5.1 102.3 
4.08       101.7 
5.43       97.5 

 

Table 3.3. Analytical features of the method, using a Pt disk electrode, in the higher concentration range at a 100 
Hz SW frequency. 

cfuran / 
ppm 

Peak R2 R2
cv 

S / (A mol-1 
dm3) 

RSD% 
Apparent Recovery 

Factor % 

20.67 
Height 

0.997 0.993 0.074 ± 0.002 1.3 99.5 
48.04    3.2 101.8 
61.64    - 99.2 

20.67 
Area 

0.995 0.992 0.0165 ± 0.0001 3.7 90.0 
48.04    2.6 103.4 
61.64    - 104.8 
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Table 3.4. Analytical features of the method, using peak heights of a Pt-SPE with or without Nafion, in the lower 
concentration range at two different SW frequencies. 

cfuran / 
ppm 

WE 
Frequency 

/ Hz 
LoD / 
ppm 

LoQ / 
ppm 

R2 R2
cv 

S / (A mol-1 
dm3) 

RSD
% 

Apparent
Recovery 
Factor % 

1.24 
SPE 

100 0.95 1.06 0.992 0.987 0.064 ± 0.002 10.7 100.8 
200 0.94 1.06 0.995 0.991 0.070 ± 0.002 5.8 101.3 

SPE + 
Nafion 

100 1.01 1.06 0.986 0.977 0.039 ± 0.002 9.0 102.5 
200 1.00 1.24 0.979 0.963 0.041 ± 0.002 5.9 105.3 

1.94 
SPE 

100 0.78 1.41 0.987 0.972 0.039 ± 0.002 2.2 101.5 
200 0.54 1.41 0.965 0.931 0.043 ± 0.003 4.5 89.5 

SPE + 
Nafion 

100 1.17 1.24 0.991 0.985 0.095 ± 0.003 5.6 101.5 
200 1.24 1.24 0.969 0.950 0.096 ± 0.006 4.8 109.0 

2.47 
SPE 

100 1.45 1.59 0.974 0.960 0.085 ± 0.006 9.5 112.8 
200 1.54 1.59 0.975 0.944 0.099 ± 0.007 2.2 124.8 

SPE + 
Nafion 

100 1.24 1.41 0.982 0.974 0.090 ± 0.005 7.1 97.5 
200 1.28 1.41 0.978 0.966 0.093 ± 0.006 5.3 104.6 

 

Table 3.5. Analytical features of the method, using peak areas of a Pt-SPE with or without Nafion, in the lower 
concentration range at two different SW frequencies. 

cfuran / 
ppm 

WE 
Frequency 

/ Hz 
LoD / 
ppm 

LoQ / 
ppm 

R2 R2
cv 

S / (A mol-1 
dm3) 

RSD
% 

Apparent
Recovery 
Factor % 

1.24 
SPE 

100 1.01 1.06 0.982 0.965 0.0109 ± 0.0005 11.8 97.9 
200 1.02 1.06 0.989 0.983 0.0122 ± 0.0004 5.2 99.5 

SPE + 
Nafion 

100 1.10 1.06 0.980 0.964 0.0065 ± 0.0003 17.5 104.5 
200 1.09 1.24 0.979 0.964 0.0062 ± 0.0003 15.0 108.1 

1.94 
SPE 

100 0.52 1.41 0.975 0.951 0.0045 ± 0.0003 2.5 101.0 
200 0.78 1.41 0.972 0.944 0.0070 ± 0.0005 9.9 94.3 

SPE + 
Nafion 

100 1.23 1.24 0.986 0.971 0.0173 ± 0.0008 7.0 99.5 
200 1.32 1.24 0.969 0.952 0.017 ± 0.001 6.7 106.8 

2.47 
SPE 

100 1.47 1.59 0.931 0.884 0.014 ± 0.002 12.0 116.1 
200 1.64 1.59 0.983 0.962 0.016 ± 0.001 3.7 133.2 

SPE + 
Nafion 

100 1.28 1.41 0.977 0.967 0.0148 ± 0.0009 8.5 100.7 
200 1.31 1.41 0.975 0.961 0.015 ± 0.001 7.4 108.0 

 

The new method for the detection of furan was applied to a complex matrix to verify the 

efficiency of the electroanalytical procedure in a real case. Coffee was chosen as matrix, since 
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furan can be present in this beverage. Coffee samples, obtained by capsules with the following 

composition: 40 % Arabic Brazilian and 60 % Robusta Asian ground coffee, were spiked with 

0.01 M furan. Pt-SPEs covered with 0.01 % Nafion were used as electroanalytical cells and 

calibration plots were carried out under the same conditions of the previous experiments, with 

addition of 0.01 M furan in acetonitrile. Using the analyte addition method (Figure 3.5a), after 

the calibration plot, an apparent recovery factor of 106 % was obtained. Moreover, a 

calibration plot (Figure 3.5b) was obtained for consecutive additions of coffee spiked with 

furan, showing a very good linear correlation. 

 

Figure 3.5. Analyte addition technique applied to a coffee sample 0.01 M in furan (a) and calibration plot 
obtained with subsequent additions of coffee spiked with furan 0.01 M (b).  

3.2.4. Conclusions 

A new electroanalytical methodology based on Pt disk electrode and Pt Screen Printed 

Electrode was optimized for the determination of furan by using Square Wave Voltammetry. 

Peak height and peak area are proportional to furan concentration in the dynamic linearity 

range 1-70 ppm, with limits of detection of 0.27 ppm and 0.536 ppm for Pt disk and Pt-SPE, 

respectively. The new method offers best RSD % values (around 5 % and in general lower than 
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10 %), and in particular best apparent recovery factors (very close to 100 %), in comparison 

with the Literature (RSD = 5-16 % and RF = 87-102 %) ones (Goldmann et al., 2005; La Pera et 

al., 2009). No heating of the sample is contemplated during the procedure, avoiding the 

possible production of furan as in the case of chromatographic methods reported in the 

Literature. 

Moreover, the use of screen-printed electrodes offers the advantages of simplicity and 

disposability, without a loss in precision and accuracy. The coverage of a thick layer of Nafion 

membrane also allows prevention of fouling and damaging of the electrodes. 

Finally, the application of the electroanalytical procedure to a complex matrix (coffee) appears 

really promising, considering the possibility of using it as detection method after a 

chromatographic separation. 

Future developments will concern the use of modified electrodes with nanomaterials to 

decrease the limits of detection, which are still too high, and the application of the method for 

HPLC detection. 
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3.3. Carbon-based and Platinum-based electrodes: benzidines determination 

3.3.1. Benzidine and its derivatives 

Benzidine, called also Fast Corinth Blue B, is an odourless, white or slightly reddish solid organic 

compound which evaporates slowly from water or soil. This compound is polar and can be 

protonated in acidic media, allowing its transport and dispersion in the aquatic environment. 

Benzidine and its derivatives (Figure 3.6) are employed as reagents for the detection of blood, 

as rubber compounding agents, as stain in microscopy, in security printing and in lignifications 

measurement, as laboratory agents for detection of hydrogen cyanide and sulphate or for the 

quantitative determination of nicotine, as spray reagents for sugars or even as electrochemical 

substrates for immunoassays (Volpe, Draisci, Palleschi, & Compagnone, 1998). The main use is 

as intermediate in the synthesis of azo-dyes (Chung, Chen, & Claxton, 2006), by coupling 

benzidine with phenols and amines. For this use, benzidine-based compounds have application 

in textile, printing, leather, paper making, drug and food industries and constitute the 60-70 % 

of all produced dyestuffs (Yiǧitoǧlu & Temoçin, 2010). Considering their use, benzidines can be 

found in workplaces,  in the effluents and wastewaters (Yiǧitoǧlu & Temoçin, 2010). 

 

Figure 3.6. Chemical structures of benzidine, o-tolidine, o-toluidine and tetramethylbenzidine. 

Benzidine was identified since 1975 (Makena & Chung, 2007) as carcinogenic agent for human 

urinary bladder, because human enzymes can oxidate it, allowing its binding with DNA, and its 
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presence together with its derivatives causes serious health problems. Intestinal and 

environmental microorganisms are able to reduce benzidine-based azo-dyes to benzidine and, 

for this reason, their production and use were forbidden in many countries since 1970s (Chung 

et al., 2006; Golka, Kopps, & Myslak, 2004; Makena & Chung, 2007). Nevertheless, the problem 

of benzidine pollution remains serious and current, since these types of azo-dyes are still 

employed in many research laboratories and industries of emerging countries, as demonstrated 

by very recent Literature. Today, the potential risk for exposure to azo-dyes and benzidine is 

evident and its prevention is very important (Harden, Donaldson, & Nyman, 2005; Yiǧitoǧlu & 

Temoçin, 2010; Yilmaz, Memon, & Yilmaz, 2010). 

In this context, benzidine was added to the list of hazardous compounds (Priority Pollutants), 

drawn up by the Environmental Protection Agency of the United States (US EPA) and by the 

European Union 2006/11/CE Directive, and its carcinogenicity was again considered during the 

meeting of the International Agency for Research on Cancer (IARC) in 2008.  

After discovering the toxicity of benzidine, also its derivatives, particularly o-toluidine, o-

tolidine and tetramethylbenzidine have attracted attention. o-toluidine is a light yellow liquid 

slightly soluble in water. In 2009, o-toluidine was manufactured by 18 companies worldwide as 

intermediate in the production of azo-dyes (more than 90) in textile, printing, leather, paper 

making, drug and food industries, toy industry but also in the manufacture of rubber 

vulcanization accelerators, hypnotic and anesthetic pharmaceuticals, and pesticides. Moreover, 

o-toluidine is present in work environments, in tobacco smoke and in water and some foods: 

 fresh kale, celery and carrots, and in shelled peas, red cabbage, and black tea aroma. o-
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toluidine is highly toxic for human and it is classified by IARC as probable human carcinogen. o-

tolidine is a yellow-brown powder, slightly soluble in water and it is used as colorant or as 

intermediate in textile, paper, food, leather industries. It is used for the vulcanization of the 

rubber and for the production of synthetic polymers, but also in analytical, clinical and forensic 

chemistry as indicator. o-tolidine can be found in food as contaminant, deriving from packaging 

and plastic materials, and it is classified by IARC as possible carcinogen, with the same target 

organs of benzidine. Tetramethylibenzidine is a white powder, slightly soluble in water and it is 

extensively used as colorimetric indicator in many areas, such as the combur-test, the 

determination of some hormones and for glucose detection. It is not mutagenic, but it is really 

toxic and it is classified as suspected carcinogenic by IARC. 

Considering the hazardousness of benzidine and its derivatives, precise and accurate analytical 

techniques for their determination at trace level and for their regular monitoring in natural and 

wastewaters are needed. In the Literature, various methodologies are proposed, such as 

colorimetric, spectrophotometric and mainly chromatographic (LC, GC, HPLC, Supercritical 

Fluid) with different detectors (Bouzige, Legeay, Pichon, & Hennion, 1999; Hsu et al., 1996; S 

Lacorte, Gui ard,  raisse, & Barcelo, 2000;    lvia  acorte, Perrot, Fraisse, & Barceló, 1999; Patel 

& Agrawal, 2003; Riggin & Howard, 1979; Shin & Ahn, 2006; Zhu et al., 2002). Colorimetric and 

spectrophotometric methods show high detection limits and low selectivity in the presence of 

other aromatic amines, while chromatographic techniques, frequently associated with mass 

spectrometry or with amperometric detection on a glassy carbon electrode, are the most used 

techniques for their low detection limits, high accuracy and precision. Nevertheless, high 

equipment and running costs, necessity of qualified personnel, elaborated and time-consuming 
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procedures, problems of column fouling and in particular limited possibility of on-line and on-

site detection are the major drawbacks of these techniques. 

For these reasons, voltammetric methods are very interesting as valid and independent 

alternative to the other standardized ones. In particular, Barek’s Group of the UNE CO  ab of 

Environmental Electrochemistry already demonstrated the determination of polycyclic aromatic 

hydrocarbons and aminobiphenyls (Jiri Barek, Jandová, Peckov , & Zima, 200 ; Jiř   Barek, 

Pumera, Muck, Kadeř bkov , & Zima, 1999; Jiri Zima, Dejmkova, & Barek, 200 ), but also 

benzidine and its derivatives (J Barek, Cvacka, Muck, Quaiserová, & Zima, 2001) on Platinum 

and Glassy Carbon electrodes. Furthermore, Screen-Printed Electrodes (SPE) may also 

constitute an interesting, reliable and low-cost choice to be used for the detection of benzidine 

and its derivatives. 

3.3.2. Materials and Methods 

0.1 M HCl was used as supporting electrolyte. 

Initially, many different conventional electrodes were tested. Pt disk and Glassy Carbon 

electrodes gave better responses, so they were chosen to optimize the new electroanalytical 

procedure for the detection of benzidine. 

Four types of electrodes were used: 

 Pt disk electrode; 

 Platinum Screen-Printed Electrode (Pt-SPE) with or without Nafion membrane, used to 

prevent electrode fouling; 
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 Glassy Carbon electrode (GC); 

 Carbon Screen-Printed Electrode (C-SPE). 

Considering the results on benzidine, only carbon-based electrodes were used for the 

determination of benzidine derivatives. 

The voltammetric technique used was Differential Pulse Voltammetry (DPV), previously 

optimized. 

3.3.3. Results and Discussion 

Benzidine has different reactive behaviour considering the active media and pH. In this case 0.1 

M HCl was chosen as supporting electrolyte, since it is considered the most suitable for this 

analytical scope. In particular, benzidine presents in this acidic media at GC electrode a 

chemically and electrochemically reversible bi-electronic oxidation peak at 0.630 V (SCE). The 

electrochemical reversibility disappears for scan rates > 500 mV s-1, while the bi-electronic 

character derives from the bi-electronic oxidation to quinonediimine, which predominates in 

acidic media. 

Different types of voltammetric techniques were tested, but DPV showed the best results. In 

Figure 3.7 DPV is compared with SWV using the same experimental conditions. SWV presents a 

slightly usable peak, while in the case of DPV the peak is sharp and well defined. Probably, this 

behaviour can be ascribed to the fouling of electrode surface caused by polymers formed as 

products. In the case of SWV, the high scan rates impede the dissolution of products before the 

following analysis. In fact, CV experiments demonstrate that for high scan rates the chemical 
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and electrochemical reversibility of the system is lost, which is an important requirement in 

SWV experiments. 

 

Figure 3.7. SWV (dashed line) and DPV (continuous line) patterns for benzidine 47 ppb on C-SPE. 

The optimized parameters for DPV are shown in Table 3.6 and were applied for all the 

electrodes tested. 

Table 3.6. Differential Pulse Voltammetric parameters. 

Parameter Value 

Equilibration time (s) 10 

Modulation time (s) 0.002 

Interval time (s) 0.5 

Start potential (V) + 0.4 

End potential (V) + 0.8 

Step potential (V) 0.005 

Modulation amplitude (V) 0.05 

 

Pt wire electrode was tested for the determination of benzidine, but presented a strong 

passivation of the surface with fouling phenomena. For this reason, experimental data about Pt 

wire electrode are not here shown. Pt-SPE showed also this effect of fouling, reaching very 
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rapidly saturation. This problem is probably due to the adsorption of the products of benzidine 

polymerization, which occurs in such experimental conditions. In this context, the use of 

Nafion, widely described in the Literature (Falciola, Pifferi, Possenti, & Carrara, 2012; Gouveia-

caridade et al., 2006), appears to be a possible solution, avoiding the adsorption of products 

and protecting the electrodes. Different percentages of Nafion (0, 0.01, 0.05, 0.1 %) were 

tested and the best results were obtained for 0.05 %, which showed the best defined and 

highest current peak, as shown in Figure 3.8. 

 

Figure 3.8. DPV patterns for benzidine 47 ppb on Pt-SPEs covered by layers of different percentage of NAFION: 
0% (dotted line); 0.01% (dashed line); 0.05% (continuous line); 0.1% (dash-dotted line). 

Benzidine presents a DPV peak at 0.52 V (vs pseudo Ag) for C-SPE and at 0.43 V (vs pseudo Ag) 

for Pt-SPE, which increases with concentration (Figure 3.9). 

 

Figure 3.9. DPV patterns on C-SPE (a) and on Pt-SPE (b) for different concentrations of benzidine. 
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Figure 3.10. Calibration Plots (peak height and area) for the detection of benzidine on C-SPE (a) and on Pt-SPE 
(b). 

Calibration plots (Figure 3.10) were carried out for consecutive additions of benzidine, showing 

a very good relationship between the oxidation peak current and benzidine concentration, as 

demonstrated by good correlation. Analytical parameters are shown in Table 3.7. The cross-

validated correlation coefficients R2
CV were also evaluated, to consider the effective predictive 

power of the proposed method in comparison with the fitting power. The best LoD and LoQ 

(Currie, 1995)were obtained with C-SPE considering peak area and these values are lower than 

those obtained by previous voltammetric methods in the Literature (J Barek et al., 2001). 
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Table 3.7. Low concentration linearity ranges, linear correlation and cross-validated linear correlation 
coefficients, LODs and LOQs evaluated using peak height and area in the DPV detection of benzidine on C-SPE, 
Pt-SPE and GC as comparison. 

Electrode 
type 

Concentration 
range in cell 

Peak height 

ppb R2 R2
CV 

LoD / 
ppb 

LoQ / 
ppb 

C-SPE 20 – 180 0.998 0.998 1.88 5.73 
Pt-SPE 10 – 50 0.980 0.970 0.22 0.68 

GC 80 - 180 0.998 0.997 22 67 

Electrode 
type 

Concentration 
range in cell 

Peak area 

ppb R2 R2
CV 

LoD / 
ppb 

LoQ / 
ppb 

C-SPE 20 – 180 0.997 0.996 0.33 1.00 
Pt-SPE 10 – 50 0.989 0.980 1.66 5.07 

GC 80 - 180 0.994 0.993 4.14 13 

 

Repeatability and the best achievable internal precision of the method (Currie, 1995; 

Thompson, Ellison, & Wood, 2002) were also tested and the relative standard deviations are 

presented in Table 3.8. RSD % are good and they are always better for SPEs, in particular for Pt-

SPE, than for GC. Also the intermediate repeatability was evaluated, repeating the procedure in 

different days, by different analysts and using different equipments and the obtained 

parameters are very similar to those reported in Table 3.8. 

Three different methodologies were adopted to calculate the apparent recovery factors: 

calibration plot, standard addition technique and analyte addition method. The better results 

were obtained with the last procedure and the values are shown in Table 3.8. Apparent 

recovery factors are > 93 % for all three electrodes and very close to 100 % in the case of C-SPE, 

while are lower for Pt-SPE, probably due to electrode fouling, as already discussed. 
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Table 3.8. Relative standard deviations and apparent recovery factors evaluated using peak height and area for 
three concentrations of benzidine in the low concentration range, on C-SPE, Pt-SPE and GC for comparison. 

Electrode 
type 

Concentration RSD % 
Apparent 

Recovery Factors 

ppm Height Area Height Area 

C-SPE 

0.15 0.9 1.5 97.6 97.9 

0.17 5.1 8.0 95.5 100.4 

0.18 2.1 7.2 97.7 101.1 

Pt-SPE 

0.04 2.6 4.0 95.5 98.8 

0.04 2.3 3.2 91.5 95.8 

0.05 0.5 0.8 88.2 93.6 

GC 

0.17 8.2 8.1 99.7 97.9 

0.18 8.8 11.5 100.0 99.2 

0.20 4.9 4.9 99.2 99.0 

 

In general, this study demonstrates that SPEs, besides their advantages of low cost, 

disposability and easiness of use, show better analytical performances than conventional 

electrodes. This aspect could be probably related to the different physical state of carbon 

and/or to their higher real surface area. This last parameter was evaluated according to the in-

situ voltammetric method (Trasatti & Petrii, 1991) and C-SPE real area results 23 % higher than 

GC electrode. Moreover, the roughness of the electrode area is visible in SEM images of C-SPE 

and Pt-SPE (Figure 3.11).  

 

Figure 3.11. SEM images of C-SPE (A) and Pt-SPE (B). 
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The evaluation of the analytical performances of this new methodology was also conducted in a 

real sample, since the main application is focused on environmental analysis. The water of a 

river canal in an industrial area (Canale Villoresi, Milano north suburbs, Italy) was chosen as real 

sample and characterized, showing 10.37 ppm of Total Organic Carbon, 53.37 ppm of Inorganic 

Carbon and 0.864 mS cm-1 of conductivity. For comparison, Milli Q water values, used for the 

previous characterization, are 2 ppb of TOC and 0.935 μ  cm-1, three orders of magnitude 

lower. The real water sample was used to prepare 0.1 M HCl for analyte addition and 0.1 mM 

benzidine for the determination of the calibration plot and for the analyte addition method. All 

the analytical parameters are reported in Table 3.9-3.10. The results show a slight worsening of 

the method validation parameters, but remaining very good, demonstrating the applicability of 

the new electroanalytical method to real samples. Furthermore, they confirm the best 

performances for C-SPE using peak area. 

Table 3.9. Concentration linearity ranges, linear correlation and cross-validated linear correlation coefficients, 
LODs and LOQs evaluated using peak height and area in the DPV detection of benzidine on C-SPE and Pt-SPE in a 
real sample. 

Electrode 
type 

Concentration 
range in cell 

Peak height 

ppb R2 R2
CV 

LoD / 
ppb 

LoQ / 
ppb 

C-SPE 10 – 120 0.98 0.96 29 89 
Pt-SPE 20 – 130 0.95 0.92 30 92 

Electrode 
type 

Concentration 
range in cell 

Peak area 

ppb R2 R2
CV 

LoD / 
ppb 

LoQ / 
ppb 

C-SPE 10 – 120 0.94 0.91 15 46 
Pt-SPE 20 – 130 0.96 0.94 38 117 
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Table 3.10. Relative standard deviations and apparent recovery factors evaluated using peak height and area for 
three concentrations of benzidine in a real sample, on C-SPE and Pt-SPE. 

Electrode 
type 

Concentration RSD % 
Apparent 

Recovery Factors 

ppm Height Area Height Area 

C-SPE 

0.10 

9.5 7.4 

107.9 119.8 

0.11 99.5 101.4 

0.12 94.5 99.2 

GC 

0.11 

7.0 9.1 

110.4 108.2 

0.12 107.8 104.7 

0.13 97.5 99.3 

 

Considering the results obtained for the determination of benzidine, carbon based-electrodes 

were chosen for the detection of three benzidine derivatives: o-toluidine, o-tolidine and 

tetramethylbenzidine. In fact, carbon-electrodes gave very good results and were less affected 

by fouling problems. The use of Nafion in these cases was not necessary and in the case of real 

application, LoDs and RFs were slightly better in comparison with Pt based electrodes. 

Initially, all derivatives were studied with GC electrode using cyclic voltammetry, to identify the 

peak potential positions, the chemical and electrochemical reversibility and the reaction 

mechanism for each compound. As shown in Figure 3.12, peak potential shifts to less positive 

potential in the case of o-tolidine and tetramethylbenzidine for the electrodonating effect of 

the methyl groups, while o-toluidine potential shifts to more positive values, for the presence 

of only one carbon ring. Moreover, for o-tolidine and tetramethylbenzidine the reaction is 

chemical and electrochemical reversible and the mechanism is bielectronic as in the case of 

benzidine, while for o-toluidine the reaction is irreversible and monoelectronic. Scan rate 

studies in the range 10-1000 mV s-1 demonstrate that the rate determining step of the reaction 

at the electrode is the diffusion. 



50 
 

 

Figure 3.12. Cyclic Voltammograms of benzidines at C-SPE. 

Calibration plots for consecutive additions of the analyte were carried out with Differential 

Pulse Voltammetry at GC and at C-SPE, showing a proportional increase of peak height and area 

with concentration. Figure 3.13 shows the calibration plots considering peak height and peak 

area for each compound at C-SPE as example. In general, good correlations were obtained both 

with peak height and peak area, slightly worse in the case of o-toluidine. 
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Figure 3.13. Calibration Plots (peak height and area) for the detection of o-Tolidine (a), o-Toluidine (b) and 
Tetramethylbenzidine (c) on C-SPE. 

In Table 3.11 all the analytical parameters were reported for each analyte and also for 

benzidine considering both the carbon based electrodes. The analytical parameters are worse 

in the case of o-toluidine, as expected, considering the high potential of oxidation in 

comparison with the other molecules and the irreversibility of the reaction, which causes 

electrode fouling. In general, correlation is very good, with RSD % below 10 %, LoD and LoQ in 

the range of ppb and apparent recovery factors, calculated with the method of analyte 

addition, very close to 100 %. In particular, all the parameters are better in the case of C-SPE, 

showing the very good performances of this type of electrode in trace analysis application. 
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Table 3.11. Analytical parameters evaluated for all the benzidines at GC and C-SPE. 

Molecule 

Glassy Carbon 

R2 RSD % 
LoD / 
ppb 

LoQ / 
ppb 

Apparent 
Recovery 
Factors 

Benzidine 0.994 4.9 4.15 12.60 98-99 

o-Tolidine 0.993 9.0 6.19 18.82 103-105 

o-Toluidine 0.90 10.6 532.37 1618.16 91-99 

Tetramethylbenzidine 0.990 8.6 1.35 4.10 98-100 

Molecule 

Carbon-based Screen-Printed Electrode 

R2 RSD % 
LoD / 
ppb 

LoQ / 
ppb 

Apparent 
Recovery 
Factors 

Benzidine 0.997 2.1 0.33 1.66 98-101 

o-Tolidine 0.998 3.2 0.43 1.32 100-103 

o-Toluidine 0.98 6.0 123.01 373.88 94-96 

Tetramethylbenzidine 0.98 4.1 1.45 4.40 99-102 

 

Moreover, experiments were performed using the same water of the canal river tested for 

benzidine. Also in this case, results remain very good, though a slight worsening of analytical 

parameters is evident, as already seen in the case of benzidine. 

Preliminary studies about the potential interference of benzidine derivatives during the 

determination of benzidine were carried out, using CV at GC electrode. A quantity of the 

interferent compound was firstly added and then, consecutive additions of benzidine were 

performed. As shown in Figure 3.14, good calibration plots can be obtained for benzidine, also 

in the presence of the interfering species, demonstrating the applicability of the 

electroanalytical method. 
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Figure 3.14. Cyclic voltammograms obtained for consecutive additions of benzidine in the presence of 
tetramethylbenzidine (a), o-tolidine (b) and o-toluidine (c) as interferences and corresponding calibration plots. 

Finally, the simultaneous detection of all four compounds was preliminarly considered, 

performing CV and DPV with the species present in the same quantity. The possibility to 
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distinguish among the various compounds thanks to different peak potentials, as shown in 

Figure 3.15, is promising for application of this electroanalytical procedure as alternative to 

chromatographic separation or more probably as detector after a chromatographic separation. 

 

Figure 3.15. Cyclic (a) and differential pulse (b) voltammograms of all benzidines. 

3.3.4. Conclusions 

Carbon-based and Platinum-based screen printed electrodes have shown very good 

performances for the determination of benzidine in acidic media using Differential Pulse 

Voltammetry. The new electroanalytical method is characterized by extreme sensitivity with 

very low LoD (0.33 ppb) and LoQ (1.66 ppb), very good RSD % and apparent recovery factors, 

offering a valid and independent alternative to other techniques reported in the Literature. 

SPEs results are better than those obtained on conventional electrodes, GC and Pt wire 

electrodes, and the best performances are reached using peak area and the analyte addition 

technique. The real surface area of SPE in comparison with that of conventional electrodes 

could be probably the cause of this better behaviour. 
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The problem of fouling, probably due to the formation of benzidine polymers on the surface, is 

evident on Pt-based electrodes, but the use of Nafion membrane for SPE protection, helped to 

obtaine optimum results. 

Considering all these results about benzidine, carbon-based electrodes were chosen for the 

determination of benzidine derivatives. o-toluidine, o-tolidine and tetramethylbenzidine were 

characterized by cyclic voltammetry and calibration plots were carried out using DPV at both 

electrodes (SPEs and GC), showing very good results. In general, C-SPE gave the best 

performance, when compared with GC. o-toluidine showed slightly worse electroanalytical 

parameters, probably due to the higher potential of peak determination. 

The new procedure can also be used for detection in real environmental samples, as analysis in 

a river canal water in an industrial area demonstrated. 

Preliminary results about interference of derivatives during the determination of benzidine and 

in simultaneous detection were evaluated, showing promising results. 

The method could be conveniently applied as detection method after a chromatographic 

separation, in particular to separate benzidine and its derivatives.  

The use of nanomaterials, in particular carbon-based nanomaterials as carbon nanotubes, to 

modify electrode surface, appears to be a promising pursuance of this methodology for the 

determination of benzidine and its derivatives (Chapter 4). 
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3.4. Bismuth oxide-based electrodes: Chromium determination 

3.4.1. Chromium 

Chromium is a metallic element that exists primarily in the mineral chromite, which is present 

in soils, waters, rocks, fauna and flora, and volcanic dust and gases. Chromium exists in three 

oxidation forms with different properties. Metallic chromium can be found principally in alloys, 

because it is resistant to corrosion, temperature, wear and decay. Trivalent chromium can be 

found in natural waters in its hydrolyzed form and it is an essential micronutrient for human 

body, since it combines with various enzymes. In industrial field, it is used during the 

production of dyes, paint pigments and salts for leather tanning. Hexavalent chromium exists 

principally as chromate and it is a dangerous, carcinogenic and mutagenic compound, present 

in the Priority Pollutants List. It has high mobility in water and, since it is widely used in several 

industrial processes (metal plating, leather tanning, paint making, etc.), it can be found in 

wastewaters, causing great environmental damages and human health problems. For all these 

reasons Cr(VI) is one of the highly harmful, hazardous and toxic pollutants. 

In this context, determination of Cr(VI) at trace level is very important and in recent years 

several efforts have been made for the development of efficient and accurate techniques for 

this purpose (Gómez & Callao, 2006). Traditionally, chromium species are determined by 

spectroscopic measurements (FAAS, GF-AAS, ET-AAS and ICP-tandem), chromatographic 

systems (HPLC, GC and IC), chemiluminescence methods and mass spectrometry. These 

techniques provide low detection limits (at the ng/  or μg/  level), but they are time 

consuming, need expensive equipments and laborious sample pre-treatments. Another very 
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common procedure is based on the absorbance of diphenylcarbazide, but with great analytical 

problems, low sensitivities and high detection limits. Also in this area, electroanalytical methods 

can find application, due to their several advantages and different voltammetric techniques 

(Differential Pulse Voltammetry, Square Wave Voltammetry and Linear Sweep Voltammetry), 

which can be preceded by cathodic or anodic preconcentration steps , giving excellent results 

with various types of conventional electrodes. 

Mercury electrodes were the first ones employed and the most studied in association with 

these techniques, especially in the presence of chromium complexing agents, such as 

Diethylenetriaminepentaacetic acid (DTPA) (Grabarczyk, Baś, & Korolczuk, 2008; Grabarczyk, 

Kaczmarek, & Korolczuk, 2004; Grabarczyk, 2008; Sander, Navrátil, & Novotný, 2003), N-(2-

Hydroxyethyl)-ethylenediamine-N,N’,N’-triacetic acid (HEDTA) (Domínguez, Sanllorente, Alonso, 

& Arcos, 2001), Ammonium 1-pyrrolidinedithiocarbamate (APDC) (Domínguez, Asunción 

Alonso, & Arcos, 2002), cupferron, pyrocetechol violet (PCV) (Domínguez & Arcos, 2000; 

Dom  nguez & Julia Arcos, 2002; Vukomanovic, Vanloon, Nakatsu, & Zoutman, 1997) and 

pyridine (Korolczuk, 1999). Recently, despite its good performances (LOD in the range of ng/L), 

mercury electrodes tend to be replaced because of their important drawbacks. The first 

problem concerns mercury toxicity: mercury is present in the Priority Pollutants List and the 

Directive 2008/51/EC of the European Union planned the abolition of the use of mercury in 

glass thermometers and other devices. Other relevant issues are related to the difficulties in 

the management and handling of mercury electrodes. In this context, other types of electrodes 

represent possible alternatives to the mercury. These devices can be used as bare or modified 

with other metals or organic compounds. Glassy Carbon (GC), gold and Boron-Doped Diamond 
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(BDD) unmodified (Manova, Humenikova, Strelec, & Beinrohr, 2007; Christine M Welch, 

Nekrassova, & Compton, 2005) or functionalized (Carrington, Yong, & Xue, 2006; B. Liu, Lu, 

Wang, & Zi, 2008; Svancara, Foret, & Vytras, 2004; S. Xing, Xu, Chen, Shi, & Jin, 2011) with Au 

and Ag nanoparticles, pyridine and surfactants show good results for Cr determination, but 

bismuth (Švancara, Prior, Hočevar, & Wang, 2010) seems to be the most promising alternative. 

First of all, bismuth has physicochemical properties and electrochemical behaviour relatively 

similar to mercury, permitting analysis in a wide range of potentials also with stripping. 

Moreover, it shows an excellent mechanical stability and its toxicity is negligible. As for 

chromium determination with complexing agents and stripping techniques, GC electrodes with 

electrodeposited Bi film (Chatzitheodorou, Economou, & Voulgaropoulos, 2004; Jorge, Rocha, 

Fonseca, & Neto, 2010; Lin, Lawrence, Thongngamdee, Wang, & Lin, 2005) exhibit very good 

results comparable to the mercury ones, for simplicity of analysis and low detection limits 

(ng/L). 

Screen-Printed electrodes can be useful for the detection of chromium, particularly for their 

property of disposability, permitting on-site analysis. In fact, in the Literature, different types of 

home-made SPEs, modified with poly-L-histidine, Au, Ag and Hg films (Bergamini, dos Santos, & 

Zanoni, 2007; Calvo-Pérez, Domínguez-Renedo, Alonso-Lomillo, & Arcos-Martínez, 2010; 

Domínguez-Renedo, Ruiz-Espelt, García-Astorgano, & Arcos-Martínez, 2008; Hallam, 

Kampouris, Kadara, & Banks, 2010; G. Liu, Lin, Wu, & Lin, 2007), were successfully employed for 

Cr(VI) determination with Adsorptive Stripping (AdSV) voltammetry. The use of these 

disposable devices, together with bismuth, could be very interesting, but only few examples of 
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preliminary results on home-made SPEs functionalized with electrodeposited bismuth can be 

found in the Literature (Lin et al., 2005). 

In this context, the investigation of the behaviour of commercial Bi-SPE towards Cr(VI) 

determination and the comparison with HDME is a topic of interest. 

3.4.2. Materials and Methods 

Electroanalytical determination of Cr(VI) was performed using two different methodologies and 

two different working electrodes:  

 Hanging Mercury Drop Electrode (HMDE); 

 Commercially available bismuth screen-printed electrodes (Bi-SPEs), by DROPSENS (Spain). 

Acetate buffer and potassium nitrate were employed as supporting electrolytes for HDME, 

while only potassium nitrate was used in the case of Bi-SPE. Pyrocatechol violet was the 

chelating agent for both procedures and all the analysis were performed under nitrogen 

bubbling.  

The voltammetric technique used was the Differential Pulse Adsorptive Stripping Voltammetry 

(DPAdSV) for HDME and the Square Wave Voltammetry (SWV) for Bi-SPE. 

3.4.3. Results and Discussion 

Previous literature works (Domínguez & Arcos, 2000; Dom  nguez & Julia Arcos, 2002; 

Vukomanovic et al., 1997) reported the determination of Cr(VI) with PCV (used as an 
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electroactive probe) by DPAdSV at the HMDE. The operative parameters used in that papers, 

have been optimized for our experimental conditions adopting the ones reported in Table 3.12. 

Table 3.12. Operative parameters used in Differential Pulse Adsorptive Stripping Voltammetry measurements at 
HMDE. 

Parameter Value 

Purge time (s) 120 

Deposition potential (V) -0.5 

Duration (s) 60 

Equilibration time (s) 10 

Modulation time (s) 0.002 

Interval time (s) 0.4 

Initial potential (V) -0.5 

End potential (V) -1 

Step potential (V) 0.005 

Modulation amplitude (V) 0.05 

 

As general rule, deposition potential was fixed at -0.5 V (SCE) for HMDE and voltammograms 

were recorded between -0.5 and -0.8 V (SCE). In this potential window, PCV shows an intense 

reductive peak at -0.65 V, which decreases when Cr(VI) is added, because of the complexation 

of Cr(VI) by PCV. In fact, Cr(VI)-PCV complex is not electroactive: complex formation lowers PCV 

concentration in the solution and its electroanalytical signal decreases. 

A good calibration plot, in the 0-0.65 μM concentration range, was obtained for consecutive 

additions of Cr(VI) solution, as shown in Figure 3.16, yielding a detection limit of 0.01 µM. 
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Figure 3.16. DPAdS voltammograms and relative calibration plot (inset) at HMDE for consecutive additions of 
Cr(VI) solution. Schematic representation of PCV behaviour at the electrode surface. 

Since HMDE presents several disadvantages, particularly due to its toxicity, despite its good 

performances, we decided to replace it by using a Bi-SPE in a Square-Wave Voltammetric 

determination (voltammetric parameters shown in Table 3.13). This method offers several 

advantages: first of all, it is a mercury-free analytical technique performed without stripping, 

thus lowering analysis time. Moreover, Bi-SPEs are portable, permitting on-site analysis, and 

disposable, avoiding surface contamination and the difficult polishing steps. 
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Table 3.13. Operative parameters used in Square Wave Voltammetry measurements at Bi-SPE. 

Parameter Value 

Equilibration time (s) 10 

Frequency (Hz) 100 

Initial potential (V) -0.4 

End potential (V) -1.4 

Step potential (V) 0.005 

Modulation amplitude (V) 0.05 

 

By using this technique, the reduction peak of PCV appears at -1.18 V (vs pseudo Ag) and the 

addition of Cr(VI) solution causes an increase in peak height. By contrast with the previous 

method, in this case, the complex Cr(VI)-PCV is electroactive and it reacts at the electrode 

surface, inducing a signal increase, as in the case of other Cr complexes (Chatzitheodorou et al., 

2004; Jorge et al., 2010; Lin et al., 2005; Sander et al., 2003).  

In order to be sure that Cr(VI)-PCV is the only responsible of the signal increase, several other 

experiments were performed trying to monitor Cr(VI) without PCV, and Cr(III) with and without 

PCV. From these analysis neither a peak in the absence of PCV, nor a peak increase in the 

presence of PCV with Cr(III) was detected. Moreover, possible little interferences of Cr(III) were 

completely suppressed by adding an appropriate quantity of HEDTA as Cr(III) chelating agent, 

yielding better analytical results, as the calibration plots with and without HEDTA show in 

Figure 3.17. In fact, the sensitivity is higher for the method with HEDTA + PCV than PCV alone. 

A good calibration plot in the 0-0.4 μM concentration range, was obtained with consecutive 

additions of Cr(VI) solution, as shown in Figure 3.17, yielding a detection limit of 0.001 µM, one 
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order of magnitude lower than that obtained with HMDE. The accuracy of the new method was 

tested spiking three times with a standard solution after a calibration plot (analyte addition 

technique) performed with 8 standard additions, obtaining an apparent recovery factor of 102 

%. 

 

Figure 3.17. SW voltammograms at Bi-SPE for consecutive additions of Cr(VI) solution. Inset: calibration plots 
with (open circles) and without (full circles) HEDTA. Schematic representation of PCV behaviour at the electrode 
surface. 

In order to test its reliability and to show possible real applications, the new optimized method 

was used in collaboration with Prof. Ardizzone and Dr. Cappelletti group to follow the 

photocatalytic reduction of Cr(VI) (Cappelletti, Bianchi, & Ardizzone, 2008; Cho, Kyung, & Choi, 

2004; Ku & Jung, 2001), collecting samples during the photocatalysis. The samples were 
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analyzed using analyte addition technique (three additions for each sample) after a calibration 

plot performed with 8 standard additions. 

The reduction of Cr(VI) was performed in liquid phase (pH 4, instead of pH 2 (Cappelletti et al., 

2008; Qing Wang, Shang, Zhu, & Zhao, 2011; Xiaoling Wang, Pehkonen, & Ray, 2004), to meet 

environmental conditions), under UV illumination using electrodeposited titania nanopowder 

as photocatalyst and isopropyl alcohol as scavenger (Cappelletti et al., 2008). The choice of 

titania nanopowder electrodeposited on a Ti grid, using a procedure published in (Paoli, 

Cappelletti, & Falciola, 2010), was justified since the photoreduction in the case of immobilized 

titania particles is markedly greater than that of slurry, reaching the  total removal of Cr(VI) in 

60 minutes, as shown in Figure 3.18. The best degradation in the case of titania thin films can 

be explained on the grounds of the total absence of turbidity, a typical disadvantage of the 

slurries; in these conditions the irradiation power of the lamp is preserved. 

  

Figure 3.18. Comparison between the Cr(VI) reduction performances of Hombikat powders in slurry or 
electrodeposited on Ti grids. Inset: SEM image of the titania layer. 

Three different titania photocatalysts, two commercial and one home-made, were tested for 

the Cr(VI) reduction and their physico-chemical characteristics are reported in Table 3.14.  
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Table 3.14. Structural and morphological features of three different types of titania (Spadavecchia et al., 2010) 
used in the photocatalytic tests. 

Sample % Anatase % Brookite % Rutile <Danat> (nm) 
SBET 

(m2g-1) 
Vpore 

(mL g-1) 

P25 75 - 25 30.0 ± 0.3 50 0.256 

T_400 66 37 - 4.8 ± 0.1 150 0.44 

Hombikat 100 - - 10.0 ± 0.3 354 0.35 

 

Figure 3.19 shows the comparison of the three titania photocatalysts toward Cr(VI) 

disappearance as function of reaction time. Also the adsorption (90 minutes) was considered 

and reported in the inset. All the photocatalysts show excellent performances with a sequence 

in correlation with the surface area. In fact, Hombikat reaches the best performance, while P25, 

characterized by the lowest surface area is the worst. Moreover, as shown in Figure 3.19, not 

only adsorption follows the values of surface area, but also the rate constants are influenced, 

following the same sequence of adsorption. For this reason, the adsorption of Cr(VI) at the 

surface of titania was considered the rate determining step and all the reaction kinetics can be 

described by a pseudo-first order rate equation (Kajitvichyanukul, Ananpattarachai, & 

Pongpom, 2005).  
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Figure 3.19. (a) Results of the photocatalytic tests for photolysis, adsorption (table in inset) and photocatalysis 
of Hombikat, P25 and T 400. (b) Linear trends of pseudo-first order kinetic constants and adsorption in the dark 
after 90 min as a function of surface area of the different TiO2 samples. Inset: rate constants for P25, T_400 and 
Hombikat. 

To evaluate the speciation of chromium at the end of the photocatalysis, titania powders were 

removed from the substrate and submitted to XPS analysis. Figure 3.20 shows the high 

resolution scan of Cr 2p multipeaks for P25, as representative sample, while in Table 3.15 

binding energies and ratios of chromium species are presented. The presence, for all three 

powders, of a considerable amount of Cr(III) confirms the efficient photoreduction process. In 

the case of the two commercial samples the quantity of Cr(0) is appreciable, probably due to a 

redox reaction between the scavenger and Cr(III). 

 

Figure 3.20. Cr 2p1/2 (BE > 580 eV) and Cr 2p3/2 (BE < 580 eV) XPS components in the case of P25 used sample 
at the end of the photocatalytic test (90 min). 
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Table 3.15. Binding energies and ratios of Cr(VI), Cr(III) and Cr(0) on Cr 2p3/2 fitting. 

Sample 
B.E. Cr 2p3/2 (eV) 

Cr(VI)/Cr Cr(III)/Cr Cr(0)/Cr 
Cr(VI) Cr(III) Cr(0) 

P25 579.2 576.8 574.6 0.27 0.59 0.14 

T_400 580.1 577.1 - 0.31 0.69 - 

Hombikat 579.4 576.5 574.2 0.28 0.55 0.17 

 

For all the photocatalytic tests and adsorption kinetics, the new electroanalytical method based 

on Bi-SPE and pyrocathecol violet, using SWV, was employed for each collected sample. This 

demonstrates the applicability of the technique, which allowed discriminating the 

performances of the three different photocatalysts during photocatalysis and also adsorption. 

Furthermore, it is important evidencing how the presence of Cr(III) and Cr(0) during the 

photoreduction does not interfere with the analysis, as also the presence of nitric acid and 

isopropyl alcohol.  

Finally, for comparison with the Literature methodology (Domínguez & Arcos, 2000; Dom  nguez 

& Julia Arcos, 2002; Vukomanovic et al., 1997), the conventional HMDE method was also 

employed on the same sample during T_400 photocatalysis showing that the new method 

offers similar or even better results, being less affected by interferences of the complex matrix, 

which causes scattered values in the case of HDME (Figure 3.21). 
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Figure 3.21. Cr(VI) disappearance in T_400 photocatalytic test monitored by HDME and Bi-SPE. 

3.4.4. Conclusions 

A new electroanalytical methodology using commercially available Bi-SPEs and pyrocatechol 

violet was studied and optimized for the determination of Cr(VI). Bismuth was chosen as eco-

friendly alternative to HDME and the new technique was compared with the conventional 

method, that uses HDME and pyrocathecol violet. 

In the case of HDME, a Differential Pulse Adsorptive Stripping Voltammetry (DPAdSV) was 

employed and the peak of pyrocathecol violet decreases for consecutive addition of Cr(VI), 

since this compound forms a non-electroactive complex with chromium. However, in the case 

of Bi-SPE, a Square-Wave Voltammetry was performed without stripping and pyrocatechol 

violet shows a peak, which increses with the concentration of Cr(VI), probably because the 

complex is in this case electroactive. Moreover, the presence of HEDTA helps in enhancing 

sensitivity, since it decreases the influence of possible interferences.  

The reliability and applicability of the new method were tested following the photocatalytic 

reduction of Cr(VI) by three titania nanopowders photocatalysts, electrodeposited on Ti grids. 
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The electroanalytical technique: allowed discriminating the different photocatalytic 

performances, demonstrated the best performances for titania immobilized in comparison with 

slurry, permitted the kinetic study of the photoreduction and had no problems of interferences 

with other chromium species and other compounds (nitric acid and isopropyl alcohol). 

Finally, the performance of the new procedure was compared with HDME technique on a 

representative photocatalytic test, showing very similar results and lower interferences of the 

matrix. 

Future developments will concern the use of bismuth nanoparticles modified electrodes to 

further improve the sensitivity and to lower the LODs. 
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3.5. Gold-based electrodes: Arsenic determination 

3.5.1. Arsenic 

Arsenic is a hazardous, dangerous and toxic compound and its contamination is widely 

recognized as a global health problem (Amini et al., 2008; Nordstrom, 2002; Sharma & Sohn, 

2009). For this reason As is at the first place of the Priority Pollutants List. High levels of As can 

be found in soil, groundwater and drinking water, since arsenic derivatives are largely used in 

agricultural poisons, such as fungicides, insecticides and pesticides. Restricted geographical 

areas (especially in Asian countries) are arsenic rich and have the arsenic level which exceeds 

even more than one order of magnitude with respect to other countries, resulting in a massive 

environmental exposition (Berg et al., 2001). Chronic arsenic exposure can cause a lot of health 

diseases, such as skin lesions, cancers, cardio-vascular system problems (Hopenhayn-Rich, 

Biggs, & Smith, 1998; Xia & Liu, 2004). 

Arsenic is present in nature in different oxidation states, from which its toxicity is dependent. In 

fact, arsenite or As(III) is the predominant form in the environment and it is also more toxic and 

mobile than arsenate or As(V) (Pichler, Veizer, & Hall, 1999). For these reasons, in 2006 the 

Environmental Protection Agency decreased from 50 to 10 μg  -1 the maximum contaminant 

level for arsenic in drinking water (Smith, Lopipero, Bates, & Steinmaus, 2002) and this value 

became the guideline of the World Health Organization (WHO). 

Many analytical methods for As detection and speciation can be found in the Literature (Hung, 

Nekrassova, & Compton, 2004; Leermakers et al., 2006; Melamed, 2005), as inductively coupled 

plasma mass spectrometry (Y. L. Feng, Chen, Tian, & Narasaki, 1998; Thomas & Sniatecki, 1995), 
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graphite furnace atomic absorption spectrometry (Anezaki, Nukatsuka, & Ohzeki, 1999), 

neutron activation analysis (Melamed, 2005) and biosensors (Diesel, Schreiber, & van der Meer, 

2009). In particular, electroanalytical techniques are extensively employed in As determination 

for their advantages and they usually need a preconcentration step followed by stripping 

(Giacomino, Abollino, Lazzara, Malandrino, & Mentasti, 2011; S Laschi, Bagni, Palchetti, & 

Mascini, 2007; Mardegan et al., 2012; Pal, Sarkar, Bhattacharyay, & Pal, 2010; A O Simm et al., 

2005). Among all types of voltammetric techniques, Linear Sweep Adsorptive Stripping 

Voltammetry (LSAdSV) with HCl as supporting electrolyte (Giacomino et al., 2011; Khairy, 

Kampouris, Kadara, & Banks, 2010; S Laschi et al., 2007; Mardegan et al., 2012) is one of the 

most used and gold (S Laschi et al., 2007; Song & Swain, 2007) is the preferred choice as 

working electrode, since it provides the best electrocatalytic response towards As. Moreover, in 

recent years the use of gold nanoparticles (Campbell & Compton, 2010; Liza Rassaei et al., 

2011) showed its potentialities in electroanalysis and in particular in stripping analysis for 

arsenic determination. Finally, the use of disposable screen-printed electrodes in this field of 

environmental trace analysis is very helpful and its combination with nanoparticles could be 

really promising. 

3.5.2. Materials and Methods 

Electroanalytical determination of As(III) was performed using three different working 

electrodes:  

 Gold electrode 

 Gold Screen-Printed Electrode (Au-SPE) 
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 Gold nanoparticle-modified Screen-Printed Electrode (AuNP-SPE) 

Hydrochloric acid or citric acid was employed as supporting electrolytes. 

The voltammetric techniques used was Linear Sweep Adsorptive Stripping Voltammetry 

(LSAdSV) with a surface pretreatment, which allows the cleaning of the gold surface (cleaning 

step). 

3.5.3. Results and Discussion 

The optimized analytical conditions for the use of SPEs devices were investigated, considering 

firstly the supporting electrolyte. 1 M HCl is usually employed (Giacomino et al., 2011; Khairy et 

al., 2010; S Laschi et al., 2007; Mardegan et al., 2012) as stripping medium for As detection to 

avoid hydrolized species formation and was selected for the preliminary tests. However, Au-SPE 

in the presence of hydrochloric acid suffered from a simultaneous delamination and damage of 

the working electrode from the ceramic support and damaging of both counter and reference 

electrodes, as shown in Figure 3.22. 

 

Figure 3.22. Delamination or degradation of gold-based screen printed electrode used in HCl as supporting 
electrolyte. 
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In order to avoid this problem, another acidic media, citric acid, was chosen, already used as 

HCl substitute in the Literature (Huang & Dasgupta, 1999). Initially, the procedure was 

optimized (resulting analysis parameters are shown in Table 3.16) using the bare gold electrode 

and compared with the results obtained with HCl as supporting electrolyte.  

Table 3.16. Linear Sweep Adsorptive Stripping Voltammetric parameters. 

Parameter Value 

Conditioning (CV) 

Purge time (s) 300 

Potential range (V) -0.1/+0.8 

Step potential (V) 0.005 

Scan rate (V s-1) 0.2 

Analysis (LSAdSV) 

Deposition potential (V) -0.6 

Deposition time (s) 30 

Equilibration time (s) 5 

Stripping potential range (V) -0.4/+0.6 

Step potential (V) 0.005 

Scan rate (V s-1) 0.2 

 

Figure 3.23 reports the voltammetric peaks and the calibration plots in the range 0.002 – 1.97 

ppm for HCl and citric acid, showing the good linear correlation and the fully comparability of 

the analysis performed in citric acid. 
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Figure 3.23. LSAdS voltammograms recorded at bare gold electrode in 1 M HCl (a) and 1 M citric acid (c) and 
corresponding calibration plots (b, d) for consecutive additions of As(III) solution. 

The optimized methodology was applied to gold-based SPEs and in Figure 3.24 the calibration 

plots obtained for Au-SPE and AuNP-SPE in the presence of citric acid are shown. Au 

nanoparticles on carbon SPE support were detected by SEM analysis, equipped with EDS, 

directly on the electrode and images showed single isolated Au aggregates. In citric acid no 

damage of the electrodes was observed. Therefore, this type of electrolyte can be proposed as 

a valid alternative to hydrochloric acid. For both the electrodes a good calibration plot was 

obtained, with a broader concentration range for AuNP-SPE. The presence of nanoparticles also 

allows the increase of one order of magnitude in the current signal in comparison with Au-SPE, 

since probably a random nanoparticles array on the three-dimensional carbon substrate with 

intermediate diffusional behaviour between planar and convergent is formed (Campbell & 

a) b) 

c) d) 
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Compton, 2010; Andrew O Simm, Ward-Jones, Banks, & Compton, 2005; C M Welch, Banks, 

Simm, & Compton, 2005; S. J. Xing, Xu, Chen, Shi, & Jin, 2011). In this context, higher 

sensitivities and lower detection limits for the target analyte could be achieved. 

 

Figure 3.24. Calibration plots of Au-SPE and AuNP-SPE obtained for consecutive additions of As(III) solution. 
Inset SEM image of the AuNP-SPE working electrode. 

This optimized procedure based on citric acid and AuNP-SPE was applied to follow the 

photocatalytic oxidation of As(III), testing the applicability of the method, in collaboration with 

Prof. Ardizzone and Dr. Cappelletti group. Samples were collected during the photocatalysis and 

analyzed with the proposed method using the analyte addition technique, in which each sample 

was added three times after a calibration plot. 
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The photocatalysis was performed using three different titania photocatalysts, two commercial 

and one home-made (Meroni et al., 2011; Spadavecchia et al., 2012), whose surface area and 

relative phase composition are reported in Table 3.17. 

Table 3.17. Structural and morphological features (V Pifferi et al., 2013) of three different types of titania 
electrodeposited onto Ti grids, used in the photocatalytic tests. 

Sample % Anatase % Brookite % Rutile <Danat> (nm) 
SBET 

(m2g-1) 
Vpore 

(mL g-1) 

P25 75 - 25 30.0 ± 0.3 50 0.256 

T_400 66 37 - 4.8 ± 0.1 150 0.44 

Hombikat 100 - - 10.0 ± 0.3 354 0.35 

 

Before photocatalysis, titania thin layers were electrodeposited on Ti grids, following a 

procedure reported in previous works (Paoli et al., 2010; V Pifferi et al., 2013), and they were 

used in photoxidation of As(III) at pH 5, to meet environmental conditions. In particular, the 

oxidation of As(III) to As(V) is thermodynamically  favoured on titania in these conditions, since 

the valence band of anatase (the principal phase for all the photocatalysts) at pH 5 in an 

aqueous electrolyte is much more positive than the As(V)/As(III) couple (D. Chen & K. Ray, 

2001; Sharma, Dutta, & Ray, 2007) (Figure 3.25). 
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Figure 3.25. Sketch of the positions of the valence and conduction band of anatase together with the redox 
potentials of arsenic and other relevant oxidant couples at pH 5. 

Figure 3.26 reports the removal of As(III) performed by the three different titania films as a 

function of time, showing excellent activity for all the samples in the order P25 < T_400 < UV 

100. In particular, UV 100 shows the best photocatalytic performance, since after only 75 

minutes the As(III) concentration drops below the limit of detection of the present 

electroanalytical technique, which is an order of magnitude lower than the WHO allowed 

contaminant As(III) level. Moreover, the order of activity follows closely the surface area 

sequence and the rate determining step of the photocatalysis can be considered the adsorption 

of the pollutants on titania (Pena, Korfiatis, Patel, Lippincott, & Meng, 2005; Z. Xu & Meng, 

2009). Finally, the direct photoxidation of As(III) under UV illumination in the absence of the 

photocatalyst was considered and ranged around 30 % after 90 minutes. 
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Figure 3.26. Photocatalytic results concerning the As(III) photooxidation in the presence of Hombikat UV100, 
P25, and T_400-deposited layers. Inset images of the titania layers EPD onto the Ti grid. 

For all the collected samples the electroanalytical methodology based on AuNP-SPE and citric 

acid was used to evaluate the concentration of As(III), showing its applicability also in the 

presence of interferents. 

3.5.4. Conclusions 

A simple electroanalytical technique based on the use of gold-based Screen-Printed Electrodes 

was optimized. Hydrochloric acid was conveniently substituted by citric acid avoiding the 

damaging of the gold electrodes. The procedure with citric acid was initially tested using bare 

gold electrode to verify its equivalence with the conventional technique based on HCl. Finally, 

calibration plots were performed using both Au-SPE and AuNP-SPE. The detection limit of the 

proposed methodology is one order of magnitude lower than the WHO tolerance level. 

Sensitivities are higher for SPE with nanoparticles, probably due to intermediate diffusional 
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behaviour between planar and convergent of the electrode caused by the presence of Au 

nanoparticles. 

This procedure was also tested measuring samples collected during the photoxidation of As(III) 

to less toxic arsenate by electrodeposited titania nanopowders. The methodology allows 

discriminating different performances of the three photocatalysts, showing that the activity is 

influenced by titania surface area. 

The electroanalytical procedure together with the remediation method could be proposed as a 

starting point for the scaling-up of an As(III) remediation process. Future developments will 

concern the deposition of pre-synthetized or electrodeposited Au nanoparticles to form a more 

uniform distribution of nanoparticles, together with the use of other types of nanomaterials.  
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4. Nanomaterials 

On 18th October 2011, the European Commission gave the following definition of nanomaterial: 

“a natural, incidental or manufactured material containing particles, in an unbound state or as 

an aggregate or as an agglomerate and where, for 50% or more of the particles in the number 

size distribution, one or more external dimensions is in the size range 1 nm – 100 nm”. 

Considering this definition, nanomaterials can present different sizes and shapes (sphere, rod, 

tube, etc.) and can have different nature, such as metallic, metal oxide, carbonaceous, 

polymeric, dendrimeric, composites. Nanomaterials find application in many areas of research 

and their development is growing in importance, showing employment also in industrial 

processes (Pierce & Zhao, 2010; C. N. R. Rao, Müller, & Cheetham, 2004; Schmid, 2003). The 

number of applications is continuing to increase exponentially and the scientific community is 

also considering their potential effects in the environment, due to their aggregation and toxicity 

for their size, composition and surface chemistry. Despite the limited number of studies about 

this topic, the best approach is considered the evaluation of each type of nanomaterial as a 

distinct entity, but the most important problem remains the method of nanomaterials 

detection in the environment for their low concentrations and for the number of interferences 

(Klaine et al., 2008; Pierce & Zhao, 2010). 

Nanomaterials possess peculiar properties very different from the corresponding bulk materials 

and this fact gives them their uniqueness. They can be synthesized by using two different 

approaches, top-down, where a macroscopic block of the desired material is processed to 

etching or layering, and bottom-up, where assembly of atoms, ions, molecules are driven by 
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specific physical or chemical interactions (gas-phase or solution-phase processes), which can be 

adjusted to obtain the desired size, shape and composition. 

Nanomaterials match the size of the majority of relevant chemical compounds and 

biomolecules (antibodies, enzymes, nucleic acids) and for this reason they are applied in trace 

analysis (Pierce & Zhao, 2010) for the detection and extraction of contaminants, separation 

membranes, biological and chemical analysis. In particular, they find extensive application in 

combination with electrochemical techniques for the introduction of powerful, reliable 

electrochemical devices, with surface-dependent electron transport properties, correlated to 

physical/chemical sorption of analytes on nanomaterials (Campbell & Compton, 2010; Luo, 

Morrin, Killard, & Smyth, 2006; Pumera, Sánchez, Ichinose, & Tang, 2007; Liza Rassaei et al., 

2011; Jing Wang, 2012). In comparison with bulk materials normally used in electroanalysis, 

they offer high active surface area, improved selectivity, catalytic activity, higher signal-to-noise 

ratio, unique optical properties and the possibility of biomolecules incorporation.  

The modification of electrode surfaces (Bănică, 2012; Hodes, 2001) with nanomaterials allows 

an enhancement in the electron transfer rate, a favourable geometry (area-to-volume ratio) 

over bulk materials and a compatibility with design of nanoarray. Moreover, the influence of 

mass transport on the limiting current depends on the size and spacing of nanomaterials, since 

the diffusion can experiment deeply changes (Campbell & Compton, 2010). In fact, the diffusion 

layer is increasingly compressed at higher scan rates, causing an enhancement in the current, 

and, when diffusion layers interact, the current for nanomaterials is reduced from that 

predicted for isolated nanomaterial elements. In this context, three cases can be described 
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(Figure 4.1), depending on the nanomaterials coverage of the electrode: low coverage, where 

isolated elements experiment convergent diffusion and currents scale with particles radius, 

medium coverage, where diffusion layers of each element partially overlap and diffusion is 

between convergent and linear, high coverage, where diffusion layers heavy overlap and 

diffusion is modelled as one-dimensional and linear. Both the kinetic regimes governed by high 

and low coverages are characterized by higher signal-to background current ratios: in the first 

case because the faradaic current is proportional to the geometric  area, while the capacitive 

current is proportional to the active surface area; in the second case since the current is 

proportional not only to the geometric area, but also to the radius of nanomaterials, being 

independent to the diffusion coefficient. Furthermore, the first case presents a peak-shaped 

cyclic voltammogram, the second one a steady-state cyclic voltammogram. 

 

Figure 4.1. Radial diffusion at diffusionally independent spherical particles (a), overlap of diffusion zones of 
neighbouring particles (b) and heavy overlap of neighbouring diffusion zones leading to overall linear diffusion 
(c). The effect of mass transport on the voltammetric behaviour reported as a function of electrode type. 

In this context, in this PhD Thesis, nanomaterials-modified electrodes were studied and 

characterized for application in electroanalysis. In particular, two different families of 

a) 

b) 

c) 
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nanomaterials, carbon nanotubes and metal/semiconductor nanoparticles, were taken into 

consideration.  
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4.1. Carbon-based Nanomaterials 

4.1.1. Introduction 

Carbon in its miscellaneous forms has been used in technology and art since prehistoric times. 

It is present in nature in two allotropic forms (Noked, Soffer, & Aurbach, 2011; Qureshi, Kang, 

Davidson, & Gurbuz, 2009), diamond and graphite, the first showing the typical sp3 structure of 

carbon atoms and the second presenting a honeycomb sp2 configuration. Carbon possesses the 

ability to hybridize into sp, sp2 and sp3 configurations, depending on the bonding with 

neighbouring atoms. This possibility is due to the narrow band gap between 2s and 2p electron 

shells. These hybrid states are responsible for the different characteristics of various organic 

species, which open the possibility to fabricate a wide range of different carbon-based 

materials (Leary & Westwood, 2011; Mauter & Elimelech, 2008; Wanekaya, 2011). 

By the early 1980s, carbon science was widely considered to be a mature discipline without 

possible other surprises, due to the vast knowledge in this field. Today the situation is different 

thanks to the discover of the first all-carbon molecule, the Buckminsterfullerene (Harris, 2009). 

From this moment, the union between the properties of sp2 carbon and the unique behaviour 

of nanoscale compounds allows the production of carbon-based nanomaterials with distinct 

characteristics in terms of size, surface area, strength, optical and electrical properties (Mauter 

& Elimelech, 2008; Wanekaya, 2011). These types of materials can be produced with various 

microtextures, tunable surface area and porosity, different degree of graphitization, rich variety 

of dimensionality from 0 to 3D and many synthetic procedures. Moreover, they are well 
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polarisable, chemically and thermally stable, amphoteric, acting in both donor and acceptor 

forms, accessible, easily processable and inexpensive (Wanekaya, 2011).  

All these advantages make them suitable for the production of modified electrodes (Noked et 

al., 2011; Švancara, Vytřas, Kalcher, Walcarius, & Wang, 2009). In particular, two processes are 

used for this purpose, casting and direct growth on the surface of the electrode (Wanekaya, 

2011). The principal carbon-based nanomaterials used for the modification of electrodes are 

fullerenes, graphene, nanofibers and nanotubes (Gooding, 2005; Kochmann, Hirsch, & 

Wolfbeis, 2012; Ratinac, Yang, Gooding, Thordarson, & Braet, 2011; Tessonnier et al., 2009). 

Fullerenes are composed only by carbon atoms in different structures, as hollow spheres, 

ellipsoids and tubes and they are applied in the electrochemical field particularly in 

amperometric enzymatic sensors. Graphene is a single layer of graphite and it is classified as a 

zero-gap semiconductor with ballistic transport of charge carriers, electrons or holes. It can be 

easily functionalized and it presents very good thermal conductivity and stability, high surface-

to-volume ratio and high electron transfer rate. Nanofibers are usually synthesized by vapour-

growth and are composed by graphene sheets hold together by Van der Waals forces, arranged 

as stacked cones, cups or plates around the fiber axis, presenting more reactive sites. They have 

an average diameter between 5 and 500 nm and their structure depends on the nature of the 

catalyst metal. Nanotubes represent the most famous, but also the most debated carbon-based 

nanomaterial in electroanalysis. Their electrochemical properties and applications to the 

sensoristic field will be discussed later in this chapter.  
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4.1.2. Carbon Nanotubes 

4.1.2.1. Introduction 

Carbon nanotubes (Harris, 2009) were discovered in October 1991 by Sumio Iijima, while he 

was studying the cylindrical deposit on a cathode during the arc-evaporation of graphite. They 

are based on sp2 atoms of carbon, π-type chemical bonds, and they are arranged in graphene 

sheets, which have been rolled up to form a seamless hollow tube. They are usually capped at 

the end by a fullerene type hemisphere and their dimensions range from 10 nanometers to 

several micrometers (Gooding, 2005). 

The synthetic procedure usually follows two ways, arc or laser evaporation, which allows to 

obtain small quantities of pure carbon nanotubes, and chemical vapour deposition, that 

produce big amount of carbon nanotubes, but characterized by larger quantity of  amorphous 

carbon and metal nanoparticles (used as catalysts for their production) impurities (Gooding, 

2005; D. Zhang, Shi, Fang, Li, & Dai, 2005).  

Carbon nanotubes can be divided into two classes (Figure 4.2): single-walled carbon nanotubes 

(SWCNTs) and multi-walled carbon nanotubes (MWCNTs). The first ones are composed by only 

one sheet of graphene rolled up in a tube with the diameter in the range 0.4-2 nm, while the 

second type is formed by concentric graphene tubes with a distance of 0.34 nm and a total 

diameter between 2 and 100 nm (Gooding, 2005).  
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Figure 4.2. Single-walled carbon nanotubes (A) and multi-walled carbon nanotubes (B). 

Since their discovery, carbon nanotubes show impressive structural, mechanical, and electronic 

properties, such as high chemical and thermal stability, high elasticity, high tensile strength, 

metallic conductivity, allowing their application in many fields, in particular, nanotechnology, 

pharmaceuticals, gas storage, catalysis, solar cells and transistors. Moreover, their small size 

and metallic conductivity make them suitable for the production of small electrodes with 

interesting properties from an electrochemical and electroanalytical point of view (Agüí, Yáñez-

 edeño, & Pingarrón, 2008; Bănică, 2012; Gooding, 2005; Pierce & Zhao, 2010; Pumera, 2009; 

Yáñez-Sedeño, Pingarrón, Riu, & Rius, 2010). The first application in electrochemistry was the 

design of a MWCNTs paste electrode for the detection of dopamine, showing really promising 

results in comparison with traditional electrodes. In fact, carbon nanotubes electrodes are 

characterized by larger surface area, higher electrocatalytic activity and faster electron transfer 

rate. MWCNTs and SWCNTs behave differently, since MWCNTs generally present a metallic 

behaviour, while SWCNTs can behave like metals or semiconductors and, for this last reason, 

are usually less suitable for electroanalysis.  

The preparation of carbon nanotubes modified electrodes (Gooding, 2005; Valentini, Amine, 

Orlanducci, Terranova, & Palleschi, 2003) plays an important role in the subsequent electrode 
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electrochemical performances, since these properties depend on nanotubes pre-treatment and 

purification (Cañete-Rosales et al., 2012; Chiang, Brinson, Smalley, Margrave, & Hauge, 2001; 

Curulli, Cesaro, Coppe, Silvestri, & Palleschi, 2005; Datsyuk et al., 2008; Dumitrescu, Wilson, & 

Macpherson, 2007; Fang et al., 2004; Heras et al., 2009; Hou, Liu, & Cheng, 2008; Mazov et al., 

2012; Moraes, Cabral, Mascaro, & Machado, 2011; T. Park, Banerjee, Hemraj-Benny, & Wong, 

2006; Scheibe, Borowiak-Palen, & Kalenczuk, 2010). In fact, carbon nanotubes are normally 

purified by acidic treatment (Pumera, Šmíd, & Veltrusk , 2009; Rosca, Watari, Uo, & Akasaka, 

2005) which is able to remove fullerenic hemispherical caps and produces oxygenated 

functional groups localized at the ends of the tube (Banks, Moore, Davies, & Compton, 2004). 

The functionalization confers a hydrophilic character to CNTs ends and a hydrophobic 

behaviour to walls, making their dispersion in water or polar solvents difficult. For this reason, 

dimethylformamide is usually employed as suspending agent prior deposition. Furthermore, 

the presence of oxygenated species (Chou, Bocking, Singh, & Gooding, 2005; LI & LI, 2011) 

allows the easy functionalization of carbon nanotubes with an infinite number of materials, for 

example redox mediators, conducting polymers and nanoparticles (Ates & Sarac, 2009; 

Carvalho, Gouveia-Caridade, & Brett, 2010; Tamburri et al., 2005; Valentini, Biagiotti, Lete, 

Palleschi, & Wang, 2007). Another important aspect to take in consideration is the presence of 

amorphous carbon (Ambrosi & Pumera, 2011; Scott & Pumera, 2011; L. Wang, Ambrosi, & 

Pumera, 2013) and metal nanoparticles (Jones et al., 2007) derived from the synthetic process, 

which can distort the electrochemical behaviour. In fact, in the Literature, many examples of 

electrode activity attributed to CNTs, but actually deriving from the presence of carbonaceous 
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materials or metal nanoparticles, are reported. For all the above reasons, the choice of the 

correct purification and functionalization method is a fundamental key point.  

Finally, in the last years an intense debate about the effective utility of carbon nanotubes in 

electroanalysisis is in evolution (Banks, Ji, Crossley, & Compton, 2006; Pumera, 2012), since 

similar performances can be obtained with other carbon-based materials (Banks & Compton, 

2006).  

 In this context, the total removal of amorphous carbon and metal nanoparticles, together with 

the maintenance of CNTs structure and properties are essential to avoid misunderstanding 

when they are employed in the sensoristic field. 

4.1.2.2. Materials and Methods 

Different types of MWCNTs functionalization were chosen, according to the Literature, to study 

their influence in electroanalytical performances: 

 No functionalization; 

 3 M HNO3 for 24 h; 

 3:1 H2SO4/HNO3 mixture for 24 h; 

 3:1 H2SO4/HNO3 mixture for 24 h with removal of amorphous carbon; 

 3:1 H2SO4/HNO3 mixture for 48 h. 

A known quantity of MWCNTs was stirred in the chosen acid for 24 or 48 h. After that time, CNT 

were filtered on a polyvinyldienfluoride (PVDF) membrane (Ø 47 mm and 0.22 µm pore size), 
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washed with Milli-Q water until neutral pH and dried in an oven for 24 h at 80°C. In the case of 

removal of amorphous carbon, CNTs were successively treated in 0.1 M NaOH and sonicated 

for 15 minutes. After 24 h, CNTs were filtered as explained before and treated newly in NaOH, 

until filtered water was transparent. Then, CNTs were acidified in 0.1 M HCl for 24 h, filtered 

and dried in an oven for 24 h at 80°C. 

The chosen volume of a dispersion of CNT (volume, solvent and concentration will be discussed) 

were dropped on the surface of a GC electrode.  

Two kinds of MWCNTs have been used: MWCNTs from Sigma Aldrich (SA, purity > 98%, 6-13 

nm diameter and 2.5-20 µm length) and MWCNTs from Politecnico di Milano (POLI, no 

specifications were given), both produced by chemical vapour deposition. 

4.1.2.3. Results and Discussion 

Optimization of experimental conditions 

First, optimization of the deposition variables was carried out and, in particular, the volume of 

deposition, the solvent and CNTs concentration were considered. The volume of deposition was 

varied between 5 and 20 μ , because the drop of 20 μ  covers the entire area of GC (also the 

Teflon part) while 5 μ  drop covers only the GC electrode area. In the case of the solvent, DM  

is usually employed for CNT drop casting, as the Literature reports (Pumera, 2009), while water 

was chosen to solve toxicity problems of DMF. In Figure 4.3 the study of deposition volume and 

solvent are both reported, showing higher values of the oxidation peak of the model probe 

molecule (K4[Fe(CN)6]) in the case of DM  and for 20 μ  deposition volume. These results can 



91 
 

be interpreted considering the better interactions of DMF with acidic groups on the surface of 

CNTs, as reported in the Literature, and the better coverage of the conductive part of the 

electrode. The use of a water-DMF mixed solvent also causes a decrease in the signal, so DMF 

was chosen as solvent and 20 μ  as deposition volume.  inally, CNTs deposition solution 

concentration was evaluated, varying the concentration between 0.5 mg mL-1 and 4.0 mg mL-1. 

Figure 4.3 presents cyclic voltammograms and the variation of probe oxidation peak. The 

highest oxidation current is obtained for 4 mg mL-1, but values are very similar for all the 

concentrations. Moreover, observing the cyclic voltammograms, capacitance values generally 

increase with the highest value for 4 mg mL-1 concentration. Since for electroanalytical 

purposes, high capacitance values are detrimental and cause a lowering of the sensitivity, 0.5 

mg mL-1 concentration was at last chosen. 

 

Figure 4.3. Casting solvent study (a) and concentration deposition study (b). 

The optimized parameters are thus: 
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 Deposition volume: 20 μ  

 CNT concentration: 0.5 mg mL-1 

Characterization of carbon nanotubes 

All the types of functionalized CNTs were tested in the optimized conditions and cyclic 

voltammograms in 0.1 M KCl with K4[Fe(CN)6] as model probe molecule are shown in Figure 4.4. 

CNTs used as received show an electroanalytical signal very similar to GC electrode, while all 

the functionalized ones present higher peak currents. In particular, the best results are 

obtained for CNTs treated in the sulphonitric mixture for 24 h. In the case of nitric acid, the 

signal is less intense, while for 48 h treatment the shape of voltammogram changes. In fact, the 

peak becomes a step, showing a change in the kinetic diffusion mechanism. The further 

removal of amorphous carbon, allows a further increment of the peak current. In order to shed 

light upon these results, an extended characterization of CNTs was performed. 
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Figure 4.4. Cyclic voltammograms of CNTs after different purification methods. 

First of all, functionalized CNTs were studied with Transmission Electron Microscopy (TEM), to 

evaluate their morphology and the eventual impurities derived from the synthetic process. TEM 

images are presented in Figure 4.5. CNTs without functionalization and purified in nitric acid 

show the presence of catalytic metal nanoparticles used for their synthesis.  The sulphonitric 

treatment is capable of eliminating these metal impurities. Moreover, the prolonged treatment 

(48 h), causes a cutting of CNTs and an increase of the amorphous carbon. These results can 

explicate the different voltammetric behaviour of CNTs, in particular considering the behaviour 

of CNTs treated for 48 h or without amorphous carbon. In the first case, the current signal is 

step-shaped because probably the diffusion mechanism changes from planar to radial-

convergent, due to the CNTs cutting in small nano-subunities; in the second case, the current 
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increase is probably caused by the amorphous carbon removal after its production during the 

sulphonitric treatment. 

 

Figure 4.5. TEM images on CNTs non-functionalized (a), treated in nitric acid (b), treated in sulphonitric mixture 
for 24 h (c) and for 48 h (d). 

Considering the morphologic differences evinced by TEM, complementary BET analysis were 

also performed to evaluate the CNTs surface area and porosity. In Figure 4.6 a typical BET graph 

is presented. The hysteresis loop evidences the presence of slit-shaped pores for all the 

samples. BET parameters are reported In Table 4.1. A surface area and pore volume increase 

can be noticed for all treated CNTs. Moreover, the percentage of microporosity (< 2 nm) is 

reduced, accompanied by an increase of the percentage of mesopores (10-80 nm) (Figure 4.7-

4.8). All these effects can be considered as responsible for the current increase. Mesoporosity is 

more suitable for analyte diffusion in the modified electrode structure. 

a) b) c) d) 
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Figure 4.6. BET isotherms for CNTs with different purification treatments. 
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Figure 4.7. Distribution of the pore volume on pore diameters for different purification treatments. 

 

Figure 4.8. Pore distribution representation for different purification treatments. 
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Table 4.1. Parameters obtained from BET analysis for CNTs with different purification treatments. 

CNTs SBET / m2 g-1 Vpores / cm3 g-1 Amicropores / m2 g-1 % micropores 

NF 150.8 ± 0.8 0.47 51.4 10.2 
HNO3 161 ± 1 0.87 10.7 6.6 

Mix 24h 172 ± 1 0.78 13.2 7.7 
Mix 24h no AC 170 ± 1 0.72 5.8 3.4 

Mix 48h 164 ± 1 0.71 12.8 7.8 

 

The electroanalytical properties can be influenced also by the presence of different catalytic 

groups on the CNTs surface. In particular, the Literature (LI & LI, 2011) reports the covalent 

acidity as responsible for higher performances of functionalized CNTs. CNTs were characterized 

from this point of view by titration, in order to quantify the total acidity, the desorptive acidity, 

the covalent acidity and the CO2 presence (Hanelt, Orts-Gil, Friedrich, & Meyer-Plath, 2011). An 

example of titration curve is shown in Figure 4.9. The curve presents three equivalent points: 

the first correlated with the residual NaOH derived from the neutralization of total acidity, the 

second representing the quantity of desorptive acids, formed on the CNTs surface during the 

synthetic process and released in solution after neutralization, and the third related to CO2 in 

solution, which causes an acidification of water for reaction with NaOH. Figure 4.10 reports the 

quantity of the different types of acidity for each type of functionalization. The quantity of 

desorptive acids and CO2 in solution remain the same in all cases, confirming that desorptive 

acids derive from the synthetic process, while CO2 derives from the environment, both having 

no influence on voltammetric performances. The difference is in the covalent acidity, which is 

higher for the sulphonitric treatment. The higher quantity of acidic groups on the surface can 

be considered as another key feature capable of causing more intense current signals.  
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Figure 4.9. Example of CNTs acid functionalities titration. 

 

Figure 4.10. Representation of different acid functionalities obtained from titrations of CNTs with different 
purification treatments. 
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Amorphous carbon presents an intense UV-vis absorption peak at 200-220 nm, with a shoulder 

at 280 nm, visible only in the cases of sulphonitric mixture, the highest absorbance registered 

for 48 h treatment, confirming the strong erosion of the CNTs and the damaging of the 

structure observed by TEM. 

The presence of amorphous carbon can alter the properties of CNTs and for this reason it was 

removed by consecutive treatments in NaOH. An increase in the voltammetric signal 

consequent to the amorphous carbon removal is evinced in Figure 4.4. 

Finally, electrochemical characterization was performed by Cyclic Voltammetry varying the scan 

rate between 0.01 and 1 V s-1 and Electrochemical Impedance Spectroscopy with and without 

the redox probe molecule: (K4[Fe(CN)6]). 

The obtained parameters are reported in Table 4.2. In general, capacitance values follow the 

sequence of surface area obtained by BET analysis. The electrochemical reversibility is 

improved or maintained in comparison with GC, as can be observed from the values of Ep-Ep/2 

and ΔEp, but in the case of sulphonitric mixture treatment the values are higher than those 

obtained for non-functionalized and nitric acid treated CNTs. The kinetic mechanism remains 

generally under diffusion control with slopes of the linear ln i vs ln v close to 0.5. In the case of 

sulphonitric mixture the diffusive behaviour is partially lost. The removal of carbonaceous 

amorphous material increases the reversibility and the diffusion character of the process. 

Moreover, this electrode reaches the highest capacity values, probably due to the presence of a 

major quantity of covalent acids on the CNT surface. On the other hand, an increase in the 

cathodic and anodic slopes is evidenced. This behaviour can be attributed not only to the 
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increase in the surface area (which is not so drastic), but also to the model probe molecule 

diffusion coefficient change through the CNT network. For all the above reasons, CNTs without 

amorphous carbon appear to be the most promising materials for electroanalytical 

applications. 

Table 4.2. Voltammetric parameters obtained from cyclic voltammograms of glassy carbon and of CNTs-
modified electrodes. 

Parameters GC NF HNO3 Mix 24h Mix 48h 
Mix 24h 

no AC 

CCV / mF cm-2 0.080 0.18 0.28 2.11 1.44 2.36 
SBET / m2 g-1 - 150.8 + 0.8 161 + 1 172 + 1 164 + 1 170 + 1 
Ep-Ep/2 / mV 96 74 74 94 Step shaped 80 
ΔEp / mV 171 102 107 147 Step shaped 117 

Slope ip vs v0.5 / μA 
mV-0.5 cm-2 s0.5 

31 35 107 63 35 129 

Slope Ln ip  vs  ln v 0.44 0.42 0.44 0.34 0.28 0.45 

 

Electrochemical Impedance Spectroscopy was carried out with or without model probe 

molecule at – 0.10, + 0.10 and + 0.25 V (SCE). Operative potentials were chosen considering the 

cyclic voltammogram of the model probe molecule: + 0.10 and + 0.25 V are the peak potentials 

of the cathodic and anodic scan, respectively, while – 0.10 V is a potential value chosen in the 

capacitive area. 

In the absence of the model probe molecule, complex plane spectra in Figure 4.11 are very 

similar for all the considered potentials and present a semicircle for high frequencies followed 

in some cases by a straight line with the slope close to 90°. Bode plots have the typical shape of 

a time-dependent process, correlated to the formation of the double layer. In the case of non-

functionalization and treatment with nitric acid, only a big semicircle is present and values of 
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impedance are higher, indicating the electron transfer difficulty and the low double layer 

capacitance. On the other hand, in the case of sulphonitric mixture the semicircle is smaller and 

characterized by lower impedance, demonstrating the formation of a more capacitive double 

layer with a faster electron transfer. In particular, in terms of semicircle size, a better situation 

is obtained with the 24 h treatment in comparison with the 48 h one. The removal of 

amorphous carbon allows the best performance, also considering the straight line closer to 90°, 

behaviour typical of a pure-like capacitor. Equivalent circuits used to fit impedance data are 

presented in Figure 4.12. Non-functionalized or nitric acid treated CNTs present equivalent 

circuits formed by the solution resistance in series with a CPEDL and a RCT in parallel, while for 

sulphonitric mixture treated CNT  a CPEPOL has to be added. 

 

0.0 0.7 1.4 2.1 2.8 3.5 4.3
0.0

0.7

1.4

2.1

2.8

3.5

4.3

 

 NF

 HNO3

 mix 24h

 mix 24h no AC

 mix 48h

Z
'' 

/ 
k


 c
m

2

Z' / k cm
2

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

 

 NF

 HNO3

 mix 24h

 mix 24h no AC

 mix 48h

Z
'' 

/ 
k


 c
m

2

Z' / k cm
2



102 
 

 

Figure 4.11. Complex plane plot and Bode plot at – 0.1 V in the absence of redox probe. 

 

Figure 4.12. Equivalent circuits used to fit impedance data. 

Table 4.3 reports the values of equivalent circuit parameters obtained by the fitting procedure. 

The values of the three potentials for each electrode are very similar, demonstrating that the 

electrodes are very stable. As expected, higher capacitances of the double layer and lower 

charge transfer resistances are obtained for the sulphonitric mixture samples, while values of 

CPEPOL and POL are higher when amorphous carbon is removed, indicating a pure-like capacitor 

behaviour. Double layer capacitances obtained by EIS were compared with capacitances 

derived from CV and reported in Table 4.4, showing an excellent results agreement. 
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Table 4.3. Impedance parameters obtained by impedance fitting in the absence of redox probe. 

Electrode 
Eapvs SCE 

/ V 
RΩ / Ω 

cm2 
CPEDL / mF 

cm-2 sα-1 
αDL 

RCT / Ω 
cm2 

CPE / mF 
cm-2 sα-1 

α 

NF 

-0.10 9.8 0.266 0.85 10489 - - 

0.10 9.8 0.243 0.86 11173 - - 

0.25 9.8 0.253 0.86 10499 - - 

HNO3 

-0.10 7.4 0.384 0.86 23872 - - 

0.10 7.4 0.302 0.88 28168 - - 

0.25 7.3 0.265 0.89 22156 - - 

Mix 24 h 

-0.10 10.1 3.11 0.78 61 2.70 0.93 

0.10 10.0 2.18 0.81 53 1.95 0.93 

0.25 9.9 2.23 0.82 41 1.82 0.93 

Mix 48 h 

-0.10 9.7 0.919 0.86 392 4.72 1 

0.10 9.6 0.617 0.88 351 3.19 1 

0.25 9.6 0.595 0.89 292 2.92 1 

Mix 24 h 
no AC 

-0.10 7.8 3.75 0.79 20 3.01 0.96 

0.10 7.8 2.88 0.82 17 2.22 0.97 

0.25 7.6 3.20 0.82 13 2.26 0.97 

 

Table 4.4. Comparison between capacitance values obtained from CV and EIS study. 

Electrode type 
C  / mF cm-2 

CV EIS 

GC 0.0803 0.116 
Mix 24h 2.109 2.157 

Mix 24h no AC 2.362 2.5 
Mix 48h 1.437 3.61 

HNO3 0.284 0.318 

NF 0.179 0.254 

In the presence of the model probe molecule, impedance spectra at – 0.10 V are similar to 

those obtained previously, since at this potential the Fe3+/Fe2+ couple is not electroactive 

(Figure 4.13). At the other two potentials (Figure 4.14-4.15) impedance values strongly 
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decrease, because the probe reacts at the electrode, and the trend of the spectra changes. The 

complex plane plots show in general:  a semicircle for high frequencies, which is larger for non-

functionalized and nitric acid treated CNTs, and a straight line for low frequencies, with higher 

slope in the case of sulphonitric treatment. Higher impedance values are reached, as in the 

previous case, when CNTs are treated in nitric acid or are not functionalized. Equivalent circuits 

used to fit impedance data are shown in Figure 4.16 and parameters obtained from the fitting 

are presented in Table 4.5. 

  

 

Figure 4.13. Complex plane plot and Bode plot at – 0.1 V in the presence of redox probe. 
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Figure 4.14. Complex plane plot and Bode plot at + 0.1 V in the presence of redox probe. 
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Figure 4.15. Complex plane plot and Bode plot at + 0.25 V in the presence of redox probe. 

 

 

Figure 4.16. Equivalent circuits used to fit impedance data. 
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Equivalent circuits used for the fitting are the same of the no-probe analysis when the 

sulphonitric functionalization is performed, while in the case of non-functionalized CNTs an 

additional RC has to be added, correlated with the reaction of the redox couple at the 

electrode. In the case of nitric acid treatment, increasing the potential the situation becomes 

similar to that of sulphonitric treatment, probably due to easier redox reaction at higher 

potential. In general higher capacitances are obtained increasing the potential and CNTs after 

removal of amorphous carbon show the best performances. 
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Table 4.5. Impedance parameters obtained by impedance fitting in the presence of redox probe. 

Electrode 
Eapvs SCE 

/ V 
RΩ / Ω 

cm2 
CPEDL / mF 

cm-2 sα-1 
αDL 

RCT / Ω 
cm2 

CPEPOL / mF 
cm-2 sα-1 

αPOL 
RPOL / Ω 

cm2 
Rw / Ω 

cm2 
τ / s α 

CPE / mF 
cm-2 sα-1 

α 

NF 

-0.10 10.5 0.23 0.77 1.29 0.13 0.91 2031 8294 4.07 0.24 - - 

0.10 10.3 2.84 0.50 1.81 0.16 0.89 123 283 0.1 0.24 - - 

0.25 10.4 2.76 0.53 1.26 0.27 0.83 93 173 0.1 0.24 - - 

HNO3 

-0.10 7.5 7.95 0.62 1.35 0.54 0.93 39496 - - - - - 

0.10 7.7 1.09 0.80 187 - - - 125 0.1 0.28 - - 

0.25 7.5 3.45 0.66 194 - - - - - - 4.51 0.55 

Mix 24 h 

-0.10 8.6 1.71 0.82 64 - - - - - - 2.34 0.94 

0.10 8.5 1.98 0.88 28 - - - - - - 4.50 0.68 

0.25 8.5 3.08 0.79 32 - - - - - - 6.28 0.68 

Mix 48 h 

-0.10 11.2 2.18 0.96 166 - - - - - - 3.17 0.71 

0.10 11.1 1.82 0.79 200 - - - - - - 5.26 0.73 

0.25 11.2 2.12 0.72 218 - - - - - - 12.5 0.80 

Mix 24 h no 
AC 

-0.10 7.4 2.84 0.80 37 - - - - - - 2.89 0.95 

0.10 7.3 3.26 1.00 90 - - - - - - 4.57 0.70 

0.25 7.2 10.9 0.63 106 - - - - - - 11.0 0.74 
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In conclusion, the different purification and functionalization treatments produce CNTs with 

different electrochemical behaviours, as the extensive characterization has showed. Metal 

nanoparticles derived from the synthetic process are still present after nitric acid treatment and 

only a slight increase in surface area, peak current and capacitance can be observed. Better 

results can be obtained with the sulphonitric treatment, with the complete removal of metal 

nanoparticles, higher increase of the surface area and mesoporosity, higher current intensities 

and capacitance values, formation of a relevant quantity of surface covalent acidity. When this 

treatment is performed for longer time (48 h), the result is a cutting of CNTs, which changes 

capacitance, charge transfer resistance, current intensity and the kinetic mechanism from 

planar to convergent, causing the formation of a step-shaped cyclovoltammogram. At last, the 

removal of amorphous carbon is beneficial for the electrochemical response, yielding to more 

sensible electrodes, more capacitive and less resistant to electron transfer, without losing the 

diffusion control and reversibility. For all these reasons, CNTs treated in sulphonitric mixture for 

24 h and purified by amorphous carbon were chosen for the following electroanalytical 

applications. 

o-Toluidine determination 

CNTs without amorphous carbon were chosen for the electroanalitycal detection of o-toluidine, 

considering the promising results obtained previously with carbon-based electrodes (Chapter 

3). 

Consecutive cyclic voltammograms on the same analyte concentration (Figure 4.17) show the 

o-toluidine peak at about + 0.9 V (SCE), but also the formation of a polymer, with satellite peaks 
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between + 0.3 to + 0.7 V and 0 to + 0.5 V. This behaviour, probably already present also when 

using other carbon-based electrodes, is in this case amplified, due to their higher surface area 

and higher density of active sites of CNTs electrodes. Firstly, considering the previous results, 

Differential Pulse Voltammetry was performed for consecutive analyte addition, but no good 

results were obtained, as shown in Figure 4.17, possibly due to the formation of a fouling 

polymer during the pulse. Square Wave Voltammetry was not considered, since the 

electrochemical reaction is irreversible. Chronoamperometry was carried out, as shown in 

Figure 4.17, but also in this case the fixed potential causes the quick saturation of the electrode 

caused by the production of the polymer. 

  

 

Figure 4.17. Polymerization (a) of o-toluidine on CNTs modified electrode and detection of o-toluidine using DPV 
(b) and chronoamperometry at + 1.0 V (c). 
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To avoid the formation of the polymer, Linear Sweep Voltammetry was employed between 0.65 

V and 1.00 V, potentials out of the range of polymerization. Indeed, excellent results are 

obtained, characterized by o-toluidine peaks linearly increasing for consecutive analyte 

additions. A good calibration plot was obtained (Figure 4.18). All the analytical parameters 

evaluated are reported in Table 4.6: LoD are in the range of ppb and excellent RSD % and 

Apparent Recovery Factors were obtained, better than those obtained with previously tested 

electrodes and with better reproducibility.  

 

Figure 4.18. Linear Sweep voltammograms for consecutive additions of o-toluidine and corresponding 
calibration plot. 

 

Table 4.6. Analytical parameters evaluated using peak height in the LSV detection of o-toluidine. 

Parameter Value 

LoD / ppm 0.161 
LoQ / ppm 0.563 

R2 0.9998 
RSD % 5 % 

Apparent Recovery Factor 1 102 % 
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The optimized electroanalytical method was used in two real applications: the detection of o-

toluidine during its photo-oxidation by ZnO and o-toluidine  absorption by cyclodextrines. 

In the first real application, nanocristalline ZnO synthetized via microemulsion technique by 

Prof. Ardizzone and Dr. Cappelletti group was used for the photoremoval under UV light of o-

toluidine in water. Zinc oxide is a photocatalyst, which under UV light can remove pollutants in 

water, mineralizing them or converting them in safer products. Figure 4.19 presents the cell 

used for the analysis, a scheme of microemulsion technique and the HR-TEM image of the 

obtained ZnO powder, showing the formation of hexagonal nanoparticles. The photoreaction 

was followed contemporaneously by HPLC with UV detector, DPV at C-SPE (Chapter 3) and LSV 

at CNTs without amorphous carbon. Figure 4.20 reports the comparison of the three analytical 

methods for the same photochemical reaction, showing the comparable results for the 

standard HPLC technique and that based on CNTs, while no good performances are obtained 

for C-SPE. 

 

Figure 4.19. Cell setup for electroanalytical experiments; HRTEM image of ZnO photocatalyst and schematic 
representation of microemulsion synthesis. 
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Figure 4.20. Comparison of three different analytical procedures used to evaluate o-toluidine photoremoval by 
ZnO. 

In the second real application, o-toluidine absorption by cyclodextrines or by their combination 

with polyamido-aminic resins (PAA) (Ferruti et al., 2013), produced by Prof. Ranucci and Prof. 

Ferruti group, was followed using the CNTs based electrode. Cyclodextrines are cyclic 

oligosaccharide macrocycles with different sizes of the internal cavity. According to the number 

of glucose monomeric unit, they are classified in three groups:  α (6-membered sugar ring); β 

(7-membered sugar ring) and γ ( -membered sugar ring), as shown in Fig. These 

macromolecules are widely used for the absorption of various types of pollutants, since they 

can enter into the the cavity of the correct size, allowing the remediation of water. In particular, 
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0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

100

 HPLC

 DPV C-SPE

 LSV CNT

 

 

%
 D

is
a

p
p

e
a

ra
n

c
e

t / min



114 
 

In the first part of the study, the three types of cyclodextrines were dissolved in water and used 

in solution. The results are presented in Figure 4.21. As expected, β-cyclodextrines absorb the 

major quantity of o-toluidine. 

  

Figure 4.21. Comparison of absorption behaviour of α, β, γ cyclodextrines and ISA 23 hydrogel. Schematic 
representation of α, β, γ cyclodextrines. 

Since after the absorption of the pollutants, the solubilised complexes can be removed from the 

water with difficult separation steps, cyclodextrines were used in combination with 

polyamidoamine resins (Figure 4.22), which act as a solid support in a hydrogel form, that can 

be easily inserted in a filter and finally easily removed after the remediation.  

  

Figure 4.22. Schematic representation of resin with cyclodextrine and poly(amido amine). 
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Three PAA types were used as support material for cyclodextrine. The results are shown in 

Figure 4.23. All the PAA-cyclodextrine resins absorb better than the corresponding 

cyclodextrine. This fact can be explained considering some favourable interactions between the 

PAA and the cyclodextrines. Moreover, better results in terms of highest sorption values and 

less scattered points are obtained in the case of the absorption by β-cyclodextrines, as 

expected by  iterature evidences. The larger cavities of γ-CD allows the entering of the 

aromatic molecule, but also its exiting, causing a scattering of the results and a final lower 

absorption value.   

 

Figure 4.23. Sorption performance of soluble CDs and CD-containing nanosponges in µmol of o-toluidine per 
µmol of CD in the sorbent. 

The electroanalytical method used has also permitted to calculate kinetic parameters, reported 

in Table 4.7, from absorption curves.  

The absorption kinetic curves were fitted according to a mono exponential kinetic model, 

indicating the presence of only one type of absorption site. The relative equation is: qt = qe – 

(D/mabs)(exp(-kDt), where mabs is the weight of the sample of the sorbing material, kD is the 

relevant sorption rate, qe is the metal-pollutant sorption capacity at equilibrium and D is a 
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further parameter modulating the sorption rate. As expected, the sorption capacity at 

equilibrium and the factor D are higher, while the rate constant is lower, for samples containing 

β-cyclodextrines, confirming their best absorption. The best performances are obtained for 

BISPIP-βCD and I A23- βCD with very similar results, followed by BAC-βCD.  

Table 4.7. Kinetic parameters of sorption performance of soluble CDs and CD-containing nanosponges obtained 
using the mono-exponential kinetic model. 

Sample 
o-toluidine 

qe (μmol g-1) D (μmol dm-3) kD ×10-3 (min-1) t1/2 (min) 

αCD 47 ± 6 1.6 ± 0.2 3.6 ± 0.9 223 

βCD 174 ± 9 5.3 ± 0.3 2.4 ± 0.3 294 

γCD 117 ± 11 3.6 ± 0.3 3.0 ± 0.6 243 

ISA23 40 ± 2 1.2 ± 0.1 6.6 ± 0.9 111 

BAC-αCD 104 ± 7 3.5 ± 0.2 4.1 ± 0.6 183 

BISPIP-αCD 112 ± 7 3.0 ± 0.2 8 ± 2 80 

BAC-βCD 137 ± 5 4.2 ± 0.2 3.4 ± 0.3 192 

BISPIP-βCD 199 ± 10 6.3 ± 0.3 2.3 ± 0.2 306 

ISA23-βCD 188 ± 6 5.7 ± 0.2 2.6 ± 0.2 277 

BAC-γCD 88 ± 4 2.7 ± 0.2 8 ± 1 78 

ISA23-γCD 82 ± 6 2.1 ± 0.4 19 ± 8 29 

 

 inally, after a first use, the best β-cyclodextrine-based composites were submitted to a 

regeneration step, which consisted in methanol extraction and thus re-used other two times, 

showing maintenance or even improvement of absorption performances, as shown in Figure 

4.24. 
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Figure 4.24. Absorption capacities of o-toluidine for ISA23-βCD and BISPIP-βCD nanosponges before (1
st

 cycle) 
and after recycling (2

nd
 and 3

rd
 cycles). 

In conclusion, the applicability of the optimized electroanalytical method based on CNTs 

without amorphous carbon electrodes was demonstrated, following o-toluidine disappearance 

during photoremoval mediated by ZnO and o-toluidine absorption by cyclodextrine-based 

resins.  

Benzidine determination 

CNTs without amorphous carbon were also employed for the detection of benzidine, 

considering the promising results obtained previously for carbon-based electrodes (Chapter 3). 

Initially, CV and EIS were carried out to evaluate the behaviour of the electrode toward 

benzidine. Figure 4.25 shows cyclic voltammograms obtained for consecutive additions of 

benzidine and study of the scan rate. Benzidine presents also in this case two intense peaks at + 

0.57 V and + 0.65 V (SCE). Varying the scan rate, each peak splits into two peaks, probably due 

to a small difference between the two aromatic units constituting the molecule. 
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Figure 4.25. Cyclic voltammograms for consecutive additions of benzidine (a) and scan rate study (b). 

Figure 4.26 reports complex plane spectra and Bode plots, while the relative equivalent circuits 

are reported in Figure 4.27.  

 

Figure 4.26. Complex plane plot and Bode plot in the presence of benzidine. 
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Table 4.8 shows the impedance parameters obtained from the fitting. Impedance potentials 

were chosen from cyclic voltammograms, considering the peak potentials, + 0.57 V and + 0.65 

V, and the capacitive potential, + 0.10 V. The trend of the spectrum at + 0.10 V shows a 

semicircle for high frequencies, representedby a RC circuit, and a straight line for low 

frequencies, indicating a CPE in series. The Bode plot is in accordance with this trend. Values of 

capacitances and resistance are in agreement with previous values obtained in the 

characterization of CNTs. At + 0.57 V and + 0.65 V, the straight line becomes a second semicircle 

and a resistance in parallel with the CPE has to be added to the equivalent circuit. In the Bode 

plots, the initial phase angle changes for the presence of the new resistance and also the 

frequency of the peak attributed to the first RC shifts, indicating the reaction of the molecule. 

Also the values of capacitances and resistances change due to the presence of another process. 

Table 4.8. Impedance parameters obtained by impedance fitting in the presence of benzidine. 

Epvs SCE 
/ V 

R / Ω 
cm2 

CPEDL / mF cm-2 
sα-1 

αDL 
RCT / Ω 

cm2 
CPEPOL / mF cm-2 

sα-1 
αPOL 

RPOL / Ω 
cm2 

0.10 2.8 3.7 0.83 15 4 0.94  
0.57 2.8 8.45 0.98 4.3 17.3 0.68 1221 
0.65 2.8 11.86 0.83 6.2 26.3 0.66 198 

 

After electrode characterization in the presence of benzidine, different electroanalytical 

techniques were used to optimize the detection method. Table 4.9 shows the analytical 

parameters for SWV, LSV, DPV and Chronoamperometry .  
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Table 4.9. Analytical parameters of different electroanalytical techniques for the determination of benzidine at 
CNT-modified electrode. 

Method R2 
LoD / 
ppm 

LoQ / 
ppm 

RSD
% 

Apparent
Recovery 
Factor % 

SWV 
Height 0.992 0.201 0.611 3 102 
Area 0.991 0.227 0.691 5 108 

DPV 
Height 0.991 0.231 0.703 7 95 
Area 0.990 0.244 0.742 10 96 

LSV 100 mV s-1 
Height 0.990 0.224 0.682 7 118 
Area 0.977 0.348 1.057 9 126 

LSV 200 mV s-1 
Height 0.990 0.194 0.589 5 96 
Area 0.991 0.183 0.558 6 96 

Chronoamperometry Step 0.995 0.176 0.535 7 95 

 

Figure 4.28 presents SWV plots for consecutive additions of benzidine with the corresponding 

calibration plots, considering peak height and area. LoD and LoQ are very similar for all the 

electroanalytical procedures, but considering RSD % and Apparent Recovery Factors, SWV 

appears to be the best technique. 

  

Figure 4.28. Square wave voltammograms and corresponding calibration plots for consecutive additions of 
benzidine. 
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Future developments will consider the applications of this optimized methodology to real 

applicative cases, to test the possibility to use it in online and onsite environmental analysis. 

Furan determination 

In the case of furan determination, Pt electrodes showed good performances, but not 

sufficiently low detection limits (Chapter 3). For this reason, we decided to use Pt nanoparticles 

electrodeposited on CNTs, to combine the properties of nanoparticles with those of CNTs. 

Before the production of this type of electrodes, the behaviour of furan was studied at GC 

electrode, to evaluate also the possible activity of carbon materials toward furan. Figure 4.29 

presents SW voltammograms and the corresponding calibration plots obtained for consecutive 

additions of furan; in Table 4.10 the analytical parameters are reported. GC shows a very good 

activity for furan determination with lower limits of detection with respect to Pt-based 

electrodes and good apparent recovery factors.   

  

Figure 4.29. Square wave voltammograms and corresponding calibration plots for consecutive additions of 
furan. 
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Table 4.10. Analytical parameters for the determination of furan at glassy carbon electrode. 

cFuran / ppm Peak S / A mol-1 L R2 
LoD / 
ppm 

LoQ / 
ppm 

RSD
% 

Apparent
Recovery 
Factor % 

0.14 
Height 

0.073 ± 0.002 0.994 0.23 0.70 35 97 
0.45 0.070 ± 0.002 0.996 0.17 0.52 11 95 
0.49  0.069 ± 0.001 0.997 0.14 0.42 6 93 
0.14 Area 0.0109 ± 0.0003 0.991 0.19 0.57 45 96 
0.45  0.0104 ± 0.0002 0.995 0.18 0.55 13 94 
0.49  0.0101 ± 0.0002 0.997 0.19 0.59 9 92 

 

Composite electrodes were produced in two steps (Figure 4.30): a dip coating of the electrode 

with a solution of CNTs dispersed in Nafion and the successive electrodeposition of Pt 

nanoparticles. The time of deposition influences the quantity of Pt deposited. In particular, 

small deposition time favoured a better growth of Pt nanoparticles, as shown in Figure 4.30. 

The electrode was tested toward the detection of furan, first using cyclic voltammetry. The 

voltammograms and the corresponding calibration plots are shown in Figure 4.31. Furan 

presents a peak at about + 1.8 V (SCE), which increases for consecutive additions, yielding to 

good calibration plots.  

 

Figure 4.30. Schematic representation of modified-electrode preparation and cyclic voltammograms after 
different times of Pt deposition. 
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Figure 4.31. Cyclic voltammograms and calibration plots for consecutive additions of furan at CNT/PtNPs-
modified electrode. 
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range of mesoporosity, higher covalent acidity, allowing higher peak currents in the presence of 

the model probe molecule, higher capacitance and lower resistance. Furthermore, also the time 

of treatment and the presence of amorphous carbon proved to be key parameters. Indeed, the 

treatment of CNTs for longer time causes the cutting of CNTs, changing the diffusion 

mechanism from planar to radial convergent, with a consequence in the shape of the 

voltammogram which becomes step-like, and yielding to worse values of the double layer 

capacitance and the electron transfer resistance. On the other hand, the removal of amorphous 

carbon, produced during sulphonitric functionalization, is beneficial for the electrochemical 

activity, giving CNTs with higher currents and capacitance, more reversible and diffusive 

behaviour and lower resistance to the electron transfer. 

Finally, after having optimized the synthetic and purification procedures the resulting best 

electrodes were used for real applications: the detection of o-toluidine, benzidine and furan, 

already studied in previous determinations (Chapter 3). 

 In the case of o-toluidine, excellent results in terms of limits of detection (ppb range) and 

reproducibility (apparent recovery factors very close to 100 %) were obtained and applications 

to real cases were performed. The photoremoval of o-toluidine by ZnO was successfully 

followed with the optimized technique and the comparison with the standard method (HPLC) 

shows excellent results. The new electroanalytical method was also employed to the study of o-

toluidine absorption by β-cyclodextrine-based resins, allowing evaluating the best absorption 

performance and absorption kinetic parameters.  
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In the case of benzidine, the optimized method was based on SWV, which reached LoD in the 

order of magnitude of SPE results, but permitting better reproducibility. At last, the 

electrodeposition of Pt nanoparticles on CNTs and Nafion was demonstrated to be promising 

for the determination of furan, but parameters optimization and systematic characterization 

have to be performed in order to project the best electrode design to obtain lower detection 

limits. 

Future developments will regard the study of electrochemical performances and applications of 

other carbon-based nanomaterials, in particular graphene and nanofibers, for the production of 

new electroanalytical sensors. 
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4.2. Metallic and Semiconductor Nanoparticles 

4.2.1. Introduction 

Nanoparticles (NPs) present a unique electronic nature, since they follow quantum mechanical 

rules instead of the laws of classical physics, which governs bulk materials. Nanoparticles colloid 

science has begun in the middle of the 19th century with experiments of Michael Faraday on 

gold sols, when a chloroaurate solution was reduced using phosphorus producing a red sol. 

After that moment, the invention of new characterization techniques and further synthetic 

experiments signed the rapid growth of this new area of research (Hodes, 2001; Pierce & Zhao, 

2010; C. N. R. Rao et al., 2004; Schmid, 2003).  

Nanoparticles have peculiar properties, usually dependent on their size and shape and which 

are not typical of the corresponding bulk materials. These properties make NPs very attractive 

for many applications. In particular, considering their application in the electrochemical field 

(Campbell & Compton, 2010; Luo et al., 2006; Liza Rassaei et al., 2011), they can change the 

diffusion mechanism, depending on the size of NPs and voltammetric scan rate, they have high 

active surface area and high surface-to-volume ratio, they show improved selectivity and 

electron transfer rates, catalytic activity, higher signal-to-noise ratio, control over the local 

microenvironment, compatibility with nanoarray design and low costs. 

Among all available compounds, two types of nanoparticles seem to be very promising from the 

electrochemical point of view: metal and semiconductor nanoparticles (Liza Rassaei et al., 

2011). The first class allows unique characteristics for stripping voltammetry, confers 

conductivity changes of the electrochemical systems and electrocatalysis, permits production of 
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stable modified electrodes very active towards specific analytes. Modified electrodes with 

metal nanoparticles are produced by grafting, i.e. deposition of nanoparticles on the electrode 

after their synthesis usually performed via colloidal way, or by electrodeposition, i.e. direct in 

situ generation on the electrode. Gold, silver, platinum, palladium, nickel, copper, ruthenium, 

bismuth and iridium are the most employed metal nanoparticles for electrode modification 

(Hernández-Santos, González-García, & García, 2002; Jing Wang, 2012).  

The second class (semiconductor NPs) is widely used in electrochemical gas sensors for their 

high detection ability and stability, but their application in modified electrodes is still at the 

beginning. This type of nanoparticles can be produced by colloidal suspension, sol-gel synthesis, 

deposition from vapour phase, chemical bath deposition and electrodeposition. WO3, TiO2, 

ZnO, SnO2 and SiO2 are the usual semiconductor nanoparticles employed for electrochemical 

purpose. To further increase electrochemical performances, nanoparticles can be used in 

combination with carbon nanotubes, improving the conductivity and availability of active sites. 

Metal and semiconductor nanoparticles can be used to monitor inorganic and organic analytes, 

in particular pesticides, heavy metals and air pollutants. Research in this field is still in rapid 

growth to understand nanoparticles chemistry, reactivity and possible mechanisms involved in 

their interaction with the analyte (Campbell & Compton, 2010; Liza Rassaei et al., 2011). 

In this chapter, two types of metal nanoparticles, gold and silver, and one type of 

semiconductor nanoparticles, titanium dioxide, in combination with carbon nanotubes were 

studied and characterized, finally testing them in different applications in the electroanalytical 

field. 
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4.2.2. Gold Nanoparticles and Carbon Nanotubes 

4.2.2.1. Gold 

Gold is a material employed in various fields, thanks to its unique properties, such as efficient 

conductivity, malleability, ductility, softness, biocompatibility and chemical inertness. In 

particular, it was extensively used in electrochemistry as bulk electrode for a big number of 

applications, from the sensoristic to the electrocatalysis area. In the last 20 years, thanks to the 

discovery of gold nanoparticles, its employment in this fields is rapidly growing (Campbell & 

Compton, 2010). 

Gold nanoparticles show a series of advantages in comparison with bulk gold (Hodes, 2001; 

Pierce & Zhao, 2010; C. N. R. Rao et al., 2004; Schmid, 2003). First of all, they are a less 

expensive material, which can be synthesized in many ways and presents high surface-to-

volume ratio. Moreover, their properties can be tuned by varying size, shape and chemical 

environment, and for this reason, they can be functionalized with many types of compounds 

(inorganic and organic species, biomolecules). They can be produced in different shapes 

(spherical, cubic and rod), showing different redox, fluorescent, conductive, optical, catalytic, 

thermal and electronic properties. In electroanalysis, they are used for the detection of an 

infinite number of compounds, such as metal ions, small molecules, proteins, nucleic acids, 

malignant cells, environmental pollutants (Campbell & Compton, 2010; S Laschi et al., 2007; L 

Rassaei, Amiri, Cirtiu, Sillanpaa, & Marken, 2011; Song & Swain, 2007). 

Among the innumerable types of gold nanoparticles synthesis, two are the most employed ones 

for the production of materials suitable for electroanalytical applications: colloidal synthesis 
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and electrodeposition (Campbell & Compton, 2010). The first consists in the reduction of a Au 

salt using a reducing agent (NaBH4, citric acid, etc.) and the subsequent casting of the 

nanoparticles on the electrode, while the second generates in situ nanoparticles directly on the 

electrode. Colloidal synthesis has the disadvantages of more complex synthesis and aggregation 

phenomena, while, on the other hand, homogeneous deposits and controlled shape and size 

are difficult to obtain in electrodeposition. Moreover, gold nanoparticles obtained via colloidal 

synthesis can be deposited on a support, avoiding the critical problem of aggregation. Different 

types of support can be used, but carbon nanotubes seem to be very attractive, considering 

also the possibility of enhancement of the electrochemical activity of the nanoparticles.  

In this context, the study of the electrochemical performance of gold nanoparticles syhntesized 

by colloidal procedure supported on carbon nanotubes is an interesting field of research.  

4.2.2.2. Materials and Methods 

Materials used in this work were produced by Prof. Prati and Dr. Villa group of the University of 

Milan. Gold nanoparticles were synthesized via colloidal method and supported on carbon 

nanotubes (MWCNTs), to improve conductivity and prevent agglomeration, in the presence or 

absence of polyvinylalcohol (PVA) (Tsai & Huang, 2006) as protective agent for the metal. In the 

first case, nanoparticles were formed in the presence of PVA and immobilized on the support, 

while in the second case, nanoparticles were produced directly on carbon nanotubes. 

Glassy  Carbon  electrode  was  modified  using  0.5 mg mL-1 suspension of the desired material, 

using DMF as suspending solvent. Different materials were used  to  study  the  influence  of  
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CNTs and gold nanoparticles  on  the  electrochemical  response, bringing to the following 

modified electrodes: 

 Glassy  Carbon  electrode  without  any  modification (GC) 

 GC/CNT electrode,  modified  with  a suspension of Baytubes CNTs  

 GC/CNT-PVA  electrode,  modified  with  a  suspension of CNTs modified with PVA 

 GC/CNT-1%AuNP electrode, modified with a suspension of CNTs decorated with 1 % gold 

nanoparticles, obtained by precipitation 

 GC/CNT-1%AuNP-PVA electrode, modified with a suspension of CNTs decorated with 1 % 

gold nanoparticles, obtained by PVA mediated synthesis 

 GC/CNT-5%AuNP electrode, modified with a suspension of CNTs decorated with 5 % gold 

nanoparticles, obtained by precipitation 

 GC/CNT-5%AuNP-PVA electrode, modified with a suspension of CNTs decorated with 5 % 

gold nanoparticles, obtained by PVA mediated synthesis 

0.1 M KCl aqueous solution was used as supporting electrolyte for all the characterizations. 

4.2.2.3. Results and Discussion 

First of all, different carbonaceous materials were tested to evaluate which was the most 

suitable support. Four types of carbonaceous compounds were considered (Tessonnier et al., 

2009) in particular two types of nanofibers and two types of nanotubes: 
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 CNF-LMT: carbon nanofibers with a diameter around 20 nm, fishbone; 

 CNF-HHT: carbon nanofibers with a diameter > 80 nm, with nitrogen residues and a higher 

graphitization degree; 

 CNT-Baytube: carbon nanotubes produced by Bayer; 

 CNT-Nanocyl: carbon nanotubes produced by Nanocyl. 

Voltammetric analysis with K4[Fe(CN)6] as model probe molecule were carried out and results 

are shown in Figure 4.32. Nanofibers show a small current signal increment in comparison with 

bare GC, with not well defined and very broad peaks, typical of a strongly electrochemical 

irreversible system. However, peak shapes and currents are better in the case of CNF-HHT, 

characterized by the higher graphitization degree. The intensity of the peaks doubles for carbon 

nanotubes and also peak shape becomes less broad, demonstrating that carbon nanotubes are 

the better material to be used in this application. CNT-Nanocyl gives the highest peak current, 

with peak potentials very similar to GC, but CNT-Baytube present the best peak-to-peak 

separation and the sharpest peak, indicating a more reversible electrochemical system. For 

these reasons, CNT-Baytube were chosen as ideal material for modified electrodes, although it 

shows also the highest capacitance, which is sometimes detrimental for sensitivity.  



132 
 

 

Figure 4.32. Cyclic voltammograms of different types of carbon nanofibers and carbon nanotubes modified 
electrodes. 

Figure 4.33 shows cyclic voltammograms of Baytube carbon nanotubes with different gold 

nanoparticles percentages and with or without protective polymer. When protective polymer is 

present on the surface of carbon nanotubes, capacitance decreases and the current signal is 

lower and appears as step-shaped, indicating that the polymer probably generates a disordered 

surface changing the diffusion process. The addition of 1 % precipitated Au nanoparticles 

causes the increase of the signal intensity, maintaining the shape and peaks separation, while 

for 5 % Au, the current is lower. The detrimental effect of the polymer can be seen also in the 

case of GC/CNT-1%Au-PVA, with a decrease of peak current and capacitance and a broader 

-0.4 -0.2 0.0 0.2 0.4
-1.4

-0.7

0.0

0.7

1.4

 

 GC_Background

 GC

 CNF-LHT

 CNF-HHT

 CNT-Baytubes

 CNT-Nanocyl

j 
/ 

m
A

 c
m

-2

E / V (vs. SCE)



133 
 

peak shape. The case of 5 % Au nanoparticles and PVA is completely different, since it gives the 

best electrochemical performances, probably due to a better ordered structure and 

cooperation among nanoparticles. 

 

Figure 4.33. Cyclic voltammograms of Au nanoparticles and carbon nanotubes modified electrodes. 
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with PVA. Considering the slope of the Randles-Sevcik plot, higher values can be obtained with 

the CNTs modification with Au nanoparticles, probably for an increase of surface area, but also 

for a change in the diffusion mechanism. The presence of PVA with only CNTs shows a 

completely different behaviour, since reversibility and diffusion control are lost, possibly due to 

the formation of a disordered inhomogeneous surface. This type of conformation is probably 

not the same when Au nanoparticles are present, because in this case PVA localizes around 

nanoparticles avoiding a chaotic assembly.  

Table 4.11. Voltammetric parameters obtained from cyclic voltammograms of Au nanoparticles and carbon 
nanotubes modified electrodes. 

CV parameters GC CNTs 
CNTs-
PVA 

CNTs-
Au1% 

CNTs-
Au1%-PVA 

CNT-
Au5% 

CNTs-
Au5%-PVA 

C / mF cm-2 0.08 2.88 2.06 4.26 0.54 1.41 3.64 
Ep-Ep/2 / mV 96 68 92 82 80 95 79 
∆EP / mV 171 103 146 129 122 171 127 

Slope ip vs v0.5 / μA 
mV-0.5 cm-2 s0.5 

31 106 62 129 123 154 161 

Slope Ln ip  vs  ln v 0.44 0.48 0.38 0.41 0.44 0.51 0.49 

 

Electrochemical impedance spectroscopy was performed in the presence or absence of the 

model probe molecule at – 0.16 V (SCE), the capacitive area of cyclic voltammogram, and at + 

0.11 V and + 0.27 (SCE), where the redox reaction takes place. 

Figure 4.34 shows impedance spectra obtained in the absence of the redox probe. Complex 

plane plots present a semicircle for high frequencies, referring to the formation of the double 

layer, and a straight line with slope > 0.5, in some cases substituted by a semicircle, indicating 

the diffusive process. Bode spectra show very similar trend, with a time-dependent process for 
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medium frequencies, which is present only for the electrodes with the highest capacitance and 

for GC/CNT-PVA. 

  

 

Figure 4.34. Complex plane plot and Bode plot at – 0.16 V in the absence of redox probe. 
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transfer resistance, which is beneficial for fast and easy electrode reactions. The highest 

capacitance values obtained for GC/CNT-1%AuNP and GC/CNT-5%AuNP-PVA confirm cyclic 

voltammetric results. Moreover, in the case of GC/CNT-1%AuNP-PVA the double layer 

capacitance and polarization capacitance decrease, while polarization resistance increases, 

probably due to the formation of isolated aggregates of nanoparticles and polymer, producing 

insulating and inhomogeneous surface. 

 

Figure 4.35. Equivalent circuits used to fit impedance data. 

 

Table 4.12. Impedance parameters obtained by impedance fitting in the absence of redox probe. 

Electrodes E / V 
R / Ω 

cm2 
CPEDL / mF 

cm-2 sα-1 
αDL 

RCT / Ω 
cm2 

CPEPOL / mF 
cm-2 sα-1 

αPOL 
RPOL / Ω 

cm2 

CNTs 
-0.16 7.98 19.80 0.63 32 5.76 1.02 1211 
0.11 7.92 25.70 0.57 631 4.36 1.00 - 
0.27 7.82 22.40 0.60 26 3.23 1.00 - 

CNTs-PVA 
-0.16 9.08 2.92 0.80 35 4.16 0.89 - 
0.11 8.97 1.86 0.82 42 2.87 0.96 - 
0.27 8.88 1.68 0.84 36 2.35 0.95 - 

CNTs-Au1% 
-0.16 7.29 4.06 0.85 7.60 6.98 0.90 - 
0.11 7.34 2.72 0.86 9.25 4.54 0.95 - 
0.27 7.26 2.66 0.86 8.35 3.83 0.96 - 

CNTs-Au1%-
PVA 

-0.16 6.47 0.56 1.00 2.04 0.75 0.92 6521 
0.11 6.52 0.55 1.00 1.88 0.66 0.92 22744 
0.27 6.51 0.58 1.00 1.74 0.69 0.92 25280 

CNTs-Au5% 
-0.16 7.71 58.06 0.55 11 5.81 0.95 1530 
0.11 7.77 5.02 1.00 0.81 3.88 0.94 - 
0.27 7.65 4.14 1.00 0.75 3.79 0.94 - 

CNTs-Au5%-
PVA 

-0.16 8.18 3.94 0.80 19 6.19 0.96 1453 
0.11 8.13 2.73 0.83 17 4.36 0.95 - 
0.27 8.11 2.38 0.85 15 3.53 0.95 - 
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The complex plane spectra and Bode plots in the presence of redox probe are shown in Figure 

4.36-4.37-4.38. Complex plane spectra have a trend similar to the previous one, with a 

semicircle for high frequencies and a straight line with a slope > 0.5 or a second semicircle for 

low frequencies. The difference can be appreciated when the redox reaction takes place, since 

at these potentials impedance values strongly decrease together with the slope of the straight 

line, showing a less capacitive behaviour. Moreover, in Bode plots also GC/CNT-PVA and 

GC/CNT-1%AuNP-PVA present the time-dependent process at medium frequencies.  

  

 

Figure 4.36. Complex plane plot and Bode plot at – 0.16 V in the presence of redox probe. 
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Figure 4.37. Complex plane plot and Bode plot at + 0.11 V in the presence of redox probe. 

  

Figure 4.38. Complex plane plot and Bode plot at + 0.27 V in the presence of redox probe. 
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resistance increases. Gold nanoparticles contribute to lower electron transfer resistance and 

GC/CNT-1%AuNP and GC/CNT-5%AuNP-PVA show the highest capacitance. Once again, 

GC/CNT-1%AuNP-PVA has the worst performance, adding a resistance to the diffusion process, 

which confirms the formation of an insulating and resistive surface. 

 

Figure 4.39. Equivalent circuits used to fit impedance data. 
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Table 4.13. Impedance parameters obtained by impedance fitting in the presence of redox probe. 

Electrodes E / V 
R / Ω 

cm2 
CPEDL / mF 

cm-2 sα-1 
αDL 

RCT / Ω 
cm2 

CPEPOL / mF 
cm-2 sα-1 

αPOL 
RPOL / 
Ω cm2 

Rw / Ω 
cm2 

τ / s α 

CNTs 
-0.16 7.25 18.26 0.63 25 5.73 1.00 1170 - - - 
0.11 7.43 7.64 1.00 1.64 6.62 0.79 1160 - - - 
0.27 7.16 10.82 0.69 84 7.21 1.00 643 - - - 

CNTs-PVA 
-0.16 8.30 0.34 1.00 1.03 1.39 0.80 7837 - - - 
0.11 8.38 2.72 0.74 170 4.66 0.70 - - - - 
0.27 8.39 2.05 0.79 142 5.43 0.65 - - - - 

CNTs-Au1% 
-0.16 6.81 3.77 0.85 8.16 6.99 0.89 - - - - 
0.11 6.82 3.35 0.89 5.01 9.08 0.76 766 - - - 
0.27 6.76 2.78 0.89 6.08 6.08 0.84 1143 - - - 

CNTs-
Au1%-PVA 

-0.16 6.32 2.02 0.74 4.14 0.63 0.93 9367 - - - 
0.11 6.23 2.66 0.70 4.83 0.67 0.93 44 66 0.1 0.44 
0.27 6.18 2.84 0.65 469 1.64 1.00 19 19 0.1 0.40 

CNTs-Au5% 
-0.16 7.33 46.00 0.57 46 6.43 0.97 1233 - - - 
0.11 7.30 7.68 1.00 0.17 6.35 0.83 1070 - - - 
0.27 7.36 17.96 0.93 83 8.84 0.81 - - - - 

CNTs-
Au5%-PVA 

-0.16 7.46 3.64 0.80 22 6.34 0.97 1465 - - - 
0.11 7.42 3.78 0.82 13 8.11 0.78 1011 - - - 
0.27 7.36 3.57 0.86 9.73 7.60 0.75 1046 - - - 
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The most promising material (CNTs-Au1%) was tested for the determination of glycerol. Glycerol is 

an important intermediate in the production of biodiesel and numerous efforts are made to find 

the best way of transformation in industrial advantageous products. For these reasons its 

determination using simple and cheap techniques is important. In the Literature (Pop et al., 2012), 

only few examples of electroanalytical determination of glycerol are reported, using Boron Doped 

Diamond electrode or bare gold electrode, but no example of nanomaterials can be found. 

Considering the results obtained by bare gold electrodes employed for the amperometric 

detection of glycerol, gold nanoparticles modified electrodes seem to be a more promising device. 

GC/CNT-1%AuNP working electrode was used and preliminary results are shown in Figure 4.40, 

using NaOH 0.1 M as supporting electrolyte. Glycerol has an intense oxidation peak at + 0.10 V 

(SCE), which increases for consecutive additions of the analyte, allowing to obtain a calibration 

plot. Future developments will consider also GC/CNT-5%AuNP-PVA and the use of more 

appropriate electroanalytical methods for a quantitative analysis. 

 

Figure 4.40. Cyclic voltammograms and corresponding calibration plots for consecutive additions of glycerol. 
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as matrix for immobilization of gold nanoparticles, prepared by precipitation method or by 

mediated-polymer synthesis. 

Cyclic voltammetric and electrochemical impedance spectroscopic characterization show that the 

presence of the polymer on CNTs has a detrimental effect on the electrochemical performance of 

the electrode also when Au 1 % is present, probably due to the formation of an inhomogeneous 

and disordered surface. The addition of gold nanoparticles improves the properties of the 

electrodes, reaching higher peak current and capacitance values and lower charge transfer 

resistance in comparison with CNTs and allowing the maintenance of diffusion control and 

reversibility. The presence of gold nanoparticles at 1 % without PVA and at 5 % with PVA on CNTs 

show the best performences in terms of peak current, high capacitance and lower resistance. The 

first type of material is used for a glycerol preliminary determination by cyclic voltammetry, giving 

promising results. 

Future developments will consider the determination of glycerol using also CNTs with 5 % Au 

nanoparticles with PVA and the employment of different electroanalytical techniques more 

suitable for quantitative analysis. Moreover, the determination of other types of analytes, active 

on gold electrodes (e.g. As), will be taken into consideration.  
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4.2.3. Synthetic Silver Nanoparticles 

4.2.3.1. Silver 

Silver is an ideal metal for the design of electrodes, due to its unique properties: the highest 

electrical conductivity of all metals (Chun et al., 2010) and the good stability at different potential 

and pH. For these reasons and for silver catalytic properties towards particular analytes, silver 

nanoparticles modified electrodes are employed in the determination of various compounds of 

chemical and biological interest (Hodes, 2001; Pierce & Zhao, 2010; C. N. R. Rao et al., 2004; 

Schmid, 2003). In the Literature, many examples of silver nanoparticles modified electrodes for 

the catalysis of hydrogen peroxide reduction can be found (Han, Zheng, & Dong, 2013; Lu, Liao, 

Luo, Chang, & Sun, 2011; Qin et al., 2012; Qi Wang & Yun, 2012), followed by the detection of a 

variety of analytes, such as halides (Bellomunno et al., 2005; Abdirisak A Isse, Falciola, Mussini, & 

Gennaro, 2006; Abdirisak Ahmed Isse et al., 2009)(in particular chlorinated compounds (Chu & 

Zhang, 2012; Q. Li et al., 2013)), toxic compounds (pesticides (Kumaravel & Chandrasekaran, 

2010), chromium (Domínguez-Renedo et al., 2008; S. Xing et al., 2011), nitrates (Atmeh & Alcock-

Earley, 2011; Fajerwerg et al., 2010), nitrobenzene (Devi et al., 2012; Manivannan & Ramaraj, 

2013), polyphenols (Rawal, Chawla, & Pundir, 2011), arsenic (Prakash, Chakrabarty, Singh, & Shahi, 

2012), antimony (Renedo & Julia Arcos Martínez, 2007), metronidazole (Sadeghi, Hemmati, & 

Garmroodi, 2013), mercury (Manivannan & Ramaraj, 2013)) and other organic compounds 

(glucose (Jia, Wang, Liang, & Hu, 2012; Quan, Park, & Park, 2010; Ren, Meng, Chen, Tang, & Jiao, 

2005), adriamycin (K. Zhang & Zhang, 2010; Yuzhong Zhang, Zhang, & Ma, 2009), glutathione 

(Narang, Chauhan, Jain, & Pundir, 2012), tryptophane (J. Li et al., 2013)).  

The principal silver nanoparticles production methods are electrodeposition and colloidal 

synthesis by reduction of a silver salt in the presence of a protecting or stabilizing agent. Using 
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electrodeposition homogeneous deposits and controlled shape and size are difficult to obtain, 

while colloidal synthesis allows the formation of nanoparticles with various controlled shapes and 

sizes, with different electroanalytical performances (Campbell & Compton, 2010). 

Another critical point to obtain good modified electrodes is the homogeneous distribution of 

nanoparticles, because pre-synthetized nanoparticles can aggregate in solution, giving 

agglomerates in the order of micrometers. In this context, polymeric membranes used as 

dispersive agents find applications and particularly Nafion, which is extensively used as a host 

ionomer membrane for nanoparticles. Nafion presents many advantages: chemical stability, it 

prevents agglomeration and corrosion of guest species, it is easy to handle and it could help in 

avoiding anionic interferences (C. M. A. Brett, Alves, & Fungaro, 2001; Dura, Murthi, Hartman, 

Satija, & Majkrzak, 2009; Mardegan et al., 2012; Liza Rassaei et al., 2011; Wood, Chlistunoff, 

Majewski, & Borup, 2009). In the case of silver nanoparticles, some examples can be found in the 

Literature about electrodeposited Ag nanoparticles in Nafion (Kumaravel & Chandrasekaran, 2010; 

S. Xing et al., 2011) or other polymers (B. Liu, Deng, Hu, Gao, & Sun, 2012), but according to our 

knowledge only one paper (Ghilane, Fan, Bard, & Dunwoody, 2007) deals with pre-synthetized Ag 

nanoparticles in Nafion suspension, but without any application as electroanalytical sensor. 

Another possible way to prevent the aggregation of nanoparticles is their dispersion on carbon 

nanotubes, allowing at the same time the enhancement of conductivity and the increase of active 

sites availability. 

In this context, the study of the electrochemical performances of silver nanoparticles produced by 

colloidal synthesis and supported on Nafion and on carbon nanotubes is an interesting and 

promising research field. 

 



145 
 

4.2.4. Silver Nanoparticles on Nafion 

4.2.4.1. Materials and Methods 

Preparation of spherical Ag-Nanoparticles 

The  synthesis  was  modified  from  (Shervani et al., 2007). 250  mL  of  1%  wt  aqueous  solution  

of  corn  waxy  starch  were  filtered  on  a  0.45  m  Durapore® Millipore  filter. d(+)-Glucose  was  

added  to  200  mL  of  the  previous  solution  in order  to  obtain  a  solution  1%  wt  (solution  A). 

100  mL  of  10−3M  AgNO3 solution  were  prepared  using  solution A. This  solution  was  divided  

into  two  pyrex  vials  equipped  with screw  cap,  and  inserted  in  an  oven  (T  =  70°C,  24  h). It  

was  noticed  that  at  the  end  of  the  reaction  time,  reaction solution  turned  from  transparent  

to  yellowish. Nanoparticles  were  washed  in  three  steps:  reaction  solution  was centrifuged  

for  60  min,  water  was  removed  and  silver  nanoparticles were  dispersed  in  water. The  three  

steps  were  repeated  4  times,  but  finally  silver nanoparticles  were  re-dispersed  in  2  mL  of  

ethanol,  instead  of water. 

Preparation of modified-electrodes 

The  Glassy  Carbon  electrode  was  modified  using  a  silver nanoparticle  suspension  in  Nafion® 

prepared  diluting  (1:5)  a Nafion® 5%  wt  solution  with  ethanol  containing  silver  NPs. Three  

electrodes  were  used  to  study  the  influence  of  Nafion® and  silver nanoparticles  in  the  

electrochemical  response: 

 Glassy  Carbon  electrode  without  any  modification 

 Glassy  Carbon/NAFION® electrode,  modified  with  a  solution  containing  only  Nafion® 
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 Glassy  Carbon/NAFION®/AgNPs  electrode,  modified  with  a  solution  containing  Nafion® 

and  silver  nanoparticles 

A  silver  nanoparticles  modified  electrode  without  Nafion® was prepared  but  not  considered  

in  this  work,  since  not  stable. 

0.1 M NaClO4 aqueous solution was used as supporting electrolyte for all the characterizations. 

4.2.4.2. Results and Discussion 

Pre-synthetized Ag nanoparticles were chosen instead of electrodeposition in order to obtain 

homogeneous nanoparticles shape and distribution on the electrode, as recent study in Literature 

explains (Campbell & Compton, 2010; Du, Ding, Cai, & Zhang, 2007; Liza Rassaei et al., 2011). The 

procedure of synthesis was modified from (Shervani et al., 2007), in particular changing the 

duration of the thermal step (24 h instead of 30 minutes) and performing starch filtration before 

use. In fact, no nanoparticles were formed without these variations and particularly reaction time 

is fundamental, as shown in Figure 4.41, where UV-spectra show the presence of the typical 

plasmonic resonance band of Ag NPs at 420 nm after 6 h, with the complete nanoparticles 

formation only after 24 h. Also TEM image confirms the formation of spherical nanoparticles with 

the diameter of 10-30 nm. Moreover, this modified synthetic route was repeated 5 times, 

obtaining the same voltammetric pattern, and Ag NPs are very stable, since they can be stored for 

months in ethanol. In fact, Ag NPs produced and stored were tested every week for 6 months, 

giving the same voltammetric pattern. 

Furthermore, the dispersion in Nafion is very simple and stable, as the UV-spectra in the inset of 

Figure 4.41 shows. In fact, the plasmonic band of Ag NPs is still present when they are dispersed in 

Nafion, with a shift of the maximum to higher values than AgNPs during synthesis, probably for 
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the formation of small aggregates or for changes in the refractive index (Moores & Goettmann, 

2006). 

 

Figure 4.41. UV-vis spectrum of Ag nanoparticles during synthesis. Inset: a) TEM image of Ag nanoparticles after 
synthesis and b) UV-vis spectrum of Nafion-AgNPs suspension. 

 or the modification of GC electrode, a deposition of 20 μ  of a dispersion of Ag NPs in Nafion was 

performed, leaving successively the electrode to dry in air for 15 minutes. The volume of 

deposition was chosen after experiments with different volumes: 45 μ  causes a decrease in 

voltammetric signal, probably due to a too thick film of Nafion which prevents diffusion or to Ag 

oxidation, and 30 μ  has very similar results to 20 μ , but the need of two depositions can cause 

problems of repeatability. 
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2.98, 3.15 and 3.35 keV. Nafion spectrum was performed for comparison, demonstrating that the 

presence of the peaks of F and S can be attributed to the polymeric membrane. The 

reproducibility of the observed Cl peak could be ascribed to impurities from reagents. 

 

Figure 4.42. SEM image (a) and EDS (b) analysis of Glassy Carbon/NAFION®/AgNPs electrode; SEM image (c) and 
EDS analysis (c) of Glassy Carbon/NAFION® electrode, forcomparison. 

Cyclic voltammograms were performed on the three types of electrodes using 1 mM [Ru(NH3)6]Cl3 

as model probe. The potential window was chosen considering the stability region of metallic 

silver in the Pourbaix diagram. 

Figure 4.43 shows cyclic voltammograms of the three tested electrodes. The presence of the only 

Nafion causes an increase in the peak current, probably ascribable to the affinity of the membrane 

for the probe, but with the presence of Ag nanoparticles the signal is 10 times higher in 

comparison with GC. This behaviour is probably due to the increase of the effective surface area 

and/or to a formation of a random array of nanoparticles on a three-dimensional substrate, which 

can cause a diffusion between planar and convergent (Campbell & Compton, 2010; Kumaravel & 

Chandrasekaran, 2010; Andrew O Simm et al., 2005; C M Welch et al., 2005). In fact, when 
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nanoparticles are widely spaced in the Nafion membrane and can be considered isolated, they are 

possibly characterized by convergent diffusion, with the current intensity proportional to the 

particles radius. When the concentration of nanoparticles increases, each nanoparticle diffusion 

layer partially overlaps with the others, resulting in a more planar and less convergent diffusional 

process. The final result is an increase in the current in comparison with the macroelectrode, but 

without reaching the values for isolated nanoparticles. Moreover, the reduction peak of the Ag 

NPs electrode shifts towards more negative potentials, confirming the change in mass-transport 

regime, from planar to partially convergent (Campbell & Compton, 2010). 

  

Figure 4.43. (a) Cyclic voltammograms of Glassy Carbon, Glassy Carbon/NAFION®and Glassy 
Carbon/NAFION®/AgNPs electrodes recorded in a solution of 0.1 M NaClO4 containing 1 mM [Ru(NH3)6]Cl3; (b) 
Stability of Glassy Carbon/NAFION®/AgNPs electrode: trend of the cathodic and anodic peak heights in air (full 
symbols) and in solution (empty symbols). 

This result was also confirmed by scan rate studies, which were performed varying the scan rate in 

the range 10-500 mV s-1. The trend of the Randles-Sevcik plot is linear, evidencing a process 

governed principally by diffusion. The values of the slope of the anodic and cathodic peaks are 

reported in Table 4.14, showing an increase for Ag NPs modified-electrode of 10 times and 6 times 

with respect to GC and GC with Nafion, respectively. Slope values for the electrode without Ag are 

very similar, while higher values in the presence of Ag NPs confirm a change in surface area and/or 

a partial change towards a convergent diffusional regime. 
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Table 4.14. Slopes of plots of jp vs. v
1/2

 (cyclic voltammograms recorded in 0.1 M NaClO4 containing 1 mM 
[Ru(NH3)6]Cl3), from v = 10 to v = 500 mV s

−1
. 

Electrode 
anodic slope 

μA cm-2 mV0.5 s-0.5 
cathodic slope 

μA cm-2 mV0.5 s-0.5 

GC 19.2 ± 0.4 4.8 ± 0.1 

GC/NAFION 21 ± 1 6.2 ± 0.3 

GC/NAFION/AgNPs 186 ± 5 32 ± 4 

 

Stability of Ag was also considered (Campbell & Compton, 2010), performing cycling voltammetric 

tests with the model probe cation at different intervals of time in air or in solution. When the 

electrode was left in air and reconditioned in solution before analysis, a rapid decrease in the 

reduction and oxidation currents occurred with some discontinuities, probably due to degradation 

of the electrode. On the other hand, if the electrode was left in solution with the supporting 

electrolyte, after a short equilibration time where current increases, peaks intensity stabilizes to a 

plateau value and Ag is stable. 

Finally, repeatability was tested, comparing voltammograms obtained from three different 

electrodes prepared with Ag NPs Nafion dispersion. The registered spectra were reproducible, 

with 5 % maximum standard deviation on the cathodic peak. 

Electrochemical Impedance Spectroscopy was carried out to evaluate physical and interface 

properties of the electrodes at + 0.150 V, - 0.130 V and – 0.230 V (SCE) in the presence of the 

probe molecule. The potentials were chosen considering cyclic voltammograms in the presence of 

the probe molecule: + 0.150 V is in the capacitive area of the spectrum, while – 0.130 V and -0.230 

V are in the faradaic zone where oxidation and reduction of the redox probe take place. 
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Figure 4.44 shows complex plane plots and Bode plots with the corresponding fitting for all the 

electrodes at different potentials, while equivalent circuits used for the fitting are presented in 

Figure 4.45 and the correspondent obtained fitting values are reported in Table 4.15. 

In the case of GC, spectra present for all the potentials a semicircle in the high frequency region, 

corresponding to the formation of the double layer, and a straight line for lower frequencies, 

correlated to the diffusional process. Single peak in the Bode plots represent a time-dependent 

process, usually the formation of the double layer. These spectra were fitted with an equivalent 

circuit composed by RΩ in series with CPEdl in parallel with a series of Rct and CPEpol. Capacitance of 

the double layer increases from positive to negative potentials, while resistance to charge transfer 

decreases, since at the potential of probe reaction, transfer of electrons is easier. The capacitance 

of polarization increases for the same reasons, while αpol remains constant (0.56), indicating an 

irregular surface. 

Impedance values for GC covered with Nafion are lower than only GC, demonstrating an 

improvement of the performances of the electrode only in the presence of Nafion. Trends of the 

complex plane plot and of Bode plot were very similar to those of GC and spectra were fitted with 

the same equivalent circuit. Also in this case, CPEpol and CPEdl increase and Rct decreases from 

positive to negative potentials for the faster electron transfer, but values are in general higher for 

capacitances and lower for resistance in comparison with GC. This fact confirms better 

electrochemical properties for GC with Nafion, already observed in cyclic voltammetry. 

Important differences were observed for the faradaic and capacitive area in the presence of Ag 

with Nafion on GC. At + 0.150 V, in capacitive area, the spectra profile is very similar to the 

precedent electrodes, with the same equivalent circuit and values very close to those obtained for 

GC with Nafion. When the applied potential is in the faradaic area, the trend of the complex 
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spectrum changes, showing a straight line with lower slope for high frequencies instead of the 

semicircle and a straight line with higher slope for low frequencies. Considering Bode plots, no 

peaks are present since no time-dependent processes , as the formation of double layer, were 

involved. Probably the double layer is very thin and only a diffusional process takes place. The 

values of diffusional resistance are low and decrease to more negative potentials, showing a fast 

and easy process of diffusion of the model probe cation, while CPEpol increases, reporting the 

highest values in comparison with GC (20 times lower) and with GC with Nafion (4 times lower). 

These results confirm that Ag nanoparticles effectively improved the electroanalytical 

performances of the electrodes. 

 

Figure 4.44. Complex plane impedance and relative Bode plots (inset) at different potentials [(a) E = +0.150 V; (b) E 
= −0.130 V; (c) E = −0.230 V] recorded in 0.1 M NaClO4 containing 1 mM [Ru(NH3)6]Cl3 for the electrodes Glassy 
Carbon (triangle), Glassy Carbon/NAFION® (full diamond), Glassy Carbon/NAFION®/AgNPs (empty circles); the lines 
represent equivalent circuit fitting. 
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Figure 4.45. Equivalent circuits used to fit impedance spectra. 

 

Table 4.15. Values of the parameters obtained by fitting impedance spectra with the equivalent circuits for Glassy 
Carbon, Glassy Carbon/NAFION®, Glassy Carbon/NAFION®/AgNPs. 

Electrode 
Eapvs SCE 

/ V 
CPEdl / mF 

cm-2 sα-1 
αdl 

Rct / Ω 
cm2 

Rw / Ω 
cm2 

 / s α 
CPEpol / mF 

cm-2 sα-1 
αpol 

GC 

0.15 0.02 0.90 5441 - - - 0.04 0.56 

-0.13 0.15 0.54 1562 - - - 0.43 0.60 

-0.23 0.29 0.71 176 - - - 0.70 0.56 

GC/NAFION 

0.15 0.01 0.88 1193 - - - 0.12 0.59 

-0.13 1.82 0.60 67 - - - 2.79 0.50 

-0.23 1.03 0.74 55 - - - 3.43 0.56 

GC/NAFION
/AgNPs 

0.15 0.01 0.85 2158 - - - 0.08 0.52 

-0.13 - - - 61 0.1 0.18 5.65 0.52 

-0.23 - - - 11 0.1 0.16 14.23 0.60 

 

The new modified electrode was used for the determination of chlorine containing species, a field 

where Ag is widely employed for its very pronounced electrocatalytic activity towards this atom 

(Bellomunno et al., 2005; Dai, Wildgoose, & Compton, 2006; Rondinini & Vertova, 2004; Andrew O 

Simm et al., 2005; Vertova et al., 2008). Their determination is very important for their high 

toxicity and in particular halothane and dichloromethane were chosen for this study using  GC 

with Nafion and Ag nanoparticles electrode. 

Halothane is an example of organic chlorinated molecule characterized by a complex structure; it 

is a typical anaesthetic and its determination is essential. Dichloromethane is a representative 

example of simple chlorinated compounds, very toxic and widely used as common solvent and as 
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component of paint strippers. Due to its toxicicty, the use of dichloromethane was recently 

regulated by an European Commission Regulation No 276/2010 and a Recommendation of the 

Scientific Committee on Occupational Exposure Limits for methylene chloride. 

Figure 4.46 reports some preliminary results obtained by cyclic voltammetry. Halothane shows an 

intense and clear peak at – 0.69 V (SCE) at 2 and 4 mM concentrations, with current densities 

comparable or even better than those reported in the Literature (Andrew O Simm et al., 2005). For 

higher concentrations, the peak potential shifts to more negative values, probably because of the 

adsorption of halothane at the electrode, causing fouling. In the case of dichloromethane, a peak 

at – 0.71 V (SCE) was detected for 3 mM concentration, which doubles in intensity for 6 mM. 

 

Figure 4.46. Cyclic voltammograms recorded in a solution containing NaClO4 0.1 M after addition of halothane (a) 
and CH2Cl2 (b). Blank subtraction was applied for CH2Cl2. 

4.2.4.3. Conclusions  

Spherical silver nanoparticles of 10-30 nm were successfully synthesized, optimizing a synthesis 

reported in the Literature, and completely characterized. A suspension of Ag nanoparticles in 

Nafion was used to modify a Glassy Carbon electrode and the modified electrode was studied 

using cyclic voltammetry and electrochemical impedance spectroscopy, comparing the results with 
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bare Glassy Carbon and Glassy Carbon with Nafion. [Ru(NH3)6]Cl3 was used as redox probe 

molecule. 

The Ag-modified electrode shows higher current intensity and anodic/cathodic slopes than the 

other two electrodes, probably due to the increase of effective surface area, to a formation of a 

nanoparticles random array in the Nafion three-dimensional substrate with intermediate 

diffusional behaviour between planar and convergent and to a very small double layer 

capacitance. 

The modified electrode was also tested, exploiting the electrocatalytic properties of silver, for two 

hazardous chlorinated compounds, halothane and dichloromethane, showing promising 

performances. 

Even though these results about the detection of chlorinated compounds are preliminary, they 

show the applicability of the modified electrode. Future developments will consider the 

optimization of the electroanalytical method for the determination of halothane and 

dichloromethane, applying also more appropriate techniques, such as pulsed and stripping 

analysis, and the design of new modified electrodes with composite with others nanomaterials 

(carbon nanotubes, titanium dioxide, polymers).  
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4.2.5. Silver Nanoparticles on Carbon Nanotubes 

4.2.5.1. Materials and Methods 

Materials used for this work were produced by Prof. Prati and Dr. Villa group of the University of 

Milano. Silver nanoparticles were synthesized via colloidal method and supported on carbon 

nanotubes (MWCNTs), to improve conductivity and prevent agglomeration, in the presence or 

absence of polyvinylalcohol (PVA) (Tsai & Huang, 2006) as metal protective agent. In the first case, 

nanoparticles were formed in the presence of PVA and immobilized on the support, while in the 

second case, nanoparticles were produced directly on carbon nanotubes. 

Glassy  Carbon  electrode  was  modified  using  0.5 mg mL-1 suspension of the desired material, 

with DMF as solvent. Different electrodes, built with the above synthesized materials, were  used  

to  study  the  influence  of  CNTs and silver nanoparticles  on  the  electrochemical  response: 

 Glassy  Carbon  electrode  without  any  modification (GC); 

 GC/CNT electrode,  modified  with  a suspension of CNTs Baytubes; 

 GC/CNT-PVA  electrode,  modified  with  a  suspension of CNTs modified with PVA; 

 GC/CNT-AgNP electrode, modified with a suspension of CNTs decorated with 1 % silver 

nanoparticles, obtained by precipitation; 

 GC/CNT-AgNP-PVA electrode, modified with a suspension of CNTs decorated with 1 % silver 

nanoparticles, obtained by PVA mediated synthesis. 

0.1 M KNO3 aqueous solution was used as supporting electrolyte for all the characterizations. 
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4.2.5.2. Results and Discussion 

First of all, operative conditions were studied and optimized, considering the role of supporting 

electrolyte and the presence of oxygen dissolved in solution. The results are presented in Figure 

4.47. In the case of KCl as supporting electrolyte, the presence of two sharp peaks at + 0.1 V and – 

0.1 V (SCE) indicates the oxidation and reduction of silver, due to the presence of Cl- in solution. 

Using NaClO4, the two peaks disappear, with only the presence of a small shoulder around + 0.1 V, 

while in the case of KNO3 the phenomenon is practically absent. For these reasons the last 

electrolyte was chosen and used for all the subsequent analysis. Moreover, the influence of 

oxygen was studied in aerated and deaereted solutions (the last one obtained by inert gas 

bubbling). The analysis demonstrated that the removal of oxygen was beneficial, giving a wider 

and more regular potential window. 

 

Figure 4.47. Cyclic voltammograms of CNTs-Ag1% electrode in different electrolytes (a) and under different 
atmosphere (b). 
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Figure 4.48 shows the voltammetric behaviour of the five types of electrodes in the presence of 

K4[Fe(CN)6] as model probe molecule. The most important difference is the potential window, 

since the presence of silver nanoparticles allows extending the potential range in the cathodic 

region, maintaining the intensity of the peak of the redox probe.  

 

Figure 4.48. Cyclic voltammograms of Ag nanoparticles and carbon nanotubes modified electrodes. 

Table 4.16 presents the voltammetric parameters, showing in general a diffusive mechanism and 

improving properties for all the electrodes in comparison with GC. The addition of Ag 

nanoparticles causes an increase in capacitance and a decrease of the Randles-Sevcik plot slope, 

probably due to a smaller surface area and to a different diffusive behaviour in comparison with 

CNTs alone. 
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Table 4.16. Voltammetric parameters obtained from cyclic voltammograms of Ag nanoparticles and carbon 
nanotubes modified electrodes. 

CV parameters GC CNTs CNTs-PVA 
CNTs-
Ag1% 

CNTs-
Ag1%-PVA 

C / mF cm-2 0.05 3.49 3.08 4.40 6.15 
Ep-Ep/2 / mV 164 68 76 78 129 
∆EP / mV 157 65 70 43 50 

Slope ip vs v0.5 / μA mV-0.5 
cm-2 s0.5 

692 102 117 136 156 

Slope Ln ip  vs  ln v 17 182 125 115 119 
C / mF cm-2 0.44 0.46 0.41 0.40 0.43 

 

Electrodes were characterized by electrochemical impedance spectroscopy in the absence and in 

the presence of the redox probe. Potentials were chosen from the cyclic voltammogram, at – 0.16 

V (SCE) in the capacitive area and at + 0.11 V and + 0.27 V (SCE), where the redox reaction takes 

place. 

In the absence of the redox probe, complex plane spectra (Figure 4.49) can be in general divided 

into two parts, a semicircle for higher frequencies and a straight line with the slope close to 90° for 

lower frequencies, which becomes a second semicircle in the case of GC/CNT-PVA. Only for 

GC/CNT the first semicircle is not present, indicating the absence of the double layer, probably due 

to a uniform and highly conductive surface. Bode plots (Figure 4.49) are generally very similar, 

except for GC/CNT-AgNP-PVA, which shows a time-dependent process for medium frequencies. 
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Figure 4.49. Complex plane plot and Bode plot at – 0.16 V in the absence of redox probe. 

The equivalent circuits used to fit the data are presented in Figure 4.50, while  the values obtained 

from the fitting are reported in Table 4.17. CNTs alone show a capacitive behaviour, in particular 

for positive potentials, while in the other cases the formation of the double layer takes place. 

When PVA is present together with CNTs but without Ag, the presence of a second semicircle with 

high resistance is an evidence of a highly resistive material, probably for the formation of a 

disordered surface of PVA and CNTs. The presence of Ag nanoparticles contributes to increase the 

capacitance of the double layer and also allows maintaining the capacitive behaviour of CNTs, 

while the addition of PVA causes a decrease in the capacitance of the double layer and an increase 

of charge transfer resistance. Nevertheless, the capacitive behaviour of the electrode is 

maintained, probably because the polymer has not a disordered distribution on the surface, as 

when Ag is absent, but it is localized on Ag nanoparticles. Moreover, capacitance values are in 

accordance to those obtained from cyclic voltammetric studies.  

 

Figure 4.50. Equivalent circuits used to fit impedance data. 
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Table 4.17. Impedance parameters obtained by impedance fitting in the absence of redox probe. 

Electrodes E / V 
R / Ω 

cm2 
CPEDL / mF 

cm-2 sα-1 
αDL 

RCT / Ω 
cm2 

CPEPOL / mF 
cm-2 sα-1 

αPOL 
RPOL / Ω 

cm2 

CNTs 
-0.16 6.99 16.26 1 0.56 5.78 0.92 2256 
0.11 6.96 - - - 4.87 0.89 - 
0.27 6.89 - - - 4.21 0.89 - 

CNTs-PVA 
-0.16 8.06 13.14 0.70 6.70 4.22 0.93 4081 
0.11 8.06 9.97 0.75 4.69 3.25 0.90 6217 
0.27 8.44 4.64 1 2.12 2.95 0.88 10654 

CNTs-Ag1% 
-0.16 8.28 28.37 0.58 5.33 6.30 0.92 - 
0.11 8.21 25.24 0.56 7.11 4.70 0.93 - 
0.27 8.25 21.21 0.60 3.94 4.15 0.92 - 

CNTs-
Ag1%-PVA 

-0.16 7.65 4.12 0.72 2.42 5.65 0.95 - 
0.11 7.09 2.99 0.74 26.27 4.23 0.94 - 
0.27 7.00 2.98 0.75 20.93 3.83 0.92 - 

 

In the presence of model probe molecule, impedance values decrease when the redox reaction 

takes place. The impedance spectra are shown in Figure 4.51-4.52-4.53. The complex plane 

spectra present a semicircle for higher frequencies for all the electrodes, indicating the formation 

of the double layer, while for lower frequencies the behaviour is really different. For CNTs a 

straight line with slope under 0.5 shows a resistance of the diffusion process of the redox probe; 

for GC/CNT-PVA the formation of a second semicircle represents a non-homogeneous material; 

the presence of a straight line with slope value > 0.5 at – 0.16 V (SCE), which becomes a semicircle 

at + 0.11 V and + 0.27 V, indicates a general capacitive behaviour with the addition of an electron 

transfer resistance when the redox probe reacts. Bode plots show a change for low frequencies 

when the probe is present or absent, reflecting the different behaviour of the second part of the 

complex plane spectra. For GC/CNT-Ag1%-PVA a time dependent process at medium frequencies 

is still present, probably due to a particular interaction between Ag nanoparticles and the polymer. 
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Figure 4.51. Complex plane plot and Bode plot at – 0.16 V in the presence of redox probe. 

  

Figure 4.52. Complex plane plot and Bode plot at + 0.11 V in the presence of redox probe. 
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Figure 4.53. Complex plane plot and Bode plot at + 0.27 V in the presence of redox probe. 

Figure 4.54 reports the equivalent circuits used to fit impedance data, while the values obtained 

from the fitting are shown in Table 4.18. In general, working at more positive potentials 

contributes to increase capacitance and to decrease resistance, since for positive potential the 

reaction of the probe is favoured. When only CNTs are present, a diffusive behaviour dominates 

the reaction of the redox molecule, due to a more ordered structure. For CNTs and PVA the use of 

the same circuit for all the potentials shows a more disordered structure with an intrinsic 

resistance to charge. When Ag nanoparticles are present, the electrodes have a capacitive 

behaviour with a small resistance to electron transfer only during redox reaction. Moreover, when 

Ag nanoparticles are covered with polymer, the capacitance decreases and the resistance 

increases, indicating that polymer partially blocks the beneficial role of Ag as reaction centre. 

 

Figure 4.54. Equivalent circuits used to fit impedance data. 
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Table 4.18. Impedance parameters obtained by impedance fitting in the presence of redox probe. 

Electrodes E / V 
R / Ω 

cm2 
CPEDL / mF 

cm-2 sα-1 
αDL 

RCT / Ω 
cm2 

CPEPOL / mF 
cm-2 sα-1 

αPOL 
RPOL / Ω 

cm2 
Rw / Ω 

cm2 
τ / s α 

CNTs 
-0.16 6.46 25.71 0.77 1.20 5.76 0.92 1929 - - - 
0.11 6.39 7.92 0.78 290.11 - - - 43.66 0.1 0.41 
0.27 6.38 6.07 0.83 389 - - - 76.47 0.1 0.40 

CNTs-PVA 
-0.16 7.55 12.20 0.70 7.39 4.27 0.93 3876 - - - 
0.11 7.51 15.79 0.65 80.08 10.43 0.77 1229 - - - 
0.27 7.72 7.87 1 1.78 4.70 0.79 1002 - - - 

CNTs-Ag1% 
-0.16 6.86 27.92 0.57 2.83 6.28 0.91 - - - - 
0.11 6.84 2.87 1 0.48 8.08 0.78 831 - - - 
0.27 6.99 2.67 1 0.49 6.08 0.82 938 - - - 

CNTs-Ag1%-
PVA 

-0.16 7.42 3.33 0.74 25.54 5.73 0.93 - - - - 
0.11 7.37 3.23 0.75 16.68 7.01 0.79 1340 - - - 
0.27 7.35 3.58 0.74 14.97 7.28 0.78 1120 - - - 
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4.2.5.3. Conclusions 

The electrochemical behaviour of silver nanoparticles precipitated on carbon nanotubes was 

deeply investigated and the influence of PVA as protective polymer was evaluated. 

First of all, a chlorine-free environment is important to preserve the purity of nanoparticles and a 

free-oxygen analysis is essential to avoid oxygen undesirable reactions. 

The presence of silver nanoparticles allows the extension of the potential range in the cathodic 

region, and maintains the diffusive control of the system, probably changing the type of diffusion 

with an intermediate mechanism between planar and convergent and improving the capacitance 

of the system. Furthermore, the protective polymer localizes on Ag nanoparticles, giving a more 

disordered and resistive structure, preventing Ag to be available as reaction centre. 

In all cases capacitance values are higher than pre-synthetized silver nanoparticles/Nafion 

modified electrodes, discussed in the previous paragraph (4.2.4), highlighting the important 

contributes of CNTs to the system. 

Future developments will consider the comparison between pre-synthetized and electrodeposited 

Ag nanoparticles on carbon nanotubes and the development of new electroanalytical methods for 

the determination of chlorinated compounds, which can take advantage of the wide potential 

window of these materials.  
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4.2.6. Titanium Dioxide and Carbon Nanotubes 

4.2.6.1. Titanium dioxide 

Nanosized titania is a material employed in many research areas thanks to its innumerable 

properties (CARP, 2004; Fujishima, Rao, & Tryk, 2000). First of all, it is a photoactive compound, 

since the irradiation by UV light causes its oxidation to TiIII, the injection of electrons in the 

conduction band and the formation of holes in the valence band, completely changing the 

behaviour of the material (increase in conductance and redshift of the absorption band) and 

allowing different applications. Moreover, titanium dioxide shows an amphiprotic nature, 

permitting the alteration of surface charges by simply controlling the pH, and a quantum 

confinement effect together with a different movement of holes and electrons, only varying the 

size and shape of nanoparticles. The surface hydroxyl groups can be easily functionalized with 

other groups and molecules and hybridization with others materials is very simple. Titanium 

dioxide conductance varies depending on crystalline phase, in the order amorphous > anatase > 

rutile, and its resistance can change with adsorption of other species. Titania shows a wide range 

of properties, such as high thermal and chemical stability, optical transparency in visible and near-

IR ranges, photovoltaic properties, photo-cleaning capabilities and strong adsorption 

characteristics (Maino et al., 2013; Meroni et al., 2012; V Pifferi et al., 2013; Valentina Pifferi, 

Ardizzone, Cappelletti, Falciola, & Meroni, 2013).  

It can be synthesized by different types of procedures, in particular sol-gel method, hydrothermal 

(Meroni et al., 2012), solvothermal, microwave, microemulsion, direct oxidation and 

electrochemical techniques, allowing the control and design of specific parameters dependent on 

application (CARP, 2004; Y. Chen, Lunsford, & Dionysiou, 2008; Rani et al., 2010). 
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In the field of trace analysis (Hodes, 2001; Pierce & Zhao, 2010; C. N. R. Rao et al., 2004; Schmid, 

2003), titania is employed in gas sensors, ion detectors, metal ions and organic compounds 

extractors, voltammetric and optical biosensors. In particular, its use in electroanalytical field 

shows wide margins of development (Maino et al., 2013), with the exploitation of not only its 

sensing properties, but also its self-cleaning characteristics (Benvenuto, Kafi, & Chen, 2009; Y. 

Chen et al., 2008; Daniele, Battistel, Gerbasi, Benetollo, & Battiston, 2007; J.-A. Park, Kim, Choi, & 

Lee, 2010; Rani et al., 2010; Satheesh Babu, Suneesh, Ramachandran, & Nair, 2010; Xie, Zhou, & 

Huang, 2007). The idea is to develop sensing platforms based on titania or hybrid systems with 

auto-cleaning features, allowing the removal of analytes, which cause fouling problems, simply 

irradiating the electrode with UV light. 

In this context, the evaluation of electrochemical performances of titanium dioxide modified 

electrodes and of hybrid composites based on titania and single-walled carbon nanotubes is an 

interesting research topic. 

4.2.6.2. Materials and Methods 

Glassy  Carbon  electrode  was  modified  using  0.5 mg mL-1 suspension of the desired material, 

with DMF as solvent. Different modified electrodes, prepared using materials synthesized by Prof. 

Agostiano group of University of Bari and Dr. Comparelli group of CNR-Bari,  were  used  to  study  

the  influence  of  single walled carbon nanotubes and  titanium dioxide nanorods  in  the  

electrochemical  response: 

 Glassy  Carbon  electrode  without  any  modification (GC); 

 GC/SWCNT electrode,  modified  with  a suspension of single walled carbon nanotubes; 

 GC/TiO2NR  electrode,  modified  with  a  suspension of titania nanorods; 
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 GC/SWCNT-TiO2NR electrode, modified with a suspension of CNTs decorated with titanium 

dioxide nanorods. 

0.1 M KCl aqueous solution was used as supporting electrolyte for all the analysis. 

4.2.6.3. Results and Discussion 

The new materials were electrochemically characterized by cyclic voltammetry and 

electrochemical impedance spectroscopy in the presence or absence of a model probe molecule, 

to understand the effect of UV light and single walled carbon nanotubes on titanium dioxide. 

Figure 4.55 shows cyclic voltammograms of the different materials and voltammetric parameters 

are reported in Table 4.19. SWCNTs have the highest peak current, while when titania is present, 

the current decreases below the level of GC. This is due to the semiconductive nature of titania, 

which influences also the behaviour of CNTs. Under UV light only materials containing titanium 

dioxide show different voltammetric behaviour with the total disappearance of redox probe peaks. 

Capacitance values are higher for SWCNTs as expected, followed by TiO2-NR, while the composite 

presents lower value than GC, probably due to disordered and inhomogeneous character of the 

material. Capacitance values remain the same for all materials under UV irradiation. The presence 

of SWCNTs produces a more reversible signal, considering peak-to-peak separation and full width 

at half maximum. The highest slope of the Randles-Sevcik plot is reached in the case of SWCNTs, 

due to carbon nanotubes higher surface area. The diffusive control is maintained. In the case of 

titania, for both materials, the slope decreases when UV irradiation is applied, probably since 

diffusion of model probe molecule changes due to interaction with excited titanium dioxide. Also 

diffusion control is lost, confirming the hypothesis that other mechanisms take place. 
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Figure 4.55. Cyclic voltammograms of titania and carbon nanotubes modified electrodes in the dark (a) and under 
UV illumination (b). 

Table 4.19. Voltammetric parameters obtained from cyclic voltammograms of titania and carbon nanotubes 
modified electrodes. 

CV parameters  GC TiO2 SWCNT TiO2-SWCNT 

C / mF cm-2 
Dark 0.08 0.41 1.80 0.03 
UV 0.08 0.52 1.72 0.03 

Ep-Ep/2 / mV 
Dark 96 / 73 / 
UV 96 / 78 / 

∆EP / mV 
Dark 171 / 102 / 
UV 171 / 122 / 

Slope ip vs v0.5 / μA 
mV-0.5 cm-2 s0.5 

Dark 31 53 77 23 
UV 31 42 75 17 

Slope Ln ip  vs  ln v 
Dark 0.44 0.50 0.45 0.31 
UV 0.44 0.33 0.49 0.22 

 

Electrochemical impedance spectroscopy was performed at – 0.15 V (SCE), in the capacitive area 

of cyclic voltammogram, and at + 0.10 V and + 0.25 V (SCE), where redox peaks are present. 

Figure 4.56 shows impedance spectra for all the electrodes in the absence of model probe 

molecule. Complex plane spectra present a semicircle for higher frequencies, corresponding to the 

formation of double layer, and a second semicircle for lower frequencies, which becomes a 
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straight line with slope < 0.5 only in the case of GC/TiO2NR-SWCNT under UV light. Bode plots 

show that when titania is present the frequency of the time dependent process shifts to higher 

values than in the case of CNTs. In the case of TiO2-NR two different processes take place. 

  

 

Figure 4.56. Complex plane plot and Bode plot at – 0.15 V in the absence of redox probe. 

Figure 4.57 presents equivalent circuits used to fit impedance spectra, while Table 4.20-4.21 

reports the corresponding fitting values. SWCNTs show, as expected, higher double layer and 

polarization capacitance with lower charge transfer resistance. When titania is present, the 

resistance to electron transfer increases, in particular for the composite of titania with CNTs, 
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probably because of both the semiconductive nature of titanium dioxide and the material non 

homogeneousity. Under UV irradiation no significant changes can be observed for GC and 

SWCNTs, as already demonstrated by cyclic voltammetry, but for TiO2 samples a decrease in 

charge transfer and polarization resistance is registered and GC/TiO2NR-SWCNT changes the 

equivalent circuit from a semicircle to a Warburg resistance. This fact could be explained with the 

formation of excited electrons from titania under UV irradiation, which contribute to a better 

conductivity of the material. 

 

Figure 4.57. Equivalent circuits used to fit impedance data. 

 

Table 4.20. Impedance parameters obtained by impedance fitting in the absence of redox probe in the dark. 

Electrodes E / V 
R / Ω 

cm2 
CPEDL / F 
cm-2 sα-1 

αDL 
RCT / Ω 

cm2 
CPEPOL / F 

cm-2 sα-1 
αPOL 

RPOL / 
kΩ cm2 

GC 
-0.15 11.3 22.20 0.91 5898 133 0.89 9.40 
0.10 11.2 25.00 0.91 5083 150 0.88 8.08 
0.25 11.3 119.00 0.91 9440 19.8 0.92 6.06 

SWCNT 
-0.15 9.27 1570 1 1.28 1590 0.96 4.13 
0.10 8.89 1500 1 1.36 1600 0.97 10.90 
0.25 8.83 1680 1 1.41 1660 0.97 9.30 

TiO2 
-0.15 10.6 9.25 0.90 2046 10.40 0.84 355 
0.10 11.0 2.96 0.90 1634 8.01 0.84 781 
0.25 11.0 5.53 0.93 1231 8.81 0.83 781 

TiO2-SWCNT 
-0.15 11.3 13.10 0.85 3453 72.10 0.83 7.05 
0.10 11.3 13.00 0.85 4080 109.00 0.81 9.12 
0.25 11.3 8.14 0.89 4381 82.90 0.83 8.94 
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Table 4.21. Impedance parameters obtained by impedance fitting in the absence of redox probe under UV. 

Electrodes E / V 
R / Ω 

cm2 
CPEDL / F 
cm-2 sα-1 

αDL 
RCT / Ω 

cm2 
CPEPOL / F 

cm-2 sα-1 
αPOL 

RPOL / 
kΩ cm2 

Rw / 
kΩ 
cm2 

τ / s α 

GC 
-0.15 7.83 225 0.91 5846 28.10 0.92 4.98 - - - 
0.10 8.18 150 0.90 6990 22.40 0.91 5.71 - - - 
0.25 8.59 23.70 0.90 102 108.00 0.97 0.32 - - - 

SWCNT 
-0.15 7.11 1680 1 0.88 1600 0.96 2.63 - - - 
0.10 6.71 1920 1 0.83 1600 0.97 8.54 - - - 
0.25 6.65 1920 1 0.89 1670 0.97 6.70 - - - 

TiO2 
-0.15 11.16 8.54 1 2469 11.70 0.85 59 - - - 
0.10 11.25 7.44 1 4744 7.06 0.88 155 - - - 
0.25 11.64 7.30 1 4340 6.01 0.89 218 - - - 

TiO2-SWCNT 
-0.15 36.96 12.50 0.82 1668 - - - 9.51 0.10 0.40 
0.10 34.00 8.30 0.85 2529 - - - 12.22 0.10 0.40 
0.25 23.40 5.97 0.89 1821 - - - 1.82 0.10 0.40 
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In the presence of redox probe, complex plane spectra (Figure 4.58-4.59-4.60) remain very similar 

to that obtained in the absence of the molecule, with a semicircle for higher frequencies, 

indicating the formation of the double layer, and a second semicircle for lower frequencies, 

corresponding to the diffusion process, which transforms in a straight line with slope < 0.5 when 

titania is present. In general, values of impedance decrease strongly at the potentials where redox 

reaction takes place. In Bode plots, frequency associated to SWCNTs time dependent process is in 

general lower than the others. Moreover, at – 0.15 V (SCE) under UV light, frequencies of titania 

based materials shift to higher frequencies, while for the others potentials the frequencies remain 

fixed.  

  

 

Figure 4.58. Complex plane plot and Bode plot at – 0.15 V in the presence of redox probe. 
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Figure 4.59. Complex plane plot and Bode plot at + 0.10 V in the presence of redox probe. 
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Figure 4.60. Complex plane plot and Bode plot at + 0.25 V in the presence of redox probe. 

Equivalent circuits used to fit impedance spectra are presented in Figure 4.61, while Table 4.22-

4.23 reports the corresponding parameters obtained from the fitting. Also in this case, charge 

transfer resistance is high for materials containing titanium dioxide, while when only SWCNTs are 

present, the lowest resistance and the highest capacitance are obtained. When UV light is used, no 

changes for GC and SWCNTs are registered, while in the case of titania resistances become higher, 

probably due to interference in the charge transfer of the redox probe caused by titania excited 

electrons. 

 

Figure 4.61. Equivalent circuits used to fit impedance data. 
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Table 4.22. Impedance parameters obtained by impedance fitting in the presence of redox probe in the dark. 

Electrodes E / V 
R / Ω 

cm2 
CPEDL / F 
cm-2 sα-1 

αDL 
RCT / Ω 

cm2 
CPEPOL / F 

cm-2 sα-1 
αPOL 

RPOL / 
kΩ cm2 

Rw / kΩ 
cm2 

τ / s α 

GC 
-0.15 9.23 33.50 0.89 4894 104 0.89 10.10 - - - 
0.10 9.07 19.50 0.91 715 - - - 3.58 0.18 0.47 
0.25 9.18 18.50 0.92 371 - - - 1.77 0.21 0.46 

SWCNT 
-0.15 7.31 1800 1 0.94 1610 0.96 3.60 - - - 
0.10 7.09 8240 1 0.09 3220 0.83 0.85 - - - 
0.25 6.78 4310 1 0.23 2770 0.86 1.12 - - - 

TiO2 
-0.15 18.30 6.80 0.87 17530 - - - 151 0.10 0.47 
0.10 14.70 5.33 0.88 2253 - - - 1.18 0.10 0.49 
0.25 14.88 4.44 0.90 846 - - - 0.43 0.10 0.46 

TiO2-SWCNT 
-0.15 18.73 9.10 0.87 1450 - - - 2.97 0.10 0.46 
0.10 18.92 7.88 0.88 891 - - - 2.29 0.10 0.42 
0.25 19.87 7.18 0.88 364 - - - 0.61 0.10 0.41 

 

 

 

 

 

 

 

 

 

 



177 
 

 

Table 4.23. Impedance parameters obtained by impedance fitting in the presence of redox probe under UV. 

Electrodes E / V 
R / Ω 

cm2 
CPEDL / F 
cm-2 sα-1 

αDL 
RCT / Ω 

cm2 
CPEPOL / F 

cm-2 sα-1 
αPOL 

RPOL / 
kΩ cm2 

Rw / kΩ 
cm2 

τ / s α 

GC 
-0.15 5.45 38.30 0.87 4391 487 0.88 4.03 - - - 
0.10 5.32 25.30 0.90 780 3730 0.72 0.49 - - - 
0.25 5.95 3220 0.73 379 23 0.91 0.46 - - - 

SWCNT 
-0.15 5.80 1820 1 0.67 1680 0.95 2.64 - - - 
0.10 5.55 1110 1 10.11 7340 0.74 0.49 - - - 
0.25 5.58 2370 1 0.41 2220 0.91 0.88 - - - 

TiO2 
-0.15 9.89 16.90 0.83 1287 - - - 18.30 0.10 0.49 
0.10 10.86 7.99 0.89 1965 - - - 3.90 0.10 0.40 
0.25 10.54 9.53 0.85 2577 - - - - - - 

TiO2-SWCNT 
-0.15 9.80 11.10 0.86 367 - - - 17.03 0.10 0.41 
0.10 11.13 6.39 0.91 689 - - - 113 0.10 0.43 
0.25 10.56 6.10 0.92 851 - - - 1.36 0.10 0.49 
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4.2.6.4. Conclusions 

The new materials have been extensively characterized to understand the behaviour of single 

walled carbon nanotubes and titanium dioxide nanorods from an electrochemical point of view. 

The characterization was performed in the dark or under UV light, considering the 

photoreactivity of titania. 

Cyclic voltammetry showed that the highest peak current, capacitance and reversibility can be 

obtained with SWCNTs, while titanium dioxide with or without SWCNTs had worse 

performances than GC. Moreover, sample containing titania showed differences under UV 

irradiation, with the total disappearance of the peak, the loss of diffusional control and a 

decrease in the slope of the Randles-Sevcik plot, ascribable only to the change of diffusion of 

the redox probe caused by the production of titania excited electrons. These differences 

between dark and UV and SWCNTs and TiO2 can be observed also in impedance results. 

Resistance to charge transfer was higher when titanium dioxide is present, in particular 

together with SWCNTs, but when UV light was on, this resistance decreased, probably for the 

contribution of excited electrons. As expected, no changes between dark and light can be seen 

in the case of bare electrode and SWCNTs alone. 

These results showed that the use of combined compounds with different characteristic caused 

deep changes in the properties of the materials. In fact, the use of highly conductive material in 

combination with semiconductive material with activity under UV light produced a more 

resistive and less capacitive composite, whose properties can be changed by UV irradiation. 
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Future developments will consider the use of multi-walled carbon nanotubes to improve 

conductivity and different types and shapes of titanium dioxide to find the best material for 

electrochemical purposes. The idea is to develop electrodes with at the same time good 

electroanalytical performances towards different types of pollutants and self-cleaning 

properties due to photoactivity of titanium dioxide. 
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5. Conducting Polymers 

5.1. Introduction 

The characteristic of conduction is a key property essential for many applications, particularly in 

the field of sensors and electroanalytical chemistry. For this reason, research in this area is 

always in rapid growth. The large number of organic compounds which effectively are able to 

transport charges can be divided in three classes: charge transfer complexes, organometallic 

species and conducting polymers (Gerard, Chaubey, & Malhotra, 2002). This chapter is focused 

on the work done during this PhD thesis on the last class of compounds. 

Traditionally, polymers were designed as insulators and any electrical conduction was generally 

regarded as an undesirable phenomenon caused by loosely bound protons. In the last decades, 

an opposite trend has started, which consider the utilization of ionic conductivity of polymeric 

systems. The active research on thermodynamic and kinetic properties of ion conducting 

polymers has found applications in electrochemical systems, such as in power sources, sensors, 

and the development of all-solid-state electrochemical devices (Inzelt, Pineri, Schultze, & 

Vorotyntsev, 2000).  

Research about preparation, characterization and application of electrochemically active, 

electronically conducting polymeric systems is still growing in importance for two major 

reasons. Firstly, the mechanism of charge transfer and charge transport processes occurring in 

the course of redox reactions of conducting polymeric materials is still partially unknown. 

Secondly, these polymers have a wide range of promising applications in the field of energy 
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storage, electrocatalysis, organic electrochemistry, bioelectrochemistry, 

photoelectrochemistry, electroanalysis, sensors, electrochromic displays, microsystem 

technologies, electronic devices, microwave screening and corrosion protection (Inzelt et al., 

2000).  

The fundamental nature of charge propagation is completely understood, considering that the 

transport of electrons can occur by electron exchange reaction between redox sites in redox 

polymers and by motion of delocalized electrons through conjugated systems in the case of 

conjugated polymers. Moreover, the charge is also carried by the motion of non-electroactive 

ions during electrolysis. Nevertheless, considering the diversity and complexity of these 

systems, much research is still needed to obtain a detailed knowledge of all static and dynamic 

processes of interacting molecules in the polymeric network (Inzelt et al., 2000). 

Conductive polymers show interesting electrical and optical properties (Bănică, 2012), 

previously found only in inorganic systems, and for this reason they are called “synthetic 

metals” (Ates, 2013; Gerard et al., 2002). They can be divided into two classes, characterized by 

two types of conduction: electron conducting polymers and proton conducting polymers (Inzelt 

et al., 2000). 

The first class of compounds have a conjugated chain structure, which presents an extended π-

bond system, leading to the formation of broad valence and conduction bands. Typical 

examples are polyacetylene, polypyrrole, polythiophene and polyaniline and they can be 

generated by chemical or electrochemical synthesis (Gerard et al., 2002; C. Li, Bai, & Shi, 2009). 

The chemical method is based on oxidative coupling and allows larger-scale production and 



182 
 

post-covalent modification, but has the disadvantages of complicated synthesis and 

impossibility to produce thin films (Gerard et al., 2002; X. Li et al., 2012). The electrochemical 

procedure considers the electropolymerization via galvanostatic, potentiostatic and dynamic 

procedure, showing the advantages of thin film formation, easy synthesis, entrapment of 

molecules and simultaneous doping, but causes difficulties in removal of the film and post-

covalent modification (Gerard et al., 2002; X. Li et al., 2012). After synthesis, the neutral 

conjugated polymer can be converted into semi-conductive or conductive through chemical or 

electrochemical reactions, producing doped polymers or composites (Ahuja & Kumar, 2009; 

Janáky & Visy, 2013; C. Li et al., 2009). This type of compounds find application as fuel cells, 

electrochemical capacitors, batteries, memory devices, electrochromic devices, electrochemical 

actuators, field emission devices, superhydrophobic coatings and (bio)sensors (Ravichandran, 

Sundarrajan, Venugopal, Mukherjee, & Ramakrishna, 2012; Xiao et al., 2012). In particular, their 

use in the field of electrochemical sensors seems to be very promising, since they allow the 

enhancement of speed, sensitivity and versatility. Among all types of conjugated polymers, 

electroactive polymers seem to have the best qualities for sensor construction (Yang, 2012). 

Besides the high conductivity, they can act as electron donors/acceptors, exhibiting 

electrocatalytic effects and the possibility of redox-mediation. Polyphenazines (Pauliukaite, 

Ghica, Barsan, & Brett, 2010) are a class of electroactive polymers introduced successfully in the 

1990s to build new and very sensitive modified electrodes. These types of sensor can detect a 

wide range of organic and inorganic compounds, such as NADH, nitrites, cysteine, haemoglobin, 

carboxylic acids, vitamin B6 and epinephrine, using different techniques, such as cyclic 
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voltammetry, pulsed methods and amperometry, also being used for the construction of 

biosensors for alcohol, acetaldehyde, glucose, glycerol and pyruvate. 

The second class of conducting polymers shows a cation/proton conductivity along the polymer 

backbone thanks to the presence of carboxylated or sulfonated groups with a cationic counter 

ion, whose mobility can be increased by water swelling. For this peculiarity, they present low 

electrical resistance (obtained increasing ion exchange capacity and water content and 

decreasing membrane thickness), high permeoselectivity for anions and nonionized molecules, 

good mechanical and chemical stability over long periods (Inzelt et al., 2000). Properties 

depend on many factors, such as the chemical nature of the polymer backbone, the polymer 

molecular weight and molecular weight distribution, the nature of the solvent used for casting 

and the possible presence of residual solvent in the polymeric film (GUAN, DAI, LI, LIU, & XU, 

2006). They find application in cell separators, chloro-alkali electrocatalysis, effluent treatment, 

recycling and energy production in fuel cells (Inzelt et al., 2000; Jannasch, 2003; Litster & 

McLean, 2004), but their use in electroanalysis is not extensively explored, except for Nafion 

membrane (Desimoni & Brunetti, 2012; Inzelt et al., 2000). 

Both types of conducting polymers can provide several advantages in electroanalytical field, as 

electrocatalytic activity, easily diffusion of small ions and molecules into the polymer, increase 

of active surface area, anti-fouling capability and sample preconcentration (X. Li et al., 2012). 

Results presented in this chapter consider both classes of conducting polymers and, in 

particular, two specific compounds, showing through their electrochemical characterization 

their applicability to electroanalysis. Polymer employed are: 
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 Poly(Brilliant Green), belonging to electron conducting polymer class; 

 Poly(Aryl Ether Sulfone), belonging to proton conducting polymer class. 

5.2. Electron Conducting Polymers 

5.2.1. Poly(Brilliant Green) 

Polytriphenylmethane dyes (Hu, Jiao, Sun, & You, 2006; Yi, Qu, & Huang, 2007) are a new class 

of electroactive conjugated polymers, which are very similar to polyphenazines, with the only 

difference of an open and ionized structure. This property can further improve electrode 

performances, for fast charge transfer and for catalytic ability in ionic transport.  

Their use in the field of sensors is up to now very limited, concerning only one dye, Malachite 

Green (MG), successfully electropolymerized on glassy carbon electrodes (Wan, Wang, Wang, & 

Yang, 2006) and tested for the detection of dopamine (Xiaoxia Wang, Yang, Wan, & Wang, 

2007), NADH and ascorbic acid (S.-M. Chen, Chen, & Thangamuthu, 2007). 

In this paragraph another dye, Brilliant Green (BG) (Figure 5.1), was considered for application 

in electroanalysis. It belongs to the triphenylmethane family, the same as MG, and has been 

used as a biological stain and bacteriostatic agent in culture media and veterinary medicine 

(Mittal, Kaur, & Mittal, 2008; Nandi, Goswami, & Purkait, 2009); however, it has never been 

used previously in the field of sensors, excepting for ascorbate (M. Emilia Ghica, Wintersteller, 

& Brett, 2013).  
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To further improve electrode performances, electroactive polymers can be associated with 

other conductive polymers, such as poly(3,4-ethylenedioxythiophene) (PEDOT), or with carbon 

nanotubes.  

In particular, PEDOT shows high conductivity, moderate band gap, low oxidation potential, high 

chemical stability in aqueous solutions and a good biocompatibility with biological media 

(Breiby, Samuelsen, Groenendaal, & Struth, 2002; Crispin et al., 2006), which permits its 

application in the field of supercapacitors and more recently in electrochemistry. PEDOT can be 

used alone (Pigani et al., 2011; L. Zhang et al., 2012), in combination with electroactive 

polymers to obtain composites with improved properties (Gonçalves, Ghica, & Brett, 2011; 

Kakhki, Barsan, Shams, & Brett, 2012), or in combination with nanoparticles (Thiagarajan, 

Rajkumar, & Chen, 2012), to improve the performance of different types of sensors. 

The electrode architecture developed in this part of Thesis contains, beside PEDOT, carbon 

nanotube  (CNTs) (Gooding, 2005; C. N. Rao, Satishkumar, Govindaraj, & Nath, 2001), since the 

association of CNTs and conducting polymers, initially used for energy conversion and storage 

purposes (Lota, Fic, & Frackowiak, 2011), is very attractive, due to the combination of the 

complementary properties of polymers and CNTs (Valcárcel, Simonet, Cárdenas, & Suárez, 

2005), already discussed. In the recent Literature, very sensitive electrodes based on CNTs and 

conducting polymers were reported for the detection of hydrogen peroxide (Peña, Bertotti, & 

Brett, 2011), glucose (Chiu, Yu, Yen, & Chen, 2009; Mariana Emilia Ghica & Brett, 2010) and 

organochlorine pesticides (Abirama Sundari & Manisankar, 2010). However, only one example 
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of electrodes with CNTs in combination with polytriphenylmethanes was found, poly(malachite  

green) for the detection of catechol and quinol (Umasankar, Periasamy, & Chen, 2011).   

 

Figure 5.1. Chemical structure of brilliant green monomer 

5.2.2. Materials and Methods 

Commercially available carbon film electrodes (CFEs) were pre-treated in 0.2 M NaCl by cycling 

the potential 10 times between -1.0 and +1.0 V (SCE) at a scan rate of 100 mV s-1 in order to 

obtain a reproducible surface. 

Brilliant Green electropolymerisation 

Before electropolymerisation the electrodes were pre-treated in 0.1 M sulphuric acid for 10 

cycles from -1.0 V up to +1.2 V (SCE) at a scan rate of 100 mV s-1.  

For electropolymerisation, 1 mM monomer solution was prepared by dissolving the appropriate 

quantity of BG in 0.1 M Mc Ilvaine buffer pH 4.0. Then, BG was electropolymerised by cycling 

the potential for 10 times from -1.0 V up to +1.2 V (SCE) with 100 mV s-1 scan rate. 

EDOT electropolymerisation 
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EDOT was electropolymerised as reported in (Kakhki et al., 2012). The appropriate amount of 

monomer was dissolved in 0.1 M 4-styrenesulfonic acid sodium salt hydrate (NaSS) to obtain a 

concentration of 0.01 M and the solution was heated and stirred for 30 min until complete 

dissolution of the monomer. EDOT was then electropolymerised by cycling the potential (10 

cycles) between -0.6 V and +1.2 V (SCE) at 50 mV s-1. 

Carbon nanotubes functionalization 

Carbon nanotubes were purified and functionalised by stirring them in 5 M nitric acid for one 

night, filtered on a filter of paper and washed with water until neutral pH. The powder was 

dried in the oven at 80ºC for one night and collected. This procedure allowed to remove metal 

catalysts and amorphous carbon, derived from the synthetic process, and to functionalize the 

end of CNTs with –COOH groups. 

A solution containing 1% chitosan and 1% acetic acid was prepared and used to form a 1% CNT 

suspension and sonicated in an ultrasound bath for 3 h. 10 μ  were placed on the electrode by 

drop-casting and left to dry for one hour, before dropping another 10 μ . Afterwards, 

electrodes were left to dry in air, for at least 24 h. 

Biosensor preparation 

GOx and AlOx were immobilised using cross-linking with glutaraldehyde (GA) after electrode 

modifications. A solution was prepared by mixing the enzyme together with BSA in 0.1M 

phosphate buffer saline (NaPBS) pH 7.0 in concentration 1% w/v GOx + 4% w/v BSA or 5% w/v 

AlcOx + 10% w/v BSA, as reported in precedent works (Barsan & Brett, 2008, 2009). A volume of 
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10 µl of enzyme solution was then mixed with 5 µl GA (2.5%, v/v diluted in water). 10 µl of this 

mixture was dropped on the electrode surface and left to dry at room temperature for 4 h 

before the use. 

The electrodes were left at 4 °C  in their electrolyte after the first measurement. 

Types of electrodes 

Different architectures were studied in order to understand the role of each compound (PBG, 

PEDOT, CNT) and to find the best structure for sensing purposes. The carbon resistor electrodes 

were modified as follows: 

 PBG/CFE, PEDOT/CFE, CNT/CFE: each compound was deposited or electropolymerised alone 

on the CFE, without other modification; 

 PEDOT/PBG/CFE and CNT/PBG/CFE: PBG was deposited on the CFE and covered with PEDOT 

or CNT; 

 PBG/PEDOT/CFE and PBG/CNT/CFE: PBG was electropolymerised on the top of the 

electrode after PEDOT or CNT deposition; 

 PEDOT/CNT/CFE and CNT/PEDOT/CFE: electrodes without PBG, for comparison. 

All the electrodes were left in air at least for 24 h at ambient temperature before use. 

Two types of electrodes were chosen for the production of biosensors, since they gave better 

results in the determination of hydrogen peroxide: 

 CNT/PBG/CFE: PBG was deposited on the CFE and covered with CNT; 
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 CNT/PEDOT/CFE: PEDOT was deposited on the CFE and covered with CNT. 

5.2.3. Results and Discussion 

Firstly, BG was electropolymerised on CFE and the relative cyclic voltammograms are shown in 

Figure 5.2. At high positive potentials around 1.0 V during the first four cycles, the formation of 

cation radicals can be observed. From the 4th to the 10th cycle, the oxidation current at 1.0 V 

begins to decrease, probably due to the polymer formed that impedes the monomer to reach 

the electrode surface. When BG is electropolymerised on CNT/CFE, a continuous increase of the 

corresponding polymer peaks at + 0.3, + 0.5, - 0.5 and -0.7 V is evident, indicating that PBG is 

electropolymerised until the last cycle, since the more open structure of CNT allows the 

passage of the monomer. The electropolymerisation of BG on PEDOT is demonstrated by the 

decrease in the capacitive currents for PEDOT with each cycle, since PBG enters in the structure 

of PEDOT, covering the polymer. For comparison, EDOT was also electropolymerised on 

CNT/CFE and on PBG/CFE. In the first case, the traditional increase of the capacitive current due 

to PEDOT formation is not so evident, since CNT are already very capacitive, while in the second 

case the profiles of CV are very similar to those recorded at the bare electrode, but with low 

current, probably for the diffusion barrier exhibited by PBG. 
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Figure 5.2. Electropolymerisation of BG at CFE (a), CNT/CFE (b) and PEDOT/CFE (c) from a solution containing 1 
mM monomer in McIlvaine buffer pH 4.0; 10 scans at 100 mV s

-1
. The inset shows the electropolymerisation of 

PEDOT at CFE in 0.1 M NaPSS; 10 scans at 50 mV s
-1

. 

Cyclic voltammagrams were recorded in 0.1 M KCl for all the electrodes at different scan rates 

(10-200 mV s-1) and they show a linear dependence of the peak current with the square root of 

the scan rate, indicating an electrochemical process controlled by diffusion of the counterion. 

Table 5.1 reports the slope of these linear plots, allowing a comparison about how diffusion 

occurs at different electrodes. For PBG/CFE, the slope is two or three orders of magnitude 

lower than PEDOT/CFE and CNT/CFE, respectively, demonstrating difficult diffusion through 

PBG. The same behaviour can be observed when PBG is on the top of the electrodes 
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(PBG/CNT/CFE and PBG/PEDOT/CFE), since the slopes are lower than those for CNT and PEDOT 

alone, also in this case due to the compact structure of PBG film. Moreover, comparison of the 

slopes allows to evaluate the architecture, containing CNT in different positions, with better 

diffusion. Indeed, CNT on the top have higher values than CNT covered with polymers, since in 

the opposite case polymers can fill the porous structure of CNT, slowing diffusion. 

Table 5.1 presents also capacitance values, showing an increase for electrodes with CNT, 

including that with PBG, which is two orders of magnitude higher than PBG alone. The presence 

of PEDOT together with CNT leads to the highest values of capacitance, due to the capacitive 

contribution of both. 

Table 5.1. Slopes of plots of jp vs. v
1/2

 and capacitance values calculated from the slope of the plot of j vs. v (cyclic 
voltammograms recorded in 0.1 M KCl). 

Electrode 
anodic slope 

μA cm-2 mV s-1 
cathodic slope 
μA cm-2 mV s-1 

C / mF cm-2 

PBG/CFE 0.03 0.02 0.1 

CNT/CFE 21.0  16.1 14.4 

PEDOT/CFE 3.0 - 4.2 

CNT/PEDOT/CFE 25.0 - 22.8 

PEDOT/CNT/CFE 14.1 12.2 20.5 

PBG/CNT/CFE 18.2 16.0 15.4 

CNT/PBG/CFE 23.3 18.3 15.7 

PEDOT/PBG/CFE 4.6 - 2.9 

PBG/PEDOT/CFE 2.7 - 4.0 
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The influence of oxygen was considered, showing no influence for electrodes without PBG, 

while in the presence of PBG a significant decrease of the current takes place in the absence of 

O2. 

Operational stability experiments were undertaken by cycling the potential 100 times between 

– 0.7 and + 0.5 V with the scan rate of 50 mV s-1. All the electrodes show a good stability, 

decreasing by only 7 % the cathodic and anodic initial peak current values after 100 cycles. 

Electrochemical impedance spectroscopy was used to understand the physical and interface 

properties of the electrodes. Spectra were recorded in 0.1 M KCl at + 0.15, 0.0, - 0.2, -0.4 V 

(SCE), potentials chosen considering cyclic voltammograms to be in the electroactive regions of 

the modified electrode. Figure 5.3 shows complex plane plots, while Figure 5.4 presents the 

equivalent circuit used to fit impedance spectra. The values for equivalent circuit obtained from 

the fitting are presented in Table 5.2. 

In the case of PBG/CFE, spectra present a semicircle in the higher frequency region and a 

straight line for lower frequencies at the first three potential, while at – 0.4 V a semicircle with 

large diameter substitutes the straight line. The corresponding equivalent circuits are the same 

for all the potentials with only an addition of resistance (Rpol) at – 0.4 V for the presence of the 

second semicircle. Decreasing the potential, the high frequency semicircle becomes bigger with 

a corresponding increase of Rct and a decrease of CPEdl, since the double layer becomes more 

resistive and less capacitive. The values of CPEpol are higher at + 0.15 and – 0.4 V, the potentials 

where the polymer is electroactive, as shown by the cyclic voltammetric study. 



193 
 

The spectra recorded for PEDOT/CFE have very similar trend, with the only difference of a 

straight very capacitive line for low frequencies. Impedance values are much lower if compared 

with PBG/CFE, indicating a more conductive character for PEDOT. From positive to negative 

potentials, CPEdl decreases and Rct increases, since the polymer is less capacitive and more 

resistive in the negative potential region. αdl values are very close to 0.5, illustrating the high 

porosity and non-uniformity of PEDOT/CFE interface. CPEpol has values of three orders of 

magnitude higher than that for PBG/CFE and αpol reaches values very close to 1, indicating a 

pure like capacitive behaviour of PEDOT. 

CNT/CFE has a very different behaviour, since it shows a very capacitive straight line with a 

slope very close to 90° at low frequencies, in agreement with the high capacitive currents 

obtained by CV. In the high frequency region, spectra reported a straight line with slope lower 

than 45°, correlated to diffusional processes through the porous CNT structure. The equivalent 

circuit changes completely with the addition of a first Warburg element in substitution to RC 

circuit and of a pure capacitor as second element. For negative potentials the diffusional 

resistance increases and capacitance values are in agreement with cyclic voltammetric data. 

In the case of PBG and CNT, the profile of the complex plane spectra is very similar to CNT/CFE 

and the same equivalent circuit was used for the fitting, giving very close RW and C values. This 

fact shows that the overall electrical properties of the electrodes are more influenced by CNT 

than by the presence of the redox polymer. 

Carbon nanotubes have also a dominant influence in the presence of PEDOT and in particular 

for PEDOT/CNT/CFE the profile and fitting values are very similar to those of CNT/CFE. On the 
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other hand, for CNT/PEDOT/CFE, the region at high frequencies is broader than in the case of 

CNT/CFE and for – 0.4 V the diffusional line becomes a very depressed semicircle. The values of 

Rct increase for negative potentials and are higher than those of CNT/CFE and PEDOT/CNT/CFE. 

This different behaviour can be explained considering that probably CNT deposited on the 

porous structure of PEDOT are more disordered than on the bare CFE, causing a more chaotic 

and difficult diffusion. On the contrary, deposition of CNT on CFE and polymerisation of PEDOT 

on CNT give a more ordered architecture. Nevertheless, CNT/PEDOT/CFE gives the highest 

capacitance values, higher than CNT/CFE and PEDOT/CNT/CFE, in accordance with cyclic 

voltammetry. 

Impedance spectra were also recorded at PEDOT/PBG/CFE and PBG/PEDOT/CFE for 

comparison. The profile of the complex plane plots and the equivalent circuits remain the same 

as for PEDOT/CFE, demonstrating the main influence of PEDOT on electrode characteristics. 

However, Rct is higher while CPEdl, αdl and CPEpol are lower than the values for electrode with 

PEDOT alone, so the association of PEDOT and PBG is worse for application in electroanalysis. 
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Figure 5.3. Complex plane impedance plots recorded in KCl 0.1 M for the electrodes PBG/CFE, PEDOT/CFE, 
CNT/CFE, CNT/PEDOT/CFE; the lines represent equivalent circuit fitting. 

 

 

 

 

 

 

 

 

Figure 5.4. Equivalents circuits used to fit EIS spectra. 
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Table 4.2. Values of the parameters obtained by fitting impedance spectra for PBG/CFE, PEDOT/CFE, CNT/CFE, CNT/PBG/CFE, CNT/PEDOT/CFE. 

Electrode 
Eapvs 

SCE / V 
CPEdl / mF 
cm-2 sα-1 

αdl 
Rct / Ω 

cm2 
CPEpol / mF 

cm-2 sα-1 
αpol 

Rpol / Ω 
cm2 

Rw / Ω 
cm2 

 / s α 
C / mF 

cm-2 

PBG/CFE 

0.15 10.7 × 10-3 1 2.5 46.9 × 10-3 0.84 - - - - - 

0 5.5 × 10-3 1 2.4 19.3 × 10-3 0.73 - - - - - 

-0.2 2.5 × 10-3 1 6.2 26.7 × 10-3 0.73 - - - - - 

-0.4 0.7 × 10-3 1 10.2 64.7 × 10-3 0.81 6.7 - - - - 

PEDOT/CFE 

0.15 3.1 0.51 10.1 3.6 0.97 - - - - - 

0 3.5 0.50 18.0 3.4 0.97 - - - - - 

-0.2 1.9 0.55 53.4 3.0 0.90 - - - - - 

-0.4 0.7 0.74 313.6 1.3 0.60 - - - - - 

CNT/CFE 

0.15 - - - - - - 0.4 0.003 0.19 13.2 

0 - - - - - - 1.8 0.094 0.37 21.1 

-0.2 - - - - - - 2.0 0.136 0.34 20.0 

CNT/PBG/CFE 

0.15 - - - - - - 0.9 0.016 0.19 14.2 

0 - - - - - - 1.1 0.024 0.19 18.9 

-0.2 - - - - - - 1.0 0.022 0.19 19.5 

CNT/PEDOT/CFE 

0.15 - - - - - - 5.1 0.119 0.13 24.0 

0 - - - - - - 4.0 0.080 0.16 29.9 

-0.2 - - - - - - 4.4 0.113 0.16 30.7 

-0.4 1.8 0.52 7.8 - - - - - - 25.5 
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The influence of oxygen was also studied, because redox polymers can be oxidized in the presence 

of O2 and O2 can be reduced at the interface, affecting the homogeneity of the film. For these 

reasons impedance spectra were also recorded in the absence of O2, removed from the solution 

by bubbling N2 for at least 20 minutes. In particular, PBG/CFE is affected by the absence of oxygen, 

since RCT increases and CPEpol decreases only at + 0.15 and – 0.4 V, where the polymer is 

electroactive. Probably, the redox activity of the polymer involves or is favoured by oxygen. In the 

case of PEDOT/CFE, oxygen has a lower influence, showing a RCT increase probably due to few 

hydroxyl ion formation, which may help the electron transfer at the surface. Moreover, CNT 

modified electrodes are not influenced at all by oxygen, showing again advantages in the use of 

CNT for (bio)sensor design. 

The characterization of the electrodes demonstrates that each type of material used to modify the 

bare electrode can strongly influence its performances and its properties. To further investigate 

the best architecture for electroanalytical purposes, a study of electrode behaviour towards 

hydrogen peroxide was performed. The choice of hydrogen peroxide (W. Chen, Cai, Ren, Wen, & 

Zhao, 2012) is justified by its importance in pharmaceutical, clinical, environmental, mining, textile 

and food manufacturing applications. Moreover, hydrogen peroxide is a side product of many 

biochemical reactions catalyzed by many oxidase enzymes. For these reasons, H2O2 appears to be 

the best species to demonstrate the possible electrode application in the field of sensors and 

biosensors. 

Initially, potential cycling between – 0.7 V and + 0.7 V in 0.1 M NaPBS (pH = 7) was performed for 

each electrode in the absence and presence of H2O2. Cyclic voltammograms for electrodes without 

carbon nanotubes do not exhibit a significant response when H2O2 is present, while CNT-modified 

electrodes show activity towards the reduction of hydrogen peroxide at around – 0.1 V, as shown 
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in Figure 5.5. For this reason and considering CV and EIS results, electrodes without carbon 

nanotubes were excluded from further studies and applications. 

Chronoamperometries were performed at all the CNT-modified electrodes at 0.0 V (SCE), since at 

this potential electrodes still exhibit good performances and the majority of possible interferences 

is avoided. Figure 5.5  shows a typical chronoamperometric spectrum in the range 5-50 μM in H2O2 

and the corresponding calibration plots. 

 

Figure 5.5. (a) Cyclic voltammograms recorded in a solution containing NaPBS 0.1 M before and after addition of 
H2O2 and (b) Amperometric response to H2O2 at CNT/PBG/CFE with the corresponding calibration plot shown in the 
inset. 

For electrodes with polymers on the top (PEDOT/CNT/CFE and PBG/CNT/CFE) sensitivities are 

smaller, 91.4 ± 0.4 and 113.5 ± 0.6 μA cm-2 mM-1, and detection limits are higher, 2.40 and 1.45 

μM, than in the case of CNT/C E (124.5 ± 0.4 μA cm-2 mM-1, 1.19 μM), demonstrating that 

covering CNT with polymers reduces electrode activity, probably because of a decrease of active 

sites and surface area. On the other hand, electrodes with CNT on the top (CNT/PEDOT/CFE and 

CNT/PBG/CFE) show higher sensitivities and smaller limits of detection compared with CNT alone. 

In the case of CNT/PEDOT/C E the improvement in sensitivity, 131.9 ± 0.5 μA cm-2 mM-1, and LoD, 

0.89 μM was expected as predicted by the high values of capacitance obtained from CV and EIS. 

 or CNT/PBG/C E, the detection limit of 0.91 μM is comparable with CNT/PEDOT/C E and the best 
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sensitivity is obtained (151.8 ± 0.6 μA cm-2 mM-1), indicating that PBG improves hydrogen peroxide 

determination, even if it does not contribute to the total capacitance. 

Repeatability was also tested, preparing three new electrodes for each type and using the same 

conditions. In Figure 5.6 calibration plots in the low concentration range for CNT/PEDOT/CFE and 

CNT/PBG/CFE are shown; the points were obtained as mean values of the three electrodes and 

error bars represent the standard deviation of each point. Repeatability is excellent, RSD values 

being lower than 1 %. In the inset, an example of calibration plot for higher concentration is 

presented and all the electrodes show in general saturation at 6 μM H2O2. 

 
 

Figure 5.6. Linear calibration plots corresponding to CNT/PBG/CFE and CNT/PEDOT/CFE in NaPBS 0.1 M at 0.0 V 
obtained in the concentration range from 5 to 50 μM H2O2.  
Inset: typical calibration plot obtained for high concentration range. 

Stability was also evaluated recording a calibration plots of 7 points in the low concentration range 

three times a week. The sensitivity decreases by only 10 % from its initial value after 20 days. After 

this period it decreases faster. 

Comparison with recent (2010-2012) Literature data on hydrogen peroxide sensing at modified 

electrodes was also considered (Table 5.3). The values of sensitivities and operational ranges are 
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comparable with other types of sensors and LoDs are very similar, but this new electrode has the 

advantage of 0.0 V working potential, allowing the avoidance of the majority of interferences. 

Table 5.3. Performance parameters of hydrogen peroxide sensors for different modified electrodes recently 
reported in the literature. 

Electrode 
Concentration 
Range / mM 

S / μA  
cm-2mM-1 

LOD / 
μM 

Potential 
/ V 

Ref. 

MnO2/VACNTs 0.001-1.8 1001.0 0.80 +0.45 
(B. Xu, Ye, Yu, & 

Zhang, 2010) 

SiNW/AgNPs 0.2-70 57.5 0.20 -0.45 (Yin et al., 2011) 

HRP/PAM/MWCNT
COOH/Au 

0.086-10 194.9 26.0 -0.35 
(Hua, Lin, Tsai, Chen, 

& Liu, 2011) 

HRP/AuNPs/BC 0.0003-1.00 610.0 0.10 +0.15 
(W. Wang et al., 

2011) 

HRP/Sulf-G 0.003-0.33 557.0 1.17 -0.35 
(Q. Zhang et al., 

2011) 

HRP/3DAuNW 0.1-15 45.9 0.42 -0.1 
(J. Xu, Shang, Luong, 
Razeeb, & Glennon, 

2010) 

Graphene/PB 0.1-15.5 408.7 0.34 +0.1 
(Yao Zhang, Sun, 
Zhu, Shen, & Jia, 

2011) 

N-CNTs 0.002-0.14 24.5 0.37 +0.3 
(X. Xu, Jiang, Hu, & 

Liu, 2010) 

PB/MWCNT 0.001-5 856.0 0.02 +0.1 
(Du, Wang, Qin, & 

Lin, 2010) 

PAA-BO/Au 0.025-2.5 311.2 5.00 -0.5 
(Hua, Chen, et al., 

2011) 

Ag-UTPNSs 0.1-90 4.5 0.57 -0.35 
(Mahmoudian, Alias, 

Basirun, & Ebadi, 
2012) 

PPy/Magnetite 
hybrid 

0-0.4 72.0 - -0.3 
(Bencsik, Janáky, 
Endrődi, & Visy, 

2012) 

CNT/PBG/CFE 0.0005-6 151.8 0.91 0.0 this work 

 

Considering the results obtained towards hydrogen peroxide detection, the electrode with the 

best performance (CNT/PBG/CFE) was chosen for application in biosensoristic field and 

CNT/PEDOT/CFE was selected for comparison. 
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Among all the types of biosensors, those for the detection of glucose (J Wang, 2008) are ideal to 

evaluate the performances of new developed electrodes in the biosensor field and have also the 

potential application in food and medical areas (Oliver, Toumazou, Cass, & Johnston, 2009). 

Glucose Oxidase (GOx) can be considered a model enzyme since it permits the production of 

simple and cheap biosensors, which allow a fast evaluation of electrode performance without the 

addition of a cofactor, as in the case of Glucose Dehydrogenase.  

Ethanol is another important analyte and its detection is required in many different areas, clinical 

and forensic analysis, food, pulp and beverage industries, agricultural and environmental 

measurements. Many analytical methods (Azevedo, Prazeres, Cabral, & Fonseca, 2005) have been 

developed during the years for the determination of ethanol and include the use of chemical 

methods, colorimetric methods, specific gravity and refractive index measurements, 

chromatographic and spectroscopic methods. The disadvantages of these methods are 

complexity, time consuming steps and requirement of previous separation processes, expensive 

instrumentation and trained operators, which can be overcome by the use of enzymatic methods. 

In particular, two enzymes have been extensively used in the determination of ethanol, Alcohol 

Dehydrogenase (ADH), which require the cofactor NAD+, and Alcohol Oxidase (AlOx), which 

already contains the cofactor FAD2+. The development of ethanol biosensors usually requires a 

redox mediator, since the active sites of these enzymes are deeply buried in the protein limitating 

the electron transfer. Electroactive polymers represent an interesting solution to this problem 

(Barsan & Brett, 2008). 

Oxygen is a very important parameter to be considered during the planning of a new biosensor 

based on enzymes, since it can strongly influence the performances of the electrode. In fact, the 

first studies about biosensors for glucose (J Wang, 2008) and also for ethanol (Azevedo et al., 

2005) showed oxygen acting as cosubstrate during the enzymatic reactions. Furthermore, the 
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types of microorganism from which the enzyme is extracted has to be taken into consideration. In 

particular, GOx belongs to Aspergillus Niger (Geiser, 2009), which is a highly aerobic species, while 

AlOx is extracted by Hansenula sp (Gellissen et al., 2005; Ramezani-Rad et al., 2003), which is 

principally anaerobic. Another key point is the possibility that oxygen can influence not only the 

performances of enzymes, but also the behaviour of the electroactive polymer during its redox 

process, as already discussed (Valentina Pifferi, Barsan, Ghica, Falciola, & Brett, 2013). 

The operative potential and pH conditions play an important role in biosensor activity, since they 

can influence the sensitivity of the detection and the possible interferences. For these reasons, 

these conditions were firstly taken into consideration and optimized. 

In the case of glucose biosensors, 0.1 M NaPB + 0.05 M NaCl pH = 7 was chosen as supporting 

electrolyte (Barsan & Brett, 2009; Barsan, Carvalho, Zhong, Sun, & Brett, 2012). Figure 5.7 shows 

the study of working potential for CNT/PEDOT/CFE and CNT/PBG/CFE from -0.4 V to 0.0 V (SCE). 

For both electrodes the intensity of the signal is higher for -0.4 V, closer to the formal potential of 

FAD/FADH2 couple, and decreases rapidly when potential is increased, reflecting the behaviour of 

other biosensors with GOx (Barsan & Brett, 2009; Barsan et al., 2012). A potential of -0.3 V was 

chosen for further amperometric experiments with the aim of minimising possible interferences, 

ensuring a good intensity of the signal. 

 

Figure 5.7. Study of applied potential for a) GOx/CNT/PEDOT/CFE and b) GOx/CNT/PBG/CFE in 0.1 M NaPBS M 
pH=7. 
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In the case of AlOx, the behaviour of the biosensor is very different for the two types of 

electrodes, considering the operative pH and the working potential. 

Figure 5.8 reports the intensity of the signal increasing the pH from 6.5 to 9.0 for CNT/PEDOT/CFE 

and CNT/PBG/CFE, showing that in the case of CNT/PEDOT/CFE the optimum operative pH is 7.0, 

while in the case of CNT/PBG/CFE is 8.5. Another important difference is presented in Figure 5.9, 

where the intensity of the signal is reported varying the potential. For CNT/PEDOT/CFE the current 

decreases increasing the potential and it reaches the highest value closer to the formal potential 

of FAD/FADH2 couple, as already reported for other similar biosensors (Barsan & Brett, 2008). For 

CNT/PBG/CFE the behaviour is completely different, since the current increases from -0.4 V to -0.2 

V, with a small decrease at -0.1 V. This fact can be explained considering that PBG is a redox 

polymer and thanks to its redox activity it gives a good answer even at -0.1 V, where the signal of 

PEDOT  is very low, considering its non electroactive nature. 

The operative potential chosen for CNT/PEDOT/CFE was -0.3 V with the aim of minimizing possible 

interferences but maintaining a good response, while for CNT/PBG/CFE was -0.1 V, since the signal 

is already good and the potential very close to 0 V allows to avoid the majority of interferences.  

 

Figure 5.8. Study of solution pH at -0.3 V vs SCE for  
a) AlOx/CNT/PEDOT/CFE and b) AlOx/CNT/PBG/CFE. 
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Figure 5.9. Study of potential at optimum pH of 8.5 of 0.1 M NaPBS for  
a) AlOx/CNT/PEDOT/CFE and b) AlOx/CNT/PBG/CFE. 

After the optimization of experimental conditions, analytical parameters were evaluated. 

In the case of glucose detection, calibration plots were obtained for both electrodes in 0.1 M 

NaPBS + 0.05 M NaCl pH = 7 at the working potential of -0.3 V for consecutive additions of 0.1 M 

Glucose. The typical amperometric signal is shown in Figure 5.10 with the corresponding 

calibration plot, which presents a dynamic range of linearity from 0.05 mM to 1.25 mM. After this 

value the electrode reaches saturation. Reproducibility, which was also tested preparing three 

different electrodes for each type, appears to be very good considering the small error bars shown 

in the calibration plot. 

 

Figure 5.10. a) Amperometric response to glucose at -0.3 V vs. SCE in 0.1 M NaPBS pH=7.0 at GOx/CNT/PBG/CFE and 
b) the corresponding calibration plot. 
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In the case of ethanol determination, the chosen experimental conditions were different for the 

two types of electrodes. For CNT/PEDOT/CFE the supporting electrolyte was 0.1 NaPBS + 0.05 NaCl 

pH = 7 and the working potential was -0.3 V, while for CNT/PBG/CFE the supporting electrolyte 

was 0.1 NaPBS + 0.05 NaCl pH = 8.5 and the working potential was -0.1 V. Figure 5.11 shows the 

amperometric signal for CNT/PBG/CFE, which increases for consecutive additions of 0.1 M ethanol 

solution without the typical amperometric steps, but according to other amperometric 

measurements of ethanol presented in other papers (Barsan & Brett, 2008). The corresponding 

calibration plot (Figure 5.11) can be obtained considering the current increase at each addition. 

The range of linearity covers the interval between 0.1 mM and 0.7 mM; after that the electrode 

reaches saturation. Reproducibility, tested on three different electrodes, was very good, as small 

error bars in the calibration plot show.  

 

Figure 5.11. a) amperometric response to ethanol at -0.1 V vs. SCE in 0.1 M NaPBS pH=8.5 for AlOx/CNT/PBG/CFE 
and b) the corresponding calibration plot.7 
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because of necessary hydration of the enzyme. Sensitivity values are higher and LoD values are 

lower for modified electrodes than for bare CFE, both for glucose and ethanol, which can not be 

detected at bare electrode. CNT/PBG/CFE shows better values than CNT/PEDOT/CFE. These results 

are in accordance with precedent results obtained for the detection of hydrogen peroxide 

(Valentina Pifferi, Barsan, et al., 2013), where the electrode with PBG, also if it is less capacitive 

than PEDOT modified electrode, shows higher sensitivity and lower detection limit, probably due 

to its redox nature, which can amplify the signal, allowing electrocatalysis.   

Relative standard deviation was lower than 5 % for all the electrodes.  

Stability was also evaluated, testing electrodes for five weeks, three times a week. GOx electrodes 

were stable for all the 40 days period, while for AlOx electrodes after 20 days the sensitivity began 

to decrease. 

Table 5.4. Sensitivities and detection limits obtained at different glucose and ethanol biosensors under the 
optimized experimental conditions (GOx: 0.1 M NaPBS pH=7, -0.3 V vs. SCE; AlOx/CNT/PEDOT/CFE: 0.1 M NaPBS 
pH=7, -0.3 V vs. SCE and AlOx/CNT/PBG/CFE: 0.1 M NaPBS pH=8.5 and -0.1 V vs. SCE). 

Electrode 
S / μAcm-2mM-1 

LOD / μM 
First day Second day 

GOx/CFE 0.436 ± 0.004 0.431 ± 0.001 105.2 

GOx/CNT/PEDOT/CFE 23.2 ± 0.2 40.3 ± 0.7 37.0 

GOx/CNT/PBG/CFE 23.5 ± 0.2 43.6 ± 0.6 13.3 

AlOx/CFE - - - 

AlOx/CNT/PEDOT/CFE 4.4 ± 0.1 9.3 ± 0.2 70.0 

AlOx/CNT/PBG/CFE 9.2 ± 0.5 12.4 ± 0.2 29.0 

 

Oxygen is a key parameter to be consider in biosensor field, since it can influence not only the 

enzymatic reaction, but also the behaviour of the electroactive polymer. 



207 
 

For these reasons, the influence of oxygen was studied for both biosensors considering the better 

architecture (CNT/PBG/CFE). Calibration plots (Figure 5.12) in different atmospheres (N2, O2, air) 

were collected with the same conditions used before, while the corresponding sensitivities are 

presented in Table 5.5. In the case of glucose biosensor, the presence of oxygen deeply influences 

the detection of glucose, since the sensitivity is higher under O2 atmosphere, while under N2 it 

decreases by 60 %. In the case of ethanol biosensor the best sensitivity is obtained in the absence 

of oxygen, but the difference in sensitivity is not so relevant as in the case of glucose. Probably this 

behaviour can be explained considering the enzymatic source, a completely aerobic bacterium for 

GOx and a principally anaerobic bacterium, which in same cases can behave also in the aerobic 

way, for AlOx. In fact, the change in sensitivity is more relevant and evident in the case of GOx. 

 

Figure 5.12. Calibration plot in buffer solutions with different oxygen content (air, oxygen and nitrogen) for 
GOx/CNT/PBG/CFE (-0.3 V, pH = 7) and AlOx/CNT/PBG/CFE (-0.1 V, pH = 8.5). 
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The amperometric response at -0.3 V (SCE) to glucose and -0.1 V (SCE) to ethanol in the presence 

of acetic acid, ascorbic acid, tartaric acid, dopamine, catechol, fructose and uric acid, electroactive 

compounds which can probably interfere in the determination of glucose or ethanol in real 

samples, was measured using the CNT/PBG/CFE biosensor (Figure 5.13). Glucose or ethanol were 

injected before and after addition of the interfering compounds, in the same concentration of the 

interferents; results are shown in Table 5.6. As observed, some compounds did not give any 

response, particularly in the case of glucose, despite the high interferent-to-glucose or ethanol 

concentration ratio. The decrease of the response to glucose or ethanol was only between 2-6 %, 

where small oxidation currents were observed. All these results evidence the applicability of the 

developed biosensors for the determination of glucose or ethanol in complex matrices.     

Table 5.6. Interferences at GOx and AlOx CNT/PBG/CFE biosensors; ratio of interfering compounds to glucose or 
ethanol 1:1. 

Interfering 

compounds 

Biosensor response in the presence 
of interfering compound / % 

GOx AlOx 

Acetic acid 97 98 

Ascorbic acid 94 96 

Tartaric acid 100 94 

Dopamine 100 98 

Catechol 98 100 

Fructose 100 94 

Uric acid 100 95 
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Figure 5.13. Interference studies for a) GOx/CNT/PBG/CFE (-0.3 V vs. SCE, 0.1 M NaPBS pH=7) and b) 
AlOx/CNT/PBG/CFE (-0.1 V vs. SCE, 0.1 M NaPBS pH=8.5). 

5.2.4. Conclusions 

Brilliant Green, belonging to the triphenylmethane family, has been successfully 

electropolymerized for the first time on bare carbon electrode (CFE) and on modified (with CNT 

and PEDOT) electrodes. The polymerisation is completed during the first four cycles, allowing the 

formation of a very compact film, as demonstrated by cyclic voltammetric studies that show lower 

diffusion coefficients and capacitances for the electrodes with PBG. On the contrary, when CNT 

are on the top of the electrode (CNT/PEDOT/CFE and CNT/PBG/CFE) the diffusion is facilitated. In 

general, CNT and PEDOT increase the capacitance values with the highest value recorded for 

CNT/PEDOT/CFE. EIS experiments confirm the results of CV, additionally showing the influence of 

oxygen on PBG-based electrodes. 

Hydrogen peroxide determination was chosen to demonstrate the applicability of these types of 

electrodes and to find the best architecture. In particular, only CNT-based electrodes show activity 

towards H2O2 at 0.0 V, potential which permits to avoid the majority of interferences, and when 

CNT are placed on PEDOT or PBG higher sensitivities were obtained in comparison with CNT alone. 

The best performance was registered for CNT/PBG/CFE, indicating that PBG effectively improves 

H2O2 determination thanks to its redox activity. Reproducibility studies gave excellent results with 
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RSD lower than 1 % and together with electrode stability demonstrate the applicability for the 

development of electrochemical sensors. 

The results towards hydrogen peroxide determination suggested also the applicability of these 

electrodes in the field of biosensors, since H2O2 is a side product of various biological reactions 

catalyzed by enzymes. In particular, among the different electrode architectures studied, 

CNT/PBG/CFE, which reached the best results for the determination of hydrogen peroxide, was 

chosen and CNT/PEDOT/CFE was used as comparison for the design of new biosensors for glucose 

and ethanol. Glucose oxidase from Aspergillus Niger, a completely aerobic bacterium, and Alcohol 

oxidase from Hansenula sp, a principally anaerobic bacterium, were chosen as enzymes.  

The electrolyte pH and the operative potential were optimized, showing in the case of AlOx 

different behaviour for CNT/PBG/CFE and CNT/PEDOT/CFE. In fact, for PBG, the operative 

potential is lower than for PEDOT, showing the importance of the redox polymer in the electrode 

process. The electrode with the redox polymer (PBG) showed the best performance for both 

glucose and ethanol determination, with good sensitivity and detection limits, considering also 

other biosensors in the recent literature. In particular, sensitivity reached maximum values after 

hydration and was in general higher than in the case of the bare electrode. Reproducibility, 

stability and relative standard deviations were very good for both types of electrodes. The 

influence of oxygen was also studied, showing a relevant decrease in sensitivity for glucose 

detection and a slightly increase for ethanol determination under nitrogen atmosphere. This 

situation could be explained considering the enzyme source. Furthermore, interference studies 

showed the applicability of electrodes based on PBG in real samples. 
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5.3. Cation Conducting Polymers 

5.3.1. Poly(Aryl Ether Sulfone) 

Poly(Aryl Ether Sulfone)s (Figure 5.14), commonly called PES, are well-known engineered 

thermoplastic materials, with excellent properties thanks to their aromatic skeleton and charged 

groups, such as thermal and mechanical strength, resistance to oxidation and acid catalyzed 

hydrolysis (Herbert, Ghassemi, & Hay, 1997; Lakshmi et al., 2006). Moreover, they present high 

glass transition temperature, good solubility in polar aprotic and halogenated solvents, radiation 

stability, low flammability and toughness, and they are inexpensive compounds (Herbert et al., 

1997). For their properties, they are used in many fields, as materials for composite matrices, high 

temperature films, adhesive and electronic parts, electrodialysis, desalination, gas separation 

process and water purification (Klaysom, Moon, Ladewig, Lu, & Wang, 2011a; F. Wang, Hickner, 

Kim, Zawodzinski, & McGrath, 2002), finding a larger application particularly as proton exchange 

membranes for fuel cells (S. Feng, Savage, & Voth, 2012). Nafion membrane is usually employed 

for this purpose with very good performances, but it has the disadvantages of significant decrease 

in proton conductivity over 90 °C, poor barrier properties with methanol and high cost (S. Feng et 

al., 2012). For these reasons, alternative compounds have been studied in the last years and 

poly(Aryl Ether Sulfone)s seem to be the most promising, together with sulfonated poly(ether 

sulfone)s, poly(ether ether ketone)s and polyimides. Thanks to the presence of aromatic rings, 

functionalities can be easily introduced in the structure, yielding to a potential infinite number of 

materials with flexible properties. These additional groups can be introduced in the polymer 

structure using different types of strategies, such as crosslinking and grafting of the side chain, 

performed prior or post synthesis. The introduction prior synthesis has the disadvantages of 

undesired side reactions, while the post synthesis method needs usually multiple time consuming 



212 
 

and difficult reactions. Therefore, the use of monomer with functionalizable moieties which are 

inert to the polymerization conditions seems to be the most attractive alternative (Cameron & 

Sherrington, 1997; Herbert et al., 1997; Meng, Hay, Jian, & Tjong, 1998). Moreover, inorganic 

fillers can be introduced in the polymer chain, improving the retain of water, the conductivity and 

the ion exchange capacity (Klaysom, Moon, Ladewig, Lu, & Wang, 2011b). 

In the study of PES, various parameters have to be taken into consideration to understand the 

different properties and behaviour of these polymers (GUAN et al., 2006). First of all, the ion 

exchange capacity (IEC) is an important value to describe the milliequivalent of ions which can be 

exchanged per gram of polymer. This parameter is also described as the reciprocal of the polymer 

equivalent weight. Furthermore, the casting solvent is another key factor, since it remains as 

residual in the polymer structure. The study of different solvents showed morphological changes 

depending on the type of casting solvent. In particular, each solvent interacts quite differently 

with the polymer, in terms of hydrogen bondings, number of solvent-polymer interactions and size 

of polymer grains. For example, high volatile solvents, as dimethylformamide, give stronger 

hydrogen bondings, a big number of polymer-solvent interactions and a large grains formation, 

causing the production of less conductive and hydrophilic material in comparison with less volatile 

solvents, like N-Methyl-2-Pyrrolidone. Finally, other important characteristics are porosity, since 

small porosity gives less conductive materials, and solvation structure, depending on the distances 

of sulfonated groups, both easily controllable (Klaysom et al., 2011a).  

In the Literature, no mention about the use of PES in electroanalysis can be found, while Nafion is 

extensively used for this purpose. In fact, its properties of chemical stability, preventing 

agglomeration and corrosion of guest species and easyness of handling, makes this compound 

very attractive as dispersive host membrane for nanomaterials, also helping to avoid anion 

interferences. Moreover, its conductivity demonstrates the possibility of direct application as 



213 
 

sensor, even if only one example can be found in the Literature for the detection of dyes 

microparticles (Moretto, Montagner, Ganzerla, & Ugo, 2013). In this context, the study of the 

electrochemical behaviour of different types of PES, synthesized by Prof. Di Silvestro group of the 

University of Milan for application in electroanalytical field as cheaper and more active alternative 

to Nafion seems to be very attractive. 

 

Figure 5.14. Chemical structure of Aryl Ether Sulfone monomer. 

5.3.2. Materials and Methods 

Glassy  Carbon  electrode  was  modified  by drop casting using 1 % of PES dispersed in the desired 

solvent. Different solvents were employed, since they can influence the conformation of the 

polymer on the electrode, and also different configurations of PES were studied, linear with IEC = 

1, linear with IEC = 1.33 and bramched with IEC = 1. The electrodes tested were: 

 Glassy  Carbon  electrode  without  any  modification (GC); 

 GC/aPES-NMP electrode,  modified  with  linear PES (IEC = 1) in the acidic form dissolved in N-

Methylpyrrolidone; 

 GC/aPES-DMSO electrode,  modified  with  linear PES (IEC = 1) in the acidic form dissolved in 

dymethylsulfoxide; 

 GC/aPES-DMF electrode,  modified  with  linear PES (IEC = 1) in the acidic form dissolved in 

dymethylformamide; 
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 GC/sPES-NMP electrode,  modified  with  linear PES (IEC = 1) in the salt form dissolved in N-

Methylpyrrolidone; 

 GC/sPES-DMSO electrode,  modified  with  linear PES (IEC = 1) in the salt form dissolved in 

dymethylsulfoxide; 

 GC/sPES-DMF electrode,  modified  with  linear PES (IEC = 1) in the salt form dissolved in 

dymethylformamide; 

 GC/aPES-NMP-1.33 electrode,  modified  with  linear PES (IEC = 1.33) in the acidic form 

dissolved in N-Methylpyrrolidone; 

 GC/aPES-NMP-br electrode,  modified  with  branched PES (IEC = 1) in the acidic form dissolved 

in N-Methylpyrrolidone. 

0.1 M KCl aqueous solution was used as supporting electrolyte and Ru(NH3)6Cl3 was employed as 

model probe molecule. 

5.3.3. Results and Discussion 

Initially, linear PES with IEC = 1 was studied to find the optimized conditions (quantity, form, 

solvent and drying time) which give the best electrochemical performances. The results were also 

compared with Nafion. 

The percentage of polymer was varied between 0.5 and 5 %, using DMF as solvent. Figure 5.15 

reports the height of anodic and cathodic peaks for each polymer percentage and a comparison 

with Nafion . The highest value is obtained for 1 % PES, which shows also peak current values 

higher than Nafion. The following experiments were carried out using electrodes at this polymer 

percentage. 
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Figure 5.15. Intensity of anodic and cathodic peak current for different PES concentration in DMF and comparison 
with Nafion. 

Figure 5.16-5.17 shows cyclic voltammograms obtained in the presence of the redox probe for 1 % 

PES in acidic or salt form dissolved in different solvents and dried in oven at 25 °C. The acidic form 

shows in general higher peak current intensity than the salt form and also than Nafion; the best 

performance is obtained when NMP is used as solvent. This fact is probably ascribable to the 

nature of the solvent; in fact NMP has the highest boiling point, followed by DMSO and DMF, in 

the same order of peak currents. The hypothesis is that when the boiling point is high, a bigger 

quantity of solvent remains in the structure of the polymer and causes a different configuration, as 

described also in the Literature (GUAN et al., 2006), which influences electrode performance. 
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Figure 5.16. Cyclic voltammograms  of glassy carbon, Nafion and PES 1% in acidic form in the presence of redox 
probe. 

 

Figure 5.17. Cyclic voltammograms  of glassy carbon, Nafion and PES 1% in salt form in the presence of redox probe. 
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Electrodes were also tested after drying in a vacuum oven, to obtain completely dried  samples. 

Figure 5.18 shows the cyclic voltammograms obtained for PES in the acidic form dissolved in the 

three solvent and dried in a vacuum oven. The intensity of the peaks collapses of one order of 

magnitude and peaks are not so well defined as in samples dried in a normal oven. This confirms 

that effectively a small quantity of solvent can remain in the structure of the polymer giving a 

different conformation and consequent activity of the electrode. Moreover, the storage of the 

electrode was studied, leaving the electrode in air or in water after each measurement and results 

are presented in Figure 5.18. In the first case the membrane moves away the support after two 

measurements, while in the second case the membrane is stable for days giving the same signal.    

  

Figure 5.18. Cyclic voltammograms of PES 1% modified electrodes dried in a vacuum oven (a) and study of the 
variation of the signal with time (b). 
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of surface area in the case of acidic form and/or to a change in the diffusion mechanism of the 

redox probe inside the membrane. The last hypothesis is confirmed considering the slope of the 

logarithmic plot of intensity and scan rate, since for the acidic form this value indicates a total 

diffusive behaviour, while for the salt form these values show the partial loss of diffusive 

mechanism. 

Table 5.7. Voltammetric parameters obtained from cyclic voltammograms of PES 1% modified electrodes. 

CV parameters GC 
Acidic form Salt form 

NMP DMSO DMF NMP DMSO DMF 

C / mF cm-2 0.08 0.01 0.02 0.02 0.04 0.03 0.08 
Ec-Ec/2 / mV 61 91 89 80 68 74 74 
Ea-Ea/2 / mV 59 85 89 81 81 117 76 
∆EP / mV 78 156 131 122 117 137 122 

Slope ia vs v0.5 / μA 
mV-0.5 cm-2 s0.5 

47 272 148 120 66 24 96 

Slope ic vs v0.5 / μA 
mV-0.5 cm-2 s0.5 

-51 -285 -157 -114 -58 -19 -86 

Slope Ln ic  vs  ln v 0.49 0.44 0.49 0.49 0.35 0.43 0.42 
Slope Ln ia  vs  ln v 0.47 0.50 0.50 0.51 0.37 0.35 0.41 

 

Electrochemical impedance spectroscopy was performed in the presence or absence of the model 

probe molecule at + 0.25 V (SCE), in the capacitive area of the cyclic voltammetry, and at – 0.15 V 

and – 0.25 V (SCE), where the redox reaction takes place. 

Figure 5.19 shows impedance spectra obtained for the acidic and salt form for each type of solvent 

in the absence of redox probe. Complex plane spectra present a semicircle for higher frequencies, 

corresponding to the formation of the double layer, and a semicircle for lower frequencies, 

indicating the diffusion process inside the polymer, which becomes a straight line for all the salt 

forms and for the acidic form with DMF. Bode plots show very similar trend for all the electrodes 

with a time dependent process for medium frequencies ascribable to the formation of double 

layer. 
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Figure 5.19. Complex plane plot and Bode plot at + 0.25 V in the absence of redox probe. 

Figure 5.20 shows the equivalent circuits used to fit impedance data and Table 5.8 reports the 

values obtained from the fitting procedure. Values of double layer capacitance are in accordance 

with those obtained by cyclic voltammetry and decrease from negative to positive potentials, 

together with the increase of charge transfer resistance. Also polarization capacitance decreases 

and polarization and Warburg resistance increase in the same way, probably because negative 

potentials are more favourable for the electrochemical activity of the polymer. The resistance to 

charge transfer is lower for the acidic form dissolved in NMP and for this reason this electrode 

shows the best electrochemical performance. On the other hand, higher resistance and lower 

capacitance are obtained for the acidic form in DMF and the salt form in DMSO, which have the 

worst performance. 

 

Figure 5.20. Equivalent circuits used to fit impedance data. 
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Table 5.8. Impedance parameters obtained by impedance fitting in the absence of redox probe. 

Electrodes E / V 
R / Ω 

cm2 
CPEDL / F 
cm-2 sα-1 

αDL 
RCT / Ω 

cm2 
CPEPOL / F 

cm-2 sα-1 
αPOL 

RPOL / Ω 
cm2 

Rw / Ω 
cm2 

τ / s α 

NMP_Acid 
-0.25 8.87 21.5 0.85 420 27.5 0.89 7023 - - - 
-0.15 8.87 20.2 0.86 720 25.8 0.87 8469 - - - 
0.25 8.66 17.1 0.89 1420 21.9 0.88 10524 - - - 

DMSO_Acid 
-0.25 7.88 31.0 0.83 710 31.1 0.83 6390 - - - 
-0.15 8.02 24.2 0.84 852 28.0 0.84 7100 - - - 
0.25 7.88 16.2 0.85 2130 26.0 0.86 8311 - - - 

DMF_Acid 
-0.25 16.54 11.6 0.88 1420 - - - 3290 0.1 0.49 
-0.15 16.87 14.2 0.88 1863 - - - 3717 0.1 0.42 
0.25 17.39 11.6 0.90 2229 - - - 4627 0.1 0.42 

NMP_Salt 
-0.25 12.78 36.7 0.83 1528 13.0 0.70 8586 - - - 
-0.15 12.42 32.7 0.84 1615 12.2 0.70 12604 - - - 
0.25 13.49 22.1 0.82 2406 - - - 1706 0.1 0.44 

DMSO_Salt 
-0.25 9.37 16.4 0.86 2698 - - - 2419 0.1 0.40 
-0.15 9.29 14.7 0.86 3195 - - - 2824 0.1 0.48 
0.25 9.37 13.6 0.87 3550 - - - 3563 0.1 0.43 

DMF_Salt 
-0.25 8.66 82.9 0.81 497 - - - 921 0.1 0.45 
-0.15 8.59 82.4 0.80 571 - - - 1864 0.1 0.42 
0.25 7.95 51.0 0.85 667 - - - 4077 0.1 0.45 
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In the presence of model probe molecule, the situation is really different and interesting. In Figure 

5.21-5.22-5.23 impedance spectra are presented. Complex plane spectra show a semicircle for 

higher frequencies, corresponding to the formation of the double layer, and a semicircle or 

straight line for lower frequencies, indicating the diffusion process. Only for the acidic form in 

NMP at – 0.15 V and – 0.25 V (SCE) and for the acidic form in DMSO at – 0.25 V (SCE) the first 

semicircle is not present, but is substituted by a straight line with slope < 0.5, indicating that only 

the diffusion process takes place, without the formation of double layer. On the other hand, for all 

the electrodes at + 0.25 V the complex plane spectrum is formed by two semicircles or one 

semicircle. In general, values of impedance decreases of two orders of magnitude when the redox 

reaction takes place. Bode plots show the same trend at + 0.25 V, with one time-dependent 

process corresponding to the formation of double layer, while at – 0.15 V and at – 0.25 V the trend 

changes the shape, with a less evident time dependent process. Moreover, no process is present 

at – 0.15 V and – 0.25 V for the acidic form in NMP and at – 0.25 V for the acidic form in DMSO 

and for the salt form peaks are present only at – 0.25 V. 

  

Figure 5.21. Complex plane plot and Bode plot at + 0.25 V in the presence of redox probe. 
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Figure 5.22. Complex plane plot and Bode plot at – 0.15 V in the presence of redox probe. 

  

 

Figure 5.23. Complex plane plot and Bode plot at – 0.25 V in the presence of redox probe. 
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The different behaviour at capacitive potential and at redox potentials can be observed also 

considering the fitting parameters. In Figure 5.24 equivalent circuits used to fit the data are 

presented and in Table 5.9 the corresponding fitting parameters are reported. Capacitance values 

are very low at + 0.25 V and are in accordance with values obtained from cyclic voltammetry, but 

at the others two potentials this value increases of two order of magnitude, lowering also the 

resistance. This behaviour confirms the previous results about the low capacitances and the high 

Randles-Sevcik slopes obtained by cyclic voltammetry. Moreover, the best electrode is the acidic 

form in NMP, since the absence of double layer allows an easy electron transfer during redox 

reaction, without resistance problems, but only with diffusive mechanism. In fact, this electrode 

shows also low diffusion resistance and high polarization capacitance, explaining the reason of the 

excellent performance, also in comparison with Nafion, and confirming the different membrane 

structure which causes a different diffusion of the redox probe. The acidic form in DMSO has a 

mixed behaviour, since it behaves as NMP at – 0.25 V and as DMF at – 0.15 V and also in cyclic 

voltammetry shows intermediate performance. For the salt forms, double layer is formed in all 

cases with lower capacitances, explaining the worst electrochemical performances. 

 

Figure 5.24. Equivalent circuits used to fit impedance data. 
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Table 5.9. Impedance parameters obtained by impedance fitting in the presence of redox probe. 

Electrodes E / V 
R / Ω 

cm2 
CPEDL / mF 

cm-2 sα-1 
αDL 

RCT / Ω 
cm2 

CPEPOL / mF 
cm-2 sα-1 

αPOL 
RPOL / Ω 

cm2 
Rw / Ω 

cm2 
τ / s α 

NMP_Acid 
-0.25 8.40 - - - 33.20 0.50 - 2.40 0.1 0.45 
-0.15 9.51 - - - 19.48 0.51 - 3.91 0.1 0.47 
0.25 8.74 1.74E-2 0.89 511 - - - 4358 0.1 0.49 

DMSO_Acid 
-0.25 10.78 - - - 27.80 0.59 - 6.93 0.1 0.46 
-0.15 11.41 2.05 0.56 8.37 4.85 0.58 - - - - 
0.25 12.84 1.21e-02 0.89 1425 - - - 3759 0.1 0.49 

DMF_Acid 
-0.25 13.30 1.94 0.51 11.33 - - - 176 0.1 0.40 
-0.15 15.34 4.14 0.51 147 6.69 0.70 - - - - 
0.25 13.99 1.82e-02 1 202 4.06e-02 0.75 3709 3503 0.1 0.46 

NMP_Salt 
-0.25 9.23 1.35 0.6 213 - - - 32.61 0.1 0.46 
-0.15 9.94 5.46 0.49 213 - - - 249 0.1 0.40 
0.25 9.22 2.45E-2 085 7270 - - - 1292 0.1 0.43 

DMSO_Salt 
-0.25 13.92 0.85e-02 0.86 9.33 1.66 0.50 - - - - 
-0.15 13.19 1.09e-02 0.84 23.09 4.63 0.50 - - - - 
0.25 10.26 1.84e-02 0.85 2197 - - - 602 0.1 0.44 

DMF_Salt 
-0.25 10.06 1.46 0.63 71 - - - 22.98 0.1 0.45 
-0.15 11.28 6.10 0.47 252 - - - 32.53 0.1 0.41 
0.25 10.32 1.94E-2 0.89 710 2.11E-2 0.90 5680 - - - 
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After this extensive characterization, the acidic form of 1 % PES in NMP resulted the best electrode 

in terms of diffusion of the model probe molecule, high capacitance, low resistance and high 

current, and was chosen for further investigation about different IEC values and the possibility to 

use branched polymers. 

Figure 5.25 shows cyclic voltammograms obtained using linear PES with IEC = 1 in comparison with 

linear PES with IEC = 1.33 and branched PES with IEC = 1. The new types of polymer present a very 

similar voltammetric response, with lower peak current than linear PES with IEC = 1, but always 

better than Nafion and GC. 

 

Figure 5.25. Cyclic voltammograms of glassy carbon, Nafion and different forms of PES 1% in the presence of redox 
probe. 
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1, followed by the ramified one, confirming a good diffusion in an open but not too charged 

structure.    

Table 5.10. Voltammetric parameters obtained from cyclic voltammograms of PES 1% modified electrodes. 

CV parameters GC 
NMP 

IEC (1) IEC (1.33) Branched 

C / mF cm-2 0.08 0.01 0.07 0.07 
Ec-Ec/2 / mV 61 91 89 79 
Ea-Ea/2 / mV 59 85 89 89 
∆EP / mV 78 156 131 142 

Slope ia vs v0.5 / 
μA mV-0.5 cm-2 s0.5 

47 272 167 157 

Slope ic vs v0.5 / μA 
mV-0.5 cm-2 s0.5 

-51 -285 -148 -167 

Slope Ln ic  vs  ln v 0.49 0.44 0.37 0.42 
Slope Ln ia  vs  ln v 0.47 0.50 0.40 0.44 

 

Figure 26 shows impedance spectra obtained in the absence of the redox probe in the same 

manner of the previous discussion and at the same potentials. Complex plane spectra report a 

semicircle for higher frequencies followed by a second semicircle in the case of linear PES with IEC 

= 1 or by a straight line with slope < 0.5 for the other two cases. Bode plots show lower phase 

angle changes in the two new electrodes, but with two time dependent processes. 

 

Figure 5.26. Complex plane plot and Bode plot at + 0.25 V in the absence of redox probe. 
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Figure 5.27 reports the equivalent circuits used to fit impedance data and in Table 5.11 fitting 

parameters are reported. Double layer capacitance is higher for branched PES, followed by linear 

PES with IEC = 1, since the branched gives an extended structure and the polymer with IEC = 1.33 

is more disordered for the presence of more negative groups. For this last reason, charge transfer 

resistance is lower for IEC = 1.33 polymer, but diffusive resistance for both new electrodes is 

higher than polarization resistance of linear PES with IEC = 1. 

 

Figure 5.27. Equivalent circuits used to fit impedance data. 
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Table 5.11. Impedance parameters obtained by impedance fitting in the absence of redox probe. 

Electrodes E / V 
R / Ω 

cm2 
CPEDL / F 
cm-2 sα-1 

αDL 
RCT / Ω 

cm2 
CPEPOL / F 

cm-2 sα-1 
αPOL 

RPOL / Ω 
cm2 

Rw / Ω 
cm2 

τ / s α 

NMP_IEC(1) 
-0.25 8.87 21.5 0.85 420 27.5 0.89 7023 - - - 
-0.15 8.87 20.2 0.86 720 25.8 0.87 8469 - - - 
0.25 8.66 17.1 0.89 1420 21.9 0.88 10524 - - - 

NMP_IEC(1.33) 
-0.25 8.99 11.8 0.86 105 - - - 10800 0.1 0.45 
-0.15 8.95 12.8 0.85 134 - - - 11161 0.1 0.49 
0.25 8.95 10.0 0.80 137 - - - 13991 0.1 0.51 

NMP_Branched 
-0.25 8.60 36.2 0.78 703 - - - 8642 0.1 0.47 
-0.15 8.51 36.0 0.78 837 - - - 11086 0.1 0.48 
0.25 8.46 19.4 0.84 372 - - - 14435 0.1 0.43 
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Figure 5.28-5.29-5.30 reports impedance spectra in the presence of model probe molecule, 

showing a complex plane spectra based on a semicircle or for linear PES with IEC = 1 a straight line 

with slope < 0.5 for higher frequencies and a straight line for lower frequencies. Bode plots have a 

very similar trend at + 0.25 V with a time dependent process, while at – 0.15 V no double layer is 

formed for all the electrodes.  At – 0.25 V only for linear PES with IEC = 1, there is no formation of 

the double layer, showing another time its superior performance. 

 

Figure 5.28. Complex plane plot and Bode plot at + 0.25 V in the presence of redox probe. 

  

Figure 5.29. Complex plane plot and Bode plot at – 0.15 V in the presence of redox probe. 
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Figure 5.30. Complex plane plot and Bode plot at – 0.25 V in the presence of redox probe. 

Figure 5.31 shows the equivalent circuits used in the fitting of impedance data and Table 5.12 

reports the parameters obtained from the fitting. As in the previous discussion, capacitance is very 

low at + 0.25 V, but increases of two orders of magnitude at the other two potentials. The highest 

capacitance values are obtained for linear PES with IEC = 1.  

 

Figure 5.31. Equivalent circuits used to fit impedance data. 
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Table 5.12. Impedance parameters obtained by impedance fitting in the presence of redox probe. 

Electrodes E / V 
R / Ω 

cm2 
CPEDL / F 
cm-2 sα-1 

αDL 
RCT / Ω 

cm2 
CPEPOL / F 

cm-2 sα-1 
αPOL 

Rw / Ω 
cm2 

τ / s α 

NMP_IEC(1) 
-0.25 8.40 - - - 16.13 0.49 2.40 0.1 0.45 
-0.15 9.51 - - - 11.22 0.51 3.91 0.1 0.47 
0.25 8.74 1.74E-2 0.89 511 16.13 0.49 4358 0.1 0.49 

NMP_IEC(1.33) 
-0.25 12.27 0.33 0.69 3.39 - - 15.31 0.1 0.42 
-0.15 12.91 - - - 13.61 0.51 6.97 0.1 0.47 
0.25 11.91 1.60E-2 0.81 392 - - 2908 0.1 0.45 

NMP_Branched 
-0.25 9.44 3.75 0.57 5.40 16.13 0.49 - - - 
-0.15 10.36 - - - 11.22 0.51 3.34 0.1 0.46 
0.25 9.68 2.11e-2 0.83 362 - - 2931 0.1 0.48 
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5.3.4. Conclusions 

In this work, linear poly(arylethersulfones) PES with IEC = 1 were tested in comparison with Nafion 

as electroactive negative membrane for use in electroanalysis.  

Numerous parameters, such as quantity of the dissolved polymer, solvent used for dissolution, 

form of the polymer, method of drying and storage could influence the performances of the 

membrane and were taken into consideration. The ideal quantity of polymer was 1 %, because this 

quantity allowed to obtain the maximum peak current, while the optimum method of drying was 

at 25 °C in a normal oven, since if the polymer was dried in a vacuum oven, the signal of the model 

probe molecule decreased or was completely lost, probably due to total removal of the solvent 

from the membrane structure. Moreover, the membrane loses its characteristics when the 

electrode is stored in air after use, but it maintains its performances for days if stored in the 

supporting electrolyte solution. This fact confirms that probably the membrane needs hydration to 

maintain its activity. 

The type of solvent and the polymer form are key factors, since interactions between the polymer 

and the solvent influence the final configuration and the consequent electroactivity of the 

membrane. Results showed that the acidic form was the most electroactive for all the solvent 

used, probably due to major availability of charged groups in this form, and that the solvent with 

the highest boiling point, NMP, provided the best performances, probably since this solvent allows 

a higher organization of the polymer, yielding to a more ordered and extended structure. 

The behaviour of this polymer is very interesting, since the capacitance is comparable with that of 

glassy carbon, but when the redox probe is present capacitance increases of two orders of 

magnitude, resistance to electron transfer decreases and the process is governed only by diffusion 

without the formation of double layer. The hypothesis is that the polymer conformation changes 
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the mechanism of diffusion of the analyte, probably for the presence and availability/affinity of 

charged groups in the structure. 

This polymer used as new membrane for application in electrochemistry showed superior activity 

in comparison with Nafion, since it was more stable, more capacitive, less resistive and gave 

higher peak currents, maintaining the partial reversibility and the diffusive control. 

Moreover, linear PES with IEC = 1.33 and branched PES with IEC = 1 were also studied, to see the 

influence of ramification and of the different quantity of sulphonic groups on the electrochemical 

performances. In these cases the peak current was lower than linear PES with IEC = 1 and diffusive 

mechanism, capacitance and resistance remained better in the first case. However, the 

electrochemical performances of these new two types of polymer were good and superior with 

respect to Nafion. 

Future developments will consider the analysis of linear and branched PES with different IEC and 

casting solvents to understand and rationalize how each parameter can influence the 

electrochemical response towards different types of analytes. The idea is the production of 

electroactive membranes with ad hoc properties, designed for the specific type of analyte and 

application. Moreover, these polymers can be considered as host species for nanomaterials. 
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6. Conclusions 

In this PhD thesis, two quite recent technological developments were used for the design of new 

electrodes and new electroanalytical methodologies for trace detection of organic and inorganic 

relevant compounds and pollutants. 

The first technological approach is based on the screen-printing microfabrication technology, 

which allows the production of accurate, sensitive, low cost, easy to use and disposable sensors. In 

particular, four types of electrodes and different voltammetric techniques were tested, 

demonstrating the importance of the method choice and the material affinity for the analyte. 

Platinum-based screen-printed electrodes in combination with Square-Wave Voltammetry were 

used for the determination of furan (Falciola, Pifferi, Possenti, et al., 2012), obtaining good 

detection limits (0.52 ppm) and accuracy (Apparent Recovery Factors > 95 %), even using coffee as 

real matrix. Carbon-based screen-printed electrodes and Differential Pulse Voltammetry were 

employed for the detection of four types of benzidines (Falciola, Pifferi, & Mascheroni, 2012) with 

excellent limits of detection (ppb range) and Apparent Recovery Factors (very close to 100 %). 

Analysis using polluted water and experiments with the contemporaneous presence of all the 

analytes were performed with very good promising results. Bismuth-based screen-printed 

electrodes were tested using Square-Wave Voltammetry for chromium (VI) trace analysis (V Pifferi 

et al., 2013), as alternative to mercury-based electrodes, with pyrocathecol violet as complexing 

agent for chromium, showing electroactivity both in the free and complexed forms. The technique 

was presented as valid alternative to mercury, obtaining detection limit of 0.28 ppb and Apparent 

Recovery Factors around 102 %, and was applied for the determination of Cr(VI) during its 

photoremoval mediated by three different titania photocatalysts, with excellent results. Gold-

based screen-printed electrodes and Linear Sweep Adsorptive Stripping Voltammetry were 
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employed for the electroanalytical detection of arsenic (III) (Valentina Pifferi, Ardizzone, et al., 

2013), showing detection limits in the range of ppb and allowing application for As(III) 

determination during its photooxidation operated by three different titania photocatalysts. 

Screen-printed electrodes were always used in comparison with the corresponding conventional 

bulk electrodes, showing comparable or even better results. 

The second technological approach concerns the use of innovative materials for the preparation of 

modified electrodes, in particular nanomaterials and polymeric membranes, allowing specificity 

for the analytes, high accuracy, excellent repeatability and very low detection limits.  

Nanomaterials show peculiar properties in comparison with the corresponding bulk material and 

different nanomaterials-modified electrodes can be obtained varying shape, size, composition and 

functionalities of nanoelements, with different detection applications. Carbon nanotubes were 

studied and characterized considering various methods of purification. The best results were 

obtained with the sulphonitric mixture (24 h treatment) after removal of amorphous carbon, 

showing higher peak currents and capacitance, higher surface area and mesoporosity, higher 

covalent acidity and lower resistance to charge transfer. These optimized electrodes were used to 

detect o-toluidine, obtaining low detection limits (0.16 ppm) and excellent accuracy, allowing the 

study of its photoremoval by ZnO photocatalyst, showing results comparable with HPLC, and of its 

absorption by cyclodextrine-based polymeric resins. Benzidine and furan were also determined 

with promising preliminary results. Colloidal gold nanoparticles on carbon nanotubes were 

characterized, showing the gold nanoparticles beneficial effect in terms of peak currents, 

capacitance and charge transfer resistance, and used for the detection of glycerol with promising 

preliminary results. Colloidal silver nanoparticles on Nafion (Valentina Pifferi, Marona, Longhi, & 

Falciola, 2013) and on carbon nanotubes were studied, obtaining in the first case electrodes with a 

very small double layer very useful for halothane and dichloromethane determination, and in the 



236 
 

second case an extended potential window in the cathodic region. Titanium dioxide nanorods on 

single-walled carbon nanotubes were also characterized in the dark and under UV illumination, 

considering the photoactivity of titania, obtaining a change in the diffusion mechanism of the 

redox probe probably ascribable to excited electrons produced by titanium dioxide. 

In the last part of the PhD Thesis, polymeric membranes with promising applicability in 

electroanalysis were studied, allowing the production of biosensors and the change in the analyte 

diffusion mechanism.  

An electron conducting electroactive polymer, poly(Brilliant Green) was studied in combination 

with carbon nanotubes and PEDOT, an electron conducting non-electroactive polymer (Valentina 

Pifferi, Barsan, et al., 2013). The different architectures were evaluated, demonstrating the 

fundamental role of PEDOT for the determination of hydrogen peroxide (LoD 30 ppb) and for the 

production of glucose and ethanol biosensors (LoD 2 ppm and 1 ppm respectively).  

A proton conducting polymer, poly(Aryl Ether Sulfone), was studied in comparison with Nafion, 

showing better electrochemical performances in terms of affinity for the analyte and small double 

layer formation, even if capacitance is comparable with glassy carbon. The properties of the 

membrane were influenced by the type of casting solvent and the form of the polymer (acidic or 

salt), which probably resulted in a different membrane structure during solvent evaporation, 

causing a change in the analyte diffusion mechanism.  

In conclusion, this PhD Thesis has demonstrated the importance of the new technological 

developments in electroanalysis for trace determination of organic and inorganic relevant and 

pollutant compounds. The production of ad hoc electrodes together with the optimization of 

electroanalytical procedures have shown their potentialities for application as standard detection 

methods in environmental, medical and food analysis. 
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Future developments will consider the production of home-made screen-printed electrodes 

modified with nanomaterials and/or polymeric membranes to further improve the simplicity of 

use and extend the applicability of these sensors. Moreover, new nanomaterials and conducting 

polymers will be studied alone or in combination for the development of new electrodes and new 

electroanalytical techniques for trace determination of other relevant compounds. 
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8. Appendixes 

8.1. Analytical Parameters 

All the analytical parameters were determined according to the IUPAC protocols: 

 Limit of detection: inferior limit of concentration where the analyte can be distinguished from 

the blank.  

    
            

 
 , where S, indicating the method calibration sensitivity, is the slope of the 

linear calibration plot, and σblank is the blank standard deviation. When no blank signal could be 

detected, σblank was estimated by the standard deviation of 10 repeated scans on the same 

solution of the lowest available standard; 

 Limit of quantification: inferior limit of analyte concentration measured with an acceptable 

precision and accuracy level. 

    
          

 
 , where S, indicating the method calibration sensitivity, is the slope of the 

linear calibration plot, and σblank is the blank standard deviation. When no blank signal could be 

detected, σblank was estimated by the standard deviation of 10 repeated scans on the same 

solution of the lowest available standard; 

 Relative standard deviation: absolute value of the coefficient of variation. 

       
      

  
     , where σblank is the blank standard deviation, estimated by the 

standard deviation of 10 repeated scans on the same solution of the lowest available standard, 

and    is the average value, calculated on the 10 repeated scans; 
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 Apparent recovery factor: observed value, xobs, derived from an analytical procedure by means 

of a calibration graph divided by reference value, xref, indicating the accuracy of the method 

(higher accuracy when close to 100%) 

    
    
    

      

8.2. Electroanalytical Techniques (outlines) 

8.2.1. Cyclic Voltammetry (CV) 

In this technique, the potential of a working electrode is varied linearly with time until a step 

potential, where the potential ramp is inverted, and the resulting current is measured. This 

method allows characterizing the electrodes, in terms of capacitance, surface area, diffusion 

coefficient of the analyte, rate determining steps and reversibility. 

Electrode capacitance C can be calculated varying the scan rate without the presence of the 

analyte, from the slope of the plot Δi vs scan rate, derived from the equation 
        

 
   . 

When the analyte is present and is electroactive, if the plot ip vs v0.5, obtained by Randles-Sevcik 

equation                
    

  
 
   

, [where ip is the peak current, n the number of electrons 

transferred in the redox event, A the electrode area, F the Faraday Constant, D the diffusion 

coefficient, C the concentration and ν the scan rate], is linear, the rate determining step is the 

diffusion of the analyte to the electrode. On the other hand, if the peak current is proportional to 

the scan rate the rate determining step is the absorption of the analyte on the electrode. 

Moreover, the slope of the Randles-Sevcik plot can give information about the diffusion coefficient 

of the analyte and the surface area of the electrode.  
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Information about the diffusion mechanism can be obtained also from the slope of the lnip vs lnv 

plot, since the perfect diffusional behaviour gives a slope of 0.5. 

A detailed description of the technique can be found in many dedicated books (Bard & Faulkner, 

2001; Bard, 2007; C. M. A. Brett & Oliveira Brett, 1993). 

8.2.2. Electrochemical Impedance Spectroscopy (EIS) 

This technique measures the impedance (Z) of a system over a range of frequencies as a result of 

the perturbation of an applied potential or current. In this thesis, only the applied potential was 

employed to characterize electrodes. Impedance data can be presented using two types of plot: 

complex plane or Nyquist plot, the imaginary part of impedance (Z’’) vs the real part (Z’), and the 

Bode plots: |Z| vs frequency or phase angle vs frequency. Moreover, from the fitting of 

impedance data, information about the morphology and the electrical properties can be obtained, 

after the choice of the electrical circuit corresponding to the electrochemical system.  

In the equivalent circuit, RΩ is the cell resistance, Rct represents the charge transfer resistance at 

the solid-liquid interface and Rpol the polarization resistance of the material. CPEdl and CPEpol are 

constant phase elements constituting the charge separation of the double layers and the 

polarization of the material, respectively. CPE = [(Ciω)α]-1, is modelled as pure capacitor in the case 

of α=1 or as non-ideal capacitor, due to the porosity and non-homogeneity of the surface,  for 0.5 

< α < 1. The diffusional resistance RW and the diffusional time constant τ are parameters of the 

Open Warburg Element, resulting from the equation  ZW = RWcth[(τiω)α](τiω)-α, where α < 0.5. 

A detailed description of the technique can be found in many dedicated books (Bard, 2007; 

Orazem & Tribollet, 2008). 

8.2.3. Other voltammetric or amperometric techniques 
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This is the list of all the employed electrochemical techniques with a brief description. A detailed 

description of all the techniques can be found in many dedicated books (Bard & Faulkner, 2001; 

Bard, 2007; C. M. A. Brett & Oliveira Brett, 1993) and it is out of the scope of this Thesis: 

 Linear Sweep Voltammetry (LSV): the potential of a working electrode is varied linearly with 

time and the resulting current is measured; 

 Linear Sweep Adsorptive Stripping Voltammetry (LSAdSV): preconcentration deposition  is 

performed before LSV stripping; 

 Square-Wave Voltammetry (SWV): a square-wave is superimposed on the potential linear 

sweep and the resulting current is measured at the end of each potential change, minimising 

the capacitive currents; 

 Differential Pulse Voltammetry (DPV): a series of regular voltage pulses is superimposed on the 

potential linear sweep and the resulting current is measured immediately before each 

potential change; 

 Chronoamperometry: the potential is maintained at a chosen value and the resulting current is 

measured during time. 
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