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ABSTRACT

Chronic kidney disease - mineral and bone disorder (CKD-MBD) is associated with a significant morbidity 
and mortality. In vitro and animal models suggest that phosphorous, calcium, parathyroid hormone, and 
vitamin D abnormalities, mediate the cardiovascular and bone diseases that characterise CKD-MBD and 
increase the risk of death. Currently, mineral abnormalities are corrected through phosphorous restriction, 
phosphate binders, calcimimetics and vitamin D administration. Nonetheless, data in humans that support 
the use of these compounds are still scarce, mainly based on observational studies. Thus, a considerable 
number of doubts and questions still challenge clinicians dealing with CKD patients and mineral metabolism 
imbalances. We herein critically review clinical evidence that support the use of different drugs in CKD-MBD. 
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INTRODUCTION 

Calcium, phosphate, vitamin D and parathyroid 
hormone (PTH) have been repeatedly recognised 
as predictors of outcome in chronic kidney disease 
(CKD).1-4 Though the mechanisms are still poorly 
understood, numerous studies suggest that mineral 
homeostasis abnormalities are associated with bone 
and cardiovascular (CV) diseases that portend a 
poor survival.5 Hence, biochemical, CV, and bone 
abnormalities are now considered part of the 
multifaceted CKD-MBD syndrome (Figure 1). 5 

In spite of convincing preclinical data linking 
mineral metabolism imbalances to cardiovascular 
and bone diseases, clinical evidence is still far from 
conclusive4,6 and a considerable number of doubts 
and questions still challenge clinicians dealing with 
CKD patients and mineral metabolism imbalances. 
CKD-MBD is currently treated with nutritional 
interventions, native and active vitamin D phosphate 
binders, and calcimimetics administration (Figure 2). 
The aim of this review is to critically evaluate and 
summarise available evidence as well as highlight 
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Figure 1. CKD-MBD a multifaceted syndrome 
characterised by serum parameters abnormalities, 
bone and cardiovascular marker of disease and 
associated with poor outcome.
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the numerous unanswered clinical questions on 
CKD-MBD management.

Diet: Facts, Promises and Expectations  

Hyperphosphatemia control is perceived by 
nephrologists as one of the most relevant targets 
to achieve in CKD.4 Indeed, numerous studies 
have reported a close association between serum 
phosphorus levels and the risk of death in both 
subjects from the general population7,8 as well as 
subjects with varying degrees of renal function 
impairment.1-4 Furthermore, a large body of evidence 
suggests a direct link between phosphorous and 
the cardiovascular and bone systems.5 Thus, it is 
commonly accepted that phosphorus is a uraemic 
toxin, and current guidelines on mineral metabolism 
management recommend maintaining it within the 
range of normality.9-10  

As kidney function declines, urinary phosphate 
excretion becomes insufficient and eventually 
hyperphosphataemia ensues if the phosphate daily 
intake remains constant.11  It is estimated that the 
daily phosphate intake in a standard diet in Western 
countries is about 1500 mg/day.11,12  Considering that 
faecal excretion is about 600 mg/day of which about 
200 mg/day are secreted by the intestine, the amount 
of phosphorous absorbed by the gastrointestinal 
tract may approach 1100 mg/day (Figure 3).11,12  To 
maintain phosphorous homeostasis and keep serum 

levels within the range of normality, renal excretion 
should match the daily intake at the expense of 
increasing the tubular workload of each functional 
nephron.13 Notably, the average phosphate level in 
the general population varies according to sex and 
menopausal status14,15 and data suggest an increased 
risk of unfavourable outcomes for phosphorous 
levels within the range of normality8,15 further 
corroborating the notion that serum phosphorus 
may not adequately reflect phosphorous balance.

Two different strategies to lower phosphorous intake 
are available: low phosphate diet and phosphate 
binders. A low phosphorous intake can be achieved 
via protein restriction and quality selection.5 Indeed, 
Moe et al.16 showed that a vegetarian rather than 
a meat-based diet significantly reduces serum 
phosphorous and the phosphaturic factor fibroblast 
growth factor 23 (FGF23).  Notably, these differences 
were independent of the circadian serum and urine 
phosphorous changes, suggesting that phosphorous 
contained in the vegetarian diet is less adsorbable in 
the gastrointestinal tract which is possibly due to the 
phosphate binding to phytate.16

Cooking method and food additives are two other 
factors that significantly affect phosphorous 
intake.17-22 Cupisti and coworkers18 reported that 20-
30 minutes boiling significantly reduce (30-50%) 
phosphorous burden at the expense of a minimal 
reduction of the protein content (9-17%).

Figure 2. CKD-MBD pathophysiology is characterised by phosphate overload, PTH hypersecretion and 
vitamin D depletion. Our armamentarium is composed by low protein diet and phosphate binder (light 
green circle) to lower phosphate overload; different forms of vitamin D (orange circle) to overcome 
vitamin D deficiency and inhibit PTH production and secretion; calcimimentics (light blue circle) to 
reduce PTH secretion
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Food additives are another source of phosphorous 
in prepared meals. A recent survey of best-selling 
processed groceries concluded that phosphorus 
additive-containing foods averaged 67 mg 
phosphorus/100 g more than matched non-additive-
containing foods (about 736 mg more phosphorus 
per day compared with meals consisting of only 
additive-free foods).23 Phosphorous-based additives 
(phosphoric acid, tetrasodium pyrophosphate, 
tricalcium phosphate, disodium phosphate, 
monopotassium phosphate, etc.) are used to 
enhance taste and consistency of different foods 
such as baked goods (baking powder, cakes, frozen 
dough, etc.), beverages (colas, chocolate milk, 
buttermilk, fruit juices, sport drinks, canned milk, soy 
beverages), cereals, dairy, meat and egg products, 
fruit and vegetables, and pasta and noodles.

Inorganic phosphorous contained in food additives 
is highly bioavailable and adsorbed in the 
gastrointestinal tract to a greater extent than the 
organic phosphorous. It is estimated that as much 
as 90% versus 60% of the ingested inorganic (food 
additives) and organic (vegetable and meat protein) 
phosphorous is absorbed, respectively.21,22

Though the mechanisms are still unclear, 
accumulating evidence suggests the high serum 
levels of phosphorous are associated with increased 
levels of FGF23 that in turn, have been independently 
associated with a significant risk of endothelial 
dysfunction,24 left ventricular hypertrophy,25 CKD 
progression and all-cause mortality.26 In the absence 
of a randomised controlled clinical trial (RCT), it is 

unclear whether elevated serum phosphorous or 
FGF23 mediates the toxicity1,26 or, alternatively, both 
factors contribute to the organ damage and poor 
survival in CKD-MBD.27

A balanced nutritional program should control 
both serum phosphorous and FGF23. Di Iorio et 
al.28 showed that a very low protein diet (0.3 g/kg 
of ideal body weight per day) supplemented with 
alpha-chetoanalogues and essential aminoacids 
significantly reduces FGF23 and phosphoremia. In 32 
CKD subjects randomised to  cross-over sequential 
treatments with either standard low protein diet 
(60-70 g of protein/day) or very low protein diet 
(25-30 g of protein/day), they reported a significant 
33.5%, 12% and 34% reduction of FGF23, serum and 
urinary phosphorous levels associated with very low 
protein diet (VLPD), respectively.28 Of note, the two 
diet regimens did not differ only in the total protein 
intake but also in the animal/vegetal protein ratio 
(VLPD regimen based on vegetable protein only) 
and phosphorous content (350-420 mg/day versus 
600-700 in VLPD and standard diet, respectively).28 
Other groups have confirmed that phosphorous 
restriction with or without phosphate binders, is 
effective in controlling FGF23.29,30

Low phosphate and protein diet has also been 
associated with proteinuria and CKD progression 
reduction.19,31,32 In a seminal paper by Brunori at al.,32 
it was demonstrated that life expectancy among old 
patients with end-stage renal disease (ESRD) was 
similar if patients were randomised to VLPD and 
conservative treatment or haemodialysis.

Urinary 
Output

7-800 mg/day

Diet Intake
1-1.5 g/day

Fecal Excretion
600 mg/day

Daily exchange
200 mg/day

Serum 
Phosphorous 

<1% total 
body pool

Figure 3. Phosphorous balance is the net results of intake (diet), quota exchanged with bones and output 
(urine, faeces).
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The most important drawback of low protein and 
phosphorous diet is the potential for malnutrition.33 
Indeed, a balanced nutritional program should 
be tailored to each individual and should provide 
the patient with the right amount of calories and 
nutrients.34 In this regard, an observational study 
suggests that protein malnutrition maybe more 
detrimental than phosphorous intake and that the 
ideal nutritional regime should provide enough 
protein with minimal phosphorous burden.33

Future RCT studies should investigate the safety and 
the impact of low protein and VLPD on long-term 
survival and CKD progression, in both CKD patients 
not receiving and receiving dialysis. In consideration 
of the substantial increase of the mean age of dialysis 
patients, it is to be established if the recommended 
protein intake by current guidelines is still adequate 
in light of the considerable number of patients with 
increased levels of serum phosphorous.35 Finally, a 
pharmacoeconomic analysis should evaluate the cost 
burden connected to aproteic foods, chetoanalogue 
or essential aminoacid supplements.

Phosphate Binders: Facts, Promises and 
Expectations 

Phosphate binders are another strategy for reducing 
phosphate intake. These compounds share the 
property to bind phosphorous in the intestinal 
lumen, prevent its absorption and increase the 
faecal excretion. Various drugs are now available 
on the market with this indication.36,37 For ease, 
these compounds can be divided into two different 
groups: calcium-based phosphate binders (calcium 
carbonate and calcium acetate) and calcium-
free phosphate binders (aluminium hydroxide, 
lanthanum carbonate, magnesium carbonate, 
sevelamer hydrochloride, and sevelamer carbonate). 
Alternatively, these compounds can be divided 
into absorbable (calcium-based binders, aluminium 
hydroxide, lanthanum carbonate, magnesium 
carbonate) and not absorbable (sevelamer 
hydrochloride, and sevelamer carbonate) in the 
gastrointestinal tract. Though all these compounds 
might have different affinity for phosphorous in 
the gastrointesinal tract and different doses have 
to be administered,38 clinical studies suggest that 
they all effectively lower serum phosphorous.36,39,40 
Nonetheless, due to the different adsorbability in 
the gastrointestinal tract, the safety profile of these 
compounds can be profoundly different. Indeed, the 
prolonged use of aluminum-based phosphate binder 
is not indicated due to its accumulation and toxicity.41 

The debate on calcium-containing versus calcium-
free phosphate binders has characterised the last 
decade.36,42 Preclinical data suggest that both 
phosphorous and calcium can actively induce 
vascular calcification,43-45 a marker of vascular 
disease46 and a risk factor for arterial stiffness47 and 
mortality.46,48 A seminal paper by Cozzolino and 
coworkers49 demonstrated that the use of sevelamer 
was associated with a similar phosphate control but 
lower extraosseous calcification than calcium-based 
phosphate binder. Observational data suggest that 
excessive calcium intake may result in a positive 
calcium balance that in turn has been associated 
with arterial stiffness and vascular calcification,50,51 
adynamic bone disease52,53 and, in some but not all 
studies, excessive mortality.35,54  

RCTs have also yielded somehow conflicting results. 
To date, three studies have tested the impact of 
calcium-free and calcium-containing phosphate 
binders on vascular calcification, CKD progression 
and all-cause mortality in moderate CKD.55-57 In the 
first study ever published on this topic, Russo and 
coworkers55 observed a significant reduction of 
coronary calcification (CAC) progression among 
patients with CKD stage 3-4 treated with sevelamer as 
compared to patients treated with calcium carbonate 
or low-protein diet.55 Considering that the dose of 
both binders was based on a similar reduction in 
urinary phosphate excretion (i.e. phosphate binding 
equivalency), it is plausible that the different impact 
of sevelamer and calcium carbonate on vascular 
calcification is due to the excessive calcium load in 
the calcium carbonate-treated arm. Indeed, recent 
evidence suggests that a calcium intake greater than 
that usually ingested in a normal Western country 
diet (about 800 mg/day) can induce a positive 
calcium balance in moderate CKD.58 However, it is 
also possible that the additive effects of sevelamer 
on FGF23, fetuin-A, lipids, C-reactive protein, and 
uric acid59,60 may account for some of these results. 
Block and coworkers56 recently failed to confirm 
the beneficial effect of non-calcium-containing 
phosphate binders (sevelamer carbonate, lanthanum 
carbonate) on vasculature. Though the study was 
designed to address the phosphate lowering efficacy 
of calcium and non-calcium-containing phosphate 
binders versus placebo in mild to moderate CKD, 
authors report among treated patients on a 
worrisome increase in CAC, measured as secondary 
endpoint.56 However, it is unclear whether calcium 
or non-calcium-containing phosphate binders drive 
this result. The limited statistical power of the study 
further limits the interpretation of this finding.56
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A third RCT designed to test the impact of sevelamer 
versus calcium carbonate on hard outcomes (all-
cause mortality and CKD progression) in mild to 
moderate CKD patients (mean creatinine clearance 
30 ml/min) with hyperphosphatemia supports the 
notion that non-calcium-containing phosphate 
binders may be associated with a more favourable 
renal and life survival rate.57 In this study, a significant 
CAC progression attenuation was also noted.57 
Although sevelamer-treated patients showed a 
higher CAC prevalence and burden at baseline 
(prevalence of CAC 62.6% versus 47.6%; P=0.02; 
median CAC score: 122 AU [IQR, 0–180] versus 0 AU 
[IQR, 0–215]; P=0.01 in the sevelamer and calcium 
carbonate group respectively), at study completion 
a significantly lower risk of CAC progression or de 
novo onset (12.8% in sevelamer-treated patients 
and 81.8% in calcium carbonate–treated patients)            
was noted.57 

Other studies in ESRD patients new to48 or on 
maintenance dialysis61 have also investigated the 
differential impact of calcium salts and calcium-
free phosphate binders on vascular calcification 
or hard outcome.48,62 Though the majority of these 
trials point toward a harmful potential of calcium-
containing phosphate binders, metanalyses have 
repeatedly failed to confirm this hypothesis.39,63,64  
A recent study by Di Iorio et al.65 unfolds an almost 
10-fold reduction of CV and all-cause mortality 
associated with sevelamer versus calcium carbonate 
in a large cohort (N=466) of patients new to dialysis. 

Though these data suggest a different effect 
of calcium-free phosphate binders on the 
cardiovascular system and survival, no study has 
ever tested whether serum phosphorous-lowering 
is associated with a survival benefit. In light of the 
many adaptive mechanisms to hyperphosphataemia 
such as increased PTH and FGF23 that can modulate 
phosphorous toxicity and the potential calcium 
toxicity,66,67 future studies should address when 
to start in the course of CKD and to what serum 
phosphorus target should we aim when prescribing 
phosphate binders. Finally, cost-effectiveness 
analyses of these compounds are needed in light of 
the expanding epidemiology of CKD.68 

Native Vitamin D: Facts, Promises and 
Expectations 

Native vitamin D has received growing interest in the 
last ten years. Every year, hundreds of manuscripts 
on native vitamin D associations with a variety of 
diseases such as osteoporosis,69 hypertension,70 

cardiovascular disease,71,72 insulin resistance,73 
infections,74 cancer75 and mortality76 are published. 
Similarly,  nephrologists  have traditionally linked  
native vitamin D deficiency to CKD progression,77 
secondary hyperparathyroidism (SHPT)78 and 
survival79 in renal patients. The widespread 
association between native vitamin D and 
unfavourable outcomes in the general population, as 
well as in selected diseased sub-cohorts, together 
with the emerging knowledge of the extra-renal 
activation of native vitamin D, support the hypothesis 
that vitamin D deficiency is an etiologic factor rather 
than a mere biomarker of frailty.80

The term ‘native Vitamin D’ refers to the 25 
hydroxlate vitamin D (25(OH)D) forms. Vitamin 
D precursors ergocalciferol (vitamin D2) and 
cholecalciferol (vitamin D3) are synthesised by the 
UV radiation in yeast and in animals starting from 
ergosterol and 7-dehydrocholesterol, respectively.81 
In turn, vitamin D precursors are hydroxylated in the 
liver to form 25(OH)D2 and 25(OH)D3, respectively.81 
These are the substrates that are subsequently 
activated to 1-25(OH)2D (calcitriol) by the renal 
and, to a lesser extent, by the extra-renal 1 alpha 
hydroxylase.82 Of note, humans do not synthesise 
vitamin D281 and almost 80% of vitamin D is obtained 
by UVB irradiation with only a minor contribution of                 
diet intake.82

Though it is commonly prescribed as a supplement, 
we currently ignore what is the desirable level of 
25(OH)D.69,83 It is commonly accepted that levels of 
25(OH)D above 30 ng/ml, between 21 and 29 ng/
ml and below 20 ng/ml define vitamin D sufficiency, 
insufficiency and deficiency, respectively.82 

Native vitamin D deficiency is highly prevalent in the 
general population as well as in CKD and is almost 
ubiquitous in dialysis patients (greater than 80%).84 
Three drugs are currently available for vitamin D 
supplementation (ergocalciferol, cholecalciferol 
and calcifediol) based on the precursor from which 
they are originated. A few subtle pharmacologic 
differences have been described.85,86 Several 
studies observed that ergocalciferol is less potent 
than cholecalciferol in restoring 25(OH)D levels,86 
possibly due to a stronger affinity of cholecalciferol 
to the vitamin D binding protein.86 Moreover, the 
activated form of vitamin D (1,25OHD – calcitriol), 
originated from cholecalciferol, induces a sustained 
activation of the vitamin D receptor (VDR) due to 
a higher affinity of its catabolite 1-24-25(OH)D3 to 
the VDR than the ergocalciferol-derived catabolite 
1-24-25(OH)D2.85 Thus, it is commonly accepted that 
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50.000 IU of ergocalciferol are pharmacologically 
equivalent to 5-15.000 IU of cholecalciferol.87 
However, whether or not these two forms of 
vitamin D may have different clinical implications 
is still unknown. Two RCTs are currently recruiting 
patients to compare the effect of vitamin D2 versus 
Vitamin D3 on mineral metabolism in CKD stage 
2-5 (NCT01633853, NCT01173848) to shed light on 
which 25(OH)D form is better suited in CKD. Current 
evidence suggests a potential role for 25(OH)D as 
PTH lowering agent. Indeed, a recent meta-analysis 
by Kandula and colleagues88 concludes, based on 
the available observational studies, that 25(OH)
D compared to placebo reduces PTH levels in CKD 
(about 25 pg/ml) as well as in ESRD (about 60 pg/ml) 
patients. However, the heterogeneity of the studies 
precludes speculation on what could be the best 
25(OH)D regimen in CKD. Whether 25(OH)D can be 
used instead of VDR activator for PTH suppression 
in CKD is still under debate, though preliminary data 
suggest that paricalcitol and doxercalciferol induce a 
stronger PTH reduction compared to ergocalciferol 
and cholecalciferol in CKD 3-489,90 and ESRD 
patients,86 respectively. Similarly, data concerning 
PTH reduction by the co-administration of native and 
active vitamin D are still inadequate, mainly based on 
observational and retrospective studies.91-93 Further 
evidence is advocated before recommending the 
implementation of this combined approach.

In spite of the many pleiotropic effects described 
in the past decades and the substantial increase 
in the risk of death associated with low 25(OH)
D levels,75 only a few studies have investigated the 
impact of native vitamin D on surrogate endpoints 
such as renal osetodystrophy, vascular calcification, 
proteinuria, LVH or survival. However, numerous 
RCTs are currently investigating the effect of 
native vitamin D on left ventricular hypertrophy 
(NCT01323712), insulin resistance (NCT00893451), 
erythropoietin dosing (NCT01395823), proteinuria 
(NCT01426724), immunity (NCT00892099), 
ateriovenous fistulae maturation (NCT00912782) and 
physical and cognitive performance (NCT00511225, 
NCT01229878) to shed light on the potentials of this 
treatment. Finally, the NUTRIVITA study is actively 
randomising dialysis patients to 25(OH)D versus 
placebo treatment to test the effect of 25(OH)D on 
survival, fatal myocardial infarction, and non-fatal 
stroke (NCT01457001).

Due to the scarce data available, current guidelines 
on mineral metabolism management,10 suggest 
25(OH)D deficiency replenishment as the first step 

to correct SHPT in CKD stage 3-5,10 whereas no 
suggestion is provided for dialysis patients. These 
statements are ‘not graded’ and based on expert 
opinion rather than on evidence.10 A considerable 
ongoing and future effort is needed to clarify the 
impact of 25(OH)D administration to CKD and      
dialysis patients.

Vitamin D Analogues: Facts, Promises and 
Expectations

Repeated observational data described an 
independent association between PTH levels and 
unfavourable outcomes in CKD stage 3-594,95 as well 
as in ESRD.2,3 However, no RCTs have yet proven that 
an active reduction of PTH values improves such 
patient-centred hard outcomes as hospitalisations, 
cardiovascular events, CKD progression, and survival. 
Thus, the optimal PTH target is still uncertain in 
CKD as well as in ESRD subjects. KDIGO guidelines 
provide a low-grade suggestion to maintain PTH 
levels into the range of normality in CKD stage 3-5 
and between two and nine-times the normal range 
in ESRD.10

The reduction of calcitriol levels, together with 
hypocalcemia and hyperphosphataemia, are the 
leading causes of increased PTH levels. Thus, 
KDIGO guidelines suggest the use of vitamin D in 
case of increased PTH values and its tailoring in 
case of PTH over-correction, hypercalcemia or 
hyperphosphataemia.10 The risks related to high 
doses of vitamin D are mainly due to phosphate 
and calcium overload that possibly contribute to 
the low achievement rate of calcium and phosphate 
recommended targets96 and to a poor survival in 
dialysis patients.3 However, selective vitamin D 
receptor activator (VDRA), with a stronger effect on 
PTH and a lesser impact on calcium and phosphate 
load, may improve the global achievement of serum 
PTH, calcium and phosphate targets reducing the 
vitamin D toxicity.97-99

In recent years industries have provided multiple 
synthetic vitamin D2 (paricalcitol and doxercalciferol) 
and vitamin D3 analogues (alfacalcidol, falecalcitriol 
and maxacalcitol). However, comparison data of 
different vitamin D analogues on mineral metabolism 
control, surrogate and patient-centred outcomes are 
currently still scarce. 

Several studies suggest that VDRAs are superior to 
placebo and calcitriol in controlling PTH, calcium 
and phosphate, but the few available head-to-head 
comparisons between VDRAs led to heterogeneous 
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and inconclusive results. Alfacalcidol was similar 
to calcitriol in suppressing PTH values with equal 
change in phosphate and calcium levels,100,101 however 
recent data by Hansen et al.102 did not observe 
significant differences between alfacalcidol and 
paricalcitol on similar targets. Joist et al.103 observed 
that paricalcitol at very high doses suppressed PTH 
with lower elevation of phosphate and calcium 
levels compared to doxercalciferol. However, 
Fadem and coworkers104 could not detect any 
difference in PTH, calcium and phosphorous control 
when haemodialysis patients were switched from 
intravenous paricalcitol to doxercalciferol. No clinical 
data comparing doxercalciferol with alfacalcidol in 
humans are currently available. 

More recently, a growing interest for vitamin D 
pleiotropic effects, related to the widespread 
regulation of the human genome played by VDR 
activation, has been observed. Albuminuria, 
left ventricular hypertrophy (LVH) and cardiac 
remodelling have all been tested as potential targets 
of vitamin D analogues. The activation of VDR can 
regulate the expression of several genes involved 
in glomerular and myocardial inflammation as 
renin,105 TGF-beta,106 antioxidant molecules,107 NFκB 
and RANTES.108 The VITAL study, a randomised 
placebo controlled trial in diabetic CKD patients, 
documented a dose dependent trend toward 
reduction of albuminuria when paricalcitol was 
added to RAAS inhibitors.109 Though the PRIMO 
study failed to demonstrate a significant LVH 
reduction,110 a post-hoc analysis documented a lower 
increase of brain natriuretic peptide and left atrial 
index in diabetic CKD patients receiving paricalcitol 
on top of ACE-I or ARBs compared to placebo.111 
Interestingly, paricalcitol was associated with lower 
risk of hospitalisation in those patients with more 
severe LVH.110 However, no RCT has tested the effect 
of different forms of vitamin D or VDRA on hard 
patient-centred outcomes.

Numerous, albeit not all, observational studies   
suggest potential benefits beyond mineral                                                          
metabolism control linked to VDRA use on 
hospitalisation, cardiovascular events, and mortality. 
Kalantar-Zadeh and coworkers3 reported a 14% 
reduction in all-cause hospitalisation among patients 
receiving paricalcitol compared to those treated with 
calcitriol in a large cohort of 58,058 haemodialysis 
patients.3 Paricalcitol112-114 and doxercalciferol114 
use were both associated with lower mortality 
risk compared to calcitriol in other large series 
of patients on chronic haemodialysis. Recently 

published results from the Italian FARO survey115 
unexpectedly showed a better survival in dialysis 
patients receiving vitamin D also in the presence 
of PTH <150 pg/ml. However, the Dialysis Outcome 
and Practice Pattern Study (DOPPS) investigators 
failed to report on vitamin D improved survival 
after adjustment for confounders and different 
practice patterns.116 Hence, these encouraging 
observational data have to be confirmed in RCTs 
prior to orient stronger recommendations on vitamin                                                                                      
analogues prescription.

Future studies should shed definitive light on 
whether the use of VDRAs improve survival in CKD 
and ESRD as well as surrogate outcomes such as 
albuminuria and LVH. Finally, in consideration of 
the growing number of CKD patients and the high-
cost burden connected to CKD management, future 
studies should also verify the cost-effectiveness of 
the use of VDRA in different stages of CKD. 

Cinacalcet: Facts, Promises and Expectations 

The existing body of evidence suggests that                                                                                                      
cinacalcet effectively lowers serum PTH, 
phosphorous, and calcium levels in ESRD modulating 
the parathyroid calcium sensing receptor affinity to 
serum calcium.6,117-125 Phase two and three studies show 
that, on average a 40-50% (250-350 pg/ml) serum 
PTH, a 5-8% (0.5-0.8 mg/dl) serum calcium and a 
5-10% (0.2-1.0 mg/dl) serum phosphorous reduction 
is expected when cinacalcet is administered.6,117-125 It is 
conceivable that the calcium-PTH setpoint shift and 
the metabolic change in bone metabolism induced 
by this drug explain these results.126,127

Whether calcimimetics are superior to VDRAs 
in controlling CKD-MBD is another unanswered 
question. Two large RCTs, the ACHIEVE119 and 
the IMPACT128 study investigated this issue in 
haemodialysis patients. The first study119 concluded 
for a better PTH control with cinacalcet, while the 
second study128 showed a better PTH control among 
patients treated with intravenous paricalcitol. 
However, some major differences in the two study 
designs may account for some of the discrepant 
results: 1) in the ACHIEVE study both paricalcitol 
and doxercalciferol were allowed as VDRAs, while 
paricalcitol was the only VDRA administered in the D 
arm of the IMPACT study; 2) cinacalcet was admitted 
as a rescue therapy for hypercalcemia during VDRA 
treatment in the IMPACT study, whereas it was 
not allowed in the ACHIEVE study; 3) treatment 
algorithms for cinacalcet or VDRA dose modulation 
were different in the two trials. In light of these study 
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design differences it is unclear whether one of these 
two approaches is superior, though answering this 
question might be of limited clinical utility in light of 
the different pharmacological profile of calcimimetic 
and VDRAs.

The presence of calcium-sensing receptors in   
different tissues other than the parathyroid glands, 
could explain the positive impact of cinacalcet on 
the bones and vasculature detected in numerous 
preclinical data.129 In vitro and animal evidence 
suggest that a reduction of functional calcium-sensing 
receptors is associated with vascular calcification,129,130 

blood pressure,131 proteinuria,132 CKD progression,132 
arterial stiffness and endothelial dysfunction 
improvement.133 Large cohort prospective studies 
show that calcium-sensing receptor modulation 
is associated with favourable clinically meaningful 
outcomes. Cunningham and coworkers134 showed 
a significant reduction in the risk of cardiovascular 
disease, bone fracture, parathyroidectomy incidence, 
and a parallel improvement in the general health 
perception among dialysis patients with secondary 
hyperparathyroidism. Block et al.135 documented 
a substantial risk reduction in all-cause and 
cardiovascular mortality associated with cinacalcet 
in a large cohort of 25,292 chronic haemodialysis 
patients independent of several confounders.

However, the clinical impact of cinacalcet on hard 
outcome is far from being established in light of the 
recently published results of the ADVANCE124 and 
EVOLVE6 trials. The ADVANCE trial was conducted 
to investigate whether cinacalcet in combination 
with low dose of vitamin D (<6 mcg paricalcitol 
equivalent/ week) versus flexible doses of vitamin 
D attenuates coronary, aorta, and cardiac valves 
calcification progression in a cohort of 360 prevalent 
haemodialysis patients. After a relatively short 
period of follow-up of 12 months, a trend toward 
CAC reduction in the cinacalcet arm (Agatston CAC 
scores % change: 24% (95% confidence interval: - 
22%, 119%) and 31% (- 9%, 179%), in the cinacalcet 
and flexible vitamin D group, respectively, P=0.073) 
was noted. Notably the trend was consistent across 
all CV sites investigated for vascular calcification.124 
Furthermore, the large dose of calcium-containing 
phosphate binders and vitamin D administered in the 
calcimimetic arm may contribute to explain these 
results.136 Finally, the EVOLVE trial was designed to 
test the survival benefit of cinacalcet hypothesised 
by observational data in haemodialysis patients. 
At study completion, a statistically non-significant 
trend toward reduction (relative hazard in the 
cinacalcet group vs. the placebo group, 0.93; 95% 
confidence interval, 0.85 to 1.02; P=0.11) of the 
composite endpoint (time until death, myocardial 

Treatment Type of 
evidence

Head-to-head 
comparisons 

between 
drugs of the 
same class

Mineral 
metabolism 

control

Tissue 
marker 

of organ 
damage

Survival data Pharmacoeconomic 
evaluation

Low 
phosphate 
diet

Observational 
studies NA YES NO NO NA

RCTs NA YES NO NO NO

Phosphate 
binders

Observational 
studies YES YES YES YES NA

RCTs YES YES YES YES NO

Native 
vitamin D

Observational 
studies YES YES YES YES NA

RCTs NO NO NO NO NO

Activated 
forms of 
vitamin D 
(VDRA)

Observational 
studies YES YES YES YES NA

RCTs NO YES YES NO NO

Cinacalcet

Observational 
studies YES YES YES YES NA

RCTs NA YES YES YES 
Inconclusive NO

Table 1. Available knowledge is mainly based on observational and inconclusive RCTs.
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infarction, hospitalisation for unstable angina, 
heart failure, or a peripheral vascular event) was 
reported.6 However, the lower than anticipated event 
rate, the high drop-in and out rate during follow-up 
(about 20%),6 significantly affected the statistical 
power (0.54)6 and the interpretability of this                                                                       
inconclusive RCT.

In essence, data support the notion that cinacalcet is 
a safe and effective drug to lower PTH in secondary 
hyperparathyroidism. Nonetheless, future research 
projects should indentify the ideal candidate that 
would likely increase survival and quality of life 
while on this treatment. Finally, though the use 
of cinacalcet in predialysis stages of CKD is not 
approved because of the risk of hypocalcemia, 
future studies should evaluate its efficacy and safety 
in CKD not dialysis dependent cases of secondary 
hyperparathyroidism, characterised by normal-high 
calcium and high phosphate in which vitamin D may 
further aggravate phosphorous and calcium balance.

 

CONCLUSION 

Treatment of CKD-MBD is currently based largely on 
opinion rather than evidence, and many questions 
about CKD-MBD await answers. A tremendous 
effort has been performed in the attempt to clarify 
the natural history and pathogenic mechanisms that 
trigger CKD-MBD and modulate the astonishing 
risk connected to it. Nonetheless, a substantial 
degree of uncertainty on the clinical relevance and 
use of different serological and tissue biomarkers 
used to individualise, and titrate treatments still 
exists and affects patient care. Furthermore, the 
incompleteness (Table 1) and inconclusiveness due 
to various methodological flaws in the few available 
RCTs complicate the interpretation of the available 
evidence and lead to a heterogeneous use of the 
different drugs we have in our armamentarium.96

Future effort is therefore needed to elucidate 
mechanisms and treatment of these imbalances 
that, at least observational data, link to a substantial 
risk burden2 in CKD patients.
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