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Abstract
Advancement in electrophoresis and mass spectrometry techniques along with the recent progresses in genomics, culminating in
bovine and pig genome sequencing, widened the potential application of proteomics in the field of veterinary medicine. The aim of
the present review is to provide an in-depth perspective about the application of proteomics to animal disease pathogenesis, as
well as its utilization in veterinary diagnostics. After an overview on the various proteomic techniques that are currently applied to
veterinary sciences, the article focuses on proteomic approaches to animal disease pathogenesis. Included as well are recent
achievements in immunoproteomics (ie, the identifications through proteomic techniques of antigen involved in immune
response) and histoproteomics (ie, the application of proteomics in tissue processed for immunohistochemistry). Finally, the article
focuses on clinical proteomics (ie, the application of proteomics to the identification of new biomarkers of animal diseases).
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Historical Perspective

In the last few years, there has been an awakening interest in

using proteomics and the complementary, essential advances

in bioinformatics, to address problems of veterinary pathogen-

esis. However, the application of proteomics in veterinary med-

icine has been limited in comparison to studies that have

explored the potential of these advanced protein-analytic tech-

nologies in human clinical medicine. Historically, analysis of

serum protein has been an essential part of the armory of veter-

inary diagnostic investigations for disease pathogenesis but has

been limited to measurement of total protein, albumin, globu-

lin, and albumin: globulin ratio and serum protein electrophor-

esis (SPE) on agarose.39 The latter method separates serum into

around 8 fractions from albumin to the g-globulin fraction, but

the protein bands seen on SPE hide a multitude of proteins that,

if identified46 and measured with valid procedures, could pro-

vide a treasure trove of pathologic and diagnostic biomarkers.6

Proteomics holds the key to unlocking this vision of advancing

veterinary pathology and diagnostics.

Although the application of proteomics in veterinary

medicine has lagged behind human medical uses, there has

been increased activity recently, especially for investigation

of farm animal health and disease.42 A number of relevant

and informative reviews have appeared12,38,39,41,53 that lay

the groundwork for further participation of veterinary

laboratories in this exciting and rapidly advancing field. In

this review, we look at the current uses of proteomics in

veterinary medicine with particular emphasis on infectious

disease, pathogenesis, and diagnostics.

Proteomic Techniques

The term proteomics refers to the large-scale study of proteins,

including their structures and functions, whereas proteome can

be defined as the set of proteins expressed by the genetic mate-

rial of an organism under defined environmental conditions.99

Proteomics has emerged as a field of research in less than 2

decades108 and has developed rapidly, driven by improvements

in technology and by the need for analytic approaches that can

deliver global protein characterization. The ability to sequence
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entire genomes and to collate the resulting data into genome

sequences has enabled proteomics, but the global characterization

of the proteins that compose even relatively simple biological sys-

tems is still not achievable.21 A proteome is generally more com-

plex than the encoding genome, and the proteins are present

across a broad dynamic range.31 These issues are compounded

by regulation of protein expression, in response to developmental

and environmental stimuli, which results in a dynamic proteome.

Nevertheless, the importance of proteins as the primary effector

molecules of biology, which are also the major drug targets and

antigens, has promoted strong interest and investment in proteo-

mics, and the field continues to develop rapidly.

Proteomics involves the resolution of a complex mixture of

proteins into components that can then be characterized. Char-

acterization always involves matching protein to encoding

gene (identification) but can also involve relative quantitation

or further characterization to reveal posttranslational protein

modification. Protein characterization is performed by mass

spectrometers, which are generally fed proteins after some ini-

tial fractionation. The type of fractionation employed is deter-

mined by the complexity of the proteome and by the specific

research question but must be compatible with the downstream

mass spectrometry (MS). Currently, 2 major MS platforms are

employed for proteomics, differentiated by the mechanism

through which ions are generated: these ion sources are termed

matrix-assisted laser desorption/ionization (MALDI) and elec-

trospray ionization (ESI). MALDI instruments receive analytes

in the solid state, while the sample is delivered to ESI instru-

ments in a volatile solvent. These different platforms have

advantages and disadvantages but are complementary, and

most proteomics labs will operate both systems. Whatever the

MS system that is used, the optimum goal is to deliver peptides

as homogeneous populations that can be characterized without

competition from other species, such as different peptides,

other polymers, or salts. Given that even simple prokaryote

proteomes comprise thousands of proteins and multicellular

species may comprise greater than 100 000 proteins, this is a

tall order and requires extensive sample fractionation.

The protein fractionation systems that are employed in proteo-

mics are either electrophoretic or chromatographic: the former is

typically applied to intact proteins and the latter to peptides gener-

ated by protein cleavage. Orthogonal separation approaches are

often utilized to enhance resolution, and the archetypal orthogonal

separation in proteomics is 2-dimensional electrophoresis (2DE).48

Conventional 2DE involves separation by isoelectric focusing in

the first dimension, followed by sodium dodecyl sulphate electro-

phoresis in the second. Both dimensions are performed in a polya-

crylamide gel matrix, and the proteins migrate on 2-dimensional

gels as spots according to isoelectric point and apparent molecular

weight. The resulting spot map, which can be visualized by protein

staining, can resolve several thousand protein species, and spots

can be excised directly from the gel for characterization by MS.

2DE is a powerful approach for descriptive and comparative

proteome analysis, as it remains the highest-resolution protein

separation approach and is inherently quantitative. The separa-

tion of intact proteins by charge and mass can highlight

posttranslational modifications that would not be evident in 1-

dimensional electrophoresis or in peptide-based separations.96

2DE tends to underrepresent some classes of protein, including

those that are of relatively low abundance, very large, or highly

charged. Some of these issues can be circumvented by prefrac-

tionation to enrich proteins of interest or by focusing 2DE on

specific charge and/or mass ranges. Very hydrophobic proteins

may be refractory to solubilization in the nonionic conditions

that are required for isoelectric focusing, and alternative deter-

gents or 2-dimensional separations, such as the BAC/SDS-

PAGE system,18,51 have proven useful in this context. Neverthe-

less, 2DE is often considered a time-consuming and technically

challenging approach that has limited advantages over more

readily automated chromatographic methods.

The heterogeneity of intact proteins, which is exploited in

2DE, limits the resolution of chromatography for proteomic

workflows. Instead, proteins are typically fragmented to peptides

before chromatographic separation. Reversed-phase chromato-

graphic separation of peptides is ideally suited to proteomics

because peptides can be trapped and desalted before elution and

because the mobile phase comprises volatile solvents that can be

evaporated in the ESI source. Chromatography can thus be

directly coupled to ESI-MS, facilitating automation and mini-

mizing sample loss. Multidimensional chromatographic separa-

tion is increasingly employed117 because it can be automated and

because even highly charged or hydrophobic proteins will likely

generate some peptides that are amenable to MS analysis. Ion

exchange is mostly used as a first dimension, giving separation

based on orthogonal biophysical characteristics to reversed-

phase chromatography and taking advantage of the latter to

desalt ion exchange fractions before MS. Chromatographic

approaches can be more sensitive than electrophoresis because

there is no requirement to recover proteins or peptides from a gel

matrix. However, the conversion of each protein in an already

complex proteome to a large number of peptides is counterpro-

ductive when the goal is to maximize proteomic coverage,

because there are limits to the resolution of multidimensional

peptide chromatography, so prefractionation or proteomic mate-

rial is often important. Combinations of electrophoresis and

chromatography are among the most efficient fractionation sys-

tems,116 but targeted approaches such as subcellular fractiona-

tion or affinity purification of protein complexes can result in

greatly enhanced coverage of a subproteome.

Typically, proteins will be obtained from a biological source

and fractionated by electrophoresis. Protein fractions will then be

trypsinized to generate peptides that can be further fractionated

by high-performance liquid chromatography (LC) before analysis

by an ESI-MS that is fed directly with the chromatography eluate

(LC-MS). The MS will generally be capable of recording the mass

of analytes and able to isolate and fragment peptide ions (MS/MS,

or tandem MS) to generate information about structure.21 The

resulting data are fed to a search engine, such as Mascot (Matrix

Science Ltd), which generates in silico MS data for the specified

genome sequence database and looks for statistically significant

matches with the experimentally generated MS data. The data out-

put is typically a list of potential matches, ranked by confidence, to
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proteins that may be components of the sample. It is important to

recognize that this will not be a complete list of protein compo-

nents, largely because some will be present at levels below the

threshold of detection but also because some proteins are refractory

to analysis or are not represented in the genome database. It is also a

qualitative data set, but quantitative data are often desirable.

Absolute protein quantitation is difficult to undertake in an

-omic context, but relative quantitation can be achieved by a

diversity of comparative approaches. Relative quantitation of

intact proteins is generally performed by gel-based methods,

such as 2DE using semiquantitative protein stains, or protein-

labeling strategies, such as difference gel electrophoresis

(DiGE).3 The advent of DiGE technology has greatly enhanced

the utility of 2DE for quantitative proteomic analysis, enabling

the direct comparison on a single gel of samples that are differ-

entially labeled by fluorophores that are mass and charged

matched but spectrally discrete. For example, DiGE has been

exploited to reveal changes in the expression of discrete iso-

forms of tryparedoxin peroxidase in virulent and attenuated

strains of Leishmania.34 Quantitation at the peptide level can

be achieved by stable isotope-labeling approaches or by label-

free comparison. Isolated proteins or tryptic peptides can be che-

mically labeled before separation [iTRAQ]97, dimethyl label-

ing,58 and a plethora of other approaches,21 or proteins can be

metabolically labeled with heavy and light amino acids (stable

isotope labeling with amino acids in culture [SILAC]).89 All

these labeling approaches involve mixing of samples for com-

parison after labeling but before separation and MS analysis.

The relative abundance of specific proteins in each sample is

deconvoluted from the resulting MS data, using appropriate

software. Of the protein-labeling approaches, SILAC is attrac-

tive because label is incorporated during growth, avoiding the

possibility of introducing artifactual changes in protein abun-

dance during the sample preparation step. However, SILAC

labeling can be performed only in biological systems that are

auxotrophic for the amino acids that are supplied as labels, while

chemical labeling of proteins can be performed with proteins

from any source.

Label-free approaches, which involve serial LC-MS analy-

sis of multiple unlabeled samples, are becoming commonplace

as the robustness of chromatographic separation improves and

facilitates the alignment of data sets that is essential for

comparison. Label-free approaches are more costly in instru-

ment time, as unlabeled samples cannot be multiplexed—an

important consideration, as LC-MS instrumentation is costly

to maintain. Regardless of the quantitation approach, compara-

tive proteomics experiments have the potential to highlight

key proteins in phenotypes of interest20 and thus have tremen-

dous potential to highlight drug targets and biomarkers and

elucidate biological mechanisms.

Proteomic Approaches to Animal Disease
Pathogenesis

Several proteomic techniques have been applied so far to the

understanding of dynamic protein pathways involved in host

and pathogen responses during diseases. Pathogens and

immune defenses adapt to each other. This adaptation is due

to the regulation of the expression of several genes of both

sides, to changing stimuli. This capability to fine-tune gene

expression can and has been studied by DNA microarray tech-

niques, in particular for what concerns the microbiome (ie, the

pathogen component).88 However, since the correlation

between DNA levels and actual protein expression is poor,50

integration between the 2 techniques, genomics and prote-

omics, is required.

Proteomics Research in Bovine Species: Focus on Mastitis
and Respiratory Diseases

Mastitis is considered the most frequent and most costly pro-

duction disease in dairy cows. It is therefore not surprising that

proteomics has been widely applied to investigate mastitis

pathogenesis. Intramammary infections with Staphylococcus

aureus and Escherichia coli have received a lot of attention due

to their economic impact. In the classical experiment of Boeh-

mer and coworkers,13 acute mastitis was induced by infection

with E. coli in a group of dairy cows, whereas another group

was treated with sterile physiologic solution. 2DE gel electro-

phoresis was carried out before and 18 hours after the infection,

and differentially expressed proteins were identified in milk by

peptide sequencing with MALDI time of flight (TOF). Intra-

mammary infection caused by S. aureus was also investi-

gated.63 Three strains were used, and proteomic analysis

revealed that while acute phase protein expression was almost

identical, differential regulation of strain-specific host IFN-g
and antimicrobial peptides were observed. A similar experi-

mental design was applied after challenging the mammary

gland with bacteria-derived pathogen-associated molecules,

such as E. coli lipopolysaccharide and S. aureus lipoteichoic

acid.56 Proteomic analysis was carried out on milk, revealing

in both groups of animals an almost complete hydrolysis of

casein, supposedly caused by an overexpression of proteases.

The results obtained during these experiments also identified

useful candidates for biomarker identification (Table 1). The

importance of proteomics (and peptidomics in particular) in

new biomarker search has been clearly evidenced in a recent

publication, focused on peptidomics investigation during

mastitis.77 Another remarkable study demonstrated how a- and

b-caseins modulate biofilm formation during mastitis of

Streptococcus uberis.112 This activity is increased by casein

degradation, which can be induced by bacterial proteases.

Prerequisite of these ‘‘pathogenesis-focused’’ studies are

preliminary experiments aimed at elucidating the mammary

gland immunoproteome, identifying the proteins that are

responsible, in physiologic status, for immune defense of the

mammary gland in milk55 and in mammary parenchyma.11

Proteomic techniques were useful to explore other bovine

major disease groups, such as those involving respiratory appa-

ratus. Bronco alveolar lavage fluid represents an ideal speci-

men for proteomic analysis. 2DE proteomics confirmed the

importance of stressors, such as transportation and weaning,
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in respiratory disease development.83 Broncho alveolar fluid

was also studied by LC-MS/MS following experimental induc-

tion of pneumonia with Mannheimia haemolytica.14 Antimi-

crobial peptides and acute phase proteins were identified by

proteomics as being upregulated in bovine mucosal defense.

Proteomic Approaches to Parasitosis in Small Ruminants

Most proteomic research on small ruminant species has been

focused on sheep parasites. Pathogenesis of gastrointestinal

nematode infection was recently studied by quantitatively

investigating the expression of proteins by abomasal mucosa

of resistant and susceptible sheep breed after experimental

Haemoncus contortus infection.86 A number of proteins

(4468 in total) were identified and several of them (n ¼ 158)

were found to be differentially expressed between resistant and

susceptible sheep. Proteins such as galectin-4, trefoil factor 2,

fibrillin-2, and DAG were detected in luminal mucus of resis-

tant sheep, where they can interfere with parasite adhesion pro-

cesses. Immune response to other abomasal parasites, such as

Teladorsagia circumcincta, was thoroughly explored by com-

bining 2DE and MALDI-TOF proteomics, after in vivo92 and

in vitro7 experimental infection, identifying galectin-15 as

being involved in specific resistance against parasite infection.

Both these studies focused on the abomasal mucosal surface,

going in-depth through the network of proteins that directly

interact with Teladorsagia. Epithelial cell lysates revealed

obvious candidates, such as immunoglobulin A and sheep mast

cell protease 1, and less obvious ones, such as calcium-

activated chloride channel and intelectins. The latter may be

involved in increased mucus secretion, which in turn may result

in reduced parasite infection. In a further attempt to better

define the pathogenesis of this parasite, proteomic analysis of

lymphatic drainage obtained from cannulated abomasal lymph

nodes identified other proteins, including hemopexin, a1-b

glycoprotein, and gelsolin, as being altered after Teladorsagia

infection.47 The involvement of the immune and inflammatory

defense mechanisms in Echinococcus granulosus was evi-

denced after proteomics investigation on hydatid cyst fluid, not

only from sheep, but also from cattle and humans.8 Out of 130

proteins identified from fertile cysts, only one third (n ¼ 48)

were of parasite origin, whereas the others (n ¼ 82) were from

host origin, clearly demonstrating how E. granulosus can

absorb host proteins across its outer germinal layer and deceive

the host immune system.

Proteomics Research in Pigs: Respiratory and Intestinal
Diseases

The pathogenesis of several viral diseases, including porcine

reproductive and respiratory syndrome, classical swine fever

(CSF) and porcine circovirus diseases, has been explored by

proteomics. In vitro infection of susceptible cells, such as por-

cine alveolar macrophages and Marc-145 cells,37 provided

valuable information about which cellular pathways are mostly

activated during porcine reproductive and respiratory syn-

drome viral replication, assembly, and pathogenesis. In partic-

ular, stress proteins may be involved in all stages of the life

cycle of the virus, and all the proteomics studies carried out

so far have identified heat shock proteins (HSPs), such as

HSP27 and HSP8, as well as proteins related to cytoskeleton

assembly, including annexins, b-actin, and tubulin, as being

incorporated into virion particles.

Another important swine viral disease is CSF. This virus targets

endothelial cells, and widespread hemorrhages are the pathogno-

monic clinical signs of the disease. The pathogenesis of CSF was

therefore explored by proteomics on primary porcine endothelial

cells,74 revealing that CSF virus induced a downregulation of pro-

teins involved in energy metabolism and upregulation of others

that inhibit endothelial cell proliferation. Upregulation of proteins

involved in inflammatory reaction and oxidative stress was also

demonstrated, partially elucidating the molecular bases of

endothelial damage and related vascular permeability. Further

Table 1. Application of Proteomics to New Biomarker Investigation
in Domestic Animal Disease.

Biological Specimen

Cow
Subclinical and clinical mastitis111 Serum
Stress80 Serum
Mastitis4 Serum/whey
Staphylococcus aureus mastitis63 Serum/milk
Escherichia coli and S. aureus mastitits61 Milk
Lipopolysaccharide-mediated mastitis36 Milk
Subclinical mycobacterial infection101 Serum
Bovine respiratory disease2 Serum
Clinical mastitis57 Whey

Pig
Porcine reproductive and respiratory
syndrome45

Serum

Food and mouth76 Serum
Classical swine fever104 Serum
Stress79 Serum
Peritonitis-induced sepsis109 Serum

Small ruminants
Paratubercolosis120 Serum

Horse
Chronic equine laminitis103 Serum
Osteoarthritis and osteochondritis27 Synovial fluid
Doping10 Serum
Spontaneous equine recurrent uveitis122 Serum

Dogs
European adder bite91 Urine
Meningoencephalitis87 Cerebrospinal fluid
Progressive glomerular disease85 Urine
Hemangiosarcoma64 Serum
Leishmaniosis19 Serum
Lymphoma94 Serum
Idiopathic pulmonary fibrosis75 Bronchoalveolar fluid
Cancer36 Tears
Weight loss program110 Serum

Cats
Azotemia62 Urine
Urinary tract diseases71 Urine
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progress on the knowledge of CSF pathogenesis was obtained by

proteomic characterization of macrophages involved in the devel-

opment of the disease. Both alveolar macrophages121 and periph-

eral blood monocytes104 were studied, revealing that HSP

expression was altered, as well as proteins involved in energy

metabolism, adhesion, oxidative stress, and protein translation and

processing.

Postweaning multisystemic wasting syndrome, caused by

porcine circovirus-2, was analyzed after macrophage infection,26

revealing the involvement of cytoskeletal proteins. Immune sys-

tem targeting of porcine circovirus was also explored by quanti-

tative proteomics on lymph nodes from experimentally infected

piglets, identifying acute inflammatory response-related proteins

involved in the insurgency of the disease and others involved in

oxidative stress. CD81, which has been already shown to be

involved in other viral infections, was upregulated as well.

Pigs are asymptomatic carriers of Salmonella typhimurium,

which is regarded as one of the most frequent food-borne

pathogens, transmitted through contaminated pork meat. In

vivo experimental infection, followed by DiGE and MALDI-

TOF MS of mesenteric pig lymph nodes,81 identified a complex

interaction between Salmonella and the pig immune system,

revealing an activation of pyroptosis, an innate immune mech-

anism against intracellular bacteria. By integrating high-

throughput proteomics with classical immunohistochemistry and

molecular biology, this study described at the molecular level the

delicate equilibrium between the host immune system and bac-

teria invasion. Salmonella could reduce the apoptosis rate of

neutrophils, allowing a better control of the disease, meanwhile

modulating some cell functions, such as cytoskeleton rearrange-

ment, for the benefit of the bacteria themselves.

Proteomics in Horses: Articular Disorders and Equine
Recurrent Uveitis

The application of proteomics in equine disease is not exten-

sive at present. However, 2 major horse diseases have been

studied by proteomics: osteoarthritis/osteochondrosis and

equine recurrent uveitis.

Proteomic studies were carried out on articular cartilage

inflammation in an ex vivo experimental model, providing an

in-depth perspective on the molecular pathogenesis of equine

arthritis and demonstrating how treatment with IL-1 modulates

the expression of matrix metalloproteinase-1 and -3 but

decreases, for example, that of clusterin.29

An excellent example of how classical histochemistry can

be integrated with proteomic techniques is observed in a study

focused on equine recurrent uveitis. In a label-free LC-MS/MS

analysis of vitreus from uveitis, beside an increase in comple-

ment cascade-involved proteins, a significant decrease of pro-

teins involved in Wnt signaling (ie, DKK3 and SFRP2) was

recently detected.52 Western blotting analysis allowed the

quantification of the different expression of the 2 proteins,

whereas immunohistochemistry integrated proteomics results

by locating the expression of the 2 proteins on retinal speci-

mens. Major immunohistochemical findings include a specific

downregulation of SFRP2 in retinal outer limiting membrane

and a general decrease of DKK3, which was shown to coloca-

lize with Müller glial cells. Therefore, by coupling proteomics,

quantitative Western blotting, and immunohistochemistry, this

study not only demonstrated the involvement of the Wnt path-

way in equine uveitis but also localized it at tissue levels where

the expression pattern of these proteins is mostly modified.

Proteomics in Companion Animal Disease Pathogenesis

While there have been applications in veterinary medicine

where proteomic approaches have been employed for investi-

gations in small animals and in studies of infectious and neo-

plastic disease in particular,41,53 the use of proteomics in the

study of pathogenesis in companion animals is less extensive

than that for farm animals.

Proteomics has been used in an attempt to identify novel

antigens from Leishmania chagasi for vaccine production and

diagnostic development.32 Based on DiGE and Western blot-

ting, 25 proteins from L. chagasi have been identified for use

in serum diagnostics and for consideration of vaccine develop-

ment targets. Others important dog parasites that were investi-

gated though proteomics include Ancylostoma canum84 and

Echinococcus multicularis.68

Proteomics has also been used to investigate bacterial patho-

gens of dogs and their interaction with the host. Surface proteomic

analysis has been used to identify proteins of Staphylococcus

pseudintermedius involved with adherence to the external

matrix.9 Lipoprotein from Ehrlichia chaffeenis, identified by

LC-MS/MS, was subsequently shown to elicit an immune

response in dogs.59 The response of protein in the mitochondria

of liver from dogs treated with bacterially derived lipopolysac-

charide has been studied by 2DE, with 14 of the 500 identified

proteins being shown to be differently expressed within 4 hours

of intravenous lipopolysaccharide treatment.33 Canine liver has

also been examined in bull terriers with a genetic disorder leading

to inherited lethal acrodermatitis.49

Worth mentioning is an interesting study on rabies. Three

areas of the central nervous system of dogs infected with rabies

virus resulting in paralytic or furious manifestation of the dis-

ease have been compared by 2DE, followed by quadrupole

TOF MS.108 A total of 32 proteins were found to differ in the

hippocampus, 49 in the brainstem, and 67 in the spinal cord.

In comparing the paralytic to the furious forms of the disease,

13, 17, and 41 proteins differed in the hippocampus, brainstem,

and spinal cord, respectively. The functions of the proteins

were from a range of activity, including antioxidants, HSPs,

metabolism, and transcription and translation proteins, with the

results leading to an increase in understanding the molecular

pathology and differential manifestation of the rabies in its

different forms.

As in human medicine, initiatives have been taken in canine

oncology to identify biomarkers of neoplastic disease with the use

of proteomics.38,54 Lymph nodes from dogs with B-cell lym-

phoma have been studied using 2DE and MALDI-TOF MS in

comparison to lymph nodes of healthy dogs.82 Over 90
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differentially expressed protein spots were identified, among

which proline dipeptidase, triosophosphate isomerase, and

glutathione-S-transferase were downregulated and macrophage

capping protein was upregulated in the samples from the lym-

phoma cases. While 2DE can identify differences in expression

between diseased and healthy samples, for a diagnostic test to be

based on such results requires extensive development. An

approach that held promise from human medicine to identify bio-

markers is surface-enhanced laser desorption/ionization MS.94

The advances made in proteomic science can be used to reexamine

established methods of veterinary diagnostics, and in the clinical

investigation of lymphoma, SPE is a regularly used tool in which

the proteins of serum are separated into well-known fractions,

namely, albumina1,a2,b1,b2, andg. The protein bands of agarose

SPE have been identified as a source of protein for trypsin diges-

tion and tandem mass fingerprinting. Thus the main SPE protein

bands in serum of cats with and without lymphoma, have been sub-

jected to proteomic analysis.45 The study confirmed established

understanding of the content of the main bands but also revealed

the presence of lower-abundance protein in particular fractions,

such as inter-a (globulin) inhibitor 4 in the a2 band of cats with

lymphoma.

Other neoplastic diseases that have been investigated by

proteomics include prostate and bladder carcinomas, which

have been examined by DiGE in comparison to healthy tis-

sues.72 Analysis by DiGE has also been used to investigate the

proteins of metastatic canine mammary carcinomas65 and

identified 21 proteins that were either up- or downregulated

in the carcinomas. Proteomics was also very useful in mam-

mary carcinoma66 staging, identifying individual proteins as

markers of each stage. In the first stage, named adenoma pat-

tern, phosphoglycerate mutase 1 was increased and calumenin

decreased; in the next, carcinoma pattern, 14-3-3-zeta was

increased and gelsolin decreased; and in a metastasis pattern,

bomapin was increased and maspin decreased. DiGE has also

been used to compare high-grade canine cutaneous mast cell

tumors that have poor prognosis with low-grade tumors with

better prognosis.99

Canine brain tissue has been subjected to 2DE and

MALDI-TOF MS in a model of Alzheimer disease where envi-

ronmental enrichment and antioxidant-fortified food were

compared to controls.90 The group with both treatments

showed the best neuronal function and cognition and, upon pro-

teomic analysis, was shown to differ from the control group in

reduced expression of parietal cortex proteins, including gluta-

mate dehydrogenase, enolase, and glutathione-S-transferase,

while creatine kinase and glyceraldehyde-3 phosphate dehy-

drogenase, among other proteins, were upregulated.

Using iTRAQ and LC-MS/MS technology, the proteins in

early- and late-stage myxomatous mitral valve disease in dogs

have been examined,69 with 117 proteins identified in mitral

valves that were differentially expressed as compared to tissue

from healthy dogs. Based on hierarchical sample clustering, it

was evident that the altered expression of the mitral proteins

occurred in the early stage of disease progression, thereby pro-

viding a valuable model of the equivalent human disease.

Finally, canine liver has been examined in bull terriers with

a genetic disorder leading to inherited lethal acrodermatitis,49

which may be particularly interesting on the background of the

possible utilization of dogs as model for equivalent human dis-

ease. In this study, 13 differently expressed proteins were iden-

tified, involved in processes such as chaperone action, calcium

binding, and energy metabolism.

Proteomics and Posttranslational
Modifications in Veterinary Diagnostics

Changes in posttranslational modification readily occur in

inflammation but also in cancer and other disease states. Based

on recent advances in the development of analytic techniques

and instrumentation, MS in particular, several blood-derived

glycan-based biomarkers using glycomics strategies have been

identified.1,5,98 Due to the high extent of its carbohydrate moi-

ety (more than 40% of the weight of the protein), the acute-

phase protein alpha1 acid glycoprotein (AGP) has been rightly

regarded as a model to study posttranslational modifications

during diseases23 and an ideal model to implement these find-

ings as a biomarker source. In fact, AGP glycan pattern has

been found to be modified in animal diseases, as well in

cats24,93 and goats.25 Furthermore, a proteomic approach has

been utilized to determine the differences between AGP glyco-

forms from different tissue origins, which is one of the first

steps to utilize AGP as specific biomarker for diseases.24 Struc-

tural modifications of other proteins, such as transthyretin, in

animals have been described as well, including horses54 and

apes.100 A proteome-wide glycan analysis was carried out in

dog serum though a lectin-enrichment-based approach coupled

with MS, which allowed high-throughput investigation of pro-

tein glycosylation signatures.28 While application of glycomics

is still quite far from the veterinary field, posttranslational mod-

ification of proteins occurin in neoplastic disease may provide

further opportunities to identify biomarkers of the disease in

animals. Glycoproteomic profile of serum peptides has been

examined by a combination of lectin affinity selection, global

internal standard technology, high-performance LC, and

MALDI-TOF to investigate canine lymphoma and transitional

cell carcinoma.115 Two peptides were identified that allowed

discrimination between these conditions.

Immunoproteomics: Identifying Antigens
Involved in Immune Response Against
Pathogens

The immunoproteome defines the subset of proteins that

induce immune response. Circulating serum antibodies repre-

sent important biomarkers per se, since their half-life varies

between 7 and 20 days and they are highly stable compared

to other serum proteins. The aim of immunoproteomics is to

identify the antigens that these circulating antibodies have

been raised against during a given infectious disease.

Immunoproteomic-based available techniques include gel-

based and gel-free immunoproteomics.
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Gel-based immunoproteomics relies on the separation of a

complex mixture of proteins derived from pathogens by 2DE

and electrotransfer onto a solid support, usually nitrocellulose.

Immunoreactive proteins are then identified after incubation of

the membrane with serum from infected animals. Gel-based

immunoproteomic techniques have been widely utilized in

veterinary immunoproteomics to identify, for example, specific

antigens involved in paraTBC73 in both cattle and sheep,60

Streptococcus suis in pig,119 and Staphylococcus aureus iso-

lated from bovine mastitis.107 Immunoreactants against para-

sites were characterized as well, such as those from Fasciola

hepatica and Schistosoma mansoni16 in cattle and Haemoncus

contortus in sheep.118

Gel-free immunoproteomics takes advantage of different

physicochemical characteristics of antigens, such as isoelectric

point, hydrophobicity, and/or affinity with immune sera to sort

complex mixtures in smaller groups of proteins. Protein subfrac-

tions are then identified by MS. Immunoproteomics of Brucella

abortus identified differential immunoreactivity of Triton

X-114-soluble antigens between naturally infected vaccinated

and nonvaccinated seronegative cows, identifying antigens

potentially useful for immunoassays. In a very elegant experi-

ment, Neospora caninum antigens were identified after their

interaction with CD4þ T-cell lines.95 In a first step N. caninum

tachyzoite water-soluble antigens were grossly fractionated by

size exclusion chromatography. Their immune-stimulating capa-

bility was then assessed after challenging CD14þ T-cell lines

with sorted protein groups, and the immunologic selected

fractions were eventually analyzed by LC-ESI-MS/MS.

Clinical Proteomics: Biomarker Discovery

While single-protein concentration assessed by antibody-based

affinity is still the gold standard of diagnostics for clinical prac-

tice, there is now a general agreement that a panel of indepen-

dent disease-related proteins could substantially improve the

diagnosis of animal diseases. High-throughput proteomics has

emerged as the most powerful technique for identifying protein

profiles in animal biological fluids, as shown in Table 1. The

application of proteomics as a diagnostic tool has been further

implemented by its capability to analyze new and ‘‘neglected’’

biological fluids, such as saliva70 or tears,102 to complement the

classic fluids (ie, blood serum and milk). The identification of

markers related to diseases has wide practical implications,

since they provide diagnostic tools as well as potential targets

for novel approaches to monitor the therapies. Notwithstanding

its progress, the translation of biomarkers from the discovery

field to their clinical use is still hampered by several pitfalls,

which are particularly evident in veterinary medicine,

including

Sample collection—since differences among age, breeds, but

also sample collection and storage (ie, the amount of time

between sample draw and analysis) may profoundly alter

serum protein profiles.30

Dynamic range—serum/plasma is the most important clini-

cal specimen, but no more than 10 proteins make up

90% of the total protein serum content, more than half

being made of albumin. There are therefore at least 10

orders of magnitude difference between the highest- and

lowest-abundant protein. These potential obstacles can

be overcome by using depletion of most abundant pro-

teins by beads (Proteo Miner)78 or by immunodepletion.44

However, several potentially important proteins may be

lost in the process due to their bonding to removed

high-abundant proteins.

Cost—which is unaffordable for veterinary clinical practice

at this stage, though it may be reduced in the future.

Therefore, while proteomics has been extremely useful so far

for new potential biomarker discovery, further work is required

to standardize routine utilization in veterinary practice.

Histoproteomics: The Application of
Proteomics to Tissues Processed for
Immunohistochemistry

Standard techniques for preserving biological material for stor-

age and histologic processing include snap freezing in liquid

nitrogen and fixation in formalin and embedding in paraffin

(FFPE). Proteomic techniques have been developed to investi-

gate the localization and expression profiles of proteins on

freshly frozen pathologic specimens, meanwhile preserving the

histolopathologic integrity of the tissues. LC-MS workflows

have been optimized to determine laser-captured microdis-

sected pathologic tissues and have been applied to specimens

from human breast cancer tissues,17 fixed with ice-cold ethanol

(70%), and then stained with hematoxylin. Laser-capture dis-

section was then carried out on stained tissues, and more than

400 proteins were identified by LC, followed by MS. General

application of such optimized protocols to animal disease diag-

nosis has been prevented, at least so far, by economic reasons.

Nonetheless, as such protocols are now available, its future

application in veterinary clinical practice or research can be

envisaged. Cryopreserved samples provide the first choice for

proteomic analyses, since proteins are not modified. It must

also be said that morphologic details are not optimally pre-

served. Moreover, longtime storage is expensive and may not

be accurate.

Embedding of samples in paraffin after formalin fixation

represents a serious challenge for protein extraction. Formalin

reaction with tissues results in the cross-linking between pro-

teins, causing a significant reduction of recovery. New

formalin-free fixatives that may enable both histologic and

molecular analyses are now available, and their potential value

for proteomic investigation has been assessed.43,67 These new

methods have proven very effective in proteomics on archived

cancer tissues.13 While providing useful protocols for future

applications of proteomic techniques to novel processed patho-

logic specimens, protocols to extract and analyze proteins from

FFPE are mostly required to take advantage from the huge
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histologic and pathologic archives available, which represent

the most abundant and already classified pathologic specimens,

allowing retrospective analysis, with extended and well-

documented clinicopathological follow-up. FFPE tissues still

provide major challenges to proteomics. Protein extraction

issues from FFPE tissues has been recently reviewed.113 Appli-

cation of 2-dimensional DiGE on FFPE specimens was suc-

cessfully carried out on dog and sheep tissues,105,106 after

deparaffination with xylene. Current protocols have to be

improved: only low molecular weight peptides were success-

fully removed, and the yield was low. High molecular weight

proteins were poorly resolved due to high background, making

their identification difficult. Nonetheless, these results provide

a valuable starting point and demonstrated for the first time

how proteomic techniques can be effectively applied on stored

tissues of veterinary interest.

Final Remarks and Future Perspectives

Better biomarkers are urgently needed in veterinary medicine

for diagnosis and prognosis of diseases. The research world

is entering a postgenomic era, which provides great opportuni-

ties in the pursuit of new biomarkers. Proteomics in veterinary

science is still lagging, if compared with proteomics in humans

and mice. It is clear that valuable information on the molecular

mechanism of diseases of animals of veterinary interest is

being and will be generated in the future as the technology

becomes more applicable in studies designed to explore and

explain the pathology of veterinary disease. Initial proteomic

studies, when applied to novel areas, have tended to focus at

first on describing the proteome of a particular tissue or fluid.

Then the power of the techniques is recognized, and experi-

ments to compare and quantify protein changes in experimental

procedure or in comparison of disease to healthy samples

become more common. The application of proteomics in the

study of veterinary pathology is entering this second stage.

One of the reasons why proteomics has played a limited role

in veterinary medicine and diagnostics, beside the economic

one, is the scarce genomic and proteomic data available as

compared with rodents and humans. The recent publication

of genomes from pig and cow as well as the growing availabil-

ity of proteomic reference maps of companion animal tissues

and biological fluids will probably overcome these technical

barriers. The cost of proteomics experiments is decreasing as

well. Given these premises, the still-limited number of proteo-

mic maps is expected to increase, providing new opportunities

to utilize proteomic information for diagnosis of animal dis-

eases. Technological advances in proteomics, such as those

briefly described in the present review, have expanded the

dynamic range of detection for low-abundance proteins, allow-

ing the detection of disease-specific proteins to be used as

potential biomarkers in veterinary medicine as well. The ulti-

mate goal should be to develop diagnostic protocols on clinical

samples at multiple levels, including transcriptome (RNA) and

proteome (proteins). The development of techniques allowing

extraction of molecular information from FFPE tissue, coupled

with bioinformatics tools, will provide further advances in the

identification of reliable biomarkers through accessing

the extensive archives of annotated tissue samples, which can

be linked to clinical information and disease outcome.
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