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Abstract

Introduction: The clinical use of serial quantitative computed tomography (CT) to characterize lung disease and
guide the optimization of mechanical ventilation in patients with acute respiratory distress syndrome (ARDS) is
limited by the risk of cumulative radiation exposure and by the difficulties and risks related to transferring patients
to the CT room. We evaluated the effects of tube current-time product (mAs) variations on quantitative results in
healthy lungs and in experimental ARDS in order to support the use of low-dose CT for quantitative analysis.

Methods: In 14 sheep chest CT was performed at baseline and after the induction of ARDS via intravenous oleic
acid injection. For each CT session, two consecutive scans were obtained applying two different mAs: 60 mAs was
paired with 140, 15 or 7.5 mAs. All other CT parameters were kept unaltered (tube voltage 120 kVp, collimation
32 × 0.5 mm, pitch 0.85, matrix 512 × 512, pixel size 0.625 × 0.625 mm). Quantitative results obtained at different
mAs were compared via Bland-Altman analysis.

Results: Good agreement was observed between 60 mAs and 140 mAs and between 60 mAs and 15 mAs (all
biases less than 1%). A further reduction of mAs to 7.5 mAs caused an increase in the bias of poorly aerated and
nonaerated tissue (-2.9% and 2.4%, respectively) and determined a significant widening of the limits of agreement
for the same compartments (-10.5% to 4.8% for poorly aerated tissue and -5.9% to 10.8% for nonaerated tissue).
Estimated mean effective dose at 140, 60, 15 and 7.5 mAs corresponded to 17.8, 7.4, 2.0 and 0.9 mSv, respectively.
Image noise of scans performed at 140, 60, 15 and 7.5 mAs corresponded to 10, 16, 38 and 74 Hounsfield units,
respectively.

Conclusions: A reduction of effective dose up to 70% has been achieved with minimal effects on lung
quantitative results. Low-dose computed tomography provides accurate quantitative results and could be used to
characterize lung compartment distribution and possibly monitor time-course of ARDS with a lower risk of
exposure to ionizing radiation. A further radiation dose reduction is associated with lower accuracy in quantitative
results.

Introduction
Chest computed tomography (CT) and the related lung
quantitative CT (qCT) analysis have greatly improved
the understanding of the pathophysiological and
morphological features of acute respiratory distress syn-
drome (ARDS) [1-6]. Moreover, qCT has been proposed
as a valuable tool to determine the potential for lung

recruitment (thus optimizing the setting of positive end-
expiratory pressure [7]) and to assess lung opening and
closing as well as lung hyperinflation in the effort
to reduce the occurrence of ventilator-induced lung
injury [8,9].
Besides the difficulties and risks related to transferring

patients to the CT room, one of the major factors hin-
dering the adoption of serial qCT is the associated
patient exposure to ionizing radiation [10-12]. Radiation
dose is linearly related to the tube current-exposure
time product (mAs) which affects the image noise level
and thus influences image quality [13]. In general, an
increase in mAs will improve image quality at the cost
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of a higher radiation dose, while a reduction in mAs will
have the opposite effect [14], but other factors may be
implied, such as tissue-weighting, use of automatic tube
current modulation technique or variations in peak kilo-
voltage (kVp) between others.
It is worth mentioning that, despite the extensive use

of qCT, a standardized protocol for the acquisition para-
meters of CT images has not been defined, and, in parti-
cular, widely variable mAs have been reported in both
experimental [15,16] and clinical settings [17,18].
Although low-dose CT has been used extensively in
other fields [19-21], limited data are available on its
application for lung quantitative analysis. Indeed, aside
from a few studies on pulmonary emphysema [22-24]
that showed that quantification of hyperinflated tissue is
not affected by a reduction of tube current-exposure
time product to 20 mAs [22], no data are available on
the possible effects of different mAs values on quantita-
tive lung analysis results.
If quantitative results performed on low- to ultra-low-

dose chest CT scans were accurate, qCT could be used
more frequently to characterize lung compartment dis-
tribution and potential for lung recruitment with
reduced radiation exposure. The aim of the present
study was therefore to investigate the effects of varia-
tions in mAs on quantitative results in healthy lungs
and in experimental ARDS.

Materials and methods
This study was approved by the US Army Institute of
Surgical Research Animal Care and Use Committee and
was conducted in compliance with the Animal Welfare
Act, the implementing Animal Welfare Regulations and
the principles of the Guide for the Care and Use of
Laboratory Animals.
Fourteen anesthetized and mechanically ventilated

female sheep (44 ± 6 kg, one to two years of age) were
studied. All animals were included in other protocols
conducted at the US Army Institute of Surgical Research
(that is, no animal was used for the sole purpose of this
study). Further details are provided in the Supplemen-
tary Material.

Computed tomography scan image acquisition and
reconstruction
Chest CT (Aquilion 64, Toshiba America Medical Sys-
tems, Tustin, CA, USA) was performed at baseline
(healthy lungs) and six to eight hours after the induction
of ARDS. Experimental ARDS was induced via intrave-
nous injection of 0.1 to 0.15 ml/kg oleic acid [25].
Before CT scanning, the degree of inflation of the cuff

of the endotracheal or tracheostomy tube was checked
to minimize or avoid the possible air leakage. During
CT image acquisition, two consecutive scans were

obtained after having clamped the endotracheal or tra-
cheostomy tube during a respiratory hold performed
with the mechanical ventilator (Servo 300; Siemens,
Solna, Sweden). The entire lung was imaged. For each
couple of scans, two different mAs were applied in ran-
domized order to compare the corresponding quantita-
tive results: 60 mAs was chosen as the reference value
according to the weight range of the studied animals
[26,27] and was paired with 140, 15 or 7.5 mAs. Each
couple of scans acquired at the same airway pressure
during a respiratory hold therefore consisted of a scan
performed at 60 mAs and a scan performed at 140, 15
or 7.5 mAs. All other CT parameters were kept unal-
tered (tube voltage 120 kVp, rotation time 0.5 s, colli-
mation 32 × 0.5 mm, pitch 0.85, reconstruction matrix
512 × 512, pixel size 0.625 × 0.625 mm). An automatic
tube current modulation technique was not applied dur-
ing scan acquisition. Images were reconstructed using a
5-mm section width, a 5-mm interval and a body stan-
dard axial filter (FC13).

Quantitative analysis
Images were processed using image analysis software
(Maluna 3.17; Göttingen, Germany). The pulmonary tis-
sue was selected as previously described [28]. Briefly,
lung boundaries were drawn automatically on each base-
line image and manually on each CT image of sheep
with experimental ARDS. After processing each slice of
a series, total lung volume, total lung tissue mass and
frequency distribution of lung CT numbers expressed in
Hounsfield units (HUs) were computed. Based on their
degree of aeration, four different lung compartments
were quantified according to usual thresholds [3]: hyper-
inflated tissue (-1,000 to -901 HU), normally aerated tis-
sue (-900 to -501 HU), poorly aerated tissue (-500 to
-101 HU) and nonaerated tissue (-100 to +200 HU).

Dose and noise evaluation
The volumetric computed tomography dose index
(CTDIvol) and dose-length product (DLP) of each scan
were provided by the CT scanner. Effective dose (E) was
estimated using the DLP method [29]. Image noise
levels for each applied mAs were calculated as the mean
standard deviation (SD) of tissue density in a uniform
area (within the aorta) of 10 different scans [30].

Statistical analysis
Data are expressed as mean ± SD unless otherwise sta-
ted. Results obtained at baseline and after the induction
of ARDS were analyzed separately. The agreement
between quantitative results obtained from consecutive
scans performed with different mAs was assessed using
Bland-Altman analysis [31], linear regression and paired
t-test or signed rank-sum test as appropriate. The
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difference between CT number frequency distribution of
the different mAs was assessed by paired t-test or signed
rank-sum test as appropriate. One-way analysis of var-
iance was used to compare CTDIvol, DLP, E and image
noise of the different applied mAs. A rank transforma-
tion was used for non-normally distributed variables
that did not pass the equal variance test. Statistical sig-
nificance was defined as P < 0.05. Statistical analysis was
performed with SigmaPlot 11.2 software (Systat, Chi-
cago, IL, USA).

Results
A total of 218 CT scans were acquired, 92 at baseline
and 126 during experimental ARDS. Forty comparisons
between 60 and 140 mAs (12 at baseline and 28 during
experimental ARDS), 36 comparisons between 60 and
15 mAs (18 at baseline and 18 during experimental
ARDS) and 33 comparisons between 60 and 7.5 mAs

(16 at baseline and 17 during experimental ARDS) were
performed.
The reduction of mAs was associated with an increase

in image noise and a worsening of image quality
(Figure 1). However, the increased image noise did not
hinder the recognition of the interface between lung and
surrounding structures.
Both in healthy lungs and during experimental ARDS,

excellent agreement was observed between qCT results
obtained at 60 and 140 mAs (Table 1), as well as good
agreement between those obtained at 60 mAs and
15 mAs (Table 2). The further reduction of current-
exposure time product to 7.5 mAs was associated with a
marked increase of bias and limits of agreement of
Bland-Altman analysis, in particular for poorly aerated
and nonaerated lung compartments of sheep with
experimental ARDS (Table 3 and Figure 2). Additional
Bland-Altman plots of different comparisons are

Figure 1 Lung computed tomography images of a sheep with acute respiratory distress syndrome induced by oleic acid. These images
show the change in image quality due to the different tube current-exposure time products (mAs) applied. (A) 140 mAs. (B) 60 mAs. (C) 15
mAs. (D) 7.5 mAs. Despite increased image noise, the interface between lung and surrounding structures can easily be recognized.
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reported in the Supplementary Material (Additional
file 1, Figures E1 to E6).
The frequency distributions of CT numbers at differ-

ent mAs in healthy sheep and sheep with experimental
ARDS are reported in Figure 3 and Figure 4, respec-
tively. Of note, the reduction of mAs to 7.5 mAs caused
significant changes in the frequency distribution of CT
numbers.
Mean recorded values of CTDIvol, DLP, image noise

and mean estimated value of E are reported in Table 4.
When comparing the mean values of E at 15 mAs (2.0 ±
0.8 mSv) and at 7.5 mAs (0.9 ± 0.1 mSv) to the mean
value of E at 60 mAs (7.4 ± 0.9 mSv), dose reductions of

73% and 88%, respectively, were achieved. Additional
results are provided in the Supplementary Material.

Discussion
In this study, we have shown that a reduction of effec-
tive dose up to 70% can be achieved with minimal
effects on lung quantitative results and that low-dose
CT could therefore be a valuable tool for the characteri-
zation of lung compartment distribution and possibly
for monitoring the time-course of ARDS with a lower
risk of exposure to ionizing radiation.
Quantitative results obtained at 60 mAs were compared

with (1) the results obtained at a higher dose (140 mAs)

Table 1 Comparison between quantitative computed tomography results obtained at 60 and 140 tube current-
exposure time producta

60 mAs to 140 mAs Mean ± SD60 Mean ± SD140 P r2 Bias LOA

Baseline (n = 12) Lung volume (ml) 2,782 ± 666 2,785 ± 671 0.88 0.99 1.7 -114.0 to 109.0

Lung tissue mass (g) 679 ± 102 683 ± 101 0.12 1.00 -4.5 -13.2 to 4.2

Hyperinflated tissue (%) 0.6 ± 1.1 0.5 ± 1.0 0.08 0.97 0.1 -0.4 to 0.5

Normally aerated tissue (%) 86.6 ± 2.9 86.4 ± 3.2 0.52 0.95 0.2 -1.7 to 2.1

Poorly aerated tissue (%) 11.5 ± 3.4 11.8 ± 3.7 0.21 0.95 -0.3 -2.0 to 1.3

Nonaerated tissue (%) 1.4 ± 0.5 1.3 ± 0.7 0.07 0.98 0.1 -0.1 to 0.2

ARDS (n = 28) Lung volume (ml) 2,022 ± 338 2,023 ± 343 0.91 0.99 -0.7 -64.3 to 62.8

Lung tissue mass (g) 1,500 ± 159 1,498 ± 151 0.73 0.98 1.8 -51.4 to 55.0

Hyperinflated tissue (%) 0.0 ± 0.1 0.0 ± 0.1 0.52 0.95 0.0 -0.1 to 0.1

Normally aerated tissue (%) 11.4 ± 11.1 11.4 ± 11.1 0.91 0.99 0.0 -2.4 to 2.4

Poorly aerated tissue (%) 33.1 ± 15.6 33.2 ± 16.0 0.72 0.98 0.0 -4.5 to 4.4

Nonaerated tissue (%) 55.4 ± 23.2 55.4 ± 23.5 0.99 0.99 0.0 -5.5 to 5.5
aARDS = acute respiratory distress syndrome; mAs = tube current-exposure time product; lung volume = total lung volume; lung tissue mass = total mass of lung
tissue; hyperinflated tissue = mass of hyperinflated tissue; normally aerated tissue = mass of normally aerated tissue; poorly aerated tissue = mass of poorly
aerated tissue; nonaerated tissue = mass of nonaerated tissue; P = P-value of the comparison between values obtained at 60 and at 140 mAs by paired t-test or
signed rank-sum test as appropriate; r2 = coefficient of determination of linear regression between values obtained at 60 and 140 mAs; bias and LOA = bias and
limits of agreement (bias ± 1.96 SD) of the Bland-Altman analysis.

Table 2 Comparison between quantitative computed tomography results obtained at 60 and 15 tube current-exposure
time producta

60 mAs to 15 mAs Mean ± SD60 Mean ± SD15 P r2 Bias LOA

Baseline (n = 18) Lung volume (ml) 3,227 ± 1,015 3,224 ± 995 0.80 1.0 3.4 -112.0 to 118.8

Lung tissue mass (g) 711 ± 128 707 ± 129 0.17 0.99 4.3 -21.8 to 30.4

Hyperinflated tissue (%) 3.3 ± 5.5 3.9 ± 5.6 <0.001 0.99 -0.7 -1.8 to 0.5

Normally aerated tissue (%) 81.4 ± 7.5 81.1 ± 6.6 0.22 0.93 0.3 -4.2 to 4.8

Poorly aerated tissue (%) 13.3 ± 6.2 12.9 ± 6.2 0.84 0.91 0.4 -3.3 to 4.1

Non aerated tissue (%) 2.1 ± 1.4 2.1 ± 1.5 0.04 0.96 -0.1 -0.6 to 0.5

ARDS (n = 18) Lung volume (ml) 2,295 ± 561 2,264 ± 526 0.07 0.99 31.4 -105.8 to 168.6

Lung tissue mass (g) 1,778 ± 315 1,775 ± 301 0.78 0.98 3.0 -85.1 to 91.1

Hyperinflated tissue (%) 0.1 ± 0.2 0.2 ± 0.2 0.008 0.94 0.0 -0.1 to 0.1

Normally aerated tissue (%) 9.3 ± 9.7 8.8 ± 9.4 0.13 0.98 0.5 -2.1 to 3.2

Poorly aerated tissue (%) 28.1 ± 13.4 28.6 ± 12.6 0.44 0.96 -0.5 -4.8 to 3.9

Non aerated tissue (%) 62.5 ± 21.2 62.5 ± 20.0 0.98 0.98 0.0 -6.9 to 6.9
aARDS = acute respiratory distress syndrome; mAs = tube current-exposure time product; lung volume = total lung volume; lung tissue mass = total mass of lung
tissue; hyperinflated tissue = mass of hyperinflated tissue; normally aerated tissue = mass of normally aerated tissue; poorly aerated tissue = mass of poorly
aerated tissue; nonaerated tissue = mass of nonaerated tissue; P = P-value of the comparison between values obtained at 60 and at 15 mAs by paired t-test or
signed rank-sum test as appropriate; r2 = coefficient of determination of linear regression between values obtained at 60 and 15 mAs; bias and LOA = bias and
limits of agreement (bias ± 1.96 SD) of the Bland-Altman analysis.
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chosen within the range of doses commonly used for stan-
dard chest CT in adults [32] and (2) the results obtained
at two progressively lower doses (15 and 7.5 mAs).
We analyzed scans obtained from healthy sheep and

from sheep with experimental ARDS. Overall, the
majority of lung tissue (about 80%) was normally aera-
ted at baseline, whereas approximately 90% of lung
tissue was poorly aerated or nonaerated after the induc-
tion of ARDS.
On the one hand, by analysis of healthy lungs, we

aimed to study the pure physical effects of mAs-related
noise variations on the quantitative analysis. Indeed, the
interface between healthy pulmonary parenchyma and
surrounding structures (that is, thoracic wall,

mediastinum, diaphragm, hilar vessels and main and
lobar bronchi) was perfectly recognizable, regardless of
the applied mAs, and the difference between their densi-
ties allowed the use of the automated function of the
quantitative analysis software to outline the regions of
interest. In this group, we can therefore safely state that,
in the compared scans, equivalent regions of interest
were analyzed.
On the other hand, when analyzing scans of injured

sheep, the possibility of an additional effect had to be
taken into account. Indeed, considering the similarity
between densities of injured lungs and other thoracic
structures, the operator-dependent ability to recognize
lung boundaries could have been impaired by the

Table 3 Comparison between quantitative computed tomography results obtained at 60 and 7.5 tube current-
exposure time producta

60 mAs to 7.5 mAs Mean ± SD60 Mean ± SD7.5 P r2 Bias LOA

Baseline (n = 16) Lung volume (ml) 3,180 ± 1,096 3,162 ± 1,083 0.18 1.0 17.7 -87.9 to 123.3

Lung tissue mass (g) 726 ± 106 716 ± 111 0.12 0.96 9.8 -39.2 to 58.8

Hyperinflated tissue (%) 2.7 ± 4.0 4.2 ± 4.7 <0.001 0.94 -1.5 -4.1 to 1.1

Normally aerated tissue (%) 81.9 ± 7.1 79.6 ± 5.6 0.002 0.90 2.3 -2.9 to 7.6

Poorly aerated tissue (%) 13.4 ± 6.9 14.1 ± 6.4 0.50 0.88 -0.7 -5.4 to 3.9

Nonaerated tissue (%) 2.1 ± 1.4 2.2 ± 1.3 0.09 0.98 -0.1 -0.5 to 0.3

ARDS (n = 17) Lung volume (ml) 2,321 ± 499 2,281 ± 478 0.01 0.99 40.4 -73.8 to 154.6

Lung tissue mass (g) 1,807± 286 1,797 ± 295 0.41 0.97 10.0 -86.1 to 106.1

Hyperinflated tissue (%) 0.0 ± 0.0 0.1 ±0.0 0.004 0.79 0.0 -0.1 to 0.0

Normally aerated tissue (%) 9.1 ± 9.5 8.7 ± 9.1 0.20 0.98 0.4 -2.1 to 3.0

Poorly aerated tissue (%) 27.3 ± 13.7 30.2 ± 11.3 0.008 0.95 -2.9 -10.5 to 4.8

Nonaerated tissue (%) 63.5 ± 21.4 61.1 ± 18.8 0.03 0.97 2.4 -5.9 to 10.8
aARDS = acute respiratory distress syndrome; mAs = tube current-exposure time product; lung volume = total lung volume; lung tissue mass = total mass of lung
tissue; hyperinflated tissue = mass of hyperinflated tissue; normally aerated tissue = mass of normally aerated tissue; poorly aerated tissue = mass of poorly
aerated tissue; nonaerated tissue = mass of nonaerated tissue; P = P-value of the comparison between values obtained at 60 and at 7.5 mAs by paired t-test or
signed rank-sum test as appropriate; r2 = coefficient of determination of linear regression between values obtained at 60 and 7.5 mAs; bias and LOA = bias and
limits of agreement (bias ± 1.96 SD) of the Bland-Altman analysis.

Figure 2 Bland-Altman analysis of poorly aerated and nonaerated lung tissue for computed tomography scans performed at 60 and
7.5 tube current-exposure time products after the induction of acute respiratory distress syndrome. All masses are expressed as
percentages of total lung mass of tissue. Values on the x-axis represent the average of values recorded with two tube current-exposure time
products (mAs), for example, mean Mpoor = (Mpoor CT60 + Mpoor CT7.5)/2. (A) Poorly aerated mass: slope = 0.20, r2 = 0.39, P = 0.01. (B)
Nonaerated mass: slope = 0.13, r2 = 0.35, P = 0.01. CT = computed tomography; Mpoor = poorly aerated mass; Mnon = nonaerated mass.
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worsening image quality (noisier) of the lower-dose
images (15 and 7.5 mAs). This in turn could have led to
differences in the manual selection of regions of interest
within compared scans. In this regard, despite the slight
change in image noise (Table 4), image quality did not
vary notably between scans obtained at 60 and 140 mAs
(Figures 1A and 1B). Moreover, although the significant
increase in image noise caused a progressive deterioration

in image quality, even on scans performed at 15 and
7.5 mAs (Figures 1C and 1D), the recognition of lung and
surrounding structures (which is the sole requirement to
perform qCT) was preserved.
Both in healthy lungs and in lungs with experimental

ARDS, quantitative results obtained at 60 and 140 mAs
showed excellent limits of agreement and biases close to
0%, and the statistical analysis did not indicate any

Figure 3 Mean frequency distribution of CT numbers of scans performed at baseline (healthy lungs) expressed as percentages of
tissue mass and grouped into intervals of 50 HU. Data are presented as mean ± SE. (A) Comparison between 60 and 140 tube current-
exposure time products (mAs). (B) Comparison between 60 and 15 mAs. (C) Comparison between 60 and 7.5 mAs. *P < 0.05 vs. 60 mAs by
paired t-test or rank-sum test as appropriate. Vertical dashed lines delimit lung compartments as defined in Materials and methods. CT =
computed tomography; HU = Hounsfield units.
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Figure 4 Mean frequency distribution of CT numbers of scans performed on sheep with experimental acute respiratory distress
syndrome expressed as percentages of tissue mass and grouped into intervals of 50 HU. Data are presented as mean ± SE. (A)
Comparison between 60 and 140 tube current-exposure time products (mAs). (B) Comparison between 60 and 15 mAs. (C) Comparison
between 60 and 7.5 mAs. *P < 0.05 vs. 60 mAs by paired t-test or rank-sum test as appropriate. Vertical dashed lines delimit lung compartments
as defined in Materials and methods. CT = computed tomography; HU = Hounsfield units.

Table 4 Dose and noise evaluationa

Measurement 140 mAs 60 mAs 15 mAs 7.5 mAs P-value

CTDIvol (mGy) 22.1 ± 0.0 9.2 ± 0.8 2.2 ± 0.3 1.1 ± 0.1 <0.001

DLP (mGy/cm) 870.5 ± 47.7 362.2 ± 45.2 96.5 ± 39.0 44.9 ± 6.4 <0.001

E (mSv) 17.8 ± 1.0 7.4 ± 0.9 2.0 ± 0.8 0.9 ± 0.1 <0.001

Image noise (HU) 10.0 ± 1.1 15.9 ± 3.5 37.5 ± 10.6 73.8 ± 17.5 <0.001
aCTDIvol = volume computed tomography dose index; DLP = dose-length product; E = effective dose; HU = Hounsfield unit; Image noise = image noise of each
applied mAs calculated as the mean SD of tissue density (expressed in HUs) of ten regions of interest placed on a uniform tissue (aorta) in ten different scans;
mAs: tube current-exposure time product; mSv = millisievert; P = P-value of one-way analysis of variance. Data are expressed as mean ± SD.
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significant difference (Table 1). Also, the comparison of
qCT data obtained at 60 and 15 mAs (Table 2) showed
good limits of agreement and biases lower than 1%.
However, a further reduction of mAs to 7.5 caused both
an increase in bias and a widening of the limits of agree-
ment, especially for poorly aerated and nonaerated lung
tissue in sheep with experimental ARDS.
Figures 3 and 4, besides illustrating the evident densi-

tometric change between healthy and injured lungs,
show that the mAs reduction increased image noise
(Table 4) and thus caused a progressive change in fre-
quency distribution of CT numbers. Indeed, the com-
parison of frequency distribution of CT numbers
between 60 and 15 mAs and between 60 and 7.5 mAs
at baseline (Figures 3B and 3C) showed a progressive
shift of tissue from the normally inflated to the hyperin-
flated compartment that was related to the reduction in
mAs. Similarly, when observing the comparison of fre-
quency distribution of CT numbers between 60 and
15 mAs and between 60 and 7.5 mAs during experi-
mental ARDS (Figures 4B and 4C), a progressive shift of
tissue from the nonaerated to the poorly aerated com-
partment was measured. The change in frequency distri-
bution also explains the significant decrease in total
lung volume, which was observed especially at the low-
est dose on scans obtained during experimental ARDS.
Indeed, the observed widening of the frequency distribu-
tion of density at 7.5 mAs (Figure 4C) caused a shift of
nonaerated tissue both toward the poorly aerated com-
partment (as described above) and toward CT numbers
greater than the threshold of +200 HU, commonly used
as the upper limit for nonaerated tissue. It is worth
mentioning that, for this reason, tissue densities mea-
sured as greater than +200 HU were excluded from the
overall computation, despite being part of the region of
interest. This fact explains the underestimation at
7.5 mAs of total lung volume. Moreover, as part of
nonaerated tissue is shifted toward CT numbers not
included in the overall computation, this effect also
accounts in part for the above-mentioned reduction of
nonaerated tissue measured at 7.5 mAs. Of note, the
underestimation of total lung volume and (in part) of
nonaerated tissue could be avoided by increasing the
included HU range (for example, up to +500 HU).
The described effect of image noise level on the fre-

quency distribution of tissue density is also clearly
represented when analyzing a region of interest posi-
tioned on a uniform tissue (aorta): the progressive
reduction of mAs is associated with a lowering of the
distribution peak and a corresponding widening of the
distribution curve (See Additional File 1, Figure E7).
The establishment of a standardized protocol would pre-

vent any mAs-related difference in quantitative results.
Indeed, similarly to the reconstruction parameters [33],

identical acquisition parameters need to be used to com-
pare quantitative results of different scans performed on
the same patient as well as quantitative results of different
studies, scanners and institutions [34]. When defining a
standardized CT acquisition protocol for quantitative ana-
lysis, the “ALARA concept” (As Low As Reasonably
Achievable) [35,36] should be taken into account. Our
study supports the use of low-dose CT for this purpose.
Indeed, we may speculate that, at the same effective dose
of one scan performed at 140 mAs, approximately two
scans at 60 mAs or ten scans at 15 mAs could be per-
formed (Table 4). Moreover, it is worth mentioning that
the use of low-dose CT could be coupled with the simpli-
fied analysis method, based on the extrapolation of whole-
lung results from ten CT scan slices [37,38]. This method,
besides shortening the time needed to perform qCT,
would allow a further reduction of radiation dose.
A limitation of the present study that we need to

point out is that the absolute mAs values used in this
experimental study cannot be applied directly to patients
with ARDS. Indeed, being that image noise directly cor-
relates to body weight [39], it is conceivable that such
mAs values would be associated with higher image
noise, which could therefore affect quantitative results
significantly. Moreover, the worsening of image quality
caused by a substantial reduction of mAs during CT
acquisition should be kept in mind, as it could limit the
diagnostic viability of CT examinations.

Conclusions
A reduction of effective dose up to 70% can be
achieved with minimal effects on lung quantitative
results. Lung quantitative analysis performed on low-
dose CT scans provides accurate results both in
healthy lungs and in experimental ARDS; therefore, it
is a valuable tool for characterizing and potentially
monitoring lung disease. In particular, if multiple chest
CT scans are performed to characterize the lung quan-
titatively and assess the response to the application of
different airway pressures (potential for lung recruit-
ment), low-dose CT could be used to reduce patients’
radiation exposure. This, of course, needs to be proved
in the real world of ICUs.

Key messages
• Quantitative lung analysis performed using low-
dose CT scans is accurate.
• The effective dose can be reduced by up to 70%
with minimal effects on quantitative results.
• If multiple chest CT scans are performed to charac-
terize the lung quantitatively and assess the response
to the application of different airway pressures
(potential for lung recruitment), low-dose CT can be
used to reduce the patient’s radiation exposure.
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• The use of ultra-low-dose CT increases image
noise significantly and reduces the accuracy of lung
quantitative analysis.

Additional material

Additional file 1: Electronic Supplementary Material. Additional
Materials, Results and References
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