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ABSTRACT. We provide an abstract framework for a symmetry
result arising in a conjecture of G.W. Gibbons and we apply it
to the fractional Laplace operator, to the elliptic operators with
constant coefficients, to the quasilinear operators, and to elliptic
fully nonlinear operators with possible gradient dependence.

1. INTRODUCTION

Let u : Rn → R be a solution of the problem

(1.1)




Lu(x) = f(u(x)) for any x ∈ Rn,

lim
xn→±∞

u(x′, xn) = ±1, uniformly in x′ ∈ Rn−1.

Here, L is an operator (not necessarily linear) acting on a space X of smooth (say,
Cr with r á 1) functions and commuting with the translations, i.e.,

(1.2) L(u(x +y)) = (Lu)(x +y) for any y ∈ Rn,

whose precise assumptions will be listed below.
The space X is supposed to contain functions from R

n to R and to be trans-
lation invariant (with respect to the translations in Rn), that is

(1.3) if u ∈ X, then the functions x ֏ u(x +y) lie in X too, for any y ∈ Rn.

We remark that we need that the space X is translation invariant, as in (1.3), be-
cause we want to study the operator on both the function and on its translation.
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On the other hand, we do not need that the operator itself is translation invariant,
but only that it commutes with the translations, as in (1.2). This technical detail
will allow us to deal with nonlinear operators too.

As for the nonlinearity, we suppose that f ∈ C1(R), with

(1.4) inf
r∈(−∞,−1]∪[1,+∞)

f ′(r) > 0.

A paradigmatic example of nonlinearity satisfying the above assumptions is the
function f(r) = r 3 − r .

The goal of this paper is to prove that u possesses one-dimensional symmetry,
that is, that there exists u0 : R→ R such that

(1.5) u(x′, xn) = u0(xn) for any (x′, xn) ∈ Rn−1 ×R.

For this, the following hypotheses are taken on L:

H1. (Linearization): If ϕ ∈ X satisfies Lϕ = f(ϕ) in Rn, then there exists
an operator L̃ acting on some space of functions X̃, with X̃ translation
invariant in the sense of (1.3), such that ∂ωϕ ∈ X̃ for any ω ∈ Sn−1

(where, as usual, ∂ω denotes the directional derivative) and

L̃(∂ωϕ) = f
′(ϕ)∂ωϕ in Rn.

H2. (Compactness): If ϕ ∈ X satisfies (1.1), x(k) ∈ R
n and ϕ(k)(x) :=

ϕ(x +x(k)), we have that there exists a function ϕ(∞) ∈ X such that, up
to a subsequence,

lim
k→+∞

ϕ(k)(x) =ϕ(∞)(x),

lim
k→+∞

∇ϕ(k)(x) = ∇ϕ(∞)(x),

lim
k→+∞

Lϕ(k) = Lϕ(∞),

for any x ∈ Rn.
H3. (Maximum Principle for the linearized operator): If w ∈ X̃ satisfies

L̃w = c(x)w in Rn, with

w(x) á 0 if |xn| à M and c(x) á κ if |xn| á M,

for some κ > 0 and M > 0, then

w(x) á 0 for any x ∈ Rn.

H4. (Strong Maximum Principle for the linearized equation): If v ∈ X̃

satisfies L̃v = f ′(ϕ)v, for someϕ ∈ X, and v á 0 in Rn with v(0) = 0,
then v vanishes identically.
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H5. (Maximum Principle for the difference operator): Given ϕ ∈ X, let

Lϕw(x) := L(ϕ +w)(x)− Lϕ(x).

Let U be an open set contained in {xn à µ−} ∪ {xn á µ+}, for some
µ+ > µ− ∈ R. If w ∈ X satisfies Lϕw = c(x)w in Rn, with

w(x) á 0 in Rn \U and c(x) á κ if x ∈ U,

for some κ > 0, then

w(x) á 0 for any x ∈ Rn.

H6. (Strong Maximum Principle for the difference equation): If v ∈ X

satisfies Lϕv = f(ϕ+v)−f(ϕ) for someϕ ∈ X, and v á 0 in Rn with
v(0) = 0, then v vanishes identically.

We remark that assumption (H1) is almost harmless (it boils down to the
standard linearization procedure if the operator L is differentiable). Similarly, (H2)
is a very weak condition and it does not even require, in principle, a regularity
theory for (1.1) (for instance one can suitably choose the space X in order to
control enough derivatives of u to obtain the required compactness).

Under the above assumptions, we may state our general result as follows:

Theorem 1.1. Let u ∈ X be a solution of (1.1), with ‖u‖C1,β(Rn) finite, for
some β ∈ (0,1). Let L satisfy (H1)–(H6) and f satisfy (1.4). Then u possesses
one-dimensional symmetry, that is, (1.5) holds.

Theorem 1.1 is motivated by a famous conjecture of Gibbons when L is the
Laplace operator (see [14,48]), which was motivated by the cosmological problem
of detecting the shape of the interfaces which “separate” the different regions of
the universe which possibly arose from the big bang. Such conjecture was proved
independently and with different methods by [4, 8, 36]. See [37, 38] for the case
of discontinuous nonlinearities. In [45] it is also shown that the uniform control
of only one limit in (1.1) is enough to obtain that u is one-dimensional under the
additional assumption that u is a minimal solution.

In this sense, Theorem 1.1 may be seen as a generalization of the results of
[4, 8, 36] to a more general class of operators. Such generalization is performed in
order to apply Theorem 1.1 to concrete cases of interest. As an application, we
consider the case in which L is a fractional power of the Laplacian:

Theorem 1.2. Let L = −(−∆)s , with s ∈ (0,1). Let f satisfy (1.4). If
u ∈ W 3,∞(Rn) is a solution of (1.1), then u possesses one-dimensional symmetry.

We refer to [54, 63, 64] for the basics of fractional Laplacian theory. We
would like to recall that the fractional Laplacian is a very important operator,
since it naturally surfaces in many different areas, such as: the thin obstacle prob-
lem [13], optimization [33], finance [27], phase transitions [1, 2, 24, 67], strat-
ified materials [66], anomalous diffusion [55], crystal dislocation [57, 68], soft
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thin films [53], some models of semipermeable membranes and flame propaga-
tion [21], conservation laws [9], the ultrarelativistic limit of quantum mechanics
[40], quasigeostrophic flows [20, 56], multiple scattering [18, 31, 47], minimal
surfaces [22, 28], materials science [3], probability [5, 7, 51, 52, 69], and water
waves [17, 19, 25, 26, 29, 34, 35, 46, 50, 59, 60, 65, 71, 72].

When s = 1
2 , Theorem 1.2 was proven, by different methods, in [24], and

an extension of that proof to any s ∈ (0,1) is given in [23]. Also, we recall that
in dimension n = 2 the uniform limit assumption may be dropped in (1.1) and
Theorem 1.2 still holds true for monotone solutions, as proved in [23, 67]. The
case n = 3 has also been recently treated for some values of s, see [16], but many
fundamental questions are still open.

Now, as another consequence of Theorem 1.1, we give a very general result
on (possibly nonlinear) elliptic operators. For this, we denote by Symn the space
of (n×n)-symmetric matrices.

Theorem 1.3. Let F = F(M,p) ∈ C1(Symn × Rn). Assume that there exists
λ ∈ C(Symn ×Rn, (0,+∞)) such that

(1.6) F(M +N,p)− F(M,p) á λ(M,p)‖N‖

for any nonnegative definite (n × n)-symmetric matrix N. Let Lu = F(D2u,∇u).
Let f satisfy (1.4) and β ∈ (0,1). If u ∈ C3,β(Rn) is a solution of (1.1), then u
possesses one-dimensional symmetry.

We remark that condition (1.6) is an ellipticity assumption: compare, for
instance, with Definition 2.1 on page 12 of [15]—we remark, in fact, that, by
(1.6), F is uniformly elliptic when restricted to any compact subset of Symn×Rn

and, since u is assumed to be smooth, then F is evaluated in a bounded set of
parameters where it is uniformly elliptic.

The application of Theorem 1.3 is very wide, since it comprises, for instance:

• The Laplace operator, with the choice

F(M,p) = TrM,

• Elliptic operators with constant coefficients, take

F(M,p) = aijMij + b · p,

• Quasilinear operators, such as

F(M,p) = (a+ |p|2)(m−2)/2 TrM + (m− 2)(a+ |p|2)(m−4)/2Mijpipj ,

with a > 0 and m > 1,
• The mean curvature operator

F(M,p) = (1+ |p|2)−1/2 TrM − (1+ |p|2)−3/2Mijpipj ,
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• The elliptic fully nonlinear operators.

We point out that the assumption that u is smooth in Theorem 1.3 is not very
restrictive, since it may be obtained in many cases via elliptic regularity theory once
u ∈ C1,β(Rn), see [15] and references therein (in fact, a stronger regularity theory
holds if n = 2, see [58]).

We recall that a result similar to Theorem 1.3 for the uniformly elliptic fully
nonlinear operators of the form F(M,p) = F(M) has also been obtained in [62]
by using the theory of viscosity solutions under the additional assumption on
the existence of a suitable one-dimensional profile1. Thus, the viscosity setting
of [62] and the classical one that we deal with here are related but different in
spirit (though, under additional assumptions on the operator, viscosity solutions
do become classical, see Chapters 8 and 9 in [15]).

It would be interesting to treat also the case of assumptions even more gen-
eral than (H1)–(H6). For instance, it would be interesting to deal with opera-
tors in which elliptic singularities and degeneracies occur (see e.g. [45] and also
[32, 41, 70] for some results in this direction and [42] for related problems and
further references). Other cases of interest that one would like to deal with are the
subelliptic operators and the operators arising in hyperbolic geometry (see, e.g.,
[6, 10–12, 43, 44] for results in these frameworks, and also Section 2.8 of [42] for
further details). Moreover, after this work was completed, we have received the
interesting paper [30] in which related symmetry results have been obtained for
viscosity solutions of some fully nonlinear PDEs of a special form.

The proof of Theorem 1.1 that we give makes use of the technique of [36,39],
suitably modified in order to comprise our general case. For this, in Section 2,
we give an intermediate result based on monotonicity cones. In Section 3, we
complete the proof of Theorem 1.1, while Theorems 1.2 and 1.3 are proven in
Sections 4 and 5 respectively, by showing that the operators under consideration
fulfill assumptions (H1)–(H6).

2. A FIRST SYMMETRY RESULT VIA MONOTONICITY CONES

The proof of Theorem 1.1 makes use of a first provisional statement, which goes
as follows:

Lemma 2.1. Let u ∈ X be a bounded and uniformly Lipschitz solution of (1.1),
with L satisfying (H1)–(H4) and f satisfying (1.4). Assume also that there exists
a ∈ (0,1) such that

(2.1)
∂νu(x) > 0 for any x ∈ Rn and any ν = (ν1, . . . , νn) ∈ Sn−1 with νn á a.

Then u possesses one-dimensional symmetry.

1It may be worth to remark that we do not need to assume that any one-dimensional profile exists.
In fact, if no one-dimensional profile exists, our result may be seen as a non-existence result: namely, if
we prove that the solution must be one-dimensional and no one-dimensional solution exists, then we
have that there are no solutions at all.
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Of course, Lemma 2.1 is just Theorem 1.1 with the additional hypothesis on
the monotonicity cone in (2.1): in Section 3 we will show that such additional
assumption is, in fact, not needed and so we will be able to derive Theorem 1.1
from Lemma 2.1.

Proof. In order to prove Lemma 2.1, we show that

(2.2)
∂νu(x) > 0 for any x ∈ Rn and any ν = (ν1, . . . , νn) ∈ Sn−1 with νn > 0.

To prove (2.2), we take

(2.3) a := inf{a > 0 for which (2.1) holds}.

If a = 0, then (2.2) is proved, so we assume, by contradiction, that

(2.4) a > 0.

Given S > 0, we define

iS := inf
x′∈Rn−1, |xn|àS

νnáa

∂νu(x
′, xn).

By construction,

(2.5) iS á 0;

we claim that, in fact

(2.6) iS > 0.

To prove (2.6), we argue by contradiction and we suppose that there exist a se-
quence of ν(k) ∈ Sn−1 and x(k) ∈ Rn with

(2.7) |x(k)n | à S,

ν(k) á a, and

(2.8) lim
k→+∞

∂ν(k)u(x
(k)) = 0.

From (2.5),

(2.9) ∂ν(k)u(x) á 0 for any x ∈ Rn.

We define

(2.10) u(k)(x) := u(x + x(k)).
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Then, (2.8) becomes

(2.11) lim
k→+∞

∇u(k)(0) · ν(k) = 0.

Analogously, (2.9) writes

(2.12) ∇u(k)(x) · ν(k) á 0 for any x ∈ Rn.

Notice also that

|Lu(k)| = |f(u(k))| à sup
r∈[−‖u‖L∞(Rn),‖u‖L∞(Rn)]

|f(r)|,

where (1.2) has been used. Thus, from (2.11), (2.12) and (H2), there exist u(∞) ∈
X and ν∞ ∈ Sn−1, with

(2.13) ν(∞) á a,

such that

(2.14) lim
k→+∞

u(k)(x) = u(∞)(x) for any x ∈ Rn,

and

Lu(∞) = f(u(∞)), ∇u(∞) · ν(∞) á 0 in Rn, with ∇u(∞)(0) · ν(∞) = 0.

Therefore, by (H1), the function v := ∂ν(∞)u
(∞) ∈ X̃ satisfies

L̃v = f ′(u)v, v(x) á 0 = v(0) for any x ∈ Rn.

As a consequence, from (H4), v vanishes identically. Accordingly,

(2.15) u(∞)(ν(∞)t)−u(∞)(−ν(∞)t) =

∫ t

−t
v(ν(∞)s)ds = 0 for any t á 0.

Recalling the uniform limit assumption in (1.1), we now take M > 0 in such a
way that

u(x) á
1
2

if xn á M, u(x) à −
1
2

if xn à −M.

Then, recalling (2.7) and (2.10),

u(k)(x) á
1
2

if xn á M + S, u(k)(x) à −
1
2

if xn à −M − S.
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Hence, from (2.14),

(2.16) u(∞)(x) á
1
2

if xn á M + S, u(∞)(x) à −
1
2

if xn à −M − S.

We recall that, from (2.4) and (2.13), ν(∞)n á a > 0, so (2.16) implies that

u(∞)(ν(∞)t) á
1
2

and u(∞)(−ν(∞)t) à −
1
2

if t á
M + S

a
.

This and (2.15) give that

0 = u(∞)(ν(∞)t)−u(∞)(−ν(∞)t) á 1.

This contradiction proves (2.6).
Now, we use (1.4), to see that f ′(r) á κ, for a suitable κ > 0, if |r −1| à η⋆,

for a suitable η⋆ ∈ (0, 1
4). Also, the uniform limit assumption in (1.1) enables

us to take M⋆ > 0 such that u(x) á 1 − η⋆ if xn á M⋆ and u(x) à −1 + η⋆

if xn à −M⋆. We also define c(x) := f ′(u(x)). Hence, c(x) á κ when
|xN| á M⋆. Let also

ε :=
iM⋆

2(1+ ‖∇u‖L∞(Rn))
.

Notice that ε > 0, thanks to (2.6).
If |xn| à M⋆ and ν ∈ Sn−1 with νn ∈ [a− ε, a], then

∂νu(x) = ∇u(x) · ν á ∇u(x) · (ν
′, a)− |∇u(x) · (0, a− νn)|

á iM⋆ − ‖∇u‖L∞(Rn)ε á
iM⋆
2
> 0.

Therefore, by (H3), ∂νu(x) á 0 for any x ∈ Rn and any ν ∈ Sn−1 with νn ∈
[a − ε, a]. In fact, by (H4), we see that ∂νu(x) > 0 for any x ∈ R

n and any
ν ∈ Sn−1 with νn ∈ [a − ε, a]. This is in contradiction with (2.3), and so it
proves (2.2).

Then, from (2.2), by taking µ = −ν, we obtain that

(2.17) ∂µu(x) < 0 ∀x ∈ Rn and ∀µ = (µ1, . . . , µn) ∈ Sn−1 with µn < 0.

By taking limits of νn and µn to 0 in (2.2) and (2.17), we deduce that

∂ωu(x) = 0 ∀x ∈ Rn and ∀ω = (ω1, . . . ,ωn) ∈ Sn−1 with ωn = 0.

Hence, ∂x1u(x) = · · · = ∂xn−1u(x) = 0 for any x ∈ Rn, which ends the proof
of Lemma 2.1. ❐



Rigidity Results for Elliptic PDEs 129

3. PROOF OF THEOREM 1.1

Some of the arguments needed to proof Theorem 1.1 will be appropriate mod-
ifications of the ones used in the proof of Lemma 2.1, by taking into account
the difference operator Lu instead of the linearized operator L̃. In order to prove
Theorem 1.1, first of all, we show that

(3.1) ∂nu(x) > 0 for any x ∈ Rn.

To prove (3.1), we take h á 0, we let

Thu(x) := u(x + hen)−u(x)

and we observe that

(3.2) f(u(x + hen))− f(u(x)) = ch(x)Thu(x),

where

(3.3) ch(x) :=
∫ 1

0
f ′(tu(x)+ (1− t)u(x + hen))dt.

Now, recalling (1.4), we take δ ∈ (0, 1
2) such that

(3.4) f ′ á κ in (−∞,−1+ δ]∪ [1− δ,+∞), for some κ > 0.

Then, by the uniform limit assumption in (1.1), we take M > 0 such that

(3.5) u(x) á 1− δ if xn á M, u(x) à −1+ δ if xn à −M.

Now, we observe the following useful property:

(3.6) if x ∈ {Thu < 0} ∩ {|xn| á M}, then ch(x) á κ.

Indeed, on the one hand, if x ∈ {Thu < 0} ∩ {xn à −M},

u(x + hen) < u(x) à −1+ δ

and therefore

(3.7) tu(x)+ (1− t)u(x + hen) à −1+ δ

for any x ∈ {Thu < 0} ∩ {xn à −M} and t ∈ [0,1]. On the other hand, if
x ∈ {Thu < 0} ∩ {xn á M}, then u(x) > u(x + hen) á 1− δ, and therefore

(3.8) tu(x)+ (1− t)u(x + hen) á 1− δ
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for any x ∈ {Thu < 0}∩ {xn á M} and t ∈ [0,1]. From (3.3), (3.4), (3.7), and
(3.8), we obtain that (3.6) holds true.

We claim that

(3.9) if h á 2M, then Thu(x) > 0 for any x ∈ Rn.

To prove (3.9), fix h á 2M and let U := {Thu < 0}. Then,

if xn = −M, Thu(x) á inf
xnáM

u(x)− sup
xnà−M

u(x) á (1− δ)− (−1+ δ) > 0,

and so

(3.10) U = U+ ∪ U−,

where U+ (respectively U−) is an open set contained in the half-space {xn á −M}
(respectively {xn à −M}). Then, (3.2), (3.10) and (3.6), together with (H5),
imply that if h á 2M, then Thu(x) á 0 for any x ∈ Rn. Hence, (3.9) follows
from (H6).

Now, we define

h0 := inf
{
h > 0 such that Thu(x) > 0 for any x ∈ Rn with |xn| à M

}
.

Note that this definition is well-posed, due to (3.9).
We prove that

(3.11) h0 = 0.

The proof of (3.11) is by contradiction. Suppose h0 > 0. We have that

u(x + (h0 + ε)en)−u(x) á 0 for any x ∈ {|xn| à M} and any ε > 0

and

u(x(k) + (h0 − ε
(k))en)−u(x

(k)) à 0 for some x(k) ∈ {|xn| à M},

where ε(k) á 0 is an infinitesimal sequence. As a consequence,

Th0u(x) = lim
ε→0+

u(x + (h0 + ε)en)−u(x) á 0 for any x ∈ {|xn| à M}.

Therefore, recalling (3.6) and (H5),

(3.12) Th0u(x) á 0 for any x ∈ Rn.

Now we define u(k)(x) := u(x + x(k)), and we deduce from (H2) that, up to a
subsequence, u(k) approaches some u(∞), with

Lu(Th0u
(∞)) = f(Th0u

(∞) +u)− f(u).
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By (3.12), we see that Th0u
(∞)(x) á 0 for any x ∈ Rn. Also,

Th0u
(∞)(0) = lim

k→+∞
u(x(k) + h0en)−u(x

(k))

à lim
k→+∞

u(x(k) + (h0 − ε
(k))en)−u(x

(k))+ ε(k)‖u‖C1,β(Rn) à 0,

hence Th0u
(∞)(0) = 0. Consequently, by (H6), we get that Th0u

(∞) vanishes
identically. Therefore, u(∞)(x + h0en) = u(∞)(x) for any x ∈ R

n and so, by
iterating,

(3.13) u(∞)(x + jh0en) = u
(∞)(x) for any x ∈ Rn and any j ∈ Z.

Now, if j ∈ N∩ [2M/h0,+∞), we have that jh0 +x
(k)
n á M and −jh0 +x

(k)
n à

−M, so u(jh0en + x
(k)) á 1 − δ and u(−jh0en + x

(k)) à −1 + δ. Then, for
such a j,

2(1− δ) á lim
k→+∞

u(jh0en + x
(k))−u(−jh0en + x

(k))

= u(∞)(jh0en)−u
(∞)(−jh0en).

Since this contradicts (3.13), we have proved (3.11). That is, Thu(x) á 0 for any
x with {|xn| à M} and any h á 0. Consequently, by (3.6) and (H5), we deduce
that Thu(x) á 0 for any x ∈ Rn. Accordingly, ∂nu(x) á 0 for any x ∈ Rn, and
then (3.1) follows from (H4).

Now we show that for any S > 0 there exists a(S) ∈ (0,1) such that

(3.14) ∂νu(x) > 0 for any x ∈ Rn ∩ {|xn| à S}

and any ν = (ν1, . . . , νn) ∈ Sn−1 with νn á a(S).

The proof of (3.14) is by contradiction. Suppose that, for a fixed S, there exist

sequences x(k) ∈ {|xn| à S} and ν(k) ∈ Sn−1 such that ν(k)n á 1− (1/k) and

(3.15) ∂ν(k)u(x
(k)) à 0.

Let u(k)(x) := u(x+x(k)). Notice that ν(k) approaches en for large k, therefore,
by (H2), we obtain that, up to a subsequence, u(k) approaches someu(∞) together
with its derivative, with Lu(∞) = f(u(∞)) and L̃(∂nu(∞)) = f ′(u(∞)) ∂nu

(∞).
We remark that, by (3.1),

∂nu
(∞) á 0,

while, by (3.15),
∂nu

(∞)(0) à 0.



132 ALBERTO FARINA & ENRICO VALDINOCI

Accordingly, (H4) says that ∂nu(∞) vanishes identically. Thus, if t − S is large

enough (hence ten − |x
(k)
n | is large enough), the uniform limit in (1.1) gives that

9
10
à lim
k→+∞

u(ten + x
(k)) = u(∞)(ten)

= u(∞)(−ten) = lim
k→+∞

u(−ten + x
(k))

à −
9
10
.

This contradiction proves (3.14).
Now, recalling the definition of M given in (3.4) and (3.5), in the notation of

(3.14), we define

a := a(M).

Then, as a consequence of (3.14), (H3), and (3.4), we have that ∂νu(x) á 0 for
any x ∈ Rn, if νn á a. Then, by (3.14) and (H4), we conclude that ∂νu(x) > 0
for any x ∈ Rn, if νn á a. That is, condition (2.1) holds true. Therefore, the
proof of Theorem 1.1 is completed thanks to Lemma 2.1. ❐

4. PROOF OF THEOREM 1.2

We will deduce Theorem 1.2 from Theorem 1.1, in which L = L̃ = Lϕ :=

−(−∆)s , X := W 3,∞(Rn), and X̃ := W 2,∞(Rn). For this, we need to check hy-
potheses (H1)–(H6). First, we claim that, if u ∈ W 3,∞(Rn), then

(4.1) ∂ω(−(−∆)su) = −(−∆)s(∂ωu).

Indeed, (4.1) is obvious if u belongs to the Schwartz class of rapidly decreasing
functions, since, in this case, one can represent (−∆)s via a Fourier transform (see,
for instance, [54, 63, 64, 69]) and check (4.1).

If, on the other hand, u ∈ W 3,∞(Rn), we have that for any h > 0,

u(hω+y)+u(hω−y)− 2u(hω)
|y|n+2s

−
u(y)+u(−y)− 2u(0)

|y|n+2s

=
u(hω+y)−u(y)+u(hω−y)−u(−y)− 2u(hω)+ 2u(0)

|y|n+2s

à 5‖u‖W 3,∞(Rn)h
[
|y|−(n+2s)χ

R
n\B1

(y)+ |y|2−(n+2s)χB1
(y)

]
∈ L1(Rn).
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Thus, the Dominated Convergence Theorem gives that

∂ω

(∫

Rn

u(x +y)+u(x −y)− 2u(x)
|y|n+2s

dy

)

x=0

= lim
h→0+

∫

Rn

u(hω+y)+u(hω−y)− 2u(hω)
h|y|n+2s

dy

−

∫

Rn

u(y)+u(−y)− 2u(0)
h|y|n+2s

dy

= lim
h→0+

∫

Rn

u(hω+y)−u(y)+u(hω−y)−u(−y)− 2u(hω)+ 2u(0)
h|y|n+2s

dy

=

∫

Rn

∂ωu(y)+ ∂ωu(−y)− 2∂ωu(0)
|y|n+2s

dy.

Thus, via the integral representation of the fractional Laplacian (see [54, 63, 64,
69]), the above identity reads

∂ω
(
− (−∆)su(x)

)
x=0

= −
(
(−∆)s(∂ωu)

)
(0),

which proves (4.1) at x = 0 (and analogously at any point).
Then, hypothesis (H1) follows from (4.1). Hypothesis (H2) follows from the

fact that X = W 3,∞, using the Theorem of Ascoli and the integral representation
of the fractional Laplacian. We now prove (H3), by arguing by contradiction. We
suppose that

i := inf
Rn
w < 0,

and we take x(k) ∈ Rn such that

lim
k→+∞

w(x(k)) = i < 0.

In particular, we may suppose that w(x(k)) à i/2 < 0, and therefore x(k) ∈
{|xn| á M}, so c(x(k)) á κ > 0. Thus, if we set w(k)(x) := w(x + x(k)), we
see that

−(−∆)sw(k)(x) = −(−∆)sw(x + x(k)) = c(x + x(k))w(x + x(k)).

In particular,

C(n, s)

∫

Rn

w(k)(y)−w(k)(0)
|y|n+2s

= −(−∆)sw(k)(0)(4.2)

= c(x(k))w(x(k)) à
κi

2
,
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for a suitable C(n, s) > 0. In the first equality in (4.2), we have used one of the
classical representations of the fractional Laplacian, see, e.g., [54, 63, 64, 69] for
details.

Since w ∈ X̃ := W 2,∞(Rn), we have that w(k) converges locally uniformly to
some w(∞), up to a subsequence, due to Theorem of Ascoli, and so, by taking the
limit in (4.2), we have

(4.3) C(n, s)

∫

Rn

w(∞)(y)−w(∞)(0)
|y|n+2s

à
κi

2
.

On the other hand,

w(∞)(0) = lim
k→+∞

w(k)(0) = lim
k→+∞

w(x(k))(4.4)

= inf
Rn
w à w(y + x(k)) = w(k)(y)

for any y ∈ Rn, and so

w(∞)(0) à w(∞)(y)

for any y ∈ Rn. As a consequence, (4.3) gives that

0 à C(n, s)
∫

Rn

w(∞)(y)−w(∞)(0)
|y|n+2s

à
κi

2
< 0.

This contradiction proves (H3).
Take now v as requested in (H4): then, the integral representation of the

fractional Laplacian gives that, for a suitable C(n, s) > 0,

0 = f ′(u(0))v(0) = −(−∆)sv(0)(4.5)

= C(n, s)

∫

Rn

v(y)− v(0)
|y|n+2s

dy = C(n, s)

∫

Rn

v(y)

|y|n+2s
dy,

with the integral taken in the Cauchy principal value sense. Since v á 0, (4.5)
implies that v is identically zero, thus checking (H4).

The proof of (H5) (respectively (H6)) is analogous to the one of (H3) (respec-
tively (H4)): just take U instead of {|xn| á M} (respectively f(u + v) − f(u)
instead of f ′(u)v). The proof of Theorem 1.2 is thus complete. ❐

5. PROOF OF THEOREM 1.3

We take X := C3,β(Rn) and X̃ := C2,β(Rn). Notice that, for any v ∈ X̃,

(5.1) f(u+ v)− f(u) = cv, with c(x) :=
∫ 1

0
f ′(u(x)+ tv(x))dt.
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Also,

(5.2)

L̃v=

n∑

i,j=1

ãij ∂
2
ijv + b̃ · ∇v,

Luv= F(D
2u+D2v,∇u+∇v)− F(D2u,∇u+∇v)

+ F(D2u,∇u+∇v)− F(D2u,∇u)

=

n∑

i,j=1

aij ∂
2
ijv + b · ∇v,

with

ãij(x) :=
∂F

∂Mij
(D2u(x),∇u(x)),

b̃(x) :=
∂F

∂p
(D2u(x),∇u(x)),

aij(x) :=
∫ 1

0

∂F

∂Mij
(D2u(x)+ tD2v(x),∇u(x))dt,

and

b(x) :=
∫ 1

0

∂F

∂p
(D2u(x),∇u(x)+ t∇v(x))dt.

In this way, (H1) is obviously satisfied and (H2) is a consequence of the Theorem
of Ascoli. We observe that, by construction

(5.3) ãij , aij , b̃, b, c ∈ C
0,β(Rn) ⊂ L∞loc(R

n).

Moreover, from (1.6)

n∑

i,j=1

∂F

∂Mij
(M,p)Nij = lim

s→0+

F(M + sN,p)− F(M,p)

s
á λ(M,p)‖N‖,

for any nonnegative definite matrix N. In particular, given any ξ ∈ R
n, taking

Nij := ξiξj ,

n∑

i,j=1

∂F

∂Mij
(M,p)ξiξj á λ(M,p)

√√√√√
n∑

i,j=1

(ξiξj)2 á λ(M,p)

√√√√
n∑

i=1

(ξiξi)2

á
λ(M,p)

n2
‖ξ‖2.
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Therefore, given any R > 0, there exists λ⋆R,u,v > 0 such that

inf
x∈BR

τ,σ∈[0,1]

∑

i,j

∂F

∂Mij
(D2u(x)+ τD2v(x),∇u(x)+ σ∇v(x))ξiξj á λ

⋆
R,u,v‖ξ‖

2.

As a consequence, for any ξ ∈ Rn,

(5.4) inf
x∈BR

n∑

i,j=1

ãijξiξj á λ
⋆
R,u,v‖ξ‖

2 and inf
x∈BR

n∑

i,j=1

aijξiξj á λ
⋆
R,u,v‖ξ‖

2.

In particular,

(5.5)
n∑

i,j=1

ãijξiξj á 0 and
n∑

i,j=1

aijξiξj á 0.

Then, (H4) and (H6) are a consequence of (5.1), (5.2), (5.3), (5.4), and Hopf
Strong Maximum Principle (see, for instance, [49] or Theorem 2.1.2 of [61]).
Therefore, in order to complete the proof of Theorem 1.3, it remains to prove
(H3) and (H5) (and then invoke Theorem 1.1).

We prove (H5) (the proof of (H3) is completely analogous). Suppose, by
contradiction, that the conditions on w in (H5) hold, but

i := inf
Rn
w < 0.

We take x(k) ∈ Rn such that

lim
k→+∞

w(x(k)) = i < 0.

In particular, we may suppose that w(x(k)) à i/2 < 0, and therefore x(k) ∈ U ,
and so c(x(k)) á κ > 0.

We set w(k)(x) := w(x + x(k)) and we use the definition of X̃ and the The-
orem of Ascoli to obtain, up to a subsequence, that w(k) approaches some w(∞)

locally uniformly together with two derivatives. This also gives the convergence

of the coefficients aij = a
(k)
ij and b = b(k) obtained for w(k) via (5.2) to suitable

a
(∞)
ij and b(∞). Notice that, from (5.5), we have

(5.6)
n∑

i,j=1

a
(∞)
ij ξiξj á 0 for any ξ ∈ Rn.

Also, 0 is a minimum forw(∞) (see the computation in (4.4)), and so∇w(∞)(0) =
0 and D2w(∞)(0) is nonnegative definite.
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As a consequence, recalling (5.6),

κi

2
á lim
k→+∞

c(x(k))w(x(k)) = lim
k→+∞

Luw(x
(k))

= lim
k→+∞

n∑

i,j=1

a
(k)
ij ∂

2
ijw(x

(k))+ b(k) · ∇w(x(k))

= lim
k→+∞

n∑

i,j=1

a
(k)
ij ∂

2
ijw

(k)(0)+ b(k) · ∇w(k)(0)

=

n∑

i,j=1

a
(∞)
ij ∂2

ijw
(∞)(0)+ b(∞) · ∇w(∞)(0)

á 0.

Since i < 0, this is a contradiction and it proves (H5). The proof of Theorem 1.3
is thus completed. ❐
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