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Transdifferentiation of cancer stem cells 
into endothelial cells

The cancer stem cell (CSC) hypothesis suggests that 
neoplastic clones are maintained exclusively by a rare 
fraction of cells with stem cell proprieties. Like normal 
stem cells, these rare CSCs possess the extensive 
proliferative and self-renewal potential necessary 
to create a new tumor and generate a hierarchy of 
phenotypically diverse downstream cells, which are 
successively more limited in these properties. On 
the other hand, as in normal tissue stem cells, CSCs 
should display the ability to undergo a broad range 
of differentiation events. The transdifferentiative 
capacity of normal stem cells is a common property 
of CSCs. As an example, melanoma CSCs, like all 
the other CSCs, may transdifferentiate into diverse 
phenotypes [1], express neurogenic, angiogenic, 
vasculogenic and also lymphatic markers [1], and 
are able to organise a pseudovascular network in a 
physiological assay such as aorta ring [2]. Additional 
work demonstrated that more aggressive melanoma 
cells can revert to an undifferentiated, embryonic-like 
phenotype [3]. Moreover, aggressive melanoma cells 
express endothelium-associated genes and can form 
extracellular matrix rich vasculogenic like networks in 
three dimensional cultures [4-10]. Microarray analysis 

confirmed a genetic reversion of aggressive melanoma 
cells to an undifferentiated embryonic-like phenotype 
[11-13]. More recently, glioblastoma stem-like cells 
were observed to transdifferentiate into endothelial cells 
[14-16]. All together, the capability to transdifferentiate 
appears to be a way for the cells to become more 
plastic and adapt to different and adverse environmental 
conditions. 

Vasculogenic mimicry was first described by the 
unique ability of aggressive melanoma cells to express 
an endothelial phenotype and to form vessel-like 
networks in three dimensional cultures, “mimicking” 
the pattern of embryonic vascular networks and 
recapitulating the patterned networks seen in patients 
with aggressive tumors correlated with poor prognosis 
[13]. In fact, the word ‘‘vasculogenic’’ was selected to 
indicate the generation of the pathway de novo and 
‘‘mimicry’’ was used because the tumour uses cell 
pathways for transporting fluid in tissues that were 
clearly not blood vessels. Additional studies have 
reported vasculogenic mimicry in several other tumor 
types, including breast, prostate, ovarian, chorio-, lung 
carcinomas, synovial-, rhabdomyosarcoma, Ewing 
sarcomas and paeochromocytoma [17].  
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Abstract: �Vasculogenic�mimicry�was�first�described�as�the�unique�ability�of�aggressive�melanoma�cells�to�express�an�endothelial�phenotype�and�to�
form�vessel-like�networks�in�three�dimensional�cultures,�“mimicking”�the�pattern�of�embryonic�vascular�networks�and�recapitulating�the�
patterned�networks�seen�in�patients�with�aggressive�tumors�correlated�with�poor�prognosis.�Recent�work�shows�the�occurrence�of�alternative�
vasculogenic�patterns�is�due�to�the�presence�of�stem�cell�population�(cancer�stem�cells,�CSC)�at�least�in�melanoma�and�glioblastoma.�
I�discuss�new�perspectives�to�target�vasculogenic�mimicry�as�an�anti-vascular�treatment�strategy�and�the�possible�use�of�AQP1�as�
target.�Interest�in�AQP1�as�a�target�arises�from�the�pivotal�role�it�plays�in�the�organisation�of�vascular�network�affecting�the�cytoskeleton.�
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I believe that two important aspects must be 
emphasised: the first one is to develop new strategies 
targeting CSC subpopulations. The use of anti-
angiogenic drugs in combination with drugs acting on 
specific targets of CSC subpopulations might open up 
interesting new therapeutic perspectives. The second, 
novel aspect, is to use AQP1 as a target. According 
to the model proposed by Verkman and collaborators, 
AQP1 drives water influx, facilitating lamellipodia 
extension and cell migration [18]. While investigating the 
possible connection between AQP1 and cytoskeleton, 
our group recently showed that such a water channel 
through Lin7/beta catenin is expressed both by human 
endothelium and melanoma cells and affects the 
organization of the cytoskeleton [19]. We also proposed 
a model where AQP1 appears to be a critical scaffold for 
plasma-membrane associated multiprotein-complex to 
stabilise the cytoskeleton [20]. By combining Verkman’s 

and our model, we suggested that AQP1 is deeply 
involved in the lamellipodium organisation because, in 
presence of local osmotic gradients like as at the tip of 
lamelllipodium, water is driven inside through AQP(s) 
leading to the disruption of scaffold proteins which are 
degraded through proteasoma (Lin7/beta catenin) [20]. 
The effect on the cell is the cleavage of actin [20]. 

AQP1 might be a useful target for a combined 
melanoma therapy for two main reasons. Firstly, in 
melanoma the expression of AQP1 might be crucial for 
the growth of the tumor through its involvement in the 
vasculogenic/angiogenic pathways. In fact, AQP1 plays 
a crucial role in the capability of the cells (endothelial 
or melanoma cells) to sprout in knocked out animals 
or in cells where AQP1 has been silenced by siRNA. 
Secondly, AQP1 targeting might contribute to target 
quiescent CSCs that may be resistant to conventional 
therapy. 
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