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Abstract 9 

The effects of pre-gelatinization, mild and severe parboiling processes on paddy rice and the 10 

utilization of the corresponding flours (PGF, MPF, and SPF) for gluten-free (GF) pasta-making 11 

were investigated. Flour from native rice (NF) was considered as a control. Two pasta-making 12 

processes (extrusion-cooking and conventional extrusion) were carried out and seven GF pasta 13 

samples, with different thermal treatments but without the addition of additives, were obtained. The 14 

thermal treatments affected the physical properties and the susceptibility to -amylase hydrolysis of 15 

rice flours to different extents. The loss of starch granule integrity during the pre-gelatinization 16 

process promoted high viscosity at 30°C and dramatically increased the mass of absorbed water, the 17 

amount of soluble components leached out from the granules and the fraction of starch quickly 18 

hydrolyzed by -amylase. Compared to pre-gelatinization, both parboiling processes induced lower 19 

pasting viscosity at any temperature, enzymatic susceptibility, and hydration. The magnitude of 20 

these changes significantly increased with the severity of the parboiling treatment. The lowest value 21 

for cooking loss was detected for samples prepared by 100% SPF (extrusion-cooking) or by mixture 22 

of SPF and PGF (50:50) (conventional extrusion). Nevertheless, the extrusion-cooking process 23 

promoted a firm texture when applied to parboiled flours.  24 

Keywords: rice, pre-gelatinization, parboiling, gluten-free pasta, cooking quality 25 

Abbreviations: BD, breakdown; BU, Brabender units; FV, final viscosity; GF, gluten-free; IV, 26 

initial viscosity; MPF, mild parboiled rice flour; NF, native rice flour; PaMPF_A, pasta from mild 27 

parboiled rice flour (extrusion-cooking); PaMPF_B, pasta from mild parboiled rice flour 28 

(conventional extrusion); PaNF_A, pasta from native rice flour (extrusion-cooking); PaPGF_B, 29 

pasta from pregelatinized rice flour (conventional extrusion); PaSPF_A, pasta from severe parboiled 30 

rice flour (extrusion-cooking); PaSPF_B, pasta from severe parboiled rice flour (conventional 31 

extrusion); PaSPF+PGF_B, pasta from severe parboiled and pregelatinized rice flour (50:50) 32 
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(conventional extrusion); PGF, pregelatinized rice flour; PT, pasting temperature; PV, peak 33 

viscosity; SB, setback; SP, swelling power; SPF, severe parboiled rice flour; WAI, water absorption 34 

index; WSI, water solubility index. 35 

36 
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1. Introduction  37 

Rice flour is widely used as a raw material to prepare gluten-free (GF) products for its bland taste, 38 

white color, high digestibility, and hypoallergenic properties (Rosell&Marco, 2008). However, in 39 

spite of its advantages, rice is low in protein and has relatively poor technological properties for 40 

interacting and developing a cohesive network.  41 

Up to now, GF pasta made from rice flour has usually been prepared in one of two ways (Pagani, 42 

1986). In the first, native rice flour is treated with steam and extruded at high temperatures (more 43 

than 100°C) for promoting starch gelatinization directly inside the extruder-cooker. The second 44 

method focuses on the use of pre-gelatinized flours, in which starch is already partially gelatinized; 45 

the pre-treated flour can be formed into pasta by the continuous extrusion press commonly used in 46 

durum wheat semolina pasta-making. In this regard, annealing and heat-moisture treatments have 47 

been proposed for rice flour and/or cereal starch to induce new physiochemical properties. Because 48 

it is easy to use, pre-gelatinized flour is the most commonly used in industrial GF pasta production. 49 

Even if the effects of pre-gelatinization on starch from different sources (cassava, corn, rice, etc.) 50 

have been extensively investigated (Nakorn, Tongdang&Sirivongpaisal, 2009; Lai&Cheng, 2004; 51 

Anastasiades, Thanou, Loulis, Stapatoris&Karapantsios, 2002; Vallous, Gavrielidou, 52 

Karapantsios& Kostoglou, 2002; Lai, 2001; Perez-Sira&Gonzalez-Parada, 1997), there is not much 53 

information about the relationship between the induced starch arrangement and rheological 54 

properties of pre-gelatinized flour or its suitability for pasta-making or its cooking behavior.  55 

Recently, the use of flour from parboiled rice as a raw material for pasta products was proposed 56 

(Grugni, Mazzini, Viazzo&Viazzo, 2009), by obtaining GF pasta with a good cooking behavior 57 

(Marti, Seetharaman&Pagani, 2010) due to the particular starch arrangements in the product (Marti, 58 

Pagani&Seetharaman, 2011).  59 

The first objective of this study was to investigate the effects of three heating processes (pre-60 

gelatinization and two parboiling processes differing in their steeping conditions) on rice flour 61 
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properties, with particular attention to starch arrangements; the latter were evaluated by enzymatic 62 

and rheological approaches. Then, the relationship between starch properties and cooking behavior 63 

of the pasta samples was studied. The experimental products were prepared according to the two 64 

technologies currently used in the GF field, avoiding the addition of any additives (modified 65 

starches, gums, emulsifiers, etc.) to determine if physical treatments of raw rice materials can 66 

induce effective macromolecular organization, thus assuring the formation of a cohesive and regular 67 

starchy network. 68 

2. Experimental 69 

2.1 Rice flours and pasta production 70 

Four types of rice flours were produced with different thermal treatments (Figure 1). Starting from 71 

Indica type cultivar of commercial origin, a native flour (NF; total starch: 84%db, AACC 76-13; 72 

amylose: 25%, UNI ISO 6647; protein: 6.8%db, AOAC 920.87; ash: 0.66%db, AACC 08-12) was 73 

produced by directly grinding the milled (or white) rice (particle size<500 m). The pre-gelatinized 74 

flour (PGF) was obtained by heating with steam (3.5atm, 115°C, 45min). Moreover, the same 75 

paddy rice was subjected to two parboiling treatments, namely “mild” (steeping: 60°C; steaming: 76 

1.1atm, 100°C) and “severe” (steeping: 70°C; steaming: 1.1atm, 100°C) parboiling. Both parboiled 77 

rice types were milled and then ground (particle size<500m) for obtaining mild (MPF) and severe 78 

(SPF) parboiled rice flour.  79 

Pasta from NF was prepared by using the extrusion-cooking process (Process A), as shown in 80 

Figure 2a. NF-water mixture (40% moisture) was heated by steam at 2.5atm for 10min in a 81 

gelatinization tank at 120°C. After that, the pre-treated dough was subjected to a first extrusion at 82 

120°C (extrusion-cooking) and formed into pellets (small cylinders of 2-3mm diameter). After this 83 

first extrusion step, the pellets were transferred into a lab-scale extruder for semolina pasta (20kg/h; 84 

MAC 30, Italpast, Parma, Italy), for the second extrusion step at 50°C. Samples were formed into 85 
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macaroni shape (7mm external diameter) and dried in an experimental drying cell using a low-86 

temperature drying cycle (50°C max; 14h).  87 

Pasta from PGF was prepared using the conventional extrusion process for semolina (Process B; 88 

Figure 2b). PGF and water (40% dough moisture) were formed into pasta in the lab scale extruder 89 

used for Process A, keeping the extrusion temperature at 50°C. Pasta drying was carried out in the 90 

same manner for Process A. Only the presence of partially disorganised starch, such as in MPF and 91 

SPF, guarantees the formation of pasta by using either Process A or B.  92 

Another sample was prepared by adding the PGF to the SPF at a level of 50% and the mixture was 93 

extruded by using Process B.  94 

To summarize, starting from the same commercial rice type, seven pasta samples (all of the same 95 

shape) were prepared and stored at room temperature until analyzed. 96 

2.2 Rice flour characterization 97 

Damaged starch content was determined according to AACC 76-31 official methods. A color meter 98 

(CR 210, Minolta Co., Osaka, Japan) was used to measure the lightness (L*) and saturation of the 99 

color intensity value (a*, redness-greenness; b*, yellowness–blueness) of flours. Hydration 100 

properties were expressed as water absorption index (WAI), water solubility index (WSI), and 101 

swelling power (SP) and were measured according to Lai&Cheng (2004). Pasting properties of rice 102 

flours were measured according to Marti, Seetharaman&Pagani (2010) by a Brabender Micro-103 

Visco-AmyloGraph (Brabender, Duisburg, Germany).  104 

2.3 Pasta characterization  105 

Color, susceptibilityto -amylase hydrolysis and pasting properties were measured in ground pasta 106 

(particle size<500 m) as described for flour. Cooking losses were evaluated by determining the 107 

amount of solid dispersed in the cooking water (g of matter lost/100 g of dry pasta (D’Egidio, 108 

Mariani, Nardi, Novaro&Cubadda, 1990), at a pasta:water ratio = 1:10 and no salt. After cooking 109 

for the optimum cooking time (OCT; D’Egidio, Mariani, Nardi, Novaro&Cubadda, 1990), the pasta 110 
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was drained, the original quantity of water was restored, and an aliquot was dried to constant weight 111 

at 105°C. The weight increase in pasta due to water absorption during cooking was evaluated 112 

gravimetrically. The textural characteristics of cooked pasta were determined by using the Texture 113 

Analyzer TA.HD-plus (Stable Micro System Ltd., Godalming, United Kingdom), equipped with 114 

Kramer cell, according to Marti, Seetharaman&Pagani (2010). The cooking behavior of pasta 115 

samples was compared to those of commercial semolina pasta (Barilla brand) with the same shape. 116 

2.4 Statistical analysis 117 

One-way analysis of variance (ANOVA; LSD, Least Significant Differences) was performed using 118 

STATGRAPHIC®Plus (StatPoint Inc. Virginia, U.S.A.). 119 

3. Results and Discussion  120 

3.1 Effect of thermal treatments of rice flours 121 

No significant differences in starch or protein content were observed between NF and heat-treated 122 

flours (data not shown). As expected, total ash was significantly higher (p<0.05) in parboiled flours 123 

(0.88%db) compared to NF (0.63%db) because of the diffusion of water-soluble constituents into 124 

the endosperm during parboiling (Bhattacharya, 2004). 125 

3.1.1 Color 126 

The thermal treatments carried out on rice kernels affected the color of the flours, causing an overall 127 

decrease in luminosity (Table 1). A decrease in redness and yellowness was detected in PGF; 128 

whereas, regardless of the severity of treatment, parboiling increased not only the darkness 129 

(decreasing in L* value), but also the a* and b* color parameters, confirming the observations of 130 

Elbert, Tolaba&Suarez (2001). The darker and more yellow color after parboiling is a consequence 131 

of the migration of pigments from the husk and/or bran to the endosperm (Bhattacharya&Ali, 132 

1985), non-enzymatic browning (Dendy, 2000), and enzymatic actions occurred during soaking 133 

(Lamberts, Brijs, Mohamed, Verhelst&Delcour, 2006). SPF flour exhibited higher yellowness and 134 

redness compared to MPF, confirming the role of both soaking and steaming conditions, as well as 135 
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drying methods, in changing color parameters (Lamberts, Rombouts, Brijs, Gebruers&Delcour, 136 

2008). 137 

3.1.2 Hydration properties  138 

The high degree of associative forces in the starch granules of NF accounted for its insolubility in 139 

cold water and, consequently, for the low WAI, WSI, and SP values (Table 1). Starch hydration 140 

properties were greatly affected by heating treatments as a consequence of macromolecular 141 

disorganisation and degradation (Nakorn, Tongdang&Sirivongpaisal, 2009). The significant 142 

increase in WAI and SP values after pre-gelatinization may represent the macroscopic result of the 143 

greater ability of “exposed” hydrophilic groups to bind water molecules and to form a gel, as 144 

suggested by Lai&Cheng (2004). Only severe parboiling conditions significantly changed the 145 

hydration properties of flour.  146 

The WSI value is generally used as an indirect index of the loss of starch organisation during heat-147 

treatments. Pre-gelatinization seemed to promote a partial break-up of molecular components, as 148 

compared to that of NF. On the contrary, parboiling did not induce the formation of soluble 149 

components, a behavior due to the re-association of amylose and/or amylopectin, resulting in an 150 

increased rigidity of the starch molecules (Lai&Cheng, 2004).  151 

3.1.3 Susceptibility to -amylase hydrolysis and pasting properties 152 

The measure of starch susceptibility to -amylase hydrolysis (expressed as damaged starch) may 153 

represent an indirect tool for obtaining information about the starch organisation resulting from 154 

heat-treatments on rice flour. The percentage of -amylase susceptibility increased in flours which 155 

had undergone heat-treatments (Table 2). This index was almost 20 times higher in PGF than that 156 

for NF, as steam treatment induced a high degree of starch gelatinization (Alamprese, 157 

Casiraghi&Pagani, 2007). This trait accounted for the great hygroscopicity of the flour (Table 1), as 158 

reported by Colonna, Tayeb&Merciers (1989). After both parboiling processes, starch granules 159 

became a little more accessible to enzymatic hydrolysis than NF. However, the modest 160 
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susceptibility to amylase in parboiled flours may be due to the cooling stage after heat-treatments of 161 

the kernels, which promotes retrogradation and recrystallization of the gelatinized starch granules 162 

(Ong&Blanshard, 1994).  163 

Pasting properties of rice flours before and after each heat-treatment are shown in Figure 3 while 164 

viscosity data is summarized in Table 2. NF exhibited the typical pasting behavior of Indica 165 

varieties. Heat-treatments significantly modified these traits. The viscosity profile indicates that the 166 

starch granules in PGF are already swollen and highly susceptible to hydration, as the initial cold 167 

paste viscosity demonstrates. This result is consistent with the greater enzymatic susceptibility and  168 

high water absorption capacity of the PGF previously discussed (Table 1). The high initial viscosity 169 

and the low PT in pregelatinzed rice may be attributed to the disruption of the molecular order 170 

within the starch granules during the treatment, resulting in the loss of granule integrity and 171 

destruction of starch crystallinity (Lai&Cheng, 2004; Lai, 2001). During the heating step, PGF 172 

reached a peak viscosity similar to that for NF, probably as a consequence of residual starch that 173 

was still in the native form. During the cooling phase, PGF exhibited less retrogradation intensity 174 

compared to NF (see SB values). Viscosity of MPF and SPF flours was dramatically lower during 175 

the whole temperature profile, compared to NF, indicating the presence of relevant compactness 176 

among starch macromolecules. After parboiling, no peak viscosities, no breakdown, and low SB 177 

were observed, confirming the data of Derycke et al. (2005) and suggesting a type-C pasting profile 178 

(Schoch&Maywald, 1968). In addition, SPF flour showed lower viscosity values than those for 179 

MPF flour, indicating that the former process caused more retrogradation and, consequently, a 180 

greater re-association of starch macromolecules. 181 

3.2 Effect of pasta-making process 182 

3.2.1 Color 183 

Pasta color was strongly affected by the heat-treatment conditions used to produce rice flour (Table 184 

3). PaNF_A and PaPGF_B showed the highest luminosity and the lowest yellowness values. As 185 

expected, the use of flour from parboiled rice (alone or mixed to PGF) decreased the lightness of 186 
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pasta samples, due to the migration of pigments and soluble components towards the endosperm of 187 

rice kernels during the parboiling process (Bhattacharya&Ali, 1985). Moreover, regardless of the 188 

intensity of the treatment, pasta from parboiled rice showed a luminosity similar to that of  189 

commercial samples from semolina (data not shown), improving the overall acceptability of the 190 

product. Finally, the pasta-making process (extrusion-cooking vs conventional extrusion) carried 191 

out on parboiled flours did not change the luminosity and redness of the products, confirming that 192 

the major changes in color were associated with the phenomena occurring during parboiling.  193 

3.2.2 Susceptibility to -amylase hydrolysis and pasting properties 194 

The extrusion conditions promoted changes in starch susceptibility to -amylase actions (Figure 4). 195 

The extrusion-cooking process on NF greatly increased starch susceptibility to enzymatic action as 196 

a consequence of the large degree of starch gelatinization induced by the extrusion step with steam, 197 

in agreement with Lai (2002). After the first extrusion, the temperature of the pellets was around 198 

60°C; this spontaneous cooling may have promoted a further reorganization of the material 199 

(Resmini&Pagani, 1983). A strong decrease in starch susceptibility (from 54% db to 18% db) was 200 

measured in PaPGF_B sample, suggesting that part of the gelatinized starch material acted as a 201 

binder during the extrusion step, forming a structure less susceptible to hydrolysis. However, this 202 

starchy network was unable to counteract starch macromolecule dispersion and minimize cooking 203 

losses (see Table 4).  204 

PaMPF and PaSPF showed the lowest values for starch susceptibility, suggesting that the use of 205 

parboiled rice flours promoted a further relevant rearrangement in starch macromolecules  that was 206 

effective in lowering cooking losses. The higher the shear stress and temperature during extrusion, 207 

the lower the susceptibility to the enzyme. Compared to Process B (conventional extrusion), 208 

Process A, including a heating step, may induce greater gelatinization, which results in more 209 

retrogradation (Colonna&Buleon, 1992). This new organization may have reinforced the starchy 210 

network, making it less accessible to enzymatic action (Marti, Seetharaman&Pagani, 2010). The 211 
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addition of PGF, characterized by a great amount of damaged starch, to SPF flour did not modify its 212 

starch susceptibility.  213 

The pasting properties of samples are shown in Figure 5 and viscosity data are presented in Table 3. 214 

In PaNF_A, the increase in viscosity associated with starch gelatinization appeared at higher 215 

temperatures compared with samples prepared from pre-heated flours. The presence of high 216 

amounts of native starch in NF (only 3% is quickly susceptible to hydrolysis, Table 2) delayed 217 

gelatinization. Even if starch granules underwent molecular arrangement during raw material heat-218 

treatments, the pasta-making process promoted further structural changes, resulting in a product 219 

with new rheological properties as shown in Figure 5. The use of PGF, containing previously 220 

gelatinized starch granules, promoted the formation of a structure that had lower pasting 221 

temperature, compared to PaNF_A. Moreover, in PaPGF_B starch granules underwent a greater 222 

swelling, reaching high viscosity during heating. At the same time, that pasta-making process 223 

induced a high stability (low BD) and a low tendency to form a gel during cooling (low setback), in 224 

comparison with PaNF_A, confirming the data of susceptibility to -amylase hydrolysis. These 225 

differences may be related to the macromolecular rearrangement in the corresponding flours: starch 226 

granules with a high swelling capacity result in a higher peak viscosity. Moreover, the high swelling 227 

of the granules promoted a greater tendency to macromolecular bursting during heating, resulting in 228 

higher breakdown values (Table 3) and lower ability to withstand heating and shear stress. 229 

Despite the intensity of the parboiling process and the extrusion conditions (extrusion-cooking or 230 

conventional extrusion), pasta from parboiled rice flours did not reach a peak viscosity but rather 231 

exhibited high stabilities during heating. The pasting behavior of PaMPF and PaSPF samples 232 

corresponded to the high level of starch structural organization, as already indicated by their very 233 

low enzymatic susceptibility.  234 

The addition of PGF significantly affected the pasting profile of the corresponding pasta sample 235 

(Figure 5). PaSPF+PGF_B, in fact, exhibited a higher increase in viscosity during heating, in 236 

comparison with PaSPF_B. Moreover, PaSPF+PGF_B reached its peak viscosity at 89.6°C, 237 
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suggesting that gelatinized starch granules from PGF diluted the reorganized starch granules present 238 

in SPF flour.  239 

3.2.3 Cooking quality and textural properties of pasta 240 

The cooking quality and the textural properties of cooked rice pasta are presented in Table 4 and 241 

compared with those for commercial semolina. Because of the lack of a gluten network in all GF 242 

pasta, starch polymers were less efficaciously entrapped in the matrix, resulting in a product with a 243 

high cooking loss, even three-four times more than that of the semolina sample. Nevertheless, 244 

severe rice parboiling combined with extrusion-cooking seemed to be an effective procedure to 245 

assure the formation of a starchy network, thus lowering cooking losses. The substitution of 50% 246 

SPF with PGF improved the quality of the rice pasta, in terms of cooking loss and water absorption. 247 

The PGF flour may have acted as a binder, re-polymerizing into a network around the starch 248 

granules of SPF during the extrusion step, because of the different gelatinization temperatures of 249 

PGF and SPF flours, thereby increasing their tolerance to cooking stress, as suggested by 250 

Resmini&Pagani (1983).  251 

Pasta samples showed significant differences in water absorption values. In particular, the use of 252 

PGF or parboiled flours promoted the formation of a less hydrophilic starchy structure, resulting in 253 

lower water uptake in comparison with PaNF_A (91%) and semolina pasta (99%). For all the 254 

experimental rice macaroni significant differences were detected during all the phases of the 255 

Kramer test (compression, shear, and extrusion). As expected, the lack of gluten was responsible for 256 

the low values of compression energy and firmness that characterize the consistency of the products 257 

(Table 4). One exception, pasta obtained from parboiled flours combined with extrusion-cooking, 258 

showed a dramatic increase in consistency. The high shear stress and temperature seem to favour 259 

the formation of a strengthened starchy network, involving the majority of starch macromolecules 260 

(as exhibited by its low cooking loss and pasting viscosity) with a positive effect on the texture of 261 

cooked pasta in terms of high consistency parameters. A similar behavior was also found by Wang, 262 

Bhirud, Sosulski&Tyler (1999), who investigated the suitability of pea flour for pasta-making using 263 
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a twin-screw extruder: pasta obtained by extrusion-cooking exhibited superior firmness, flavour, 264 

and texture after cooking, compared to pasta-products prepared from the same flour using a 265 

conventional extruder. Moreover, in PaSPF+PGF_B, the addition of an aliquot of pre-gelatinized 266 

flour was associated with a decrease in consistency, compared to that of a extruded-cooked product. 267 

4. Conclusions 268 

The cooking quality of GF pasta made from rice flours was greatly affected by the thermal 269 

treatments of  the raw material. Regardless of extrusion conditions, severe parboiling process on 270 

paddy rice promoted new and effective starch networks in flour (highlighted by peculiar hydration 271 

and pasting properties), making rice suitable for GF pasta-making. Even if the new starch 272 

arrangements in parboiled flours were positive for the texture of the product, it was not efficacious 273 

in limiting the leaching of solids during cooking. This disadvantage was alleviated by extrusion-274 

cooking or by adding a certain amount of PGF. The next challenge will be to improve rice pasta 275 

cooking properties by modulating the amount of PGF suitable for producing GF pasta with low 276 

cooking losses and, at the same time, a consistency similar to that of semolina pasta, without the 277 

addition of additives. 278 
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Table 1. Physical characterization of rice flours. 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

Means (n=3) and standard deviation followed by different letters in a line are significantly different 364 

at p<0.05. 365 

  366 

 NF PGF MPF SPF 

Luminosity (L*) 100.00 ± 0.00c 93.34 ± 0.35b  89.15 ± 0.50a 88.71 ± 0.53a 

Redness (a*) 0.56 ± 0.08b -0.48 ± 0.09a 0.51 ± 0.05b 0.83 ± 0.06c 

Yellowness (b*) 10.57 ± 0.21b 8.81 ± 0.20a 17.68 ± 0.27c 18.85 ± 0.27d 

WAI (g/g) 1.65± 0.04a 4.32 ± 0.11c 1.44 ± 0.04a 2.59 ± 0.16b 

WSI (%) 1.14 ± 0.28a 3.17 ± 0.15b 1.61 ± 0.26a 1.41 ± 0.07a 

SP (g/g) 1.68± 0.04a 4.46 ± 0.11c 1.47 ± 0.04a 2.64 ± 0.15b 
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Table 2. Damaged starch and pasting properties of rice flours. 367 

 368 

Means (n=3) and standard deviation followed by different letters in a column are significantly 369 

different at p<0.05. 370 

* Susceptibility to -amylase hydrolysis 371 

** Viscosity at 95°C 372 

BU, Brabender units; IV, initial viscosity; PT, temperature at which an initial increase in viscosity 373 

occurs; PV, maximum paste viscosity achieved during the heating cycle; BD; peak viscosity minus 374 

the viscosity after the holding period at 95°C; FV, final viscosity; SB; difference between the final 375 

viscosity and the viscosity reached after the first holding period. 376 

377 

Flour 

Damaged 

Starch* 

(g/100g) 

IV 

(BU) 

PT 

(°C) 

PV 

(BU) 

BD 

(BU) 

FV 

(BU) 

SB 

(BU) 

NF  3.05 ± 0.04a 19.5 ± 3.5a 78.0 ± 0.0b 857.0 ± 1.4c 474.5 ± 2.1a 1173.0 ± 15.5d 790.5 ± 14.8c 

PGF 54.17 ± 1.28c 45.5 ± 0.7b 54.0 ± 0.1a 832.0 ± 21.2c 592.0 ± 19.8b 662.5 ± 6.4b 420.7 ± 2.5b 

MPF 7.04 ± 0.12b 25.0 ± 1.4a 82.5 ± 0.1c 251.5 ± 10.6b** - 700.0 ± 18.4c 428.0 ± 0.0b 

SPF 8.42 ± 0.39b 22.0 ± 1.4a 76.4 ± 3.2b 114.0 ± 1.4a** - 272.5 ± 9.2a 158.5 ± 7.8a 
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Table 3. Color indices and pasting properties of pasta samples. 378 

Means (n=3) and standard deviation followed by different letters in a line are significantly different 379 

at p<0.05. 380 

* Viscosity at 95°C 381 

BU, Brabender units; PT, temperature at which an initial increase in viscosity occurs; PV, 382 

maximum paste viscosity achieved during the heating cycle; BD; peak viscosity minus the viscosity 383 

after the holding period at 95 °C; FV, final viscosity; SB; difference between the final viscosity and 384 

the viscosity reached after the first holding period. 385 

  386 

 PaNF_A PaPGF_B PaMPF_A PaMPF_B PaSPF_A PaSPF_B PaSPF+PGF_B 

Luminosity (L*) 100.3 ± 2.51e 103.97 ± 0.82f 90.82 ± 0.50cd 90.09 ± 0.86bc 88.73 ± 0.73ab 89.76 ± 0.40bc 91.67 ± 0.37d 

Redness (a*) 0.85 ± 0.05d -0.23 ± 0.10a 0.52 ± 0.03c 0.49 ± 0.02c 0.81 ± 0.05d 0.92 ± 0.09d 0.19 ± 0.05b 

Yellowness (b*) 15.29 ± 0.51b -3.31 ± 0.76a 18.12 ± 0.54d 18.49 ± 0.23d 19.34 ± 0.21e 20.43 ± 0.14f 16.25 ± 0.28c 

PT (°C) 75.3 ± 0.2e 56.7 ± 0.1a 57.4 ± 0.3b 59.7 ± 0.2c 59.0 ± 0.0cd 56.3 ± 0.1a 59.9 ± 0.1d 

PV (BU) 316.0 ± 4.2e 483.0 ± 1.4f 184.5 ± 5.0ab* 248.5 ± 2.1d * 196.0 ± 9.9b * 174.0 ± 15.6a * 229.0 ± 2.8c * 

BD (BU) 83.5 ± 4.9b 275.5 ± 2.1c 0 27.0 ± 1.4a 0 0 74.5 ± 6.4b 

FV (BU) 887.0 ± 43.8d 584.0 ± 0.7b 760.5 ± 19.1c 812.0 ± 12.7cd 752.0 ± 56.6c 572.0 ± 74.9b 474.0 ± 22.6a 

SB (BU) 654.6 ± 43.1c 377.0 ± 2.8a 545.0 ± 12.7b 590.5 ± 12.0bc 556.0 ± 46.7b 398.0 ± 65.0a 319.5 ± 19.1a 
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Table 4. Cooking quality of experimental rice pasta. 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

Means (n=5) and standard deviation followed by different letters in a column are significantly 402 

different at p<0.05.  403 

Compression energy, the area under the part of the curve related to the compression phase;, 404 

Firmness, the maximum strength necessary to pack the sample; shear force, the force necessary so 405 

that blades pass through the sample. 406 

407 

 

Optimal 

cooking  

time (min) 

Cooking loss 

(g/100 g ) 

Water  

absorption 

(%) 

Compression  

energy 

(Nmm) 

Firmness 

(N) 

Shear  

force 

(N) 

PaNF_A 9 9.8 ± 0.2c 90.7 ± 4.2b 328.4 ± 6.9a 190.6 ± 6.9a 150.4 ± 4.6a 

PaPGF_B 11 10.3 ± 0.7c 78.1 ± 3.6a 552.0 ± 58.3ab 310.0 ± 34.5c 292.9 ± 21.0b 

PaMPF_A 15 11.3 ± 0.2d 77.6 ± 2.5a 1970.2 ± 539.9c 832.8 ± 45.7e 520.8 ± 61.0c 

PaMPF_B 11 10.0 ± 0.4c 88.7 ± 6.4b 474.5 ± 38.9a 214.6 ± 8.0ab 139.3 ± 14.8a 

PaSPF_A 11 5.6 ± 0.1b 77.3 ± 3.5a 1914.8 ± 364.3c 901.6 ± 119.3f 524.7 ± 70.6c 

PaSPF_B 10 12.6 ± 0.7e 79.5 ± 3.8a 553.3 ± 30.9ab 275.3 ± 8.2bc 259.1 ± 15.1b 

PaSPF+PGF_B 9 6.3 ± 0.3b 87.9 ± 7.6b 371.0 ± 67.5a 187.9 ± 29.2a 159.5 ± 21.7a 

Commercial 

semolina pasta 
12 3.5 ± 0.3a 98.7 ± 1.5c 823.7 ± 105.6b 441.9 ± 9.3d 186.4 ± 5.0a 
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Figure 1. Milling and heat-treatments on rice to obtain flours for pasta-making. 408 

Figure 2. Processing conditions for experimental rice pasta-making: (a) extrusion-cooking; (b) 409 

conventional extrusion. 410 

Figure 3. Pasting properties of rice flours 411 

Figure 4. Starch susceptibility to -amylase action (or damaged starch) of pasta samples. 412 

Figure 5. Microviscoamylograph curves of pasta samples. 413 


