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In this paper we describe an electrical network, whose current evolution does agree with a
Korteweg—de Vries equation. Our aim is to prepare pupils to understand the analytical aspects of
nonlinear and dispersive phenomena, which very often are neglected in high-school and graduate
textbooks. Some historical remarks introduce the topic and a bibliography is provided.

L INTRODUCTION

Understanding of natural phenomena whose behavior is
described by partial differential equations, with nonlinear,
dispersive, and dissipative terms, is a problem not easy to
solve, because of the difficult mathematical machinery. Yet
most natural phenomena do agree with such laws: one of
these is the phenomenon of the solitary wave. This is a wave
consisting of a single elevation which travels for a consider-
able distance along a uniform canal, with little or no change
of type. J. S. Russell was the first to notice this pheno-
menon. We was a successful engineer and an odd figure of a
Victorian scientist; during his research on the possibility of
improving the shape of ships for faster navigation, he real-
ized the inadequacy of that part of theoretical hydrodyna-
mics which refers to the resistance given by fluids to move-
ment of floating bodies. Experiments were carried out on a
large and costly scale. It was during these experiments,
therefore in a not at all fortuitous way, that J. S. Russell
“...observed one very singular and beautiful phenomenon,
which is so important, that I shall describe minutely the
aspect under which it first presented itself. I happened to be
engaged in observing the motion of a vessel at a high veloc-
ity, when it was suddenly stopped, and a violent and tumul-
tuous agitation among the little undulations which the ves-
sel had formed around it, attracted my notice. The water in
various masses was observed gathering in a heap of a well-
defined form around the centre of the length of the vessel.
This accumulated mass, raising at last a pointed crest, be-
gan to rush forward with considerable velocity towards the
prow of the boat, and then passed away before it altogether,
and retaining its form, appeared to roll forward alone along
the surface of the quiescent fluid, a large, solitary, progres-
sive wave.”

From the Korteweg—de Vries equation® we know that
the phenomenon lies on the balance of two contrary effects:
nonlinearity and dispersion. In a nonlinear medium a
wave, as it advances, becomes steeper in front and less steep
behind; in other words the wave becomes a shock wave. A
dispersive medium, instead, flattens the shallow water
wave. Water is both a nonlinear and a dispersive medium so
a water wave, if properly started, can travel undisturbed.

Many attempts were performed to increase the field of
application of classical theory of long waves to make it
consistent with the solitary wave phenomenon. But the ap-
proximation of calculation was such that some information
was lacking about one aspect of the phenomenon—nonlin-
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earity of the medium—which, with dispersion, is the prin-
cipal feature of the solitary wave.’

In this paper we will show a very easy electrical network
whose equation of current evolution is just a Korteweg—de
Vries equation. OQur aim is to achieve these goals: (1) Pupils
can familiarize themselves with nonlinear and dispersive
phenomena so that they are more prepared to search out
analytical aspects of these phenomena. (2) We can see a
soliton on the screen of an oscilloscope connected with the
network. (3) This electrical network can be used as an ana-
logical computer in order to find solutions of equations
whose analytical integration is too difficult to achieve or
whose numerical integration needs too long a computation
time.

The second goal is very interesting from a science educa-
tion and a teaching point of view: we know that two solitary
waves travel completely uninfluenced in shape, width, and
speed after their interaction. For that Zabusky and Krus-
kal* called them “solitons,” a word which evokes their be-
havior as a particle, as well as a wave. “What the computer
results showed was that these solitary waves would ‘inter-
penetrate’ each other (in two’s or three’s or more) and
emerge from their nonlinear interaction entirely unaffected
in shape, amplitude and velocity. One usually thinks of
waves being broken up or scattered by nonlinear effects, so
the persistence of the waves in this case (dramatically
prominent in the computer generated moving picture out-
put) was surprising and noteworthy. (...). Since each soli-
tary wave ever present in a solution of the Korteweg—de
Vries equation remained always present, at least ‘innately’
(in the sense that though it might temporarily disappear
from view, by merging in a complicated interaction with
one or more others, it would identifiably reappear later),
Zabusky and I felt that such waves partook sufficiently of
the nature of material particles to justify a particle-like
name, reminiscent of the physicists’ particles (proton, neu-

- tron, electron) and quasiparticles (photon, graviton). We

called them solitons.” * Therefore, in this way, the wave~
particle dualism arises in a very classical context—the hy-
drodynamics—dualism which very often is stressed only in
a quantum theory context.

II. ELECTRICAL MODEL FOR KORTEWEG-DE
VRIES EQUATION

Let us consider the simple network in Fig. 1, consisting
of aladder-type LC circuit containing an inductor L, and a
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Fig. 1. The elementary network. The connection in series of about 100 of
these elementary networks allow us to use for the evolution equation the
continuum approximation.

capacitor C,, both constant. The equations of propagation
are

al
AV = — L, Ax —
08X 5
(1)
AQ= — C,4xV,

where I is the current and V is the voltage. In the contin-
uum approximation from (1) we can derive the wave equa-
tion

— — ———=—==0. 2

at?  L,C,dx* @
The solutions of (2), as it is well known, are progressive
waves

I=¢(x— ! t)+¢’(x+ ! t). (3)

VL, Co VL, Co
They represent localized pulses, whose velocity is
1/{L, C,, which travel with the same shape during the
propagation. This shape is, in general, destroyed when
nonlinear or dispersive components are in the network. In
fact, if we consider the network in Fig. 2, where now the
capacitor C is nonlinear, and the inductor L has a disper-
sive capacitor in parallel C,/Ax, propagation in the
network occurs in a different way. The fundamental equa-
tions are

AV= — L 4x %0
at’
L=-c 24 “
adt Ax

AQ= —Ax(C,V —Cy V?),
where I, is the current in the inductor and 7, is the current
in the dispersive capacitor C = C; — Cy, V. The equation,
in the continuum approximation, becomes
v, + aV1 " C Fv,
ar Co dx = 2C, ox°
where 7 is a contracted time and x is the linear phase of the

=0, (5)

<
1)
N
I
(o]

vi+1

o : —0
Fig. 2. Elementary network with nonlinear and dispersive components.
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Fig. 3. After their nonlinear interaction two solitons emerge unaffected in
shape, amplitude, and velocity.

x

7

wave; V| is the first-order perturbation for the voltage (see
Appendix A).°

The equation describes the propagation of large wave-
length and small amplitude waves in a system which travels
with velocity 1/y/L, C,. Equation (5) is the well-known
Korteweg—de Vries equation (KdV).° Typical values of the
characteristic of the network are:

LAx~0.1 uH,

C, Ax~100 pF,

Cy Ax|,_ ;=500 pF,
Ax=1cm,

V~5V.

The C elements can be obtained with the reversed biased
varactor diode,’” for example the ITT diode type BA 163.
The diode junction capacitance is approximately 100 pF at
3-V reverse bias. Equation (5) exhibits a balance between
the nonlinear term (Cy/Co)V,(3V,/3x) (see Appendix B)®
and the dispersive term }(C,/C,)(@*V,/dx?) (see Appendix
C).° In the presence of a localized INPUT, we can observe
particular pulses—the solitons—which travel in the
network as progressive waves. Their velocity # and width
S, depend, of course, on the amplitude 4, by means of the
relations:

Cy A4
ulsoliton = (l + ¥ 0) L and S(Z) «A 0 1- (6)
3G /7 JL,C,

Their shape can be represented by a soliton-like solution of

interaction regioen

Fig. 4. Phase shift after the interaction of two solitons.
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/ ~ 4['\L_
Fig. 5. An input decomposes itself into a series of solitons plus a dispersive
vanishing part.

Eq. (5):

A
V1 =A0 SGCh2[ CN ° (x

_ S T)] )
6C, 3C,
If we have two different solitons amplitude (see Fig. 3), we
observe that their interaction is nonlinear and after the in-
teraction they come out with the same shape: only a phase
shift can be observed (see Fig. 4). Two other interesting
effects can be observed in the network: the decomposition
of any input into a series of solitons plus a dispersive van-
ishing part (Fig. 5) (see Appendix D) and the phenomenon
of recurrence.'® The last phenomenon is the return of the
initial input in the initial state after a certain time.

Finally we can note that a similar approach to visualize
the nonlinear characteristic of the solitons allows us a very
interesting introduction of advanced items of research. In
fact, if we modify the nonlinear dispersive network in Fig.
2, with the three-dimensional network in Fig. 6 being the
new configuration, the propagation does agree with the fol-
lowing modified KdV equation:

v, 1 (;_ SN\,
or ,/LOCO\ G ] a

1+cos’2p OV, 6 V,d _
LoGo—73 a0 T2 A B
where ris now aradial coordinate and (d /dr)ln 4 takesinto
account the geometrical effects on the propagation.

The relationship between amplitude, width, and velocity
dre the same as in (6) but now they depend on the radial
coordinate. Currently an analytical method for solving Eq.
(8) does not exist which permits us to investigate this prob-

e

S
1
S P
: i |
o v

R

g g

!
Rl

|1

Fig. 6. Nonlinear, dispersive three-dimensional network.
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lem, in the same way that the Inverse Scattering Transform
allows us to investigate the Cauchy problem. Therefore,
the three-dimensional network can be used as an analogic
computer. We note, in conclusion, that the components of
the described networks have a constant characteristic: if we
leave out this restriction, by thinking a space or time depen-
dence, a new series of equations arises and new phenomena
can be observed.'! Other Electrical Analog circuits have
been used to study many different phenomena. '

APPENDIX A: DERIVATION OF THE KdV
EQUATION

From Egq. (1) we can derive the following equation:
aFv 1 c?ZV__l_ 62Q(V)=0
e  L,C, dx* C, ot? ’

Ifweput Q(V)=C, ¥V —Cy V?and T=t/JL,C, Eq.

(A1) becomes

G dv v v .V _g

C, &xT*>  C, dT* IT* ox*
Let us consider now the following asymptotic expansion
around the state V,, = 0:

V=€V, +eV,+.., (A3)
where € is a small parameter. Now we introduce the
stretched variables®

x=€?x—T),

r=¢€"T.

Therefore, if we put {A3) and (A4) into (A2) and if we make
the coefficients of the series in € equal to zero, we obtain at
lowest order

(A1)

(A2)

(A4)

v, +§i y, I G Fn_,
or C, ox 2C, ox*
This is Eq. (5).

APPENDIX B: NONLINEAR FEATURES OF THE
EQUATION

If we consider an initial localized pulse
Vix,0)=f&) (B1)

where £ = x at ¢ = 0, we can consider the characteristic
curves

(B2)

Fig. 7. Characteristic curves whose angular coefficient is Co/Cy 1/(£).
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decompressive
part

compressive
part

Fig. 8. Because of the fact that greater is the quote, faster is the travel, after
the time ¢t = + min 1/{C,/C, f(£ )| the pulse decays in a shock wave.

and we can observe that V), is constant on these curves,
because V, satisfies Eq. (B1). At this stage we do not know
these curves. For a given point (x,0) there is a characteristic
curve which passes through. The arigular coefficient of this
curve is (Co/Cy)[1/f(€)]. The curve equation is

x=(Cy/Co) ) +¢&. (B3)
We can observe that the greater quotes travel with greater
velocities. (See Figs. 7 and 8.) Therefore the shape is modi-
fied during the propagation and at the time

. 1 .
tc = +min —————  with /' <0
‘ |Cy /Cof )]

the function V] is multivalued, i.e., after ¢ the pulse decays
in a shock wave.

APPENDIX C: DISPERSIVE SYSTEM

In order to describe how a dispersive system works, let us
make the KdV equation linear. The general solution of a
linear equation is

+ o

@ (x, 1) =717T— YK Jexp{ilKx — (K )t 1}dK, (C1)

where y (K} is the Fourier component of the initial pertur-
bation

x\K)= )

If we consider the asymptotic form of (C1) for large values
of ¢, and if we use the stationary phase method, we may
readily derive

Dxt)=_ [—2
|lo" (K )|t

X Re{y(K Jexp[i(Kx — (K )t
— (7/4)sign 0" (K ))1},
where K is the positive root of the equation,
uK)=0'(K)=x/t.

Theenergy decaysas |y (K )|*/|w” (K )|t and localized initial
data are spread on all the space. This happens also for the
linearized KdV equation.

+ ©

P (x,0)e ~ **dx. (C2)

APPENDIX D; INVERSE SPECTRAL TRANSFORM

First of all we transform Eq. (5) in
U -UU, +U,, =0, with U= —2Cy/Cs ¥V, and
t = Cg/2C,,. To this last equation we apply the rule of the
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Foundamental the.

Blx+y;0) ——-——.}
/ Blx+y;t)

Scattering data

Resolution of the
Cauchy problem

Gelfand-Levi %u»Marchenko
equztions

U(x,0}

|

K(x,y;¢)

e

Ulx,t)

Fig. 9. How we apply the Inverse Spectral Transform to KdV.

Inverse Spectral Transform which is very powerful ma-
chinery to solve exactly the Cauchy problem for a very
large class of partial differential equations. It can be
thought of as the nonlinear correspondence of the Fourier
Transform. For the KdV equation it works in this way (Fig.
9).

To an initial value U (x,0) for the KdV subject to the
condition

f "1+ elubeO)ldx < + o0

we associate the Schrodinger condition
Yur —(u—A ) =0. (DY)

Now we solve the direct spectral problem for (D1), i.e., we
deduce (a) the discrete eigenvalues
A,= —K2%,n=12,.,N; (b) the normalitation coeffi-
cient C,,, where

C, = lim ¢y, (x),
where ¢, are the corresponding eigenfunctions; (c) the re-
flection coefficients b(K) for the continuous spectrum
A = K%, whereb (K )isdefined by the asymptotic values of ¢,
ie.,

(D2)

e KL b(K)e®, x—

¢(x,0)’z[ :

aKle *, x— — o,

(D3)

where a(K ) is the transmission coefficient. The third step is
to define the function

N +

B)= Y Cle ™y 2—1-f b (K e™¢dK.
n=1 T J—-

Now we use the following fundamental theorem: if U (x, )

evolves accordingly to the KdV equation, the scattering

data are given by

@ A,(t)=2,(0),
(b) C,(f)=C,(0)e*™,

(€ b(K,t)=b(K,00e ™.

Therefore, if the initial scattering data are known, the scat-
tering data are known at all times.

We now write the Gelfand—Levitan-Marchenko equa-
tion

(D4)
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+ o
K(x,yit)+ B(x, y;t) + B(y+2zt)K(x,zt)dz = 0.
i (D3)

We now solve this linear equation for X (x, y;t); therefore,
U (x, t) which satisfies the KdV initial data U (x,0) is given
by

Up,t)= —2-2- K (x, Xit). (D6)
dx

If we consider the initial data

u(x,0) = — } a® sech’{} ax}
we have the single eigenvalue for the scattering data
A =a%/4 and b (K,0) = 0. Then, if we apply the Inverse
Scattering Transform, we have

u(x,t)= —}a*sech’{} a(x — a’t)} (D7)

which is the shape of a single soliton. The amplitude is
proportional to the velocity and is equal to —44,. The
multisolitons are given for U (x,0) with N discrete eigenval-
ues accordingly to b (k,0) = O, and the solution is given by

ux, t)= —2 ;xiz log det( + C), (D8)

where I is the N X N identity matrix and
exp[ — (K,n +Kn)t]]
K, +K, ’

In the presence of two discrete eigenvalues we observe an
interaction region in the space-time, and after the interac-
tion region only two single pulses. In the interaction region
the soliton-like pulses are shifted. If we also have b (K,0) a
decaying dispersive residue is observed which can be ne-
glected after a certain time.

C= [c,,, (£)C. () (D9)
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Cy V
v, 1 (1_ ~ )8V

ar /L, C, C, /ot
2
_ l4cos’29 &V KilnA:O.

a8/L,C, a0 | 2dr

This equation is a KdV with a new geometrical term (d /dr)in 4. A cylin-
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(1974) during their research on ion-acoustic waves in a collisionless plas-
ma. The equations similar to (8) describe many physical situations such

Giambd, Pantano, and Tucci 242



as one-dimensional shallow water waves of variable depth [see T. Kaku-
tani, J. Phys. Soc. Jpn. 30, 272 (1971); R. S. Jonhson, J. Fluid Mech. 60,
813 (1973)); the propagation in many dimensions of plasma waves [see P.
Pantano and S. Giambd, Lett. Nuovo Cimento 34, 380 (1982)]; shallow
water waves of constant depth [see P. Parasad and R. Revindran, J. Inst.
Math. Appl. 20, 9 (1977)]; and many other physical problems [see N.
Asano and H. Ono, J. Phys. Soc. Jpn. 31, 1830(1971)]. This equation can
be integrated analytically when A « 2 [See F. Calogero and A. Dega-
speris, Lett. Nuovo Cimento 23, 150 (1978); A. Nakamura and H. H.
Chen, J. Phys. Soc. Jpn. 50, 711 (1981); J. J. C. Nimmo and D. G.
Cryghton, Phys. Lett. 824, 211 {1981); C. Horrocks and P. Wilkinson,

Phys. Lett. 81A, 305 (1981)] or by using an asymptotic perturbation
method [see K. I. Karpman and E. M. Maslov, Sov. Phys. JETP 46, 41
(1977); D. J. Kaup and A. C. Newell, Proc. R. Soc. London, Ser. A 361,
41(1978); K. Ko and H. H. Khuel, Phys. Fluids 22, 1343 (1979)].

12K. Muroya and S. Watanabe, J. Phys. Soc. Jpn. 50, 3159 (1981); S.
Watanabe, ibid. 50, 3166 (1981); T. Yagi, ibid. 50, 2737 (1981); P. Pan-
tano, to be published in Lett. Nuovo Cimento (1983); T. Yoshinaga and
T. Kakutami, J. Phys. Soc. Jpn. 49, 2072 (1980); F. Kako, ibid. 47, 1686
{1979); T. Yoshinaga and T. Kakutani, ibid. 51, 1303 (1982); T. Yoshin-
aga, N. Sugimoto, and T. Kakutani. ibid. 50, 2122 (1981); K. Fuku-
shima, M. Widati, and Y. Narahara, ibid. 49, 1593 (1980).

The spot of Arago: New relevance for an old phenomenon

James E. Harvey?®

Rockwell International, Rocketdyne Division, Kirtland Air Force Base, New Mexico 87117

James L. Forgham

United Technologies of New Mexico, Inc., Albuguerque, New Mexico 87185
(Received 14 March 1983; accepted for publication 18 April 1983)

The “spot of Arago” has been a controversial topic since its inception in 1818 when Poisson
predicted its existence in an attempt to discredit Fresnel’s wave theory of light. Arago performed
the experiment and found the surprising prediction was true, thus putting Fresnel’s theory on a
firm technical foundation. In recent years, the spot of Arago, which exists as a bright spot at the
center of the geometrical shadow of a circular obstruction, has caused substantial grief in various
high-energy laser applications and has come to be considered more of a nuisance than a curiosity.
This paper suggests that the size and shape of the spot of Arago is characteristic of the wave-front
aberrations of the incident beam and can therefore be used to advantage as a beam sample for
wave-front analysis of annular beams. The implementation of this wave-front sampling scheme
would eliminate the requirement for a special beam-sampling optical component and thus reduce
to a minimum the deleterious effects upon the beam frequently accompanying the use of such
components. Both experimental and numerical results are presented along with a discussion of

the capabilities and limitations of this particular beam sample for diagnostic purposes.

INTRODUCTION

In 1818 Fresnel presented his famous essay on the wave
theory of light to the French Academy. Poisson, a member
of the academy and an advocate of the corpuscular theory
of light, deduced from Fresnel’s wave theory that a bright
spot of light should appear at the center of the shadow of an
illuminated disk or circular obstruction. This prediction,
he claimed, violated common sense and hence refuted Fres-
nel’s wave theory. However, the prediction was experimen-
tally tested and verified by Arago (another member of the
Academy), thus firmly establishing Fresnel’s theory and
contributing to the rapid demise of the corpuscular theory
of light (Poisson’s predicted spot had been observed by
Maraldi a century earlier but had gone largely unnoticed at
the time). Due to Arago’s historically important confirma-
tion of Fresnel’s wave theory of light we refer to this phe-
nomena as the “spot of Arago” rather than “Poisson’s
bright spot” which is more popular in the literature.

After this rather dramatic introduction to the scientific
community over 150 years ago, the spot of Arago gradually
receded into the background as a historically significant
but not particularly useful optical phenomenon. R. W.
Pohl showed that a photographic objective can be replaced
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by a steel sphere or an opaque disk; however, this potential
application has survived only as a textbook curiosity rather
than a practical reality because of low image brightness and
poor resolution due to the smoothing effect of the rather
prominent ring structure surrounding the spot of Arago.

In recent years the almost-forgotten spot of Arago has
made its presence emphatically known in certain annular
high-energy laser (HEL) systems by depositing substantial
flux levels at inconvenient locations throughout the sys-
tem. Some attempts to solve this problem by simple shad-
owing techniques are inherently impossible due to the na-
ture of the diffraction process which produces the spot of
Arago.

Since the spot of Arago appears to be an inherent part of
annular (obscured) laser beams, this paper is a preliminary
attempt to determine its properties in the presence of ele-
mentary aberrations and to evaluate its potential value as a
beam sample available for wave-front analysis.

TECHNICAL DISCUSSION

The Rayleigh-Sommerfeld formulation for the diffract-
ed wave field produced by an aperture illuminated by a
monochromatic beam is given by
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