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Abstract

This work aims at identifying a set of humoral immunologic parameters that improve prediction of the activation process in
HIV patients. Starting from the well-known impact of humoral immunity in HIV infection, there is still a lack of knowledge in
defining the role of the modulation of functional activity and titers of serum antibodies from early stage of infection to the
development of AIDS. We propose an integrated approach that combines humoral and clinical parameters in defining the
host immunity, implementing algorithms associated with virus control. A number of humoral parameters were
simultaneously evaluated in a whole range of serum samples from HIV-positive patients. This issue has been afforded
accounting for estimation problems typically related to ‘‘feasibility’’ studies where small sample size in each group and large
number of parameters are jointly estimated. We used nonparametric statistical procedures to identify biomarkers in our
study which included 42 subjects stratified on five different stages of HIV infection, i.e., Elite Controllers (EC), Long Term Non
Progressors (LTNP), HAART, AIDS and Acute Infection (AI). The main goal of the paper is to illustrate a novel profiling
method for helping to design a further confirmatory study. A set of seventeen different HIV-specific blood humoral factors
were analyzed in all subjects, i.e. IgG and IgA to gp120IIIB, to gp120Bal, to whole gp41, to P1 and T20 gp41 epitopes of the
MPER-HR2 region, to QARILAV gp41 epitope of the HR1 region and to CCR5; neutralization activity against five different
virus strains and ADCC were also evaluated. Patients were selected on the basis of CD4 cell counts, HIV/RNA and clinical
status. The Classification and Regression Trees (CART) approach has been used to uncover specific patterns of humoral
parameters in different stages of HIV disease. Virus neutralization of primary virus strains and antibodies to gp41 were
required to classify patients, suggesting that clinical profiles strongly rely on functional activity against HIV.
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Introduction

Host humoral immunity is differently involved in fighting HIV

infection during progression from first virus contact to overt

infection, including evolution from acute to chronic course.

Antibodies are key players and take part in different aspects of

host-virus interaction, especially those directed at the HIV-1

envelope glycoprotein subunits, gp120 and gp41 that interferes

with the initial entry events. However, due to high HIV-1

envelope sequence natural variability, generation of high-titer

neutralizing antibodies has been proven difficult. Generically,

high-titer of serum neutralizing antibodies have been considered a

correlate of HIV protection, although they only appear after

months or years of infection, possible upon a deep antigen

stimulation sustained by high virus load [1].

Hence, serum antibodies raised against HIV-1 envelope

proteins during acute infection are usually ineffective to prevent

the establishment of infection, their selective pressure does not

control–but can even sustain–autologous virus escape [2].

Subsequent waves of antibodies targeting specific, functional

epitopes maintain virus drift through their increased affinity and

keen targeting [3]. Antibodies to conserved, neutralizing domains

(e.g., the gp120 carbohydrate, MPER) develop heterogeneously in

chronic infection, and are not always neutralizing, despite specific

of neutralizing motifs. It suggests that generation of neutralizing

antibodies is controlled by many factors, such as host genetics,
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modes of antigen exposure, antibody affinity maturation, and

immune tolerance [3]. Other serum humoral responses, bridging

innate and adaptive immunity, such as those mediated by binding,

non-neutralizing antibodies through Fc receptor, complement

cascade and effector killer cells, were also observed in acute

infection [3]. Some of these, such as ADCC (Antibody-Dependent

Cellular Cytoxicity) and ADCVI (Antibody-Dependent Cell-

mediated Virus Inhibition), were found more significant than

virus neutralization in protection, being associated with reduced

viremia and better virus control. Indeed, sera from HIV

controllers showed a significantly higher ADCC activity, high-

lighting the specific role of this mechanism in long-term HIV

control [4,5].

In this study we aim at providing a multivariate nonparametric

analysis to combine information from serum envelope-specific

antibodies targeting key HIV epitopes, ADCC and infectivity

reduction against a panel of viruses. These parameters are

measured in various groups of HIV-positive patients at different

stages of infection. Moreover, as anti-CCR5 antibodies have been

associated to protection, we checked for such antibodies in all

subjects, to establish whether such antibodies could represent a

marker of resistance to HIV infection or progression of the disease

[6,7].

The classification and regression tree methodology (CART)

developed by Breiman et al. [8] has been applied to use a

combined information derived from the whole set if parameters for

identifying possible biomarkers. CART is a non-parametric

technique for partitioning a population/sample into subgroups.

Actually it operates a selection of the explanatory variable, useful

to construct the tree, on the basis of their capacity in identifying

the most homogeneous subgroups.

This strategy allowed to define profiles of antibody reactivity

specific to each group and identify specific ‘‘humoral signatures’’

which may not only have diagnostic relevance, but also identify

possible protective parameters by new combinations of humoral

factors.

Thus, the paper focuses on the search for a novel biomarker

combination that might be assessed as predictive on confirmative

larger studies for the evolution of disease in HIV patients.

Considering a biomarker panel with respect to the single

biomarker improves the diagnosis and may serve as an early

warning system of risk for future adverse AIDS outcomes. This

goal cannot be achieved by common ROC curve approach, that

searches for the greatest separation of two probability curves,

leading to the likelihood of distinguishing a sick patient from

healthy one based on a unique trait only. Thus ROC method can

be used for comparisons only to decide whether one marker allows

for better screening between diseased and not diseased subjects

with respect to another marker.

Conversely, we constructed a parameters panel on the basis of

different parameters combination.

Results

Patients and Experimental Design
Forty-two serum samples from HIV-infected patients at

different clinical stages (10 AI, 7 AIDS, 8 EC, 7 HAART+, 10

LTNP) were examined (Table 1). Patients in AI and HAART+
subgroups received appropriate therapy. AI subjects were evalu-

ated both before and after 4–8 months of treatment. All humoral

parameters studied were evaluated in parallel with CD4+ T cell

count and viral RNA load (Table 1). Eighteen humoral parameters

concerning specific IgG and IgA profiles, as well as functional

antibody assays were performed in all samples, for a total of 23

individual parameters (Table 2), treated as continuous or as

categorical variables; twenty-three endpoints actually underwent

statistical analyses.

Humoral Parameters
The study focused total IgG and IgA, and HIV-specific IgG and

IgA to gp120Bal (R5 strain), gp120IIIB (X4 strain), gp41, three

different gp41 epitopes (QARILAV within HR1, T20 and P1 both

in the MPER domain within HR2, already described as target of

neutralizing antibodies in humans) and finally, anti-self antibodies

to CCR5 coreceptor, which were previously found in LTNP

Table 2 [6,7,9–11].

Figure 1, reports the distribution of seven antibodies, namely

IgG and IgA to specific gp41 epitopes and to CCR5 coreceptor.

These measurments are categorical. Their descriptive analysis

revealed that:

N Both IgA-CCR5 and IgG-CCR5 were uniquely observed in

some EC and LTNP patients.

N IgG-QARILAV were mainly found in AIDS patients, but not

in AI group. No such IgA were isolated in any group.

N IgG-P1 peptide were found in all groups but EC, correspond-

ing IgA in all groups except EC and AIDS.

N IgG-T20 were observed in all groups, such IgA were only in

LTNP and in AIDS patients.

Continuous measurements were provided on total immuno-

globulins isotypes and specific IgA and IgG to whole gp120 and

gp41 (see graphical representation in Figure 2, panel A).

The corresponding ‘‘ratio variables’’ were obtained by normal-

izing raw values of continuous variables over the total amount of

the immune response (see also Statistics section).

With respect to the distributions of ratio variables (Figure 2,

panel B), Gp41 showed higher variability in IgA than IgG (except

Table 1. Characteristic, clinical status of the studied population.

N6 Risk factor Mean Age (Range) Sex Therapy Mean HIV RNA (Range) Mean CD4 (Range)

AI 10 HE, HO 31 (17–49) 6M, 4F NO 88450 (,37–190000) 621 (204–1069)

HAART 7 HE, HO 42 (32–61) 9M, 1F YEStn:a ,37 738 (517–2184)

AIDS 7 HO, IVDU 37 (33–46) 5M, 2F NO 73637 (21079–440000) 226 (141–235)

EC 8 HE, HO, IVDU 51 (34–67) 4M, 4F NO ,37 1082 (511–1880)

LTNP 10 HE, HO, IVDU, TR 49 (43–71) 7M, 3F NO 2680 (,37–11000) 821 (513–1515)

In the ‘‘Risk factor’’ column, HE is an abbreviation for ‘‘Heterosexual’’, HO for ‘‘Homosexual’’ and TR for ‘‘Transfusion’’, while IVDU stands for IntraVenous Drug Users.
12NRTI, 3NRTI, NNRTI+IP,3NRTI+IP, 2NRTI+2IP.
doi:10.1371/journal.pone.0058768.t001
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for LTNP patients). Distributions of ratio variables, both IgA-

gp120IIIB and IgG-gp120IIIB, when scaled by the respective total

response, had similar behavior both in terms of location and

dispersion, especially in AI patients. IgA-gp120IIIB showed higher

dispersion that IgG-gp120IIIB in HAART patients. IgA-gp120Bal

and IgG-gp120Bal showed a similar behavior in all patents’ groups

(Figure 2, panel B).

Antibody Mediated Functional Activities
Neutralizing potential of all sera was assayed on six virus strains;

two methods with two different cell lines as target cells, TZM-bl

and U87, were used, to enhance assay sensitivity. Distributions of

viruses are shown in Figure 3.

SOS140 was used to infect U87 cell line, the other viruses

including SF162 (lab strain), three clade B (QH0692, PVO and

AC10) and a clade C (ZM214) primary isolates, were used to infect

TZM.bl cells. HC (healthy controls) pooled sera were used as

negative control and TRIMAB monoclonal antibody was used as

positive control.

Neutralization activity was poor in AI and in EC groups and

remarkable in LTNP and AIDS patients in the four primary

viruses (QH0692, PVO, AC10 and ZM214), suggesting it could be

induced and enhanced by long-lasting exposure to viral antigens

(Figure 3).

Conversely, ADCC activity was observed in patients exposed to

very low levels of circulating viral antigens, such as AI, EC, LTNP

and in the group receiving HAART, while it was very low in AIDS

patients; hence, a low amount of viral load could be crucial to

induce and maintain this type of humoral response over time:

strikingly, AI and EC groups showed high ADCC vs poor

neutralizing activity (Figure 3).

Classification Trees
The joint effect of endpoints in classifying patients into

clinically-important groups was assessed through Classification

and Regression Tree analysis (CART) [8]. To this purpose, all the

humoral parameters, the virological endpoints, and patients

groups were included in the analysis. Figure 4 shows resulting

CARTs and decision rules, displayed in a simplified version;

numerical values correspond to antibody dilutions or to neutral-

izing titer, respectively.

CART on binding antibodies (before pruning). Two out

of 13 variables entered in the model were selected to discriminate/

classify patients’ groups. Only information from IgG-types

antibodies were required to classify patients (Figure 4, A). The

ratio-IgG-gp120Bal (when ratio-IgG-gp120Bal,303) allowed to

correctly classify 70% AI patients; using the ratio-IgG-gp41 (when

ratio-IgG-gp41$394), 100% LTNP were correctly classified.

When ratio-IgG-gp41,394, 75% EC, 71.4% AIDS and 71.4%

HAART+ patients were classified, respectively. We concluded that

AIDS, HAART+ and EC patients shared a similar pattern,

completely different from LTNP patients.

CART on functional activities (before pruning). Three

out of 7 variables entered in the model were selected to

discriminate/classify patients’ groups. SF162 neutralization clas-

sified all AI patients (Figure 4, B); information on QH0692

identified 85.7% HAART+ patients. AC10 data discriminated

85.7% AIDS patients (when AC10$96) and 70% LTNP patients

(when AC10,96).

CART on antibody mediated binding and functional

activities (before pruning). Three out of 20 variables entered

in the model were selected to discriminate/classify patients’

groups. Notably, two out of three branches of this latter tree

resulted super-imposable to the previous CART tree, where only

virus data were used (Figure 4, C). SF162 data classified AI

patients; information on QH0692 also identified 85.7% HAART+
patients (when QH0692,30). The binary variable IgG-QAR-

ILAV, distinguished 71.4% AIDS patients (when IgG-QARI-

LAV?0) and 90% LTNP patients (when IgG-QARILAV = 0).

CART trees were implemented using R software [12] (package

rpart, see http://www.R-project.org). Default ‘‘cost complexity’’

factor cp = 0.01 was chosen.

To determine whether trees were appropriate or if some of the

branches needed to be subjected to pruning, thus avoiding

overfitting and controlling the size of the decision trees, we have

examined the cross-validated error results (‘‘xerror’’, see Table S1
in File S1), and we have selected the ‘‘complexity parameter’’ (cp

parameter, see Figure S1 in File S1) associated with the smallest

cross-validated error; then we placed it into the function ‘‘prune’’

to prune the tree. Resulting trees after pruning are shown in

Figure 5 and described below.

CART on binding antibodies (after pruning). One out of

13 variables entered in the model were selected to discriminate/

Table 2. Parameters used in the study.

Humoral parameters
Viruses used for the
neutralization

Protein Tot. Region Isotype Viruses Clade Tropism Target cells

CCR5 ECL1tn:b IgG-IgA SOS 140 Lab Strain B R5 U87

HR2-gp41 P1-HR2tn:c IgG-IgA SF162 Lab Strain B R5 TZMbl

HR2-gp41 T20-HR2tn:d IgG-IgA QH0692 Primary B R5 TZMbl

HR1-gp41 HR1tn:e IgG-IgA PVO Primary B R5 TZMbl

gp41 Consensus B IgG-IgA AC10 Primary B R5 TZMbl

gp120 IIIB IgG-IgA ZM214 Primary C R5 TZMbl

gp120 Bal IgG-IgA

ADCC IgG

1aa sequence: YAAAQWDFGNTMCQ.
2aa sequence: QNQQEKNEQELLELDKWASLWNWFNITNWYIK.
3aa sequence: YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF.
4aa sequence: GIKQLQARILAVERYLKDQQLLG.
doi:10.1371/journal.pone.0058768.t002
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classify patients’ groups. Only information from IgG-gp120Bal

antibody was maintained after pruning. Hence when ratio-IgG-

gp120Bal,303 70% AI patients were correctly classified, when

ratio-IgG-gp120Bal$303, 100% LTNP were correctly classified

(Figure 5, A).

CART on functional activities (after pruning). Two out of

7 variables entered in the model were selected to discriminate/

classify patients’ groups (Figure 5, B). SF162 neutralization

classified all AI patients. QH0692 data discriminated 85.7%

HAART+ patients (when QH0692,30) and 100% LTNP patients

(when QH0692$30).

CART on antibodies mediated binding and functional

activities (after pruning). Two out of the 20 variables entered

in the model were selected to discriminate/classify patients’ groups

(Figure 5, C). SF162 data classified AI patients; information on

QH0692 also identified 85.7% HAART+ patients (when

Figure 1. Distribution of binding antibodies in all studied groups. Graphical representation of non-continuous variables, i.e. parameters
found in some subjects or groups only. Seven variables, including IgG and IgA to specific gp41 epitopes (P1, T20, QARILAV) and antibodies to CCR5
coreceptor. First bar in each pair shows proportion of values found equal to 0 in the analysis, the second illustrates values different from 0. Chi-square
association test between categorical variables only found a significant association between IgGT20 and IgGP1 (p-value = 0.001).
doi:10.1371/journal.pone.0058768.g001

Humoral Immunity in HIV Infection by CART Analysis
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QH0692,30) and 100% LTNP patients (when QH0692$30).

After pruning, the last two trees were found to be equal, because

only information on virus was selected to classify patients.

In general, the pruning procedure is applied to avoid overfitting

the data. However, in our data set, only few variables were

selected in the ‘‘growing phase’’ of the tree. Then during the

‘‘pruning phase’’ only the last node was deleted and, as a result,

there was an increase the misclassification error. Hence, in our

particular case, pruning phase was not really effective and tree

obtained before pruning are more informative.

Finally, we faced the validation issue. Since small sample size

represents a difficult feature to afford a cross-validation procedure,

we evaluated the performance of the tree in terms of misclassi-

fication rate by bootstrapping 1000 trees based on the same

covariates of our analyses (ratio of antibodies, viruses and

combination of both). This procedure led to classifying correctly

70% of the observation for each tree, that can be considered a

robust proportion once related to the initial sample composition.

Discussion

The definition of key protective factors conferring optimal

in vivo protection is still debated. At our knowledge, this is the first

study where a number of humoral parameters were simultaneously

evaluated in a whole range of serum samples from HIV-positive

patients. Despite the small sample size, due to the clear definition

of the research objective, this study can be considered as ‘‘pilot’’,

and design new diagnostic strategies for larger studies. We assessed

antibodies to specific HIV epitopes, to CCR5, virus neutralization

and ADCC, and specific statistical tools were applied, aimed at

defining specific`̀humoral signatures biomarkers characteristics of

each clinical status. Notably, all parameters were simultaneously

tested, using the same methods and the same source of reagents to

minimize variability, which is a relevant issue in HIV research,

when immune correlates of protection have to be uniquely

identified.

Since the analysis was aimed at investigating variables

combinations in defining diagnostic categories, a multivariate

approach was chosen. While standard ANOVA approach

examines covariates effect one by one, the use of CART procedure

allowed for analyzing multiple humoral parameters, classified as

categorical or continuous, for the identification of antibodies

patterns. Correlation of particular immune response profiles and

clinical stages of HIV infection suggests novel immunopathway(s)

that could be exploited to improve immune control of HIV.

By means of Trees representation, it can be easily visualized that

IgA and IgG antibodies exhibited different, sometimes opposite,

patterns throughout patients groups. AI, AIDS and EC groups

showed similar patterns on IgA total response; IgG total response

showed high variability, especially in AI, EC and LTNP group.

Antibodies to CCR5 were only observed in some patients

controlling the infection (EC and LTNP), suggesting that they

could be elicited late in the course of infection and that a low-dose

antigen exposure could allow their maturation. Interestingly, anti-

MPER antibodies showed different patterns in LTNP and EC

groups, suggesting that their generation might depend on the

presence of circulating virus. Moreover, IgG-T20 and IgG-P1

were different in all groups, suggesting that humoral responses

differently addressed 2F5 and other MPER epitopes, variously

assorted within partly overlapping T20 and P1 sequences (see

Tables 1–2). In fact, P1 (aa 650–684) is a 35 amino acid long

peptide, which adopts a 3D conformation that could improve

recognition by antibodies binding conformational epitopes; both

lipid environment and pH are critical for determining physiolog-

Figure 2. Graphical representations of humoral parameters. Panel A shows antibody concentrations, Panel B reports ratio of antibodies to
total IgG or IgA.
doi:10.1371/journal.pone.0058768.g002
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Figure 3. Antibodies functional activities including neutralization and ADCC in the study population. Neutralization profiles obtained
with six different viruses in two assays which use U87 or TZM.bl cell lines as target cells are shown. SOS140 was used to infect U87 cell line, the other
viruses including SF162 (lab strain), three clade B (QH0692, PVO and AC10) and a clade C (ZM214) viruses were used to infect TZM.bl. HC (healthy
controls) pooled sera were used as negative control and TRIMAB monoclonal antibody mix was used as positive control. The values are expressed as
IC50 (serum dilution 1/n for all samples or mg/mL for TRIMAB leading 50% of infectivity reduction). The last panel, in the middle, shows ADCC activity
by all five groups of HIV seropositive subjects. HC (healthy controls) pooled sera and 89.6 IgG were used as negative and positive controls,
respectively. The values are expressed as titers.
doi:10.1371/journal.pone.0058768.g003

Figure 4. Classification trees resulting from CART analysis, performed with binding antibodies (A), functional activities data data
(B) or antibody mediated binding and functional activities (C). Numbers inside grey squares indicate the discrimination level and are
expressed as dilution 1/n.
doi:10.1371/journal.pone.0058768.g004

Humoral Immunity in HIV Infection by CART Analysis
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ical solution structure of P1 epitopes without altering the native

3D-structure of MPER [13]. P1 contains a bent in its C-terminal

region, just placed at the level of the 4E10 epitope; furthermore,

2F5 and 4E10 IgG recognize P1 better than their nominal

epitopes ELDKWA [14] and NWFDIT (unpublished results). In

contrast, T20 (aa 638–673) has a shorter C-terminus compared to

P1 (Tables 1–2), it therefore does not contain the hydrophobic

region that participates in the structure of the W-rich region

present in P1. In addition, T20 does not contain the 4E10 epitope

and would lack proper 3D structure [15,16].

Therefore it would be poorly recognized by antibodies against

conformational epitopes, i.e., the opposite condition observed with

P1 peptide. IgG-QARILAV antibodies appeared in later stages of

infection, were absent in AI and had the highest titers in the AIDS

group. This fact may imply very-low dose antigens, or defective

virions could have triggered such antibody production. Interest-

ingly, virus particles generated in the late phase of the infection,

including AIDS, could differ from those sustaining early infection;

this finding was usually observed in isolates undergoing many

subsequent infection cycles in vitro, and therefore might explain

the lack of such antibodies in AI [17]. A key point emerging from

CART analysis is that data about specific IgG-gp41 and viruses

were both required to define patients’ status (Figure 4, C). The

protective role of anti-gp120 antibodies, taken as a whole, agrees

with previous studies, where gp120-binding antibodies were

associated to virus control via ADCC and ADCVI, with different

antibody subsets mediating virus neutralization in terms of

specificity and of timing of generation [5,18,19]. Notably, these

studies did not take into account specific binding properties and

timing of generation of antibody subsets to gp120 and gp41,

neither IgA contribution was evaluated. Antigen exposure was

required to sustain neutralization activity, as it was found limited

or absent in AI and in EC groups but high in LTNP, HAART and

AIDS. SF162 (lab strain B-R5) was the most sensitive strain in

neutralization assays; neutralizing titers to other clade B strains

were by far lower (e.g. titers ,200 vs PVO), suggesting that each

virus within the panel had a different sensitivity to neutralization

even within the same clade. This is also true for clade C ZM214

strain, which was neutralized at very low titers (titers ,50),

probably due to the fact that each patients’ group can display a

different neutralizing potential towards a given virus strain. This

might depend on the exposure to clade-specific strains, but also on

modes and duration of antigen exposure. In fact, in some studies,

LTNP showed very high neutralizing titers to different virus

strains, while EC patients only achieved poor or no neutralizing

activity at all [4,20,21]. Differently from neutralizing antibodies,

ADCC was observed since early stages of infection while declining

in AIDS, suggesting it plays a role in controlling HIV in AI and in

later stages of infection. The tree based on virus neutralization

data achieved a better group classification (Figure 4, B); strikingly,

it was partly identical to that generated with both virus and

antibody data, thus confirming that functional ability to neutralize

viruses correlated more accurately with clinical classification of

patients than the presence of specific antibody subsets, or with

antibody proportion over total immunoglobulin content. Although

we relied on this statistical technique due to the numerous

advantages listed above and in the Statistics Section, however we

are aware that CART methods suffer a big limitation since they

split only by one variable. This may imply that if the data set has

more complex structure then CART may not catch it correctly.

Indeed, key points emerging from CART analysis were the

following:

N gp41 plays a crucial role in determining a stage-specific

signature, as IgG to whole gp41 or to its QARILAV epitope

appeared in both ‘‘binding antibodies only’’ and in ‘‘com-

bined’’ trees (Figure 4, A and C);

N virus neutralization, i.e. functional activity, was more predic-

tive than antibody binding in defining clinical profiling; after

pruning the tree, neutralization of two virus strain (a lab and a

primary strain) were retained in the model in ‘‘functional

activities only’’ and especially in ‘‘combined’’ tree, while the

other humoral parameters were fully excluded (compare

Figure 4, B and C, vs Figure 5, B and C);

N ADCC, albeit observed in some clinical groups, was less

significant than neutralization in terms of patients classifica-

tion;

N antibodies to gp41 and neutralizing activity could offer a

reliable tool in clinical stratification of small-medium sized

panels of patients;

N CART classification of parameters did not select immune

parameters according to their potential in terms of immune

protection, but only by a clinical point of view.

Thus, we recommend this methodology as suitable to provide

diagnostics guidelines in pilot studies.

Small studies with all the trappings of a major study, such as

randomization and hypothesis testing may be labeled a ‘‘pilot’’

because they do not have the power to test clinically meaningful

hypotheses. There are two major parametric assumptions, which

are routinely violated in pilot studies: sample size, and normal

distribution of the dependent variable. Although nonparametric

techniques do not require the stringent assumptions associated

with their parametric counterparts, this does not imply that they

are assumption free. CART analysis may be seen as an automatic

‘‘machine learning’’ method that produces a decision tree that can

be used for explorative purposes in studies with small sample size

Figure 5. A pruned version of the optimal trees.
doi:10.1371/journal.pone.0058768.g005
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within each cluster and allows to group subjects into more

homogeneous groups, using combinations of variables.

Materials and Methods

Sample Description
Ten Acute Infections (AI), 7 HAART treated patients

(HAART+), 7 AIDS patients at terminal stage of the diseases

(AIDS) naive for antiretroviral drugs, 10 Long Term Non

Progressors (LTNP), 8 Elite Controllers (EC), as shown in

Table 1. The inclusion criteria for LTNP were: 1. certified HIV-

1 seroconversion at least 7 years before enrollment; 2. asymptom-

atic HIV-1 infection and good health conditions; 3. peripheral

CD4+ T cell counts always .500 cells/mm3; 4. never receiving

antiretroviral therapy [22]. EC were defined as HIV-1 infected

patients able to exert spontaneous control of viremia for at least 2

consecutive years in the absence of HAART and viral load

persistently ,37 copies/mL [23]. HAART+ patients had CD4

counts .500 cells/mm3 on antiretroviral treatment for at least 24

and not more than 30 months with chronic and progressive

infection, but without previous AIDS defining disease. The similar

length of time of suppressive therapy in HAART treated patients

has been chosen in order to minimize possible differences in

immune status. AIDS patients exhibited one or more AIDS

defining diseases and CD4+ T cell counts ,250 cells/mm3 (these

patients were recruited between 1985–1993, before HAART era,

and they died after enrollment). In regard to AI, the eligible

patients had to fulfill at least one clinical criterion (signs and

symptoms of acute retroviral syndrome-ARS; signs and/or

symptoms of ARS during the previous 60 days; exposure to

HIV in the previous three months and a negative test in the

previous six months) and one laboratory criterion (detectable

plasma HIV-RNA; only gp120, gp1606p24 bands at Western

blotting; a low positive ELISA with increasing reactivity over

time). The AI population was analyzed at the onset of disease and

six months after receiving antiretroviral therapy. No statistical

differences were found for sex and age among the different

populations. Table 1 summarizes the clinical status of the study

populations.

Pooled sera from 10 Healthy-Controls (HC) not exposed to HIV

were used as negative controls in all assays.

All studied populations were recruited at the Department of

Infectious Diseases of the San Raffaele Scientific Institute or at the

Infectious Disease Clinic of the University of Milan at L. Sacco

Hospital.

The institutional review board and the local ethic committee of

San Raffaele Scientific Institute named ‘‘Comitato Etico della

Fondazione Centro San Raffaele del Monte Tabor-Istituto

Scientifico Ospedale San Raffaele’’ and of University of Milan

named ‘‘Comitato Etico Locale per la Sperimentazione Clinica

dell’Azienda Ospedaliera Luigi Sacco di Milano’’ approved the

investigations and all subjects gave written informed consent for

the study.

Quantification of Immunoglobulins
Total IgA and IgG in all serum samples were measured with

ELISA. Briefly, ELISA plates were coated with a 1:2000 dilution

of a goat anti-human IgA or IgG (100 ul/well) in coating buffer

and incubated for 1 h at 37uC. After washing, blocking buffer (1%

Skim Milk in Phosphate Buffer, Sigma) was added and plates were

incubated for 1 h at 37uC. Serial dilutions of samples and IgA or

IgG reference standards (Sigma) were incubated for 1 h at 37uC.

After washing, Goat anti-human IgA-Biotin (diluted 1:5000) or

Goat anti-human IgG-Biotin conjugate diluted 1:2000 (KPL) was

added and incubated 1 h at room temperature. Then, Streptavi-

din-HRP conjugate (Vector Laboratory) diluted 1:3000 was

incubated for 1 h at room temperature. TMB substrate (KPL)

was incubated for 5 minutes at room temperature in the dark.

Then 10% H2SO4 was added and plates were read out with a

spectrophotometer at 450 nm. Total IgA or IgG concentrations

were determined by interpolation, using the calibration line of IgA

or IgG reference standards, respectively.

Binding of Immunoglobulins to Recombinant env
Proteins and Peptides

The immunoglobulin fractions were tested in sandwich ELISA

to identify binding antibodies to env proteins, as previously

described [24–26]. The recombinant proteins gp120Bal and

gp120IIIB (obtained through the NIBSC, Programme EVA

Centre for AIDS Reagents, UK) and the gp41-specific peptides,

shown in Table 2 were used. Microwell plates were coated with

recombinant proteins (gp120 Bal and gp120 IIIB obtained

through the NIBSC, Programme EVA Centre for AIDS Reagents,

UK) and gp41-specific peptides (Table 2) at 1 mg/mL by means of

overnight incubation in NaHCO3/Na2CO3 buffer. The plates

were saturated for 1 h with PBS and 3% bovine serum albumin.

The eluted Igs were added and incubated for 1 h at 37uC. Ig

binding was demonstrated by means of HRP-conjugated rabbit

anti-human IgG and IgA (Dako, Santa Barbara, California, USA).

The enzymatic reaction was developed and read at 492 nm. The

endpoint titers were defined as twice the optical density (O.D.)

obtained in 20 seronegative control subjects.

Virus Neutralization Assays
HIV-1 pseudovirus stocks were generated by co-transfection of

293-T cells with Env-expressing pCAGGS-based plasmids and a

backbone plasmid lacking Env (pNL4-3.Luc.R-E-) and titrated for

infectivity in TZM-bl and U87.CD4.CCR5 [9,10]. Co-transfec-

tion generates HIV-1 pseudoviruses that are able to infect cells

with a single round infection because the plasmids encode an

incomplete HIV-1 genome. Two genetically engineered cell lines,

TZM-bl and U87.CD4.CCR5 (NIH AIDS Reagent Program,

Germantown, MD) and six HIV-1 strains were used to assess the

in vitro neutralizing activity of all the samples. CCR5- and CD4-

transfected TZM.bl cell line, genetically engineered to express a

Tat-responsive luciferase reporter gene (JC53-bl, NISBC) was used

as target cell for HIV-1 neutralization assay, as previously

described [27,28]. Neutralizing activity of heat inactivated sera

was evaluated using a panel of five pseudoviruses (NIBSC,

Programme EVA Centre for AIDS Reagents, UK), including

three Clade B (QH0692, AC10 and PVO), one Clade C (ZM214)

and one lab strain (SF162). All sera were tested in another

neutralization assay, as previously reported [7,9,29]. Briefly,

U87.CD4.CCR5 cells (a genetically engineered cell line expressing

CD4 and CCR5 as well as the luciferase gene) and an HIV-1

envelope mutant that introduces a disulfide bridge between the

gp120 surface proteins and gp41 transmembrane protein (named

SOS-gp140) were used. The neutralizing activity is readout by the

reduction of luciferase gene expression after a single round of virus

infection. Luciferase gene expression is quantified by luminescence

and is directly proportional to the amount of virus infection.

Pseudovirus Production for TZM-bl System
Neutralizing activity of heat inactivated sera from immunized

animals was evaluated using a panel of five pseudoviruses

(obtained through the NIBSC, Programme EVA Centre for AIDS

Reagents, UK) including three Clade B (QH0692, AC10 and
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PVO), one Clade C (ZM214) and one lab strain (SF162), in a

standardized and validated single round infection assay. Stocks of

single-round infection HIV-1 Env pseudoviruses were produced

by cotransfecting 293T/17 cells with 2 mg of an HIV-1 rev/env

expression plasmid and 12 mg of an env-deficient HIV-1 backbone

plasmid (pSG3DEnv) using Lipofectamine transfection reagent

(Invitrogen). Pseudovirus-containing supernatant was harvested

24 h following transfection, clarified by centrifugation and filtered

through 0.45 mm filters, and single-use 1 mL aliquots were stored

at 280uC. The 50% tissue culture infectious dose (TCID50) for

each pseudovirus preparation was determined by infection of

TZM.bl cells as previously described [27].

Pseudovirus Production for U87.CD4.CCR5 System
A human immunodeficiency virus type 1 (HIV-1) envelope

mutant that introduces a disulfide bridge between the gp120

surface proteins and gp41 transmembrane protein (named SOS-

gp140) were used. Briefly, plasmid (pCAGGS) was used to express

membrane bound envelope (SOS-gp140) of the primary R5 isolate

Jr-FL. Vesicular stomatitis virus G (VSV-G) was used as a negative

control virus. Pseudoviruses were produced by transfection of

293T cells with pNL4-3-LUC.R-E- and Env expressing

pCAGGS-based plasmids. Single round infections were performed

using U87.CD4.CCR5, and luciferase activity was measured in

the culture supernatants. The SOS virus was incubated with

inhibitor for 1 h before being transferred to U87.CD4.CCR5 cells

for a further 2 h of incubation. Unbound virus was removed by

changing medium, and the culture was incubated for a further 1 h.

Cells were plated in a 96-well plate (36104 cells/well). After 1 h

incubation, the growth medium was replaced by fresh growth

medium again and the plate was incubated at 37uC for 3 days.

Then the plate was washed with PBS and Bright-Glo substrate was

added. The cells were allowed to lyse for 2 minutes, and then the

supernatant was transferred to a 96-well white plate and readout

in a luminometer to quantify the luciferase activity. TCID50

values were calculated according to the method of Reed and

Muench [29].

TZM.bl Neutralization Assay
CCR5- and CD4-transfected TZM.bl cell line (JC53-bl

obtained through the NIH AIDS Research and Reference

Reagent Program, USA) was used as target cell for HIV-1

neutralization assay, as previously described [27,28]. Briefly, 3-fold

serial dilutions of serum samples (starting from 1:10 dilution), were

plated in duplicate (96-well flat bottom plate) in 10% D-MEM

growth medium (100 mL/well). 200 TC ID50 of each pseudovirus

were added to each well in a volume of 50 mL and incubated for

1 h at 37uC. TZM.bl cells were then added (16104 cells/well in a

100 mL volume) in 10% D-MEM growth medium containing

DEAE-dextran (Sigma Aldrich) at a final concentration of 11 mg/

mL. Assay controls included replicate wells of TZM.bl cells alone

(cell control) and TZM.bl cells with virus (virus control). Following

a 48 h incubation at 37uC, 150 mL of culture medium were

removed from each well and replaced with 100 mL of Bright-Glo

luciferase reagent (Promega). After 2 minutes incubation, 150 mL

of the cell lysate was transferred to a 96-well black solid plate and

luminescence was measured using a Victor Light 2030 luminom-

eter (Perkin Elmer). The 50% inhibitory dose (IC50) was

calculated as the serum dilution that induced a 50% reduction

in relative luminescence units (RLU) compared to the virus control

wells, after subtraction of cell control RLU. A pool of 2F5, b12

and 2G12 neutralizing monoclonal antibodies (TRIMAB) was

used at 7.4, 2.5, 0.82 and 0.27 mg/mL, as positive control. A pool

of 10 non HIV-related human sera was used as negative control.

Results are shown as % of infectivity reduction per each serum

after subtracting values observed with pool of pre-immune sera.

U87.CD4.CCR5 Neutralization Assay
All samples were also tested in another neutralization assay, as

previously reported [7,9,29]. Briefly, U87.CD4.CCR5 cells were

coated in 96-well plates and incubated at 37uC overnight. Serial

dilutions of test samples and positive control (MAb 2F5) were

prepared in 96-wells plate in triplicate. Three wells for respectively

background control and virus control were reserved. The

pseudovirus stock JFRL-140WT was diluted in growth medium

to a concentration giving 100,000–200,000 CPS, corresponding

with 10–30 TCID50/well, and was added to the diluted sample

containing wells. After incubation for 1 h, virus-sample mixtures

were added to the cell coated plate and incubated at 37uC for 3

days. After washing the cells with PBS, Bright-Glo substrate was

added. The cells were allowed to lyse for 2 minutes, and then the

supernatant was transferred to a 96-well white plate and readout

in a luminometer to quantify the luciferase activity. The

percentage of HIV-1 neutralization was calculated as the ratio of

CPS of the diluted test samples and CPS of the virus control wells

and multiplying by 100 and subtracting the result from 100.

Neutralization activities are expressed as the sample concentration

or dilution required to reduce the CPS by 50% (IC50).

Antibody Dependent Cellular Cytotoxicity Assay (ADCC
Activity)

ADCC tests were performed as described [30], using CEM-

NKr cells coated with each gp41 antiserum, as target cells. NKr-

CEM expressing CCR5 and THP1, were obtained from the NIH,

AIDS Research and Reference Reagent Program, Germantown,

USA. ADCC was performed using a rapid fluorescent-based assay,

as described in Guyre et al. [31].

Briefly, target cells at 36106 cells/mL were dually stained with

the cytosolic dye CFSE: 5-(and -6-) carboxyfluorescein diacetate

succinimidyl ester (Molecular Probes, Eugene, Oregon) at 1mM

and with the membrane dye PKH-26 (Sigma, St. Louis, MO) at

1mM for 5 minutes at 37uC. After dual staining, target cells were

incubated with the antibodies (serum samples at the indicated

dilution, or 2F5IgG as positive control) for 30 minutes at room

temperature. Effector cells, THP1, were then added at an

Effector:Target (E:T) ratio of 10:1. When indicated, cells were

incubated with irrelevant IgG for 15 minutes prior to their

addition in the ADCC reaction. Then, cell co-cultures were

centrifuged for 1 minute at 1000 rpm and incubated for 4 h at

37uC. When infected cells were used as targets, they were fixed

with 4% paraformaldehyde. Fluorescence profiles of the cell co-

cultures were immediately acquired using a Becton Dickinson

FACSCalibur. Data analysis was performed using Cytomics RXP

software. Flow cytometry dot plot of dual-stained target cells

incubated in the same conditions as the effector-target co-cultures,

was used to set the gate of living double positive target cells, where

the cell membrane was still intact. ADCC was calculated as

follows: (% of PKH-26high CFSE negative cells)/(% of PKH-26high

CFSE negative cells)+(% of PKH-26high CFSE high cells)6100.

When HIV-infected cells were used as target, the ADCC was

corrected by the actual amount of HIV-1 infected cells present at

the beginning of the assay, as determined by intra-cellular p24

labeling (as indicated above). Percent of ADCC lysis was estimated

as the difference in amount killing in presence and absence of a

given antibody. Positive control was gp41-specific IgG 98.6

resulting in .22% (SD: +/23) and specific cell lysis at 100 ng/

mL. Titer was defined as the lowest serum dilution or IgG

concentration inducing a specific cell lysis .10% [30].
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Statistics
In the preprocessing data phase, final endpoints were consid-

ered as continuous, whenever quantitative measurements were

taken on a continuous scale, or as categorical endpoints whenever

the variables were collapsing on non-continuous values (such as

presenting lots of zeros and few measurements different from zero).

In this case, dummy variables (0–1 variables) were defined as equal

to 1 if the variable takes values different from 0 and 0 if the

variable was exactly equal to 0. The different nature of the

variables required different statistical tools. Moreover, we used in

the analysis some ‘‘ratio responses’’ obtained by normalizing raw

values of continuous variables over the total of the immune

response (named ‘‘Ratio_name of the antibody’’).

In general, a nonparametric approach was chosen to allow for

small sample size. Figure 2 provides a graphical representation of

non-continuous variables, i.e. parameters found in some subjects

or groups only. In Figure 2 graphical representations of antibody

concentrations and ratios of antibodies to total IgG or IgA.

Classification and Regression Trees (CART) analysis was

performed to develop a clinical decision rule to classify HIV

patients on the basis of all the measurements, i.e. all the antibodies,

clinical endpoints and viruses. Percentage of correctly classified

patients provides a measure of accuracy of the derived rule.

CART analysis is a nonparametric and robust data-mining tool

that automatically searches for meaningful relationships among

variables, thus allowing to discover hidden patterns in complex

data and generating reliable predictive models [32].

A clear advantage of general nonparametric procedures over

commonly used parametric procedures is that underlying depen-

dence structures among biological variables can be modeled with

no need of stringent unrealistic assumptions.

Then, when included in a statistical model, interaction effects

involving more than two covariates can be difficult to interpret.

Moreover, in presence of categorical variables taking a large

number of values with few observations for each category,

convergence problems may occur. Finally, results provided by

traditional methods, such as standard multinomial logistic

regression, are commonly given in terms of probability and are

difficult to communicate to clinicians.

On the other hand, CART trees are data-driven methods easy

to interpret, even for non statisticians, and are characterized by

low computational complexity. Whenever available, a priori

information may be included in CART and may be integrated

with other pattern recognition algorithms (e.g., hidden Markov

models) [33].

CART analysis allows to construct decision trees useful in

classifying subjects into homogeneous groups on the basis of the

choice of optimal cut-points of binary, ordinal, or continuous

covariates, which maximizes a specific split criterion.

Due to its flexibility in handling complex multivariate/time

dependent data, this analysis is gaining popularity in clinical

research [34]. Some clear advantages of CART technique are: i)

no need of pre-selecting variables in advance. ii) CART algorithm

can identify the most significant variables and eliminate non-

significant ones. It is possible to test this property by including

insignificant (random) variable and compare newly generated tree

with the original one, built on initial dataset. iii) results are

preserved under monotone transformation of independent varia-

bles.iv) CART can easily handle outliers. Outliers in feasibility

studies represents a major hurdle. They can negatively affect the

results of many standard classification models, such as Principal

Component Analysis (PCA) and linear regression. However, these

problems can be overcome by CART analysis since, since its

algorithm isolates the outliers in a separate node. Actually, CART

can be applied for the identification of prognostic factors in many

classification problems.

Decision Trees: General Framework
Now we briefly introduce main ideas behind decision trees and

CART algorithms (displayed in Figure 6, A).

A decision tree is made up of nodes and leaves, with each leaf

denoting a class/group. Classes, commonly identified with groups

of patients relevant from a clinically point of view, are the outputs

of a tree.

Clinical endpoints collected throughout the study are the input

data.

Each branch of the tree ends in a terminal node and each

observation falls into exactly one terminal node. Each terminal

node is uniquely defined by a set of rules [8].

A tree has a root node (also called ‘‘top of the tree’’ or ‘‘first node’’)

whose descendant nodes (known as ‘‘daughters’’) can be divided into

terminal and split nodes. Leaf nodes, representing the last level of

nodes, contain the final classification. Intermediate nodes are

called ‘‘hidden’’ layers.

Input data consist of a response variable Y (e.g., an indicator

variables for patients) and a set of explanatory variables

X~(X1,X2, . . . ,Xk) with fixed dimensionality k, where Xi can

be continuous, categorical ordinal/non ordinal, possibly including

missing values.

A decision tree is generated according to the following

algorithm [8]. At each node, you should.

1. examine every allowable split on each predictor variable

(binary splits are generated by binary questions);

2. select and execute the ‘‘best’’ of the splits;

3. stop splitting on a node when some stopping rule is satisfied.

Binary trees, also chosen in our analysis, are the most popular

type of tree. In a binary tree, by convention if the answer to a

question is ‘‘yes’’, the left branch is selected. The same question

may appear more than one time in the network (see Figure 4).

To summarize, at each node, the tree algorithm searches

through the variables one by one, beginning with X1 and

continuing up to Xk. For each variable it finds the best split then

it compares the k best single variable splits and selects the best of

these. Steps 1 and 2 are then applied again to each of the daughter

nodes and so on thus arriving at the full tree.

In Step 2, to select the ‘‘best’’ split, criteria based on indexes of

entropy are commonly applied.

With reference to Step 3, in every recursive algorithm a

stopping criterion must be defined to get an informative good tree.

In the case of decision trees, it is crucial to decide when to stop

trying to split nodes.

If not stopped, the tree algorithm will extract all the information

from the data, so that resulting tree will fit random error or noise

instead of describing underlying relationships among variables. A

standard solution to this problem is to stop generating new split

nodes when subsequent splits only result in very little overall

improvement of the prediction.

Usually, splitting stops when each child nodes would contain

less than five data points, or when splitting increases the

information by less than some threshold.

One of the main drawbacks of decision trees is overfitting. In

many situations, tree tends to grow too big and have too few data

points in each terminal node to make the study worthwhile. To

overcome overfitting problem, trees are then recursively pruned.

For details on different pruning methods, see Breiman et al. (1984)

[8].
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Figure 6. CART toy example. Classification And Regression Trees (CART) are binary decision trees, attempting to classify a pattern by selecting
from a large number of variables the most important ones in determining the outcome variable. A decision tree consists of nodes and leaves, with
each leaf denoting a class. In a binary tree, by convention if the answer to a question is ‘‘yes’’, then the left branch is selected and the same question
may appear in more than one places in the tree. For example, attributes such as ‘‘Unprotected sexual activity’’, ‘‘More sexual intercourses’’, ‘‘Blood
transfusions (before 1985)’’ and ‘‘Being vaccinated against hepatitis A and/or hepatitis B’’ can be used to classify people as ‘‘L’’, low risk of getting
infected with HIV and ‘‘H’’, high risk of getting infected with HIV. Classes (low and high risk of getting infected with HIV) are the outputs of the tree.
Attributes (unprotected sexual activity, more sexual intercourses, possible blood transfusions (before 1985) and vaccine against hepatitis A and/or B)
are a set of features that describe the data. The input data consists of values of the different attributes. Using these attribute values, the decision tree
generates a class as the output for each input data. The top of the tree, or first node, is called the root node, intermediate nodes are the descendant
or ‘‘hidden’’ layers and the last level of nodes are the leaf nodes, that contain the final classification.
doi:10.1371/journal.pone.0058768.g006
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CART Analysis
The CART methodology is known as binary (i.e., parent nodes

are always split into exactly two child nodes) and recursive (i.e., the

process can be repeated by treating each child node as a parent)

partitioning [35]. The standard criterion used in CART to get the

best split to differentiate observations based on the dependent

variable is the Gini rule, i.e., a measure of how well the splitting

rule separates the classes contained in the parent node.

Variables are not selected in advance: CART algorithm is able

to recognize the most significant variables and eliminate the non

significant ones.

Of course, as mentioned in the previous section, when

constructing a tree, crucial steps include deciding how to grow

the tree, how to stop growing, and how to prune the tree to

increase generalization [8]. Once the tree building algorithm has

stopped, it is always useful to further evaluate the quality of the

prediction of the current tree in samples of observations that did

not participate in the original computations, applying for example

cross-validation and V-fold cross-validation approaches. These

methods are used to ‘‘prune back’’ the tree, i.e., to select a simpler

tree, equally accurate for predicting or classifying ‘‘new’’

observations. To summarize, there are three important aspects

in the construction of a tree [8,36].

1. Split selection rule: at each node, choose split maximizing

decrease in impurity (e.g. Gini index, entropy, misclassification

error).

2. Split-stopping rule: grow large tree, prune to obtain a sequence

of subtrees, then use cross-validation to identify the subtree

with lowest misclassification rate.

3. Class assignment rule: for each terminal node, choose the class

with the majority vote.

CART analysis is a powerful nonparametric and robust

technique with significant potential and clinical utility. It is

intended to identify distinct population subgroups and cannot

provide the estimation of net effects of a single independent

variable [37]. For the latter purpose, logistic regression techniques

have been widely used, in order to estimate the ‘‘average’’ effect of

an independent variable on the probability of being in a certain

group, given also a set of other factors. Hence, if the purpose of the

analysis is to quantify the influence of covariates on the outcome,

CART analysis is not an adequate tool and regression techniques

should be preferred in this type of situation. A toy example is

shown in Figure 6, B.

Supporting Information

File S1 Figure S1 and Table S1. Figure S1, ‘‘plotcp’’ function

allows to plot mean and standard deviation of the errors in the

cross-validated prediction of the ‘‘rpart’’ object shown in Figure 5

of the main document. Table S1, The cptable contains the mean

and standard deviation of the errors in the cross-validated

prediction for fitted trees (see Figure 5 of the main document

and Figure S1 in File S1).
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