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DIFFUSION EQUATIONS*
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Abstract. In this work we present finite element approximations of relaxed systems for nonlinear
diffusion problems, which can also tackle the cases of degenerate and strongly degenerate diffusion
equations. Relaxation schemes take advantage of the replacement of the original partial differential
equation (PDE) with a semilinear hyperbolic system of equations, with a stiff source term, tuned
by a relaxation parameter e. When € — 01, the system relaxes onto the original PDE: in this way,
a consistent discretization of the relaxation system for vanishing e yields a consistent discretization
of the original PDE. The numerical schemes obtained with this procedure do not require solving
implicit nonlinear problems and possess the robustness of upwind discretizations. The proposed
approximations are based on a discontinuous Galerkin method in space and on suitable implicit-
explicit integration in time. Then, in principle, we can achieve any order of accuracy and obtain
stable solutions, even when the diffusion equation becomes degenerate and solution singularities
develop. Moreover, when needed, we can easily incorporate slope limiters within our schemes in
order to handle spurious oscillatory phenomena. Some preliminary theoretical results are given,
along with several numerical tests in one and two space dimensions, both for linear and nonlinear
diffusion problems, including a degenerate diffusion equation, that provide numerical evidence of the
properties of the presented approach.
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1. Introduction. Linear and nonlinear diffusion equations come from a variety
of diffusion phenomena widely appearing in nature. They are suggested as mathemat-
ical models in many fields, such as filtration, phase transition, biochemistry, image
analysis, and dynamics of biological groups. In the nonlinear case, the classical so-
lutions to many of these PDEs fail to exist in finite time, even if the initial data are
smooth. In such cases, suitable criteria have been introduced, which allow one to
select physically relevant weak solutions beyond the singularity time.

Recently, relaxation approximations to such PDEs have been introduced. These
methods are based on replacing the equation by a semilinear hyperbolic system with
stiff relaxation terms, tuned by a relaxation parameter e. When ¢ — 07, the solution
of this system “relaxes” onto the solution of the original PDE. Thus a consistent
discretization of the relaxation system for ¢ = 0 yields a consistent discretization of
the original PDE, as can be seen, for instance, in [29] and [2]. The advantage of
this procedure is that the numerical scheme obtained in this fashion does not need
approximate Riemann solvers for the convective term but possesses the robustness of
upwind discretizations. Moreover, the complexity introduced by replacing the original
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PDE with a stiff system of equations is only apparent because it is possible to manage
the discretization in an efficient way.

Relaxation approximations for conservation laws were deeply investigated in [29,
38, 31] and extended to the diffusive case of parabolic equations in [28, 23, 37]; high
order numerical schemes were introduced in [11, 12, 44]. Moreover, relaxation models
based on the Bhatnagar-Gross-Krook (BGK) kinetic approach were developed in
[30, 2]. We notice that the relaxation approximation is analogous to the regularization
of the Euler equations by the Boltzmann or BGK kinetic equation [14, 18, 19, 22, 40, 7].

The aim of this paper is to analyze from both theoretical and computational
viewpoints a finite element approximation of some relaxation systems for diffusion
equations of the form

0
a—? —Ap(u) =0 in  x (0, 4+00),
(1.1) U= gp on I'p x (0, +00),
Vp(u) -ng = gn on I'y x (0,4+00),
Ul gy = U0 in €,

where € is a convex, polyhedral domain in R?, d = 1,2,3, with boundary 9Q =
I'p UT'xy. We denote by mgq the unit normal vector to 02 pointing outside €2, and
9p = gp(x,t), gn = gn(x,t), ug = ug(x). The considered time domain is (0, +00).
Moreover, p : R — R is a possibly nonlinear function. To our knowledge, this is the
first finite element approximation proposed for diffusive relaxation models.

As a typical example of this model, we might consider a homogeneous, isotropic,
rigid porous medium filled with a fluid. If absorption and chemical, osmotic, and
thermal effects are ignored, and if we consider for horizontal flow, it is possible to
deduce the equation

(1.2) %—Aumzo, m > 0,

where v = u(x,t) models the volumetric moisture content; when p(u) = u™, with
m > 1, (1.2) is usually called the porous medium equation.

In this work, p : R — R stands for a nondecreasing Lipschitz continuous function
such that

(1.3) 0<1,<p(s)<L,<+00 forae seR
for given constants L, and [,, p(0) = 0, and there exists so > 0 for which
(1.4) p'(s) >0  forae. s> sp.

In the case I'y = @&, the variational formulation of problem (1.1) reads as follows:
find » with

we L0, T; L) N H (0, T; H™ ), u(-,0) = uo,
such that, for a.e. t € (0,T) and all ¢ € H{(£2), the following equation holds:

/ut¢dw+/v9-v¢dw:0,
Q Q

where 0(x,t) = p(u(x,t)), a.e. x € Q, t € (0,T). Well-posedness of this problem is
discussed, for example, in [21, 27, 33], together with the additional regularity result

6 H(0,T; L*(Q) N L>®(0,T; Hyb).
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After a review of relaxation models in section 2, we introduce in section 3 our nu-
merical schemes based on a time discretization by means of a particular family of
Runge-Kutta schemes and on a discontinuous Galerkin (DG) space discretization.
In section 4, we present some preliminary theoretical analysis, proving L?-stability
of the obtained methods in the case of the one-stage time discretization. Finally, in
section 5, we present numerical tests in order to give evidence of the features of this
approach.

2. The relaxation model. Jin and Xin first proposed in [29] a way to approx-
imate nonlinear conservation laws through semilinear hyperbolic systems with stiff
source terms. The idea was to linearize the differential operator by introducing an
auxiliary variable and a small positive relaxation parameter € such that when ¢ — 07,
the original equation be retrieved. For example, taking into account the scalar con-
servation law in one space dimension,

ou  Of(u)
2.1 — =
(2.1) ot + ox 0,
the following relaxation approximation was proposed:
ou Ov
(2.2) v ou 1
5+l === (0= f(w)
ot ot g2 ’

where a is a constant. Formally, if we let ¢ — 07 in the second equation, we find v =
f(w), which substituted into the first equation gives back the original PDE. Moreover,
it can be shown that (2.2) is a O(g?) approximation of the scalar conservation law

0 0 0 1o}
G o = (@ range).

provided that a verifies the inequalities

—a< fl(u)<a Vu,

which is called the subcharacteristic condition (or Whitham condition). In [29] it
was also shown how the above approach could be generalized to multidimensional
systems of conservation laws in a natural way by adding further auxiliary variables
and equations. Subsequently, the idea to approximate nonlinear PDEs by relaxation
has been extended to diffusion and convection diffusion equations; see, for example,
[1, 2, 28, 29, 32, 36, 37, 11, 13].

In particular, for nonlinear diffusion equations like (1.1), a relaxation system can
be obtained introducing two auxiliary variables, as described in [36]. The first step
consists in rewriting the second order differential equation as a first order system
through the vector auxiliary variable v and the relaxation parameter €, obtaining

0

T yv.ov=0,

ot
(2.3)

ov n 1 V(p(u)) = v

or ez VW T T
Formally, in the small relaxation limit e — 0T, the second equation of (2.3) reduces
to v = —V(p(u)), which substituted in the first equation allows us to recover the

leading order equation (1.1).
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Since (2.3) is still nonlinear, we need to further relax the second equation. Intro-
ducing the scalar auxiliary variable w and a positive constant a, we obtain

It is easy to see that when e — 0T we formally retrieve (1.1), which is now approxi-
mated by a semilinear hyperbolic system. If, for small values of ¢, a Chapman—Enskog
expansion is performed, it is easy to see that the original equation (1.1) with a negative
fourth order additional term of order O(g?) is retrieved, which results in a stable per-
turbation of the diffusion equation. For more details on Chapman—Enskog expansion,
see [15].

Appropriate boundary conditions for system (2.4) can be deduced from those of
(1.1) and are

u=gp on I'p x (0, 4+00),
vV-Nng = —gnN on I'y x (0, 400),
w = p(gp) on I'p x (0, 400);

similarly, suitable initial conditions are

Ujfpgy = U0 %n Q,
V| (_oy = — VU0 %n Q,
wy,,_y, = p(uo) in Q.

We are interested in developing a numerical approximation for (2.4) in the relaxed
limit, i.e., when € = 0 (the so-called relaxation schemes), but the characteristic veloc-
ities of system (2.6) become stiff as e — 07. As described in [37], this numerical issue
can be dealt with by introducing a constant (dimensional) vector ¢ = (o;)i=1,..,4 and
the d x d diagonal matrix

(2.5) A = diag(a),

whose diagonal elements coincide with the components of . The relaxation system
can be rewritten as

ou
E + V-v= 0,
ov 1
(2.6) Fri A2 Vw = = (v— (24 — Id)Vw),
ow 4 1
E—’_a’ Veov= 2 (p(u) ’LU),

where Id is the identity matrix. In the previous systems, the parameter €2 has the
physical dimension of a time, while the dimension of w is equal to the dimension of
u times lengthxlength over time, and each component of v has the dimension of u
times a velocity; finally, the dimension of the diagonal elements a? of A2 is time ™.

In the following, we will set a = 1 and consider o; > 0,¢=1,...,d.
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We notice that since for sufficiently small values of the relaxation parameter ¢,
the relaxation system (2.6) gives a good approximation of the original equation (1.1),
integrating (2.6) becomes a convenient way to develop numerical approximation of
(1.1). In fact, thanks to the simple linear structure of characteristic fields and the
localized lower order term, one can easily develop numerical schemes that are simple
and general and that deal with a wide class of nonlinearities. In previous works (see
[11, 13]), high order methods both in time and space were developed using finite
difference schemes, while in this work we investigate the possibility of using finite
element methods in order to consider more general domains. In particular, since the
solutions of degenerate parabolic equations can show some behaviors that are common
to hyperbolic conservation laws, like the loss of regularity and the appearance of
fronts that travel at finite speed, we choose DG finite elements in order to exploit
the capabilities and the flexibility of this method in convection dominated problems;
see, for example, [17]. Continuous finite elements could be used instead; in this
case, suitable stabilization techniques need to be employed. We do not further enter
into details; we only mention that in [8], for first order linear hyperbolic systems, a
theoretical framework for the design and analysis of both stabilized continuous and
DG finite element space discretizations has been studied.

For the time discretization, we use IMEX-RK (implicit-explicit Runge-Kutta)
schemes. We use IMEX-type methods because of the presence of two different scales
in (2.6), namely, a nonstiff one on the (linear) left-hand side, which can be safely
treated by explicit methods, and a stiff one on the (nonlinear) right-hand side, which
requires implicit methods. Since we consider the relaxed limit (¢ = 0) like in [11, 13],
the IMEX schemes reduce to explicit ones (see (3.6) below).

Explicit time stepping offers some advantages. First, we can avoid solving non-
linear systems; then, it is possible to recover desirable properties of the solutions
(positivity and monotonicity), for instance, by including slope limiters (see the end
of sections 3.2 and 5.2). A drawback is that stability requires the standard parabolic
CFL condition, which constrains the time step to be proportional to the square of the
mesh size.

3. Numerical schemes. High order numerical schemes for systems like (2.6)
were developed in [11], first integrating in time and then approximating in space with
finite differences. As mentioned, we follow these ideas and obtain first a semidiscrete
scheme applying an IMEX-RK time integrator and then a fully discrete scheme by
using a DG spatial discretization.

3.1. Time semidiscretization. System (2.6) can be recast into the form

1
(3.1) st +V-g(s) = —E—Qha(s),
where s := (u,v,w)? and
U1 (%) Vd
Adw 0 ... 0
0 ddw ... 0
g(s) := , he(s) = | v— (4% — W)Vw |,
00 0 plu) —w
0 0 aiw
a*vi d*vy ... dPvy

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/07/15 to 159.149.197.147. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

A110 FAUSTO CAVALLI, GIOVANNI NALDI, AND ILARIA PERUGIA

and V - g(s) is the vector of the divergences of the rows of g(s). We highlight that ¢
is a linear function, whereas h. is a nonlinear function.

A high order time semidiscretization of (3.1) can be achieved by using an IMEX
scheme as described in [5, 39], which allows us to treat implicitly the stiff term on the
right-hand side and to keep explicit the linear left-hand side of (3.1). Moreover, since
the adopted IMEX scheme is only diagonally implicit, each implicit equation can be
solved autonomously and does not match with the other equations.

For simplicity, we consider a uniform time step At: denoting with s™ the numerical
approximation of the variable s at time t™ = nAt, for n =0,1,..., a v-stages IMEX
scheme for (3.1) has the form

(3.2a) s = Atz abxv - g( s(k) Z (k) i=1,...,u,
k=1 k=1
(3.2b) s"tl= AthEXV g(s) Z bMp(s1).

i=1

The coefficients (a5X, bEX) and (alM, bIM) represents the two Butcher’s tableaux of,

respectively, the explicit and the diagonally implicit parts of the IMEX pair. The
time advancing is carried out by solving the implicit equations (3.2a) for i = 1,...,v
and then updating s" at time t"™! with (3.2b).

Since we are looking for relaxed schemes, we let ¢ — 0% in each equation of system
(3.2), having

Zawho(s(k)) =0, i=1,...,v,
k=1

> bMho(s®) =

i=1

So at each time stage k and for each component j, we have that
(3.3) [ho(s™))]; =0,
namely,

w® = p(ul®),
o®) — _wp®)

Substituting (3.3) into (3.2), we find
(3.4a) st = g" AtZa (k). i=1...,v,
(3.4b) st =g — Ath?Xv - g(s®).

i=1

Notice that in the limit ¢ — 07, the original IMEX scheme actually reduces to an
explicit scheme.
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In the following, we will use the particular family of TVD-RK (total variation
diminishing Runge-Kutta) methods introduced in [45]. This class of schemes is able
to preserve some spatial stability properties, like TVD, TVDM (TVD in the mean),
or TVB (total variation bounded), also after the time integration process, while a
generic RK scheme can generate oscillations, even for a TVD spatial discretization
(see [24] for details). Thus, we can rewrite the generic (n+ 1)th time step as follows:

(3.5a) s =g",
i-1

(3.5b) s = Z [Eiks(k) + AtV - g(s(k)) , i=1...,u,
k=0

(3.5¢) s = )

where, as explained in [24], the coefficients a;; and R-k must satisfy
_ i—1
Ak >0, bk A0=ar#£0, Y am =1
k=0

We point out that in order to recover a discretization for (1.1), we need to advance
in time only the first component [s(¥]; = u of (3.4), since it is the only physically
relevant variable of the problem. Moreover, the components [s(i)] i for £ > 2 do not
need to be updated, since they would be immediately overridden in the next stage
by the implicit computation. To sum up, at each time step, we can see a relaxation
scheme as an iteration of the following steps:

1. Initialization:

(3.6a) u® =",
2. Fori=1,...,v,
Relazxation:
(i—1) _ (i—1)
w ™ =p(utY),
(3.6b) W=D — gy,
Transport:
(3.6¢) u® = [ﬁiku(k) + AtbipV - o).
k=0
3. Update:
(3.6d) u" =),

3.2. Space discretization. Having integrated the relaxation system in time, we
need to detail the space discretization of (3.6), for which we propose a DG method.
Let us introduce some notation.

Let 75 be a triangulation of 2, where the mesh parameter h is defined by h =
maxgeT;, hi, where hg = diam(K). Define ng as the unit normal vector to 0K
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Tt

Fic. 3.1. The vector «, a face f, and the two elements K; and K? sharing f.

pointing outside K. To fix the ideas, we assume the elements K to be tetrahedra in
the three-dimensional case, triangles in two dimensions, and, obviously, intervals in
the one-dimensional case. In two and three dimensions, we assume 7; to be shape-
regular and, for simplicity, conformal, i.e., with no hanging nodes. Let F] an FP
be the sets of internal and boundary “faces” (nodes in one dimension, edges in two
dimensions, and faces in three dimensions), respectively, of 7p; we denote by Fj, the
union F} U FP. We will also use the notation F;© and F}' to denote the subsets of
FP of faces contained in I'p and I'y, respectively. If D is a given bounded domain,
we will denote by np the unit normal vector to 9D pointing outside D.

Let f be a face of F5,. We denote by n the unit normal vector to f such that
a-ny > 0, whenever a = (a;)_, , is not parallel to f, or either one of the two
normal vectors (e.g., the one pointirié from the element with smaller index to the one
with larger index in the list of elements, if f € 7/, or the one pointing outside 2, if
f € FB, to fix the ideas) whenever « is parallel to f. Moreover, we name K} and
KT the two elements sharing f in such a way that ny is directed from Kf_ to KJT
(see Figure 3.1).

Let v and ¢ be, respectively, a piecewise smooth function and a vector field on
Tr. On the face 0K~ NOK T, we define

the averages: v} == (0F +07)/2, fo} = (@F +97)/2
the jumps: [Y]w == v nt + v n, [ply =T nt 4 n.

We consider trial and test functions in the following discontinuous finite element
space:

(3.7) Vi ={veL*Q) : v|g € PY(K), VK € Tp},

where P*(K) is the space of polynomials of degree at most ¢ on K.

The problem consists in finding an approximation up € V; of the solution u
of system (2.6) by the relaxation scheme (3.6a)—(3.6d). To that end, we introduce
vp € V,‘f and wy € V, to approximate the auxiliary variables v,w and the test
functions ¥, € Vi, ¢y, € V,‘f. Now we can describe in detail the spatial approximations
of a generic step n.

Relaxation step. We start by considering a single relaxation step in (3.6b). The

discretization of the first equation of (3.6b) can be written as follows: find wéi) eWn
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such that

(3.8) /Q w Dy da = / p(ul ) da

Q

for all ¢, € V. For the second equation of (3.6b), since we are using a discon-
tinuous finite element space, we cannot simply take the piecewise gradient of the
approximating function on the right-hand side; otherwise the jumps at the interele-
ment boundaries would be out of control. We use instead a standard DG gradient
approximation, which also includes jump terms and which is constructed as follows.
We multiply equation (3.8) by discrete test functions, integrate by parts, element by
element, the right-hand side, and approximate the interelement traces by numerical
fluxes, which include information from the neighboring elements and the Dirichlet
boundary condition. In this way, we obtain

/vg)'%dm:/wg)vh"ﬁhdm— ) / By @y, muc ds.
Q Q KeT, 70K

By defining the numerical fluxes @,(:) on each face f € Fj, by

| fw'} if feFl
(3.9) @) = S plgp (1)) if f € FP,
w” if feFY,

and integrating by parts element by element once more, we obtain the following
discretization of the second equation of (3.6b): find vgf) € V¢ such that

/ vgf) “ppdr=— / Vhwg) “pp dx +/ [[w;(f)]]N fonltds

Q Q ]:}{

(3.10) o .

+/ (w,” = plgp (1) ¢y, - o
T

for all ¢, € V,‘f, where Vj, denotes the elementwise application of the V operator. We
set t™() .= " 4 ¢; At for some coefficients ¢;, 0 < i < v, with ¢y = 0, which are the
elements of the vector ¢ of the Butcher tableau (clearly, () = ¢7).

This means that wy) and vgli) are computed from ugli) by solving the algebraic
linear systems (3.8) and (3.10) with coefficient matrices given, respectively, by the
mass matrices in V, and V. Moreover w,(f) is simply the Lo-projection of p(ugf)) on
V, and so it coincides with uﬁj) in the case of p(u) = u.

Transport step. The discretization of the transport step (3.6¢) at the generic
ith stage of the nth time step is performed in a DG fashion: find uﬁf) € V}, such that

i—1

(3.11) / ugj%ﬁh dx = Z l:aik/ ugk)’l,/)h dx + At Bik[Bh(vzk),’l,/)h) — QZ7(k) (¢h>]
Q Q

k=0

for all ¥y, € V,. The bilinear form By(-,+) : V# x V), — R appearing in (3.11) is a
DG bilinear form associated with the divergence operator and Qj, is a time-dependent
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linear functional on V}, depending on the boundary data gp and gy:

(3.12)

where v

B(\® ) — QP ()

/vh o\ 4y, dae — Z/ <’“>—ag’“>)-n1<whds

KeTy,
d (k)
opv;
= 8}“1/) dx — Z / k —v,gkj)) ni,j Ynds|,
= Ve 9 KeT;, 'K

Ef) are the numerical fluzes, which still have to be defined; the dependence

on the (time-dependent) boundary data gp and gn is contained in the definition of
the numerical fluxes on 0.

In order to define the numerical fluzes for the v variable, we go back to the system
(2.6) and perform the following steps:

1.

2.
3.

Diagonalize the operator on the left-hand side of system (2.6) along each
spatial direction and construct the characteristic variables.

Approximate the fluxes for the characteristic variables.

Reconstruct the fluxes of the v variable in terms of the original conservative
variables s.

The diagonalization of the operator on the left-hand side of system (2.6) along
the direction x; involves

(3.13)

[ Ou ] dv; ]
at " Ox;
Ovj | 5 Ow
ot ta J aﬁj
ow | 0y

L ot 8xj

It is easy to see that by introducing the characteristic variables U;, V;, W; defined by

1 1
Uj = 5 (w+a—jvj) y
3.14 1 1
- S GD
W;=u—-w
for j =1,...,d, the expression in (3.13) can be diagonalized into
oU; oU;
ot "% o,
A% A%
3.15 20 g 2L
( ) 875 a‘] aﬁj
ow;
ot
Since

v; = a; (U; = Vj),
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the numerical fluxes for v; can be directly derived from those of U; and V;; more
precisely, in (3.12) we will set

~(k 75 (k 7 (k
(3.16) o) = ay (O - 7)Y

thus, in order to complete the definition of the method, all we need to define are the
fluxes for the characteristic variables U; and V;.

The first two components of (3.15) are linear transport operators with opposite
transport directions. Assume, with no loss of generality, that a; > 0 («; enter the
physical system (2.6) only through its square). It is therefore natural to use upwind
fluzes from left to right for the U; variables and from right to left for the V; variables.

In order to define the numerical fluxes U, i J) and V( J) on each face f € F/, we
need to consider a new orientation of the faces dependmg on the component we are
considering, defined as follows. Fix j: if f is a face in F/, if the jth component of
ny denoted by (ny); is > 0, we set K, = K; and K}, = KJ; otherwise we set
Ky, = Kf and K}, = K. With this notation, l?,gkj) and 17,1(];) are defined on each
f € FI as follows:

k k)\—
o = Wi

)

=Y

k k
](h) — (‘/J(h))+‘f

where the superscripts — and + denote, respectively, the restrictions to K 7. and K Jf i

~(k )

Therefore, on interior faces, the numerical fluxes v, ;, j = 1,...,d, that appear

(3.12) can be reconstructed from Uh_’j and Vh(_’j accordlng to (3.16):

.17 0 = G+ 2R () - i),

\E ﬁgj\ = 0, whenever (ns); = 0.

(k)

where, with abuse of notation, we set

Since only the normal component of ¥, is needed, we can write the vector-valued

(k)

fluxes v,/ in the following more standard way:

anf

[wi ] n

In fact, simple calculations show that on interior faces, the normal component of the
flux defined in (3.17) coincides with the normal component of the flux in (3.18).

On Dirichlet boundary faces, ﬁgf) is defined in a similar way taking into account
the boundary condition w = p(gp(-,t™*))), while on Neumann boundary faces, we
simply define the fluxes as the Neumann boundary condition.

Summarizing, the numerical fluxes 62@ are defined on each face f € F}, as follows:

(3.18) 2 = oy +

o) + 5 [ I if f € .,

(k) _ a-n .
(19 0= 0+ FF () —plan (W) na it 7 e P,
—gnmQ if fe FN.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/07/15 to 159.149.197.147. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

Al16 FAUSTO CAVALLI, GIOVANNI NALDI, AND ILARIA PERUGIA

Remark 3.1. The numerical fluxes ﬁgf) on boundary faces correspond to the

following boundary fluxes for the characteristic variables: if f € FP,

1 " 1 .
5 (p(gpc,t N+ v§,,2) ifny = —nqg, fCTp,

(k) _ 1

=) ( - k) +2gn (-t (k))nﬁj)) ifny=-ngq, fCI'n,

( ]2 if nf =ngq,
1 n(k)Y) (k) ~
- ot — 1f'n,f:ng, fCFD,
2 04] b

(k) _ 1 1 .

Vin = 5 ( (k) + : k) +2gn(-,t (k))nmj)) ifny =nq, fCly,
(Vi) g =—na.

s

Notice that these boundary fluxes are consistent.
Taking into account the definition of v(k) = Agk)(vglk), wp,), the resulting expres-
sions for Bh('vh , ) and Qm( )(1hn) in (3.12) are the following:

Bh(vﬁf),wh) Z/ Vi -vﬁf) Yy dx —/ [[ng)]]zv{{iﬁh}} ds
Q FI
(3.20) * /f =5 I - [l ds

a-n
+ / i w;lk) P ds — / 'vglk) “nq Yp ds

h

and

1) W = [ e O nds = [ n (.m0 i ds.

h ]:h

Remark 3.2. Integrating by parts the first term on the right-hand side of (3.20),
By (vgk), 1p) can also be written as

(vg’“)’qﬁ )= / vﬁf) - Vpn dx +/ {{"’;ﬁ)} [Yn]n ds
Q Fi
a-n
+/ vg’“) ‘nqYnds +/ —f[[w;(Lk)]]N [¥n]n ds
FP Fo2

a-n
—I—/}_D 2fwh1/)ds

As we are going to prove in section 4, our scheme is L?-stable: this kind of stability is
not sufficient to grant that the scheme be, for example, monotonicity and positivity
preserving. To try to regain these properties, one can make use of slope limiting
techniques. There are several limiting approaches that can be found in the literature;
here, we simply recall what a slope limiter is, after [17].
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Given u{® € V), define zi¥ € V), such that
. bi n
/ 2 g d = / uy e+ = AL B o) = Q)] Vin € Vi
Q Q %

where vgk) is related to uglk) through (3.8) and (3.10).
An “ideal” slope limiter projection AIl;, : V, — V}, is a nonlinear operator devised

in such a way that if ugk) = All,vy, for some vy, € Vy,, then
3.22 k| < ‘ “‘“)‘ ,
(3.22) E }TV e R P

where |-| ., denotes the total variation seminorm. A slope limiter satisfying property
(3.22) is said to be TVD. On the other hand, most of the limiters present in the
literature are not TVD; in particular, the min-mod limiter described in [17], which
we are going to use in our numerical simulations, is only TVDM.

For the way our scheme is written, inserting a slope limiter is straightforward: it
is just a projection process that takes place after each transport step.

We do not further enter the discussion on slope limiters, since our aim here is
only to point out how a slope limiter could be employed in our schemes in order to
try to recover, at least partially, some lost properties of the continuous problem.

3.3. Fully discrete relaxation scheme. In order to write the complete IMEX
RKDG-relaxation method for (1.1), we assume we have the functions
w,(f) = relax_w(ugj)),

vgj) = relax_v(w,(j)),
k)\i— k)\i—

n it (0h)ih),
ES) = sl_projection(ugli))

ug) = transport((u

the first two representing the relaxation step, the third the transport step (see (3.6b)
and (3.6¢)), and the last the application of a slope limiter, i.e.,

e relax w: ugf) EVy — w,(f) € V), such that

/ W ppda = / P pnda
Q Q

for all ¥y, € Vh;

e relax.v: w,(f) €EVh— vgj) € V{ such that

/ o) - oy dx = — / Viwy! - @y, da + / [w§” T - {epn} ds
Q Q ]:}{
+ / (s —pgp (- t*M))) @, - ng
7

for all ¢, € V;
(i1 (g, (R)yi—1 i dyi (8
e transport : ((u;, ), _o, (v}, )io) € Vi, x (Vi)' = u;,” € V}, such that

i—1

Jdonan =3
Q

k=0

[aik / Wy dw + At b Ba(w®, ) — P ()]
Q
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for all ¢, € Vi, with B, (v 4,) and Q7"™ () defined by (3.20) and (3.21),
respectively;
e sl projectiom: ugf) €V, — ES) €V, asin [17].
The complete IMEX RKDG-relaxation method for (1.1) reads as follows.
Initialize: Define u!) as the L?-projection of the the initial datum ug onto Vj:

find u?L €V, such that

(3.23) /Q udpy, de = /Q upy, dx

for all ¥y, € Vj,; compute uf) = sl projection(u}).
Time stepping: For n =0,1,...,
(a) Set ugo) = uj.
(b) Fori=1,...,v (time stages),
i. Relaxation: w,(j;l) = relax_w(ugjfl)) and vgjf

ii. Transport: ugj) = transport((ugk))};lo, (v;lk))};lo);

D= relax_v(w,(ffl))

iii. Slope limiter projection: ug) = sl_projection(ugj)).
(c) Update: u*' = o).
(d) Slope limiter projection: u}™' = sl projection(uj™").
4. Stability analysis. In this section, we perform the stability analysis of the

relaxation scheme described in section 3.3 in its basic version, where sl_projection
is the identity function. We will also take

(4.1) a="01rh""ta

with a independent of the mesh size h and the polynomial approximation degree ¢
(see Remark 4.1).

We start in section 4.1 by reformulating the method in a more compact form,
eliminating the v unknown from the system; then we proceed in section 4.2 by stating
some preliminary results needed in the proof of the L2-stability which is developed in
section 4.3.

4.1. Reformulation. In order to perform the stability analysis, it is convenient
to rewrite the relaxation scheme described in section 3.3 in a more compact form by
eliminating the unknown v from the final system: in order to do that, we need to
introduce the so-called lifting operators (see [3]).

For w piecewise smooth on 73, we introduce the lifting £(w) € V§ defined by

(4.2) /Qaw)-sohdwzfﬁ[[wnzv-{{soh}}ds+/f$wsoh-nads

for all ¢, € V1.
We also need to define the lifting Gp(t) € V¢ of the Dirichlet boundary condition

gD(-,t)Z

(43) | 9o = [ plont1) e, nads

h

for all ¢, € V,‘f. With these definitions, we can write the relaxation steps as

/Q v gy, da = — /Q (vhw,g’“ — L)+ gD(tm(’@)) -, dz
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for all ¢, € V4, ie.,
(4.4) o) = (Vg — L) + Go (™),

and the form By (see Remark 3.2) as
Bu(v hn) = - / ol (Vatn — L)) da
Q

a-n o-n
+/ Tf[[wék)]]N [on]n ds +/ waék) Yp ds.
FI FD

h

(4.5)

By inserting (4.4) into (4.5), we obtain

B (vf? (wfl plon (o)) o) = QP wn) = An(wfl n) = PP (W),

where

An(wi ) = /Qmw,i’“’ — L) - (Vnion — L)) da

(4.6) P a-n
+/ —f[[w,(Lk)]]N [¥n]w ds +/ —fw,(f) Yn ds
Flo2 Fp 2
and
n a-n n n
P = [ S plan ) wdst [ gn () s
(4.7) d i

+/ Gp (™M) (Vipn — L(1y)) de.
Q

The method then reads as follows:

Initialize: Define u) as the L?-projection of the the initial datum ug onto Vj:

find u9 € V), such that

/ugwh dx = / uoYp dx
Q Q
for all ¥, € Vy,.

Time stepping: For n =0,1,...,
(a) Set ugo) = u};
(b) Fori=1,...,v (time stages),
i. Compute wéi_l) = relax_w(ugli_l))
ii. Find ugli) € Vy, such that

b

/ ugj)wh dx
0
i1 i
=> [dik/ ul oy, de + At b [An (wi  on) — P ()]
k=0 Q

for all ¥, € Vy, with A, (w'™, ¢,) and P"® () defined by (4.6)
and (4.7);

(c) Update: u} ™ = uﬁl”).
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Remark 4.1. In the linear case, it is immediate to see that the IMEX RKDG-
relaxation method coincides with an RKDG method (see [17]) where the semidis-
cretization in space is performed by a modified local discontinuous Galerkin (LDG)
method (see [3] and [10]).

Comparing our definition of numerical fluxes (see (3.9) and (3.19)) with that of
[10], it is clear that our space discretization in the linear case is an LDG-type method
with
a-Nny

2

(In the notation of [10], C12 is only defined on interior faces, C1; on interior and
Dirichlet boundary faces, and Cs2 on interior and Neumann boundary faces.) For
stability reasons, the stabilization parameter C7; needs to match with an inverse
inequality; this leads to the standard choice

al?

Cn=r

with the constant a independent of the mesh size h and the polynomial approximation
degree £ (see, e.g., [26, 41]).

Ci12=0, C2 =0, (C11)|, =

4.2. Preliminary results. Let us define

(4.8) 14he = An(@,9)

for all v € H'(Ty), where H'(T3,) denotes the space of functions in 2 whose restric-
tions to K belong to H(K) for all K € Tp,. In order to prove that expression (4.8)
actually defines a norm, we will make use of [16, Lemma 3.2]. Even if [16] was focused
on the multidimensional case, the proof of [16, Lemma 3.2] clearly also covers the case
d = 1. We report this result for completeness.

LEMMA 4.2. Let K C R?, d > 1, be an element and let fi,..., f4 be d faces of
K. Given o € L>(K)? and ¢; € L(fi), i = 1,...,d, there evists a unique function
Z € PYK)? such that

/(Z—o-)~vdw:() Yo € PFHK),
K

/(Z-'n,l-—(i)wds:() Vw e PUS), i=1,...,d,

where n; is the outward normal unit vector of f;.
PROPOSITION 4.3. The expression (4.8) defines a norm in Vi, and thus

(4.9) |AR(u, )| < |Jullpcll¥llpe Yu, v € V.

Proof. Tt is clear that || - | pg is a seminorm. In order to show that it is a norm,
we only need to prove that ||| pe = 0 implies ¢ = 0.
In order to do that, notice that

a-n a-n
0= An(6,0) = Vit = LONE o + [ S WlRds+ [ P Ras
7l FP
implies V10 = L(v), as well as
(4.10) []n =0 on each face f € F{ such that - ny # 0,
(4.11) ¢ =0 on each face f in F© such that a - ny # 0.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/07/15 to 159.149.197.147. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

DG APPROXIMATION OF DIFFUSIVE RELAXATION MODELS Al121

Since o is constant, then a -1y # 0 on at least one face on each element K, say, fx;
we denote by F7* the set of all fx.
By definition of £, V¥ = L() can be written as

/w-sodw—/[mm-{{so}}ds—/ b mads—0 Ve Vi
Q Fi FP

In each K € T, we choose ¢ = Z given by Lemma 4.2 with

o=V,
Ci = _[['QZJ]]N -n; on fz < (8Kﬂ.7:}{),
G = —1 on f; € (0K N FP),

where f; # fix fori=1,...,d, and we obtain

IVilgo+ [ s+ [ wras—o,
Fu\FR Fi\Fx
which, together with (4.10) and (4.11), implies that v is constant in every K € Ty,
[]n = 0 on every f € F} and ¢ = 0 on every f € FP, and thus ¢ = 0.
The continuity property (4.9) is straightforward. O
We define the L2-norm on the set of faces Fj, as

1l 7, = > 115

fEFn

and the L?-norm on subsets of Fj, similarly.
The following inverse inequality holds true.
LEMMA 4.4. There exists constant Ciyy > 0 independent of h and £ such that

1¥]pe < Cinn R % l0.0 Vi € V.

Proof. First, we recall from [41, Proposition 3.2] and [42, Proposition 4.2] that
the lifting operator £ satisfies the following stability bound: there exists a constant
Ciige > 0 only dependent on the shape regularity of the mesh such that

(412)  [L@)loa < Cure (1607 2[WInllo 71 + 107 0llo 7p) Vo0 € Vi

Using (4.12) and the standard hp-version inverse estimates (see, e.g., [43] and [26]),
for all ¢ € V},, we have

a _ —

1Wl36 <IVbl3a+ I1£0) B0 + 2 (leh= /2Rl 12 5y + 1A= /2512 - )
a _ _

<1l + (20 + 51 ) (1en 2100w gy + w200 )

<CCR[[llos

with C only depending on the shape regularity of the mesh and on |a|; taking Chig =
V/C completes the proof. O
We set, for brevity,

Ny(t) = [€h~ 29 (-, t)llo.zp + lgn (-, t)llor -
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PRrROPOSITION 4.5. There exists a positive constant Ciyng independent of h and £
such that

PO @)] < Can Ny wlloe Y € Wi

Proof. We estimate the three terms of [P} ()| (see (4.7)) separately.
For the first one, the weighted Cauchy—Schwarz inequality immediately gives

(4.13)

a-n
|, S plan () ws
s

<Cle hil/ng('a tn’(k))”mf,? ||”L71/21/1|

0,FP

< C e Pgp (-t ) o 2014 b,

where C' > 0 depends on the continuity constant of the nonlinearity p and on |a| but
is independent of h and /.

We consider now the second term. We observe that since gn(-,t) € L?(T'y) for
all t, there exists g(-,t) € L?(Q)? with V- g(a,t) = 0 in Q for all ¢ such that for all ¢,

0.0 < Callgn (-, 1)]

§(w7t)nQ:gN on PNa H§(7t)| 0,I'n>

with the constant C > 0 only depending on 2. This can be easily seen by considering
the auxiliary problem

—Ap=0 in Q,
¢=0 on I'p,
Vo -ng=gn on I'y,

which admits a unique solution ¢ satisfying |Vél|lo.0 < Callgn(-,t)]lo,rn, and setting
g(-,t) := Vo for all t.

Thus, we can rewrite the second term of |P,’Z7(k)(1/))| as follows. We omit, for
brevity, the dependence on t in the intermediate steps. Using the definition of £, in-
tegrating by parts, and recalling that V-g = 0 and [g]xy = 0 on all faces in F}, we have

|5 = [ G-Vivds— [ gay-[lvas— [ g navas

= [ Vegudst [ (@0} +A@d- W) o

+/ g-nm/)ds+/ g-nqids
]:D ]:N

h h

- [ 4@y Wivas— [ G-navas

=/ G- nowds,
=

and thus we have the bound

< 1g(, " 0.2 Vit — L) o0

[ oy s

h

(4.14)
< Callgn (- t™ ™)

oy [Ylpe.
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The lifting gg’“ﬂ) of the Dirichlet boundary condition satisfies a bound similar to
the bound (4.12) for the lifting £ and which can be proved in a similar way:

n,(k — n
1975 0. < Cuaelle b2 (-t 0 g 2o ¥l pe-

Therefore, for the third term, we have

/Q Gy ™ (Vi — L) de < 65" 0.2l (Vv — L)oo

< Clichéh_l/ng(',t"’(k))Ho,fﬂWHDG-

(4.15)

Considering together (4.13), (4.14), and (4.15) completes the proof. O

4.3. Proof of L2-stability. In the following proof, we restrict ourselves to the
case of the one-stage time discretization (forward Euler method). The general case is
not a straightforward consequence and is still an open issue.

The method in this case reads as follows:

Initialize: Set u)) = L*-projection of ug onto Vj, (see (3.23)).
Time stepping: For n =0,1,...,
(a) Compute

(4.16) wy, = relaxw(up);

(b) Compute uj ™' € Vy,:

uttt —up
(4.17) / hTth Yndz + Ap(wpy,vn) =Py (¥n)  Yn € Vi
Q
For the stability analysis, it is useful to rewrite the method as follows:
Initialize: Set uy = L*-projection of ug onto V, (see (3.23)).
Time stepping: For n =0,1,...,
(a) Compute

(4.18) gy, = relaxw(up);

(b) Compute g € Vy:

n+1

(4.19) M/ % VYn dx + An(qy,¥Yn) = Py (n)  Vbou € Vh,
o

where p is an arbitrary parameter such that 0 < u < L, 1 with L, as
in (1.3);
(c) Compute uf™! € Vy,:

(4.20) up ™t =g+ (gt — ).

We notice that these two algorithms are equivalent; in fact, ¢! in (4.18) is equal
to wy in (4.16), and combining this with (4.20) and (4.19) gives (4.17).

Remark 4.6. The only restriction on the choice of the positive constant p in (4.19)
and (4.20) depends on the nonlinearity p of the original problem (1.1), namely, u
has to satisfy 0 < p < szl, where L, is an upper bound for p’. The stability
properties of the method are related to the possible choices of p as indicated in
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Theorem 4.7 and Corollary 4.8: larger values of y give a less-restrictive CFL condition
and corresponding smaller stability constants. Practically, the knowledge of a sharper
Lipschitz constant of p allows us to determine a less-restrictive CFL condition.
We prove our stability result following [34]. First, we introduce some notation.
Given an absolutely continuous function A : R — R such that A(0) = 0 and
0 <N < A < +o0, define the convex function

Dy = / Az)dz Vs € R.
0
Then &, satisfies

(4.21) i)\2(8) < By(s) < =57 Vs € R.

A
2A 2

The function ®, thus satisfies (4.21). Moreover, setting
p=1—pp,
we have that
0<p(s) <1 for a.e. s € R,

and thus ®g also satisfies (4.21) with A = 1.
THEOREM 4.7. Consider the method detailed at the beginning of section 4.3. Let
& be any value in (0,1). Provided that

2

dph
(4.22) At < 302 64(1_5)’

inv

for every time step m we have

2 1 4(1 — £2
b0 ZIlq+ Chalm A [5— n M] A2,

(4.23) pllp(uh’)] £

where we set

N = max  Ny(t").

g 0<n<m-—1

Before proceeding with the proof of Theorem 4.7, we highlight that the constant
¢ in (4.22) and (4.23) can be chosen arbitrarily in (0, 1). Clearly, if we choose a smaller
&, the condition (4.22) on At is less restrictive, but the price to pay is a larger stability
constant in (4.23). For £ = 0.5, for instance, we have both reasonable CFL conditions
and stability constants.

Proof of Theorem 4.7. We denote by (-, -) the L?(Q)-inner product, for simplicity,
and by II;, the L%(Q)-projection onto V.

Step 1. Take 9, = At g} in (4.19). Using (4.20), we obtain

AtPR(gh) =plar™ — g, apn) + At An(gh, qf)
=ulgy™ =gt — g = an gt = 4 + At De

1
= (up ™ —up gy ) - ;IIUZJrl —upll§ o+ Atllg; e
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Adding over n =0,...,(m — 1) gives

m—1 m—1

ALY PR(gh) =Y (uptt —up, gt
(4.24) n=0 n=0 )
1 — n n — n
T Z o up||§ o + At Z i Be-
n=0 n=0

We bound Y7, (uZJr1 — up, g™ following [34]. For completeness, we report
here the complete proof.
From (4.20) and ¢} = II; (p(u})), we have

G = = )+ ().
and, taking into account the definition § = I — up, we can write
G = ST ) + o= (B ) = T (A7)
+ o = ST (BlR))

Therefore, using ®, = A and the convexity of ®,, for both A = p and A = 3, the fact
that £’ > 0, and the identity

2a(a — b) = a* — b* + (a — b)? Va,b € R,

we obtain

n n 1 n n
(W — g > / @y (0 ) — By(uf)] do 40

n+1

(H up S0 = lunlls o + llup = uitlE o)

+i (@5 (uf) — D (u )] da.

Adding over n =0,...,(m — 1) gives

m—1
n n 1 m
> =™ = 5 [ 8,00~ 0, do
n=0
1 n+1 n|2
+ 1 lup 3.0 = lunlls .o + Z [up™ = urlloe
1 0 m
+ 2 [®5(up) — s(up')] de,

and using (4.21) with A = p and A = 3, where A = =1 if A = p, and A = 1 if A = 3,
we get

m—1

n n /1/ m n n
(4.25) Z(uh+l_uh7qh+l) ZHP(“h)H%Q || h||oQ+ Z [up ™ = up|lf o

n=0
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For the term At Z:L:_Ol Pr(qy), Proposition 4.5 and the Young inequality give

Pit(ap) < ““Af(t“) + Jllai e

with n > 0, and thus
=y n(. n thsmAt m\2 77At = n||2
(4.26) At Prgr) < T(Ng )"+ - > llailbe-
= n=0

Therefore, inserting (4.25) and (4.26) into (4.24), we obtain

m—1

At Z HQh”DG +7 Hp(uh )Ho o= 2 ||Uh||o Q + Z ||UnJrl - UZ”?)Q

(427  "°

C% .mAt m) T]At
+hT(N Z larbe-

Step 2. Take ¢, = %(q}’f“ —¢q7) in (4.19). By applying the continuity of A(-, "),
Proposition 4.5, and the inverse inequality of Lemma 4.4, we obtain

At
gt = qrlig g < FthHDGHq"Jrl — drllpa
At
+ Icrhs (tn)anJrl — 4 llpc

At
=< 701an2 Hlarllpe + Cons No(t")llay ™ — azllo.c.

and, due to (4.20),
lup ™t = unllo.e < AtCuuyh™ [l DG + Crns Ny (")
Let £ € (0,1); since
(a+b)?*<(1+8a*+ 1+ M Va,beR, a,b>0,
we have
(428)  |lup™ —upllg @ < APCLLRT L+ E)llahha + (1 + € CRN(E")?).

Step 3. Insert (4.28) into (4.27). We get

s C% mAt 9
At Z lanllbe + 5 HP(Uh Moo < 2 ||Uh||09 + %(N;n)
n=0

nv

441 h?

3ALC2,
<W(1+5 >Afz laiIDe-

M(l e (WM
g
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Take 1 = 262, Then, if (4.22) is satisfied, we have
3ALCE 04

1—¢2) - 22 (g >
(1-€) =" (119 20,
and thus
Bym 1 CRsm AL o
7 lIpCui Moo < @IIU%II% + ZT(Ng )?

3m At2C2 C3 0 e
T e,

which, taking into account (4.22), gives

" 1
ZHP(“T)H&Q < ZH“%H&Q

+Chum At | 7z + (1 €)1 =) (7).
which concludes the proof. O
In the following corollary, we transfer to {uj'} the stability result proved for
{p(u)}. A strict monotonicity of the nonlinearity p toward +oo is needed in the
proof; this is guaranteed by assumption (1.4).
COROLLARY 4.8. Provided that condition (4.22) is satisfied, for every time step
m we have

m 207 CrChis 1 41-¢) - 2
ol < S N0 + <2 n a0 |+ 2 g+ 3
I p 3 £
where we have denoted by C), the continuity constant of p~' in [sq, +00).
Proof. Set Sp, :={x € Q: |ul*(x)| > so}. Then, we have

1

2
luilg.0 = lui b s, + luitlls ors,, < Collp(@ig o+ 55 1907,
and Theorem 4.7 allows us to conclude. 0

5. Numerical results. In this section, we show the results of several numerical
simulations for both the linear and the nonlinear diffusion equation (1.1), in one and
two space dimensions. In the matter of coupling spatial and temporal approximation
orders, we notice that if the solution of the continuous problem is smooth enough,
when we use polynomial reconstructions of degree ¢, we expect a O(h*!) error (mea-
sured in the L?-norm), while when we integrate in time using a Runge-Kutta scheme
of order r, we expect a O(At") error. Since the time integration step At is subdued
to the parabolic stability constraint (4.22), i.e., At = O(h?), the order of convergence
of the time discretization is given by O(At") = O(h*"). In accordance with this,
to match in an optimal way the spatial and the temporal reconstructions, when the
solution is regular it is natural to couple spatial elements of degree ¢ together with
Runge-Kutta schemes of order r = [(£+1)/2]. In particular, for the time integration,
the coefficients of the explicit parts of the IMEX schemes we use are

A =(1), Bi=(1), AQ:(} 2>,B2:((1) ?)

2 2 2
1 00 1 0 0
Az=12 § 0], Bs=|0 1 Of,
1 2 2
3 0 3 0 0 3

where A; and B; refer to a scheme of order j written in the form (3.5).
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5.1. Linear diffusion tests. In the following simulations we consider the two-
dimensional heat equation in the domain Q = [—1,1]?, coupled with Dirichlet bound-
ary conditions:

— —Au=0 in Q x (0,7,

(5.1) u(z,t) = on 002 x (0,7,

u(z,0) = z + sin(mz) sin(my) in €,
with analytical solution
u(z,y,t) = = + exp (—2r%t) sin(7x) sin(7y).

We compute the errors and test the convergence rates of the scheme described in
section 3 as we vary the polynomial degree ¢ of the spatial discretization and the
order r of the Runge-Kutta scheme used for the time integration.

In section 4, we proved L2-stability in the case of a defined by (4.1). This analysis
was restricted to the case of one-stage time discretization, but the numerical results
reported below seem to indicate that the scheme is stable also when several time
stages are used.

In the following simulations, we are also going to test the effects of the choice of
the stabilization parameter « independent of the mesh size h (i.e., |a] = O(1) instead
of |a] = O(h™1)).

We performed the simulations using six subsequently refined unstructured meshes
with mesh size h = 1.70, 0.85, 0.47, 0.26, 0.13, 0.06, respectively, avoiding further
refining the mesh when the computed error has already reached machine precision.
The obtained results are shown in Tables 5.1 and 5.2, which gather the errors in the
L2-norm and the estimated convergence rates, respectively.

For ¢ > 1 and |a| = O(h™!), these experiments confirm that optimal expected
rates £ + 1 are achieved. Moreover, they show that the choice || = O(1) is effective.
In fact, if we compare the corresponding convergence rates and the errors for |a| =
O(h™') and |a| = O(1), we can see that in most cases, we have similar results, even
if we can highlight a more regular behavior for the simulations with |a| = O(h™1).
Despite the lack of theoretical result for the case of piecewise constant elements, we
also tested our scheme for ¢ = 0; it seems that in this case, first order convergence is
achieved, at least with the choice |a| = O(1). Very similar results were also obtained
on structured grids constructed by dividing each element of Cartesian grids into two
triangles.

In the next simulation, we investigate the effect of the stabilization coefficient
a - ny, which is a nonstandard DG-stabilization (there is no stabilization on edges
parallel to at). In order to do this, we consider the following linear heat equation in
the domain Q = [0,4]? with a Dirichlet condition on the boundary I'p = [0, 4] x {0,4}
and a Neumann condition on the boundary I'y = {0,4} x [0,4]:

%—Au=0 in Qx(0,7),
(5.2) u(z,t) = on I'p x (0,T),
Vu-ng =0 on 'y x (0,7,

u(z,0) =z + sin (gx) in Q

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/07/15 to 159.149.197.147. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

DG APPROXIMATION OF DIFFUSIVE RELAXATION MODELS A129

TABLE 5.1
L2-norm of the absolute errors of the numerical solution for the linear test problem (5.1)
for several spatial and temporal approximations and for two different choices of the stabilization
parameter o.

[ h=170 | h=0.85 | h=047 | h=0.26 | h=0.13 | h =0.06
£=0,r=1
o] = O(1) 5.95e-01 | 3.77e-01 | 1.93e-01 | 1.07e-01 | 5.56e-02 | 3.03e-02
|l = O(h=1) | 5.94e-01 | 3.75e-01 | 2.01e-01 | 1.22e-01 | 6.78¢-02 | 4.52e-02
l=1,r=1
o] = 0(1) 2.95¢-01 | 1.01e-01 | 3.08¢-02 | 8.21e-03 | 2.12¢-03 | 5.36e-04
|l = O(h=1) | 2.95e-01 | 1.03e-01 | 3.13e-02 | 8.38¢-03 | 2.18¢-03 | 5.51e-04
L=2,r=2
la| = O(1) 8.57e-02 | 2.40e-02 | 2.93e-03 | 3.76e-04 | 4.66e-05 | 5.84e-06
|l = O(h™1) | 8.61e-02 | 2.38e-02 | 2.93¢-03 | 3.79¢-04 | 4.69e-05 | 5.85¢-06
L=3,r=2
la| = O(1) 4.70e-02 | 3.03e-03 | 2.34e-04 | 1.52e-05 | 9.70e-07 | 6.09e-08
o) = O(h~1) | 4.78¢-02 | 3.11e-03 | 2.41e-04 | 1.55¢-05 | 9.81e-07 | 6.12¢-08
{=4,r=3
[af = 0(1) 8.53¢-03 | 5.09¢-04 | 1.65e-05 | 5.89e-07 | 1.81e-08 | 5.65e-10
|| = O(h=1) | 8.54e-03 | 5.26e-04 | 1.74e-05 | 6.26e-07 | 1.91e-08 | 5.93e-10
=5 r=3
[ =0(1) 4.31e-03 | 5.75¢-05 | 1.18e-06 | 1.94e-08 | 3.10e-10
|| = O(h=1) | 4.33e-03 | 6.00e-05 | 1.26e-06 | 2.10e-08 | 3.35e-10

TABLE 5.2
Computational convergence rates of the numerical solution for the linear test problem (5.1)
for several spatial and temporal approximations, and for two different choices of the stabilization
parameter o.

[ h=1.70 | h=0.85 | h=047 | h=0.26 | h=0.13 | h =0.06

£=0,r=1

[af = 0(1) — 0.658 1.120 0.994 0.916 0.918

la| = O(h™1) — 0.663 1.042 0.843 0.848 0.592
l=1,r=1

o] = O0(1) — 1.539 1.859 2.077 1.922 2.044

la] = O(h~1) — 1.521 1.857 2.067 1.915 2.040
=2,r=2

[ =0(1) - 1.833 3.290 3.218 2.969 3.085

la] = O(h~1) — 1.857 3.272 3.207 2.970 3.091
L=3,r=2

[af = 0(1) — 3.955 4.003 4.287 3.910 4112

la] = O(h™1) — 3.941 3.997 4.306 3.920 4.120
{=4,r=3

[af = 0(1) — 4.068 5.352 5.234 4.948 5.002

lal = O(h™1) — 4.020 5.330 5.212 4.957 5.00
=5 r=3

[af = 0(1) — 6.231 6.069 6.442 5.881

la] = O(h™1) - 6.174 6.033 6.427 5.876

with analytical solution

(,t) =x + ST s (f)
u\x, =X exXp 4 Sin 2:,C .

If in this situation we choose a = (1,0)7, - ny vanishes on the whole I'p. Since the
stabilization coefficient is not present on the Neumann boundary (see (3.19), (3.20),
and (3.21)), no boundary edge is stabilized. In order to reduce as much as possible the
number of interior edges on which the stabilization acts, the domain 2 is discretized
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F1G. 5.1. Solution of problem (5.2) at T = 0.1: even if the stabilization coefficient o - ny
vanishes on all the boundary edges, the scheme is still stable.

through structured meshes obtained from Cartesian grids as before. The proof we gave
in section 4 stated that in this situation the scheme is stable. We tested numerically
the evidence of this fact, and in Figure 5.1 we can see the stable numerical solution
obtained for (5.2) at time 7" = 0.1 on a grid with 512 triangles, using a piecewise
discontinuous quadratic elements and the second order Runge-Kutta method.

As mentioned in Remark 4.1, in the linear case our space discretization is a mod-
ified LDG method. More precisely, it is an LDG method with reduced stabilization,
again with the notation of [10], while in the standard LDG method the stabilization
parameter C7; is strictly positive in all the interior and Dirichlet boundary faces, in
our scheme (C11)|, = 0 whenever - ny = 0. There are other LDG methods with
reduced stabilization in the literature. We mention here the one proposed in [16],
where an artificial wind is introduced, and choosing the coefficient C'15 in a suitable
way allows for removing the stabilization from interior and inflow boundary faces,
without altering the convergence properties. A similar approach is the one studied
in [35]: on structured quadrilateral meshes, it is proved that it is enough to stabilize
only on the part of the Dirichlet boundary which is inflow with respect to the vector-
valued coefficient C15. (Also in this case, the role of C15 is important.) A different
philosophy is applied in [9]. There, the LDG method with C'12 = 0 is considered, like
in our case, and the stabilization reduction consists in penalizing only some of the
jump modes (either the lower or the higher ones), but on all faces. Provided that the
number of the penalized modes is suitably chosen, this method possesses the same
convergence properties as the original LDG method.

5.2. Nonlinear diffusion tests. We consider in 2 = [—4,4]? the porous media
equation
ou m .
(5.3) 5 Ay™ =0 in Qx (0,7)

with homogeneous Dirichlet boundary conditions. Equation (5.3) degenerates for
u = 0, since p’(u) = 0; thus, compactly supported initial data give rise to solutions
with interfaces that travel with finite speeds, as the well-known similarity solution
studied by Barenblatt (see, for example, [6]).
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F1G. 5.2. Numerical solution of problem (5.3) with Barenblatt initial datum at final time T = 0.5
seen in isometric perspective (left plot) and from above (right plot). In the right plot, the white line
represents the contour of the support of the analytical solution.

Simulations show that our scheme applied to problem (5.3) is stable and accu-
rate. In Figure 5.2, we report the solution of (5.3) with m = 2 obtained evolving
the Barenblatt solution until final time 7" = 0.5. The simulation uses piecewise dis-
continuous cubic elements and forward Euler for the time integration; we choose the
stability parameter & = h~1(1,0). As we can see, the shape and the symmetry of
the solution are correctly represented, and the speed of the traveling front is correctly
approximated by the numerical scheme. We have observed that these properties are
independent from the choice of the direction of the parameter a.

Another interesting nonlinear test also involves (5.3), but in this case we consider
m = 3 and we take as initial datum the C! function

en gy = LB TR, T <
’ 0, Va2 +y? > 1

This test is a two-dimensional version of that proposed in [25]. As shown in [4] for the
one-dimensional case, the solution with initial condition (5.4) develops a discontinuity
in Vu at some finite time Ty > 0 and has a front that initially stands still and then
starts expanding at a certain finite time 73. In Figure 5.3, we can see four different
situations of the evolution of (5.4): first the solution is regular, then it starts losing
regularity, and finally the front expands.

We remark that since the exact solutions of the tests we performed on (5.3) present
discontinuities in both Vu and 0;u, we cannot expect to increase the convergence rate
by raising the approximation orders: in fact, all the simulation we performed achieved
the 1.5 limit convergence rate. However, we observe that in some applications, for
example, in image processing methods based on PDEs, we have to handle a fixed
computational grid; then one could take advantage of a higher order method to get a
lower error.

We consider now problem (5.3) with m = 2 in one space dimension with initial
condition given by the one-dimensional Barenblatt function. In Table 5.3, we compare
the errors of the simulations at the same final time ¢ = 2 for two different fixed
numbers of spatial elements (N = 20 and N = 640) and for several spatial and
temporal approximations with stabilization parameter @ = h~!(1,0). Also in this
case, rotating a does not significantly affect the simulation results. We can see that
increasing the degree of the spatial reconstruction considerably decreases the error,
while passing from explicit Euler to higher order Runge-Kutta schemes seems not to
give much benefit: we remark that explicit Runge Kutta schemes are very sensitive
with respect to the regularity of the solution.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/07/15 to 159.149.197.147. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

A132 FAUSTO CAVALLI, GIOVANNI NALDI, AND ILARIA PERUGIA

T=0.1 T=0.2

\
A
I

F1a. 5.3. Numerical solution of problem (5.3) with m = 3 and with initial datum (5.4). Upper
left figure: initially the solution is regular and the front does not evolve. Upper right figure: the
solution starts to develop the discontinuity in Vu. Lower left figure: the solution has lost regularity
but the front still does not evolve. Lower right figure: the front is moving.

TABLE 5.3
L2%-norm errors for the solution of the problem (5.3) in one dimension for two different numbers
N of elements with different degrees £ of polynomial reconstructions and orders r of Runge—Kutta
methods. Increasing the spatial reconstruction degree allows appreciably more accurate solutions,
while a higher order time integration method has little affect on the accuracy of the solution.

N =20
(=1 {=2 (=3
r 1.265e-02 9.350e-03 2.273e-03
r= 1.185e-02 8.817e-03 2.224e-03
r 1.187e-02 8.818e-03 2.224e-03
N =640
(=1 =2 =3
r 9.5488e-05 | 5.4739e-05 9.981e-06
r= 9.4351e-05 | 5.4349e-05 | 9.9148e-06
r 9.4351e-05 | 5.4349e-05 | 9.9148e-06

As pointed out at the end of section 3.2, the L2-stability does not grant that the
discrete solution reproduce some properties of the continuous one, like positivity or
monotonicity preserving. All the solutions we computed in the nonlinear tests showed
oscillations near the fronts and the positivity of the solution was not preserved. This
can be recovered at least partially with the use of suitable limiting techniques, as
described in section 3.2. In Figure 5.4, we compare the solutions obtained for the
above one-dimensional problem, with piecewise linear polynomial approximation in
space and explicit Euler, with and without slope limiter (we have used the min-mod
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Without slope limiter With slope limiter

0.025 p 0.025,
= Numerical Solution P Numerical Solution
— — = Exact Solution | — — — Exact Solution

0.02 0.02

0.015]

-4.4 -4.2 -4 -38 -36 -34 -32 -4.4 -42 -4 -38 -36 -34 -32

Fic. 5.4. A detail of the solution of problem (5.3) at t = 2: in the left plot the solution is
obtained with no slope limiting techniques and presents oscillations; in the right plot we can see the
solution obtained with the scheme corrected by the min-mod slope limiter.

slope limiter described in [17]): the oscillations of the nonlimited solution are smeared
out by the slope limiter.

We remark that the slope limiter we used in this simulations does not grant that
the resulting scheme be positivity preserving, since, as shown in [17], it only grants
that the scheme be total variation diminishing in means. We do not further elaborate
here on slope limiters, and thus we do not test slope limiters in two dimensions nor
different limiting approaches in one dimension.

Finally we present the following test:

du  8%g(u) ;
% aar =" in [-1,1] % (0.7),
(5.5a) w(—1,t) = u(l,t) =0 for t >0,
u(r,0) = X|z|<1/2 in [-1,1],
where
54, 5 5 .
e _Zx+ﬁ if 0.5 <z <0.6,
(5.5b) gle)=q1 11 i
S S — > 0.
7 <0 if x > 0.6,
0 otherwise,

is a strongly degenerate diffusion function vanishing over [0,0.5]. The previous equa-
tion is the adaption of a similar test for convection-diffusion equations which can be
found in [20].

In our analysis, we did not address the possibility for a strongly degenerate equa-
tion to present more than a weak solution, among which one physical solution has to
be selected by introducing an entropy function, as in the case of hyperbolic conserva-
tion laws. For a detailed presentation of the entropy issue for the parabolic equations,
see [20] and references therein.

The entropic solution of problem (5.5) is showed in Figure 5.5, left, and is com-
puted with an entropic scheme on a very fine grid. In Figure 5.5, right, the solution
obtained with a nonentropic finite difference scheme is reported. With our symmetric
scheme, using piecewise linear elements on a mesh of 80 elements, and forward Euler
in time, either with or with no slope limiter, the right entropy solution is obtained,
as reported in Figure 5.6.
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Exact Solution Non entropic scheme

e

: ] —

=] -08 -06 -04 -02 0 02 0.4 0.6 0.8 1 =l -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

F1c. 5.5. Solutions of (5.5): the left plot represents the exact solution obtained with an entropic
scheme on a very fine grid, and the right plot is obtained with a finite difference non entropic scheme.

Entropic scheme Entropic scheme

0.8 1
06 08
0.4 0.6

0.2 04

-0.4 -0
-1 08 -06 -04 -02 0 02 04 06 08 1 1 08 -06 -04 -02 0 02 04 06 08 1

F1G. 5.6. Numerical solutions of (5.5a): the left plot refers to the scheme without slope limiters;
the right one is obtained with the min-mod slope limiter. Both simulations provide the right entropic
solution.

6. Conclusions. In this work we have introduced the first finite element schemes
for the approximation of linear and nonlinear diffusion problems, based on diffusive
relaxation framework. Our methods couple explicit Runge-Kutta time stepping and
DG space discretizations. Preliminary theoretical results are provided and some com-
parisons with other DG methods are discussed. Several one- and two-dimensional
numerical tests are discussed in order to point out the main properties and the effec-
tiveness of these schemes for linear and nonlinear (degenerate) diffusion.

For nonlinear problems, some of the advantages of the presented method are that
we do not need to solve nonlinear systems and that the numerical solutions inherit
positivity and monotonicity (at least in the means) properties of the analytical solu-
tions. On the other hand, its stability requires the standard parabolic CFL condition,
which constrains the time step to be proportional to the square of the mesh size.

In future work, we plan to further analyze the nonlinear stability and the conver-
gence of these schemes to investigate different slope limiting techniques, also in the
multidimensional case, and to look for the possibility of implicit time discretizations,
in order to avoid the time step restriction given by the parabolic CFL condition.
This approach can be extended to the discretization of convection-diffusion equations
and to nonlinear fourth order diffusion equations, like the thin film equation, in the
presence of degenerate and strongly degenerate diffusion.
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