
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano
Narrative Review

Blood Pressure, Proteinuria, and Phosphate as Risk Factors for
Progressive Kidney Disease: A Hypothesis

Mario Cozzolino, MD, PhD,1* Giorgio Gentile, MD, PhD,2,3* Sandro Mazzaferro, MD,4

Diego Brancaccio, MD,5 Piero Ruggenenti, MD,2,3 and
Giuseppe Remuzzi, MD, FRCP2,3

Chronic kidney disease (CKD) affects approximately 500 million people worldwide and is increasingly
common in both industrialized and emerging countries. Although the mechanisms underlying the inexorable
progression of CKD are incompletely defined, recent discoveries may pave the way to a more comprehensive
understanding of the pathophysiology of CKD progression and the development of new therapeutic strategies.
In particular, there is accumulating evidence indicating a key role for the complex and yet incompletely
understood system of divalent cation regulation, which includes phosphate metabolism and the recently
discovered fibroblast growth factor 23 (FGF-23)/klotho system, which seems inextricably associated with
vitamin D deficiency. The aim of this review is to discuss the links between high blood pressure, proteinuria,
phosphate levels, and CKD progression and explore new therapeutic strategies to win the fight against CKD.
Am J Kidney Dis. xx(x):xxx. © 2013 by the National Kidney Foundation, Inc.
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Chronic kidney disease (CKD) is a silent killer.
Four of 5 people with advanced CKD are not

aware of the disease until death is imminent and
kidney replacement therapy (dialysis or kidney trans-
plantation) is unavoidable. Unfortunately, �10% of
people requiring replacement therapy have access to
it, and more than 1 million people worldwide die of
untreated kidney failure each year because dialysis or
kidney transplantation is unaffordable in most coun-
tries. This represents a huge economic burden, with
global costs from 2000-2010 surpassing $1 trillion.1,2

Worsening kidney function is associated with a
marked increase in cardiovascular morbidity and mor-
tality1,3 independent of other risk factors. Coexistent
hypertension is present in �80% of patients with
CKD and worsens cardiovascular outcomes because
only 64% of patients with CKD achieve adequate
blood pressure control.4 As a consequence, only a
minority of the hundreds of thousands of patients with
stages 3 and 4 CKD reach kidney failure.5 Proteinuria
also is an important prognostic factor in patients with
CKD. Although patients with nonproteinuric CKD are
at greater risk of cardiovascular mortality than progres-
sion to kidney failure, the opposite may be true for the
presence of proteinuria. Patients from the REIN
(Ramipril Efficacy in Nephropathy) Study who were
in the highest tertile of baseline proteinuria (protein
excretion �3.8 g/d) also experienced the highest rate
of glomerular filtration rate (GFR) loss during follow-
up.6

In addition, although post hoc analysis of RENAAL
(Reduction of Endpoints in NIDDM [Non–Insulin-
Dependent Diabetes Mellitus] With the Angiotensin II

Antagonist Losartan) showed that 85% of patients
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with proteinuria with protein excretion �3 g/d reached
the composite end point of doubling of serum creati-
nine level or end-stage renal disease (ESRD), only
44% of these patients reached the composite cardiovas-
cular outcome.7

Besides the well-established role of hypertension
and proteinuria in the progression of CKD, accumulat-
ing evidence indicates a key role for the complex and
incompletely understood system of divalent cation
regulation, which includes phosphate metabolism and
the recently discovered fibroblast growth factor 23
(FGF-23)/klotho system, which seems inextricably
associated with vitamin D deficiency.

The aim of this review article is to emphasize the
links between 2 traditional factors of CKD progres-
sion, blood pressure and proteinuria (here identified as
the first 2 “P” factors for progression), and the more
recent subject of phosphate (the third “P” for progres-
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sion) in light of recent findings from experimental and
interventional studies.

BLOOD PRESSURE: THE FIRST “P” FOR
CKD PROGRESSION

Hypertension, the leading cause of death world-
wide,8 may be either a consequence or a cause of
CKD9 and is a major independent risk factor for both
kidney disease and faster rate of GFR loss.10,11 An
increased risk of ESRD beginning at the third quintile
of systolic and diastolic blood pressure (127/82 mm
Hg) was evident in 332,544 middle-aged men in the
Multiple Risk Factor Intervention Trial (MRFIT),10

and blood pressure values higher than high normal
were associated with a progressive increase in risk of
ESRD in the Okinawa mass screening program (n �
98,759).11 There is a large body of evidence that
blood pressure reduction may slow GFR loss and
reduce cardiovascular outcomes.12 However, 2 cru-
cial issues in the management of hypertension in
patients with CKD are first, whether a specific blood
pressure target may maximize renoprotection, and
second, whether a specific drug may be beneficial,
independent of blood pressure control. Concerning
blood pressure targets, few randomized trials13-16 have
been conducted in patients with CKD to confirm the
association of findings from these cohort studies.10,11

In the Modification of Diet in Renal Disease (MDRD)
Study, the largest randomized prospective trial per-
formed to date (840 patients, mostly with nondiabetic
kidney disease), tight blood pressure control (mean
arterial pressure �92 mm Hg; ie, blood pressure,
125/75 mm Hg) did not improve the primary outcome
of GFR reduction, doubling of serum creatinine level,
or ESRD.13 However, intensive control slowed the
progression of CKD when protein excretion �1 g/d,17

although the greater benefits in GFR decline in these
patients may be explained in part by the greater use of
angiotensin-converting enzyme (ACE) inhibitors.
Similarly, a lower blood pressure goal did not signifi-
cantly reduce the rate of the composite outcome (GFR
reduction �50%, ESRD, or death) or the mean GFR
slope in 1,094 African American hypertensive pa-
tients with mild to moderate CKD from the African
American Study of Kidney Disease and Hypertension
(AASK),15 although a trend favoring the lower blood
pressure target again was evident in the subgroup with
a urinary protein-creatinine ratio �0.22 g/g at base-
line (urinary protein excretion �300 mg/d).

In AASK, the ACE inhibitor ramipril afforded 22%
and 38% greater reductions in the composite outcome
compared to metoprolol and amlodipine, respectively.
However, the REIN-2 Study highlights that achieving
intensive blood pressure control by add-on therapy

with the dihydropyridine calcium channel blocker
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felodipine on top of ramipril was not beneficial in
patients with nondiabetic kidney disease, probably
because tighter blood pressure control was not accom-
panied by a reduction in intraglomerular pressure and
proteinuria.16 Thus, renin-angiotensin-aldosterone sys-
tem (RAAS)-blocking agents appear to be the key
component of renoprotective therapy rather than tight
blood pressure control because lowering blood pres-
sure to �130/80 mm Hg does not offer additional
renoprotection when achieved with drugs not affect-
ing the RAAS or in patients without significant protein-
uria or diabetes.18 The antiproteinuric properties of
RAAS-blocking agents were discovered first by Ander-
son et al19 and originally attributed to the hemody-
namic effects of reduced intraglomerular pressure
through preferential dilation of kidney arterioles. More
recently, evidence has been provided that RAAS-
blocking agents also ameliorate glomerular sieving
function by directly restoring slit diaphragm integrity
and increasing negative charge on the glomerular
membrane.20 After the landmark trial on the use of
captopril in diabetic kidney disease conducted by the
Collaborative Study Group,21 several clinical trials
demonstrated that RAAS-blocking agents may effec-
tively maximize reno- and cardioprotection5,22 in both
diabetic and nondiabetic nephropathies.23-30

PROTEINURIA: THE SECOND “P” FOR
CKD PROGRESSION

In healthy adults, urinary protein excretion does not
exceed 150 mg/d.31 Until recently, for patients with
proteinuria, protein excretion �1 g/d was considered
an optimal clinical target due to the low rate of
progression toward kidney failure.32

More recently, levels of proteinuria as low as pro-
tein excretion of 150-500 mg/d are regarded as a risk
factor for progression of kidney disease33 and cardio-
vascular mortality.22,34 Both epidemiologic31,35-37 and
interventional studies6,15,17 consistently show a strong
and independent association between increasing val-
ues of proteinuria and the risk of progression of
kidney disease in both diabetic and nondiabetic pa-
tients. Proteinuria was the most powerful predictor of
ESRD in a general population screening of more than
100,000 Japanese individuals followed up for 10
years.35 This strong and graded relationship also was
evident for mild increases in protein excretion on
dipstick urinalysis. Similar results were evident in a
post hoc observational analysis of MRFIT. Dipstick
proteinuria with protein excretion of 1� or �2� was
associated with a greater risk of ESRD over 25 years
of follow-up (hazard ratios of 3.1 and 15.7, respec-
tively).37 Moreover, high-normal values of urinary
albumin excretion were associated independently with

the onset of microalbuminuria or decreased kidney
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function in 4,031 patients with type 2 diabetes and
normoalbuminuria from the UK Prospective Diabetes
Study (UKPDS 74).38 Finally, a relationship between
higher baseline proteinuria and faster reduction in
GFR was found in the MDRD Study, as well as the
AASK and REIN trials.6,15,17 The latter study also
demonstrated that residual proteinuria reliably pre-
dicted long-term kidney prognosis regardless of blood
pressure control and treatment randomization and
independent of initial values of proteinuria and its
reduction during follow-up.39

Proteinuria also is a strong predictor of cardiovascu-
lar risk40,41 independent of level of kidney func-
tion.3,42 In a meta-analysis of 10 cohorts involving
266,975 people at increased risk of CKD, lower GFR
and higher albuminuria predicted cardiovascular dis-
ease and all-cause mortality independently of each
other.43 This independent association between any
level of proteinuria and total or cardiovascular mortal-
ity was confirmed in more than 1.1 million people
with proteinuria identified only by detection of “trace”
or greater levels following dipstick analysis34 and in
more than 100,000 individuals with an albumin-
creatinine ratio �10 mg/g.22 In light of these findings,
all attempts have been made to reduce proteinuria by
any therapeutic means, including RAAS-blocking
agents, low salt intake,44 smoking cessation, optimal
metabolic control, and 3-hydroxy-3-methylglutaryl
coenzyme A reductase inhibitors.45 Multiple therapies
aimed at reducing proteinuria may slow the progres-
sion of kidney disease to a greater extent than any
single treatment. This was demonstrated effectively
by a multimodal intervention strategy, the Remission
Clinic program, that used all available lifestyle recom-
mendations and pharmacologic tools to further reduce
proteinuria in patients with CKD and severe protein-
uria already treated with RAAS-blocking agents.46-47

We recently confirmed the beneficial effects of this
strategy in patients with Alport syndrome.48

PHOSPHATE: THE THIRD “P” FOR
CKD PROGRESSION

Seminal observations by Ibels et al49 showed that
dietary phosphate restriction prevented proteinuria,
kidney calcifications, histologic changes, functional
deterioration, and deaths in a murine remnant-kidney
model. These findings were confirmed later in patients
with CKD treated with a low-phosphorus low-
nitrogen diet.50 A recent post hoc analysis of the REIN
Study has further expanded the role of phosphate in
CKD progression.51 The study had a dual objective:
(1) assess the relationship between phosphate levels at
inclusion and the incidence of kidney events, and (2)
assess whether the protective effect conferred by

ramipril on disease progression could be altered by
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serum phosphate levels. The authors observed that an
increase of only 1 mg/dL in serum phosphate level,
irrespective of other risk factors, was associated with
an 85% increase in risk of progression to ESRD.
Moreover, patients in higher quartiles of serum phos-
phate levels showed a significantly lower protective
effect from ACE-inhibitor therapy. In patients with
serum phosphate levels �4.5 mg/dL, ACE-inhibitor
therapy brought almost no benefit. The interactions
observed between serum phosphate level, ACE inhibi-
tion, and GFR loss did not change appreciably after
adjustment for potential confounders, pointing to a
specific pathogenic role for this metabolic imbalance
in the progression of CKD.

CROSS-TALK AMONG THE 3 “PS” IN THE
PATHOGENESIS OF CKD PROGRESSION:

WHAT IS ALREADY KNOWN

Dysregulation of phosphate homeostasis may en-
sue in early stages of CKD long before an increase
in serum phosphorus levels. Although phosphate ho-
meostasis previously was thought to be regulated
exclusively by 1,25-dihydroxyvitamin D3 (calcitriol)
and parathyroid hormone, the FGF-23/klotho system
is now considered the main phosphate-regulating en-
docrine axis.52 In the remnant-kidney model of CKD
progression,27 surviving nephrons must excrete an
increasing amount of phosphate to maintain normal
phosphate levels. This issue is exacerbated further by
high dietary phosphate intake, with phosphate bioavail-
ability playing a central role.53-55 Prolonged phos-
phate load, rather than plasma levels, has been shown
to increase serum FGF-23 levels in nephrectomized
rats,56 suggesting that circulating phosphorus may not
adequately reflect phosphorus balance. Through FGF-
23–mediated mechanisms, phosphorus also may have
an inhibitory effect on the production of nitric ox-
ide,57 which could reduce or prevent the beneficial
effects mediated by nitric oxide activation during
ACE-inhibitor therapy. However, the molecular
mechanisms underlying the association between pro-
longed phosphate load and increased levels of FGF-
23, which is secreted mainly by bone cells,58 are
largely unknown. The responsiveness of FGF-23 to
dietary phosphate is sluggish (hours to days),59 and
phosphate does not directly stimulate FGF-23 expres-
sion in osteoblast cultures,60 emphasizing the impor-
tance of other local or systemic regulators.61 Higher
FGF-23 levels increase urinary phosphate excretion
by suppressing the expression of the sodium-depen-
dent phosphate cotransporters NPT2a and NPT2c in
the kidney proximal tubule61 and reduce phosphorus
absorption in the gut by decreasing calcitriol levels.
Unfortunately, lower calcitriol levels also stimulate

the RAAS through increased renin production and the
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transforming growth factor � (TGF-�)–converting
enzyme/TGF-�/epidermal growth factor (EGF) recep-
tor pathway (Fig 1), leading to an increase in inflam-
mation, urinary protein excretion, and fibrosis. This
ultimately accelerates the progression of kidney dam-
age and increases the risk of cardiovascular events.62-65

FGF-23 also exhibits direct end-organ toxicity on the
myocardium and may be involved in the pathogenesis
of left ventricular hypertrophy and uremic cardiomy-
opathy.66 Lower calcitriol levels also increase parathy-
roid hormone secretion, which in turn stimulates
FGF-23 synthesis67 and TGF-� secretion,68 thus gen-
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part the increased cardiovascular morbidity and all-
cause mortality found in patients with CKD3 (Fig 1).

The membrane protein klotho is expressed pre-
dominantly in kidney and brain and is recognized to
have antiaging properties by preventing atheroscle-
rosis plaques and vascular calcifications. Klotho
acts as the necessary cofactor for FGF-23 by form-
ing complexes with the FGF receptors and increas-
ing their affinity for FGF-23. The importance of
klotho in FGF-23 signaling is supported because its
downregulation by angiotensin II, TGF-�–convert-
ing enzyme, oxidative stress, nuclear factor �B, and
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in end-organ resistance to FGF-23 and increased
FGF-23 levels. The latter reduces calcitriol levels
and further activates the RAAS. Of note, restora-
tion of klotho by gene transfer improves angioten-
sin II–induced proteinuria.70

As this discussion attests, the FGF-23/klotho sys-
tem is strongly connected with the RAAS (Fig 1).
Abnormal activation of the systemic and local RAAS
is found commonly in patients with CKD and deeply
influences medium- to long-term control of both blood
pressure and proteinuria. Among its well-known hemo-
dynamic and nonhemodynamic detrimental effects,
angiotensin II also activates the TGF-�–converting
enzyme/TGF-�/EGF receptor pathway,71 which may
exacerbate proteinuria and kidney fibrosis. This may
occur through the release of proinflammatory and
profibrotic cytokines,72 including adhesion mol-
ecules,73,74 and reduced vitamin D receptor cell-
surface expression.68

The cross-talk between phosphorus metabolism,
the FGF-23/klotho system, and the RAAS may contrib-
ute to the initiation and progression of chronic protein-
uric nephropathies that are characterized by a loss of
selectivity of the glomerular filtration barrier. In this
respect, a recent study highlighted the key role of
podocyte detachment and the loss of normal endothe-
lial cell fenestration in 37 patients with type 2 diabetes
undergoing kidney biopsy. The percentage of podo-
cyte detachment correlated positively with urinary
albumin excretion and negatively with number of
podocytes per glomerulus. The percentage of endothe-
lial cell fenestration was associated negatively with
glomerular basement membrane width and fractional
interstitial and mesangial area and positively with
filtration surface area density and GFR. Increasing
podocyte detachment is associated with decreased
permselectivity of the glomerulus and progressive
albuminuria, whereas loss of endothelial cell fenestra-
tion is associated with GFR decline.75 These findings
are supportive of previous research in the same field,76

recapitulated in a recent review.77 Higher levels of
proteinuria may increase the release of profibrotic,
proinflammatory, and vasoactive molecules78-82 with
consequent oxidative stress, tubulointerstitial fibrosis,
and loss of functional nephrons (Fig 1).83 These
changes cause further nephron injury, increased intra-
glomerular pressure, impaired filter function, and
further loss of proteins in urine, with concomitant
activation of the complement cascade.27,84-86 Pro-
gressive nephron loss also causes severe impair-
ment of the Nrf2-Keap1 (nuclear factor erythroid
2–related factor 2/kelch-like ECH-associated pro-
tein 1) pathway, with increased oxidative stress and
inflammation.87,88 Inflammation and oxidative stress

are linked inseparably and represent major media-
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tors of CKD progression and the associated cardio-
vascular complications.62,70,81,89

INSIGHTS FROM RECENT EXPERIMENTAL STUDIES
AND NOVEL THERAPEUTIC TARGETS

In patients with CKD, the vicious cycle between
phosphorus metabolism, the FGF-23/klotho axis, and
the RAAS likely is activated even in the presence of
serum phosphate levels within the normal range. Di-
etary phosphate restriction can significantly lower
FGF-23 levels53-55 and could be more effective if
started before serum phosphate levels increase. Vita-
min D receptor agonists may effectively inhibit both
the TGF-�–converting enzyme/TGF�/EGF receptor
pathway and the RAAS in the parathyroid and kid-
ney90,91 and reduce vascular calcification, podocyte
damage,63,92-94 and proteinuria through blockade of
Wnt/�-catenin signaling.95 Vitamin D receptor ago-
nists also may upregulate klotho96 and exert an anti-
inflammatory action through the reduction of nuclear
factor �B. These actions may explain in part the
nephroprotective effects and reduced mortality ob-
served in patients treated with vitamin D receptor
agonists independent of serum 25-dehydroxyvitamin
D levels.97-101 Non–calcium-based phosphate binders
may correct hyperphosphatemia and ameliorate abnor-
malities of the mineral metabolism associated with
accelerated kidney disease progression and increased
cardiovascular risk.102-104 The finding that phosphate
binders reduced proteinuria, an effect that appears to
be associated with significant renoprotection in the
long term according to recent animal studies (Fig
2),105,106 along with results of the post hoc analysis of
the REIN Study,51 can be taken to suggest that strate-
gies aimed at lowering phosphate levels might be used
in the future to maximize the renoprotective effects of
RAAS-blocking agents.

FUTURE PERSPECTIVES

In summary, the complex interactions among the
different pathways of CKD progression may explain
why the specific renoprotective effects of traditional
RAAS-blocking agents are blunted by serum phos-
phate levels �4.5 mg/dL. This is a major issue be-
cause RAAS inhibition currently is the standard
therapy for proteinuric nephropathies. In particular,
there is a need for additional randomized controlled
trials with longer follow-up and hard kidney end
points to evaluate the hypothesis that additional thera-
peutic interventions may be instrumental to improv-
ing renoprotection in this high-risk population. In this
respect, an ongoing trial will evaluate the renoprotec-
tive effects of serum phosphate reduction by noncal-

cium phosphate binders in patients with CKD with
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reference serum phosphate levels and residual protein-
uria despite optimal RAAS-inhibitor therapy accord-
ing to the Remission Clinic approach.

ACKNOWLEDGEMENTS
The authors thank Dr Colin G. Egan (Primula Multimedia, SRL,

Pisa Italy) for assistance in revising the manuscript.
Support: None.
Financial Disclosure: The authors declare that they have no

relevant financial interests.

REFERENCES
1. Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribu-

tion of chronic kidney disease to the global burden of major
noncommunicable diseases. Kidney Int. 2011;80(12):1258-1270.

2. International Society of Nephrology. A briefing on the global
impact of kidney disease. 2011. http://www.theisn.org/images/
stories/WHO_CKD_Brochure_LR.pdf. Accessed February 15,
2013.

3. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY.
Chronic kidney disease and the risks of death, cardiovascular
events, and hospitalization. N Engl J Med. 2004;351(31):1296-
1305.

4. Wuhl E, Schaefer F; Medscape. Managing kidney disease
with blood-pressure control. Nat Rev Nephrol. 2011;7(8):434-444.

5. Rahman M, Pressel S, Davis BR, et al. Cardiovascular
outcomes in high-risk hypertensive patients stratified by baseline
glomerular filtration rate. Ann Intern Med. 2006;144(3):72-180.

6. Ruggenenti P, Perna A, Mosconi L, Pisoni R, Remuzzi G.
Urinary protein excretion rate is the best independent predictor of
ESRF in non-diabetic proteinuric chronic nephropathies. “Gruppo
Italiano di Studi Epidemiologici in Nefrologia” (GISEN). Kidney
Int. 1998;53(5):1209-1216.

7. de Zeeuw D, Remuzzi G, Parving HH, et al. Albuminuria, a
therapeutic target for cardiovascular protection in type 2 diabetic

U-HPN-HP

p<0.01

0

50

100

150

200

Re
na

l C
a c

on
ten

t (
mc

g/m
g w

et 
tis

su
e)

Figure 2. Effects of sevelamer and calcium carbonate on kid
(5/6-nephrectomized) rats undergoing one of the following exper
(N-HP); (2) uremic control plus HP diet (U-HP); (3) U-HP plus
(U-HP�C). Data presented as mean � standard error, mean from
groups (analysis of variance followed by Bonferroni post hoc). Ad
of Nephrology.
patients with nephropathy. Circulation. 2004;110(8):921-927.

6

8. World Health Organization. Global health risks: mortality
and burden of disease attributable to selected major risks. 2009.
http://www.who.int/healthinfo/global_burden_disease/GlobalHealth
Risks_report_part2.pdf. Accessed February 15, 2013.

9. Paul M, Poyan Mehr A, Kreutz R. Physiology of local
renin-angiotensin systems. Physiol Rev. 2006;86(3):747-803.

10. Klag MJ, Whelton PK, Randall BL, et al. Blood pressure and
end-stage renal disease in men. N Engl J Med. 1996;334(1):13-18.

11. Tozawa M, Iseki K, Iseki C, Kinjo K, Ikemiya Y, Takishita
S. Blood pressure predicts risk of developing end-stage renal
disease in men and women. Hypertension. 2003;41(6): 1341-1345.

12. Cravedi P, Ruggenenti P, Remuzzi G. Which antihyperten-
sive drugs are the most nephroprotective and why? Expert Opin
Pharmacother. 2010;11(16):2651-2663.

13. Klahr S, Levey AS, Beck GJ, et al. The effects of dietary
protein restriction and blood-pressure control on the progression of
chronic renal disease. Modification of Diet in Renal Disease Study
Group. N Engl J Med. 1994;330(13):877-884.

14. Toto RD, Mitchell HC, Smith RD, Lee HC, McIntire D,
Pettinger WA. “Strict” blood pressure control and progression of
renal disease in hypertensive nephrosclerosis. Kidney Int. 1995;
48(3): 851-859.

15. Wright JT, Bakris G, Greene T, et al. Effect of blood
pressure lowering and antihypertensive drug class on progression
of hypertensive kidney disease: results from the AASK trial.
JAMA. 2002;288(19):2421-2431.

16. Ruggenenti P, Perna A, Loriga G, et al. Blood-pressure
control for renoprotection in patients with non-diabetic chronic
renal disease (REIN-2): multicentre, randomised controlled trial.
Lancet. 2005;365(9463):939-946.

17. Peterson JC, Adler S, Burkart JM, et al. Blood pressure
control, proteinuria, and the progression of renal disease. The
Modification of Diet in Renal Disease Study. Ann Intern Med.
1995;123(10):754-762.

18. British Renal Association Society Guidelines. Detection,
monitoring and care of patients with CKD. 2011. http://www.rena-
l.org/Clinical/GuidelinesSection/Detection-Monitoring-and-Care-

U-HP+S U-HP+C

p<0.04

p<0.01

alcium content. Kidney calcium deposition in normal and uremic
tal protocols for 3 months: (1) normal plus high-phosphorus diet
evelamer (U-HP�S); and (4) U-HP plus 3% calcium carbonate
ts. P values indicate statistically significant differences between
from Cozzolino et al106 with permission of the American Society
ney c
imen

3% s
7 ra
of-Patients-with-CKD.aspx. Accessed February 15, 2013.

Am J Kidney Dis. 2013;xx(x):xxx

http://www.theisn.org/images/stories/WHO_CKD_Brochure_LR.pdf
http://www.theisn.org/images/stories/WHO_CKD_Brochure_LR.pdf
http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_part2.pdf
http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_part2.pdf
http://www.renal.org/Clinical/GuidelinesSection/Detection-Monitoring-and-Care-of-Patients-with-CKD.aspx
http://www.renal.org/Clinical/GuidelinesSection/Detection-Monitoring-and-Care-of-Patients-with-CKD.aspx
http://www.renal.org/Clinical/GuidelinesSection/Detection-Monitoring-and-Care-of-Patients-with-CKD.aspx


Blood Pressure, Proteinuria, and Phosphorus in CKD
19. Anderson S, Meyer TW, Rennke HG, Brenner BM. Control
of glomerular hypertension limits glomerular injury in rats with
reduced renal mass. J Clin Invest. 1985;76(2):612-619.

20. Deyneli O, Yavuz D, Velioglu A, et al. Effects of ACE
inhibition and angiotensin II receptor blockade on glomerular
basement membrane protein excretion and charge selectivity in
type 2 diabetic patients. J Renin Angiotensin Aldosterone Syst.
2006;7(2):98-103.

21. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of
angiotensin-converting-enzyme inhibition on diabetic nephropa-
thy. The Collaborative Study Group. N Engl J Med. 1993;329(20):
1456-1462.

22. Matsushita K, van der Velde M, Astor BC, et al. Association
of estimated glomerular filtration rate and albuminuria with all-
cause and cardiovascular mortality in general population cohorts: a
collaborative meta-analysis. Lancet. 2010;375(9731):2073-2081.

23. Randomised placebo-controlled trial of effect of ramipril on
decline in glomerular filtration rate and risk of terminal renal
failure in proteinuric, non-diabetic nephropathy. The GISEN Group
(Gruppo Italiano di Studi Epidemiologici in Nefrologia). Lancet.
1997;349(9069):1857-1863.

24. Hovind P, Rossing P, Tarnow L, Toft H, Parving J, Parving
HH. Remission of nephrotic-range albuminuria in type 1 diabetic
patients. Diabetes Care. 2001;24(11):1972-1977.

25. Atkins RC, Briganti EM, Lewis JB, et al. Proteinuria
reduction and progression to renal failure in patients with type 2
diabetes mellitus and overt nephropathy. Am J Kidney Dis. 2005;
45(2):281-287.

26. Keane WF, Zhang Z, Lyle PA, et al. Risk scores for
predicting outcomes in patients with type 2 diabetes and nephropa-
thy: the RENAAL Study. Clin J Am Soc Nephrol. 2006;1(4):761-
767.

27. Remuzzi G, Benigni A, Remuzzi A. Mechanisms of progres-
sion and regression of renal lesions of chronic nephropathies and
diabetes. J Clin Invest. 2006;116(2):288-296.

28. Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R,
Andersen S, Arner P. The effect of irbesartan on the development
of diabetic nephropathy in patients with type 2 diabetes. N Engl
J Med. 2001;345(12):870-878.

29. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of
losartan on renal and cardiovascular outcomes in patients with type
2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861-869.

30. Maschio G, Alberti D, Janin G, et al. Effect of the angioten-
sin-converting-enzyme inhibitor benazepril on the progression of
chronic renal insufficiency. The Angiotensin-Converting-Enzyme
Inhibition in Progressive Renal Insufficiency Study Group. N Engl
J Med. 1996;334(15):939-945.

31. Cravedi P, Ruggenenti P, Remuzzi G. Proteinuria should be
used as a surrogate in CKD. Nat Rev Nephrol. 2012;8(5):301-306.

32. Remuzzi G, Ruggenenti P, Benigni A. Understanding the
nature of renal disease progression. Kidney Int. 1997;51(1):2-15.

33. Levey AS, de Jong PE, Coresh J, et al. The definition,
classification, and prognosis of chronic kidney disease: a KDIGO
Controversies Conference report. Kidney Int. 2011;80 (1):17-28.

34. Chronic Kidney Disease Prognosis Consortium. Associa-
tion of estimated glomerular filtration rate and albuminuria with
all-cause and cardiovascular mortality in general population co-
horts: a collaborative meta-analysis. Lancet. 2010;375(9731):2073-
2081.

35. Iseki K, Iseki C, Ikemiya Y, Fukiyama K. Risk of develop-
ing end-stage renal disease in a cohort of mass screening. Kidney
Int. 1996;49(3):800-805.

36. Iseki K, Ikemiya Y, Iseki C, Takishita S. Proteinuria and the
risk of developing end-stage renal disease. Kidney Int. 2003;63(4):

1468-1474.

Am J Kidney Dis. 2013;xx(x):xxx
37. Ishani A, Grandits GA, Grimm RH, et al. Association of
single measurements of dipstick proteinuria, estimated glomerular
filtration rate, and hematocrit with 25-year incidence of end-stage
renal disease in the Multiple Risk Factor Intervention Trial. J Am
Soc Nephrol. 2006;17(5):1444-1452.

38. Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR;
UKPDS Study Group. Risk factors for renal dysfunction in type 2
diabetes: U.K. Prospective Diabetes Study 74. Diabetes. 2006;
55(6):1832-1839.

39. Ruggenenti P, Perna A, Remuzzi G; GISEN Group Investi-
gators. Retarding progression of chronic renal disease: the ne-
glected issue of residual proteinuria. Kidney Int. 2003;63(6):2254-
2261.

40. Ninomiya T, Perkovic V, Verdon C, et al. Proteinuria and
stroke: a meta-analysis of cohort studies. Am J Kidney Dis.
2009;53(3):417-425.

41. Bello AK, Hemmelgarn B, Lloyd A, et al. Associations
among estimated glomerular filtration rate, proteinuria, and ad-
verse cardiovascular outcomes. Clin J Am Soc Nephrol. 2011;6(6):
1418-1426.

42. Hallan SI, Ritz E, Lydersen S, Romundstad S, Kvenild K,
Orth SR. Combining GFR and albuminuria to classify CKD
improves prediction of ESRD. J Am Soc Nephrol. 2009;20(5):1069-
1077.

43. van der Velde M, Matsushita K, Coresh J, et al. Lower
estimated glomerular filtration rate and higher albuminuria are
associated with all-cause and cardiovascular mortality. A collabora-
tive meta-analysis of high-risk population cohorts. Kidney Int.
2011;79(12):1341-1352.

44. Myrvang H. Progression of renal disease: high salt intake
blunts the benefit of ACE inhibitors and accelerates renal function
decline. Nat Rev Nephrol. 2012;8(2):61.

45. Ruggenenti P, Perna A, Tonelli M, et al. Effects of add-on
fluvastatin therapy in patients with chronic proteinuric nephropa-
thy on dual renin-angiotensin system blockade: the ESPLANADE
trial. Clin J Am Soc Nephrol. 2010;5(11):1928-1938.

46. Zoja C, Corna D, Camozzi D, et al. How to fully protect the
kidney in a severe model of progressive nephropathy: a multidrug
approach. J Am Soc Nephrol. 2002;13(12):2898-2908.

47. Ruggenenti P, Perticucci E, Cravedi P, et al. Role of remis-
sion clinics in the longitudinal treatment of CKD. J Am Soc
Nephrol. 2008;19(6):1213-1224.

48. Daina E, Gamba S, Ruggenenti P, et al. Effects of the
remission clinic approach in Alport syndrome: results from a
prospective, sequential cohort study. American Society of Nephrol-
ogy (ASN) Kidney Week. 2012. https://www.asn-online.org/scripts/
download.aspx?file�/education/kidneyweek/archives/KW12
Abstracts.pdf. Accessed February 15, 2013.

49. Ibels LS, Alfrey AC, Haut L, Huffer WE. Preservation of
function in experimental renal disease by dietary restriction of
phosphate. N Engl J Med. 1978;298(3):122-126.

50. Barsotti G, Morelli E, Giannoni A, Guiducci A, Lupetti S,
Giovannetti S. Restricted phosphorus and nitrogen intake to slow
the progression of chronic renal failure: a controlled trial. Kidney
Int Suppl. 1983;16:S278-S284.

51. Zoccali C, Ruggenenti P, Perna A, et al. Phosphate may
promote CKD progression and attenuate renoprotective effect of
ACE inhibition. J Am Soc Nephrol. 2011;22(10):1923-1930.

52. John GB, Cheng CY, Kuro-o M. Role of klotho in aging,
phosphate metabolism, and CKD. Am J Kidney Dis. 2011;58(1):
127-134.

53. Uribarri J, Calvo MS. Hidden sources of phosphorus in the
typical American diet: does it matter in nephrology? Semin Dial.
2003;16(3):186-188.

54. Isakova T, Gutierrez OM, Smith K, et al. Pilot study of

dietary phosphorus restriction and phosphorus binders to target

7

https://www.asn-online.org/scripts/download.aspx?file=/education/kidneyweek/archives/KW12Abstracts.pdf
https://www.asn-online.org/scripts/download.aspx?file=/education/kidneyweek/archives/KW12Abstracts.pdf
https://www.asn-online.org/scripts/download.aspx?file=/education/kidneyweek/archives/KW12Abstracts.pdf


Cozzolino et al
fibroblast growth factor 23 in patients with chronic kidney disease.
Nephrol Dial Transplant. 2011;26(2):584-591.

55. Moe SM, Zidehsarai MP, Chambers MA, et al. Vegetarian
compared with meat dietary protein source and phosphorus homeo-
stasis in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(2):
257-264.

56. Saito H, Maeda A, Ohtomo S, et al. Circulating FGF-23 is
regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in
vivo. J Biol Chem. 2005;80(4):2543-2549.

57. Shuto E, Taketani Y, Tanaka R, et al. Dietary phosphorus
acutely impairs endothelial function. J Am Soc Nephrol. 2009;20(7):
1504-1512.

58. Martin A, David V, Quarles LD. Regulation and function of
the FGF23/klotho endocrine pathways. Physiol Rev. 2012;92(1):
131-155.

59. Wolf M. Update on fibroblast growth factor 23 in chronic
kidney disease. Kidney Int. 2012;82(7):737-747.

60. Liu S, Tang W, Zhou J, et al. Fibroblast growth factor 23 is a
counter-regulatory phosphaturic hormone for vitamin D. J Am Soc
Nephrol. 2006;17(5):1305-1315.

61. Gattineni J, Bates C, Twombley K, et al. FGF23 decreases
renal NaPi-2a and NaPi-2c expression and induces hypophos-
phatemia in vivo predominantly via FGF receptor 1. Am J Physiol
Renal Physiol. 2009:297(2):F282-F291.

62. Yilmaz MI, Sonmez A, Saglam M, et al. FGF-23 and
vascular dysfunction in patients with stage 3 and 4 chronic kidney
disease. Kidney Int. 2010;78(7):679-685.

63. Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP.
1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of
the renin-angiotensin system. J Clin Invest. 2002;110(2):229-238.

64. De Borst MH, Vervloet MG, Ter Wee PM, Navis G. Cross
talk between the renin-angiotensin-aldosterone system and vitamin
D-FGF-23-klotho in chronic kidney disease. J Am Soc Nephrol.
2011;22(9):1603-1609.

65. Kendrick J, Cheung AK, Kaufman JS, et al. FGF-23 associ-
ates with death, cardiovascular events, and initiation of chronic
dialysis. J Am Soc Nephrol. 2011;22(10):1913-1922.

66. Faul C, Amaral AP, Oskouei B, et al. FGF23 induces left
ventricular hypertrophy. J Clin Invest. 2011;121(11):4393-4408.

67. Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-
Many T. PTH increases FGF23 gene expression and mediates the
high-FGF23 levels of experimental kidney failure: a bone parathy-
roid feedback loop. Am J Physiol Renal Physiol. 2010;299(4):F882-
F889.

68. Dusso A, Arcidiacono MV, Yang J, Tokumoto M. Vitamin
D inhibition of TACE and prevention of renal osteodystrophy and
cardiovascular mortality. J Steroid Biochem Mol Biol. 2010;121
(1-2):193-198.

69. Moreno JA, Izquierdo MC, Sanchez-Nino MD, et al. The
inflammatory cytokines TWEAK and TNFalpha reduce renal klotho
expression through NFkappaB. J Am Soc Nephrol. 2011;22(7):1315-
1325.

70. Mitani H, Ishizaka N, Aizawa T, et al. In vivo klotho gene
transfer ameliorates angiotensin II-induced renal damage. Hyper-
tension. 2002;39(4):838-843.

71. Black RA, Rauch CT, Kozlosky CJ, et al. A metalloprotei-
nase disintegrin that releases tumour-necrosis factor-alpha from
cells. Nature. 1997;385(6618):729-733.

72. Melenhorst WB, Visser L, Timmer A, van den Heuvel MC,
Stegeman CA, van Goor H. ADAM17 upregulation in human renal
disease: a role in modulating TGF-alpha availability? Am J Physiol
Renal Physiol. 2009;297(3):F781-F790.

73. Dusso A, Gonzalez EA, Martin KJ. Vitamin D in chronic
kidney disease. Best Pract Res Clin Endocrinol Metab. 2011;25(4):

647-655.

8

74. Dusso AS. Renal vitamin D receptor expression and vita-
min D renoprotection. Kidney Int. 2012;81(10):937-939.

75. Weil EJ, Lemley KV, Mason CC, et al. Podocyte detach-
ment and reduced glomerular capillary endothelial fenestration
promote kidney disease in type 2 diabetic nephropathy. Kidney Int.
2012;82(9):1010-1017.

76. Remuzzi G, Bertani T. Pathophysiology of progressive
nephropathies. N Engl J Med. 1998;339(20):1448-1456.

77. Ruggenenti P, Cravedi P, Remuzzi G. Mechanisms and
treatment of CKD. J Am Soc Nephrol. 2012;23(12):1917-1928.

78. Zoja C, Morigi M, Figliuzzi M, et al. Proximal tubular cell
synthesis and secretion of endothelin-1 on challenge with albumin
and other proteins. Am J Kidney Dis. 1995;26(6):934-941.

79. Drumm K, Bauer B, Freudinger R, Gekle M. Albumin
induces NF-kappaB expression in human proximal tubule-derived
cells (IHKE-1). Cell Physiol Biochem. 2002;12(4):187-196.

80. Tang S, Leung JC, Abe K, et al. Albumin stimulates
interleukin-8 expression in proximal tubular epithelial cells in
vitro and in vivo. J Clin Invest. 2003;111(4):515-527.

81. Abbate M, Zoja C, Remuzzi G. How does proteinuria cause
progressive renal damage? J Am Soc Nephrol. 2006;17(11):2974-
2984.

82. Barnes JL, Gorin Y. Myofibroblast differentiation during
fibrosis: role of NAD(P)H oxidases. Kidney Int. 2011;79(9):944-
956.

83. Johnson DW, Saunders HJ, Baxter RC, Field MJ, Pollock
CA. Paracrine stimulation of human renal fibroblasts by proximal
tubule cells. Kidney Int. 1998;54(3):747-757.

84. Biancone L, David S, Della Pietra V, Montrucchio G,
Cambi V, Camussi G. Alternative pathway activation of comple-
ment by cultured human proximal tubular epithelial cells. Kidney
Int. 1994;45(2):451-460.

85. Nangaku M, Pippin J, Couser WG. Complement membrane
attack complex (C5b-9) mediates interstitial disease in experimen-
tal nephrotic syndrome. J Am Soc Nephrol. 1999;10(11):2323-
2331.

86. Rangan GK, Pippin JW, Coombes JD, Couser WG. C5b-9
does not mediate chronic tubulointerstitial disease in the absence
of proteinuria. Kidney Int. 2005;67(2):492-503.

87. Kim HJ, Vaziri ND. Contribution of impaired Nrf2-Keap1
pathway to oxidative stress and inflammation in chronic renal
failure. Am J Physiol Renal Physiol. 2010;298(3):F662-F671.

88. Laouari D, Burtin M, Phelep A, et al. A transcriptional
network underlies susceptibility to kidney disease progression.
EMBO Mol Med. 2012;4(8):825-839.

89. Rodriguez-Iturbe B, Vaziri ND, Herrera-Acosta J, Johnson
RJ. Oxidative stress, renal infiltration of immune cells, and salt-
sensitive hypertension: all for one and one for all. Am J Physiol
Renal Physiol. 2004;286(4):F606-F616.

90. Cozzolino M, Lu Y, Finch J, Slatopolsky E, Dusso AS.
p21WAF1 and TGF-alpha mediate parathyroid growth arrest by
vitamin D and high calcium. Kidney Int. 2001;60(6): 2109-2117.

91. Lautrette A, Li S, Alili R, et al. Angiotensin II and EGF
receptor cross-talk in chronic kidney diseases: a new therapeutic
approach. Nat Med. 2005;11(8):867-874.

92. Xiang W, Kong J, Chen S, et al. Cardiac hypertrophy in
vitamin D receptor knockout mice: role of the systemic and cardiac
renin-angiotensin systems. Am J Physiol Endocrinol Metab. 2005;
288(1):E125-E132.

93. Bodyak N, Ayus JC, Achinger S, et al. Activated vitamin D
attenuates left ventricular abnormalities induced by dietary sodium
in Dahl salt-sensitive animals. Proc Natl Acad Sci U S A. 2007;
104(43):16810-16815.

94. Kuhlmann A, Haas CS, Gross ML, et al. 1,25-Dihydroxyvi-

tamin D3 decreases podocyte loss and podocyte hypertrophy in the

Am J Kidney Dis. 2013;xx(x):xxx



Blood Pressure, Proteinuria, and Phosphorus in CKD
subtotally nephrectomized rat. Am J Physiol Renal Physiol.
2004;286(3):F526-F533.

95. He W, Kang YS, Dai C, Liu Y. Blockade of Wnt/beta-
catenin signaling by paricalcitol ameliorates proteinuria and kid-
ney injury. J Am Soc Nephrol. 2011;22(1):90-103.

96. Lau WL, Leaf EM, Hu MC, et al. Vitamin D receptor
agonists increase klotho and osteopontin while decreasing aortic
calcification in mice with chronic kidney disease fed a high
phosphate diet. Kidney Int. 2012;82(12):1261-1270.

97. Wolf M, Shah A, Gutierrez O, et al. Vitamin D levels and
early mortality among incident hemodialysis patients. Kidney Int.
2007;72(8):1004-1013.

98. de Zeeuw D, Agarwal R, Amdahl M, et al. Selective
vitamin D receptor activation with paricalcitol for reduction of
albuminuria in patients with type 2 diabetes (VITAL study): a
randomised controlled trial. Lancet. 2010;376(9752):1543-1551.

99. Cheng J, Zhang W, Zhang X, Li X, Chen J. Efficacy and
safety of paricalcitol therapy for chronic kidney disease: a meta-
analysis. Clin J Am Soc Nephrol. 2012;7(3):391-400.

100. Alborzi P, Patel NA, Peterson C, et al. Paricalcitol reduces
albuminuria and inflammation in chronic kidney disease: a random-

ized double-blind pilot trial. Hypertension. 2008;52(2): 249-255.

Am J Kidney Dis. 2013;xx(x):xxx
101. Fishbane S, Chittineni H, Packman M, Dutka P, Ali N,
Durie N. Oral paricalcitol in the treatment of patients with CKD
and proteinuria: a randomized trial. Am J Kidney Dis. 2009;54(4):
647-652.

102. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie
EG, Chertow GM. Mineral metabolism, mortality, and morbidity
in maintenance hemodialysis. J Am Soc Nephrol. 2004;15(8):2208-
2218.

103. Kestenbaum B, Sampson JN, Rudser KD, et al. Serum
phosphate levels and mortality risk among people with chronic
kidney disease. J Am Soc Nephrol. 2005;16(2):520-528.

104. Ix JH, Shlipak MG, Wassel CL, Whooley MA. Fibroblast
growth factor-23 and early decrements in kidney function: the
Heart and Soul Study. Nephrol Dial Transplant. 2010;25(3):993-
997.

105. Cozzolino M, Staniforth ME, Liapis H, et al. Sevelamer
hydrochloride attenuates kidney and cardiovascular calcifications
in long-term experimental uremia. Kidney Int. 2003;64(5):1653-
1661.

106. Cozzolino M, Dusso AS, Liapis H, et al. The effects of
sevelamer hydrochloride and calcium carbonate on kidney calcifi-

cation in uremic rats. J Am Soc Nephrol. 2002;13(9):2299-2308.

9


	Blood Pressure, Proteinuria, and Phosphate as Risk Factors for Progressive Kidney Disease: A Hyp ...
	Blood Pressure: the First “P” for CKD Progression
	Proteinuria: the Second “P” for CKD Progression
	Phosphate: the Third “P” for CKD Progression
	Cross-talk Among the 3 “Ps” in the Pathogenesis of CKD Progression: What is Alread ...
	Insights From Recent Experimental Studies and Novel Therapeutic Targets
	Future Perspectives
	Acknowledgements
	References


