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1. Introduction

Several analytic statements can be made, with minimal hypothesis, on the eigenvalues

and the singular values of the transfer matrix that originates from a block tridiagonal

matrix, just because of the structure. The same can be said for the eigenvalues of

the block matrix itself, and their motion as a parameter changes, that describes the

boundary conditions of the chain to which the matrix is related. A brief review is

presented, and new results will be given.

Consider the difference equation

Ckuk−1 + Akuk + Bkuk+1 = Euk , k = 1 . . . n, (1)

where Ak, Bk, Ck ∈ Cm×m are complex non singular square matrices, E is a complex

parameter, and uk ∈ C
m are unknown vectors. It is the prototype of several equations

that occur in physics or numerical analysis: it may be viewed as a model for a chain of

“atoms” or slices of some compound system, with nearest neighbor couplings.

At each k the equation provides uk+1 in terms of uk and uk−1; the recursion is made

single-term by doubling the vector and introducing the 1-step transfer matrix tk(E), of

size 2m:
[

uk+1

uk

]

=

[

B−1
k (E − Ak) −B−1

k Ck

Im 0

] [

uk

uk−1

]

. (2)

Iteration builds up the n-step transfer matrix T (E) = tn(E) · · · t1(E) that connects

vectors n steps apart:

T (E)

[

u1

u0

]

=

[

un+1

un

]

. (3)

One is often interested in the singular values σ1 ≥ . . . ≥ σ2m of T (E) (the eigenvalues

of the positive matrix (T †T )1/2), which describe the growth or decay of ‖un‖. The

product of the p largest ones (p = 1, . . . , 2m) can be obtained by the formula

σ1 · · ·σp = ‖ΛpT (E)‖, where (ΛpT )(v1 ∧ . . . ∧ vp) =: Tv1 ∧ . . . ∧ Tvp extends the action

of T to antisymmetric p−forms and ‖O‖ is the sup norm of operators [1, 2]. For real

transfer matrices the product has the simple geometric interpretation

σ1 · · ·σp = sup
v1...vp

Volume P{Tv1, . . . , T vp}
Volume P{v1, . . . , vp}

(4)

where P{v1, . . . , vp} is the parallelogram with sides vi ∈ R2m.

When the transfer matrix is the product of random matrices, Oseledets’ Multiplicative

Ergodic Theorem ensures that (up to a set of realizations of null probability measure)

the singular values grow or decay exponentially in n with rates (Lyapunov exponents)

λk = limn→∞
1
n

ln σk that are independent of the realization [3, 4]. Then:

λ1 + . . . + λp = lim
n→∞

1

n
ln ‖ΛpT‖.

The formula can be implemented numerically for the evaluation of Lyapunov spectra [5].

In the simplectic case (λm+k = −λk) the average of the positive Lyapunov exponents is
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expressible in terms of the average distribution of eigenvalues of the Hermitian random

matrices associated to (1):

λ1 + . . . + λm

m
=

∫

dE ′ρ(E ′) ln |E − E ′| + const. (5)

The formula was obtained by Herbert, Jones and Thouless for m = 1, and by Kunz,

Souillard, Lacroix [6] for m > 1. It is desirable to obtain similar equations for the

evaluation of single or other combinations of the exponents.

In this paper the properties of a single transfer matrix are investigated. It will

be proven that, for large n, half of its singular values have a lower bound that grows

exponentially in n, and the other half have an upper bound that decays exponentially

in n. Moreover, the spectrum of eigenvalues will be linked, via duality, to the spectrum

of the difference equation (1) with proper boundary conditions.

The idea of duality is simple. For a chain of length n, if Bloch boundary conditions

(b.c.) un+1 = eiϕu1 and u0 = e−iϕun are chosen (they correspond to an infinite periodic

chain), an eigenvalue equation is obtained:

T (E)

[

u1

u0

]

= eiϕ

[

u1

u0

]

. (6)

The condition det[T (E) − eiϕI2m] = 0 gives the nm eigenvalues Ea(ϕ) of the difference

equation (1). Then, for each eigenvalue, the whole eigenvector of the chain (u1 . . . un) is

constructed by applying the 1-step transfer matrices to the initial vector (u1, u0).

The opposite approach is also useful. The eigenvalue equation for T (E)

T (E)

[

u1

u0

]

= z

[

u1

u0

]

(7)

is solved whenever (u1, . . . , un)
t is an eigenvector with eigenvalue E of the matrix

H(z) =













A1 B1
1
zC1

C2
. . .

. . .
. . .

. . . Bn−1

zBn Cn An













(8)

which encodes the b.c. un+1 = zu1 and u0 = un/z that are implied by the eigenvalue

equation for the transfer matrix. The statement

Proposition 1.1 (u1, . . . , un)
t is a right eigenvector with eigenvalue E of the matrix

H(z) if and only if (u1, un/z)t is a right eigenvector of T (E) with eigenvalue z,

translates into a determinantal identity (the duality relation, [7]) that relates the eigen-

values of the tranfer matrix T (E) to those the associated “Hamiltonian” matrix H(z),

that describes the difference equation of length n with generalized Bloch boundary con-

ditions.
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It is occasionally useful to replace the parameter z with zn. The matrix H(zn) is

similar to the balanced matrix

HB(z) =













A1 zB1
1
zC1

1
zC2

. . .
. . .

. . .
. . . zBn−1

zBn
1
zCn An













(9)

by the similarity relation H(zn) = D(z)HB(z)D(z)−1, where D(z) is the block diag-

onal matrix (zIm, . . . , znIm). As a consequence H(zn), HB(z) and also HB(zeik2π/n),

k = 1 . . . n − 1, have the same eigenvalues.

While the matrix H(zn) remarks the value of zn as a boundary condition parameter,

the matrix HB(z) remarks the invariance under cyclic permutations of blocks (the ring

geometry) of the difference equation (and is numerically more tractable).

Tridiagonal matrices of type (9), with z = eξ real, were introduced by Hatano and

Nelson [8] to model vortex pinning in superconductors:

eξuk+1 + akuk + e−ξuk−1 = Euk,

where ak are independent random entries. The model attracted a great interest as

it gave another view of the relationship between localization and spectral response to

b.c. variations. For zero or small ξ the eigenvalues are real and all eigenvectors are

exponentially localized with localization lengths 1/λ(E). The Lyapunov exponent can

be evaluated by Thouless’ formula (5), λ(E) =
∫

dEρ(E) ln |E − E ′|, with the average

spectral density of the Hermitian chain (the analytic evaluation is possible in Lloyd’s

model, with Cauchy disorder [9]). By increasing ξ beyond a critical value the eigenvalues

start to gain imaginary parts and distribute along a single expanding curve [10] of

equation ξ = λ(E) (see figure 1). The transition has been studied also in 2D, where

the critical value of ξ for the onset of migration in the complex plane gives the inverse

localization in the center of the band [11].

If the parameter ξ is turned on in tridiagonal random matrices that are not Hermitian

at the beginning,

bke
ξuk+1 + akuk + e−ξckuk−1 = Euk,

the phenomenon shows up differently [12]: beyond a critical value of ξ, an area occupied

by the complex eigenvalues starts to be depleted, the eigenvalues being swept away and

accumulated on an expanding “front line” of equation ξ = λ(E). No eigenvalues are left

in the interior (corresponding to delocalization of states) (see figure 2).

Though the theory presented in this paper is very general, these two models were the

starting motivation:

1) band random matrices have block tridiagonal structure with lower and upper

triangular B and C matrices. Matrix elements are independent and identically

distributed (i.i.d.) random variables. It is customary to name m as b (bandwidth
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Figure 1. Left: the complex eigenvalues of a Hatano Nelson tridiagonal matrix

(m = 1, n = 600, ξ = 1) with random diagonal elements uniformly chosen in

[−3.5, +3.5]. They lie on the line ξ = λ(E). The real eigenvalues correspond to states

with localization length less than 1/ξ. Right: the same system, with ξ increasing from

0 to 1 in five steps to show the expanding spectral curve.
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Figure 2. Left: the eigenvalues of a tridiagonal matrix (m = 1, n = 800, ξ = 0.5)

with elements ak, bk, ck chosen uniformly in [−1, 1]; the “front circle” contains the

eigenvalues that filled the circle at lower values of ξ. Right: the motion of eigenvalues

(n = 100) is traced for ξ changing from 0.3 to 0.6. The outer eigenvalues are numerically

unaffected before being reached by the “front circle”.

is 2b + 1). If the probability distribution has zero mean and finite variance, and if

n ≫ b ≫ 1, the spectral density of Hermitian banded matrices is Wigner’s semicircle

law, with exponentially localized eigenvectors. The localization length and its finite

size scaling were studied numerically by Casati et al.[13], with insight provided by the

kicked rotor model of quantum chaos. Several properties were obtained analytically by

supersymmetric techniques in a series of papers by Fyodorov and Mirlin [14].

2) Anderson model describes the propagation of a particle in a lattice with random site

potential. After choosing a (long) direction of length n, the diagonal blocks Ak = T +Dk

describe the sections of the lattice with m sites each (T is the Laplacian matrix for the

transverse slice and Dk is a random diagonal matrix with i.i.d. elements). The hopping

among neighboring slices is fixed by Bk = Ck = Im. The random site-potential is

usually chosen uniformly distributed in [−w/2, w/2] (w is the disorder parameter) (the

literature is vast, see [15] for a mathematical introduction).

In both models the transfer matrix is a product of random matrices and, for n → ∞,
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it provides a non random Lyapunov spectrum [16, 17, 18]. The inverse of the smallest

Lyapunov exponent is the localization length.

Localization affects the response of energy values to variations of b.c. [19, 20]. This dual

way of viewing localization: through decay of eigenvectors (transfer matrix) or response

of energy levels to b.c. variations (Hamiltonian matrix), is hidden in the duality identity

among the eigenvalues of T (E) and of H(z).

Finally, let’s briefly mention the scattering approach to transport and localization,

introduced by R. Landauer in 1957. The finite chain is coupled to two infinite ordered

chains (the leads) which sustain Bloch waves that are transmitted and reflected by the

chain. The transmission matrix is evaluated through the transfer matrix (or the related

scattering matrix) of the finite chain. Its singular values give the conductance properties

of the chain. The literature is vast and is also accessible in books [21].

The first two sections provide algebraic properties that relate a generic transfer

matrix to its Hamiltonian matrix. Some of them appeared in previous papers, but

receive here a consistent presentation. In particular, they are the spectral duality and

the expression of T (E) in terms of the resolvent of the Hamiltonian matrix with open

b.c.

Next, a theorem by Demko, Moss and Smith [22] on the decay of matrix elements of the

inverse of a banded matrix is presented. It is used here to prove that a 2m×2m transfer

matrix has m singular values growing exponentially with the length of the chain, and

m singular values decaying exponentially. This new result reflects on a single matrix a

property of random matrix products.

The rest of the paper deals with identities; duality and Jensen’s identity give an

expression for the exponents ξa = 1
n

ln |za|, where za are the eigenvalues of the transfer

matrix, in terms of the eigenvalues of the associated matrix H(z). Hadamard’s inequality

for determinants of positive matrices supports the idea that the eigenvalues za have a

leading exponential growth in n. The discussion of the relevant case of Hermitian

difference equation ends the paper.

2. Transfer matrix and duality

Some general facts about transfer matrices are presented. By construction T (E) is a

polynomial in E of degree n, T (E) = EnTn + . . . + ET1 + T0, with matrix coefficients.

However, its determinant is independent of E:

det T (E) =

n
∏

k=1

det tk(E) =
det[C1 · · ·Cn]

det[B1 · · ·Bn]
(10)

This implies that T (E)−1 is again a matrix polynomial in E [23]. Actually T (E)−1 is

similar to the transfer matrix of the inverted chain. Let’s introduce the two matrices of
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inversion, of size 2m × 2m and nm × nm:

σx =:

[

0 Im

Im 0

]

, J =







Im

. . .

Im






,

Proposition 2.1 Let T (E) be a transfer matrix and H(z) the associated matrix, and

let T (E)J be the transfer matrix associated to HJ(z) = JH(z)J (the inverted chain);

then: T (E)−1 = σxT (E)Jσx.

Proof: T (E)−1 = [tn(E) · · · t1(E)]−1 = t1(E)−1 · · · tn(E)−1. The combination

σx t−1
k σx =

[

C−1
k (E − Ak) −C−1

k Bk

Im 0

]

gives the structure of a 1-step transfer matrix. Multiplication yields the result. �

Proposition 2.2 In the expansion of the characteristic polynomial of the transfer

matrix,

det [zI2m − T (E)] = z2m + . . . + ak(E)z2m−k + . . . + a2m−k(E)zk + . . . + a2m,

the coefficients ak(E) and a2m−k(E) are (in general different) polynomials in E of degree

kn (k = 0, ..., m).

Proof: Let z1, . . . , z2m be the eigenvalues of T (E). The coefficients

ak = (−1)k
∑

i1<...<ik

zi1 · · · zik , k = 1 . . .m,

can be expressed as combination of traces of powers of T (E) of degree k: a1 = − tr T (E),

a2 = 1
2
[tr T (E)]2− 1

2
tr [T (E)2], etc. Since T (E) = EnTn + . . .+T0, the coefficient ak is a

polynomial of degree kn in E. The remaining coefficients a2m−k are discussed differently.

The point is that a2m = z1 · · · z2m = det T (E) is independent of E and the coefficients

can be written as

a2m−k = (−1)k
∑

i1<...<i2m−k

zi1 · · · zi2m−k
= (−1)ka2m

∑

i1<...<ik

(zi1 · · · zik)
−1

Therefore, a2m−1 = −a2m tr[T (E)−1], a2m−2 = a2m
1
2
[tr T (E)−1]2 − a2m

1
2
tr[T (E)−2], etc.

Since also T (E)−1 is a polynomial matrix of degree n in E, a2m−k is a polynomial of

degree kn in E. �

Theorem 2.3 (Duality)

det[zI2m − T (E)] = (−z)m det[EInm − H(z)]

det(B1 · · ·Bn)
(11)

Proof: According to proposition 2.2 the leading term in the expansion in E of

det [zI2m − T (E)] coincides with the leading term in the expansion of det[zI2m −EnTn],

which is (−z)mEnm det[B1 · · ·Bn]−1. The leading term of det[EI2m − H(z)] is Enm.

Since by proposition 1.1 the two polynomials, for given z, have the same zeros in E,

they must be proportional by a constant. �
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Figure 3. The eigenvalues of the Hamiltonian matrix (n = 8, m = 3) of a 2D Anderson

model on a lattice 3 × 8, diagonal disorder parameter w = 7. The b.c. parameter is

z = exp(nξ + iϕ) with ξ = 1.5. As ϕ changes, the 24 eigenvalues (of the balanced

matrix) trace m = 3 closed loops of equation ln |zk(E)| = 1.5.

This relation among characteristic polynomials is a “duality identity” as it

exchanges the roles of the parameters z and E among the two matrices: z is an eigenvalue

of T (E) if and only if E is an eigenvalue of the block tridiagonal matrix H(z). I gave

different proofs of it [7, 24, 25]. With z = 1 it is a tool for computing determinants of

block tridiagonal or banded matrices with corners.

The eigenvalues of H(z) make the l.h.s. of duality equal to zero, i.e. there is at least a

complex factor zi(E)− z = 0. This means that an eigenvalue E is at the intersection of

a line |zi(E)| = |z| and arg zi(E) = arg z. By changing only the parameter arg z, the

eigenvalues move along spectral lines |zi(E)| = |z|. For tridiagonal matrices (m = 1)

there is a single spectral curve (figure 1), for m > 1 several spectral curves appear [26]

(see figure 3).

A more symmetric duality relation results from multiplication of the dual identities

for (T − z) and (T − 1/z):

det

[

T (E) + T (E)−1 −
(

z +
1

z

)

I2m

]

=
det[EInm − H(z)] det[EInm − H(1/z)]

det[B1 · · ·Bn] det[C1 · · ·Cn]

3. Transfer matrix and resolvent

Equation (1) with open b.c. u0 = 0 and un+1 = 0, is the eigenvalue equation for the

matrix

h =













A1 B1

C2
. . .

. . .
. . .

. . . Bn−1

Cn An













(12)

Let (u1, . . . , un)
t be a (right) eigenvector of h with eigenvalue E; then u1 and un are

both nonzero, or the whole vector would be null by the chain recursion. With the block

partition

T (E) =

[

T (E)1,1 T (E)1,2

T (E)2,1 T (E)2,2

]
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(3) gives T (E)1,1u1 = 0 and T (E)2,1u1 = un. This means that det T (E)1,1 = 0 whenever

det[EInm − h] = 0 (and det T (E)2,1 6= 0). The following duality relation results:

Proposition 3.1 (duality for the open chain)

det[EInm − h] = det T (E)1,1 det[B1 · · ·Bn] (13)

Proof: by construction T (E)11 = En(B1 · · ·Bn)−1+ lower powers in E. Then both

det[EInm − h] and det T (E)11 are polynomials in E of degree nm. Having the same

roots, they are proportional. �

The blocks T (E)12 and T (E)21 are polynomial matrices of degree n − 1 in E, and

T (E)22 has degree n−2. The four blocks can be evaluated in terms of the corner blocks

of the resolvent matrix

g(E) = [h − EInm]−1 =:







g1,1 · · · g1,n

...
...

gn,1 · · · gn,n







The corner matrices C1 and Bn are absent in h but enter in the definition of T (E)

through the 1-step factors t1(E) and tn(E), and will be accounted for.

Proposition 3.2 Let gi,j ∈ Cm×m (a, b = 1 . . . n) be the blocks of g(E). Then

T (E) =

[

−B−1
n (g1,n)−1 −B−1

n (g1,n)−1g1,1C1

gn,n(g1,n)
−1 gn,n(g1,n)−1g1,1C1 − gn,1C1

]

(14)

Proof: write the identity [h−EInm]g(E) = Inm for the block indices i = 2 . . . n− 1 and

k = 1, n: Cigi−1,k + (Ai − EIm)gik + Bigi+1,k = 0. The recursive relations are solved by

the transfer matrix method and give a matrix relation among the corner blocks:
[

gn,1 gn,n

gn−1,1 gn−1,n

]

= tn−1(E) · · · t2(E)

[

g2,1 g2,n

g1,1 g1,n

]

Left multiply both sides by tn(E) and simplify l.h.s. by means of the identity

Cngn−1,k + (An − EIm)gn,k = δk,nIm. Insert t1(E)t1(E)−1 = I2m in the r.h.s. to obtain

T (E)t−1
1 , and simplify the action of t−1

1 by means of the identity (A1−EIm)g1,k+B1g2,k =

δ1,kIm. The useful factorization is obtained:
[

0 −B−1
n

gn,1 gn,n

]

= T (E)

[

g1,1 g1,n

−C−1
1 0

]

(15)

A matrix inversion and multiplication give the result. �

Remark 3.3 The representation provides the transfer matrix through a large matrix

inversion, rather than multiplications. The blocks Tij, corrected by the velocities of

the channels of the leads [7], provide the transmission and the reflection matrices. The

relation between the transmission matrix and the resolvent was first obtained by D. Fisher

and P. Lee [27]. It was used by Kramer and MacKinnon [28] in a numerical proof of

one-parameter scaling for the localization length of Anderson’s model.
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4. Exponential inequalities

Products of random matrices are known to exhibit Lyapunov exponents that are

asymptotically stable and self-averaging, i.e. independent of the length n and of the

realization of the random product. In the present deterministic approach a single chain

is considered, and it will be shown that it is possible to give exponential bounds on the

eigenvalues for long chains, that justify the introduction of exponents.

Demko, Moss and Smith [22] made the very general statement that, loosely speak-

ing, the matrix elements of the inverse of block tridiagonal or banded matrices decay

exponentially from the diagonal (see also [29, 30]). I here present their interesting proof

adapted to the block partitioning of matrices. I then apply it to the matrix g(E) to

obtain bounds for the singular values of T (E).

The main ingredient is the best approximation of the function (x − a)−1 on the

interval [−1, 1] (|a| > 1) by a polynomial of degree k, which was obtained by Chebyshev

together with the determination of the error [31]. With proper rescaling it is [22]:

Lemma 4.1 Let Pk be the set of real monic polynomials of degree k, let [a, b] be an

interval of the positive real line, with a > 0. Then:

inf
p∈Pk

{

sup
x∈[a,b]

∣

∣

∣

∣

1

x
− p(x)

∣

∣

∣

∣

}

= C qk+1, (16)

C =
(
√

b +
√

a)2

2ab
, q =

√
b −√

a√
b +

√
a

(17)

If A is a block tridiagonal matrix with blocks of size m×m and if pk(x) is a polynomial

of degree k, the blocks pk(A)i,j of the matrix pk(A) are null for |i − j| > k.

Let A be a positive definite block tridiagonal matrix, with inverse A−1. If A−1[i, j]

denotes any matrix element in the block (A−1)ij then, for any monic real polynomial of

degree k = |i − j| − 1, it is:

|A−1[i, j]| =
∣

∣A−1[i, j] − pk(A)[i, j]
∣

∣

≤ ‖A−1 − pk(A)‖ = sup
λ∈sp(A)

∣

∣

∣

∣

1

λ
− pk(λ)

∣

∣

∣

∣

≤ sup
λ∈[a,b]

∣

∣

∣

∣

1

λ
− pk(λ)

∣

∣

∣

∣

where ‖A‖ = sup‖x‖=1 ‖Ax‖ is the operator norm‡, and the spectral theorem is used.

In the last line [a, b] is the smallest interval containing the spectrum of eigenvalues

sp(A). Next, the inf is taken over the polynomials pk. The lemma states that the

minimum exists, and the error gives the main inequality. Note that for |i − j| = 0:

|A−1[i, i]| ≤ ‖A−1‖ = 1/a. Therefore:

‡ For any matrix A with matrix elements Ars it is |Ars| = |(er|Aes)| ≤ ‖Aes‖ ≤ ‖A‖, where ei are

canonical unit vectors and Schwarz’s inequality is used.
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Theorem 4.2 (Demko, Moss and Smith) Let A be a positive definite block

tridiagonal matrix, with square blocks of size m, let [a, b] be the smallest interval

containing the spectrum of A, let A−1[i, j] be any matrix element in the block (A−1)ij.

Then:

∣

∣A−1[i, j]
∣

∣ ≤
{

C q|i−j| for |i − j| ≥ 1

1/a for i = j
(18)

where q < 1 and C are specified by eq.(17).

Demko et al. also proved an extension of the theorem to a matrix A that is block

tridiagonal invertible but fails to be positive. An estimate for A−1 is obtained by noting

that A−1 = A†(AA†)−1. The matrix AA† is block 5-diagonal positive definite, and a

polynomial pk(AA†) is a matrix whose blocks (i, j) are null if |i− j| > 2k. The previous

theorem applies, with [a, b] being the smallest positive interval containing sp(AA†):

|(AA†)−1[i, j]| ≤ C√
q

q
1

2
|i−j|, |i − j| > 2

The extension of the theorem is here written in the block notation, with minor changes

from the original paper:

Theorem 4.3 Let A be an invertible block tridiagonal matrix with square blocks of size

m, let [a, b] be the smallest interval containing sp(A†A), let A−1[i, j] be any matrix

element in the block (A−1)ij. Then:

|A−1[i, j]| ≤ Ci q
1

2
|i−j| (19)

Ci =
C

q
(‖Ai−1,i‖ + ‖Ai,i‖ + ‖Ai+1,1‖) , (20)

where q < 1 and C are given in (17).

Proof: in terms of block multiplication:

(A−1)ij = (A†)i,i−1[(AA†)−1]i−1,j + (A†)i,i[(AA†)−1]i,j + (A†)i,i+1[(AA†)−1]i+1,j.

The sup norm, the triangle inequality, the property ‖AB‖ ≤ ‖A‖‖B‖, and the bound

on (AA†)−1 give:

‖(A−1)ij‖ ≤ ‖Ai−1,i‖‖(AA†)−1
i−1,j‖ + ‖Ai,i‖‖(AA†)−1

i,j‖ + ‖Ai+1,i‖‖(AA†)−1
i+1,j‖

≤ C√
q

(

‖Ai−1,i‖q
1

2
|i−j−1| + ‖Ai,i‖q

1

2
|i−j| + ‖Ai+1,i‖q

1

2
|i−j+1|

)

≤ C

q
(‖Ai−1,i‖ + ‖Ai,i‖ + ‖Ai+1,j‖) q

1

2
|i−j|

If A−1[i, j] is any matrix element in the block (A−1)ij , it is |A−1[i, j]| ≤ ‖(A−1)ij‖. �

Given an invertible matrix A, the condition number of A is [2]:

cond (A) =: ‖A‖ ‖A−1‖
In general it is cond (A) ≥ 1. If a and b are the extrema of the spectrum of a positive

matrix P it is b = ‖P‖ and 1/a = ‖P−1‖; then b/a = cond (P ).
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Since ‖AA†‖ = ‖A‖2, it is cond (AA†) = [cond(A)]2 and the parameters in theorem 4.3

are:

q =
cond(A) − 1

cond(A) + 1
, C =

(cond(A) + 1)2

2‖A‖2
(21)

Theorem 4.3 is applied to the corner blocks of the resolvent g(E) = [h − EInm]−1,

E /∈ sp(h), which enter in the representation (14) of the transfer matrix. The numbers

cond (h − E) and ‖h − E‖ define the parameters q < 1 and C.

Proposition 4.4 If g[1, n] and g[n, 1] are matrix elements of the corner blocks g1n and

gn1 of g(E), then the following inequalities hold:

|g[1, n]| ≤ C (‖A1 − E‖ + ‖B1‖)q
1

2
(n−3), (22)

|g[n, 1]| ≤ C (‖An − E‖ + ‖Cn‖)q
1

2
(n−3) (23)

where A1, B1, An, Bn are the blocks in the first and last row of h.

We prepare for the main theorem with the following lemma:

Lemma 4.5 The singular values θk of the block T11 of T (E) are exponentially large in

n: θk > q−n/2/K.

Proof: from (T11)
−1 = −g1nBn it follows that: tr[(T †

11T11)
−1] = tr[BnB

†
ng

†
1ng1n] ≤

m2‖BnB
†
n‖‖g†

1ng1n‖ = m2‖Bn‖2‖g1n‖2 ≤ m2‖Bn‖2C2(‖A1−E)‖+‖B1‖)2qn−3 =: K2 qn.

Since tr[(T †
11T11)

−1] =
∑m

k=1 θ−2
k , it turns out that each singular value of T11 is larger

than q−n/2/K. �

Main Theorem 4.1 If q < 1 and n is large, the transfer matrix T (E) has m singular

values larger than 1
K

q−n/2 and m singular values smaller than Kqn/2.

Proof: Let θ1 ≥ . . . ≥ θm be the singular values of the block T11, and let σ1 ≥ . . . ≥ σ2m

be the singular values of T (E). The interlacing property (Theorem 7.12 of ref.[32])

states that:

σk ≥ θk ≥ σm+k, k = 1, . . . , m

Therefore, there are at least m singular values of T (E) that are larger than 1
K

q−n/2.

Since the same conclusion holds true for T (E)−1, which is similar to a transfer matrix

by proposition 2.1, there are precisely m singular values of T (E) that are larger than
1
K

q−n/2, and m that are smaller than Kqn/2. �

5. Jensen’s formula and the exponents

The two sides of the duality relation are determinantal expressions of the same

polynomial in two variables, F (z, E) =: det [zI2m − T (E)]. Let z1, . . . , z2m be the zeros

in the variable z (the eigenvalues of T (E)) with |z1| ≥ . . . ≥ |z2m|, and let E1, . . . , Enm

be the zeros in E (the eigenvalues of H(z)). It is convenient to introduce the exponents

of the transfer matrix:

ξk =:
1

n
ln |zk|
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Remark 5.1 The exponents are not to be confused with the Lyapunov exponents, which

are defined in terms of the positive eigenvalues σ2
k of the matrix T †T . It has been shown

(with less general T ) that also T †T is the transfer matrix of a block tridiagonal matrix,

so the same discussion may be applied to them [26].

The sum of the exponents is 1
n

ln | detT (E)|. Then:

2m
∑

k=1

ξk =
1

n

n
∑

j=1

(ln | detCj | − ln | detBj |) (24)

Some general analytic results are now given, based on the following theorem of complex

anaysis [33]:

Theorem 5.2 (Jensen) If f is holomorphic and f(0) 6= 0, and z1 . . . zn are its zeros

in the disk of radius r, then:
∫ 2π

0
dθ
2π

ln |f(reiθ)| = ln |f(0)| −
∑

k ln(|zk|/r).
The theorem is applied to F (z, E) as a function of z, resulting in a relation between a

sum of the exponents and the spectrum of the Hamiltonian matrix [34]:

Proposition 5.3

1

m

∑

ξk<ξ

(ξ − ξk) − ξ

=
1

mn

∫ 2π

0

dϕ

2π
ln |det[H(exp[nξ + iϕ]) − E]| − 1

mn

n
∑

j=1

ln |det Cj| (25)

Proof: Jensen’s theorem with z = enξ+iθ gives in the r.h.s. the sum of exponents

contained in the disk of radius enξ:
∫ 2π

0

dθ

2π
ln

∣

∣F (enξ+iθ, E)
∣

∣ = ln | det T (E)| + n

2m
∑

k=1

(ξ − ξk)θ(ξ − ξk).

The dual expression is used in the l.h.s.: ln |F | = mnξ + ln | det[H(enξ+iϕ) − E]| −
∑

j ln | det Bj|. �

A derivative in the variable ξ of (25) gives the counting functions of exponents

N(ξ, E) =
∑

θ(ξ − ξa(E)), which is also obtainable by Euler’s formula for the zeros zk

of the entire function F (z, E) [37].

Hadamard-Fisher’s inequality [2, 32] states that if M1, . . . , Mn are the diagonal

blocks of the positive matrix A†A, then | detA|2 ≤ det M1 · · ·det Mn.

The inequality is applied to the r.h.s. in eq.(25), with the balanced matrix HB(eξ+iϕ/n):
2m
∑

k=1

(ξ − ξk)θ(ξ − ξk) − mξ ≤ −1

n

n
∑

j=1

ln |det Cj| (26)

+
1

2n

n
∑

k=1

ln det
[

(A†
k − E)(Ak − E) + e2ξB†

kBk + e−2ξC†
kCk

]

If the norms of matrices Ai Bi and Ci are bounded by some constant for all i, and m is

fixed, the sum in l.h.s. of inequality remains finite for any length n, as the r.h.s. is an

average value for the blocks.
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Corollary 5.4 The sum of the positive exponents is obtained from (25) with ξ = 0 and

by means of eq.(24)

2m
∑

k=1

ξk θ(ξk) =
1

n

∫ 2π

0

dθ

2π
ln

∣

∣det[H(eiθ) − E]
∣

∣ − 1

n
ln | det [B1 · · ·Bn]| (27)

The identity is exact and applies to a single transfer matrix. It is reminiscent of the

formula (5) for the sum of the Lyapunov exponents of random transfer matrices. The

“angular average” replaces the ensemble averaged density of eigenvalues ρ(E), which

was extended to tridiagonal non-Hermitian matrices in [35, 36].

6. The Hermitian difference equation

Most of the literature concentrates on the Hermitian case. However, as duality requires

z to be a complex parameter, the matrix H(z) fails to be Hermitian unless |z| = 1;

H(z) =













A1 B1
1
zB†

n

B†
1

. . .
. . .

. . .
. . . Bn−1

zBn B†
n−1 An













, Ak = A†
k (28)

A useful symplectic property holds for the transfer matrix (in transport problems it

describes flux conservation, [7]), and implies that exponents come in pairs ±ξa:

Proposition 6.1 T (E)†ΣnT (E) = Σn, Σn = i

[

0 −B†
n

Bn 0

]

(29)

Proof: in the factorization T (E) = tn(E) · · · t1(E), the factors tk(E) (k = 2 . . . n) have

the property tk(E)†Σktk(E) = Σk−1. The factor t1 that contains the boundary blocks,

closes the loop: t1(E)†Σ1t1(E) = Σn. �

Corollary 6.2 If E is real, the eigenvalues of T (E) different from ±1 come in pairs z,

1/z. The associated exponents are opposite.

Proof: If T (E)u = zu, the symplectic property implies that T (E)†Σnu = 1/zΣnu i.e.

1/z is an eigenvalue of T (E). Moreover, if |z| 6= 1, then u†Σnu = 0.

Proposition 6.3 If Im E 6= 0 then T (E) has no eigenvalues on the unit circle.

Proof: for Im E 6= 0 and z = eiθ it is always det[E − H(eiθ)] 6= 0 because H(eiθ) is

Hermitian and it has real eigenvalues. Therefore, by duality, det[T (E) − eiθI2m] never

vanishes. �

A degeneracy occurs in the exponents of the real transfer matrix of a real symmetric

difference equation (the Anderson model is a notable example, but remind remark 5.1):

Proposition 6.4 Let the matrices Ak be real symmetric and Bk be real invertible. For

E ∈ R, the real eigenvalues of T (E) come in pairs z, 1/z, the complex ones also have

the conjugated pair z, 1/z.
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Proof: if z is a complex eigenvalue of T (E) not in the unit circle, then also z, 1/z and

1/z are distinct eigenvalues, and exponents are doubly degenerate opposite pairs. If z

is a real eigenvalue, then 1/z is an eigenvalue. Therefore an eigenvalue (real or not) is

always paired to the eigenvalue 1/z. �

Conclusions

Even for general transfer matrices of block tridiagonal matrices one can make several

analytic statements. For any number n of matrix factors, the eigenvalues of the transfer

matrix are related to those of the block tridiagonal matrix by duality and Thouless-like

identities, with a parameter that allows to scan the spectrum. It would be a great

achievement to implement such exact formulae in the study of the Lyapunov spectrum

of the Anderson model.

Next, it is here shown that, for large n, the singular values of the transfer matrix either

decay or grow (in equal number) with increasing n. This reflects the large n behaviour

of the matrix elements of the inverse of any band matrix, described in the theorem by

Demko, Moss and Smith.
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