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Abstract 

 

Fertilization and seed formation are key events in the life cycle of flowering plants. 

The seed represents an elaborated functional unit, whose main purpose is to 

propagate the plant's offspring. The first step in seed development is the formation 

of ovules and subsequently the achievement of a successful double fertilization 

process.  

In our lab we have discovered that the MADS-box domain protein complex formed 

by SEEDSTICK (STK) and SEPALLATA3 (SEP3), responsible to maintain ovule 

identity, have as a direct target a member of the REM family, VERDANDI (VDD, 

REM20). With the combination of Bio-informatics studies and ChIP-qPCR 

experiments using specific STK and SEP3 antibodies, we were able to identify 

REM11, as the second direct target of the STK-SEP3 complex. The phenotype of 

the rem11 mutant is very similar to the one described for vdd-1/+ demonstrating 

that REM11 plays a similar function in the fertilization process. To better 

understand the fertilization defect observed in these mutants we have used a new 

technique developed to observe fertilization in vivo, by visualizing the gametes 

with a combination of markers for sperm cells and for the female gamete. In the 

rem11 or in vdd-1 gametophytes the synergid cell seemed to lose identity. 

Although the pollen tubes reached the micropyle, the two sperm cells didn’t 

migrate toward the egg and center cells. These results showed the important and the 

direct involvement of these two genes in the control of synergid driven processes. 

Ultimately we discovered that genes responsible for the pollen tube attraction like 

the transcription factor MYB98, are correctly expressed in the mutants whereas 

genes, probably responsible for the degeneration process are miss-expressed. In 

summary, we can say that, two very different processes are regulated by the 

synergid cells: 1) the attraction of the pollen tube and 2) the synergid degeneration 

(apoptosis). We discover that the second step is specifically controlled by VDD and 
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REM11, two proteins that by yeast-2-hybrid experiments were able to interact. 

Based on these results we have decided to study if other REM transcription factors 

could interact with REM11 and VDD.  

In conclusion STK-SEP3 MADS-box complex are able to directly regulate a REM 

transcription factor complex that has a very important and specific role during the 

double fertilization process. To understand how VDD-REM11 complex regulate 

synergid degeneration we have performed a RNA sequencing experiment 

comparing wild-type mature carpels to mutant ones. Exciting targets have been 

discovered and discuss in this thesis.  

I have also studied the regulation of VDD transcription by STK-SEP3 complex. In 

VDD regulatory region three CArG boxes were identified and by Chromatin 

Imunoprecipitation experiments, we have showed that the ovule identity proteins 

STK and SEP3 bind to the first and third CArG boxes. We have performed in vivo 

and in vitro experiments showing that the STK-SEP3 complex is needed to form 

short-range loops in VDD promoter. For years evidences based on in vitro 

biochemical assays and yeast experiments shown that MADS box proteins form 

multimeric complexes. New evidences for the quartet-floral model were obtained, 

analyzing the activation of VDD promoter by STK-SEP3 multimeric complex. 

Least but not the last, I have also analyzed the interaction of ARABIDOPSIS 

BSISTER (ABS)  with STK, showing that they have a function in the regulation of 

the endothelium development, the inner most integument layer of the mature ovule 

that we demonstrated to be  required to  the double fertilization process.  
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The importance of Double Fertilization process  

 

Fertilization and seed formation are key events in the life cycle of flowering plants. 

The seed represents an elaborated functional unit whose main purpose is to 

propagate the plant's offspring. The first step in seed development is the formation 

of ovules and the subsequent steps will culminate in a successful double 

fertilization process. The detailed study of this process is very importance because 

influence directly different human needs such as protection of the biodiversity and 

the assurance of sustainable agricultural systems to feed the world population. 

Additionally is important to improve our knowledge on the molecular mechanism 

controlling plant sexual reproduction to ensure and increase seed production.  

 

Sexual reproduction requires the delivery of the sperm nuclei, via the pollen, to the 

embryo sac, where fertilization occurs and the new diploid sporophyte is formed. 

The plant life cycle in the angiosperms is characterized by the alternation of 

generations between a diploid sporophyte and a haploid gametophyte. The 

sporophyte produces spores, which then develop into gametophytes. The 

gametophytes in its turn produce either the male and female gametes. In contrast to 

lower plant species, in which the gametophyte is the dominant, free-living 

generation, gametophytes of angiosperms are smaller and less complex than the 

sporophyte and are formed within specialized organs of the flower.   
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Gametophytes Development 

 

Ovule development and the female gametophyte 

 

The ovule is the source of the female gametophyte (embryo sac) and the progenitor 

of the seed. Ovules provide structural support to the female gametes and enclose 

them until the development of the seeds, upon fertilization. The development of the 

ovule can be divided in two steps, the specification of the megasporocyte plus the 

production of a functional megaspore (megasporogenesis) and the formation of the 

embryo sac (megagametogenesis) (Reiser and Fischer 1993; Shi and Yang 2011). 

 

In most flowering plants like for Arabidopsis thaliana, the model specie used in our 

studies, ovules initiate their development as illustrated in Figure 1. Initially the 

ovule is composed by three basic structures: the nucellus, a middle zone were the 

two integuments will arise and a funiculus (Figure 1A). The nucellus is derived 

from the apical portion of the ovule primordium and functions as the 

megasporangium. Shortly after ovule initiation, a single subdermal nucellar cell 

enlarges and displays a prominent nucleus. This cell represents the megasporocyte, 

and typically occupies a position directly below the apex of the nucellus. The 

megasporocyte gives origin to four megaspores upon meiosis where only one does 

not degenerated and gives rise to the megagametophyte. Only the megaspore at the 

chalaza pole, also called the functional megaspore, undergoes three rounds of 

nuclear division to form a coenocytic, eight-nucleated embryo sac. Subsequently, 

nuclear migration, polar nuclear fusion, and cellularization take place to yield 

ultimately a seven-celled embryo sac composed of two synergids, one egg cell, one 

diploid central cell, and three antipodals (Figure 1C-D) (Drews and Koltunow 

2011a; Reiser and Fischer 1993). 
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The integuments are initiated at the base of the nucellus during megasporogenesis 

(Figure 1B). The inner integument is of dermal origin, whereas the outer 

integument is usually derived from both dermal and sub-dermal layers. The two 

integuments are considered to have distinct evolutionary origins. Periclinal 

divisions in the integuments generate an increase in the number of cell layers, 

whereas anticlinal divisions and cell elongation are responsible for wild-type 

growth parallel to the nucellus.  

Megagametogenesis involves first two series of mitoses without cytokinesis, 

followed by cellularization of the nuclei and then cell differentiation. The two 

rounds of mitosis without cytokinesis lead to a four-nucleate coenocyte with two 

nuclei at each pole. During a third mitosis, phragmoplasts and cell plates form 

between sister and non-sister nuclei; this is the beginning of the cellularization 

process and the female gametophyte cells quickly become completely surrounded 

by cell walls. During and after cellularization, one nucleus from each pole (the 

polar nuclei) migrates toward the center of the developing female gametophyte and 

they fuse. These events result in a seven-celled structure consisting of three 

antipodal cells, one central cell, two synergid cells, and one egg cell (Figure 1D). 

The central cell has two haploid nuclei. If the female gametophyte is unfertilized, 

the antipodal cells eventually might undergo cell death; however, at the time of 

fertilization, the female gametophyte most likely is a seven-celled structure (i.e., 

the antipodal cells are present (Christensen et al. 1998; Drews and Koltunow 

2011b; Schneitz et al. 1995). 

The egg and central cells are polarized such that the nuclei of both cells lay very 

close to each other. This feature is important for double fertilization because these 

two nuclei are the targets of the two sperm nuclei. Furthermore, in the regions 

where the egg, synergid, and central cells meet, the cell walls are absent or 

discontinuous and the plasma membranes of these cells are in direct contact with 
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each other to facilitate direct access of the sperm cells to the fertilization targets 

because the pollen tube releases the two sperm cells into one of the synergid cells.  

The synergid cell wall is further specialized. At the micropylar pole, the synergid 

cell wall is thickened and extensively invaginated, forming a structure referred to 

as the “filiform apparatus”. The filiform apparatus greatly increases the surface 

area of the plasma membrane in this region and contains a high concentration of 

secretory organelles, suggesting that it may facilitate transport of substances into 

and out of the synergid cells. Based on cytological staining properties in species 

other than Arabidopsis, the filiform apparatus appears to be composed of a number 

of substances including cellulose, hemicellulose, pectin, callose, and protein. The 

filiform apparatus has at least two functions associated with the fertilization 

process. First, the synergid cells secrete pollen tube attractants through the filiform 

apparatus and the pollen tube enters the synergid cell by growing through the 

filiform apparatus, suggesting that it is important for pollen tube reception (Drews 

and Koltunow 2011b; Kasahara et al. 2005; Punwani et al. 2008). 

The antipodal cells in Arabidopsis have no dramatic specializations and no known 

function. In other species, the antipodal cells contain finger-like cell wall 

projections resembling the filiform apparatus. These observations suggest that the 

antipodal cells indeed have a function and that they may function as transfer-cells, 

transporting substances from the surrounding ovule cells into the female 

gametophyte (Drews and Koltunow 2011b). 
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Figure 1. Polygonum-type  embryo sac development, Arabidopsis thaliana 

 

A-B) Megasporogenisis process, in (A) are visible three distinct parts, from the top to the 

bottom: nucellus (nu) showing a single megasporocyte (ms), one or two integuments, and a 

funiculus (fu).    . 

(B) Ovule after both integuments had initiated their growth. At this time, the 

megasporocyte has undergone the first meiotic division. ii, inner integument; oi, outer 

integument.  

(C) Ovule after meiosis. The functional megaspore (fm) at the chalazal end has expanded, 

and the nonfunctional megaspores are degenerated. dm, degenerate megaspores.  

(D) Ovule after megagametogenesis. The mature embryo sac contains seven cells and eight 

nuclei. From (C) to (D) detailed phases of the megametogenisis. Megaspore with a single 

nucleus (stage FG1). This nucleus undergoes two rounds of mitosis, producing a four-

nucleate coenocyte, with two nuclei at each pole separated by a large central vacuole (stage 

FG4). During a third mitosis, phragmoplasts and cell plates form between sister and non-

sister nuclei and the nuclei become completely surrounded by cell walls (Stage FG5). 

During cellularization, the polar nuclei migrate toward the center of the female 

gametophyte and fuse before fertilization. These events produce a seven-celled structure 

consisting of three antipodal cells, one central cell, two synergid cells, and one egg cell. 

(Stage FG6). White areas represent vacuoles and black circles/ovals represent nuclei. 

Abbreviations: ac, antipodal cells; cc, central cell; ccn; central cell nucleus; ch, chalazal 

region of the ovule; ec, egg cell; f, funiculus; fg, female gametophyte; fm, functional 

megaspore; ii, inner integument; m, megaspore; mp, micropyle; oi, outer integument; pn, 

polar nuclei; sc, synergid cells. 

  Adapted from (Christensen et al. 1998; Drews and Koltunow 2011b; Reiser and Fischer 

1993) 
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Integument development 

 

As the embryo sac develops, the integuments continue to enlarge, typically 

overgrowing the nucellus. The amount of ovule curvature varies with the extent of 

differential growth of the integuments and funiculus; the degree of curvature forms 

a basis for classification of ovule morphology. Thus, the mature anatropous ovule 

shows extensive curvature such that the long axis of the nucellus is parallel to the 

axis of the funiculus (Figure 1D) (Schneitz K 1995).  

The embryo sac is then in direct contact with the inner integument. In these 

situations, the innermost cell layer of the inner integument differentiates into a 

unique cell layer named the endothelium. Radial cell expansion, endopolyploidy, 

and prominent nuclei are observed in the endothelial cells (Reiser and Fischer 

1993).  The ovule is connected to the ovary wall by the funiculus, a stalk-like 

structure extending from the lowermost part of the chalaza to the placenta. Usually, 

a single vascular strand runs through the funiculus from the placenta terminating at 

the base of the embryo sac. The mature ovule displays a polarity with respect to the 

axis determined by the location of the chalaza and micropyle. The chalaza is 

defined as the region extending from the base of the integuments to the point of 

attachment of the funiculus. The micropyle is located at the point where the 

integuments terminate and is the site where pollen tubes enter the ovule (Figure 

1D).  

The inner no outer (ino) mutant description suggests that proper integument 

formation is also necessary to stimulate megagametogenesis progression ino ovules 

do not develop the outer integument; however, the inner integument seems to 

develop normally. ino embryo sacs are also gametophytically defective, since 

megagametogenesis cannot proceed after FG5 (Christensen et al. 1998) indicating 

that both integuments are important in Arabidopsis to promote female gametophyte 
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development. Other mutants have been described in great detail and reviewed by 

(Bencivenga et al. 2011), showing the integuments importance. 

 

 
Male gametophyte 

 

Male reproductive development begins with the formation of the stamen structure 

composed by the anther and by a filament that supports it.  Two distinct sequential 

phases take place inside the anther, as described before for the embryo sac 

development, forming the male gametophyte: the microsporogenesis and the 

microgametogenesis (Figure 2). In microsporogenesis, diploid pollen mother cells 

undergo meiotic division to produce tetrads of haploid microspores, each tetrad is 

enclosed by a thick callose wall (Scott 2004). This stage is completed when distinct 

unicellular microspores are freed from tetrads by the activity of a mixture of 

enzymes secreted by the tapetum. 

Each microspore undergoes one asymmetrical division known as Pollen Mitosis I 

(PMI) which gives rise to a small germ cell and a large vegetative cell.  At this 

point, another generation starts, the male gamethophytic generation.  The two cells 

of this bicellular pollen grain have strikingly different fates.  The germ cell that 

represents the male germline is subsequently engulfed within the cytoplasm of the 

larger vegetative cell and creates a novel cell-within-a-cell structure. This 

swallowing up process involves degradation of the hemispherical callose wall that 

separates the newly formed vegetative and germ cells. The fully engulfed germ cell 

forms a spindle-like shape that is maintained by a cortical cage of bundled 

microtubules (Giampiero Cai 2006; Palevitz 1989). Asymmetric division at PMI is 

essential for the correct cellular patterning of the male gametophyte, since the 

resulting two daughter cells each one harbors a distinct cytoplasm and possesses 

unique gene expression profiles that confer their distinct structures and cell fates 

(Twell 1998). Induction of symmetrical division at PMI has demonstrated that 
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vegetative cell gene expression is the default developmental pathway and that the 

division asymmetry is critical for correct germ cell differentiation (Eady et al. 

1995).  The large vegetative cell has dispersed nuclear chromatin, nurtures the 

developing germ cell and will give rise to the pollen tube following a successful 

pollination. During pollen maturation, the vegetative cell accumulates carbohydrate 

and/or lipid reserves along with transcripts and proteins that are required for rapid 

pollen tube growth. The smaller germ cell has condensed nuclear chromatin and 

continues through a second mitosis, named the Pollen Mitosis II (PMII), to produce 

twin sperm cells. In species that shed tricellular pollen, such as Arabidopsis 

thaliana, PMII takes place within the pollen grain prior to anthesis. This is in 

contrast with the majority of species that shed their pollen in a bicellular state, such 

as Lilium longiflorum, with PMII taking place in the growing pollen tube. 

Following PMII, a physical association between the sperm cells and the vegetative 

nucleus is established that is referred to as the male germ unit.  At the end of pollen 

grain development, a dehydration phase takes place where disaccharides, proline 

and glycine-betaine work as osmoprotectants to protect vital  membranes and 

proteins from damage (Schwacke et al. 1999). Mature pollen grains must be 

released from anther locules, this is achieved through a process called anther 

dehiscence, which involves opening of the anther wall. This requires the 

degeneration of specific anther tissues called septum and stomium (Borg et al. 

2009). 

 

 

 

 

 

Figure 2. Schematic representation of Pollen development, adapted from (Borg 

et al. 2009). 
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Double fertilization process  

 

The first time that was suggested that each male cell fuses with a cell in the female 

gametophyte, was in the year of 1898. In St. Petersburg, Sergius Nawaschin 

described this event in a report to the Imperial academy of Sciences. He carefully 

described the fate of the second sperm nucleus in Lilium martagon and Fritillaria 

tenella, and proposed that it fuses with the two polar nuclei to initiate endosperm 

development (Nawaschin S.G.)  

However, some observations later occurred to be less pertinent, such as the idea 

that the male nuclei are released naked in the embryo sac. This report had an 

important impact. As a first consequence, the French botanist Léon Guignard 

decided to publish similar observations done for Lilium martagon, confirming “la 

double copulation sexuelle” i.e. double fertilization (Guignard Leon. 1899). 

Moreover Léon Guignard draw amazing pictures, one example is depicted in 

Figure 3, an embryo sac of Lilium martagonthat. These discoveries opened a new 

world were this phenomenon may not be an exception among flowering plants but 

may be rather common to all. 

 

 

 

 

 

Figure 3. Original draw by Léon Guignard  
Embryo sac of Lilium Martagonat when 

double fertilization is occurring. The embryo 

sac is made of the egg cell (oo), synergids 

(syn), the central cell with its two polar nuclei 

(ps and pi), and antipodal cells (ant). It has 

received a pollen tube (tp) and contains two 

male gamete nuclei (an) one being adjacent to 

the egg nucleus and the other close to the polar 

nuclei. Magnification:×400 approximately 

Adapted from (Faure 2001). 
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From several years, the double fertilization process has been studied mainly due to 

the importance of this process for the maintenance of the next plant generations and 

in our lives.  

The process has been carefully described and comprises a series of precise steps 

that end with the fusion of male and female gametes as proposed several years 

before.  

Plant gametes are, in contrast with animal gametes, not direct products of meiosis, 

but differentiate within multicellular haploid generations, the male gametophyte 

(MG) and the female gametophyte (FG) respectively as they have been described in 

the previous paragraphs. Moreover to succeed in double fertilization, the two non-

motile sperm cells must be transported through the pistil into the female 

gametophyte, which strictly depends on the directional growth of the pollen tube 

formed by the vegetative cell of the male gametophyte. 

 

Pollen tube germination and penetration of the Female gametophyte 

 

 

 The initiation of pollen tube growth requires adhesion of the pollen grain to a 

receptive female stigma and hydration, providing first barriers for the species, 

restricted interaction between the MG and the female reproductive tract (Hiscock 

and Allen 2008). Once germinated, the tip-growing pollen tube penetrates the 

stigma tissue and navigates along the female reproductive tract towards the ovule, 

assisted by complex communication with the surrounding female sporophytic 

tissues, until finally arrives to the ovule (Figure 4A) (Rea and Nasrallah 2008).The 

synergid cells of the female gametophyte were shown to be most important cells in 

the first steps of the double fertilization process. Many experiments were done to 

show these meticulous synchronized set of events controlled by the synergids. First 

laser ablation experiments  in  Torenia  fournieri showed  that  at  least  one  viable  

synergid  cell  is  necessary for  pollen tube  attraction (Higashiyama et al. 2001).  
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In  Arabidopsis  thaliana,  the  myb98 mutant was shown to have a  defective  

filiform  apparatus  and consequently  fails  to attract  pollen tubes,  indicating  that  

synergid  differentiation  is  also  necessary  for  pollen attraction  in  other  species 

(Kasahara et al. 2005).   

Pollen tube  attraction  experiments  in  Torenia  showed that  a  species-specific,  

signal  is  produced  from the  synergids  to  attract  the  pollen tube (Higashiyama 

et al. 2006).  

Small cysteine-rich proteins  (CRPs)  are involved  in  many  different phases  of  

pollen-pistil  interactions,  from  self-incompatibility,  to  pollen tube  growth  and  

guidance (Higashiyama 2010). In  Torenia,  CRPs named  LUREs  were shown  to  

be  secreted  toward  the micropylar  ends  of synergids  and  localized  in  the  

filiform  apparatus  in  order to  mediate  short-range  micropylar  PT  guidance 

(Okuda et al. 2009). In  maize, CRPs  were  also  identified to  be  highly  

expressed from the synergid  cells (Cordts et al. 2001).  Furthermore, a  secreted  

protein,  ZmEA1  was  shown  to  be involved  in  micropylar  pollen tube  

guidance  in  maize (Márton et al. 2005). The synergid cells secrete small and 

species-specific proteins such as URE1/2 and ZmEA1 (Zea mays EGG 

APPARATUS 1), which are involved in the last phase of pollen tube attraction, 

guiding tube growth through the micropyle into the FG (Márton et al. 2005).  

 

The synergid cell death is required for fertilization. 

 

Entering the micropyle, the pollen tube goes through a micropylar  domain  known  

as  the  filiform apparatus,  this zone possesses cells with a  thick  cell  wall  and  

finger-like projections  into  the  synergid  cytoplasm (Higashiyama 2002). The 

pollen tube enters one synergid cell and burst (Figure 4B/C). Pollen tube growth 

arrest and burst indicate that species-specific cell recognition and signaling 

mechanisms also exist between the receptive synergid and a compatible pollen 
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tube, which may trigger synergid cell death and subsequent sperm cell delivery 

inside this synergid cell. The released pollen tube content mingles with the 

cytoplasm of the degenerating synergid and spreads, as the synergid membrane 

disintegrates, into a narrow space between the egg and central cell plasma 

membranes (Sandaklie-Nikolova et al. 2007). Typically, only one pollen tube 

penetrates each ovule. Rapid termination of pollen tube attractant(s) synthesis 

and/or secretion or degradation after successful fertilization may explain why the 

FG loses its ability to attract further pollen tubes (Hamamura et al. 2011).  

Recently it has been shown that  the two sperm cells should fuse with the female 

gametes (egg and central cells) to determine that the synergids stop producing the 

attractants (Beale et al. 2012; Kasahara et al. 2012). 

The synergid  cell that  receives  the  PT  undergoes  cell  death, however it is not 

yet understood if the cell death takes place before or upon the penetration of the 

pollen tube (Sandaklie-Nikolova et al. 2007).  Arabidopsis  mutants  like  gfa2  

with  defective  synergid  cell death  remain  unfertilized (Christensen et al. 2002). 

GFA2 is a J-domain-containing protein required for mitochondrial function 

(Christensen et al. 2002), suggesting that synergid cell death in Arabidopsis 

requires functional mitochondria, as is the case for cell death in animals (Morais 

Cardoso et al. 2002). 

 It is  clear  that  synergid  cell  death  is  a  highly controlled  and  coordinated  

process  as  the  synergid  plays an  active  role  in  the  developmental  events  

immediately before  gamete  fusion.  Synergid cell death  could  be important  for  

allowing  the  PT  to  enter  the  synergid, for  example,  by  reducing  its  turgor  

pressure  to  allow the  explosive  discharge  of  the  sperm  cells  (Rotman et al. 

2003),  and/or for  setting  up  an  environment  which  allows  PT  reception and  

the  delivery  of  the  sperm  cells  to  the  egg  and  central cell (Fu et al. 2000).  

Whether synergid  cell  death  is  a  cause  or  a consequence  of  PT  rupture  

remains  controversial in Arabidopsis.  Sandaklie-Nikolova  et  al. showed  that 
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synergid  degeneration  scored  by  loss  of  GFP  marker expression  in  the  

cytoplasm  and  change  in  synergid  shape occurred  after  PT  arrival  at  the  

female  gametophyte  but more  than  100  min  before  PT  discharge.  In contrast,  

a recent  report (Hamamura et al. 2011) discusses the  loss of  a  nuclear-expressed  

synergid  GFP  marker  occurred simultaneously  with  PT  discharge,  suggesting  

that  break-down  of  the  receptive  synergid  is  dependent  on  PT discharge.   

Arabidopsis gametophytic mutants defective in pollen tube growth arrest have been 

identified, including feronia, fer (Huck et al. 2003), sirène ,srn (Rotman et al. 

2003), lorelei, lre (Capron et al. 2008) (Tsukamoto and Palanivelu 2010), scylla, 

syl (Rotman et al. 2008), nortia, nta (Kessler et al. 2010), and abstinence by mutual 

consent amc, (Boisson-Dernier et al. 2008). fer and srn are allelic (Escobar-

Restrepo et al. 2007). The fer/srn, lre, nta, and syl are female gametophyte-specific 

mutations; in these mutants, wild-type pollen tubes enter mutant female 

gametophytes but fail to cease growth and rupture. This results in a pollen tube 

overgrowth phenotype. The amc mutation, by contrast, affects both gametophytes. 

amc mutants also exhibit a pollen tube overgrowth phenotype but do so only when 

both gametophytes carried the  mutation. This suggests  that  AMC   may  be  

necessary  for  cell death  in  both  the  PT  and  the  synergid,  perhaps  by 

modulating  the  production  of  reactive  oxygen  species (ROS)  (Boisson-Dernier 

et al. 2008). Additional ultrastructure  analysis of  fer  embryo  sacs  indicates  that  

the  penetrated  synergid displays  electron-dense  material (Huck et al. 2003),  

which  is  typical  of the  degenerating  cell (Mansfield et al. 1991).  However, this 

may  be  a very  late  marker  for  synergid  cell  death  and  all  current methods  

for  detecting  synergid  degeneration  rely  on indirect  observations  (i.e.  loss  of  

GFP  signal  and  fixation/staining  protocols  that  detect  late  stages  of  cell 

death).  A  definitive  analysis  of  the  role  of  synergid degeneration  in  PT  

reception  awaits  the  development of  more  sophisticated  tools  for  monitoring  

early  stages  of cell  death  in  this  specialized  cell  type. 
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As discussed above, FER/SRN, LRE, and AMC may be part of a pathway leading 

to ROS production in the receptive synergid cell in response to pollen tube contact, 

suggesting that synergid cell death may result from ROS in the synergid cell, as 

occurs in other cells in plants (Van Breusegem and Dat 2006). Together, these 

observations support a model in which pollen tube-synergid contact induces a 

physiological cell death program within the synergid cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Schematic Representation of the double fertilization process. 

(A) The pollen grains (male gametophyte) land in the stigma of a carpel hydrate 

and navigate until find an ovule and the female gametophyte. (B)The pollen tube 

arrives to the ovule enter the mycropyle enters into the synergid cell and burst (C). 

After bursting the two sperm cells migrate and one fertilizes the egg cell, whereas 

the other fertilizes the central cell. 
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The MADS-box protein control organ differentiation and organ 

function.  

 

Modern biology textbooks contain a simple model that explains how a few genes 

act together to specify the four organs types to make perfect flower. Known as the 

ABC model (Fig. 5), it was conceived in the early 1990s, based on a series of 

celebrated homeotic mutants in two model species, Arabidopsis and Antirrhinum 

(Coen and Meyerowitz 1991). Perfect flowers contain four types of floral organ 

arranged in four concentric rings, known as whorls. The four organ types are sepals 

(outermost or whorl 1), petals (whorl 2), stamens (whorl 3) and carpels (innermost 

or whorl 4) (Causier et al. 2010). 

The ABC model proposed that three functions, A, B and C, specify the organs that 

form the four whorls of the flower. The A, B and C functions are supposed to act in 

two adjacent whorls, which overlap with each other. Each whorl is defined by the 

expression of a unique function or combination of functions (Figure 5) (Causier et 

al. 2010; Coen and Meyerowitz 1991). The isolation of novel floral mutants in 

Arabidopsis, and other species, has led to an expansion of the ABC model to 

include the D and E functions. The D function, which specifies ovule identity in 

combination with the C function (Colombo et al. 1995; Favaro et al. 2003) and the 

E function, represents an important modification of the ABC model (Figure 5). 

Factors that widely affect the activity of the organ identity genes were first 

identified in tomato (TM5) and petunia (FBP2). Silencing of these related MADS-

box genes resulted in a phenotype that suggested a decreased influence of B and C 

functions on floral development (FERRARIO et al. 2003; Pnueli et al. 1994). Later, 

three genes belonging to the TM5/FBP2 group were identified in Arabidopsis and 

named SEPALLATA 1(SEP1), SEP2 and SEP3. The sep1 sep2 sep3 triple mutant 



22 

 

has a similar phenotype to the tm5 and fbp2 mutant lines, with all floral organs 

being replaced by sepals (Pelaz et al. 2000).  

The first ABC genes to be cloned were the Antirrhinum B function gene DEF 

(Sommer et al. 1990) and the Arabidopsis C function gene AG (Yanofsky et al. 

1990), the products of which shared a high degree of homology with the DNA-

binding domains of two known transcription factors identified in yeast (MCM1) 

and animals (SRF). These four proteins became then the founding members of a 

very important family of transcription factors known as the MADS-box proteins, 

MCM1, AG, DEF, SRF (Schwarz-Sommer et al. 1990). 

MADS-box factors have subsequently been shown to be key regulators of plant 

developmental processes, and in Arabidopsis at least 107 MADS-box genes have 

been identified (Parenicova et al. 2003). The plant MADS-box family can be 

divided into two large families: the type I class, which group with the human SRF 

protein, and the type II class that groups with yeast MEF2 (Alvarez-Buylla et al. 

2000; Parenicova et al. 2003). The ABC MADS-box genes belong to the type II 

class and are characterized by four distinct domains. From the amino-terminal end 

are: the MADS-domain, the Intervening domain (I), the K-domain, and the C-

domain. Together, the MADS-box and I-domain form the minimal DNA-binding 

domain. Plant MADS-box factors bind DNA as homo- or heterodimers, or in 

higher order complexes. The I- and K-domains mediate the interactions between 

MADS-box proteins (Causier et al. 2010).  
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Figure 5. ABCDE model 

 

Adapted from (Causier et al. 2010) 

 

The ability of MADS-domain proteins to bind DNA as dimers is reflected by the 

dyad symmetry of their binding sites that are found within promoter and enhancer 

sequences (Shore and Sharrocks 1995). Nurrish and Treisman (1995) studied 

MADS-domain protein binding sites and showed that they bind to the consensus 

sequence “CC (A/T)6 GG” named CArG box. Evidence based on in vitro 

biochemical assays and interaction studies in yeast showed that plant MADS-

domain proteins form mainly heterodimers which are thought to assemble into 

multimeric complexes (de Folter et al. 2005; Egea-Cortines et al. 1999; Honma and 

Goto 2001; Riechmann et al. 1996) Figure 6. 
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Figure 6. Proposed mode of action for MADS box complexes. 

 

Adapted from(Causier et al. 2010) 

 

 

MADS-box C-D-E Type factors 

 

In Arabidopsis, the C-D type MADS-box transcription factor encoding genes 

SEEDSTICK (STK), SHATTERPROOF1(SHP1) and SHP2 act redundantly to 

determine ovule identity. This was demonstrated by the phenotype of the 

stkshp1shp2 triple mutant, in which ovules develop as carpelloid structures. A 

genetic titration experiment demonstrated that SEP genes (E factors) are also 

necessary for ovule formation, because the ovule phenotype of the sep1 

SEP1sep2sep3 mutant is very similar to that of the stkshp1shp2 triple mutant 

(Favaro et al. 2003). This finding, together with data from protein interaction 

studies, suggested that STK, SHP1 and SHP2, along with the SEP factors, assemble 

in protein complexes in a similar manner to the floral organ identity MADS-box 

complexes (Honma and Goto 2001). In 2010 the first direct target of STK-SEP3 

complex was published and was a gene belonging to the poorly characterized REM 

family, VERDANDI (REM20, VDD) (Matias-Hernandez et al. 2010). The vdd-1/+ 
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mutant shows defects during the fertilization process resulting in semi-sterility. 

Analysis of the vdd-1/+ mutant female gametophytes indicates that antipodal and 

synergid cell identity and/or differentiation are affected. These results provided 

new insights into the regulatory pathways controlled by the ovule identity factors 

and the role of the downstream target gene VDD in female gametophyte 

development (Matias-Hernandez et al. 2010). 

 

 

The B3 superfamily, The REM Family  

 

All members of the B3 superfamily factors contain 110 amino acid region, named 

the B3 domain. This domain was initially named B3 because it was the third basic 

domain in the maize transcription factor VIVIPAROUS1 (VP1) (McCarty et al. 

1991). The first and second basic domains (B1 and B2) are specific to the VP1-like 

proteins, however the B3-domain has been found in several transcription factors. 

The B3 domain of VP1 encodes a sequence-specific DNA binding activity (Suzuki 

et al. 1997). Since its initial discovery in VP1, the B3 domain has been found in 

118 genes in Arabidopsis and 91 in rice. B3 genes are also present in green algae, 

mosses (Marella et al. 2006), liverworts, ferns and gymnosperms. The B3 

superfamily include several gene families, such as the LAV (LEAFY 

COTYLEDON2 [LEC2]–ABSCISIC ACID INSENSITIVE3 [ABI3]–VAL), ARF 

(AUXINRESPONSEFACTOR), RAV (RELATED TO ABI3 andVP1) and REM 

(REPRODUCTIVEMERISTEM) families (Swaminathan et al. 2008).  At the 

moment the ARF family and the LAV family, are very well studied families, on the 

other side almost nothing is known from RAV and REM family’s members.  

Interestingly, it has been shown that B3 domains from distinct families bind to 

different DNA sites. Yet, these proteins share a common structural framework for 

DNA-recognition. Analysis, by NMR spectroscopy, of the structure of the B3 
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domain of the At1g16640 protein from Arabidopsis (Waltner et al. 2005), a 

member of the REM family, revealed that it has the same novel fold as RAV1 with 

seven-stranded b-sheet arranged in an open barrel and two short a-helices. 

Nevertheless, this particular gene (At1g16640) has a remarkably distinct amino 

acid sequence from others in the superfamily. This has raised doubts to whether 

this domain has the ability to bind to DNA. However, it has been showed that 

VRN1 (VERNALIZATION1), a member of the REM family, binds DNA in vitro in 

a non-sequence-specific manner (Levy et al. 2002).  

Bio-informatics studies (Romanel et al. 2009) of protein modeling showed that the 

B3 domains contain virtually identical tertiary structures.  The structural model for 

the B3 domain of VRN1/REM5 suggests that the domain’s characteristic fold is 

maintained, despite the putative DNA-binding loops being greatly reduced. Taken 

together, these findings suggest that the B3 domain’s characteristic fold may have 

the basic pre-requisites to associate with DNA, while the loops might confer 

sequence specificity. In general, the comparison of exons/introns structure and 

sequences of the REM family members have showed that the basic structure of the 

genes are very similar  in species such as Arabidopsis, rice and moss suggesting a 

high conservation rate  during plant evolution.  

Among the REM family member in Arabidopsis, only two of them have been 

characterized. VRN1/REM5 (class VI) is a gene involved in vernalization mediated 

epigenetic silencing of FLC (Levy et al. 2002; Sung and Amasino 2004) (Mylne et 

al. 2006).  The second REM gene with a known function is VDD/REM20 (class 

VII) and the detailed phenotype was described above. 

The phylogeny of the REM proteins also reveals a very active and dynamic process 

of gene duplication. This process resulted in the portrait of the REMs in plants, a 

large number of genes with a remarkable variability among them. Genome or 

tandem duplication may explain the emergence of the large number of REM genes, 

however what causes their maintenance as active genes in the genome is still an 
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open question. It has been suggested that, sub-functionalization and/or neo-

functionalization play a role in the maintenance of most of the duplicated 

regulatory genes in Arabidopsis (Duarte et al. 2006). On the other hand, (Wellmer 

et al. 2006) suggested that the functional redundancy during early flower 

development may have increased the genetic buffering so that duplicated genes are 

retained by positive selection. They identified, by global analysis of gene 

expression, a significant enrichment of transcription factor families with closely 

related members expressed during Arabidopsis flower development (Wellmer et al. 

2006). The maintenance of the REM family gene members may be a combination 

of the sub-functionalization and/or neo-functionalization as well as the genetic 

buffering processes. The elucidation of this complex gene family will passed for 

the study of the functional importance of REM genes during flower development. 
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Aim of the project 

 

 

My PhD had three defined aims, all of them based on the analysis of the 

MADS-box STK-SEP3 complex role in plant sexual reproduction. 

As a first aim I wanted to discover if the STK-SEP3 complex had other 

direct targets involved in the fertilization process. Secondly, I wanted to study in 

more detail VDD the first direct target of the complex. The detailed analyses of 

vdd-1/+ help us to better understand the role of this REM member in the synergid 

differentiation and in the double fertilization process. 

Finally, characterize the molecular regulation of VDD transcription by the 

STK-SEP3 complex using an in vitro and in vivo integrated approach.   
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Results (to be submitted)  
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REM11, the second direct target of STK-SEP3 is controlling 

synergid function interacting with VDD (REM20) 

 

Abstract 

REM11 is the second direct target of STK-SEP3 complex identified. This gene 

belongs to the REM family as VDD. Little is known about the REM family, until 

now only two members, of the 45 members, have been functionally characterized.  

Hereby we show that REM11 has an important role during the double fertilization 

process, as shown before for the VDD. The same phenotype as shown in vdd-1/+ 

mutant plants was discovered now in the REM11_RNAi plants. REM11_RNAi 

mutant embryo sacs developed with 7 cells and eight nuclei as in wild type 

however, the synergids seem to lose their identity when crossed with specific cell 

markers, as shown previously for vdd-1/+. 

The synergids play the major role during the double fertilization process they are 

responsible for the attraction and reception of the pollen tube. When the pollen tube 

penetrate the embryo sac, one of the synergid cells initiates to degenerate 

(apoptosis) the pollen tube arrests its growth, bursts, and releases the two sperm 

cells to ensure double fertilization. 

VDD and REM11 have been shown to have a very important role in the correct 

function of the synergids and by yeast-two-hybrid experiments were shown to 

interact. Detailed examination showed that the synergids in REM11_RNAi and vdd-

1/+ mutants are still able to produce the attractants responsible for pollen tube 

attraction however they do not initiate the degeneration process and so the delivery 

of the sperm cells is compromised. A gene responsible for the pollen tube 

attraction, like the transcription factor MYB98 is correctly expressed in the 

mutants. Two very different processes are strictly coordinate by the synergids, 

attraction and degeneration being controlled by the new identified complex VDD-

REM11.  
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Introduction 

 

During plant reproduction, a series of interactions between male and female 

gametophytes ensures successful fusion of male and female gametes. In flowering 

plants, anthers give rise to the pollen grain (male gametophyte) containing the 

sperm cells. The female gametophyte develops inside an ovule and in many 

species, including Arabidopsis, is a seven-celled structure that includes three 

antipodal cells, two synergid cells, an egg and a central cell (Weterings and Russell 

2004). The initiation of pollen tube growth requires adhesion of the pollen grain to 

a receptive female stigma and hydration, providing first barriers for the species, 

restricted interaction between the MG and the female reproductive tract (Rea and 

Nasrallah 2008). Once germinated, the tip-growing pollen tube penetrate the stigma 

and across the female reproductive tissues towards the ovule, assisted by complex 

communication between the tube cell and surrounding sporophytic tissues, until it 

arrives to the ovule (Rea and Nasrallah 2008). The synergid cells were shown to be 

important cells necessary for  pollen tube  attraction  (Higashiyama 2002) and 

pollen tube burst (Sandaklie-Nikolova et al. 2007). 

The two MADS-box proteins SEEDSTICK (STK) and SEPALLATA3 

(SEP3) form a protein complex that directly regulates VERDANDI (VDD). VDD 

belongs to the REM family and has been shown to have a very important role in 

ovule development. In particular VDD is required for synergid functions and 

therefore for the accomplishment of double fertilization process (Matias-Hernandez 

et al. 2010).  Using integrated approaches based on molecular biology and bio-

informatics methods, REM11, a second STK-SEP3 target has been identified. The 

REM family belongs to a bigger plant family called B3 superfamily (Swaminathan 

et al. 2008). The B3 domain, was shown to be involved in DNA binding and 

additionally other domains can coexist in the multi-domain B3 proteins that are 

thought to mediate protein–protein interaction and/or dimerization (Romanel et al. 

2009; Suzuki et al. 1997). The B3 genes have been identified also in gymnosperms, 
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ferns, mosses, liverworts and green algae. A recent bio-informatical analysis done 

by Romanel et al., described the REM family as being formed with 45 loci 

identified by TAIR annotation. Until now just two REM genes have been described 

to have a functional role in the model plant Arabidopsis thaliana, VDD/REM20 and 

VRN1/REM5. The first one to be described was VRN1 involved in vernalization 

process mediated by epigenetic silencing of FLC and consequently in the flowering 

time process (Levy et al. 2002; Mylne et al. 2006). 

To study the functional role of REM11 during plant development we 

created an interference line REM11_RNAi. Transgenic plants in which REM11 has 

been down-regulated showed a high percent of ovule abortions. This high 

percentage of ovule abortions corresponded directly to the down-regulation of the 

gene. Although these transgenic plants have ovules that reach maturity, the 

synergids do not function in a proper way. In REM11_RNAi   plants the synergids 

are able to attract the pollen tube, however upon the entrance of the pollen tube do 

not degenerate resulting in the fail of double fertilization. Using specific marker 

lines we could show that the pollen tubes once enter the micropyle do not burst. 

Interestingly REM11 interact with VDD to form a complex. . 
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Results 

 

STK genome wide co-expression analysis, Pearson correlation 

 

To address the existence of co-regulatory pathways and possible targets for STK, 

we carried out together with a bio-informatic group in our university a Pearson 

Correlation Coefficient (PCC) analysis of Arabidopsis Affymetrix transcriptome 

data from 2,000 experiments (for more details see material and methods section).  

All Affymetrix array experiments analysed were carried out by the same group 

(NASC) that have a standardized normalization process thus facilitating the 

creation of robust and reliable PCC matrices (Berri et al 2009). The generated 

matrices for STK using both untransformed P-lin and logarithm-transformed P-Log 

(see supplemental table1) expression data were analysed at different threshold 

values of PCC.  

The predicted network showed the presence of genes that could be involved in the 

same signal transduction pathway as STK. A role for many of these genes has yet 

to be defined, but according to the Pearson co-regulatory analysis they are 

interesting candidates to be tested at the genetic level. As a result of this analysis 

REM11 scored a high value in (P-Log) and (p-Lin), and we decided to verify if was 

a direct target of STK. 

 

 
REM11 a direct target of STK and SEP3 complex 

 

Sequence analysis of the REM11 genomic region revealed the presence of 

two putative CArG boxes, the 1
st
 CArG in the promoter region and the 2

nd
 just after 

the translation starting site (Figure 1A). Chromatin immunoprecipition experiments 
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using STK and SEP3 native antibody followed by Quantitative real-time PCR 

showed an enrichment of both CArG-box regions (Figure 1B). Chromatin immune-

precipitated from the stk single mutant was used as negative control for anti-STK 

experiment and wild-type leaves for anti-SEP3, because SEP3 is not expressed in 

leaves. 

These data strongly indicates that STK and SEP3 proteins directly interact with the 

REM11 genomic region. REM11 is the second direct target of the MADS-box 

domain protein complex STK-SEP3 after the discovery of VDD (Matias-Hernandez 

et al. 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 1. Quantitative Real-Time PCR on chromatin immune-precipitated with 

STK and SEP3 antibodies.  

(A) Schematic representation of the position of the CArG boxes in the promoter 

region of the REM11 gene. 
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(B) The ChIP enrichment were tested by quantitative real-time PCR showing that 

STK and SEP3 specific bind to the CArG boxes 1 and 2. The stk single mutant was 

used as a negative control in the STK-ChIP and wild-type leaves as negative 

control for the SEP3-ChIP assays. 

 

 

 

REM11 expression pattern  
 

To study the REM11 expression profile at cellular level, in situ 

hybridization experiments were performed (Figures 2A to E).  In situ hybridization 

experiments detected the REM11 mRNA during all stages of ovule development. A 

stronger signal was always detected inside the carpels were the ovules were 

developing. Additionally in the last phases of ovule development a stronger signal 

was detected in mature ovule, when the embryo sac is formed (Figure 2E). 

Since REM11 is a direct target of STK, we were also interested in investigating 

whether the expression of REM11 was different in stk and stk shp1 shp2 mutants by 

in situ hybridization. Indeed a weaker signal was detected in the stk mutant carpels 

(Figure 2F), contrasting with no signal at all showed in the stk shp1 shp2 triple 

mutant (Figure 2G). These facts demonstrate that REM11 is directly regulated by 

stk, but in stk single mutant, SHP1 and SHP2 redundantly control REM11 

expression as was described also for VDD (Matias-Hernandez et al., 2010).  
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Figure 2. REM11 in situ analysis 

 

(A-E) In situ hybridization experiments performed using wild-type plants. (A-C) 

REM11 gene is expressed in the early stages of ovule development. (D) REM11 

mRNA is detectable as a strong signal in the female gametophyte during later 

stages of ovule formation. (E) In the mature embryo sac REM11 expression is 

highly detectable inside the embryo. (F) In situ hybridization experiment performed 

in stk single mutant. The signal is reduced.  

(G) Experiment performed in stkshp1shp2 triple mutant background, almost any 

signal was detected. pl-placenta; op-ovule primordial; ov-ovule; f-funiculus; fg-female 

gametophyte. 

 

P35S::REM11_RNAi phenotype 

 
To better understand the function of REM11, we had to construct RNA 

interference, p35S::REM11_RNAi (during the text always referred as 

REM11_RNAi), plants because no T-DNA insertion line was available at the 
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moment. The down-regulation of the REM11 transcripts as shown by Quantitative 

Real Time-PCR (qRT-PCR) (figure 3D) demonstrated that our approach was 

successfully performed. Examining the immature fruits (siliques) of the transgenic 

lines we were able to see the presence of several aborted ovules (Figure 3A-C). The 

differences of number of ovule abortion was proportional to the level of down 

regulation of  

REM11 transcripts, checked by qRT-PCR (Figure 3D). Few REM11-1 plants have 

till 60% of ovule abortions (Figure 3F). The qRT-PCR showed almost no REM11 

expression for those plants. 

 

 

Figure 3. REM11_RNAi mutant analysis.  

 

(A)Wild-type silique showing full seed set. (B-D) Siliques of REM11_RNAi plants 

containing different aborted ovules. Ovule abortion rate correlates with the down-

regulation of REM11 (D). (E) REM11_RNAi flower. Although the pistil presents  

60% ovule abortions, all the organs were formed perfectly. *-aborted ovules; sp-

sepals; pt-petals; st-stamen; p-pistil. 
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REM11_RNAi plants have female gametophyte defect 

 
To test whether female, male, or both gametophytes were affected due to the down 

regulation of  REM11 activity, we performed reciprocal crosses between 

REM11_RNAi and wild-type plants. Crossing a wild-type female carpel with pollen 

from REM11_RNAi mutant plants show no significant increasing in the ovule 

abortions, comparing with the control wild-type crossed with wild-type. 

Interestingly when we used REM11_RNAi as female and wild-type pollen a high 

percentage of ovule abortions was observed. These results, point out to the fact that 

the ovule abortion phenotype is due only to a female gametophyte defect and not to 

a defect in the male gametophyte.  

 

 
Table 1. Backcrossing between wild-type and REM11_RNAi plants 
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Morphological analysis and Gametophyte Cell Identity studies  

 

In order to understand if REM11_RNAi mutant ovules had development defect we 

have performed DIC microscopy analysis of un-pollinated mature carpels. We 

found that the ovules in REM11_RNAi  plants reached maturity and the embryo sac 

was formed with 7 cells, like to the ones in the wild type  (Figure 4A). As the 

embryo sac seemed to be formed correctly with all the cells, to understand if the 

ovule abortions were due to defects in determination of female gametophyte cell 

identity, embryo sac cell-specific reporter constructs were introduced into the 

REM11_RNAi transgenic lines. The gene expression was analyzed in the F2 

generation, were the marker was in a homozygous situation. We have used 

EC1::GUS as egg cell identity marker, (Sprunk et al.), FIS2::GUS as central cell 

identity marker (Chaudhury et al., 1997) and the promoter of the gene At1g36340 

as marker for the antypodals cells identity (Figures 4B-D). No difference was 

found in the GUS expression in the  REM11_RNAi  transgenic lines if compared 

with wild type, indicating that their cell fate were not affected.  

Analysis of the GUS expression using the synergid specific cell marker line 

(ET2634, Gross-Hardt et al., 2007) in REM11 transgenic plants, revealed that some 

of the embryo sacs did not express the synergid specific marker (n = 740). 

Attractively the percentage of aborted ovules found per silique corresponds to the 

number of embryo sacs that didn’t show any GUS in the synergids (Figure 4F). All 

the percentages and analysis are described below in the Table 2. 
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Figure 4. Embryo sac analysis 

(A) DIC microscopy analysis of REM11_RNAi ovules. The ovules are 

morphologically indistinguishable from the ones of the wild-type, the embryo sac 

is composed by seven cells. sy- synergids; ec-egg cell; cc- central cell.  

(B-E) Embryo sac cell markers expression in wild-type.  (B) egg cell; (C)central 

central; (D) antypodals and (E) synergid; (F)  Synergid marker expression in 

mutant background REM11_RNAi. 

 

Table 2 Analysis of the Crosses between the embryo sac markers and 
REM11_RNAi 
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Double Fertilization process in REM11_RNAi mutant 

 

Synergids are responsible  for producing the attractants molecules, clues, for the 

pollen guidance, ensuring that each ovule micropyle gets a pollen tube 

(Higashiyama 2002). We started by analyzing if the pollen tubes were able to reach 

the mycropyle of each REM11_RNAi mutant ovule. We used aniline staining to 

follow the pollen tubes growth in wild-type and mutant pistils. The aniline blue is a 

very well-known chemical because it stains the callose present in the pollen tube 

cell wall (figure 5A). This experiment showed that pollen tubes targeted all the 

ovules entering into the embryo sac in REM11-RNAi plants indicating that the first 

part of the fertilization process wasn’t affected.  

To further analyze whether the pollen tube stopped or continued to growth in 

REM11_RNAi embryo sac, mutant carpels were hand pollinated with pollen from 

plants containing a pLAT52:GUS transgenic plants (Tsukamoto and Palanivelu 

2010). This marker is very useful because labels the pollen tube cytosol and allows 

investigation of pollen growing and ultimately pollen tube burst. We could clearly 

see that in the wild-type plant the pollen tubes targeting all the ovules and the 

pollen tubes burst (blue spot) were detected in the mycropilar zone of the ovules 

(Figure 5C). Instead when analyzing  REM11_RNAi carpels and despite the fact 

that all the ovules are reached by the pollen tube, only few of them show the pollen 

tube bursting signal (Figure 5C/5E). These results suggested that REM11 is directly 

involved in the promotion of the pollen tube burst.  
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Figure 5. Double fertilization process in  REM11_RNAi 

(A) Aniline Blue Staining showed that all pollen tubes reach the mutant ovules 

(white asterisks). (B) Detail of a pollen tube reaching the micropyle. (C) 

LAT52::GUS crossed with mutant carpels showed that not all pollen tubes were 

bursting when the embryo sac was penetrated (black asterisks). In more detail a 

wild type ovule (C) and a mutant ovule (D) were is visible that the pollen tube 

arrives to the micropyle but no bursting was detected. ov-ovules; fg-female 

gametophyte.  

 

 

 

 

 

 

 

 

 



44 

 

REM11 interacts with VDD 

 

 REM11_RNAi mutant showed a very similar phenotype with the one described in 

vdd-1/+ mutant (Matias-Hernandez et al. 2010). Both proteins belong to the same 

family whose members have a putative protein-protein binding domain and one  

protein-DNA binding domain (Romanel et al. 2009; Swaminathan et al. 2008). Due 

to the similarity of the mutant phenotype we wanted to check if these to proteins 

were able to interact. We performed a yeast-two hybrid assay (Y2H) and we were 

able to detect an interaction between these two proteins (Figure 6). In conclusion it 

seems that these two REMs are able to interact and regulate targets genes required 

for the correct functionality of the two synergids.  

 

 

 

Figure 6. Y2H experiment  

Arrows indicate the detection of a positive interaction when the colonies growth in 

-W-L-A selective medium. White (*) indicate the controls REM 11BD for empty 

AD and VDD AD for empty BD. C+ stands for the positive control.  
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The pollen tube doesn’t burst the sperm cells don’t migrate in vdd-1/+ and 

REM11_RNAi  

 

To better understand the fertilization defect observed in vdd-1/+ and in 

REM11_RNAi we have used a combination of marker lines to observe fertilization 

in vivo (Ingouff, M. et al. 2007). To test if the pollen tube was bursting we used a 

marker for the pollen tubed called pLAT52::GUS (Tsukamoto et al. 2010), marker 

that has the ability to stain the cytosolic content of the pollen tube that became easy 

to follow during growth and burst. As shown in Figure 7 the pollen tube burst is 

visible in wild type (blue spot). In the vdd-1/+ mutant carpels we were able to see 

that not in all ovules the bursting was occurring Figure 7B as shown before for  

REM11_RNAi mutant. 

As a second step and using a marker line for the sperm cells, 

HTR10::HTR10_RFP (Hamamura et al. 2011) we analysed both mutants. We were 

able to visualise the sperm cell nuclei fusion with red fluorescent protein. The 

study of these markers in the mutant backgrounds allows us to see how the sperm 

cells are moving and if the delivery and fusion between both male and female 

gametes is taking place. In the wild type plant, as the pollen tube approaches the 

micropyle one of the synergid cells initiates to degenerate and is penetrated by the 

pollen tube, which arrests its growth, bursts and releases the two sperm cells to 

ensure double fertilization (Figure 7C). In vdd-1/+ and  REM11_RNAi mutant 

plants the two sperm cells stay in the mycropyle area and do not migrate inside the 

ovule in a very high percentage, 27%, corresponding to the number of ovule 

abortions (Figure 7D). Another experiment was done to test whether one of the 

sperm cells were able to degenerate based on the fact that when one of the 

synergids starts the apoptosis process is produce a fluorescence signal. So we hand 

emasculated and pollinated wild-type and mutant carpels and we were able to see 

that in 95% of wild-type ovules emitted the signal. Instead only 85% emitted in the 

ovules in the vdd-1/+ mutant, showing that in 25% of the embryo sac ovules was 
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not emitting any kind of signal (Figure 7 E and F). This data supports the fact that 

the two sperm cells were not migrating in the first place. Ultimately to confirm that 

the pollen stopped growthing after entering the embryo sac and also to confirm the 

non-degeneration of the synergid we planned to use a Transmission electron 

microscopy (TEM). Unfortunately we don’t have until this moment the final results 

of the experiment, but we had some preliminary results  that supported our 

hypothesis. In figure 7G is clear the fact that the two synergids stay intact (16 hours 

after pollination) and that the pollen tube (red arrow) stays on the side of the two 

synergids).  

These results strongly show the important and the direct involvement of 

VDD and REM11 in the synergid degeneration process and in the consequent 

migration of the two sperm cells.  
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Figure 7. Detailed analysis of the double Fertilization process in vdd-1/+ and 

REM11_RNAi mutants 

(A-B) wild type ovule receives a pollen tube marker with pLAT52::GUS marker 

(A) mutant ovule receives a pollen tube marker (B). 

(C) ovule without synergid degeneration (D) ovule with degenerating synergid. 

(E) wild-type ovule that shows the two sperm markers fusin with egg and central 

cell. (F) Mutant ovule with the two sperm cells in the mycropile area. f-funiculus; 

fg-female gametophyte; (*)-pollen tube; mi-micropyle.
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MYB98 is correctly expressed in the mutants 

 
To better understand what was happening at a molecular level with the mutants we 

started our analysis by crossing MYB98::GFP (Kasahara et al. 2005) with our 

mutants. MYB98 was described has being one of the transcription factors 

responsible for the pollen tube attraction. 

In figure 8 is clear the fact that analysing an F2 generation for the cross all the 

mutant ovules correctly expressed the GFP signal. This result indicates that VDD 

and REM11 have no influence in the expression of MYB98. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. MYB98::GFP in a mutant background 

(A) MYB98::GFP in a wild type situation. (B) MYB98::GFP crossed  

REM11_RNAi in a F2 situation, an identical result was obtained for vdd-1. syn-

synergid; fg-female gametophyte. 
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RNA-Sequencing experiment, searching for VDD targets 
 

To have a general analysis of what genes are up or down regulated in the mutant 

we planned an RNA-Seq experiment. The first thing that we did was to create a 

new mutant for VDD. VDD is in heterozygous being the homozygous situation 

lethal, therefore only 50% of the embryo sac have VDD expression  down-

regulated (Matias –Hernandez et al. 2010). So we constructed an RNA interference 

line for VDD and introduce it into vdd-1 the T-DNA insertion line for VDD. We 

obtained plants almost completely sterile (Figure 9A). Finally, we verified by qRT-

PCR that the levels of VDD transcript were down regulated respect to the wild-

type.  This new mutant was called vddM. 

For the RNA-sequencing we extracted RNA from mature wild type and vddM 

mutant pistils. The RNAs were send  to sequence by Illumina system and finally 

the data was analysed with a bioinformatical software – see Methods (Figure 9B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. RNA-sequencing method. 

(A) silique of vddM , with high 65% of  ovule abortions. (B) qRT-PCR analysis 

showing the down-regulation of the vddM mutant comparing with wild-type and 

vdd-1/+ mutant. (C) RNA-sequencing method. 
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RNA sequencing results 

 
Using the Bioinformatical software, AGRI: GO (http://bioinfo.cau.edu.cn/agriGO/) 

we could group the preliminary subset of down-regulated or up-regulated genes in 

vddM into different groups (Figure 10 and 11).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 10. Down-regulated genes. GO analysis of RNA-SEQ output. In color 

(orange and red) the group of genes that are significantly down-regulated in vddM 

mutant.  
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Figure 11. Up-regulated genes. GO analysis of RNA-SEQ output. In color 

(orange and red) the group of genes that are significantly up-regulated in vddM 

mutant.  
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The most down-regulated genes included the endomembrane related genes. Among 

the up-regulated categories we could found endomembrane related genes again plus 

hydrolyse related genes. 
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REM family characterization studies  

 

Marta Mendes, Piero Morandini, Marcio Alves-Ferreira and Lucia Colombo 

 

 

Abstract 

 
We have previously shown that VDD and REM11 are able to interact and to form a 

complex required for the correct function of the synergids. VDD and REM11 

belong to the REM transcription factors family that is poorly characterized. For this 

reason we have decided to make a genome wide characterization of this family. 

 

REM genes co-expression analysis 

 

We have used the Pearson Correlation Coefficient (PCC) analysis to identify 

clusters of co-expressed REM genes. This co-expression analysis might reflect 

possible interactions within the family. Two matrices were generated for REM-

REM analysis, using both untransformed P-Lin (see supplemental table 3) and 

logarithm transformed P-Log (see supplemental table 2).  Expression data were 

analyzed at different threshold values of PCC. A network was predicted between 

the REM genes, showing that they could be involved in the same transduction 

pathway, probably acting as protein complexes (Berri et al. 2009). 

As a result of this analysis we predicted possible interactions among the REM 

family, the REM genes that scored a high value (>0.6) in (P-Log) and (p-Lin) were 

used to build a network (Figure 12). Interestingly, the Pearson Coefficient mainly 

identified co-regulation of REM genes which did not appear to be closely related in 

the phylogenetic tree (Romanel et al. 2009). The identification of co-regulation 

among phylogenetically unrelated genes might be a powerful tool to identify 

functional redundancy especially for those genes for which the function is still 

unknown. 
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Figure 12. Proposed interaction network constructed using the Pearson coefficient 

analysis, based on P-Log (A) P-Lin (B). 

 

 

How to test the possible REM interactions? 

Based on the bio-informatical analysis we started to test the predicted REM-REM 

interactions. Due to the high number of interactions to be tested we designed a 

strategy to be able to test as many interactions as possible. 

Each bait/prey pair was introduced in the α-AH109 yeast strain (Clontech), and as a 

control for auto activation, each bait was also co-transformed into the yeast strain 

with the empty AD vector, and each prey was co-transformed with the empty BD 

vector. The co-transformations were selected in a selective medium. Bait/prey pair 

colonies that grew on all selective media (−Trp-Leu-Adenine-His and 
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supplemented with increasing concentrations of 1 mM to 2.5 mM 3-Amino-1,2,4-

triazole). System used for the co-transformations and plate organization are 

described in Figure (13).  

 

 

 

 

 

 

 

 

Figure 13. Strategy for Yeast transformation 

(A) Co-transformation and auto-activation test of each Bait/Prey. (B) Interaction 

test between two REM proteins, organization of each plate. 
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Analysis of the interactions among REM factors 

 

We have tested several REM proteins to verified interaction based on the co-

regulation expression analysis. Two examples are depicted in figure 14 a positive 

interaction was found between REM23 and REM19 and between REM 23 and 

REM1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Example of two different interactions between REM members. These 

plates were left at 28ºC for one week. Arrows indicate the confirmation of the 

interaction.  
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We weren’t able till now to test all the possible interactions between the REM 

family, but with the results obtained we could already validate some putative 

interaction deduced by the co-expression analysis (Figure 15). Furthermore we 

have confirmed some interactions with REM11 that could have a role during the 

double fertilization process. This type of study will be very helpful to investigate 

possible genetic interaction among REM transcription factors family members. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
Figure15.  Network according to the yeast-two hybrid results. 
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Discussion 
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VDD and REM11 control a very specific process within the synergid cell 

 

In both mutants vdd-1/+ and REM11_RNAi, we initially detected a synergid 

defect crossing the mutants with a specific synergid marker, till the pollen tubes 

were still arriving to all ovules, the attraction was not affected in the mutants. 

Deeper analysis using the pLAT52::GUS marker (Tsukamoto et al. 2010) line 

showed that the pollen tubes weren’t bursting in all the ovules. Following them 

with the HTR10::HTR10_RFP marker (Hamamura et al. 2011) we saw that the two 

sperm cells were located at the micropylar region of the ovule. Additionally, 

evidences showed that not all the synergids were degenerating as supposed. 

Altogether these results showed the importance and the direct involvement of VDD 

and REM11 in the synergid degeneration process. Both mutants presented a female 

gametophyte defect that resulted in the correct arresting of the pollen tube in the 

micropylar zone however the synergids do not degenerate and consequently the 

two sperm cells do not migrate inside the embryo sac resulting in a double 

fertilization failure. 

Detailed experiments of TEM will help to understand were the pollen tube 

is exactly stopping. The first results showed that the ovules had 16 hours after 

pollination had two synergids intact and that the pollen tube stayed just in the 

border of the synergids supporting our previous results. The synergids were 

extensively described as being responsible for the pollen tube attraction 

(Higashiyama 2002; Higashiyama et al. 2006; Okuda et al. 2009). Also mutants 

were shown to be defective in the pollen tube attraction, for instances myb98, this 

mutant have been shown to have a defective in attracting the pollen tubes 

(Kasahara et al. 2005). Our mutants presented defective synergids that were able to 

attract the pollen tubes. We introduced in our mutants pMYB98::GFP line and we 

were able to see that this gene was correctly expressed in the synergids. This result 
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strongly suggests that there are two processes controlled by the synergid cells and 

that have two transcriptional pathways completely different. VDD and REM11 are 

so directly involved in the degeneration pathway and aren’t involved in the pollen 

tube attraction. 

We demonstrate that the pollen tube arrest once penetrate in the embryo sac 

and the synergids don’t initiate to degenerate. FERONIA is involved in the arrest 

of the pollen tube, therefore the fer  mutant presents an overgrowth of the pollen 

tube. In fer mutant (Huck et al. 2003) the synergid penetrated by the pollen tube  

degenerates suggesting that there might be two check points required to the pollen 

tube arrest. First the pollen tube penetrate the embryo sac in the mycropilar zone 

and arrests its growth, the synergid initiates to degenerate and the pollen tube arrest 

its growth again inside and burst.  

Another controversial studies published recently (Beale et al. 2012; 

Kasahara et al. 2012) showed that the two male gametes should fuse with the two 

female gametes in order to stop the production the attractants by the synergids, the 

non fusion of the gametes lead that different pollen tubes enter the same ovule. 

Curiously in our situation this is not true, we have only one pollen tube that gets 

attract in even if the fusion of the gametes was not happening. This situation clearly 

shows that an extra attraction of pollen tubes should be regulated by other 

processes and not only by the fusion of the male and female gametes. 

The only gene published that may have a role similar to VDD and REM11 is the 

mitochondrial chaperone GFA2 (Christensen et al. 2002). gfa2 mutant presented a 

defect in the synergid degeneration, the authors didn’t explain the mechanism in 

detail. We are now planning different experiments to try to see a link between, 

GFA2, VDD and REM11. 

Furthermore a detailed analysis of RNA-Seq done with vddM mutant will provide 

new information about genes that will for sure be involved in the 

degeneration/apoptosis pathway of the synergid cells. Preliminary analysis showed 
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that endo-membrane related genes were in a high percentage up and down 

regulated groups, maybe these genes will have a role in the apoptosis process. 

 

REM interactome  

 

The REM interactome will bring new and important information to REM family 

that could be a very important family during ovule development. The complexes 

will give clues that some genes maybe have a redundant role together during plant 

development making easy to choose which mutants to work and which genes to 

study. For instances we already found another REM that interact with VDD-

REM11 complex, REM13 seems to interact with both of them being a good choice 

to study in the near future. A detailed co-expression analysis will provide 

information about other genes families that could interact with the REM’s. These 

data will be the base for future studies for the functional characterization of this 

family and its role during ovule development. 
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Material and Methods 
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Plant Material and Growth Conditions 

 

Arabidopsis thaliana wild-type (ecotype Columbia), mutant and embryo sac marker 

plants were grown at 22°C under short-day (8 h light/16 h dark) or long-day (16 h 

light/8 h dark) conditions. The Arabidopsis stk, shp1shp2 and stk shp1shp2 mutants 

were kindly provided by M. Yanofsky (Pinyopich et al.,2003).  

 

ChIP and Quantitative Real-Time PCR Analysis 

 

In REM11 genomic region we found two putative CArG boxes allowing 1 

mismatch. The first one 100 base pairs before (5’ctattaatgg3’) the translation 

starting site and the second 80 base pairs after (5’cttattttgg3’). Primers were 

designed specifically to test possible enrichments 1
st
 CArG FW 

5’gggccttagcgataccttgg3’; 1
st
 CArG rev 5’gtgatttgatctaaaggtgttggcc3’; 2

nd
 CArG 

FW 5’gaacacaagaggtttttcacttctctg3’; 2
nd

 CArG rev 5’ccagatcatcaccggattcactagg3’. 

Enrichment folds were detected using a SYBR Green assay (Bio-Rad, 

http://www.bio-rad.com/). The real-time PCR assay was performed in triplicate 

using a Bio-Rad C1000 Thermal Cycler optical system. ChIP-qPCR experiments 

and relative enrichments were calculated as reported before (Gregis et al 2008 and 

Hernandez et al 2010).  

 

 

Generating REM11 and VDD RNA interference lines 

To make p35::REM11_RNAi and p35S::VDD_RNAi constructs we used the 

Arabidopsis vector pFGC5941 for dsRNA production was obtained from ABRC 

(stock no. CD3-447).  
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 For REM11 a 247-bp fragment of REM11 cDNA (position 364–611) was 

amplified by PCR using primers AtP_2757 (5′- 

ggggacaagtttgtacaaaaaagcaggctacatctggaaaaacttggat -3′) and AtP_2758 

(5′ggggaccactttgtacaagaaagctgggtgatcatcaccggattcacta -3′).  For VDD a 197 bp 

fragment was obtained using ATP_2783-

5’ggggacaagtttgtacaaaaaagcaggctattctttgcccacaaccagag3’ and ATP_2784-

5’ggggaccactttgtacaagaaagctgggtctctttcttccataatctgacc3’. 

The fragments were amplified using with Phusion High-Fidelity DNA Polymerase 

(New England Biolabs, Ipswich, MA, USA) and purified using the GeneJET Gel 

Extraction Kit (Thermo Scientific). The amplified fragments were then cloned into 

a PDONOR 207 (Invitrogen) and then pFGC5941, following the Gateway system 

(invitrogen). Latter on Agrobacterium-mediated transformation of Arabidopsis 

plants was performed using the floral dip method (Clough and Bent, 1998). 

Transgenic plants were selected with 10 ng/μL BASTA.  

 

Cytological assays 

The gametophytic cell identity reporter lines used encode a nuclear localization 

signal that is in-frame with the GUS reporter gene. The egg cell-specific marker 

was kindly provided by Stefanie Sprunck (unpublished data). The synergid cell-

specific marker was kindly provided by Ueli Grossniklaus (Institute of Plant 

Biology,University of Zurich, Switzerland) (Gross-Hardtet al., 2007). The central 

cell-specific marker was kindly provided by Rita Gross-Hardt (Department of 

Developmental Genetics, University of Tubingen, Germany) (Mollet al., 2008). 

The antipodal cell-specific marker, kindly provided by Rita Gross-Hardt, was 

generated as described by Yu et al. (2005): the promoter of At1g36340 was 

amplified using primers 5’-agtgaggcgcgcctgatcattaagtttaggggt-3’ and 5’-
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agtgattaattaattacgagaaatcaccaaac-3’, and cloned upstream from the NLS_GUS 

reporter into pGIIBar binary vector (Gross-Hardt et al., 2007) (cloning details are 

available uponrequest). The synergid cell marker pMYB98::MYB98_GFP 

(Kasahara et al. 2005). 

For female gametophyte cell identity determination, marker lines were used as 

female and pollinated with REM11_RNAi or vdd-1/+ pollen. In the F1generation, 

heterozygous plants were self-fertilized, and the presence/absence of the 

REM11_RNAi was analysed in the F2generation by PCR. The presence of the 

reporter genes was analysed by GUS staining, confirming the correct expression in 

wild-type back-ground. For GUS staining, flowers were emasculated and 

harvested12 h after pollination as described by Liljegren et al. (2000). Samples 

were incubated in chloral hydrate:glycerol:water solution8:1:2, dissected and 

observed using a Zeiss Axiophot D1 micro-scope equipped with DIC optics.  

To analyze ovule development in REM11_RNAi plants, flowers at different 

developmental stages were cleared and analyzed as described previously 

(Brambilla et al., 2007). 

 

Expression analysis by Quantitative real-time RT-PCR 

Quantitative real-time RT-PCR experiments were performed on cDNA obtained 

from  inflorescences. Total RNA was extracted using the LiCl method (Verwoerd 

et al., 1989). DNA contamination was removed using the Ambion TURBO DNA-

free DNase kit according to the manufacturer’s instructions 

(http://www.ambion.com/). The treated RNA was subjected to reverse transcription 

using the ImProm-IITM reverse transcription system (Promega).REM11 transcripts 

were detected using a Sybr Green Assay (iQ SYBR Green Supermix; Bio-Rad) 
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with the reference gene UBIQUITIN. The real-time PCR assay was conducted in 

triplicate and was performed in a Bio-Rad iCycler iQ Optical System (software 

version 3.0a). 

Relative enrichment of REM11 transcripts was calculated normalizing the amount 

of mRNA against UBIQUITIN fragment. Diluted aliquots of the reverse-

transcribed cDNAs were used as templates in quantitative PCR reactions 

containing the iQ SYBR Green Supermix (Bio-Rad). 

 

The difference between the cycle threshold (Ct) of REM11 and that of UBIQUITIN 

(DCt = Ct REM11 2 Ct UBIQUITIN) was used to obtain the normalized expression 

of VDD, which corresponds to 2 2DCt. The expression of REM11 was analyzed by 

the following primers: 

REM11 Forward, 5’ gaaaggcggtatctggatga 3’ And REM11 Reverse, 

5’ccttgacaaagatgcaacca 3’. The expression of UBIQUITIN was analyzed using the 

following primers: UB forward, 5’ctgttcacggaacccaattc-3’, and ub reverse, 5’-

ggaaaaaggtctgaccgaca-3’. 

 

Double fertilization analysis 

 

Pollen tube guidance, reception and burst analysis 

For in vivo  pollen tube guidance experiments, pistils were hand-emasculated and 

pollinated after 24 h with wild-type pollen. After 16–18 h, pistils were carefully 

isolated from the plants and fixed in  a solution of acetic acid and absolute ethanol 

(1:3), cleared with 8 N sodium hydroxide and labelled with aniline blue (Sigma,  

http://www.sigmaaldrich.com/). For in vivo pollen tube reception and burst of the 

tubes, wild-type and double mutant pistils were emasculated and crossed after 24 h  

with pLAT52:GUS pollen. After 16–18 h, the pistils were carefully collected and 

stained for GUS activity (Liljegren et al., 2000). Samples were incubated in 
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clearing solution (Brambilla et al., 2007), dissected under a Leica MZ6 stereo 

microscope, and observed using a Zeiss Axiophot D1 microscope equipped with  

differential interference contrast (DIC) optics (http://www.zeiss.com/). Images 

were captured using an Axiocam MRc5 camera (Zeiss) with axiovision software 

(version 4.1). 

 

Sperm cell migration analysis 

For sperm cell migration experiments, pistils were emasculated and crossed after 

24 h with the pHTR10:HTR10-RFP marker line. Pistils were collected after 16–18 

h, samples were dissected under a Leica MZ6 stereo microscope, and images were 

obtained using a Zeiss Axiophot D1 microscope equipped with DIC optics and a  

rhodamine filter set. 

 

 

In-situ hybridization analysis  

For in situ hybridization analysis, Arabidopsis flowers were fixed and embedded in 

paraffin as described previously (Huijser et al., 1992). 

Sections of plant tissue were probed with digoxigenin-labeled VDD antisense RNA 

corresponding to nucleotides 240 to 557. Hybridization and immunological 

detection were performed as described previously (Coen et al., 1990). 

Sections of plant tissue were hybridized with digoxigenin-labelled REM11 

antisense probe, amplified using primers atp_2759 (5’-acatctggaaaaacttggatc-3’) 

and atp_2760 (5’- gatcatcaccggattcactag -3’). 

 

 

 

 



72 

 

RNA extraction, cDNA library preparation, and sequencing for RNA-seq 

Total RNA was extracted from wild-type and vddM mutant mature carpels with the 

Qiagen Kit according to the manufacturer's instructions. DNA contaminations were 

removed using the PROMEGA RQ1 RNase-Free DNase according to the 

manufacturer's instructions. RNA quality integrity was analyzed by electrophoresis 

gel and was validated on a Bioanalyzer 2100 (Aligent, Santa Clara, CA); RNA 

Integrity Number (RIN) values were greater than 7 for all samples. In order to 

confirm that in vddM mutant samples VDD was not expressed, VDD expression 

was checked by real time PCR with primer RT 795 (5’gggaaggtcatggcaagtta3’) and 

RT 796 (5’ ccatctgcctcgaatatggt3’). 

Sequencing libraries were prepared according to the manufacturer’s instructions 

(Illumina TruSeq mRNA-seq kit) and sequenced with the Illumina Lane single-

read 50bp. The processing of fluorescent images into sequences, base-calling and 

quality value calculations were performed using the Illumina data processing 

pipeline (version 1.8). Raw reads were filtered to obtain high-quality reads by 

removing low-quality reads containing more than 30% bases with Q < 20. Finally, 

a quality control on the raw sequence data was performed using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. ) 

Pearson coefficient 

 

Pearson correlation values were calculated essentially as described by (Toufighi et 

al.) for the 'Expression Angler'. To this purpose a Visual C++ based program was 

developed (P. Morandini, L. Mizzi, unpublished) to calculate the correlation value 

from the data obtained with the ATH1 GeneChip from Affymetrix and deposited at 

the NASC array database http://affy.Arabidopsis.info/narrays/experimentbrowse.pl 

webcite as of September 2008. For the calculation of Pearson coefficient from log 
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values, data were simply transformed into log before calculating the correlation 

value. From such values, networks of Arabidopsis genes were produced using the 

program dot http://citeseer.ist.psu.edu/gansner93technique.html website. The input 

text file for dot was prepared using a script that filtered WRKY genes with a 

reciprocal coefficient of 0.6 or higher from the complete table of Pearson 

coefficient. Intensity of arrow colours is proportional to the coefficient between 

each pair of WRKY genes. A more detailed explanation of the method used is 

reported in Menges et al.  in the section Global expression correlation analysis in 

Methods. 

 Mapping of short reads and assessment of gene expression analysis for RNA-

Seq 

Evaluation and treatment of raw data was performed on the commercially available 

CLC Genomics Workbench v.4.7.1 (http://www.clcbio.com/genomics/). After 

trimming, the resulting high-quality reads were mapped onto the 

the Arabidopsis genome (TAIR10). Approximately, 25M reads of each sample that 

uniquely mapped with ≤2 mismatches were used for further analyses. The read 

number of each gene model was computed based on the coordinates of mapped 

reads. A read was counted if any portion of that read’s coordinates were included 

within a gene model. As CLC Genomics Workbench v.4.7.1 distributes multireads 

at similar loci in proportion to the number of unique reads recorded and normalized 

by transcript length, we included in the analysis both unique reads and reads that 

occur up to 10 times to avoid undercount for genes that have closely related 

paralogs (Mortazavi et al., 2008). Gene expression value was based on reads per 

kilobase of exon model per million mapped reads (RPKM) values (Mortazavi et al., 

2008). The data was normalized using a basic quantile approach. The fold change 

and differential expression values between wt and stk mutant was derived using the 

normalized RPKM values of the corresponding transcripts. To obtain statistical 
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confirmation of the differences in gene expression among the wt and stk mutant, we 

compared the RPKM-derived read count using standard t-test for two group 

comparisons. A threshold value of P =0,05  was used to ensure that differential 

gene expression was maintained at a significant level (5%) for the individual 

statistical tests. We estimated that statistical analysis was reliable when applied to 

genes showing a differential expression RPKM value ≥2 (i.e. five mapped reads per 

kilobase of mRNA). Differential expression was estimated and we calculated FDR, 

and estimated FC in terms of RPKM.. Transcripts that exhibited an FDR ≤ 0.05 and 

an estimated absolute FC ≥ 1,5 were determined to be significantly differentially 

expressed. 

 

Yeast-two-hybrid screen 

cDNA of each candidate gene was used to perform confirmation of the predicted 

interactions. RNA was extracted from Arabidopsis inflorescences containing 

flowers in several stages of development using the RNeasy Mini Kit (Qiagen). 

cDNA was synthesized with the Revert Aid First Strand cDNA Synthesis Kit 

(Thermo Scientific, Waltham, MA, USA). Full-length cDNA of these genes was 

amplified by PCR (Table 3) with Phusion High-Fidelity DNA Polymerase (New 

England Biolabs, Ipswich, MA, USA) and purified gel using the GeneJET Gel 

Extraction Kit (Thermo Scientific). The cDNA sequence of each gene was 

individually cloned into the pGADT7 vector (Clontech) via Gateway (Invitrogen).  

Each bait/prey pair was introduced in the α-AH109 yeast strain (Clontech), and as a 

control for autoactivation false-positives, each bait was also co-transformed into 

the yeast strain with the empty AD vector, and each prey was co-transformed with 

the empty BD vector. Bait/prey pair colonies that grew on all selective media at 28 

°C at least for one week (−Trp-Leu-Adenine-His and supplemented with increasing 

concentrations of 1 mM to 2.5 mM 3-Amino-1,2,4-triazole) were considered 

positive for interaction. 
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Tabel 3. Primers used to clone REM cDNA 
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Abstract 

 

MADS-domain transcription factors are key regulators of development in 

eukaryotes. In plants the homeotic MIKC MADS-factors that control floral organ 

identity have been studied in great detail. Based on genetic and protein-protein 

interaction studies, a “floral-quartet model” was proposed that describes how these 

MADS-domain proteins assemble into higher order complexes to regulate their 

target genes. However, despite the attractiveness of this model and its general 

acceptance in the literature solid in vivo proof for this model has never been 

provided. To provide deeper insight in the mechanisms of transcriptional regulation 

by MADS-domain factors we studied how SEEDSTICK (STK) and 

SEPALLATA3 (SEP3) directly regulate the expression of the REM transcription 

factor-encoding gene VERDANDI (VDD). Our data show that STK-SEP3 dimers 

can induce loop formation in the VDD promoter by binding to two nearby CArG-

boxes and that this is essential for promoter activity. Our in vivo data show that the 

size and position of this loop, determined by the choice of CArG element usage, is 

essential for correct expression. Our studies provide solid in vivo evidence for the 

floral-quartet model. 
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Introduction  

 

MADS-box genes encode transcriptional regulators involved in diverse and 

important biological functions. They have been identified in yeast, insects, 

nematodes, lower vertebrates, mammals and plants. These transcription factors 

contain a conserved DNA binding and dimerization domain named the MADS-

domain (Schwarzsommer et al. 1992). In plants MADS-box genes have been 

highly amplified during evolution, for instance in Arabidopsis 107 MADS-box 

genes and in rice 75 MADS-domain encoding genes have been identified (Arora et 

al. 2007; Parenicova et al. 2003). 

The ability of MADS-domain proteins to bind DNA as dimers is reflected by the 

dyad symmetry of their binding sites that are found within promoter and enhancer 

sequences (Shore and Sharrocks 1995). Nurrish and Treisman (1995) studied 

MADS-domain protein binding sites and showed that they bind to the consensus 

sequence “CC(A/T)6GG” named CArG box. Evidence based on in vitro 

biochemical assays and interaction studies in yeast showed that plant MADS-

domain proteins form mainly heterodimers which are thought to assemble into 

multimeric complexes (de Folter et al. 2005; Egea-Cortines et al. 1999; Honma and 

Goto 2001; Riechmann et al. 1996). Many of these studies have been done using 

MADS-domain factors that control floral organ identity in Arabidopsis, which 

modes of action have been described in the combinatorial genetic ABC model 

(Coen and Meyerowitz 1991). Importantly, the ABC MADS-domain factors are for 

their function dependent on another group of MADS-domain transcription factors 

indicated as “class E factors”, which are encoded by four largely redundant 

SEPALLATA genes (SEP1-4) (Ditta et al. 2004; Pelaz et al. 2000). Class E factors 

establish interactions between A, B and C class factors and their combined ectopic 

expression (A, B and E or B, C and E) resulted in the homeotic conversion of 

leaves into petals or stamens (Honma and Goto 2001; Pelaz et al. 2001). These 
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studies resulted into the formulation of a ‘floral quartet model’ which suggests that 

the MADS-domain proteins form higher order (quartet) complexes to establish 

floral organ identity (Theissen and Saedler 2001). 

Similar results were obtained for the factors that control ovule development in 

Arabidopsis. The three MADS-box genes SEEDSTICK (STK), SHATTERPROOF1 

(SHP1) and SHP2 redundantly control ovule identity, since in the stk shp1 shp2 

triple mutant ovules are converted into carpel-like structures (Pinyopich et al. 

2003). Interestingly, the SEP1/sep1 sep2 sep3 triple mutant (only one allele of 

SEP1 is active) phenocopied the stk shp1 shp2 triple mutant showing that the SEP 

proteins are also important for the development of ovules (Favaro et al. 2003). The 

role of SEP proteins in the formation of ovules is likely to favour the formation of 

active complexes since yeast three-hybrid studies showed that SEP3 was able to 

bridge interactions among STK, SHP1 and SHP2.  

Recently, we have identified VERDANDI (VDD), a gene belonging to the 

REPRODUCTIVE MERISTEM (REM) family (Romanel et al. 2009), as a target of 

the ovule identity factors STK, SHP1, SHP2 and SEP3 (Matias-Hernandez et al. 

2010). VDD transcripts are present in the same tissues as these ovule identity genes 

and silencing of the ovule identity genes, STK, SHP1 and SHP2, led to the 

complete absence of VDD expression during ovule development. Analysis of the 

VDD mutant revealed that this gene is important for female gametophyte cell 

identity determination (Matias-Hernandez et al. 2010).  

Studies demonstrated that MADS-domain protein complexes often interact with 

DNA by contacting multiple nearby CArG box sequences, separated by less than 

300 base pairs (Egea-Cortines et al. 1999; Liu et al. 2008). In the regulatory region 

of VDD three CArG boxes were identified within a region of 500 bp and by ChIP 

analysis it was shown that the first and third box were bound by both STK and 

SEP3 (Matias-Hernandez et al. 2010).  
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Here we describe the use of a combination of biophysical, molecular and in vivo 

approaches to study the regulation of VDD promoter activity by MADS-domain 

ovule identity factors. In particular, we characterized in vitro and in vivo the 

interactions of STK and SEP3 with the three CArG boxes and investigated the 

importance of these interactions for the expression of VDD. Our study provides a 

deeper insight in the mode of action of MADS-domain proteins in the regulation of 

their target genes. 

 

 

 

Results  

SEP3 and STK together mediate DNA looping in the VDD promoter region 

STK and SEP3 have shown to form dimers that probably form tetrameric 

complexes (Favaro et al. 2003; Melzer et al. 2008). Furthermore, they are 

regulating the expression of VDD through direct binding to its promoter region 

(Favaro et al. 2003; Matias-Hernandez et al. 2010). The VDD promoter region 

contains three CArG boxes within 1000 bp upstream of the ATG start codon 

(Matias-Hernandez et al. 2010). Cooperative binding of the tetramers (composed of 

two SEP3-STK heterodimers) to two of the three adjacent CArG boxes would 

induce the formation of loops within the promoter region, which might have 

important regulatory functions. To investigate whether SEP3 and STK are indeed 

able to mediate interactions between elements in the VDD promoter region, 

Tethered Particle Motion (TPM) analysis (Dunlap et al. 2011; Finzi and Dunlap 

2003; Nelson et al. 2006; Pouget et al. 2004) was performed using a VDD promoter 

fragment of 697 bp containing all three CArG boxes in the same arrangement 

found in vivo. TPM is a powerful, single-molecule technique, which is particularly 

appropriate to monitor protein-induced DNA conformational changes such as 
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looping, bending, large-scale compaction (Finzi and Gelles 1995; Guerra et al. 

2007; Zaremba et al. 2010; Zurla et al. 2009). 

In principle, binding to CArG boxes and STK-SEP3 protein-protein cooperative 

interactions could result in three possible loops: between CArG box 1 and 2, 

between CArG box 2 and 3, or between CArG box 1 and 3 (Supplemental Figure 

S1A).  

To facilitate the correct interpretation of the TPM data, we first made a calibration 

curve using DNA tethers that have lengths that are predicted to be similar to each 

of the possible looped VDD promoter fragments (Supplemental Figure S1B). 

Therefore, we made tethers 243, 355 and 575 bp long. After analysing 20 tethers 

for each DNA fragment, including the 697 bp fragment, we fitted the cumulative 

frequency distribution of the data with a Gaussian curve (Supplemental Figure 

S1C). The centre of the peak of each Gaussian curve indicates the average 



2(t)
4s

 value (TPM signal) for each DNA length. The four values were then 

plotted as a function of DNA length and these data were well in agreement with a 

published calibration curve obtained by Nelson et al. (2006) (Supplemental Figure 

S1D). 

Subsequently, the effects of STK, SEP3 and STK-SEP3 heterodimers binding to 

the 697bp VDD promoter tether were studied by TPM (Figure 1). Furthermore, we 

also tested STK and SEP3 binding to tethers in which one or all CArG boxes were 

deleted.  

When only STK was added to the tether (Figure 1B) no loop formation was 

observed. However, the unlooped tether was shorter than when no protein was 

added (compare the position of the curve with the calibration curve C shown at the 

top of the panel). This suggests that the addition of the STK protein resulted in a 

shortening of the tether. This seems to be unrelated to binding of the MADS-

domain proteins to the CArG boxes since this shortening of the tether was also 

observed when we used a tether without CArG boxes (Figure 1D). When only 
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SEP3 was added to the tether we obtained a more complex pattern. Important to 

notice is that we observed a curve (blue) that arose as a shoulder of the free non-

looped magenta Gaussian on the right. However, this shoulder was observed in all 

the experiments and is clearly a background effect of SEP3 in these TPM 

experiments. The green very small curve is difficult to explain but might be due to 

loop formation between CArG box1 and 2.  

Clearer are the results when both STK and SEP3 were added to the tether. The non-

specific blue curve caused by SEP3 is much less pronounced in these experiments, 

which is probably due to the fact that SEP3 interacts with STK and this 

heterodimer does not seem to cause this non-specific curve. The control 

experiments using the tether without CArG boxes (Figure 1D) showed that no loop 

formation is possible without CArG boxes. In Figure 1E is shown that two different 

loops were obtained when STK and SEP3 were added to the wild type tether. Our 

interpretation is that the most left red curve is due to loop formation between CArG 

box1 and 3 whereas the green curve might be due to loop formation between CArG 

box1 and 2. The experiments with the tethers that contain a single CArG box 

deletion (Figure 1F-H) showed that when CArG box1 or 3 were deleted no loop 

formation is possible. Only when CArG box2 was deleted the loop between CArG 

box1 and 3 was obtained. Interestingly, the putative loop between CArG box1 and 

2 as observed using the wild-type tether (Figure 1E; green curve) was only 

established when CArG box1 and 3 were both present suggesting that in these in 

vitro TPM experiments the binding to CArG box1 and 3 might somehow facilitated 

loop formation between CArG1 and 2. In conclusion these experiments suggest 

that CArG box1 and 3 are the boxes in the VDD promoter that are mainly involved 

in the formation of loops induced by STK and SEP3.  
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Figure 1. TPM analysis of STK and SEP3 interactions with the VDD promoter 

(A) Schematic representation of the VDD promoter. Positions of the CArG boxes 

are relative to the translation start site. (B) pVDD in the presence of STK protein 

(C) pVDD in the presence of SEP3 (D) Negative control of TPM experiment, 

pVDD with the CArG boxes deleted (pVDD-1-2-3) in presence of both proteins 

STK and SEP3 (E) pVDD in the presence of both proteins STK and SEP3 (F) 

pVDD with the first CArG box deleted (G) with the second CArG deleted and (H) 

with the third CArG, deleted in presence of both proteins. 

The histograms were normalized to the total number of events and to the bin width 

(2 nm). 
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The role of the CArG boxes in the regulation of VDD expression 

The TPM analysis showed that regulators of VDD induced loops into the putative 

promoter region by binding to two CArG boxes. To investigate the importance of 

the CArG boxes for the expression of VDD we performed promoter analysis in 

which we mutated single or combinations of the three CArG boxes, changing the 

[A/T]6 into [G/C]6.  

In order to validate the reporter gene expression profiles we first performed VDD in 

situ hybridization expression analysis. This showed that VDD transcripts were first 

detected at stage 2-I of ovule development (Schneitz et al. 1995)Figure 2A). During 

subsequent stages of ovule development (until stage 3-VI) VDD expression was 

observed throughout all tissues of the ovules (Figure 2B-D). After fertilization a 

strong VDD hybridization signal was observed in embryos at the globular stage, but 

at heart stage embryos VDD expression almost disappeared (Figure 3A-B).  

To evaluate the importance of the CArG boxes for controlling VDD expression a 

putative promoter fragment of 1221 bp upstream of the VDD translation start site 

was cloned in frame with the uidA reporter gene that encodes for β-glucuronidase 

(GUS). This pVDD::GUS construct was used for Arabidopsis transformation. We 

generated more than 80 transgenic lines for this construct and 92% of these plants 

showed similar expression profiles whereas 8% did not show GUS activity. The 

GUS expression profile during ovule development perfectly matched the VDD 

expression that was observed by in situ hybridization experiments (Figure 2E-H). 

In globular stage embryos GUS expression was observed whereas at heart stage no 

GUS activity could be detected (Figure 3C-D). The in situ profiles confirm the 

expression in globular stage embryos however at heart stage they showed some 

residual VDD expression (Figure 3A-B). 

Since the pVDD::GUS reporter construct drives GUS expression similar to the 

endogenous VDD gene, we used this VDD promoter fragment to generate new uidA 
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reporter gene constructs in which single or combinations of the three CArG boxes 

were mutated. These constructs were all used to transform Arabidopsis plants and 

at least 80 independent transgenic plants were obtained for each construct. In plants 

that contained the reporter construct with a single mutated CArG box, expression 

profiles changed depending on which CArG box was mutated. Mutations in the 

second CArG (pVDDm2::GUS) box did not affect the expression profile of the 

reporter gene (Figure 2M-P). However, when the first
 
CArG was mutated the 

expression of the reporter gene (pVDDm1::GUS) was only detected in developing 

stage 3-VI ovules (Figure 2I-L). When CArG box3 was mutated (pVDDm3::GUS) 

GUS expression was visible at stage 2-I, restricted to the chalaza zone (Figure 2Q) 

of the ovule and expression levels at later stages were lower than in wild-type 

(Figure 2R-T). 

We also analyzed reporter constructs in which two or all three CArG boxes were 

mutated (pVDDm1-2::GUS; pVDDm1-3::GUS; pVDDm2-3::GUS; pVDDm1-2-

3::GUS). In all these transgenic plants no GUS expression was observed showing 

that the presence of two CArG boxes are essential for VDD promoter activity. An 

example of the obtained results is shown for  pVDDm1-2::GUS in Figure 2U-X. 

These experiments were all done with mutated CArG boxes. However in the TPM 

analyses described above we used promoter fragments in which CArG boxes were 

deleted. To verify the consistency of these data we also prepared reporter gene 

constructs in which CArG boxes were completely deleted as described in the TPM 

experiments. This showed that exactly the same results were obtained as when 

mutated CArG boxes were used (Supplemental Figure S2).  
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Figure 2. VDD expression and promoter analysis during ovule development 

(A-D) In situ hybridization analysis of VDD during ovule development. (A) ovule 

development stage 2-I; (B) stage 2-III; (C) 3-I and (D) stage 3-VI (these stages 

should be used as reference for the next lines). (E-H) pVDD::GUS transgenic 

plants showed a similar expression pattern as observed by the in situ hybrization 

experiment. (I-L) GUS expression in ovules of pVDDm1::GUS lines. (M-P) GUS 

expression in ovules of pVDDm2::GUS lines. (Q-T) GUS expression in ovules of 

pVDDm2::GUS lines. (U-X) Absence of GUS expression as observed in the 

pVDDm1-2::GUS. Absence of GUS expression was also observed in pVDDm1-

3::GUS; pVDDm2-3::GUS; pVDDm1-2-3::GUS lines. pl-placenta; op- ovule 

primordium; f-funiculus; ii- inner integument; oi- outer integument; fg- female gametophyte 
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Interestingly, during seed development the importance of the CArG boxes for VDD 

expression was shown to be different. Whereas during ovule development there 

seems to be flexibility in the use of the CArG boxes, in seeds this showed to be 

different. Only inactivation of CArG box2 did not result in a  complete loss of 

VDD promoter activity during seed development (Figure 3E-F), whereas 

inactivation of CArG box1, CArG box3, and all other combinations did eliminate 

GUS expression during seed development (Figure 3G-H), showing that the 

presence of both CArG box1 and 3 are critical for correct VDD expression in 

developing seeds. 

  

 

 

 

Figure 3. VDD expression and promoter analysis 

during seed development 

 (A-B) VDD in situ hybridization analysis in 

developing seeds with globular (A) and heart stage 

(B) embryos. (C-D) GUS expression in seeds of 

pVDD::GUS lines. (E-F) GUS expression in seeds of 

pVDDm2::GUS lines.  (G-H) Absence of GUS 

expression as observed in pVDDm1::GUS. Absence 

of GUS expression was also observed in plants 

containing the following constructs pVDDm3::GUS; 

pVDDm1-2::GUS; pVDDm1-3::GUS; pVDDm2-

3::GUS; pVDDm1-2-3::GUS.. 

e- embryo; en- endothelium 
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In vivo Binding of STK and SEP3 to the Three CArG Boxes in the VDD 

Promoter 

Previously published ChIP data showed that CArG box1 and CArG box3 in the 

VDD promoter region are directly bound by SEP3 and STK whereas no binding to 

CArG box2 was observed (Matias-Hernandez et al. 2010). Repeating this 

experiment resulted in exactly the same observation (Figure 4A and B). 

Subsequently, we performed ChIP assays combined with real-time PCR analysis 

using chromatin extracted from unfertilized flowers from reporter lines that contain 

VDD promoter constructs with one of the three CArG boxes mutated. Specific 

primers for the mutated CArG boxes were used in order to discriminate binding to 

the endogenous promoter from binding to the exogenous DNA constructs. These 

experiments showed that when CArG box1 was mutated (pVDDm1::GUS) CArG 

box2 was used by STK and SEP3 (Figure 4C and D). A similar result was obtained 

when we performed ChIP analysis using chromatin extracted from inflorescences 

of the pVDDm3::GUS reporter line, in this case CArG box1 and 2 were bound by 

STK and SEP3 (Figure 4G and H). As expected when CArG box2 was mutated the 

MADS-domain factors bound normally to CArG box1 and 3 (Figure 4E and F).  

Interestingly, in plants containing the reporter line in which CArG box1 and 3 were 

mutated (pVDDm1-3::GUS) no enrichment was observed on any of the CArG 

boxes suggesting that binding to CArG box1 or 3 facilitates binding of the SEP3-

STK dimer to CArG box2. We also performed ChIP experiments using plants 

containing the reporter lines pVDDm1-2::GUS and pVDDm2-3::GUS. Also these 

experiments showed that the single non-mutated CArG box is never enriched. 

These experiments evidence that in these floral tissues, SEP3 and STK were only 

able to bind the VDD promoter when two CArG boxes were available 

(Supplemental Figure S3 A-F).  
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Figure 4. In vivo binding of 

SEP3 and STK to CArG 

boxes in the VDD promoter 

region  

 ChIP experiments using 

SEP3 (panel A, C, and G) and 

STK (panel B, D, F and H) 

antibodies to investigate 

binding to the CArG boxes (I, 

CArG-box1; II, CArG-box2; 

III, CArG-box3) in the VDD 

promoter. Negative controls 

(white bars) for SEP3 ChIP 

assays were done using wild-

type leaf tissues and for STK 

ChIP negative controls 

flowers of the stk mutant 

were used. (A and B) SEP 

and STK binding to the 

endogenous VDD promoter. 

(C-H) ChIP assays to test 

SEP3 and STK binding to the 

CArG boxes in the 

heterologous VDD promoter 

of the (C and D) 

pVDDm1::GUS construct 

containing lines, (E and F) 
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pVDDm2::GUS construct containing lines and (G and H) pVDDm3::GUS construct 

containing lines. Fold enrichments were calculated over the negative controls. Error 

bars represent the propagated error value using three replicates. 

 

Conservation of the VDD CArG boxes in species related to Arabidopsis 

thaliana 

There are three CArG boxes in the VDD promoter region but only CArG box1 and 

3 seem to be important for proper VDD expression in ovules and seeds. The 

question therefore arose if there might be conservation of all three boxes or just two 

of them. We investigated by a shadowing approach, using orthologous promoters 

of Arabidopsis lyrata, Arabis alpina, Brassica rapa, Capsella rubella and 

Thellungiella halophile, if there is conservation of the position of all three CArG 

boxes in these species (Figure 5). This analysis showed that in Arabidopsis lyrata 

all three CArG boxes are located in the same position suggesting that in the genus 

Arabidopsis the regulatory mechanism to control VDD expression is probably 

conserved.  

CArG box3 is located in a highly conserved region in 6 species analysed whereas 

CArG box1 and 2 are not (Figure 5A). The conservation in CArG box sequences 

also confirms this, since CArG box3 is the only one that is most conserved in 

sequence between these species (Figure 5B). However, if we strictly consider a 

consensus sequence of CC(A/T)6-8GG (Nurrish and Treisman,1995; Wang et al., 

2004) and allow only one mismatch than CArG box3 is only conserved in 

Arabidopsis lyrata and Capsella rubella. Searching the promoter sequences of the 

VDD orthologs of all these species showed that in Arabis alpina and Thellungiella 

halophile CArG boxes that full-fill the consensus sequence could be identified in 

the same region where the three CArG boxes are in A. thaliana and A. lyrata. 

However, position and spacing of these are different.  



104 

 

 

 

Figure 5. Phylogenetically conserved regions in the VDD promoter and 

multiple sequence alignment analysis 

(A) Pairwise alignments of the Arabidopsis thaliana VDD promoter to orthologous 

sequences of A. lyrata, C. rubella, B. rapa, T. halophila and A. alpina, respectively, 

shown as VISTA plots. Light-red color indicates regions where a sliding window 

of at least 75 bp has >70% identity. Vertical lines indicate the position of the three 

CArG boxes within the A. thaliana VDD promoter and its orthologs, relative to the 

transcriptional start site (arrow). (B) Multiple sequence alignment of the three 

putative CArG boxes found within the same position of the VDD promoter of 

Arabidopsis and orthologous genes in the 5 Brassicaceae; not strictly considering 

the CC(A/T)6-8GG (allowing one mismatch) rule. At = Arabidopsis thaliana, Al = 
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Arabidopsis lyrata, Cr = Capsella rubella, Br = Brassica rapa, Th = Thellungiella 

halophila, Aa = Arabis alpina  

 

 

Discussion 

 

MADS-domain proteins controlling flower development have shown to interact 

which each other forming preferentially heterodimers (de Folter et al. 2005). The 

current model, based on biochemical and genetic studies predicts that these floral 

homeotic MADS-domain protein dimers bind to two CArG boxes as a quartet and 

establish DNA loops in the promoters of target genes (Egea-Cortines et al. 1999; 

Melzer and Theissen 2009; Smaczniak et al. 2012). The class E or SEP proteins are 

important in this model for the establishment of these higher order MADS-domain 

protein complexes (Honma and Goto 2001; Pelaz et al. 2001).  

Our TPM in vitro experiments using a fragment of the VDD promoter region 

containing three adjacent CArG boxes strongly support the idea that loop formation 

can be established by a STK-SEP3 MADS-domain complex. Especially CArG 

box1 and 3 seem to be most important for the establishment of loop formation. This 

is in agreement with ChIP experiments that showed that in vivo STK and SEP3 

only use CArG box1 and 3 in the VDD promoter (Matias-Hernandez et al. 2010). 

Interesting is the fact that when we tested by TPM assays the VDD promoter with a 

single CArG box deletion only loop formation was observed when CArG box 2 

was deleted. Using tethers in which CArG box1 or 3 were deleted no loop 

formation was observed. This indicates that loop formation between CArG box1 

and 2 or between 2 and 3 is not possible in these in vitro assays. An exception to 

this rule might be when all three CArG boxes are available and the binding to 

CArG box1 and 3 somehow also favours the establishment of a loop between 

CArG box1 and 2. These TPM data are not completely in agreement with our in 
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vivo data that suggest that the SEP3-STK dimer was also using CArG box 2 in the 

absence of CArG box1 or 3.  

 

Loop formation in the DNA facilitated by specific cis-elements has shown to be 

important to establish the interaction of distantly related enhancers for correct 

regulation of transcription, as for instance described for the intensively studied cis-

regulatory region of the lac operon of E. coli (Lee et al. 1992) or the Abdominal-B 

(Abd-B) gene of Drosphila melongaster (Cleard et al. 2006; Ho et al. 2011). 

However, most of the loop formations that have been studied intensively are related 

to long range DNA looping. In the case of the VDD promoter region CArG box1 

and 3 are only 444 bp apart. The function of these short-range loops has been 

poorly studied and understood. The general idea is that DNA looping is a 

conformational state in which cis elements are brought in close vicinity to each 

other and create locally a high concentration of transcription factors close to the 

transcription start site of genes to initiate transcription (Dekker et al. 2002). If this 

is true then this means that long and short range looping events might in principal 

have the same function. A study on short-range loop formation in the murine iNOS 

promoter region also points in this direction (Guo et al. 2008). Our studies in 

flowers showed that when one of the three CArG boxes was mutated in the VDD 

promoter transcriptional activation of the VDD gene was still occurring. However, 

the promoter was inactive when two of the three CArG boxes were eliminated. This 

suggests that loop formation is essential for the transcriptional activation of VDD. 

Furthermore, the loop size or its location also seemed to be critical. This became 

clear from the ChIP and in vivo expression studies using the reporter lines. The 

ChIP experiments showed that normally CArG box1 and 3 are used. However, 

when one of these two CArG boxes was mutated, CArG box2 was occupied by 

SEP3 and STK. This shows that all three boxes have affinity for the SEP3-STK 

dimer but there seems to be an affinity difference between them, with CArG box2 
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having the lowest affinity. When CArG box2 was used in combination with CArG 

box1 or 3 a change in the DNA loop position and/or size is expected to occur 

(Figure 5). This change in the predicted loop structure showed to have an effect on 

the expression of the VDD gene as evidenced by the reporter gene studies. Loop 

formation between CArG box1 and 2 or between CArG box2 and 3 did activate 

expression of the reporter gene but timing and the domain of its expression were 

altered. These results also suggest that there might be a mechanistic difference 

between long-range and short-range loop formation. Our results point to the fact 

that the size and position of the loop is important. For instance a loop between 

CArG box2 and 3 has the same position relative to the transcription start site but 

the loop is smaller (Figure 6). It is difficult to imagine that loop size is critical for 

long-range loop formation, where loops can be thousands of basepairs. Therefore, 

short-range loops might also be important to give locally structure to the chromatin 

to recruit or stabilize specific transcriptional complexes. We can of course not 

exclude that the stability of the MADS-domain protein complex on CArG box2 is 

less stable and that therefore transcription of VDD is deregulated.  

The importance of loop formation for VDD promoter activity was further 

strengthened by studying the reporter constructs in which two out of three CArG 

boxes were mutated. Not only reporter gene expression was completely lost in 

ovules but also SEP3 and STK lost their ability to bind to the remaining CArG box 

in floral tissues since no enrichment was found by ChIP analysis on these 

fragments. This illustrates that binding of SEP3 and STK was only possible when 

two of the three CArG boxes were available supporting the cooperative assembly 

of the MADS quartet on the VDD promoter. 

Our data strongly suggest that loop formation between two CArG boxes is 

important for VDD promoter activity. Nevertheless based on our in vivo results an 

alternative hypothesis to explain our observations might also be considered. It 

could be that for VDD promoter activity SEP-STK dimers have to bind to at least 
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two of the three CArG boxes without the necessity that they also loop the DNA. 

However, our TPM studies and evidence coming from other studies strongly 

support the looping hypothesis (Egea-Cortines et al., 1999; Melzer and Theissen, 

2009; Melzer et al., 2009; Smaczniak et al, 2012).  

Another important consideration is that STK and SEP3 might bind as homodimers 

to the CArG boxes. STK homodimers were never observed in yeast two-hybrid 

assays (Favaro et al., 2003; de Folter et al., 2005) although this technique cannot 

completely exclude such possibility. Our ChIP analyses show that both STK and 

SEP3 bound to both CArG box1 and 3. Furthermore, the TPM data show that SEP3 

or STK by themselves were unable to induce loop formation between CArG box1 

and 3. Taking these data together suggests that VDD promoters on which STK (or 

SEP3) homodimers are bound to both CArG boxes will probably result inactive. 

Therefore, a model in which STK and SEP3 homodimers regulate VDD expression 

is not so attractive, also when considering that SEP3 and STK have high affinity 

for each other in the yeast assay and that the formation of this heterodimer seems to 

be highly conserved in plants (Favaro et al., 2002). 

 

The shadowing experiments showed that in Arabidopsis lyrata all three CArG 

boxes were in the same position as in Arabidopsis thaliana suggesting that the 

regulatory mechanism that we describe here is at least conserved in the genus 

Arabidopsis. Remains of course the question why three CArG boxes are conserved 

when only two of them seem to be used. This could of course suggest that other 

MADS-domain proteins bind to box2, however, under the controlled greenhouse 

conditions that we used, these interactions seem not to be important for correct 

VDD expression since mutations in CArG box2 did not alter the expression profile 

of VDD. This could of course be different when plants are grown under more 

unfavourable climatic conditions. In the more distantly related species it is difficult 

to conclude whether VDD orthologs are regulated in a similar way. When we only 
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strictly consider the CArG consensus sequence than we can in some promoters find 

alternative binding sites although they are not exactly in the same positions as 

observed in Arabidopsis. Of course it might be that there is more flexibility in the 

CArG box sequence that still allows SEP3 and STK binding.  This would open up 

the possibility of a wider conservation of this regulatory mechanism in more 

distantly related species. ChIP and reporter gene studies might clarify these 

interesting questions in the future. 

Interestingly, during seed development both CArG box1 and 3 seemed to be 

essential for VDD expression. During this phase of development CArG box2 did 

not seem to be able to compensate for the loss of one of these two CArG boxes. 

This suggest that the composition of the MADS-domain complexes that bind to 

these CArG boxes during seed development are different and that these do not have 

enough affinity for CArG box2. This is supported by the observation that VDD is 

highly expressed in the embryo a tissue where STK mRNAs were never detected by 

in situ hybridization.  

In conclusion, a combination of in vitro and in vivo data strongly support the 

hypothesis that MADS-domain protein dimers composed of SEP3 and STK (or 

SHP1/SHP2, which are considered to be redundant with STK in the control of 

VDD) can bind the DNA at nearby CArG boxes and that by forming higher order 

(quartet) complexes they loop the DNA. This loop formation is important for target 

gene expression and that both the size and position of these small loops influence 

gene expression. This is the first in vivo example that shows the importance of 

MADS domain quartets for target gene regulation and the importance of loop 

formation for gene expression in plants.  
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Figure 6. Schematic representation of STK-SEP3 MADS-domain complex on 

the VDD promoter. 

(A) Illustration of loop formation in the VDD promoter, (B) VDD promoter with 

the second CArG mutated, (C) first CArG mutated and (D) third CArG mutated 

(D). Cartoon clarifies the putative changes in loop size and position in respect to 

the transcription start site (red arrow). 

 

Material and Methods 

Plant material, growth condition  

Arabidopsis thaliana wild-type (ecotype Columbia) and stk-2 mutant plants 

(Pinyopich et al. 2003) were grown at 22 °C under short-day (8 h light/16 h dark) 

or long day (16h light/8 h dark) conditions.  
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Plasmid constructions and Arabidopsis transformation  

For VDD promoter analysis 1221 bp upstream of the VDD translation start site 

were amplified by PCR and fused to the GUS reporter gene. Seven other constructs 

were cloned containing different combinations of site specifically mutagenized 

CArG boxes (Table S1). All the constructs were made using Gateway technology 

(Invitrogen). In the first amplification step we used the Gateway vector 

pDONOR207 and then recombined into pBGWFS7 (Karimi et al. 2002). Wild-type 

plants were transformed with all constructs using the floral dip method (Clough 

and Bent 1998). Seeds of the transformed plants were harvested upon maturation, 

the seeds germinated on soil and the transgenic plants were selected by spraying 

with 0,1% BASTA herbicide.  

 

Cytological assays 

For in situ hybridization analysis, Arabidopsis flowers were fixed and embedded in 

paraffin as described previously (Huijser et al., 1992). Sections of plant tissue were 

probed with digoxigenin-labeled VDD antisense RNA corresponding to nucleotides 

240 to 557 (Matias-Hernandez et al. 2010). Hybridization and immunological 

detection were performed as described previously (Coen et al., 1990).  

All GUS assays were performed overnight as described previously (Liljegren et al. 

2000). Samples were incubated in clearing solution, dissected, and observed using 

a Zeiss Axiophot D1 microscope equipped with DIC optics. Images were captured 

on an AxiocamMRc5 camera (Zeiss) using the Axiovision program (version 4.1). 

For each construct we analysed more than 80 independent transformants.  

 

Chromatin Immunoprecipitation assays 

For ChIP experiments chromatin was extracted from wild type, stk mutant and 

transgenic (pVDDm1::GUS, pVDDm2::GUS, pVDDm3::GUS) flowers (max. 

flower developmental stage 12 and before fertilization occurs; Smyth et al, 1990). 
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Wild-type plants were grown under SD conditions for 2 weeks and chromatin was 

extracted. The stk single mutant and wild-type leaves were used as negative 

controls for STK and SEP3 ChIPs, respectively. STK and SEP3 binding to the 

DNA fragment was considered only when they were significantly enriched 

compared to the controls in at least three independent experiments, for further 

details see Text S1. 

 

Quantitative real-time RT-PCR 

Enrichment folds were detected using a SYBR Green assay (Bio-Rad, 

http://www.bio-rad.com/). The real-time PCR assay was performed in triplicate 

using a Bio-Rad C1000 Thermal Cycler optical system. For ChIP experiments, 

relative enrichment was calculated as described in Text S1. Primers used for ChIP 

experiments are listed in Table S2. 

 

SEP3 and STK purification  

SEP3 coding sequence was amplified using 5’ ccatatgggaagagggagagtagaattg 3’ 

and 5’cgctcgagaatagagttggtgtcataagg 3’. STK coding sequence was amplified using  

5’ cccatatgggaagaggaaagatagaaataaag 3’and 5’ ccctcgagtccgagatgaagaattttcttg 3’.  

The two fragments have been digested with NdeI and XhoI and cloned in pET-23 

(+) Novagen (Madison, WI, USA). The recombinant proteins have been produced 

in E.coli BL21(DE3) Novagen (Madison, WI, USA). The cultures were grown at 

37° C at A600=nm 0.6 for STK and A600=nm 0.8 for Sep3. IPTG (Isopropyl ß-D-thio-

galactopyranoiside supplied by Roche, Germany) was added to a final 

concentration of 0.1 mM for protein induction afterwards cultures were incubated 

at 18°C for 15 hours. The His-tagged recombinant proteins were purified using 
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affinity Ni-NTA Agarose columns (Qiagen). SEP3 was soluble and purified in 

native condition following (Bellorini et al. 1997). STK accumulated in the 

inclusion bodies which were solubilised with 20 mM Tris, 500 mM NaCl, 10mM 

Imidazole and 6M urea pH 8 (4 ml per gram of wet cells) stirring for 30’ at RT. 

The surnatant was loaded on a Ni-NTA column and the bound recombinant STK 

proteins were solubilised with a linear 6-0 M urea gradient.  

 

DNA constructs for TPM analysis 

The VDD promoter (pVDD) fragment, containing the three CArG boxes, was 

obtained by PCR using a 5’ digoxigenin- and a 3’ biotin-labelled primer (Oligos 

etc. Inc., OR, USA). The pVDDdel1-2-3-fragment, in which the three CArG boxes 

were deleted, was produced by PCR with specific primers carrying CArG-box 

deletions. The final fragment was recombined into the pGEM-T-Easy plasmid 

(Promega, Madison Wisconsin, USA) and amplified with labelled primers as 

described above. Fragments used to obtain a calibration curve, corresponding to 

243, 355, and 575 bp were amplified from pVDD (primers are listed in Table S3). 

 

Tethered particle motion assay 

TPM analysis was performed as described previously by (Finzi and Dunlap 2003). 

About 50 DNA-tethered beads were tracked for each of the following experimental 

conditions: i) pVDD incubated with SEP3, STK or both. We also tested the mutated 

promoter without any of the three CArG boxes, pVDDdel1-2-3-, in the presence of 

both proteins (concentration of 700 nmol each).  

 

Phylogenetic Shadowing 

Sequences from Arabidopsis lyrata, Brassica rapa and Thellungiella halophila were 

obtained from Phytozome (www.phytozome.net).  



114 

 

The Capsella rubella sequence was assembled from raw sequence reads 

(http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi). The Arabis alpina sequence was 

obtained from an internal genome-sequencing project at the MPIPZ Köln. Pairwise 

alignments and VISTA plots (Mayor et al., 2000) were made as described 

previously (Herrero et al., 2012), but with a calculation window of 75bp and a 

consensus identity of 70%. Multiple sequence alignments were performed with 

ClustalW (Larkin et al., 2007) and conserved cis-regulatory elements were 

visualized with WEBLOGO (Crooks et al., 2004). The CArG box consensus that 

we used was CC(A/T)6-8GG, allowing one mismatch. However, the base preceding 

the (A/T)s should be a C and the base after the (A/T)s should be a G (Nurrish and 

Treisman,1995; Wang et al. 2004). 
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Supplemental information 

 

Figure S1. Summary of TPM analysis 

(A) Schematic representation of TPM 

assay. DNA looping is observed as a 

result of changes in the Brownian motion 

of the tethered bead (tb). STK-SEP3 

complexes could bind to the CArG boxes 

making three possible loops: between 

CArG box 1 and 3, between CArG box 1 

and 2, or between CArG box 2 and 3. 

(B) DNA constructs used. Total construct 

length is indicated. Fragment 575 bp has 

the same length as expected for the pVDD 

fragment of 697bp with a loop between 

CArG2 and CArG3. Fragment 355bp has 

a length corresponding to pVDD 

containing a loop between CArG1 and 

CArG2 and the fragment of 243bp 

corresponds to pVDD with a loop 

between CArG1 and CArG3.  pVDDdel1-2-3- is a DNA fragment without any of 

the three CArG boxes, and it is 655 bp long.  

(C) Cumulative histograms of 



2

4 s

 for the 243, 355, 575, 697 bp fragments. The 

data have been fitted to a Gaussian distribution. The numbers above each 

distribution indicate the CArG boxes, whose interaction in the wild-type fragment 

would produce a DNA tether of equivalent length and TPM signal. “c” stands for 

wild type control fragment. The histograms are normalized to the total number of 

events and to the bin width (2 nm).  
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(D) Calibration curve relating the expected TPM signal, 



2

4 s

, to DNA length. 

Experimental data match the TPM signal obtained for the four DNA lengths in (A). 

The error bars represent the standard deviation of the data. The continuous line is 

the calibration curve as obtained by Nelson et al., 2006, assuming a DNA 

persistence length = 41 nm.  

 

Figure S2 pVDD deletion studies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A-D) GUS expression in ovules of pVDDDel1::GUS lines; (E-H) GUS expression 

in ovules of pVDDDel2::GUS lines; (I-L) GUS expression in ovules of 

pVDDdel3::GUS lines; (M-P) Absence of GUS expression as observed in the 

pVDDdel-1-2::GUS. The same result was obtained in pVDDdel1-3::GUS; 

pVDDdel2-3::GUS; pVDDdel1-2-3::GUS lines. pl-placenta; op- ovule primordium; f-

funiculus; ii- inner integument; oi- outer integument; fg- female gametophyte 
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Figure S3. In vivo binding of SEP3 and STK to CArG boxes with two CArG 

boxes mutated in theVDD promoter region  

 

 ChIP experiments using STK (panel A, C, and G) and SEP3 (panel B, D and F) 

antibodies, to investigate the binding to different CArG boxes. As positive control 

we tested endogenous CArG box 1 of VDD promoter as negative controls, for 

SEP3 ChIP assays we used wild type leaf tissues and for STK ChIP negative 

controls flowers of the stk mutant were used. I, referes to CArG box1 mutated; II to 

CArG-box2 mutated; III to CArG box3 mutated in the VDD promoter.  (A and B) 
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STK and SEP3 binding to the heterologous pVDDm1-2. (C-D) ChIP assays to test 

SEP3 and STK binding pVDDm1-3.  (E and F) pVDDm2-3 ChIP experiments. 

Error bars represent the propagated error value using three replicates. 

 

Table S1. Primers used for mutated plasmids construction   

Construct Primer 

designation 

Nucleotide sequence 

pVDD::GUS VDD promoter 

wild type forward 

5’ ggggacaagtttgtacaaaaaagcaggctcccgaactttattccggata 3’ 

VDD promoter 

wild type reverse   

5’ggggaccactttgtacaagaaagctgggtcctctgcttctctccttc 3’ 

pVDD1-

::GUS   

pVDD1-::GUS  

mutated forward 

5’ccaaataataaagacaagtatacattgcccCGGGGGgaaaactatagag 

3’ 

pVDD1-::GUS  

mutated reverse 

5’-ctctatagttttcCCCCCGgggcaatgtatacttgtctttattatttgg-3’ 

pVDD2-

::GUS   

pVDD2-::GUS  

mutated forward 

5’-gaggttttcaaatgggtgattaaccCCCCGGGgccgtgaatgtattttag-

3’  

pVDD2-::GUS  

mutated reverse 

5’-ctaaaatacattcacggCCCCGGGgggttaatcacccatttgaaaacctc; 

pVDD3-

::GUS   

pVDD3-::GUS  

mutated 

forward 

5’-gctgtctttttagaattcagttactGGGGGtagga atttgctctgctttttac-

3’ 

pVDD3-::GUS  

mutated 

reverse 

5’-

gtaaaaagcagagcaaattcctaCCCCCagtaactgaattctaaaaagacagc-

3’ 

 

Detailed list of primers used for constructing all plasmids. CArG box consensus 

sequences are underlined and mutations are indicated by upper case letters. 

Mutated plasmids were named: pVDDm1::GUS, with the CArG1 mutated;  

pVDDm2::GUS , CArG2 mutated; pVDDm3::GUS , CArG3 mutated;  pVDDm1-2-

::GUS , CArG1 and CArG2 mutated;  pVDDm2-3::GUS , CArG2 and CArG3 
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mutated;  pVDDm1-3::GUS , CArG1 and CArG3 mutated ;  pVDDm1-2-3::GUS 

with all CArG boxes mutated.  

 

Table S2. Primers used for ChIP experiment 

Primer designation Nucleotide sequence 

ACTIN forward (Liu et al., 

2008)  

5’-cgtttcgctttccttagtgttagct-3’ 

ACTIN reverse  (Liu et al., 

2008)  

5’-agcgaacggatctagagactcaccttg-3’ 

wild type CArG box1 forward  5’-aacattgctttctccttccaaa-3’ 

wild type CArG box1 reverse  5’-gtatattcagcgtaacagatacg-3’ 

wild type CArG box2 forward  5’-ctacattctacagactagctag-3’ 

wild type CArG box2 reverse  5’-ctaaaaagacagcgtcatatttcc-3’ 

wild type CArG box3 forward 5’-ggaaatatgacgctgtctttttag-3’ 

wild type CArG box3  reverse 5’-cagaaacagcaatatgctcgtg-3’ 

mutated CArG box1 forward 5’-caagtatacattgccccgggg-3’ 

mutated CARG box1 reverse 5’-cccctattaactttatacaagc-3’ 

mutated CArG box2  forward 5’-cgtatctgttacgctgaatatac-3’ 

mutated CArG box2 reverse 5’-ctaaaatacattcacggccccgggg-3’ 

mutated CArG box3 forward 5’-gtctttttagaattcagttactggggg-3’ 

mutated CArG box3 reverse 5’-ggttagttggaaaagattccc-3’   

 

List of primers used for Real-Time PCR. Specific primers on the three single 

mutations were used in order to discriminate enrichment from wild-type promoter 

sequences and exogenous DNA. 
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Table S3. Tethered particle motion fragments 

Construct Primer designation Nucleotide sequence 

pVDD pVDD 697 bp 

forward 

5’-gttttcaagatattgtcaagc-3’ 

pVDD 697 bp 

reverse  

5’-ggttagttggaaaagattccc-3’ 

pVDDdel1- 

pVDDdel1-

::GUS 

deleted CArG box 

1 forward 

5’-taataaagacaagtatac*ctatagagacacgcactagttagggttg-

3’ 

deleted CArG box 

1 reverse 

5’- caaccctaactagtgcgtgtctctatag*gtatacttgtctttatta -3’ 

pVDDdel2- 

pVDDdel2-

::GUS 

deleted CArG box 

2 forward  

5’-gttttcaaatgggtgattaacc*gtgaatgtattttagtacagtataag-

3’ 

deleted CArG box 

2 reverse 

5’- cttatactgtactaaaatacattcac*ggttaatcacccatttgaaaac 

-3’; 

pVDDdel3- 

pVDDdel3-

::GUS 

deleted CArG box 

3 forward 

5’-cgctgtctttttagaattca * ttgctctgctttttacgtgtctggg-3’, 

deleted CArG box 

3 reverse 

5’- 

cccagacacgtaaaaagcagagcaa*tgaattctaaaaagacagcg -

3’ 

575 bp R-575 bp reverse 5’-ttcctatttttagtaactg-3’ 

355 bp R-355 bp reverse 5’-acatgtttgaaaacttagc-3’ 

243 bp R-243 bp reverse 5’-gcatatatgtatattcag-3’ 

 

Primers used for amplifying tethers for TPM experiment. Fragments used to obtain 

a calibration curve corresponding to 243, 355, and 575 bp were amplified from 

tether pVDD using the same pVDD forward and as reverse the listed ones. Stars on 

primers indicate the deletion point. 
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Text S1 

ChIP experiments and Quantitative real-time RT-PCR 

About 600 mg of each sample was fixed at 4°C for 20 minutes in 1% formaldehyde 

under vacuum. ChIP experiments were performed as version described by Dorca-

Fornell et al. (2011). The STK and SEP3 polyclonal antibody were previously 

described (Hernandez et al, 2010). DNA enrichment was tested in triplicate using a 

Sybr Green Assay (iQ_ SYBR Green Supermix; Bio-Rad) and performed in a Bio-

Rad C1000 Thermal Cycler optical system. Relative enrichment was calculated 

normalizing the amount of immune precipitated DNA against an ACTIN2/7 

(ACT2/7) fragment and against total INPUT DNA. In particular, for the binding of 

STK to the selected genomic regions, the affinity of the purified sample obtained in 

the wild-type inflorescence was compared with the affinity-purified sample 

obtained in the stk single mutant background, which was used as negative control. 

For the binding of SEP3 to the selected genomic regions, the affinity of the purified 

sample obtained from wild-type inflorescences was compared with the affinity-

purified sample obtained from wild-type leaf tissue, which was used as negative 

control. Fold enrichment was calculated using the following formulas, where Ct. tg 

is target gene mean value, Ct.i is input DNA mean value, and Ct.nc is actin 

(negative control) mean value: dCT.tg = CT.i-CT.tg and dCT.nc =CT.i-CT.nc. The 

propagated error values of these CTs are calculated: dSD. tg = sqrt(( SD.i)^2+ 

(SD.tg^2)/sqrt(n) and dSD.nc = sqrt((SD.i)^2+ (SD.nc^2)/ sqrt(n), where n = 

number of replicates per sample. Fold-change over negative control (actin and 

wild-type plants) was calculated finding the “delta delta CT” of the target region as 

follows: ddCT = dCT.tg- dCT.nc and ddSD = sqrt((dSD.tg)^2+ (dSD.nc)^2. The 

transformation to linear “fold-change” values was obtained as follows: FC = 

2^(ddCT) and FC.error = ln(2)*ddSD*FC.  
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