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Abstract 

We describe the application of molecular dynamics followed by principal component analysis to study 

the inter-domain movements of the ligand binding domain (LBD) of mGluR5 in response to the 

binding of selected agonists or antagonists. Our results suggest that the method is an attractive 

alternative to current approaches to predict the agonist-induced or antagonist-blocked LBD responses. 

The ratio between the eigenvalues of the first and second eigenvectors (R1,2) is also proposed as a 

numerical descriptor for discriminating the ligand behavior as a mGluR5 agonist or antagonist. 

Keywords 

Molecular dynamic simulations; glutamate metabotropic receptor; principal component analysis; 

essential dynamics 

1. Introduction 

Eight members of the G-protein-coupled metabotropic glutamate receptor (mGluR) family have been 

identified (mGluR1-8) and divided into three groups on the basis of sequence homology, second 

messenger coupling and pharmacology.[1, 2] mGluR family members all possess a large bi-lobed 
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extracellular N-terminal domain (NTD) which has been demonstrated to contain the glutamate binding 

site by both site-directed mutagenesis[3] and X-ray crystallography.[4] The N-terminal domain is 

linked via an extracellular cysteine-rich region to a typical G protein-coupled receptor1 (GPCR) trans 

membrane heptahelical domain which mediates G-protein activation. The Ligand Binding Domain 

(LBD) of mGluRs shows a significant homology with the Leucine/Isoleucine/Valine Binding Protein 

(LIVBP) member of Periplasmic Binding Protein family,[5] and, on the basis of this homology, a 

mechanism, known as Venus’ flytrap model, has been proposed for the activation of LBD of 

mGluRs.[6] Once the agonist has bound the receptor, the two amino-terminal domain (ATD) lobes 

(LB1 and LB2) collapse, thus trapping the ligand into the cleft. When occupied by a competitive 

antagonist, the bi-lobed extracellular domain exists in an open-inactive conformation (Figure 1).  

 

Figure 1. Representation of the open-close equilibrium of mGluRs NTD. Agonists stabilize the closed-

active conformation, while antagonists stabilize the open-inactive conformation.  

mGluRs crystallized so far are indeed constituted of two promoters, either in a closed or in an open 

conformation.[4, 7, 8] Both open and closed conformations have been observed when L-glutamate was 

bound, whereas only open forms were detected with an antagonist bound. Thus, the crystallized 

complexes clearly confirmed the hypothesis that the LBD functioning is mediated through a Venus’ 
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flytrap mechanism operated by the equilibrium between an open and a closed conformation. 

Furthermore, the crystallization of agonist- and antagonist-bound LBDs supported the notion that 

agonists act by stabilizing the closed-active conformation while antagonists favor the open-inactive 

form.[4]  

The Group I mGluR pharmacology appears to offer a considerable therapeutic potential.[9] Particularly 

mGluR5 antagonists exhibit anxiolytic activity in a broad range of preclinical models at doses which do 

not affect spontaneous locomotor activity.[10, 11] mGlu5 receptors have also been implicated in the 

development of treatments for the dependence to psychostimulants and other drugs of abuse.[12] 

Although the benefits of available X-ray structures for the LBD complexed with ligands are evident in 

terms of novel drug design opportunities, the crystal structures only represent frozen snapshots of a 

dynamic and complex process. Molecular dynamics (MDs) are an important tool to study the functional 

dynamics of proteins and macromolecular complexes.[13-16] Some MD studies have already been 

carried out on the Venus’ flytrap architecture,[17-19] but a classical MD simulation may underestimate 

the entire displacement for proteins that require a relaxation time of the order of milliseconds or longer. 

Indeed, one of the major limitations of MDs is the length of achievable simulation times, typically of 

the order of tens to hundreds nanoseconds.[4] These times are much shorter than the time scale of many 

important biological processes, that take place on the millisecond scale.[20] The question is “how long 

should be a MD run to achieve meaningful results?” or “how long is long enough?” The answer should 

be “longer than the relaxation time of the property under investigation”, but several attempts have been 

made to extract essential functional features from short trajectories, with the aim to describe such 

features as trends.[21-26] However, the large number of variables typical of MDs of complex systems 

can induce a maddening noise which prevents a correct interpretation of results. For this reason, a 

method to exalt feature/noise ratio should be adopted to improve the analysis. One widely used 
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statistical approach to achieve a dimensionality reduction is the Essential Dynamics (ED) 

procedure.[23] ED is a very powerful analysis technique which exploits a Principal Component 

Analysis (PCA)[24] to identify the nature and relative importance of the essential motions of a 

macromolecule from a MD sampling. The result of an ED analysis is a set of eigenvectors, which 

describe the nature of motions in the Cartesian space, and eigenvalues, which represent the amount of 

variance described by each eigenvector. The ED method is able to separate the few large, mainly 

anharmonic motions (the essential subspace) in a MD trajectory from the small, Gaussian fluctuations 

(the near-constraints subspace).[27] The motions in the essential space are linked to the biological 

function of the protein. In the framework of a project aiming to develop novel mGluR5 ligands, we 

decided to apply the ED method to study the LBD motions in presence of either agonists or antagonists. 

2. Computational methods 

2.1. Construction of complexes. 

Homology models of the open-form of mGluR5, were built using Modeller 9v8 [28] and the best model 

selected on the basis of DOPE score.[29] To select the most appropriate templates for our query 

sequence (UniProtKB P41594) over the nine similar chains of mGluR1 in the PDB database,[4] we 

assessed the structural and sequence similarity between the possible templates by performing an 

iterative least-squares superposition of the nine 3D structures, using the multiple sequence alignment as 

its starting point (Figure S1, Supporting Information). Next we compared the structures according to 

the constructed alignment. From the obtained pairwise sequence distance matrix (Table S1, Supporting 

Information) it can be observed that the B chain of structures 1EWK, 1EWV and 1EWT are the most 

suitable templates.[4] We initially considered a single template strategy by only considering 1EWKB 

due to its higher resolution, but the plotted DOPE score profiles (Figure S2, supporting Information) of 
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the best model (DOPE score = –53528.8) with respect to the template show regions of relatively high 

energy for the long active site loop between residues 94 and 118. This problem was partially overcame 

by using a multiple template strategy considering all the three above mentioned structures, as 

evidenced by the better DOPE score obtained for the new model (–55193.0) and by the plot reported in 

Figure S2, Supporting Information. A final loop-optimization was then attempted by building 50 

different and independently optimized loop conformations for the 94-118 loop region, leading to the 

final model showing a DOPE score of –55510.7 (see Figure S3, Supporting Information). Finally the 

structure was minimized using a steepest descent/conjugate gradient method in vacuo using 

GROMACS software and the GROMOS96 forcefield.[30, 31] The agonists (L-glutamate, L-

quisqualate,[32] and 2-chloro-5-hydroxyphenylglycine (CHPG)[33]) and antagonists (S-4-carboxy-

phenylglicine (S4-CPG),[34] LY344545,[35] and α-methyl-4-carboxyphenylglycine (MCPG)[36]) 

studied in this work (Figure 2) were docked into the first lobe (LB1, the binding region) of mGluR5 

model with the Autodock v3.0.5 package (see Supporting Information for further details)[37] 

 

Figure 2. Evaluated ligands of mGluR5. Agonists: (1) L-Glutammic acid, (2) L-Quisqualic acid, (3) 

CHPG; antagonists: (4) S4-CPG, (5) LY344545, (6) MCPG. 
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2.3. MD Simulations 

The PRODRG server was used to derived specific force field parameters for the herein investigated 

ligands.[38] For all ligands, carboxylic and amino functional groups were considered as conjugated 

bases and acids, respectively. The MD calculations were made by using the GROMACS v4.5 software 

package with the GROMOS96 53a6 force field.[31, 39] In each simulation, the initial structure was 

solvated by a periodic water box using the SPC water model[40] and ions were added to neutralize the 

total charge of the systems. A non-bond pair list cutoff of 10 Å was used and the pair list was updated 

every 10 time steps. The long-range electrostatic interactions were treated with the Particle-Mesh 

Ewald method and a time step of 2 fs was used for numerical integration. Then, energy minimizations 

were carried out with the Conjugate Gradient algorithm, followed by 200 ps of equilibration (100 ps 

with NVT and 100 ps with NPT ensemble) at 310 K with position restraints on protein and ligands 

(fc=1000) and by 100 ps of NPT equilibration at 310 K with position restraints on protein backbone. 

Production runs were then performed in NPT ensemble at 310 K for 20 ns. Further computational 

details may be found in the Supporting Information. Only the C atoms (482) were included in the ED 

analyses, as it has been shown that this simplification better detects the large-scale concerted motions 

in proteins.[23, 41] 

3. Result and discussion 

It is known that group I mGluR ligands bind to the LB1 lobe and both agonists and antagonists share 

similar binding modes.[4, 7, 42, 43] However, while antagonists stabilize the open-inactive 

conformation, glutamate and other agonists stabilize the closed-active conformation. For this reason, 
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additional H-bonds can be observed in the closed-active conformation between glutamate and LB2 

residues Asp305 and Arg310, this latter mediated by a water bridge.[42] Since our aim was to study, 

trough MD simulations, the receptor motion following ligand binding, all of our simulation originated 

from the receptor in the open conformation, where the different ligand were docked. The reliability of 

our starting geometries was then assessed by comparing the binding conformations obtained by 

docking with those experimentally observed for MCPG [7] and LY341495 [43] antagonists, crystalized 

in the open-inactive conformation of mGluR1 receptor (having the 85% of sequence identity with 

mGluR5 and a fully conserved binding site), and with that of glutamate crystallized in the closed-active 

conformation of mGluR5.[42] 

Concerning agonists, all our starting complex showed H-bonds with key amino acids reported by 

literature, namely Tyr 64, Ser 152, Ser 173 and Thr 175.[4, 7, 42] In particular, as shown in Figure 3, 

glutamate 1 interacts by its amino acidic carboxy group with the NH of both Ser 152 and Thr 175 

(donor-acceptor distances = 2.95 and 3.19 Å, respectively), while the amino group interacts with the 

Ser 173 carbonyl (donor-acceptor distance = 3.03 Å); interactions can also be observed between the 

glutamate side chain carboxy group and both the Tyr 64 OH and Arg 68 guanidine groups (donor-

acceptor distances = 3.46 and 2.33 Å, repsectively).  
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Figure 3. Bounded complexes used as starting geometries for MD. Carbons of compounds 1-6 are 

colored in grey, green, orange, ochre, purple and cyan, respectively. 

Similar interactions were found for quisqualate 2, where its carboxy group makes an H-bond with the 

Ser 152 NH (donor-acceptor distance =3.07 Å) while the amino group interacts with the Ser 173 

carbonyl (donor-acceptor distance = 3.02 Å) and the Thr 175 OH group (donor-acceptor distance = 

3.26 Å). Also in this case, a weaker interactions was observed between the Tyr 64 OH group and the 3-

carbonyl of the oxadiazolidinyl moiety of 2 (donor-acceptor distance = 3.75 ).  

Finally, CHPG 3 also showed H-bonds between the carboxy group and the NH of both Ser 152 and Thr 

175 (donor-acceptor distances = 2.99 and 3.20 Å, respectively) and between the amino group and the 

OH of Thr 175 (donor-acceptor distances = 2.68 Å); a weak interaction was found between the 5-OH 

group of 3 and the Tyr 64 OH (donor-acceptor distance = 3.65 Å), while no interactions were observed 

with Ser 173 (a distance of 4.05 Å was measured between the CHPG nitrogen and the Ser 173 carbonyl 

oxygen). 

Concerning antagonists, both the structurally related compounds S4-CPG 4 and MCPG 6 show a 

binding mode comparable to the one observed in the crystal structure of 6 complexed with the mGluR1 

receptor.[7] In particular, H-bonds were observed between the aminoacidic carboxy group of 4 and 6 

with the Ser 152 NH (donor-acceptor distances = 3.03 and 3.37 Å, respectively), with the former 

compound making an additional interaction with the Thr 154 NH (donor-acceptor distance = 3.21 Å). 

The amino group of both compounds makes an H-bond with the Thr 154 OH (donor-acceptor distances 

= 2.84 and 2.83 Å, respectively), while for both 4 and 6 the aromatic carboxy group interacts with the 

Tyr 43 OH (donor-acceptor distances = 2.81 and 3.19 Å, respectively).  
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In the framework of a project aiming to develop novel mGluR5 ligands, we decided to study the LBD 

motions in presence of agonists and antagonists trough MD simulations, followed by ED analysis. 

 

Figure 4. Snapshot of the defined feature: d1 distance between Cα of Tyr 64 (LB1) and Arg 310 (LB2). 

The distance between the Cα of Tyr 64 and Arg 310 (hereafter referred as d1), positioned on the 

surface of the first and the second lobe, respectively (Figure 4), was defined as the geometrical feature 

followed to obtain information on the direction and the magnitude of the inter-domain movement. This 

distance has been chosen in analogy to structural analyses conducted on the mGluR1, where the two 

residues correspond to Tyr 74 and Arg 323, respectively.[4] Indeed, those residue belongs to different 

lobes and are both involved in glutamate recognition in the activated form,[4] while only Tyr 74 is 

involved in the recognition of antagonists blocking the receptor in its open-inactive form.[43] For these 

reasons, the distance between such residues provide a clean indication of the LB1 and LB2 collapsing 

during the mGluR activation process. 

Trajectory analyses show that the RMSD (calculated using the first frame as a reference) after about 10 

ns reaches a plateau which is generally higher for agonists respect to antagonists (see Figure 5, top, and 

Figure S4, Supporting Information), meaning that, for the former set of compounds, the equilibrium 

geometry is somehow farther from the starting open-inactive conformation. 
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Figure 5. Top: time-evolution of RMSD (top) for mGluR5 complexed with 1 (black) or 5 (red); bottom: 

time-evolution of distance d1 computed for agonist 1 (black) and antagonist 5 (red). 
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This different behavior is not surprising, considering how agonists and antagonists exert their action: 

the former lead to receptor activation, thus driving the switching between the open-inactive and the 

closed-active receptor conformation, while the latter tend to stabilize the open-inactive conformation.  

The time-evolution of d1 confirm this observation, being fairly constant for antagonists (although some 

fluctuations are observed due to the oscillating inter-lobe motion), while sharply decreasing, especially 

in the first half of the simulation trajectory, for agonists (see Figure 5, bottom, and Figure S5, 

Supporting Information). Taken together, the time-evolution of both RMSD and d1 suggests that the 

switching between open-inactive to closed-active conformations induced by agonists occurs, in the 

adopted simulation conditions, in the first 10 ns of MD trajectory. 

A further indication of the ligand character (agonist or antagonist) can be obtained through an H-bond 

analysis of the MD trajectory. Figure 7 shows the time evolution of the number of H-bonds that are 

formed between the two lobes, LB1 and LB2 for mGluR5 complexes with agonist 1 and antagonist 5 

over 20 ns of MD simulation. 

The comparison of the two data-set showed that, soon after the beginning of the production run, agonist 

1 started to induce the collapse of the two lobes and, consequently, the formation of new inter-lobe H-

bonds, while antagonist 5 stabilized the open-inactive conformation, thus limiting the number of H-

bonds that can be formed between the two lobes. 



12 

 

 

Figure 6. Time-evolution of H-bonds between lobes LB1 and LB2 (LB1 = Ser 22 – Val 191 and Asp 

333 – Gly 460; LB2 = Ala 196 – Leu 329 and Tyr 466 – Lys 503) for mGluR5 complexes with agonist 

1 (Glu) and antagonist 5 (LY344545).  

Similar conclusions were also be drawn by comparing the time-evolution of inter-lobe H-bonds 

obtained for agonist 3 with those obtained for antagonists 4-6 (see Figure S6, Supporting Information), 

but less clean results were obtained from the H-bond analysis of agonist 2 complex, thus preventing a 

reliable discrimination of the ligand character. We thus decided to apply ED analyses in order to obtain 

a better and cleaner description of the inter-lobe motion during the activation process. 

The output trajectories were thus processed by PCA where the protein Cα were considered for the 

construction of the covariance matrix. In all cases, the first 10 eigenvectors, over 1446, represented at 

least the 70% of all movements (see Figure S7, Supporting Information). 

Particularly interesting were the projections of trajectories on the first and second eigenvectors, which 

made possible a visual representation of motions represented by each eigenvector (see video_c1_ev1 
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and video_c1_ev2, Electronic Supporting Information, to visualize agonist 1 trajectory projections on 

eigenvectors 1 and 2; see video_c4_ev1 and video_c4_ev2, Electronic Supporting Information, for 

projections on eigenvectors 1 and 2 of antagonist 4). By making a parallelism with IR vibrational 

modes, eigenvectors 1 and 2 represent the LB1 and LB2 scissoring and twisting, respectively (Figure 

7). The trajectory projection over eigenvector 1, which has the largest eigenvalue and describes the 

collapse of LB1 and LB2, provides a clear indication of the ATD motion upon receptor activation due 

to the binding of agonists.  

 

Figure 7. Schematic representation of movements represented by the first and second eigenvectors. 

To better evidence the differences between agonists and antagonists, principal components where 

analyzed on the first 10 ns, the time lag where the agonists-induced switching between open-inactive 

and closed-active conformation was predicted to occur, as well as on the full trajectory, for comparison. 

Indeed, as represented in Figures 8 for selected agonist 1 and antagonist 5 (see Figure S7, Supporting 

Information, for compounds 1-6) only a minimal variation is observed for the latter upon eigenvalues 

computed on the full trajectory or on the first half, while a dramatic change is observed for agonist 1, 

where the first eigenvalue raises from 86.4 to 109.9 amu nm
2
 and the second eigenvalue lowers from 

44.5 to 28.1 amu nm
2
. 
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Figure 8. Comparison of the eigenvalues of the covariance matrix obtained for the agonist 1 (left) and 

antagonist 5 (right) by analyzing the whole 20 ns trajectory (red, dashed) or the first 10 ns (black, 

plain). 

This is not surprising, as MD simulations were conducted starting from the open-inactive 

conformation; for this reason, the binding with an agonist provokes the lobes collapse and eigenvector 

1 decidedly prevails, until an equilibrium geometry (the closed-active conformation) is reached. As 

soon as this equilibrium is obtained, the motion represented by eigenvector 1 becomes less relevant, 

while other motions, such as the lobes twisting described by eigenvector 2, relatively raise in 

importance. Conversely, antagonsists stabilize the starting open-inactive conformation and, for this 

reason, the amount of motion represented by eigenvectors 1 and 2 is relatively constant in time, as no 

large conformational changes are expected to occur.  
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Those findings suggested the possibility to derive from ED analyses a simple numerical descriptor able 

to discriminate different compounds, in terms of agonist or antagonist behavior. In fact, thinking upon 

the dynamic activation process of the ATD domain, two major assumptions can be made: 

a) The activation process presents a prevalent movement, expressed by the collapse of the two 

lobes. 

b) When this approach disappears, other movements become prevailing. 

Upon the above assumptions, we identified the ratio between the first and the second eigenvalues 

(hereafter referred as R1,2) as a potential numerical descriptor of mGluRs ligand behavior. Figure 9 

shows the R1,2 values obtained from the ED analyses of compounds 1-6, performed on the first 10 ns of 

MD trajectory.  

 

Figure 9. Ratios between first and second eigenvector (R1,2) obtained from ED analyses performed on 

the first 10 ns or on the whole 20 ns production run. 
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In these conditions, the difference between agonists and antagonists is rather evident with the former 

being characterized by R1,2 between 3.1 (obtained for compound 3) and 4.8 (obtained for compound 2), 

with the natural mGluR agonist glutamate showing an R1,2 = 3.9. Conversely, antagonists all showed 

R1,2 values below 2.5, ranging from 1.8 obtained for compound 6 and 2.4 obtained for 4. Interestingly, 

the highest R1,2 was obtained for compound 2, where standard MD trajectory analyses leaded to an 

uncertain discrimination of the ligand character.  

4. Conclusion 

In conclusion we have simulated the activation process of ATD of mGluR5 and we have demonstrated 

how the ED statistical approach can be helpful for solving the time-scale problem in the activation of 

“fly-trap” model receptors. MD simulations and the subsequent ED analyses of the ensembles revealed 

that the large-scale concerted motions are dominated by ATD rearrangement.  

Particularly this analysis is able to discriminate the binding mode of agonists, able to induce the 

switching between the open-inactive and open-active receptor conformation, and antagonists, which 

conversely prevent the lobes collapse. Moreover, an easily obtainable dynamic descriptor of the ligand 

character, herein defined as R1,2, has been proposed. Indeed, we are confident that a reliable assessment 

of the ligand character might be achieved by complementing traditional analyses of other MD 

simulations, such as the time-evolution of RMSD, inter-lobe H-bonds and distances, with the R1,2 value 

obtained from ED analyses, a dynamical descriptor which might also be helpful to derive new original 

QSAR parameters. 

Acknowledgement 



17 

 

We would like to thank CT Laboratories (Sanremo – IM – Italy) for financial support. We 

acknowledge the CINECA “progetto di migrazione” for the availability of high performance computing 

resources and support. 

References 

[1] Conn, P.J., Pin, J.P. Pharmacology and functions of metabotropic glutamate receptors. Annual Review of 
Pharmacology and Toxicology. 1997, 37, 205-37. 
[2] Watkins, J.C., Krogsgaard-Larsen, P., Honore, T. Structure-activity relationships in the development of 
excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol Sci. 1990, 11, 25-33. 
[3] Malherbe, P., Knoflach, F., Broger, C., Ohresser, S., Kratzeisen, C., Adam, G., et al. Identification of Essential 
Residues Involved in the Glutamate Binding Pocket of the Group II Metabotropic Glutamate Receptor. Mol 
Pharmacol. 2001, 60, 944-54. 
[4] Kunishima, N., Shimada, Y., Tsuji, Y., Sato, T., Yamamoto, M., Kumasaka, T., et al. Structural basis of 
glutamate recognition by a dimeric metabotropic glutamate receptor. Nature. 2000, 407, 971-7. 
[5] O'Hara, P.J., Sheppard, P.O., Thogersen, H., Venezia, D., Haldeman, B.A., McGrane, V., et al. The ligand-
binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. 
Neuron. 1993, 11, 41-52. 
[6] Felder, C.B., Graul, R.C., Lee, A.Y., Merkle, H.P., Sadee, W. The Venus flytrap of periplasmic binding proteins: 
an ancient protein module present in multiple drug receptors. AAPS PharmSci. 1999, 1, E2. 
[7] Tsuchiya, D., Kunishima, N., Kamiya, N., Jingami, H., Morikawa, K. Structural views of the ligand-binding 
cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. 
Proceedings of the National Academy of Sciences. 2002, 99, 2660-5. 
[8] Muto, T., Tsuchiya, D., Morikawa, K., Jingami, H. Structures of the extracellular regions of the group II/III 
metabotropic glutamate receptors. Proceedings of the National Academy of Sciences. 2007, 104, 3759-64. 
[9] Enz, R. Metabotropic glutamate receptors and interacting proteins: evolving drug targets. Curr Drug Targets. 
2012, 13, 145-56. 
[10] Belozertseva, I.V., Kos, T., Popik, P., Danysz, W., Bespalov, A.Y. Antidepressant-like effects of mGluR1 and 
mGluR5 antagonists in the rat forced swim and the mouse tail suspension tests. Eur Neuropsychopharmacol. 
2007, 17, 172-9. 
[11] Kotlinska, J., Bochenski, M. Comparison of the effects of mGluR1 and mGluR5 antagonists on the 
expression of behavioral sensitization to the locomotor effect of morphine and the morphine withdrawal 
jumping in mice. Eur J Pharmacol. 2007, 558, 113-8. 
[12] Spooren, W., Ballard, T., Gasparini, F., Amalric, M., Mutel, V., Schreiber, R. Insight into the function of 
Group I and Group II metabotropic glutamate (mGlu) receptors: behavioural characterization and implications 
for the treatment of CNS disorders. Behavioural Pharmacology. 2003, 14, 257-77. 
[13] Contini, A., Cappelletti, G., Cartelli, D., Fontana, G., Gelmi, M.L. Molecular Dynamics and Tubulin 
Polymerization Kinetics Study on 1,14-Heterofused Taxanes: Evidences of Stabilization of the Tubulin Head-to-
Tail Dimer-Dimer Interaction. Molecular BioSystems. 2012. 
[14] Ferri, N., Radice, T., Antonino, M., Beccalli, E.M., Tinelli, S., Zunino, F., et al. Synthesis, structural, and 
biological evaluation of bis- heteroarylmaleimides and bis-heterofused imides. Bioorganic and Medicinal 
Chemistry. 2011, 19, 5291-9. 



18 

 

[15] Klepeis, J.L., Lindorff-Larsen, K., Dror, R.O., Shaw, D.E. Long-timescale molecular dynamics simulations of 
protein structure and function. Curr Opin Struct Biol. 2009, 19, 120-7. 
[16] Baldoli, C., Oldani, C., Maiorana, S., Ferruti, P., Ranucci, E., Bencini, M., et al. Functionalization and 
molecular dynamics study of carboxy-terminated poly(1-vinylpyrrolidin-2-one): A potential soluble carrier of 
biomolecules. Journal of Polymer Science Part A: Polymer Chemistry. 2008, 46, 1683-98. 
[17] Arinaminpathy, Y., Sansom, M.S.P., Biggin, P.C. Molecular dynamics simulations of the ligand-binding 
domain of the ionotropic glutamate receptor GluR2. Biophysical Journal. 2002, 82, 676-83. 
[18] Mendieta, J., Ramírez, G., Gago, F. Molecular dynamics simulations of the conformational changes of the 
glutamate receptor ligand-binding core in the presence of glutamate and kainate. Proteins. 2001, 44, 460-9. 
[19] Costantino, G., Macchiarulo, A., Belenikin, M., Pellicciari, R. Molecular dynamics simulation of the ligand 
binding domain of mGluR1 in response to agonist and antagonist binding. Journal of Computer-Aided 
Molecular Design. 2002, 16, 779-84. 
[20] Falke, J.J. ENZYMOLOGY: A Moving Story. Science. 2002, 295, 1480-1. 
[21] Horiuchi, T., amp, omacr, Nobuhiro. Projection of monte carlo and molecular dynamics trajectories onto 
the normal mode axes: Human lysozyme. Proteins: Structure, Function, and Genetics. 1991, 10, 106-16. 
[22] Kitao, A. The effects of solvent on the conformation and the collective motions of protein: Normal mode 
analysis and molecular dynamics simulations of melittin in water and in vacuum. Chemical Physics. 1991, 158, 
447-72. 
[23] Amadei, A., Linssen, A.B., Berendsen, H.J. Essential dynamics of proteins. Proteins. 1993, 17, 412-25. 
[24] García. Large-amplitude nonlinear motions in proteins. Physical Review Letters. 1992, 68, 2696-9. 
[25] Kitao, A., Go, N. Investigating protein dynamics in collective coordinate space. Current Opinion in 
Structural Biology. 1999, 9, 164-9. 
[26] Berendsen, H.J., Hayward, S. Collective protein dynamics in relation to function. Current Opinion in 
Structural Biology. 2000, 10, 165-9. 
[27] Amadei, A., Linssen, A.B., de Groot, B.L., van Aalten, D.M., Berendsen, H.J. An efficient method for 
sampling the essential subspace of proteins. Journal of Biomolecular Structure &amp; Dynamics. 1996, 13, 615-
25. 
[28] John, B., Sali, A. Comparative protein structure modeling by iterative alignment, model building and model 
assessment. Nucleic Acids Res. 2003, 31, 3982-92. 
[29] Shen, M.Y., Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 
2006, 15, 2507-24. 
[30] Scott, W.R.P., Hünenberger, P.H., Tironi, I.G., Mark, A.E., Billeter, S.R., Fennen, J., et al. The GROMOS 
Biomolecular Simulation Program Package. The Journal of Physical Chemistry A. 1999, 103, 3596-607. 
[31] Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C. GROMACS: fast, flexible, 
and free. Journal of Computational Chemistry. 2005, 26, 1701-18. 
[32] Chu, Z., Hablitz, J.J. Quisqualate induces an inward current via mGluR activation in neocortical pyramidal 
neurons. Brain Research. 2000, 879, 88-92. 
[33] Doherty, A.J., Palmer, M.J., Henley, J.M., Collingridge, G.L., Jane, D.E. (RS)-2-chloro-5-hydroxyphenylglycine 
(CHPG) activates mGlu5, but no mGlu1, receptors expressed in CHO cells and potentiates NMDA responses in 
the hippocampus. Neuropharmacology. 1997, 36, 265-7. 
[34] Buisson, A., Choi, D.W. The inhibitory mGluR agonist, S-4-carboxy-3-hydroxy-phenylglycine selectively 
attenuates NMDA neurotoxicity and oxygen-glucose deprivation-induced neuronal death. Neuropharmacology. 
1995, 34, 1081-7. 
[35] Doherty, A.J., Palmer, M.J., Bortolotto, Z.A., Hargreaves, A., Kingston, A.E., Ornstein, P.L., et al. A novel, 
competitive mGlu(5) receptor antagonist (LY344545) blocks DHPG-induced potentiation of NMDA responses 
but not the induction of LTP in rat hippocampal slices. Br J Pharmacol. 2000, 131, 239-44. 



19 

 

[36] Doherty, A.J., Collingridge, G.L., Jane, D.E. Antagonist activity of alpha-substituted 4-carboxyphenylglycine 
analogues at group I metabotropic glutamate receptors expressed in CHO cells. Br J Pharmacol. 1999, 126, 205-
10. 
[37] Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., et al. Automated docking 
using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational 
Chemistry. 1998, 19, 1639-62. 
[38] Schuttelkopf, A.W., van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand 
complexes. Acta Crystallogr D Biol Crystallogr. 2004, 60, 1355-63. 
[39] Oostenbrink, C., Villa, A., Mark, A.E., van Gunsteren, W.F. A biomolecular force field based on the free 
enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem. 
2004, 25, 1656-76. 
[40] Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Hermans, J. Interaction models for water in 
relation to protein hydration. Intermolecular Forces. 1981, 331-42. 
[41] Janežič, D., Venable, R.M., Brooks, B.R. Harmonic analysis of large systems. III. Comparison with molecular 
dynamics. Journal of Computational Chemistry. 1995, 16, 1554-66. 
[42] Dobrovetsky, E.K., G.;  Seitova, A.; Cossar, D.; Edwards, A.M.; Arrowsmith, C.H.; Bountra, C.; Weigelt, J.; 
Bochkarev, A. Ligand Binding Domain of Metabotropoc glutamate receptor mGluR5 complexed with glutamate. 
Unpublished. 10.2210/pdb3lmk/pdb. 
[43] Dobrovetsky, E.K., G.; Seitova, A.; Cossar, D.; Edwards, A.M.; Arrowsmith; C.H.; Bountra, C.; Weigelt, J.; 
Bochkarev, A. Metabotropic glutamate receptor mglur1 complexed with LY341495 antagonist. Unpublished. 
10.2210/pdb3ks9/pdb. 

 

 


