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Abstract

A fast and robust time-independent method for calculating thermal rate constants in the deep

resonant tunneling regime for scattering reactions is presented. The method is based on the calcu-

lation of cumulative reaction probabilities which are integrated to give thermal rate constants. We

tested our method with both continuous (Eckart barrier) and discontinuous (double rectangular

barrier) first derivative potentials. Our results show that the presented method is robust enough to

deal with extreme resonating conditions such as multiple barrier potentials. Finally, the calculation

of the thermal rate constant for double Eckart potentials with several metastable states is reported.
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I. INTRODUCTION

The thermal rate constant k(T ) is an essential observable for the quantitative description

of chemical dynamics and its study offers a common playground of comparison between inno-

vative experimental techniques, new theories and computational tools. Since the formulation

of the transition state theory [1–3], many efforts have been devoted to the development of

an exact and computationally feasible approach to the thermal rate constant calculation. In

this paper, we focus on the calculation of k(T ) for double barrier passages in the presence

of several quasi-bound (resonant) states. The importance of studying k(T ) in the presence

of quasi-bound states is related to the occurrence of resonant tunneling, which considerably

increases the transmission probability at the resonance energy. Specifically, resonant tun-

neling occurs when an incident wave-packet has an energy which is comparable to one of

the quasi-bound state energies: in this case, the tunneling probability is greatly enhanced

and the wave-packet can cross the potential without an effective reduction of its amplitude.

Pioneering experimental observations of resonant tunneling lead to what is presently known

as Ramsauer’s effect (or negative resistance). In particular, such effect manifested itself in

the form of electrons crossing double-barrier structures having a thin GaAs film sandwiched

between two GaAlAs barriers [4, 5]. The resonance was observed from peaks in the tunneling

current, when the voltage was set near the quasi-stationary energy states of the potential

well. Beyond semiconductors [6], resonant tunneling is relevant to describe several experi-

mental systems such as quantum dots [7], the Fabry-Perot interferometer [8] and molecular

reactions [9–12]. Interestingly, resonances are weaker when tunneling is coupled to an ap-

plied field [13]. Resonances have also been calculated for collinear reactions in the presence

of a single barrier and van der Waals wells [14, 15]. Another example of molecular resonant

scattering is the reaction H+O2 [11, 12], where the resonances are induced by the presence

of an intermediate well. In this case, full dimensional accurate quantum results are available

[16, 17].

Although many analytical results can be obtained for single barrier potentials (e.g. the

rectangular barrier or Eckart barrier [18]), little is known about resonant tunneling for

potentials with two or more barriers beyond the simple case of double rectangular potentials

[19–22]. This is due to the intensive numerical effort required to compute k (T ) exactly,

even in the one dimensional case. Moreover, these calculations are much more challenging
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than evaluating the transmission probability for systems where resonance is induced by the

presence of an intermediate well [17] (with fixed total angular momentum) or for single

barrier potentials in the presence of wells. [15]

Calculations of k (T ) can be done using either a time-dependent or time-independent

method. In the time-dependent approach, a non-negligible amount of computational time

is required due to the presence of long-lived resonant states . Further, a large spatial width

wave-packet is needed in order to observe resonances which is costly to in terms of grid

methods. The corresponding momentum is well-defined and it has a small energy spread.

From this point of view, double barrier potentials can also be used as an energy filter

to get those wave-packet components whose momenta distribution width is comparable

with the resonance width. Inspired by this consideration, Moyesev and co-workers have

developed a non-Hermitian representation of the resonance states decay and solved the

time-dependent Schrödinger equation with outgoing boundary conditions [23]. They were

able to calculate the tunneling transmission probability for two Gaussian barriers supporting

up to five resonance states.

Major advances in the time-dependent picture have been obtained by Miller and coworkers

[24, 25], who developed a method in which a time integration of the flux auto-correlation

function is used to compute k(T ) directly. Although this method has been widely used [25]

, it is practically limited to potentials with one single barrier or two narrow barriers [27].

Indeed, when many quasi-bound states are present, the numerical effort required to compute

the long-time dynamics for the thermal rate constant increases greatly. In this direction,

Peskin et al. [28–30] developed a more stable variant of the flux auto-correlation method

to compute k(T ) even in the presence of resonances, the so called Flux Averaging method

(FAM). Although this last method partially solves the issue of the long-time dynamics

imposed by the flux auto-correlation approach, the computational time required to reach

convergence still dramatically increases in the deep resonant regime.

To overcome these limitations, in this paper we present a time-independent approach to

compute k(T ) for any arbitrary multi-barrier potential (even for first-derivative discontinu-

ous potentials), in the presence of many quasi-bound states. The method consists in a fast

and robust procedure for calculating k (T ) as the thermal average of the transmission prob-

ability T (E), namely the probability of a quantum particle to cross the scattering potential,
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by directly solving the Schrödinger equation as an ordinary differential equation (ODE) with

the energy as a parameter. This avoids having to solve for an eigenvalue problem. Although

the thermal rate constant has been computed for potentials with few resonant peaks [27, 29],

to the best of our knowledge k (T ) has not been evaluated in the presence of two clearly

separated barriers with several quasi-bound states. Although our method is designed for

a one dimensional potential, in principle it could be extended to an arbitrary number of

dimensions with an additional numerical effort.

The paper is organized as follows. In Section II the time-dependent flux and the FAM

methods for the thermal rate constant calculation are briefly recalled. In Section III we

present our time-independent approach and in Section IV we compare it to the time-

dependent approach by applying it to a series of potential energy barriers including barriers

with many quasi bound states. We summarize by discussing our findings in Section V and

conclude in the last Section.

II. THE TIME-DEPENDENT APPROACH

The thermal rate constant k(T ) for an arbitrary system at a given temperature T can be

written as

k(T ) =
1

QR(T )

∫ ∞

0

Ci,j (t) dt (1)

where QR(T ) is the reactants partition function and, as first derived by Miller, Schwartz

and Tromp [24], the flux auto-correlation function Ci,j(t) can be expressed as

Ci,j (t) = Tr
[

e−βĤ/2F̂ie
−βĤ/2eiĤt/~F̂je

−iĤt/~
]

, (2)

where β = 1
kbT

and Ĥ is the system’s Hamiltonian. The flux operator F̂i

F̂i =
i

~

[

Ĥ, ĥ (fi (s))
]

=
d

dt
ĥ (fi (s)) , (3)

is defined respect to a dividing surface fi (s) = 0, placed between reactants and products and

s is the vector of coordinates. ĥ is a Heaviside operator and it has expectation value 1(0) on

the product (reactant) side. For a dividing surface loci equation of the type fi (s) = s−si = 0,

F̂i assumes the explicit expression

F̂i =
1

2m
[p̂ δ (s− si) + δ (s− si) p̂] , (4)
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where m is the mass of the particle and p̂ its momentum operator. Therefore, the reaction

rate is obtained by evaluating both flux operators with respect to their dividing surfaces and

then by propagating one of them up to a long enough time to obtain a complete decay of

the auto-correlation function. One can appreciate how Eq. (1) is an exact expression for the

thermal rate constant in any dimension and for any system, including complex condensed

phase systems [31–49]. However, when the reaction profile involves potential wells or multiple

barrier passage, the application of Eq. (1) becomes quite cumbersome. Typical examples

are reactions of the type OH + O → H + O2 [10] and the ketene isomerization [9]. In these

cases, dividing surfaces are conveniently placed one on the reactant side and another on the

product side. However, the long-time dynamics associated with the presence of metastable

states leads to slow convergence in the time integration of Eq. (1). Finally, the flux auto-

correlation function fails to converge in a reasonable amount of time due to the presence of

long-lived resonance states.

A variant of the Miller, Swartz and Tromp’s formula, Eq. (1), for resonating systems

has been put forward by Peskin et al. [28]. Such variant is called the “flux averaging”

method (FAM) and it allows the calculation of the thermal rate constants for double barrier

potentials. The method takes advantage of the fact that, after a certain amount of time, the

ratio of the fluxes in entrance to fluxes in exit channels is roughly constant. Once the ratio is

defined, one can obtain the asymptotic-time limit of the flux auto-correlation function. More

specifically, two dividing surfaces are employed and placed at the top of each barrier and

two correlation functions are introduced: CR,R (t) when both dividing surfaces are located

at the top of the first barrier (the reactants side) and CR,P (t) when the dividing surfaces are

located at each barrier top (reactant and product side respectively). Since Eq. (1) is exact,

each correlation function gives the exact thermal rate and, in particular, any weighted linear

combination of them will as well. Peskin [29] found that a suitable combination is

k(T )QR(T ) = lim
t→+∞

(

|CR,R (t)|
∫ t

0
CR,P (t′) dt′

|CR,P (t)|+ |CR,R (t)|

+
|CR,P (t)|

∫ t

0
CR,R (t′) dt′

|CR,P (t)|+ |CR,R (t)|

)

(5)

because the ratio of the two correlation functions is roughly constant after some time t0,

where t0 denotes the end of the direct-scattering regime and the transient of the delay time

regime induced by the wave-packet population barrier resonance states. Although this ap-
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proach is very powerful in many cases of interest [28–30] , re-crossing phenomena can lead to

a significant increase of the total computational time needed to reach convergence. Further-

more, this method usually employs imaginary absorbing potentials because the dynamics

involves a long-time decay beyond the barrier region: the expression and location of such

absorbing potentials is quite arbitrary and their presence can lead to fictitious effects. These

shortcomings call for a better approach to tackle the calculation of the thermal rate constant.

We will present our approach for this in the next Section.

III. A TIME-INDEPENDENT APPROACH

As described in Sec. II, time-dependent approaches become computationally demanding

in the presence of many metastable states with a long lifetime. Hence, a time-independent

approach is preferred for the calculation of k (T ) for resonating systems. In order to switch

from the time-domain to the energy-domain, it is necessary to integrate out the time depen-

dence in Eq. (1) [24]. After inserting the following identity in Eq. (2)

e−Ĥ(β/2+it/~) =

∫ +∞

−∞
e−E(β/2+it/~) δ

(

E − Ĥ
)

dE (6)

and integrating over time, a time-independent expression for the thermal rate constant is

obtained [24]

k (T )QR (T ) =
1

2π~

∫ +∞

−∞
e−βEN (E) dE, (7)

where

N (E) =
1

2
(2π~)2 Tr

[

F̂1 δ
(

E − Ĥ
)

F̂2 δ
(

E − Ĥ
)]

(8)

is the cumulative reaction probability evaluated between the dividing surface f1 (s) = 0 and

f2 (s) = 0. Eqs. (7) and (8) have been successfully used in the past for several quantum

rate calculations [11, 50–55]. In particular, Manthe et al. [56] have been able to calculate

the exact quantum rate for the hydrogen abstraction reaction from methane H + CH4 →
H2 + CH3. Despite their apparent simplicity, Eqs. (7) and (8) can be solved analytically

only for a limited number of problems and a numerical approach is necessary otherwise.

Eq. (8) closely resembles the Landauer [57, 58] formalism equations employed to calculate

the electrical and heat current.

As described in Appendix A, the cumulative reaction probability N (E) for one-

dimensional systems is exactly the transmission probability T (E), namely the probability

6



of a quantum particle to cross the scattering potential. In the following, we will describe

our numerical method for computing T (E) efficiently.

A. The choice of boundary conditions - a fast approach time-independent problem

The main idea of the present method consists in finding asymptotic eigenfunctions |ψp〉
of the type

Ĥ |ψp〉 =
[

− ~
2

2m

d2

dx2
+ V (x)

]

|ψp〉 = E |ψp〉 (9)

using tools for solving ordinary differential equations (ODEs) at fixed eigenvalue E, with

an appropriate choice of boundary conditions.[61] In fact, when no information about the

spectrum is known, pairs of eigenvalues and eigenfunctions of Eq. (9) must be computed at

the same time using standard tools for solving eigenproblems. However, when eigenvalues are

known a priori (for example, in the simple case of asymptotic free systems), eigenfunctions

of Eq. (9) can be directly computed solving Eq. (9) as an ODE, where the eigenvalues are

treated as parameters. In this work, we consider scattering potentials with free boundary

conditions (see Appendix A for details). When the potential is nonzero only in a closed region

[−L, +L] and zero outside, eigenfunctions are plain waves with momentum p and energy

E = p2

2m
in the asymptotic limit |x| ≫ L. Because no bounded states exist for E > 0 (in this

case, all bounded states have energies E < 0 and they exist only if V (x) < 0, x ∈ [−L, +L]),
we can divide the spectrum of Eq. (9) in two parts: a continuous spectrum for E > 0

and a discrete spectrum (if present) for E < 0. Recalling that only unbounded states

are relevant for the computation of the transmission probability T (E), we can focus our

attention exclusively on the continuous spectrum, where the energy E > 0 can be treated

as continuous parameter in the ODE.

The last step needed to solve Eq. (9) as an ODE consists in providing an appropriate

choice of the boundary conditions. Because no absorbing barriers are present, the total

energy must be conserved. Therefore, the following scattering representation

ψp(x) =







eipx/~ x≪ −L
t

|t|2 eipx/~ + r
|t| e−ipx/~ x≫ +L

(10)
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can be obtained after using the following choice of boundary conditions

ψp(x0) = 1 (11a)

∂xψp (x0) = i p/~. (11b)

where x0 ≪ −L. The pre-factors t
|t|2 and r

|t| in Eq. (10) are necessary in order to satisfy the

continuity equation Eq. (A3). Hence, transmission and reflection probabilities become

T (E) = |t|2 = 4

∣

∣

∣

∣

ψp(x̃) +
~

i p
∂xψp(x̃)

∣

∣

∣

∣

−2

, (12a)

R(E) = |r|2 = 1−
(

1 +
1

4

∣

∣

∣

∣

ψp(x̃)−
~

i p
∂xψp(x̃)

∣

∣

∣

∣

2
)−1

, (12b)

where x̃ is an arbitrary point such that x̃ ≫ L. Although many other boundary conditions

can be chosen, we used the boundary conditions in Eq. (11) in order to have a simple and

computationally efficient expression of T (E).

The method described above has many advantages. On one hand, we can find the thermal

rate constant avoiding the time integration and using the transmission probability. On the

other, we provide an efficient way to solve the Schrödinger equation in Eq. (9) using tools for

solving ODEs provided by Mathematica suite [62] or any other equivalent package, avoiding

the related eigenproblem which is numerically harder to tackle. Moreover, within the present

method, the transmission probability can be sampled ad hoc, using a finer energy grid near

resonant peaks. This is very important when dealing with the integration in Eq. (7) because,

in the case of resonating double barrier potentials very narrow peaks are present. By using

a fine grid only around resonant peaks and a coarse grid in flat regions, we have been able

to reach numerically converged results for the energy integration in Eq. (7).

B. Numerical method details

For the numerical solution of the ODE Eq. (9) we used the routine NDSolve with the

parameter MaxSteps→Infinity, while for the numerical evaluation of T (E) we used the

routine NIntegrate with the parameter WorkingPrecision→15 (WorkingPrecision→50 for

the double Eckart barrier potential).[63] In our calculation we fix T (E) = 0 for E/ω0 < 10−4

and T (E) = 1 for E/ω0 > 10−1 (E/ω0 > 3 · 10−1 for the double square barrier potential),
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TABLE I: Interval of energies [Emin, Emax] and energy step ∆E used for computing the transmission

probability T (E) for each potential (ω0 = 27.211 eV).

Potential Emin/ω0 Emax/ω0 ∆E/ω0

Single Eckart barrier (Fig. 1) 10−4 10−1 10−4

Double rectangular barrier (Fig. 2) 10−4 3 · 10−1 10−4

Single resonant peak, Eq. (13) (Fig. 3)

5 · 10−4 2 · 10−2 5 · 10−4

5 · 10−3 6 · 10−3 10−5

2 · 10−2 10−1 10−3

Double Eckart barrier (Fig. 5)

10−4 5 · 10−2 10−4

1.08 · 10−3 1.10 · 10−3 10−6

3.23 · 10−3 3.25 · 10−3 10−6

5.34 · 10−3 5.36 · 10−3 10−6

7.39 · 10−3 7.41 · 10−3 10−6

9.31 · 10−3 9.33 · 10−3 10−6

where ω0 = 27.211 eV is the conversion factor between the atomic units of energy and eV.

In Tab. (I), the dimensions of the grids for each potential are reported.

IV. RESULTS

The typical textbook example for testing tunneling rate methods is the Eckart po-

tential. A particle of m = 1.060 × 103 a.u. is scattered against an Eckart barrier

V (x) = V0/ cosh
2 (πx/a), where V0 = 0.424 eV and a = 2.305 a.u. The potential profile

is reported in the top panel in Fig. (1). In the same figure, the central panel shows the

transmission probability T (E). In order to better appreciate the difference between the

exact (continuous line) and the calculated (dots) values, the relative error is reported in

the inset. This shows that the percentage error is always smaller than 0.03%. The values

of k(T ) · QR are reported in the bottom panel and there is almost no deviation from the

analytical results even at very low temperatures. For example at T = 60 K the percentage
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FIG. 1: Thermal rate constant for a single Eckart barrier potential. (Top panel) The potential

profile. (Middle panel) Comparison between the exact (solid) transmission probability T (E) and

our numerical results using the ODE method (dots). As reported in the inset, the relative error
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TODE(E)−Texact(E)
Texact(E)

∣

∣
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is smaller than 3 × 10−6. (Lower panel) Comparison between the exact (solid)

thermal rate constant k Qr and our numerical results using the ODE method (dots). In the inset,

the relative error
∣

∣

∣

(kQR)ODE−(kQR)exact
(kQR)exact

∣

∣

∣ is shown.
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error is smaller than half a percent.

The main goal of this paper is to look at resonance barrier scattering rate constants. In

order to test the method in the case of an analytical example, we have chosen the double

rectangular barrier, whose profile is reported in the top panel of Fig. (2). The particle’s

mass and the potential maximum value are the same as for the Eckart barrier calculation.

The rectangular barriers width has been set equal to ∆ = 0.25 a.u. and the gap between the

barriers equal to 1 a.u.. As shown in the middle panel of Fig. (2), three quasi-bound states

can clearly be distinguished from the T (E) profile. Despite the discontinuity of the first

derivative of the double rectangular barrier potential, the numerical solution is in accordance

with the analytical result for the entire energy range, as in the case of the Eckart potential.

The same considerations can be made for the bottom panel, where the thermal rate constant

is reported.

As a third example, a well-known resonating potential has been chosen from the literature.

[29] This potential is made of two Eckart potentials and it has been employed to test other

methods for the calculation of thermal rate constants of resonating systems, such as the

FAM recalled above. Following Peskin et al. [29], the mass of the scattering particle is set

to m = 1.834× 103 a.u. and the potential energy function is

V (x) = V0

(

1

cosh2(x)
− 1

cosh2(a x)

)

, (13)

where V0 = 0.310 eV and a = 5 a.u. The potential profile is reported in the top panel of

Fig. (3). The potential gap is such that there is a single metastable state, as shown in

the middle panel where there is a single transmission probability resonance peak. To use

the FAM formulation of the thermal rate of Eq. (5), we calculate the flux auto-correlation

functions CR,R (t) and CR,P (t) using a sinc-DVR grid method [64]. As an example, the

value and the profile of Eq. (5) versus the truncation times t0 at T = 250 K are reported

in Fig. (4). These are in close agreement with the time-independent method presented here

and reported on the same figure as a horizontal dashed line. The complete set of thermal

rate constant results are reported on the bottom panel of Fig. (3). In particular, the inset

reveals that the agreement between the FAM method and the present is within 4% down to

50 K.

Finally an even more challenging test has been performed. This is represented by the

potential in Fig. (5), where two Eckart barriers with a gap such that several quasi-bound
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profile. (Middle panel) Comparison between the exact (solid) transmission probability T (E) and
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method of Eq. (5) at T = 125 K and for the potential of Eq. (13). The dotted line is the value

of k Qr obtained using our ODE method. xmax denotes the DVR grid extension, P the number of

points and ∆t the time increment in the time-dependent simulation.

states are generated. The particle’s mass is the same for the potential in Eq. (13) and the

potential equation is

V (x) = V0

(

1

cosh2(x− a)
+

1

cosh2(x+ a)
− 2

cosh2(a) cosh2(x)

)

(14)

where V0 = 0.310 eV and a = 2 a.u. Also in this case, we set m = 1.834×103. The potential

profile is shown in the top panel of Fig. (5) and the transmission probability in the middle

one. This potential represents a real challenge for a numerical method for calculating thermal

rate constants, because several resonance peaks are present in the transmission probability

and a wider logarithmic range has to be taken in order to describe all resonating rates. In

the inset of the middle panel plot of Fig. (5) the transmission probability is reported in linear

scale. With this plotting choice, resonant peaks are even more evident. When carrying out

the energy integration of Eq. (7) for such a severe resonant system, one needs to be very

careful in choosing the integration grid set-up around the resonance peaks. With the method

labeled “ODE method” in Fig. (5) the grid density has been properly enhanced around the

resonance peaks. With the method labeled “ODE method + BW Correction”, a Breit-Wigner

distribution is used to fit the resonance peaks of the transmission probability, in order to

have a better integration of T (E) and overcome the numerical limitation of having a very

dense grid near peaks. More specifically, the narrow peaks are well approximated by the

14



-4 -2 0 2 4
x [a.u.]

0

0.1

0.2

0.3

0.4

V
(x
)
[e
V
]

0 0.1 0.2 0.3 0.4 0.5
Kinetic Energy [eV]

1e-36

1e-24

1e-12

1

T
(E
)

Breit-Wigner Correction
ODE Method

0 0.2 0.4
Kinetic Energy [eV]

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
1000/T [K

-1
]

-50

-40

-30

-20

-10

0

L
o
g
k
Q
R
[L
o
g
p
s
e
c
-1
]

ODE Method
ODE Method + BW Correction

0 5 10 15
1

10

100

1000

R
a
ti
o

FIG. 5: Thermal rate constant for a double Eckart barrier potential, Eq. (14). (Top panel) The

potential profile. (Middle panel) Transmission probability T (E) computed using our ODE method

with (solid) and without (dots) the Breit-Wigner correction (log-lin scale for the main figure and

lin-lin scale for the inset). (Lower panel) Comparison between thermal rate constants computed

using the ODE method with (circles) and without (squares) the Breit-Wigner correction. In the

inset, the ratio
∣

∣

∣

(kQR)ODE+BW

(kQR)ODE

∣

∣

∣ is shown.

15



TABLE II: Breit-Wigner distribution parameters for Eq. 15 employed for the double Eckart poten-

tial rate calculation (ω0 = 27.211 eV).

Peak Er/ω0 Γr/ω0

I 1.090 · 10−3 2.936 · 10−15

II 3.247 · 10−3 9.540 · 10−12

III 5.358 · 10−3 3.280 · 10−9

IV 7.408 · 10−3 2.664 · 10−7

V 9.326 · 10−3 1.648 · 10−5

Breit-Wigner (BW) approximation

Tr(E) ≈
(Γr/2)

2

(E − Er)
2 + (Γr/2)

2 , (15)

where Er and Γr are respectively the resonance energy and the width of the resonant peak. A

JWKB (Jeffreys-Wenzel-Brillouin-Kramer) [65] derivation of the BW distribution for these

resonance peaks is given in Appendix B. Consequently, we corrected our “ODE method”

using an analytical expression for the transmission probability at the center of the narrowest

peaks. Differences between the two approaches can be appreciated only at very low tem-

peratures, namely below T = 200 K. At these temperatures, the BW fitting resulted to be

necessary in order to have an accurate thermal rate constant value. In Tab. (II), we report

values of Er and Γr (starting from the lowest in energy peak) obtained fitting Eq. (15) near

each peak.
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V. IMPORTANCE OF THE RESONANT PEAKS FOR THE CALCULATION OF

THE THERMAL RATE CONSTANT k (T ) IN THE DEEP RESONANT TUNNEL-

ING REGIME

In general, the thermal rate constant k (T ) in Eq. (7) can be written as the sum of a

singular part (resonant contribution) and a non-singular part

k (T )QR (T ) =
1

2π~

np
∑

i=1

∫ Ei+∆

Ei−∆

e−βENi (E) dE (16a)

+
1

2π~

∫ +∞

0

e−βENNR (E) dE, (16b)

where np is the number of resonant peaks. In Eqs. (16), Ni(E) and NNR(E) are respec-

tively the cumulative transmission probabilities in proximity of the i − th resonant peak

and outside singular regions, and ∆ is supposed to be small enough to allow for a clear

separation of each resonance peak. In the case of symmetric double barriers, the resonance

transmission probability of each resonance peak Ni (E) is well approximated by Eq. (15) as

shown in Appendix B. For sufficiently small width Γi, Ni(E) can be further approximated,

for analytical integration purposes, by [27]

Ni (E) =
(Γi/2)

2

(E − Ei)
2 + (Γi/2)

2 ≈ πΓi

2
δ (E − Ei) . (17)

Using Eq. (17), we obtain an estimate of the resonant contribution to the thermal rate

constant as

kres (T )QR (T ) ≈ 1

2π~

π

2

NP
∑

i=1

Γi e
−βEi , (18)

which depends directly on each finite width Γi and resonant energy Ei.

Because the resonant part in Eq. (18) is a sum of exponentials, kres (T )QR (T ) will be

dominated by those peaks i∗ for which Ei∗ ≈ 1
β
= kBT and then

log [k (T )QR (T )] ≈ −β Ei∗ + A (β) , (19)

where A (β) is a slowly changing function which contains the contribution of the non-resonant

part in Eq. (16b). Therefore, as a consequence of the resonant tunneling, the interplay

between the resonant peak weights induces, as the temperature is lowered, a clear variation

of the slope in a log-lin plot of the thermal rate constant k (T ). It is important to observe that
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this phenomenon is completely absent in non-resonant potentials where in deep tunneling

regime the logarithm of the thermal rate is constant.

For this reason, it is necessary to include all resonant peaks in the transmission probability

integration when resonant potentials are considered. In this direction, we performed some

numerical tests by artificially removing the lower energy peaks and we have found that the

thermal rate to change drastically (see for instance Fig. 5), even if the Boltzmann weight

reduces the contribution coming from the lower energy peaks.

VI. CONCLUSIONS

This paper presents a method for calculating thermal rate constants k (T ) for resonat-

ing one dimensional scattering potentials in the presence of energy barriers. After showing

that thermal rate constants can be calculated from asymptotic conditions, the Schrödinger

equation has been solved as an ordinary differential equation, with the energy as a fixed

parameter, by choosing convenient boundaries conditions. The method we propose is

time-independent which provides a significant advantage over any available time-dependent

method for calculating rate constants in the presence of resonant states. We have shown this

by calculating k(T ) for arbitrary potentials, even for first-derivative discontinuous potentials

as well as the double barrier potential with several metastable states. In both cases, the

error respect to the exact expression was less than 5% even at extremely low temperatures.

Possible multidimensional implementations of the method are under way in our group.
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Appendix A: Cumulative reaction probability and probability current

In this section we provide a useful expression for the cumulative reaction probability T (E)

in terms of probability currents. We take advantage of the fact that, in the asymptotic limit
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and for one dimensional scattering potentials, probability currents are related in a simple

manner to eigenfunctions. Let |ψp〉 be the set of eigenfunctions far from the scattering

interaction region and p the associated momentum eigenvalue. After inserting the resolution

of identity |ψp〉〈ψp| , Eq. (8) becomes

N (E) =
1

2
(2π~)2

∫∫

dp dp′ δ (E (p)− E) δ (E (p′)− E)

× 〈ψp| F̂1 |ψp′〉〈ψp′ | F̂2 |ψp〉 . (A1)

where the integration over the momenta p and p′ denotes the sum over all eigenfunctions

[59]. Using the definition of the flux operators in Eq. (3), the flux matrix elements become

〈ψp| F̂1 |ψp′〉 =
d

dt

∫ +∞

−∞
ds ψ⋆

p (s) ĥ (f1 (s))ψp′ (s) (A2a)

=

∫

f1(s)>0

ds
d

dt

(

ψ⋆
p (s)ψp′ (s)

)

(A2b)

where the integration in Eq. (A2b) is limited to the regions where f1 (s) > 0 (products

region). Using the continuity equation

d

dt

(

ψ⋆
p (s)ψp′ (s)

)

= ~∇s ·~jpp′ (s) , (A3)

where

~jpp′ (s) = − i ~

2m

[

ψ∗
p(s)~∇sψp′(s)− ~∇sψ

⋆
p(s)ψp′(s)

]

(A4)

is the probability current, and then, applying the “Divergence Theorem”, the expression of

the flux matrix elements becomes

〈ψp| F̂1 |ψp′〉 =
∫

f1(s)=0

ds~jpp′ (s) · ~n1 (A5)

where ~n1 is a unit vector normal to the dividing surface f1 (s) = 0. After substituting

Eq. (A5) into Eq. (A1) for both flux operators, the expression of the cumulative reaction

probability in terms of the probability current becomes

N (E) =
1

2
(2π~)2

∫∫

dp dp′ δ(E (p)− E) δ(E (p′)− E)

×
(∫

f1(s)=0

ds~jpp′ (s) · ~n1

)(∫

f2(s′)=0

ds′ ~jpp′ (s
′) · ~n2

)⋆

. (A6)

In this paper resonant rate calculations is carried out for arbitrary one dimensional scat-

tering potentials V (x), with the asymptotic condition V (x) = 0 for |x| ≫ L and the interval
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[−L, +L] delimits the nonzero potential region. Therefore, we can assume that the dividing

surface equation is of the form f (x) = x− x0 = 0, where x0 is the position of the dividing

surface. As introduced in Section II, a convenient choice of the flux operators has often

been to place them one in the reactants and the other in the products side, in particular

for resonant scattering. Here, we choose to place them in the same asymptotic location

f1 (x) = f2 (x) = x−x0, where x0 is either x0 ≪ −L or x0 ≫ +L. It is important to remem-

ber that the actual rate constant is independent of the location of the dividing surfaces, but

appropriate choices of the dividing surfaces locations may reduce the computational effort

required to evaluate the thermal rate constant. Given this choice, after integrating at the

dividing surface point, Eq. (A6) becomes

N (E) =
1

2
(2π~)2

∫∫

dp dp′ δ(E (p)− E)

× δ(E (p′)− E) |jpp′ (x0)|2 , (A7)

where the cumulative reaction probability can be clearly interpreted as a counter of the

number of particles that cross the dividing surface.

In order to calculate T (E) from asymptotic conditions, one needs the expression of

the eigenfunctions |ψp〉 in these regions. When a wave is incoming (left to right), the

eigenfunctions are

ψR
p (x) =







1√
2π~

(

eipx/~ + r e−ipx/~
)

x≪ −L
1√
2π~
t eipx/~ x≫ +L

(A8a)

and when it is outgoing (right to left) they are

ψL
p (x) =







1√
2π~
t e−ipx/~ x≪ −L

1√
2π~

(

e−ipx/~ + r eipx/~
)

x≫ +L
(A8b)

where the energy for both eigenfunctions is set to E = p2/2m and no absorbing potential

is employed. Depending of the choice of the dividing surface, one will use Eqs. (A8) for the

case of x0 ≫ +L or x0 ≪ −L. Recalling that T = |t|2 and R = |r|2 represent respectively

the transmission and reflection coefficients with R + T = 1, it can be shown that for both
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asymptotic choices of x0, the values of the probability currents are

jRR
pp (s0) =

T

π~

√

E

2m
(A9a)

jLLpp (s0) =
R− 1

π~

√

E

2m
(A9b)

jRL
pp (s0) = jLRpp (s0)

∗ =
r t∗

π~

√

E

2m
, (A9c)

where the steady state flux conservation relation t∗r+r∗t = 0 is used to show that Eqs. (A9)

are the same for the case of x0 ≫ +L and x0 ≪ −L. Taking into account that the overall

probability current is the sum over all possible probability currents (right to right, right to

left, etc.) [60], Eq. (A7) becomes

N (E) =
1

2
(2π~)2 ρ (E)2

(

∣

∣jRR
pp (s0)

∣

∣

2
+
∣

∣jLLpp (s0)
∣

∣

2
+ 2

∣

∣jLRpp (s0)
∣

∣

2
)

=
1

2
(2π~)2 ρ (E)2

E

mπ2~2
T (E) (A10)

where ρ (E) is the density of states for x0 ≫ +L or x0 ≪ −L and where we explicitly indicate

the energy dependence of the transmission coefficient T (E).[57] For one dimensional systems,

the free-particle density of states is ρ (E) =
√

m/2E and then the cumulative reaction

probability N(E) results to be exactly the transmission probability T (E).

Appendix B: The WKB Approximation for the Double Barrier

The WKB wave functions before, between and after the barriers reported in Fig. 6 are

respectively

ψI (x) =
A

√

k (x)
e
i
(

π
4
+
∫ x

x1
k(x′)dx′

)

+
B

√

k (x)
e
−i

(

π
4
+
∫ x

x1
k(x′)dx′

)

(B1a)

ψIII (x) =
C

√

k (x)
e
i
(

π
4
+
∫ x

x2
k(x′)dx′

)

+
D

√

k (x)
e
−i

(

π
4
+
∫ x

x2
k(x′)dx′

)

(B1b)

ψV (x) =
E

√

k (x)
e
i
(

π
4
+
∫ x

x4
k(x′)dx′

)

+
F

√

k (x)
e
−i

(

π
4
+
∫ x

x4
k(x′)dx′

)

, (B1c)

where k (x) is the one dimensional wave vector, xi the i−th turning point, and the coefficients

are reported in Fig. (6). After applying the barrier connection formula twice [67], the

coefficients E and F in terms of A and B are

(

E

F

)

=





√
1 + e2θ2 , −eθ2

−eθ2
√
1 + e2θ2









(√
1 + e2θ1A−Beθ1

)

eiφ

(√
1 + e2θ1B − Aeθ1

)

e−iφ



 , (B2)

21



Energy

A

B

C

D

E

F

FIG. 6: Double barrier potential and turning points: A, B, C, D, E, and F are the WKB wavefunc-

tion coefficients in the three allowed regions.

where

θ1 =

∫ x2

x1

|k (x)| dx (B3a)

θ2 =

∫ x4

x3

|k (x)| dx (B3b)

φ =

∫ x3

x2

k (x) dx. (B3c)

In order to calculate the transmission probability of an incoming wave from the left, the

coefficient F is set to zero and B is consequently expressed in terms of A. Then, the ratio is

E

A
=

1

eθ1eθ2eiφ +
√
1 + e2θ1

√
1 + e2θ2e−iφ

(B4)

and the transmission probability is the modulus square of Eq. (B4) [68]

T (E) =
p1p2

1 + (1− p1) (1− p2) + 2
√
1− p1

√
1− p2cos (2φ)

, (B5)

where

pi =
1

1 + eθi
, i = 1, 2. (B6)

Taking a symmetric double barrier (p1 = p2 = p) and expanding φ (E) ≈ φ (Ei) +

φ′ (Ei) (E − Ei) at the i− th resonant energy, Eq. (B5) is approximated as

T (E) ≈ (Γi/2)
2

(E − Ei)
2 + (Γi/2)

2 , (B7)

where the Breit-Wigner distribution width is

Γi =
e−2θi

φ′ (Ei)
√
1− e−2θi

≈ e−2θi

φ′ (Ei)
. (B8)
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