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In the absence of interaction, it is well known that the Kogut-Susskind regularizations of fermions in the

spin and flavor basis are equivalent to each other. In this paper, we clarify the difference between the two

formulations in the presence of interaction with gauge fields. We then derive an explicit expression of the

transfer matrix in the spin basis by a unitary transformation on that one in the flavor basis which is known.

The essential key ingredient is the explicit construction of the fermion Fock space for variables which live

on blocks. Therefore, the transfer matrix generates time translations of two lattice units.
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I. INTRODUCTION

The naive discretization of the Dirac equation on the
lattice [1] leads to a replication of the fermionic states,
known as lattice fermion doubling [2]. The doublers appear
as spurious poles in the fermion propagator at the nonzero
corners of the Brillouin zone. The Wilson way of removing
the doublers is to give them a mass which becomes infinite
in the continuum limit, at the cost of an explicit breaking of
chiral invariance on the lattice [2].

In the Kogut-Susskind [3–6] lattice formulation for rela-
tivistic fermions ([7], Chap. 4) the doublers are instead
interpreted as physical fields by the introduction of addi-
tional quantum numbers. This has been done in two ways.
In the former approach, first the fermion field is reduced
to a single component per site by a procedure called
spin diagonalization, and, for this reason, this method is
referred to as the one in the spin basis. Afterward, spin and
flavor degrees of freedom are associated to different cor-
ners of an elementary hypercube on the lattice [8–10], and,
therefore, sometimes fermions in this formulation are said
to be staggered. In the latter approach [11–13], said in the
flavor basis, the additional quantum numbers, called taste,
are associated, together with the spin, with blocks corre-
sponding to the hypercubes of the spin basis of size twice
the lattice spacing.

In the absence of coupling with gauge fields, these forms
are changed into one another by a linear transformation on
the fermion fields, but in the presence of gauge fields, they
are not equivalent, as we shall make clear in the following.
Their difference is of consequence in the construction of
the corresponding transfer matrices.

For Kogut-Susskind fermions in the flavor basis, a
simple operator realization of the transfer matrix is known
[14]. It has been built in close analogy with the case of

Wilson fermions [15–19] (see also Ref. [20]), the only
difference being that it performs time translations by one
block instead of one lattice spacing.
The situation is more complex for Kogut-Susskind

fermions in the spin basis [11,12,21] because all attempts
at constructing a positive definite transfer matrix that per-
forms time translations by a single lattice spacing failed.
The difficulty was circumvented by looking at time trans-
lations by two lattice spacings. Here, we meet with a
subtlety. We must distinguish whether the transfer matrix
acts on a Fock space built on one or two time slices. In the
first case, we can get the operator which translates by one
lattice spacing by taking the square root of the transfer
matrix which translates by two lattice spacings. In the
second case, instead, translations by one lattice spacing
are not defined at all. This seems to be the case with Kogut-
Susskind fermions, but the necessary construction of the
Fock space on blocks, in the spin basis, has not been
explicitly performed.
We became interested in a formulation of the transfer

matrix in the spin basis in the framework of relativistic
field theories of fermions whose partition function is
dominated by bosonic composites [22]. We deem that
this question is of more general interest. First, a positive
transfer matrix means that unitarity is guaranteed also at
finite lattice spacing. We will show that this requires that
the gauge fields be defined on blocks, not only in the flavor
basis but in the spin basis as well. Hence, fermion fields
should transform, under gauge transformations, accord-
ingly. As a practical consequence, correlation functions
will not show oscillations. Moreover, a positive transfer
matrix provides a Hamiltonian formulation directly on the
lattice. Therefore, for example, it can be adopted as the
starting point for the study of the spectrum. Or, as we shall
see, it can be used to derive approximations based on a
variational principle.
This subject became for us more relevant in the develop-

ment of an approach to QCD hadronization (meant as the
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replacement of the QCD degrees of freedom by hadronic
ones), called the nilpotency expansion, that makes use of
the operator form of the transfer matrix [23–26]. It is based
on the use of a Bogoliubov transformation on the fermion
operators whose parameters depend on time and gauge
fields in such a way that gauge invariance and other sym-
metries are trivially preserved. These parameters then
become dynamical bosonic fields. At the lowest order in
an expansion in the inverse of the number of fermion
degrees of freedom entering in the bosonic composites
(nilpotency index), interestingly enough, we got, after
the integration of the fermion degrees of freedom, a
statistical weight on gauge configurations, which does
not suffer from the sign problem, also with a finite chemi-
cal potential [26].

We remark that, in spite of the mentioned approxima-
tions, our formulation at the lowest order in the nilpotency
parameter has the features of a variational calculation, thus
providing an upper bound for the ground-state energy.

Using Kogut-Susskind fermions, because of the lack of a
convenient formulation of the transfer matrix, wewere able
to express our results only in the flavor basis. Numerical
simulations are, instead, usually performed in the spin
basis because they are much faster. Wewere thus motivated
to find an operator form of the transfer matrix in this latter
basis as well. Since, apparently, in any case, we should
resign to time translations by one block, we decided to get
an expression of the transfer matrix in the spin basis by a
linear transformation from the flavor basis.

The presentation of our results is organized as follows.
In Sec. II, we remind, for the convenience of the reader and
in order to establish the notation, what is relevant to the
present issue about the Kogut-Susskind regularization. We
adopt the notations of Montvay and Münster [7] with some
minor changes that will be specified. In Sec. III, we per-
form the transformation of the action from the flavor to the
spin basis. Most of the results, with some qualification, are
well known, but we think this section is a necessary prepa-
ration for Sec. IV, in which we perform the transformation
of the transfer matrix and of the coherent states.

II. KOGUT-SUSSKIND FERMIONS

Let x� be the coordinates of hypercubic lattice sites,

0 � x� � L� � 1, 0 � � � 3 (Montvay and Münster in

Ref. [7] use indices from 1 to 4), and y� the coordinates of

hypercubic blocks. They are related by

x� ¼ 2y� þ ��; (1)

with 0 � y� � L0
� � 1, L� ¼ 2L0

�, and �� ¼ 0, 1 the

position vectors within the block. The sum over lattice
points can be split into the sum over the blocks and the
sum over the sites within a block, that isX

x

¼ X
y

X
�

: (2)

We denote by c x the fermionic fields on the lattice sites
and by q�ay the fields on the blocks. The latter have Dirac

spinor indices 1 � � � 4, in Greek letters, and taste
indices 1 � a � 4, in Latin letters.
It is important to remark that the gauge transformations

in the first case act at the sites of the basic lattice and in the
second at the coordinates of the blocks

c x ! gxc x; q�ay ! gyq
�a
y : (3)

While gy is the same transformation for all x in a given

block with coordinate y, gx will, in general, change also
within the same block.

A. The flavor basis

The gauge link variables on the blocks are denoted
by U�ðyÞ. Under gauge transformations, they change

according to the rule

U�ðyÞ ! gyU�ðyÞgyyþ�̂: (4)

The action of the fermion fields in the flavor basis can be
written as

SðUÞ ¼ 24
X
y

LqðUÞ; (5)

where the factor 16 keeps into account the volume of the
elementary cell when using variables defined on the
blocks, and the Lagrangian in the flavor basis is

LqðUÞ :¼m �qyð1�1Þqyþ
X3
�¼0

�qy

��
ð���1Þ1

2
ðrðþÞ

� þrð�Þ
� Þ

�ð�5� t5t�Þ��

�
q

�
y
: (6)

The flavour matrices t� are defined for � ¼ 0; . . . ; 3 and

� ¼ 5 by

t� :¼ �T
� ¼ ty�; (7)

and the other operators are defined in terms of translations
on the blocks

½Tð�Þ
� f�y :¼ 24

X
y0

1

24
�y0;y��̂fðy0Þ ¼ fðy� �̂Þ (8)

and the identity on the blocks

½1f�y :¼ 24
X
y0

1

24
�y0;yfðyÞ ¼ fðyÞ (9)

according to

rðþÞ
� :¼ 1

2
ðU�T

ðþÞ
� � 1Þ; rð�Þ

� :¼ 1

2
ð1� Tð�Þ

� Uy
�Þ
(10)
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�� :¼ 1

2
ðrðþÞ

� �rð�Þ
� Þ ¼ 1

4
ðU�T

ðþÞ
� þ Tð�Þ

� Uy
� � 21Þ:

(11)

We can recognize that the projections of the fermionic field

qþ ¼ Pþq; qy� ¼ P�q; (12)

where

P� ¼ 1

2
ð1 � 1� �0�5 � t5t0Þ; (13)

propagate forward/backward in time and, therefore,
describe particles/antiparticles, respectively. Accordingly,

we introduce creation and annihilation operators q̂y�, q̂�.
They are defined at one and the same time, so that in
addition to spin and flavor, they depend on the spatial
position only, denoted by boldface letters. They satisfy
canonical anticommutation relations

fðq̂y�Þa�y1 ; ðq̂�Þ�by2 g ¼
1

8
�y1y2P

�b;�a
� ;

fðq̂y�Þa�y1 ; ðq̂�Þ�by2 g ¼ 0:
(14)

As the factor 1
8 accounts for the spatial volume of the

blocks, the above anticommutation relations become
canonical in the basis in which P� are diagonal.

The transfer matrix corresponding to the flavor-
Lagrangian (6) in the gauge U0 ¼ 1 is [14,27]

T t;tþ1 ¼ expðq̂�Ntq̂þÞy expð2�n̂BÞ expðq̂�Ntþ1q̂þÞ:
(15)

In the above equation, Nt is a matrix which depends on the
time of the blocks only because it depends on the gauge
link variables

Nt :¼ N½UðtÞ�; (16)

and � is the chemical potential

n̂B ¼ 23
X
y

ðq̂yþq̂þ � q̂y�q̂�Þy (17)

that we omitted for simplicity in the Lagrangian. By keep-
ing into account the spatial volume factors,

q̂�Ntq̂þ ¼ 64
X
y0;y

ðq̂�Þy0 ðNtÞy0yðq̂þÞy (18)

Ny0y ¼ �2

�
mð�0 � 1Þ1y0y þ

X3
k¼1

ð�0�k � 1Þ

� ½Pð�Þ
k rðþÞ

k þ PðþÞ
k rð�Þ

k �y0y
�
; (19)

where

Pð�Þ
k ¼ 1

2
ð1 � 1� �k�5 � t5tkÞ; (20)

and

1y0y :¼ 1

8
�y0y; ðTð�Þ

k Þy0y :¼ 1

8
�y0�k̂;y (21)

enter in the definitions of ðrð�Þ
k Þy0y .

Notice that

qy�Nq� ¼ 0: (22)

B. The spin basis

For the sake of later comparison, we report the regulari-
zation of a Lagrangian in the spin basis. The gauge fields
on the hypercubic lattice are denoted by u�ðxÞ and trans-

form according to

u�ðxÞ ! gxu�ðxÞgyxþ�̂: (23)

The Lagrangian in the spin basis is

Lc ðuÞ :¼ m �c xc x

þ 1

2

X3
�¼0

�x�½ �c xu�ðxÞc xþ�̂ � �c xþ�u
y
�ðxÞc x�;

(24)

where the signs �x� are defined for � ¼ 0; . . . ; 3 by

�x� :¼ ð�1Þx0þ���þx��1 : (25)

There is no direct way of identifying forward and back-
ward movers. This is the difficulty encountered in the
construction of a transfer matrix in operator form for this
Lagrangian. Indeed, as far as we know, such a construction
has been achieved only after a reduction of the Lagrangian
itself, in which the fermion fields and their conjugates live
on odd and, respectively, even sites [11].
At the classical level, however, the fields in the spin and

flavor basis are related according to

q�ay ¼ 1

8

X
�

��;�ac 2yþ� (26)

�q a�
y ¼ 1

8

X
�

�c 2yþ��
y
�;a�; (27)

where

�� :¼ ��0

0 ��1

1 ��2

2 ��3

3 : (28)

The matrices � satisfy the relations

1

4
trð�y

���0 Þ ¼ ���0 (29)

1

4

X
�

�y
�:b���:�a ¼ �ba��� (30)

that allow us to invert Eqs. (27),
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c 2yþ� ¼ 2 trð�y
�qyÞ (31)

�c 2yþ� ¼ 2 trð �qy��Þ: (32)

We will use these relationships in order to derive an action
and a transfer matrix in the spin basis from those in the
flavor basis.

III. TRANSFORMATION OF THE LAGRANGIAN

In this section, we express the Lagrangian (6) in the spin
basis using the transformations (27)X

x

L0
c ðUÞ :¼ 24

X
y

LqðUÞ: (33)

While in the absence of gauge interaction L0
c coincides

with Lc , reported in Eq. (24), we shall see that this does

not occur, in general, in the presence of gauge fields.
The mass term of the action is proportional to

24
X
y

�qyqy ¼ 1

4

X
y

X
�

X
�0

�c 2yþ� trð�y
�0��Þc 2yþ�0

¼ X
x

�c xc x: (34)

In order to derive the kinetic term, we shall use the
relations

X
�

��0�
� ��:�a ¼ �0��

�����þ�̂:�0a

þ �1��
�������̂:�0a (35)

X
�;a

��0�
5 ðt5t�Þa0a��:�a ¼ ��0��

�����þ�̂:�0a0

þ �1��
�������̂:�0a0 : (36)

From the definition, Eq. (28), the relation (35) soon
follows, and

���� ¼ ð�1Þ�0þ�1þ�2þ�3ð�1Þ������ (37)

so that

���5 ¼ ð�1Þ�0þ�1þ�2þ�3�5��: (38)

HenceX
�;a

��0�
5 ðt5t�Þa0a��:�a¼ð�5�����5Þ�0a0

¼�ð�5���5��Þ�0a0

¼�ð�1Þ��ð����Þ�0a0 ; (39)

which, together with Eq. (35), implies the relation (36).
The kinetic term is proportional to

16

4

X
y

X
�

f �qyð���1Þ½U�ðyÞqyþ�̂�Uy
�ðy��̂Þqy��̂�� �qyð�5� t5Þt�½U�ðyÞqyþ�̂þUy

�ðy��̂Þqy��̂�2qy�g; (40)

that is

1

16

X
y

X
�

X
�;�0

X
�;�0;a;a0

�c 2yþ�0�y
�0:a0�0 ½U�ðyÞð��0�

� �a0a � ��0�
5 ðt5t�Þa0aÞ��:�ac 2yþ2�̂þ�

�Uy
�ðy� �̂Þð��0�

� �a0a þ ��0�
5 ðt5t�Þa0aÞ��:�ac 2y�2�̂þ� þ 2��0�

5 ðt5t�Þa0a��:�ac 2yþ��; (41)

which because of Eqs. (35) and (36) becomes

1

8

X
y

X
�

X
�;�0

X
�;�0;a;a0

�c 2yþ�0�y
�0:a0�0���½U�ðyÞ�0��

��þ�̂:�0a0c 2yþ2�̂þ�

�Uy
�ðy� �̂Þ�1��

����̂:�0a0c 2y�2�̂þ� þ ð��0��
��þ�̂:�0a0 þ �1��

����̂0:�0a0 Þc 2yþ��; (42)

and, performing the trace on spinor and flavor indices (30),

1

2

X
y

X
�

X
�;�0

�c 2yþ�0���½U�ðyÞ�0��
��0;�þ�̂c 2yþ2�̂þ� �Uy

�ðy� �̂Þ�1��
��0;���̂c 2y�2�̂þ�

þ ð��0��
��0;�þ�̂ þ �1��

��0;���̂Þc 2yþ��; (43)

and, performing the sum over �0,

1

2

X
y

X
�

X
�

���½�0��
�c 2yþ�þ�̂U�ðyÞc 2ðyþ�̂Þþ� þ �1��

�c 2yþ���̂c 2yþ�

� �1��
�c 2yþ���̂U

y
�ðy� �̂Þc 2ðy��̂Þþ� � �0��

�c 2yþ�þ�̂c 2yþ��: (44)
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Remark that if we increase the component x� of a site x,

we jump on a block different from that of x if x� is odd.

This is the case when x ¼ 2yþ �þ �̂ and �� ¼ 0, but

not when x ¼ 2yþ �� �̂ and �� ¼ 1. Similarly, if we

decrease x�, we jump on a different block only when x� is

even. This is the case when x ¼ 2yþ �� �̂ and
�� ¼ 1, but not when x ¼ 2yþ �þ �̂ and �� ¼ 0. If

x ¼ 2yþ � then

��� ¼ �x�: (45)

Then the kinetic term has the same form as that ofLc ðu0Þ,
where

u0�ðxÞ ¼
(
U�ðyÞ for x ¼ 2yþ � and �� ¼ 1

1 elsewhere
(46)

that is, the gauge field couples only sites which belong to
different blocks.

In conclusion,

L0
c ðu0Þ ¼ m �c xc x þ 1

2

X3
�¼0

�x�½ �c xu
0
�ðxÞc xþ�̂

� �c xþ�u
0y
� ðxÞc x�: (47)

We have the constraint, however, that the fermion fields
within a block should all transform in the same way under
gauge transformations. One might think that we could
relax this constraint by a different transformation from
the spin to the flavor basis

q�ay ¼ 1

8

X
�

��;�aC2yþ�c 2yþ�

�qa�y ¼ 1

8

X
�

�c 2yþ�C
y
2yþ��

y
�;�a:

(48)

Such a generalization, however, is only apparent because
the curvature for the plaquettes with all the vertices within
one and the same block vanishes. Indeed, such a general-
ization, as the particular ones chosen, for example, in
Refs. [9], Eq. (35), [27], Eq. (56), are pure-gauge trans-
formations of Eq. (27).

We conclude that, in the presence of a generic gauge-
field configuration, the Lagrangian in the spin basisL0

c ðuÞ
and that in the flavor basis LqðUÞ are not equivalent.

The transformed Lagrangian L0
c ðu0Þ could also be

regarded, in the spirit of the previous quoted attempt
[11], as a modification of Lc ðuÞ, defined in Eq. (24), for

which a transfer matrix can be constructed.
The above construction refers to the case of vanishing

chemical potential. Its inclusion is, however, straightfor-
ward [27]. We only note that, at variance with respect to the
coupling with gauge fields, the chemical potential can be
attached to all links in the transformed LagrangianL0

c ðu0Þ,
provided its value be half the one in the flavor basis.

IV. TRANSFORMATION OF TRANSFER MATRIX
AND COHERENT STATES

As a first step, we must transform creation-annihilation
operators from the flavor to the spin basis. To this end,
we must determine the expressions of the fields q� in the
spin basis

ðqþÞy ¼ Pþ
1

8

X
�

��c 2yþ�

ðqy�Þy ¼ P�
1

8

X
�

��c 2yþ�:

(49)

Using the relation (39), we find

Pþ�� ¼ �0�0
��; P��� ¼ �1�0

��; (50)

and similar relations hold for �y.
We, therefore, have

ðqþÞy ¼ 1

8

X
�

�0�0
��c 2yþ�;

ðqy�Þy ¼ 1

8

X
�

�1�0
��c 2yþ�:

(51)

Next, we define the operators corresponding to the c fields
according to

ðq̂þÞy ¼ 1

8

X
�

�0�0
�� ĉ 2yþ�;

ðq̂y�Þy ¼ 1

8

X
�

�1�0
�� ĉ 2yþ�

(52)

and assume that

n
ĉ y

2y0þ�0 ; ĉ 2yþ�

o
¼ 2�y0y��0�: (53)

This is obviously consistent with the second set of
equations in Eqs. (14). Consistency with the first set
requires that

1

64

X
�;�0

���0
���0

0
�y
�0:b���:�a

n
ĉ y

2y0þ�0 ; ĉ 2yþ�

o

¼ 1

32
�y0y���

X
�

���0�
y
�:b���:�a (54)

¼ 1

8
�y0y���P

�a;�b
� ; (55)

where � ¼ 0, 1, respectively, when the index of the
projector is þ or �. The second equality follows from
the equations
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X
a0;�0

P�a;�0a0
�

1

4

X
�

�y
�:b���:�0a0 ¼ 1

4

X
�

���0
�y
�:b���:�a

¼ P�a;�b
� (56)

that can be proven using Eqs. (30) and (50).
Some comments about our results are in order. We see

that the temporal component �0 of the fields in the spinor
basis corresponds to the � projection of the field in the
flavor basis. The 8 Dirac-taste degrees of freedom of
particles/antiparticles are spread on the 8 sites of the
even/odd time slice in the corresponding block. In this
connection, looking at Eq. (53), �0 can be regarded as a
quantum number. But this quantum number changes when
time increases by one unit in the original lattice, so that,
unlike the q� projections, the fields c 2yþ� with�0, respec-

tively, 1 or 0 cannot be identified as forward/backward
movers. Changing time, we change a particle into the
hole of an antiparticle.

A. Transfer matrix

We first transform the baryon number

n̂B ¼ 23
X
y

ðq̂yþq̂þ � q̂y�q̂�Þy

¼ 1

2

X
y;�

½ðĉ y ĉ Þ2yþ��0�0
� ðĉ ĉ yÞ2yþ��1�0

Þ� (57)

¼ 1

2

X
x

½ðĉ y ĉ Þx0 � ðĉ y ĉ Þx1�; (58)

where we relabeled the operators ĉ with the spatial
coordinates

x ¼ 2y þ � (59)

and �0 and made the identifications

ĉ x0 :¼ ĉ 2yþð0;�Þ; ĉ x1 :¼ ĉ y
2yþð1;�Þ (60)

in agreement with the relations (52) which show that when

�0 ¼ 1, the operator ĉ 2yþ� is a creation operator.

In this notation, the commutation relations (53) become

fĉ y
x0�0

0
; ĉ x�0

g ¼ 2�x0x��0
0
�0
: (61)

Next, we must determine a matrix N0
t such that

64
X
y0;y

ðq̂�Þy0 ðNtÞy0yðq̂þÞy

¼ X
y0;y

X
�0;�

ĉ y
2y0þ�0 trð�y

�0 ðNtÞy0yPþ��Þĉ 2yþ� (62)

¼ X
y0;y

X
�0;�

ĉ y
2y0þ�0 ðN0

tÞy0�0;y� ĉ 2yþ�: (63)

In the above equation, color taste and Dirac indices have
been omitted. We observe that

ð�0�k � 1ÞPð�Þ
k Pþ��

¼ 1

2
�0�0

½ð�0�k � 1Þ � ð�0�5 � t5tkÞ��� (64)

¼ �0�0
��k

1� ð�1Þ�k

2
ð�0�k

��þ0̂þk̂ þ �1�k
��þ0̂�k̂Þ

(65)

and

�y
�0 ð�0 � 1ÞPþ�� ¼ �0�0

�1�0
0
�y
�0��; (66)

so that

tr½�y
�0 ð�0�k�1ÞPð�Þ

k Pþ���

¼4�0�0
�1�0

0
��k

1�ð�1Þ�k

2
ð�0�k

��0;�þk̂þ�1�k
��0;��k̂Þ

(67)

and

tr ½�y
�0 ð�0 � 1ÞPþ��� ¼ 4�0�0

�1�0
0
��0�: (68)

Finally, we get the transformed N matrix

ðN0Þy0�0;y� ¼ �8�0�0
�1�0

0

�
m��0�1y0y þ

X3
�¼1

���ð�0��
��0;�þ�̂rðþÞ

� þ �1��
��0;���̂rð�Þ

� Þy0y
�

¼ ��0�0
�1�0

0

�
m��0;��y0;y þ 1

2

X3
�¼1

���½ð��0��
��0;�þ�̂ þ �1��

��0;���̂Þ�y0y

þ �0��
��0;�þ�̂U�ðy0Þ�y;y0þ�̂ � �1��

��0;���̂U
y
�ðyÞ�y;y0��̂�

�
: (69)

Notice that the terms that involve the gauge variables refer to sites belonging to different blocks, while in the other terms,
the sites belong to the same blocks. The same operator can be relabeled by using the coordinates x and �0; then,

ðN0Þx0�0
0
;x�0

¼ ��0�0
�1�0

0

�
m�x0x þ 1

2

X3
�¼1

�x�½�x0;x��̂u
0
�ðx0Þ � �x0;xþ�̂u

0y
� ðxÞ�

�
; (70)
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where the values �� ¼ 0, 1 simply control the presence
of the gauge field according to the definition of u0 given
in Eq. (46).

In conclusion,

q̂�Ntq̂þ ¼ ĉ 1N
0
t ĉ 0: (71)

It should not be necessary to repeat that the expression of
the transfer matrix so obtained is positive definite and
performs time translations by two lattice spacings.

B. Coherent states

In order to complete our analysis, we perform the trans-
formation also on the coherent states. This will enable us to
make, as a cross-check, the derivation of the Lagrangian
(47) starting from the transfer matrix.

Let

j�;�i :¼ exp

�
�23

X
y

X
�;c

½��c
y ðq̂yþÞc�y þ �c�

y ðq̂y�Þ�cy �
�
j0i

(72)

be a coherent state in the flavor basis, where ��c
y and ��c

y

are Grassmann variables, such that

ðq̂þÞ�cy j�;�i ¼ ��c
y j�;�i;

ðq̂�Þc�y j�;�i ¼ �c�
y j�;�i:

(73)

Now,

23
X
y

X
�;c

��c
y ðq̂yþÞc�y ¼ X

y;�

trð�y
��yÞ�0�0

ĉ y
2yþ� (74)

23
X
y

X
�;c

�c�
y ðq̂y�Þ�cy ¼ X

y;�

trð�y��Þ�1�0
ĉ 2yþ�; (75)

and, therefore, because of the anti-commutation
relations (61),

ĉ x0j�;�i ¼
X
�0

ĉ 2yþ��0�0
j�;�i ¼ 2 trð�y

ð0;�Þ�yÞj�;�i

(76)

ĉ x1j�;�i ¼
X
�0

ĉ y
2yþ��1�0

j�;�i ¼ 2 trð�y�ð1;�ÞÞj�;�i:

(77)

This means that we can define

�0
x :¼2trð�y

ð0;�Þ�yÞ; �0
x :¼2trð�y�ð1;�ÞÞ (78)

and rewrite

j�;�i ¼ exp

�
� 1

2

X
x

ð�0
x ĉ

y
x0 þ �0

x ĉ
y
x1Þ

�
j0i: (79)

Notice that the Grassmann variables �, �, and �0 as well
are defined at even times. The variable �0 instead,
because of the matrix �ð1;�Þ in its definition, must be

considered attached at odd times. This is confirmed by
the evaluation of the partition function using the trans-
formed transfer matrix and coherent states. After the
identifications

�c 2x0 ¼ ð�0
2x0

Þ	; c 2x0 ¼ ð�0
2x0þ1Þ	

�c 2x0þ1 ¼ �0
2x0þ3; c 2x0þ1 ¼ �0

2x0þ2;
(80)

we get the Lagrangian (47).

V. CONCLUSION

Numerical simulations with Kogut-Susskind fermions
are faster in the spin basis than in the flavor basis. Such
calculations are usually performed in the Lagrangian for-
mulation, but we are interested in numerical simulations in
the framework of the nilpotency expansion, which makes
use of the transfer matrix. So we need an expression of the
transfer matrix in the spin basis. In any case, the knowledge
of a positive definite transfer matrix in the spin basis is
per se interesting being related to the unitarity of the theory.
We found in the literature essentially two formulations of

the transfer matrix in the spin basis. In the first one, the
Lagrangian is reduced by defining fermion fields and their
conjugates at the odd, respectively, even sites, and a transfer
matrix is constructed that performs time translations by 2
lattice spacings [11,12]. The fermion determinant, even at
vanishing chemical potential, is, however, not positive definite,
which makes this way less suitable to numerical simulations.
In the second formulation [11], a positive definite trans-

fer matrix, called T2, was defined that also performs time
translations by 2 lattice spacings. As a consequence, the
corresponding Fock space must be constructed on blocks.
The explicit construction of such Fock space, however, is
not given.
If the Fock space is associated to a block, we can get the

transfer matrix in the spin basis by a unitary transformation
from that in the flavor basis, whose expression, together
with the construction of the Fock space, is known. The
transfer matrix in the flavor basis is expressed in terms of a
matrix N, and the transformed matrix is given in terms of
the matrix N0, given explicitly in Eq. (70). In order to do
numerical simulations in the nilpotency expansion, all we
need is to replace everywhere in the equations of the
nilpotency expansion N by N0 and remember that the
gauge fields are now defined on blocks.
It would be now natural to compare our result with the

expression of the previously derived transfer matrix [11].
One might expect that such a comparison should provide
the definition of the Fock space in the latter. Unfortunately,
this is not the case. The transfer matrix of Ref. [11] cannot
be related to ours in a simple way, the most remarkable
differences being that there is no requirement concerning
the gauge variables which remain defined on the links of
the original lattice, and creation and annihilation operators
appear not only in exponential form, but also as powers.
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