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Abstract

One of the most fascinating discoveries of contemporary Theoretical Physics is

the AdS/CFT correspondence relating gauge theories to gravity theories. Soon after

its formulation, tremendous developments allowed to obtain a deep comprehension of

the four-dimensional N = 4 SYM theory and, in particular, led to the discovery of

integrable structures both in the gauge theory itself and in its string counterpart. In

the last few years, much attention was devoted to the study of supersymmetric Chern-

Simons-matter theories in three dimensions. In this class of theories a distinguished

role is played by the N = 6 ABJM model which is a U(N)k×U(N)−k superconformal

gauge theory with Chern-Simons level k. Indeed, in the large N limit, the ABJM

theory has been conjectured to be the AdS/CFT dual description of M-theory on an

AdS4 × S7/Zk background and, for k ≪ N ≪ k5, of a type IIA string theory on

AdS4 × CP
3. For this reason, soon after its discovery the ABJM model has quickly

become the ideal three-dimensional playground to study AdS/CFT as much as N = 4

SYM has been in the four-dimensional case. Quite surprisingly, the ABJM model

seems to share a number of notable properties with N = 4 SYM theory even though

the two theories are a priori different in nature. One of the common features is

provided by the fact that also in planar ABJM theory integrable structures naturally

show up. In particular, a Bethe Ansatz approach to the computation of anomalous

dimensions is possible and a set of all-loop Bethe equations was formulated. These

equations are very similar to those of SYM theory, however, starting at eight loops,

important new features are believed to appear, in particular in connection with the

appearance of the dressing phase. With the aim to check such a picture, we analyze for

the first time the form of the eight-loop dilatation operator in the SU(2)×SU(2) sector
and, adopting a perturbative approach based on superspace techniques, we directly

extract the value of the unknown leading order coefficient of the dressing phase from

supergraphs involving maximal interactions.
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Chapter 1.

Introduction

Since its first appearance, in the late sixties of the past century, String Theory turned

out to be a useful tool in the analysis of strongly coupled systems: in those years, people

were trying to understand the strong force and String Theory was formulated as a theory

of hadrons. Later, QCD was discovered and String Theory was abandoned as a theory

of strong interactions, becoming, on the other hand, the most promising candidate for

a quantum theory of the gravitational interaction. Unlike other proposed theories of

quantum gravity, it also offered a unified description of all fundamental interactions. To

reach the goal of quantizing gravity, String Theory gives up the concept of point-like

particles as the elementary constituents of nature and introduces extended objects, such

as strings and branes. Moreover, it needs supersymmetry and requires the existence of

extra spatial dimensions to the four known, in order to avoid inconsistencies such as the

presence of tachyons and ghosts in the spectrum.

At first sight, if we believe in String Theory, the gravitational interaction seems to be

described by a completely different theory, especially if we think that all the other funda-

mental interactions are consistently described in terms of gauge theories. Nevertheless,

after the discovery of D-branes and, subsequently, of the AdS/CFT correspondence, in

the nineties, it became clear that String theory and gauge theories are deeply related

with each other.

The original formulation [1] of the AdS/CFT correspondence given by Maldacena

states the equivalence of type IIB superstring theory on AdS5 × S5 background and

N = 4 Super Yang-Mills (SYM) theory, which is a four-dimensional superconformal

gauge theory living on the boundary of AdS5 space. It is remarkable the fact that two

1



2 Introduction

theories living in space-times of different dimensions are related: this is a consequence

of holography, which has always been a guiding principle when dealing with gravity.

All dynamics in AdS5 can be reformulated as a boundary effect and it is captured by

a four-dimensional local field theory. A very important point is that the AdS/CFT

correspondence relates opposite regimes of the two theories: it is indeed a weak-strong

duality, in the sense that the strong-coupling regime of one of the two theories is related

to the weak-coupling regime of the other. In particular, the strong-coupling regime of

the gauge theory corresponds to the supergravity limit of the string theory. So, we

can see that String Theory is still useful to study the strong-coupling behaviour of a

field theory. On the other hand, weakly coupled gauge theory corresponds to the full

interacting string theory.

The most interesting fact about AdS/CFT correspondence is, perhaps, that it allows

to investigate the non-perturbative regime of a theory by means of perturbative compu-

tations made on a different theory. Unfortunately, the strong/weak nature of the duality

has also some disadvantages: in general, explicit computations are manageable only in

the perturbative regime, i.e. at weak coupling. This makes the AdS/CFT correspon-

dence difficult to prove and it remains substantially a conjecture, even though several

strong tests have supported its validity. First of all, the symmetries of the two theories

match. Moreover, the spectra of the two theories should coincide. A conformal field

theory doesn’t have asymptotic states or an S-matrix, so the natural objects to consider

are operators. In particular, anomalous dimensions of composite operators on the field

theory side are claimed to be equal to energies of string states. Right after the formu-

lation of the correspondence, the connections between supergravity modes and chiral

primary operators in the gauge theory had been investigated. Furthermore, a certain

class of excited string states on the pp wave background, which is the Penrose limit of

AdS5×S5, was shown to be dual to a class of non-BPS operators with large R-charge, the

so called BMN operators. Also, some correlation functions are protected from quantum

corrections and can be easily compared on both sides of the correspondence, being inde-

pendent on the coupling constant. Further, stronger, tests of the correspondence require

a deeper knowledge of some aspects of the gauge theory and of string theory, concerning

quantities which depend on the coupling and their non-perturbative behavior.

This is a very hard task and seemed out of reach at first sight, but such a belief

changed when, after the work of Minahan and Zarembo [7], there appeared hints sug-
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gesting that both the involved theories may be integrable in the planar limit. This

is a very important discovery, since integrability provides powerful tools, such as the

Bethe ansatz, for the determination of large parts of the spectra of the two theories.

In the most optimistic point of view, in the future, integrability can allow to compute

the full spectra of the theories, at any value of the coupling constant: in particular,

it can be possible to take into account also finite-size effects, which are not included

in the standard asymptotic Bethe ansatz, such as wrapping interactions. Techniques

based on the Thermodynamic Behte Ansatz [8, 9] go in this direction. In particular, a

Y-system was introduced which could reproduce wrapping corrections by solving a set of

functional equations which capture the integrability properties of the discrete classical

Hirota dynamics.

The fundamental quantity in an integrable model is the scattering matrix of exci-

tations. This isn’t the S-matrix of asymptotic particles, which cannot be defined in a

conformal theory as we said, but rather an asymptotic quantity which may be defined, in

the planar limit, in an internal space. It is constrained by the symmetries of the theory

and it appears to be two-particle factorized, because of integrability. It should be now

clear why integrability in gauge and string theories plays a prominent role in testing the

AdS/CFT correspondence. The idea behind integrability is that composite operators of

the gauge theory are mapped to states of a closed spin chain. Operators whose dimen-

sions are not protected by supersymmetry from receiving quantum corrections can be

viewed as magnon states propagating on the spin chain, while the dilatation operator

of the gauge theory corresponds to the hamiltonian of the integrable model. Minahan

and Zarembo showed that the one-loop dilatation operator of N = 4 SYM theory in the

SU(2) sector is equivalent to the hamiltonian of the Heisenberg model of ferromagnetism,

which is an integrable model. Further developments suggested that integrability survives

to all orders and to all sectors and an all loop Behte ansatz was formulated. Similarly,

on the String Theory side, classical integrability of the world-sheet sigma model was

proved and arguments were proposed, suggesting that integrability persists in the quan-

tum theory. Intriguingly, the spectrum of this quantum string theory can be described

by Bethe equations as well, whose form is surprisingly similar to that of gauge theory.

However, the spectra of gauge and string theory match only if the S-matrices of the two

theories are related by a global dressing factor, which is constrained by symmetry to be

reduced to a pure phase.
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The original formulation of the AdS/CFT correspondence was later extended to

other theories with less symmetries1 and to theories living in a different number of

spacetime dimensions. In the present work we will focus on a particular version of the

correspondence introduced in 2008 by Aharony, Bergman, Jafferis and Maldacena [10],

where a three-dimensional N = 6 superconformal Chern-Simons theory (in the following

called ABJM theory) was conjectured to be equivalent to type IIA string theory on

AdS4 × CP
3. Also within this AdS4/CFT3 correspondence, one can define a coupling

parameter λ which interpolates between gauge theory regime at λ≪ 1 and string theory

regime at λ≫ 1.

Quite surprisingly, the ABJM model seems to share a number of notable properties

with N = 4 SYM theory even though the two theories are a priori different in nature.

One of the common features is provided by the fact that also in the ABJM case, in the

planar limit, integrable structures naturally show up. At first it was found in [12] that,

at the two-loop order and in the SU(4) flavour sector, the anomalous dimensions of com-

posite operators could be mapped to the energy spectrum of an integrable Hamiltonian

acting on an alternating fundamental-antifundamental spin-chain.

The two-loop analysis was then extended to the full theory in [14, 15] by the intro-

duction of an OSp(2, 2|6) chain. A generalization to the parity breaking ABJ model [16]

was also studied at two loops in [15,17], where it was found to be integrable at the given

order.

Soon afterwards, paralleling the progresses done in the four-dimensional case, a set

of an all-loop Bethe equations for the asymptotic spectrum of the full ABJM theory was

proposed by Gromov and Vieira [18] . The Bethe equations nicely interpolated between

the weak coupling results and the coset string construction at strong coupling [19, 20],

together with the algebraic curve approach developed in [21]. These all-loop Bethe

equations are very similar to those of SYM theory and a dressing factor of the same

form is present.

Anyway, beside the many analogies between the two versions of the correspondence,

also some differences can be observed. For instance, ABJM theory isn’t maximally su-

persymmetric, as is the case of N = 4 SYM: among the consequences of this fact, we

1Remarkable progress has been done, for example, towards an holographic description of non super-
symmetric theories such as QCD and condensed matter systems.



Introduction 5

mention that a non trivial function h(λ) appears in the all-loop Bethe Ansatz. It inter-

polates between weak coupling behaviour h(λ) ≃ λ and and strong coupling behaviour

h(λ) ≃
√

λ/2, but its functional form, as well as its ultimate meaning, is not completely

known. This function enters the anomalous dimensions of composite operators and

the dilatation operator through its coefficients in the weak-coupling expansion. Such

coefficients cannot be fixed with the help of integrability alone.

One of the salient features of the all-loop Bethe equations is that they are strongly

constrained by the symmetries of the theory. In fact only a pair of undetermined func-

tions of the coupling λ are left open in the description of the spectrum. One is the

aforementioned interpolation function h(λ) and the other is the dressing function θ(λ),

which, as we have seen, had to be introduced also in the N = 4 SYM case. In the

ABJM case, the dressing phase plays a fundamental role since its presence has also been

conjectured to give rise to the coupling between even- and odd-site excitations on the

spin-chain at high-loop orders. In particular, the coefficients of the dressing phase are

conjectured to affect anomalous dimensions starting at eight loops: nevertheless, even

though their values at weak coupling can be guessed on the ground of general consider-

ations and a conjecture on the form of the phase factor at finite coupling can be made,

a rigorous proof of its validity is still missing. It is, therefore, important to test such

conjectures against direct field theory computations.

The description of the asymptotic spectrum depicted in [18] has been subsequently

checked at the perturbative level beyond two-loops by direct Feynman diagrammatic

computations in [22–25] . The four-loop dilatation operator has been fully computed for

both the ABJM and ABJ models by using the component formulation in [22, 23] and

the N = 2 superspace formalism in [24]. As a result, the form of dilatation operator

was found to be compatible with the spectrum predicted by the Bethe equations and

moreover it was possible to fix the next-to-leading order coefficient in the weak coupling

expansion of the function h(λ).

In [26] the analysis was pushed up to six loops. At this order, a full Feynman diagram-

matic analysis looks very complicated, even using superspace techniques. Nevertheless,

in [26] the expression of the dilatation operator could be derived by computing a suitable

set of Feynman diagrams and assuming the form of the Bethe equations of [18]. More-

over, the results of [26] imply that the dressing phase doesn’t appear at six-loop order.

This latter fact isn’t so trivial and has the consequence that the order λ4 coefficient of
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the dressing factor which can be a priori present at six loops, actually vanishes, therefore

confirming that the first non-trivial effects of the presence of the dressing phase are to be

found at eight-loop order. Further perturbative checks on the spectrum were exploited

in [27, 28].

Meanwhile the internal S-matrix approach to integrability has also been introduced

in [29–32] and [33]). The all loop S-matrix has been found to be compatible with the

all-loop Bethe equations of [18]. Moreover, the Y-system equations were extended to

the ABJM case.

In this thesis we present the results of the perturbative analysis of the eight-loop

dilatation operator of ABJM theory, which led to the computation of the leading order

coefficient of the dressing phase [34]. The work is organized as follows: in Chapter 2 we

introduce ABJM theory in the context of AdS4/CFT3 correspondence; in Chapter 3 we

review the basic results of integrability and we formulate the Bethe ansatz for ABJM

theory; in Chapter 4 we consider the dilatation operator of the theory, which is the basic

tool for the computation of anomalous dimensions of composite operators. The Bethe

ansatz provides useful techniques to construct the asymptotic dilatation operator in the

SU(2)×SU(2) sector: such techniques are applied up to eight loops; Chapter 5 contains

the perturbative computations which allow the extraction of the leading order coefficient

of the dressing phase from the eight loop dilatation operator. In particular, this is

achieved investigating the Feynman diagrams which contribute to maximal interactions

in the dilatation operator. To this end, N = 2 superspace techniques are used. Finally,

Chapter 6 contains our conclusions. We have added some appendices which collect the

more technical aspects of the subjects: Appendix A contains the superspace formulation

of ABJM theory; Appendix B gives a general introduction to some techniques which

can be adopted to deal with multiloop Feynman integrals: in particular, GPXT and

Mellin-Barnes techniques are presented since they have been used in the computation

of the integrals needed in Chapter 5; Appendix C collects some Mathematica routines

which were written for the computations of Chapter 4.



Chapter 2.

The AdS4/CFT3 Correspondence

Superconformal Chern-Simons theories in D = 3 spacetime dimensions naturally arise

in the study of AdS4/CFT3 correspondence. We give here a general introduction to

this correspondence, in order to contextualize the gauge theory we’ll focus on in the

subsequent chapters, which is the so called ABJM theory: it is an N = 6 superconformal

Chern-Simons-Matter theory with gauge group U(N)×U(N). We outline here the main

properties of such theory. Some technical details are collected in Appendix A.

2.1. General Motivation

According to the AdS/CFT correspondence1 [1–3] some conformal gauge theories are

related to a string theory on a curved background including anti-de-Sitter (AdS) space.

The first, and most well understood, example of such a correspondence related the

maximally supersymmetric N = 4 SYM theory, with gauge group SU(N), to type

IIB superstring theory on AdS5 × S5. The four-dimensional gauge theory lives on the

boundary of AdS5 space.

Gauge theories in three dimensions were less studied until the last decade. It is

interesting to investigate whether an AdS4/CFT3 version of the correspondence can

be formulated, relating three-dimensional theories to gravity theories. From this per-

spective, a three-dimensional gauge theory should live on the boundary of AdS4 space.

M-theory admits compactifications involving AdS4 space: the most symmetrical one

1See also [4–6] for useful reviews.

7



8 The AdS4/CFT3 Correspondence

is AdS4 × S7. M-theory contains M2-branes and M5-branes: the worldvolume of M2-

branes is three-dimensional and its low energy dynamics should be a conformal field

theory: such a theory could be considered as a candidate to be the gauge theory dual to

M-theory. Many efforts were made in order to find the right gauge theory describing the

worldvolume of N coincident M2-branes: first, it was thought [36] that it could be the

IR fixed-point of D = 3, N = 8 U(N) SYM theory. This is a maximally supersymmetric

theory but it has the disadvantage of being strongly coupled, making it very hard to

find an explicit lagrangian description.

In [37], for the first time, supersymmetric Chern-Simons theories, which are classi-

cally conformal invariant, were analyzed for the same purpose: these are topological

field theories, but can be coupled to matter fields carrying physical degrees of freedom.

Moreover, since the Chern-Simons level is not renormalized up to a possible one-loop

shift, these theories are exactly conformal at the quantum level. Chern-Simons theories

with N = 1, N = 2 and N = 3 supersymmetries were constructed in [37, 38]. How-

ever, some difficulties were encountered to find an N = 8 U(N) gauge theory of this

type. In [37] it was also argued that a lagrangian description cannot be found for such

a theory. Subsequently, Bagger and Lambert proposed a three-dimensional field theory

as a worldvolume description of multiple M2-branes in M-theory, which has N = 8 su-

persymmetry with manifest SO(8) R-symmetry, should be superconformal and has an

explicit lagrangian description [39–41]: such lagrangian was constructed on the basis of

a new algebraic structure called “three-algebra” (see also [42]). In [43] it was shown that,

for a specific three-algebra, the Bagger-Lambert theory can be rewritten as an ordinary

gauge theory with gauge group SU(2)× SU(2) and matter in the bifundamental.

Finally, in 2008, Aharony, Bergman, Jafferis and Maldacena succeeded in finding a

three-dimensional U(N) × U(N) Chern-Simons-Matter theory [10] describing the low

energy limit of N M2-branes: we will call this gauge theory ABJM theory. The price

to pay is to give up maximal supersymmetry: in fact their theory is only N = 6 super-

symmetric. The coupling constant of this theory is 1/k, where k is the Chern-Simons

level, so that the theory becomes weakly coupled at large k. ABJM theory can be

obtained as the IR limit of a particular brane construction in type IIB string theory

which has N = 3 supersymmetry. The gauge theory realizing such brane construction,

which can be chosen to have U(N) × U(N) gauge group with Chern-Simons terms at

opposite levels and matter fields in the bifundamental, flows in the IR to the N = 6
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ABJM theory. Thanks to T-duality, this brane construction can be lifted to M-theory,

where it corresponds to M2-branes probing a C4/Zk singularity. It is important to stress

that, performing a Zk orbifold, it was possible to find an explicit lagrangian description

for the conformal field theory of N M2-branes. Another interesting feature of ABJM

theory is that it has, at large N , a gravity dual description in terms of M-theory on

the AdS4 × S7/Zk background with N units of four-form flux through AdS4. Moreover,

it has a ’t Hooft limit if we send N and k to infinity keeping λ = N/k fixed: in this

case, the gravity dual becomes type IIA string theory in the AdS4 × CP
3 background

with N units of four-form flux through AdS4 and k units of two-form flux through a

CP1 ⊂ CP
3. We will call λ the “’t Hooft coupling”. When N = 2, i.e. the gauge group

is SU(2)×SU(2), extra symmetries appear and supersymmetry is enlarged to N = 8: in

this case ABJM theory becomes equivalent to Bagger-Lambert theory. The parameters

of gauge and string theories are related by the following identifications:

gs ∼
λ5/4

N
, R2 = 4πα′√2λ , (2.1)

where gs is the string coupling constant, α′ the effective tension and R the CP
3 radius,

which is also twice the AdS4 radius. We thus see that N ≫ k5 implies large values of gs:

this means that string theory is strongly coupled and, in fact, becomes M-theory in this

case. When k5 ≫ N , on the contrary, gs is small and strings do not interact. In this

case, at large ’t Hooft coupling, the background is weakly curved and the supergravity

approximation is valid: this regime is dual to strongly coupled gauge theory. At small ’t

Hooft coupling, the background is highly curved and strings are subject to large quantum

fluctuations: this regime is dual to perturbative gauge theory and will be explored in

this work.

2.2. ABJM Theory

ABJM theory [10] is a three-dimensional N = 6 superconformal Chern-Simons theory

with gauge group U(N)×U(N) coupled to matter. We give here the N = 2 superspace

formulation of such theory. This was first given in [44], but we use a slightly different

notation as in [24,47], which is adapted from [87]. A superspace formulation of supersym-

metric gauge theories is preferable with respect to the component approach for several
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reasons: first of all, it is particularly suitable for perturbative computations, especially

at high loop orders. The main reason is the following: all the ordinary component fields

of a supermultiplet are combined into a single superfield, which is function of bosonic

and fermionic superspace coordinates, and Feynman supergraphs can be drawn directly

in superspace. A supergraph involves such superfields and usually encodes the informa-

tion on a large number of standard diagrams involving ordinary fields. Moreover, since

supersymmetry is manifest from the beginning, many simplifications and cancellations

directly related to supersymmetry are automatically implemented with supergraphs. Fi-

nally, fermionic interactions don’t appear explicitly in supergraphs, being hidden in the

superfield formalism: this fact further simplifies the calculations. A brief introduction

to the superspace formalism is given in Appendix A.

ABJM theory has two N = 2 vector supermultiplets, V and V̂ , with V transforming

in the adjoint representation of the first U(N) and V̂ in the adjoint representation

of the second U(N). Supersymmetry is extended to N = 6 if we add two sets of

chiral matter superfields ZA and WA, A = 1, 2, with an appropriate superpotential.

ZA and WA transform in the bifundamental representations (N, N̄) and (N̄,N) of the

U(N)×U(N) gauge group. Moreover, the theory has a manifest SU(2)×SU(2) flavour

symmetry: the scalars transform in the (2, 1) and (1, 2) of this global flavour symmetry

respectively. The R-symmetry group is enhanced to SO(6) ≃ SU(4) due to contributions

from Chern-Simons terms. This group combines with the three-dimensional conformal

group SO(2, 3) and with the 24 fermionic supercharges Qα and Sα to give the full

superconformal group OSp(2, 2|6). After gauge-fixing, this symmetry group reduces to

SU(2|2). The eight elementary excitations transform in the (2|2)Z ⊕ (2|2)W of the

residual symmetry group2. This fact should be compared with the AdS5/CFT4 case,

where the full superconformal group PSU(2, 2|4) reduces to two copies of SU(2|2) and
the sixteen elementary excitations transform in its (2|2)L ⊗ (2|2)R.

2The subscripts Z and W stem for the Z- and W -particles, which will be later introduced.
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The gauge fixed ABJM action in N = 2 superspace reads

S =
k

4π

{
∫

d3x d4θ

∫ 1

0

dt Tr
(

V D̄
α
e−tV Dαe

tV − V̂ D̄
α
e−tV̂ Dαe

tV̂
)

+

∫

d3x d4θTr
(

Z̄Ae
VZAe−V̂ + W̄BeV̂WBe

−V
)

+
i

2

[
∫

d3x d2θ ǫACǫ
BD TrZAWBZ

CWD +

∫

d3x d2θ̄ ǫACǫBD TrZ̄AW̄
BZ̄CW̄

D

]

+ gauge fixing and ghost terms

}

.

(2.2)

The first line contains the non abelian Chern-Simons action, the second line contains the

kinetic term of the matter superfields and their coupling with gauge superfields, while

the third line is the superpotential. The terms containing exponentials can be expanded

and just few terms are necessary for our perturbative computations. The expansion

of the Chern-Simons action gives the kinetic term of the gauge superfields and their

self-interactions:

∫ 1

0

dtTrV D̄
α
e−tV Dαe

tV =
1

2
Tr V D̄

α
DαV − 1

6
TrV D̄

α
[V,DαV ] + · · · (2.3)

and similar for V̂ . The gauge-matter action expands as

Tr Z̄Ae
VZAe−V̂ =Tr Z̄A

(

ZA + V ZA − ZAV̂ +
1

2
(V 2ZA + ZAV̂ 2)− V ZAV̂

)

+ . . .

(2.4)

and similar for WA. In terms of gauge group indices, the gauge superfields are written

as:

V = V aT a , V̂ = V̂ aT a , (2.5)

where a = 0, 1, . . . , N2 − 1 and the matrices T a are the generators of the u(N) gauge

algebra. They are N ×N hermitian matrices such that T 0 = 1√
N

is proportional to the

identity and, for a = 1, . . . , N2 − 1, T a are traceless, being the generators of the su(N)
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subalgebra. The matrices T a are normalized as

Tr(T aT b) = δab . (2.6)

The matter superfields can be written as:

ZA = (ZA)i
î
, Z̄A = (Z̄A)

î
i , WA = (WA)

î
i , W̄A = (W̄A)i

î
, (2.7)

with fundamental indices i, î = 1, . . . , N .

In the action (2.2) also the three-dimensional, N = 2 superspace spinor covariant

derivatives Dα, D̄α appear: they satisfy the algebra

{Dα,Dβ} = {D̄α, D̄β} = 0 , {Dα, D̄β} = pαβ . (2.8)

The metric ǫAB for the SU(2) flavour indices is given by

ǫ12 = 1 , ǫ12 = 1 , ǫABǫCD = δACδ
B
D − δADδ

B
C . (2.9)

The Chern-Simons level, k, is fixed to be an integer by gauge invariance of the effective

action. Its inverse, 1/k, plays the role of the gauge coupling constant and perturbation

theory is valid for large values of k. Moreover, ABJM theory admits a large N expansion,

such that only planar supergraphs contribute. We can define the ’t Hooft coupling

constant

λ =
N

k
, (2.10)

which can be kept fixed while taking N and k large. In fact, still remaining in the planar

limit, we will be interested in the perturbative expansion in terms of the λ parameter. In

the following, we will refer to λ as the coupling constant of the theory. This is justified

by the fact that the AdS/CFT correspondence relates weak and strong coupling regimes

of the gauge and string theories in terms of λ.

We now give the Euclidean Feynman rules of the theory. After the Wick-rotation

e−iS → eS in the path integral, superspace Feynman rules are obtained in standard way.

Here we give only the rules that will be needed for our computations in Chapter 5. We

refer to Appendix A for a wider explanation. The chiral superfield propagators are given
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by

A B

p = 〈ZB(p)Z̄A(−p)〉 = 〈W̄B(p)WA(−p)〉 =
4π

k

δBA
p2
δ4(θ1 − θ2) , (2.11)

where θi are fermionic superspace coordinates and diagonality in the gauge indices has

been suppressed. The vertices are obtained by taking the functional derivatives of the

Wick rotated action w.r.t. the corresponding superfields. When a functional derivative

w.r.t. the (anti)-chiral superfields is taken, factors of (D2) D̄
2
are generated in the

vertices. For the quartic superpotential vertices, we have:

D̄2

D̄2

D̄2

= iǫACǫBD
k

4π

(

δ î
l̂
δk̂
ĵ
δlk δ

j
i − δk̂

l̂
δ î
ĵ
δli δ

j
k

)

(2.12)

D2

D2

D2

= iǫACǫ
BD k

4π

(

δ l̂
k̂
δĵ
î
δil δ

k
j − δ l̂

î
δĵ
k̂
δkl δ

i
j

)

, (2.13)

Note that, in a standard way, one of the (D2) D̄
2
factors has been absorbed into the

(anti)chiral integration such that the integration measure of the (anti)chiral vertex is

promoted to the full superspace measure. The surviving spinor covariant derivatives

are written directly on the graphs. Indeed, manipulations of the D and D̄ can be made

on the graphs and constitute the so called D-algebra procedure [87]: this essentially

corresponds to repeated integrations by parts in θ-space which allow to reduce the full

superspace integral to a standard momentum-space Feynman integral.

2.3. Anomalous Dimensions of Operators

As described in the Introduction, the AdS/CFT correspondence conjectures that the

spectrum of energy states of string theory coincides with the spectrum of anomalous

dimensions of the gauge theory operators. We thus introduce here the concept of gauge

theory operators and of anomalous dimensions in ABJM theory.

Gauge invariant local operators are defined as traces of products of elementary fields

or their covariant derivatives, all evaluated at the same spacetime point. In the planar
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limit, it is sufficient to restrict to single-trace operators. In a conformal field theory,

these composite operators can be thought of as the states of the theory. Given a set

{Oa} of operators, conformal symmetry constrains the form of their two-point correlation

functions to be

〈Oa(x)Ob(y)〉 =
δab

|x− y|2∆a
, (2.14)

where ∆a is the scaling dimension of the operator Oa. This quantity doesn’t coincide

with the classical scaling dimension ∆
(0)
a , since quantum corrections in general appear:

more precisely, a composite operator acquires an anomalous dimension γ as a conse-

quence of renormalization, which has to be implemented in order to cancel divergences

in correlation functions, so that ∆a = ∆
(0)
a + γa. Some operators are protected by su-

persymmetry from receiving an anomalous dimensions: they are called chiral primary

operators. In the other cases we have to renormalize them and, in this process, we usu-

ally face the problem of operator mixing. Let’s take a basis of bare operators with the

same quantum numbers, suche as the classical dimension and other charges. Transition

to the basis where renormalization is multiplicative gives:

Oren
a = Z b

a (Λ)Obare
b , (2.15)

where Λ is an UV cutoff and the matrix Z b
a is the renormalization factor which subtracts

the UV divergences from the correlation functions. In a perturbative approach, it can

be expanded in powers of λ and gets contributions from all the Feynman diagrams with

a single insertion of one of the composite operators Oa. The renormalization factor Z
can be related to the mixing matrix

Γ = Λ
d

dΛ
lnZ(Λ) (2.16)

which, in a conformal field theory, coincides with the quantum part of the dilatation

operator of, i.e. the generator of scaling transformations:

D = D0 + Γ , (2.17)
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where D0 gives the classical dimensions. A basis of operators with well-defined anomalous

dimensions is then found by diagonalizing the mixing matrix Γ:

ΓOa = γaOa . (2.18)

The anomalous dimensions are the eigenvalues of the mixing matrix and the multi-

plicatively renormalized operators are the corresponding eigenvectors. In terms of the

dilatation operator, we can write

DOa = ∆aOa . (2.19)

As N = 4 SYM, also ABJM theory has some sectors which are closed under renormal-

ization, in the sense that they contain a restricted number of operators which mix only

among themselves, thus allowing simplified calculations. We will consider, in this work,

only the simplest case, which is the SU(2)× SU(2) sector. It contains operators made

out only of chiral superfields ZA, WB:

OA1···AL

B1···BL
= Tr[ZA1WB1

· · ·ZALWBL
] . (2.20)

From the above considerations it is clear that the dilatation operator is the basic object

for the computation of anomalous dimensions. Nevertheless, relying solely on field theory

perturbative techniques, it can be very hard to compute anomalous dimensions: this is

due to the fact that, especially at high loop orders, one has usually to deal with a huge

number of Feynman diagrams, even in the superspace approach. In the next chapter we

will see that the integrability tools allow us to extremely simply this problem.

2.4. The Gravity Dual of ABJM Theory

For completeness, in this section we give a couple of comments on the gravity theory

dual to ABJM theory. For a wider exposition we refer to [48] and references therein. As

we said, the gravity dual of ABJM theory is type IIA superstring theory on AdS4×CP
3

background: this geometry is a solution of type IIA supergravity with two- and four-

form fluxes turned on. It preserves 24 out of 32 supersymmetries and, therefore, is not

maximally supersymmetric. A superstring sigma-model can be conveniently defined on
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the coset

OSp(2, 2|6)
SO(1, 3)× U(3)

(2.21)

with a κ-symmetry gauged-fixed action, in order to make it equivalent to the Green-

Schwarz action, at least in non singular backgrounds. This sigma-model can be semi-

classically quantized. One method for dealing with a curved background at the quantum

level is to take a Penrose limit of the geometry which leads to a solvable plane-wave back-

ground and then to include curvature corrections perturbatively.

The metric on AdS4 × CP
3 can be written as

ds2 = R2

(

1

4
ds2AdS4

+ ds2
CP

3

)

, (2.22)

where the AdS4 metric in global coordinates reads

ds2AdS4
= − cosh2 ρ dt2 + dρ2 + sinh2 ρ (dθ2 + sin2 θ dϕ2) , (2.23)

with ρ ≥ 0, t ∈ R, θ ∈ [0, π] and ϕ ∈ [0, 2π]. The CP
3 metric is given by:

ds2
CP3 =dξ2 + cos2 ξ sin2 ξ

(

dψ +
1

2
cos θ1dϕ1 −

1

2
cos θ2dϕ2

)2

+
1

4
cos2 ξ

(

dθ21 + sin2 θ1dϕ
2
1

)

+
1

4
sin2 ξ

(

dθ22 + sin2 θ2dϕ
2
2

)

,

(2.24)

with ξ ∈ [0, π/2], ψ ∈ [0, 2π] and (θ1,2, ϕ1,2) parameterizing two 2-spheres. The back-

ground admits five Killing vectors leading to the five conserved charges: the worldsheet

energy, the AdS-spin and the three CP
3 angular momenta. Note that there is less

symmetry than in the AdS5 × S5 case, where there are two AdS-spins. The angular mo-

menta are related to the charges of ABJM fields so that a dictionary between classical

strings and gauge theory operators can be formulated. The classical string solution that

corresponds to the gauge theory operator Tr(Z1W1)
L (with L large so that the string

becomes classical), is a point-like string that moves along a particular geodesic. Semi-

classical quantization of strings is achieved by expanding the action about a classical

solution and quantizing the fluctuations. In this way we find the worldsheet spectrum

of string excitations. In the light-cone gauge, the massless fluctuations can be gauged
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away and we are left with 4 light excitations (θ1,2, ϕ1,2) from CP
3 and 4 heavy excita-

tions of which one (ξ) comes from CP
3 and the other three (x1,2,3) from AdS4. For

the physical fermions similar results hold. The light modes can be organized into two

(2|2)-dimensional supermultiplets which can be mapped precisely to gauge theory oper-

ators with non vanishing anomalous dimensions. The heavy modes are an artifact of

the above analysis which is done at infinite coupling λ. When going to finite coupling

they dissolve into two light particles. At the technical level this is seen by looking at

which particle poles appear in Green’s functions at not strictly infinite coupling. The

first observation is that in the free theory the pole for the heavy particles with mass κ

coincides with the branch point of the branch cut that accounts for the pair production

of two light modes with mass κ/2 each. When interactions are turned on, i.e. when

1/
√
λ corrections are considered, the pole moves into the branch cut, and the statement

is that the exact propagator has a branch cut only.





Chapter 3.

Integrability

We have seen in the last chapter that the AdS/CFT correspondence states that the

spectra of gauge and string theories should agree. As we explained, by spectrum of a

conformal gauge theory such as ABJM theory, we mean the set of all possible anoma-

lous dimensions of composite operators. Such quantities are in general functions of the

coupling λ and their computation can be very hard if performed with perturbative QFT

methods only, where a full-fledged computation of many multiloop Feynman diagrams

is required to evaluate the mixing matrix. Remarkably, in the last decade, new methods

emerged that reduce the computation of anomalous dimensions, as well as other observ-

ables, to the solution of a set of algebraic equations, called Bethe equations1. This is

due to integrability : there are many hints that ABJM theory may be integrable in the

planar limit, as its four-dimensional cousin N = 4 SYM. If such a belief turns out to

be true, the gauge theory might even be solved exactly. Similar integrable structures

appear on the string theory side of the correspondence, where a two-dimensional non-

linear sigma model is defined on the string worldsheet. In this chapter we introduce the

basic ingredients of integrability in gauge theories and, in particular, related results in

ABJM theory. Some of these results are purely conjectures and need to be tested by

means of independent techniques: this motivates the perturbative computations that we

will perform in the following chapters of this work. A recent review of integrability in

the context of AdS/CFT correspondence can be found in [11].

1In more complicated situations, we are left with a set of integral equations instead: this is the case
of the Thermodynamic Bethe Ansatz and related methods (such as the Y-system), which we won’t
describe in this work.

19
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3.1. The Algebraic Bethe Ansatz

While classical integrability can be rigorously formulated in the Hamiltonian formalism,

the issue of quantum integrability requires more attention to be understood. Roughly

speaking, an integrable system can be thought of as solvable. We will define a quantum

system to be integrable if it admits an infinite number of commuting charges Qr

[Qr,Qs] = 0 , r, s = 1, . . . ,∞ (3.1)

where Q2 is taken to be the hamiltonian (so they are conserved charges). By “solving

a theory” we mean to compute the eigenvalues of physical observables. Even though

finding a complete solution might be very hard in many cases, integrability provides a

set of tools which extremely simplify these computations. Such techniques culminate in

the Bethe equations, a set of algebraic equations named after Hans Bethe, who found a

method to solve the Heisenberg model of ferromagnetism in 1931 [49]. Quantum integra-

bility plays a fundamental role in many areas of Physics, from condensed matter physics

to mathematical physics, and, remarkably, appears also in the context of AdS/CFT cor-

respondence, where it proves very useful e.g. in the problem of renormalization of gauge

theory operators. Here, we don’t follow the chronological flow, which would demand to

start with Bethe’s original method, but rather outline first the more general method orig-

inated from the work of Baxter in the early seventies and developed by the “Leningrad

school” around Faddeev. This modern approach is usually known as the algebraic Bethe

ansatz [50, 51] (see also [52–54, 56, 79] for some reviews). In the next section we will

outline Bethe’s original method, which usually goes under the name of coordinate Bethe

ansatz.

For the sake of simplicity, we discuss in this section the XXX 1

2

Heisenberg model2 as

a concrete example. However, our results are very general in nature. The Hilbert space

of such a system is the tensor product of L copies of Hilbert spaces C2 for individual

spins, where L is the total number of sites in the spin-chain.

2Such model was introduced in 1928 to dscribe a closed ferromagnetic one-dimensional spin-chain with
spin 1

2 degrees of freedom at each site and with identical coupling constants for spin-spin interactions
in all spatial directions. As we will see, the integrable models appearing in the context of AdS/CFT
are more general and will be introduced in the subsequent sections. Nevertheless, the Heisenberg
model is a good playground to understand how the Bethe ansatz works.
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The starting point of the algebraic Bethe ansatz approach is a generating object

called Lax operator, rather than the hamiltonian. For the XXX 1

2

spin chain it is given

by

Lna(u) =

(

u− i

2

)

1na + iPna , (3.2)

where Pj,k is a permutation operator exchanging the spins at sites j and k, u is a spectral

parameter and a labels an auxiliary space C2. In this auxiliary space, Lna is then a 2×2

matrix. Let Lna(u) and Lnb(v) be two Lax operators which act at the same quantum

space (labelled by n) but at different auxiliary spaces (labelled by a and b): then, it can

be shown that there exists an operator Rab(u − v) acting in the tensor product of the

two auxiliary spaces, such that the following fundamental commutation relation holds

on the triple tensor product of C2 spaces:

Rab(u− v)Lna(u)Lnb(v) = Lnb(v)Lna(u)Rab(u− v) . (3.3)

The operator Rab is called R-matrix and, in the case of the Heisenberg model, it is given

by

Rab(u) = u1ab + iPab . (3.4)

We see that the R-matrix is essentially the same thing as the Lax operator. The funda-

mental commutation relation implies that the R-matrix satisfies the Yang-Baxter equa-

tion:

Rab(u− v)Rna(u)Rnb(v) = Rnb(v)Rna(u)Rab(u− v) . (3.5)

This equation is of primary importance in integrable theories and has a simple interpre-

tation in terms of factorized scattering: it says that multiparticle3 scattering factorizes

into pairwise scattering processes, in which the order of the pairwise scattering is of no

importance.

3We don’t further characterize, for the moment, such “particles”. In condensed matter systems, as the
Heisenberg model, they are usually magnons, while in our applications they will be certain gauge
theory operators, as we will explain in a moment.
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From the Lax operator one can build the monodromy matrix Ta(u) which describes

the transport of spins around the chain:

Ta(u) = LLa(u) · · ·L1a(u) . (3.6)

It also fulfills a fundamental commutation relation of the form

Rab(u− v)Ta(u)Tb(v) = Tb(v)Ta(u)Rab(u− v) . (3.7)

Taking the trace in the auxiliary space, we then introduce the transfer matrix

T (u) = TraTa(u) . (3.8)

It is an operator acting on the quantum space. From (3.7) it follows that transfer

matrices at different values of the spectral parameter commute:

[T (u), T (v)] = 0 . (3.9)

Thanks to this property, the transfer matrix is used to generate the conserved charges

of the integrable system: expanding T (u) in power series around a point u0 in complex

plane, we obtain a set of linearly independent commuting operators Qn acting on the

quantum space:

T (u) =
∞
∑

n=0

(u− u0)
nQn , Qn =

1

n!

dn

dun
T (u)

∣

∣

∣

∣

u=u0

, (3.10)

This resembles the formulation of classical integrability, involving integrals of motion

in involution, in the isospectral deformation approach of Lax. On the ground of this

method there is the existence of the R-matrix (or, equivalently, of the Lax operator)

satisfying the Yang-Baxter equation. The Heisenberg model has L degrees of freedom

and the expansion of the transfer matrix, conveniently made around u0 = i/2, yields

a polynomial of degree L in the spectral parameter, T (u) =
∑L

n=0(u − i/2)nQn. Since

QL−1 = 0, we have exactly L commuting charges, as required by integrability. Apart

from the trivial QL = 21, the first contribution in (3.10) gives

T (i/2) = iLU , U = P1,2 · · ·PL−1,L , (3.11)
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where U simultaneously shifts all the spins by one site and is related to the momentum

operator by eiP = U , while the second contribution provides

H =
1

2

(

i
d

du
log T (u)

∣

∣

∣

∣

u= i
2

− L

)

=
1

2

L
∑

n=1

(Pn,n+1 − 1) , (3.12)

which is the well known Heisenberg hamiltonian and can be equivalently written in terms

of the spin operator ~Sn = 1
2
~σn, where ~σn are Pauli matrices acting on site n, as

H =

L
∑

n=1

(

1

4
− ~Sn · ~Sn+1

)

. (3.13)

We have thus formally proven integrability of the XXX 1

2

spin-chain. Moreover, our

formalism allows us to solve the eigenvalue problem for H in a very elegant way, even

though L is very large, as we now explain. Let’s write the monodromy matrix in auxiliary

space as:

Ta(u) =





A(u) B(u)

C(u) D(u)



 , (3.14)

where A,B,C,D are operators acting on the quantum space. We will proceed to the

diagonalization of T (u), which therefore will enable us to diagonalize all the charges

Qn at the same time. Since T (u) = A(u) + D(u), the off-diagonal components C(u)

and B(u) may be ignored. They are however very useful for the construction of the

eigenvectors: let’s observe that the operator C annihilates the ferromagnetic vacuum4,

i.e. the state with all “spin up”:

C(u)|0〉 = 0 . (3.15)

We now make the following ansatz for the eigenvectors of T (u) at level M :

|u1 · · ·uM〉 = B(u1) · · ·B(uM)|0〉 . (3.16)

4By symmetry one can exchange simultaneously A ↔ D and B ↔ C: this corresponds to exchange
up and down spins. In this case the vacuum is the state with all “spin down”.
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The state |u1 · · ·uM〉 is called Bethe state. Using the commutation relations (3.7) one

can show that it is an eigenstate of the transfer matrix with eigenvalues

Λ(u, u1, . . . , uM) =

(

u+
i

2

)L M
∏

j=1

u− uj − i

u− uj
+

(

u− i

2

)L M
∏

j=1

u− uj + i

u− uj
(3.17)

if the set {u1, . . . , uM} satisfies the following Bethe equations :

(

uj + i/2

uj − i/2

)L

=

M
∏

k 6=j

uj − uk + i

uj − uk − i
. (3.18)

These equations are necessary in order to cancel out the poles in Λ so that it is a

polynomial of degree L in u, as it should. The solutions of the Bethe equations, called

Bethe roots, then, allow us to find the eigenvalues Λ(u, u1, . . . , uM) of T (u). From (3.10)

we can then immediately find the eigenvalues of the conserved charges. In particular,

we have for the momentum operator:

P |u1 · · ·uM〉 =
M
∑

j=1

p(uj)|u1 · · ·uM〉 , p(u) = −i log u+ i/2

u− i/2
(3.19)

and for the hamiltonian

H|u1 · · ·uM〉 =
M
∑

j=1

E(uj)|u1 · · ·uM〉 , E(u) = −1

2

1

u2 + 1/4
. (3.20)

We see that momentum and energy are additive. From (3.19) we also see that the Bethe

equations can be cast into the following form:

eiLp(uj) =
M
∏

k 6=j

S(uj − uk) , (3.21)

where the S-matrix is given by

S(uj − uk) =
uj − uk + i

uj − uk − i
. (3.22)

The eigenstate |u〉 represents a quasi-particle, called magnon, with definite momentum

p(u), propagating along the spin-chain. The quantity u is also called magnon rapid-
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ity. A state |u1 · · ·uM〉 represents M magnons propagating on the spin chain: Bethe

equations tell that the scattering process factorizes into M − 1 scattering processes of

the jth magnon with the remaining magnons. The S-matrix describes the scattering of

two magnons and the phase-shift for the jth magnon is given by the exponential of its

momentum. It is possible to express the individual magnon energy as a function of the

individual magnon momentum: it is called dispersion relation and is given by:

E(p) = cos p− 1 . (3.23)

We have presented the Bethe Ansatz technique for the XXX 1

2

Heisenberg spin-chain:

this means that the spins are in the fundamental representation of SU(2). The Bethe

Ansatz can be extended to spin-chains with more general symmetry groups. The Bethe

equations become more involved since one has to deal with the nested Bethe Ansatz: for

example, for SU(n) symmetry, one needs n− 1 Bethe Ansatz levels.

3.2. The Coordinate Bethe Ansatz

The most important advantage of the algebraic Bethe Ansatz is that it allows to find

a rather systematic way to generate large classes of integrable models. Once we have

defined an R-matrix, it automatically gives an integrable hamiltonian. We now describe

the more “physical” coordinate Bethe Ansatz. Useful introductions can be found in

[54, 55, 59]. We still descibe the example of the Heisenberg model.

Let’s start with the Heisenberg hamiltonian (3.13). The ferromagnetic vacuum state

is taken to be

|0〉 = | ↑↑ · · · ↑〉 (3.24)

and has zero energy. One constructs excited states by flipping one ore more spins at

selected sites:

|n1 · · ·nM〉 := | ↑↑ · · · ↓ · · · ↓ · · · ↑〉 = S−
n1
· · ·S−

nM
|0〉 , (3.25)
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where S±
n = S1

n ± iS2
n are the usual ladder operators. Our aim is to diagonalize the

hamiltonian. The states (3.25) are not eigenstates of H . Consider one excitation first:

we find that the superposition

|p〉 =
L
∑

n=1

eipn |n〉 (3.26)

is indeed an eigenstate of H with eigenvalue

E(p) = −2 sin2 p

2
, (3.27)

which coincides with (3.23). Such a state is called “magnon”. Two-magnon states are

defined by

|p1p2〉 =
L
∑

n1<n2

ψn1n2
|n1n2〉 (3.28)

where ψ is the wave function in the discrete position space of the spin-chain. Schrödinger

equation H |p1p2〉 = E(p1, p2) |p1p2〉 can be solved by the following Bethe ansatz:

ψn1n2
= ei(p1n1+p2n2) + S(p1, p2)e

i(p1n2+p2n1) . (3.29)

It means that the magnons freely move around the chain with momenta p1, p2 until they

hit each other when n2 = n1+1. If the system is integrable, they either pass through each

other or exchange momenta, with an amplitude S(p1, p2), which is then the S-matrix

of the process. Because of total momentum conservation, momenta are individually

conserved. Integrability implies that it is true also for the M-body scattering problem.

Plugging (3.29) into the Schrödinger equation we find that it is satisfied if

S(p1, p2) = − eip1+ip2 − 2 eip1 + 1

eip1+ip2 − 2 eip2 + 1
, E(p1, p2) = E(p1) + E(p2) , (3.30)

where E(p) is given by (3.27). Imposing the boundary conditions

ψn1n2
= ψn2n1+L (3.31)
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on the wave function, we obtain the Bethe equations:

eip1L = S(p1, p2) , eip2L = S(p2, p1) . (3.32)

Integrability allows us to immediately generalize them to the problem of M-magnon

scattering: factorized scattering demands that the total phase shift acquired by a magnon

circling around the chain is the products of phase factors due to individual collisions with

the other M − 1 magnons

eipkL =

M
∏

j=1,j 6=k

S(pk, pj) , k = 1, . . . , L , (3.33)

with the same S-matrix (3.30). The total energy is given by

E(p1, . . . , pM) =

M
∑

k=1

E(pk) . (3.34)

The eigenstates are given by

|p1p2 · · · pM〉 =
∑

n1<n2<···<nM

∑

{τ}
A(τ)eipτ1n1+···+ipτM nM |n1 · · ·nM〉 , (3.35)

where {τ} is the set of all M ! permutations τ of the spin down. The amplitudes are

given by

A(τ) = sign(τ)
∏

j<k

(eipk+ipj − 2eipk + 1) , (3.36)

where sign(τ) is the signature of the permutation. Changing variables to uk =
1
2
cot(pk

2
)

we recover (3.18),(3.20), (3.22).
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3.3. The ABJM Spin-Chain

We are now ready to describe how integrability shows up in ABJM theory. Consider

single trace operators, made up only of chiral superfields, of the form:

OA1···AL

B1···BL
= Tr(Y A1Y †

B1
· · ·Y ALY †

BL
) (3.37)

where Ai, Bi = 1, . . . , 4 and

Y A = (Z1, Z2,W †1,W †2) , Y †
A = (Z†

1, Z
†
2,W1,W2) (3.38)

combine the SU(2) superfields ZA and WA into fundamental and anti-fundamental rep-

resentations of the R-symmetry group SU(4). It is very convenient to represent the op-

erators (3.37) as states of a circular spin-chain with 2L sites. The spins are alternating

between the fundamental representation of SU(4) on odd sites and the anti-fundamental

representation on the even sites:

Tr(Y 1Y †
3 Y

2Y †
1 Y

4Y †
2 · · · ) ↔ |Y 1Y †

3 Y
2Y †

1 Y
4Y †

2 · · · 〉 (3.39)

The spin-chain is closed because of the presence of the trace. In this spin-chain analogy,

the dilatation operator of the gauge theory can then be regarded as the hamiltonian of

the model acting in the Hilbert space (V ⊗V̄ )⊗L, where V and V̄ are the 4 and 4̄ of SU(4).

It was shown that the planar two-loop dilatation operator of ABJM theory, in the spin-

chain picture, is mapped to an integrable hamiltonian [12,13]. This hamiltonian can be

written in terms of permutation operators P : V ⊗V → V ⊗V (or P : V̄ ⊗ V̄ → V̄ ⊗ V̄ )

and trace operators K : V ⊗ V̄ → V ⊗ V̄ (or K : V̄ ⊗ V → V̄ ⊗ V ) acting on flavour

space in the following way

PAB
A′B′ = δAB′δBA′ , KAB′

BA′ = δAA′δ B′

B , (3.40)

and reads

D2 =
1

2
λ2

2L
∑

j=1

(21− 2Pj,j+2 + Pj,j+2Kj,j+1 +Kj,j+1Pj,j+2) . (3.41)
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11

Figure 3.1.: The SU(4) Dynkin diagram. The numbers indicate the Dynkin labels of the
representation. The outer roots are uj and vj while rj is the middle root.

The ground states of the Hamiltonian are chiral primary operators. Their spectrum

can be directly compared with the supergravity harmonics on AdS4 × CP
3. It can be

checked that the chiral primaries are in one-to-one correspondence with the spherical

functions on CP
3. Integrability of the hamiltonian (3.41) can be shown in the following

way (see [12,13] for details): generalizing the formalism explained in the previous section,

one builds a general alternating integrable spin-chain hamiltonian in any representations

starting with appropriate R-matrices [57]. The resulting hamiltonian involves nearest-

neighbor and three-site interactions, but in general breaks charge conjugation symmetry

4 ↔ 4̄. It turns out for SL(n) groups that the nearest neighbor interactions always cancel

out. If one further makes a special choice of parameters then the conjugation symmetry is

preserved and the spin-chain hamiltonian exactly coincides with the dilatation operator

(3.41). Therefore, (3.41) is integrable by construction. It proves two-loop integrability

of ABJM theory. The R-matrix formalism also provides a set of nested Bethe equations:

(

uj + i/2

uj − i/2

)L

=

Mu
∏

k 6=j

uj − uk + i

uj − uk − i

Mr
∏

k=1

uj − rk − i/2

uj − rk + i/2
,

1 =
Mr
∏

k 6=j

rj − rk + i

rj − rk − i

Mu
∏

k=1

rj − uk − i/2

rj − uk + i/2

Mv
∏

k=1

rj − vk − i/2

rj − vk + i/2
,

(

vj + i/2

vj − i/2

)L

=

Mv
∏

k 6=j

vj − vk + i

vj − vk − i

Mr
∏

k=1

vj − rk − i/2

vj − rk + i/2
,

(3.42)

where uj, vj and rj are a set of Bethe roots associated with the SU(4) Dynkin diagram

(see Figure 3.1). The outer roots uj and vj are momentum carrying roots:

e2iP =

Mu
∏

j=1

uj + i/2

uj − i/2

Mv
∏

j=1

vj + i/2

vj − i/2
. (3.43)
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1

1

Figure 3.2.: One choice for the OSp(2, 2|6) Dynkin diagram. The Dynkin labels are taken
from the SU(4) spin chain. Some subsectors of the theory are visible from
this diagram: two SU(2|2) subsectors are obtained by exciting only momentum
carrying roots of one of the wings (u and v) plus an arbitrary amount of auxiliary
roots in the SU(2|2) tail (r, s, w). The SU(2)×SU(2) subsector is obtained by
only exciting the momentum carrying roots.

Since the operators (3.37) contain the trace, Behte equations must be supplemented by

the condition of vanishing momentum:

Mu
∏

j=1

uj + i/2

uj − i/2

Mv
∏

j=1

vj + i/2

vj − i/2
= 1 . (3.44)

It follows from the cyclicity of the trace and is hence called also “trace condition”. Once

we have solved the Bethe equations (3.42) we can find the energy eigenvalues, which

correspond to anomalous dimensions:

E = λ2

(

Mu
∑

j=1

1

u2j + 1/4
+

Mv
∑

j=1

1

v2j + 1/4

)

. (3.45)

Let’s observe that, for the SU(2) × SU(2) subsector, the trace operators K vanish

and we are left with two decoupled Heisenberg SU(2) spin-chains of L sites each, one

living at odd sites and the other at even sites. This corresponds to the absence of

the middle roots rj. The trace condition couples the two chains through the relation

P = P1 + P2 = 0 (mod 2π), where P1,2 are the momenta for the first and second spin-

chain. In [12] the Bethe Ansatz was extended to the full OSp(2, 2|6) superconformal

group and integrability for the full planar dilatation operator was proved in [15]. The

coupling between the Bethe roots is encoded in the Dynkin diagram of Figure 3.2. The

OSp(2, 2|6) Bethe Ansatz was tested against explicit diagonalization of the spin-chain

hamiltonian in [27].
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3.4. The All-Loop Bethe Ansatz

In the previous section we have presented the two-loop Bethe Ansatz for ABJM theory.

At strong coupling we have seen that the theory can be described by a coset sigma

model: this sigma model was shown to be classically integrable [19,20] and the algebraic

curve was constructed in [21]. It is tempting to try and extend the Bethe Ansatz

beyond the two-loop level and connect the resulting Bethe equations to the string sigma

model. Dealing with all-orders systems leads to long-range spin-chains: remarkably, even

though we neither know the exact dilatation operator nor the generating Lax operator,

some progress can be still made. In the context of AdS5/CFT4, thanks to symmetry

considerations, an all-loop Asymptotic Bethe Ansatz was derived in [58,59,78]. The word

“asymptotic” can be understood in the context of the coordinate Behte Ansatz: because

of long-range interactions, there must be an asymptotic region where two magnons are

far enough from each other so that they cannot interact directly: in this case the wave

function can be put in the form of the Bethe Ansatz. The proposed Bethe equations

contain a scalar dressing factor, which was later conjectured in [75]. Being asymptotic,

these equations don’t take into account wrapping interactions5 and are, therefore, valid

only for sufficiently long operators. Put in other words, the length of the spin-chain has

to exceed the range of the interactions.

Inspired by these considerations, Gromov and Vieira proposed an analogous all-loop

Bethe Ansatz for the AdS4/CFT3 case. The reason of this similarity is that both versions

of the correspondence share an SU(2|2) symmetry which highly constrains the form of

the Bethe equations. Introducing five Behte roots u, v, r, s, w, as required by the

structure of the Dynkin diagram associated with the OSp(2, 2|6) symmetry group, the

5Such interactions have a range greater than the length of the operator and, thus, wrap around it.
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all-loop Bethe equations read [18]:

1 =
Mw
∏

k=1

sj − wk + i/2

sj − wk − i/2

Mu
∏

k=1

1− 1/x(sk)x(uj + 1/2)

1− 1/x(sk)x(uj − 1/2)

×
Mv
∏

k=1

1− 1/x(sk)x(vj + 1/2)

1− 1/x(sk)x(vj − 1/2)
,

1 =
Mw
∏

k 6=j

wj − wk − i

wj − wk + i

Ms
∏

k=1

wj − sk + i/2

wj − sk − i/2

Mr
∏

k=1

sj − rk + i/2

sj − rk − i/2
,

1 =

Mw
∏

k=1

rj − wk + i/2

rj − wk − i/2

Mu
∏

k=1

x(rj)− x(uk + i/2)

x(rj)− x(uk − i/2)

Mv
∏

k=1

x(rj)− x(vk + i/2)

x(rj)− x(vk − i/2)
,

(

x(uj + i/2)

x(uj − i/2)

)L

=
Mu
∏

k 6=j

uj − uk + i

uj − uk − i

Ms
∏

k=1

1− 1/x(uj − i/2)x(uk)

1− 1/x(uj + i/2)x(uk)

Mr
∏

k=1

x(uj − i/2)− x(rk)

x(uj + i/2)− x(rk)

×
Mu
∏

k=1

eiθ(uj ,uk)

Mv
∏

k=1

eiθ(vk ,uj) ,

(

x(vj + i/2)

x(vj − i/2)

)L

=
Mv
∏

k 6=j

vj − vk + i

vj − vk − i

Ms
∏

k=1

1− 1/x(vj − i/2)x(vk)

1− 1/x(vj + i/2)x(vk)

Mr
∏

k=1

x(vuj − i/2)− x(rk)

x(vj + i/2)− x(rk)

×
Mv
∏

k=1

eiθ(vj ,vk)
Mu
∏

k=1

eiθ(vk ,uj)

(3.46)

and must be supplemented by the zero-momentum condition:

1 =
Mu
∏

k=1

x(uk + i/2)

x(uk − i/2)

Mv
∏

k=1

x(vk + i/2)

x(vk − i/2)
. (3.47)

We see that only the u and v roots carry momentum. However, they are coupled to the

auxiliary s, w, r roots through Bethe equations. The variables x are related to the Bethe

roots through the relation

x+
h2(λ)

x
= u ⇒ x(u) =

u

2
+

1

2

√

u2 − 4h2(λ) , (3.48)

where h(λ) is an unfixed function of the coupling constant which appears in the magnon

dispersion relation [60–62] as well as in many other quantities. Indeed, the form of the
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exact all-order magnon dispersion relation of ABJM theory is fixed by the underlying

SU(2|2) symmetry to be [63]

E(p) =

√

Q2 + 4h2(λ) sin2 p

2
−Q , (3.49)

where Q is the R-charge of the fundamental magnon. It, thus, has the same form as in

N = 4 SYM, where Q = 1 and h(λ) turns out to be simply
√

λ/4π. In ABJM theory,

Q = 1/2 and h(λ) appears to be highly non-trivial. Some guesses for the functional form

have been made, e.g. in [18, 24, 60], but none of them is fully acceptable. Any proposal

for h(λ) should interpolate between the known weak- and strong-coupling asymptotics,

which are given by

h2(λ) = λ2 − 4ζ(2)λ4 +O(λ6) , λ≪ 1 (3.50)

and

h(λ) =

√

λ

2
+ a1 +O(1/

√
λ) , λ≫ 1 . (3.51)

The two terms displayed in (3.50) were computed in [12,22,23], while higher-order terms

are still unknown. We will make a conjecture on the transcendentality of the coefficients

in the weak-coupling expansion of h2(λ) in the next sections. The leading term in

(3.51) was computed in [61, 62], while the value of the constant term is still debated.

A worldsheet computation for the one-loop correction to the energy of a folded string

yields a non-vanishing value for a1 [64], while the algebraic curve computation gives

a1 = 0 [65], which was also assumed in [18] in deriving (3.46). This disagreement can be

traced back to different prescriptions used for adding up fluctuation frequencies in string

computations. It, thus, seems that the subleading terms in (3.51) are scheme dependent.

In order to unambiguously compare different approaches, one should therefore express

all results in terms of a physical reference observable, and neither in terms of λ nor h(λ).

The Bethe equations (3.46) also contain the scalar dressing factor eiθ, which intro-

duces extra self-interactions for the momentum-carrying roots, as well as a new inter-

action between them, at higher orders in perturbation theory. It is a very important

quantity since it interpolates between weak and strong coupling behavior. Its form is
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also conjectured in [18] to be essentially the same as the BES phase [75] and will be

discussed in the next section.

Once the system (3.46) is solved, the spectrum of all conserved charges Qr is given

by the momentum-carrying roots alone:

Qr =

Mu
∑

k=1

qr(uk) +

Mv
∑

k=1

qr(vk) , (3.52)

where

qr(u) =
1

r − 1

(

i

x(u+ i/2)r−1
− i

x(u− i/2)r−1

)

. (3.53)

In particular, the spectrum of anomalous dimensions (or energies of string states) is

given by the eigenvalues of the second charge:

E = h2(λ)Q2 . (3.54)

For our purposes, this is the best method available for the computation of anomalous di-

mensions of long operators in ABJM theory. We recall that the all-loop Bethe equations

(3.46) are not proven, but just conjectured. However they enjoy many nice properties

that allow to trust their correctness. First of all they exhibit an OSp(2, 2|6) global

symmetry, which is to be expected from AdS4/CFT3 correspondence, besides other in-

teresting dualities (see [18]). Moreover, they reduce to the two-loop Bethe equations

of [12,13] discussed in the previous section, for λ→ 0, and to the algebraic curve of [21]

in the continuum limit, for λ → ∞. The all-loop Bethe Ansatz has passed some non

trivial tests [29–32, 74]. In particular, it has been shown that it can be derived from an

exact two-particle S-matrix6. Nevertheless, it is useful to look for further independent

checks of its validity. In this work, we perturbatively compute the leading-order weak-

coupling correction to the dressing phase θ(λ) appearing in the scalar factor inside (3.46)

6The staggered nature of the spin-chain naturally breaks the S-matrix up into pieces: interactions
between two Z-particles, between two W-particles, and between one of each kind, where each piece
is proportional to the S-matrix derived in the context of the AdS5/CFT4 [63]. The scalar factor
cannot be fixed by symmetry and, consistently with [18], has been conjectured to be related to the
BES dressing phase [29]. We will return on these results in section 3.5
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and which is predicted to affect anomalous dimensions starting at eight-loop order [18].

We find an agreement with the value7 expected from the Asymptotic Bethe Ansatz.

3.5. The Dressing Phase

We now describe the dressing factor eiθ appearing in the all-loop Bethe equations (3.46).

The phase θ(λ) is called dressing phase and is conjectured to coincide with the BES phase

[75] introduced in the context of the AdS5/CFT4 correspondence, upon the replacement

g → h(λ), where g is the SYM coupling constant given by
√

λ/4π. The form eiθ

of the ABJM dressing factor is a consequence of the SU(2|2)Z ⊕ SU(2|2)W symmetry,

whereas in the AdS5/CFT4 case the analogous factor e
2iθ appears squared because of the

SU(2|2)⊗SU(2|2). Such a factor is necessary to interpolate between the weak-coupling

regime described by gauge theory and the strong-coupling regime described by string

theory. In fact, the S-matrices8 of the respective theories are equal up to the dressing

factor [59, 68].

The two-body S-matrix is the main object in the solution of integrable theories.

Symmetry considerations, together with the requirement of factorized scattering, usually

fix the S-matrix up to an overall scalar factor: this is precisely the dressing factor. It

encodes much more dynamical information and is harder to derive. In [66] it is shown how

the integral form of Dorey-Hofman-Maldacena [67] for the dressing phase can be derived

from the assumptions of unitarity, crossing symmetry and some physical constraints on

its analytical structure. This DHM representation is given by

θ(u, v) = χ(x+, y−)− χ(x−, y−)− χ(x+, y+) + χ(x−, y+) , (3.55)

where χ(x, y) = −χ(y, x), x± = x(u± i/2), y± = x(v ± i/2) and

χ(x, y) = −i
∮

|z1|=1

dz1
2πi

∮

|z2|=1

dz2
2πi

1

(x− z1)(y − z2)
log

Γ[1 + ih(λ)(z1 +
1
z1
− z2 − 1

z2
)]

Γ[1− ih(λ)(z1 +
1
z1

− z2 − 1
z2
)]
.

(3.56)

7See section 3.5 for details.
8We’re referring, here, to the internal S-matrix describing the scattering of excitations on the lattice
hidden inside the trace of composite operators.
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With the representation (3.55)-(3.56) the dressing factor reduces to unit when λ → 0

and to the AFS phase [68] when λ → ∞, thus reproducing the correct dynamics in the

asymptotic regimes.

A useful rewriting of the dressing phase is given in terms of the conserved charges

as [68, 80]

θ(u, v) =

∞
∑

r=2

∞
∑

s=r+1

βr,s(λ)[qr(u)qs(v)− qs(u)qr(v)] , (3.57)

where the coefficient functions βr,s(λ) should have the following strong coupling behavior

[18]

βr,s(λ) = h(λ)r+s−1δr+1,s + h(λ)r+s−2−1 + (−1)r+s

π

(r − 1)(s− 1)

(r + s− 2)(s− r)
+O(1/

√
λ)

(3.58)

yielding the AFS phase at leading order and the HL phase [84] at next-to leading order9.

In the context of AdS5/CFT4 it was argued [75] that the weak-coupling expansion

of βr,s(λ) can be extrapolated by analytical continuation of the all-loop strong-coupling

coefficient functions, conjectured in [85] to be given by βr,s(λ) =
∑∞

n=0 c
(n)
r,s gr+s−1−n with

c(n)r,s =
(1− (−1)r+s)ζ(n)

2(−2π)nΓ(n− 1)
(r − 1)(s− 1)

Γ[(1
2
(s+ r + n− 3)]Γ[(1

2
(s− r + n− 1)]

Γ[(1
2
(s+ r − n + 1)]Γ[(1

2
(s− r − n+ 3)]

,

(3.59)

to negative values of n:

βr,s(g) = −
∞
∑

n=1

c(−n)
r,s gr+s+n−1 , (3.60)

where g =
√
λ

4π
as usual. So, the dressing phase coefficients were conjectured to be

β(ℓ)
r,s = −c(r+s−2ℓ−1)

r,s . (3.61)

9This assumes that a1 = 0 in (3.51). However see [64] for the case where a1 = − ln 2
2π .
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In particular, c
(−2)
2,3 = −4ζ(3). Moreover, there were provided arguments to say that

the appearance of the dressing phase coefficient functions βr,s(λ) is postponed to order

λr+s−2 instead of λs−1 [80] so that the leading order coefficient of the dressing phase was

predicted to be

β
(3)
2,3 = 4ζ(3) . (3.62)

By means of field theory computations, it was proved that (3.62) is indeed the right

value [82].

Since in the Bethe Ansatz proposal of [18] the strong coupling limit of the dressing

phase is the same of the AdS5/CFT4 case, we can suppose, by analogy of the N = 4

SYM case and with the usual replacement g → h(λ), that in ABJM theory βr,s(λ) =

O(λ2(r+s−2)) and that:

βr,s(λ) = −
∞
∑

n=1

c(−n)
r,s h(λ)r+s+n−1 . (3.63)

For r = 2, s = 3, we see that we should obtain

β2,3(λ) = −c(−2)
2,3 λ6 −

(

c
(−4)
2,3 + 3h4c

(−2)
2,3

)

λ8 + · · · (3.64)

We observe that, since the first weak coupling coefficient of h(λ) is h2 = 1 (3.50), the

leading order contribution to ABJM dressing phase is expected to be

β
(6)
2,3 = 4ζ(3) , (3.65)

which is precisely the same value obtained in N = 4 SYM. At higher orders, the c
(−n)
r,s co-

efficients mix with the non trivial coefficients of h(λ) yielding dressing phase coefficients

which differ from the N = 4 SYM ones. We stress that, in our context, this is merely a

conjecture: one of the goals of the present work is the computation of the coefficient β
(6)
2,3

by independent field theory techniques. We will find in Chapter 5 that the prediction

(3.65) is indeed correct.
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3.6. Transcendentality principle

Let’s now make a general discussion on the dressing phase coefficients of ABJM theory.

In the case of N = 4 SYM theory, it was shown [75] that the coefficients of the dressing

phase should have a well defined degree of transcendentality in order to preserve the

Kotikov-Lipatov transcendentality principle on the scaling function of the theory [76].

The scaling function fSYM(g) (also known as the cusp anomalous dimension) is a univer-

sal function of the coupling constant g that appears, in a generic planar gauge theory,

in many situations: it is appears, e.g., in on-shell gluon scattering amplitudes, in the

anomalous dimensions of large-spin twist operators and so on. Its weak coupling expan-

sion in g fulfills the Kotikov-Lipatov transcendentality principle [92] up to four loops.

It is widely believed that such principle is valid at any loop-order. Since the scaling

function can be derived from a Bethe Ansatz approach, it puts constraints on the tran-

scendentality of the dressing phase. In particular, the leading order coefficient of the

dressing phase directly computed in [82] precisely satisfies such constraints. Here, we

want to generalize these results to the ABJM case: the scaling function of ABJM theory

is prescribed to be [18]

fABJM(λ) =
1

2
fSYM(g)|g→h(λ) . (3.66)

Taking the weak coupling expansion for fSYM(g) obtained in [75] and inserting the ex-

pansion of h(λ), we thus get, up to eight loops,

fABJM(λ) = 4 λ2 −
(

4

3
π2 − 4h4

)

λ4 +

(

44

45
π4 − 8

3
h4π

2 + 4h6

)

λ6

− 4

(

73

315
π6 − 8ζ(3)2 − 11

15
h4π

4 +
1

3
h24π

2 +
2

3
h6π

2 − h8 + 4β
(6)
2,3ζ(3)

)

λ8

+O(λ10) .

(3.67)

The transcendentality principle, extended to ABJM theory, states that:

Assigning degree of transcendentality k to constants πk as well as ζ(k), the ℓ-loop

contribution to the cusp anomalous dimension fABJM has uniform degree of transcenden-

tality ℓ− 2.
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Recalling that h4 = −4ζ(2), we see that this principle is satisfied up to four loops.

Moreover, from the six-loop contribution, we immediately see that h6 should have degree

four. Starting from eight loops, also the unknown dressing phase starts contributing to

the scaling function. One very natural way10 to preserve the transcendentality principle

is to conjecture that:

• h2k has degree of transcendentality 2k − 2,

• β
(2k)
r,s has degree of transcendentality 2k + 2− r − s.

Therefore, the transcendentality principle implies that the leading order coefficient

of the dressing phase should be of the form

β
(6)
2,3 = a π3 + b ζ(3) , (3.68)

where a and b are some rational numbers. One of the main goals of this work is to

compute such constants. It will be done in Chapter 5.

10We’re neglecting the possibility that h8 and β
(6)
2,3 can have higher (or lower) degree of transcendentality

which cancel out between them.





Chapter 4.

The Dilatation Operator

In this chapter we compute the planar asymptotic dilatation operator of ABJM theory,

up to eight loops, in the SU(2) × SU(2) sector. Its eigenvalues are the anomalous

dimensions of long operators, i.e. operators that aren’t affected by wrapping interactions

at the considered perturbative order. In this sector, operators are made out only of the

chiral superfields ZA, WB:

OA1···AL

B1···BL
= Tr[ZA1WB1

· · ·ZALWBL
] , (4.1)

where Aj, Bj = 1, 2. This sector is closed under renormalization, i.e. the operators (4.1)

mix only among themselves. The restriction to the planar asymptotic case is motivated

by the fact that, in this case, a large information on the dilatation operator can be

obtained relying only on integrability of the theory. This chapter covers the first part

of [34] and works out the details of the computations required to obtain the results

contained there.

4.1. The Bethe Ansatz in SU(2) × SU(2) sector

Let’s first collect the integrability tools we need for the construction of the dilatation

operator. We just have to specialize the main results of the previous section to the

SU(2)× SU(2) sector.

41
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In the spin chain picture, the operators (4.1) are mapped to states of a circular

alternating XXX 1

2

Heisenberg spin chain, with the fields ZA being interpreted as spins

lying on odd sites and the WA as lying on even sites. We will refer to fields Z2 and W2

as impurities and they correspond to “spin down” states. The ground state of length

2L is chosen to be

|0 〉 = Tr[Z1W1 · · ·Z1W1] , (4.2)

while the operators

|2k 〉 =Tr[Z1W1 · · ·Z1W2 · · ·Z1W1] ,

|2k + 1 〉 =Tr[Z1W1 · · ·Z2W1 · · ·Z1W1]
(4.3)

represent states with a single excitation on the site 2k and 2k + 1 respectively. There

are two kinds of one-magnon states, depending on their momentum p being excited on

even or odd sites1:

|p〉e =
L
∑

k=1

eipk|2k〉

|p〉o =
L
∑

k=1

eipk|2k + 1〉 .
(4.4)

Magnon dispersion relation is

E(p) =
1

2

(
√

1 + 16h2(λ) sin2 p

2
− 1

)

, (4.5)

where h(λ) is the interpolating function, which has the weak-coupling expansion

h2(λ) =
∞
∑

k=1

h2kλ
2k (4.6)

with h2 = 1 and h4 = −4ζ(2) the only known coefficients [22–24].

1In the sum, the identification 2L+ 1 ∼ 1 is understood.
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We will need the expansion E(p) =
∑∞

k=1E2k(p)λ
2k of (4.5) up to eight loops. We

get:

E2(p) = 2− 2 cos p ,

E4(p) = − 2 (3 + h4) + 2 (4− h4) cos p− 2 cos(2p) ,

E6(p) = 40− 12h4 + 2h6

+ 2 (8h4 − h6 − 30) cos p

+ 4 (6− h4) cos(2p)

− 4 cos(3p) ,

E8(p) = 2 (−175 + 60h4 − 3h24 − 6h6 + h8)

+ 2 (280− 90h4 + 4h24 + 8h6 − h8) cos(p)

+ 2 (−140 + 36h4 − h24 − 2h6) cos(2p)

+ 2 (40− 6h4) cos(3p)

− 10 cos(4p) .

(4.7)

The all-loop asymptotic Bethe equations for the alternating spin chain of length 2L can

be derived from [18] and read

[

x(uj + i/2)

x(uj − i/2)

]L

=

Mu
∏

k=1,k 6=j

uj − uk + i

uj − uk − i
eiθ(uj ,uk)

Mv
∏

k=1

eiθ(uj ,vk)

[

x(vj + i/2)

x(vj − i/2)

]L

=
Mv
∏

k=1,k 6=j

vj − vk + i

vj − vk − i
eiθ(vj ,vk)

Mu
∏

k=1

eiθ(vj ,uk)

(4.8)

while the momentum constraint is

Mu
∏

j=1

x(uj + i/2)

x(uj − i/2)

Mv
∏

j=1

x(vj + i/2)

x(vj − i/2)
= 1 . (4.9)

We have called ui and vi the Bethe roots of each SU(2) factor. We also denoted by Mu

and Mv the number of u and v roots. Moreover, we introduced the function

x(w) =
w

2

(

1 +

√

1− 4
h2(λ)

w2

)

, (4.10)
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where w = u, v. The dressing phase is [18]

θ(wi, wj) =
∞
∑

r=2

∞
∑

s=r+1

βr,s(λ)[qr(wi)qs(wj)− qs(wi)qr(wj)] , (4.11)

where the coefficient functions βr,s(λ) can be expanded in λ as

βr,s(λ) =
∞
∑

k=s−1

β(2k)
r,s λ2k . (4.12)

It is given in terms of the quantities

qr(w) =
1

r − 1

(

i

x(w + i/2)r−1
− i

x(w − i/2)r−1

)

, (4.13)

which are related to the eigenvalues of the conserved charges Qr, whose existence is

ensured by integrability. In particular, Q2 is the hamiltonian of the integrable model

and is identified with the dilatation operator of the gauge theory. The energy eigenvalues

are given by

E = h2(λ)

(

Mu
∑

j=1

q2(uj) +

Mv
∑

j=1

q2(vj)

)

(4.14)

Let’s observe that, for two-impurity states, the Bethe Ansatz is simplified. The momen-

tum constraint requires

w1 = −w2 ≡ w , (4.15)

while the Bethe equations reduce to

(

w + i/2

w − i/2

)L

=





1 +
√

1− 4h2(λ)
(w−i/2)2

1 +
√

1− 4h2(λ)
(w+i/2)2





L

eiθ(w,−w) (4.16)
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for Mu =Mv = 1, and

(

w + i/2

w − i/2

)L−1

=





1 +
√

1− 4h2(λ)
(w−i/2)2

1 +
√

1− 4h2(λ)
(w+i/2)2





L

eiθ(w,−w) (4.17)

for Mu = 2, Mv = 0 or Mu = 0, Mv = 2. For any L fixed, these equations can be

solved order by order in perturbation theory. This is the basic tool for the computation

of anomalous dimensions of long operators.

As we see from (4.8), the dressing factor introduces extra self-interactions for the

roots and also couples the two SU(2) spin chains at higher loops. In the proposed all-

loop Bethe Ansatz [18] it is mentioned that the dressing phase starts contributing at

eight loops, leading to the result that the two SU(2) spin chains are decoupled up to six

loops: this means that the two types of magnons, associated to the two SU(2) factors,

propagating on the spin chain, don’t interact at this order. It was shown in [22] and [24],

by direct computations, that this is true at four-loop order: indeed, the contributions

to the dilatation operator of the respective diagrams that could lead to interactions

between the two types of magnons cancel. The results of [26] imply that this is true

also at six-loop order. This latter fact isn’t so trivial and has the consequence that the

coefficient β
(4)
2,3 , which can be a priori present at six loops, actually vanishes. A similar

result was valid in N = 4 SYM in the SU(2) secotr, where the coefficient of the dressing

phase β
(2)
2,3 was equal to zero at order λ2. In fact, the form of the dressing phase for the

ABJM case is conjectured to be the same as for N = 4 SYM [18]. From this fact we

conjectured in Section 3.5 that the leading-order coefficient of the dressing phase should

be β
(6)
2,3 = 4ζ(3). It therefore should appear at eight loops in the dilatation operator.

The next Chapter of this work is aimed to provide a perturbative test of this conjecture.

4.2. General procedure

Here we discuss the general procedure we used to construct the asymptotic dilatation

operator of ABJM theory. It is similar to the procedure used to construct the dilatation

operator of N = 4 SYM, described in [79–81].
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We have seen that the two-loop dilatation operator is integrable and that in the

SU(2)× SU(2) sector is described by an alternating Heisenberg spin chain with next-to-

nearest-neighbor interactions. We then assume integrability for the whole theory, as it is

widely believed to be true. For the construction of the dilatation operator up to a given

order λℓ, it suffices to require perturbative integrability. This means that the integrable

structure closes up to the considered perturbative order. More precisely, if

Qr(λ) =

∞
∑

k=0

Q(2k)
r λ2k (4.18)

is the perturbative expansion of the charges, we ask that the maximal range of Q(2k)
r is

r + 2k − 1, i.e. Q(2k)
r acts on r + 2k − 1 adjacent spins, and that at ℓ loops

[Qr(λ),Qs(λ)] = O(λℓ+1) . (4.19)

The physical interpretation is the following: starting from an exactly integrable hamil-

tonian (which is next-to-nearest neighbor for ABJM theory), we deform it with local

interactions of range linearly increasing with the perturbative order. Hence, at finite

λ, one would obtain a long-ranged spin chain. In the same way, the charges commute

exactly only if all the terms of the series (4.19) are taken into account. Let’s note that,

when the range r+2k− 1 exceeds the length 2L of the spin chain, the notion of locality

of an interaction breaks down and wrapping interactions typically appear. So, we work

with asymptotic states, i.e. states of length 2L satisfying

L >
ℓ+ r − 2

2
, (4.20)

where ℓ is the loop-order.

Let’s now turn to the problem of the construction of the asymptotic ℓ-loop dilatation

operator. Since the dilatation operator is identified with the charge Q2, on states of

length 2L > ℓ its perturbative expansion is

D(λ) = L+

∞
∑

k=1

D2k λ
2k , (4.21)
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where the 0-loop term 2L is proportional to the identity and yields the classical dimension

of an operator made up of 2L chiral superfields, while the second term is the quantum

contribution and yields its anomalous dimension. The ℓ-loop dilatation operator Dℓ has

maximal range ℓ + 1. Let’s introduce a basis of operators for D: the local interactions

among spins are represented by products of permutations of next-to-neighbor spins, so

we define the permutation structures

{a1, . . . , an} =

L
∑

j=1

P2j+a1,2j+a1+2 · · ·P2j+an,2j+an+2 , (4.22)

where the permutation operators Pi,j exchange spins at sites i and j. Indices are under-

stood modulo 2L. If n = 0, we denote { } = L. The range R of a permutation structure

is

R = max(a1, . . . , an)−min(a1, . . . , an) + 3 . (4.23)

The integer n is called length of the permutation structure and, in terms of the associated

Feynman diagrams, it coincides with the number of chiral and antichiral vertices. The

permutation structures satisfy the following relations:

{. . . , a, a, . . .} = {. . . , . . .} ;
{. . . , a, b, . . .} = {. . . , b, a, . . .} , if |b− a| 6= 2 ;

{a, b, . . .} = {a+ 2m, b+ 2m, . . . } , m = 0, 1, 2, . . .

{. . . , a, a+ 2, a, . . .} = {. . . , a, a+ 2, . . .}+ {. . . , a+ 2, a, . . .} − {. . . , a, . . .}
− {. . . , a+ 2, . . .}+ {. . . , . . .} .

(4.24)

Under hermitian conjugation and parity, they transform as

{a1, . . . , an}† = {an, . . . , a1} ;
P{a1, . . . , an}P−1 = {−a1, . . . ,−an} .

(4.25)
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If {a, b, c, . . .} contains only even/odd entries, it will act, regarding single-impurity states,

on states with impurity on even/odd sites only:

{. . . , a, . . .}|2k〉 =
L
∑

j=1

· · ·P2j+a,2j+a+2 · · · |2k〉

= · · ·Pa,a+2 · · · | ↑↑↑ · · · ↓ · · · ↑↑〉
+ · · ·Pa+2,a+4 · · · | ↑↑↑ · · · ↓ · · · ↑↑〉

(4.26)

where the impurity (here written as a “spin-down”) is at 2kth position. Because of the

sum, the permutation operator Pa,a+2 “goes” through the entire chain and permutes the

same spin twice. This applies for every permutation operator present in the permutation

structure.

In Table 4.1 we list all the independent permutation structures that appear in the

dilatation operator up to eight loops. In order to read a basis for the dilatation operator

at ℓ loops, one has to include all the permutation structures up to range R = ℓ + 1,

neglecting the ones in parenthesis, because they appear at the next loop order.
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R Basis of permutation structures

1 { }
2 -

3 {0}
4 {0,1}
5 {0,2}, {2,0}

({0,1,2}, {2,1,0})
6 {0,3}

{0,1,3}, {0,3,1}
{0,2,3}, {2,0,3}

({0,1,2,3}, {2,1,0,3}, {0,3,2,1}, {2,3,0,1})
7 {0,4}

{0,2,4}, {4,2,0}, {0,4,2}, {2,0,4}
({0,1,4}, {0,3,4})

({2,0,4,2})
({0,1,2,4}, {2,1,0,4}, {4,1,2,0}, {4,1,0,2})

({0,1,3,4}, {0,3,1,4})
({0,2,3,4}, {2,0,3,4}, {0,4,3,2}, {4,3,2,0})

8 {0,5}, {0,1,5}, {0,4,5}
{0,2,5}, {2,0,5}, {0,3,5}, {0,5,3}

{0,1,3,5}, {0,3,1,5}, {0,1,5,3}, {5,3,1,0}
{0,2,3,5}, {2,0,3,5}, {0,2,5,3}, {2,0,5,3}
{0,2,4,5}, {2,0,4,5}, {0,4,2,5}, {4,2,0,5}

9 {0,6}
{0,2,6}, {2,0,6}, {0,4,6}, {0,6,4}

{0,3,6}
{0,2,4,6}, {0,2,6,4}, {0,4,2,6}, {2,0,4,6}
{2,0,6,4}, {0,6,4,2}, {4,2,0,6}, {6,4,2,0}

Table 4.1.: Permutation structures needed up to eight loops, grouped according to their range
R. Permutation structures of odd (even) rangeR appear at R−1 (R) loops, apart
from the ones in parenthesis, which appear at the next loop order. Permutation
structures contributing at ten loops or beyond are not written. Note that, in order
to find the complete basis, one has to add {. . . , a + 1, . . .} to each permutation
structure {. . . , a, . . .} listed here.
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We will need the action of permutation structures on one-particle states:

{ }|2k〉 =L|2k〉
{0}|2k〉 = |2k − 2〉+ |2k + 2〉+ (L− 2)|2k〉

{0, 2}|2k〉 = |2k − 4〉+ 2 |2k + 2〉+ (L− 3)|2k〉
{2, 0}|2k〉 =2 |2k − 2〉+ |2k + 4〉+ (L− 3)|2k〉
{0, 4}|2k〉 =2 |2k − 2〉+ 2 |2k + 2〉+ (L− 4)|2k〉

{0, 2, 4}|2k〉 = |2k − 6〉+ 3 |2k + 2〉+ (L− 4)|2k〉
{4, 2, 0}|2k〉 =3 |2k − 2〉+ |2k + 6〉+ (L− 4)|2k〉
{2, 0, 4}|2k〉 = |2k − 4〉+ |2k + 2〉+ |2k − 2〉+ |2k + 4〉+ (L− 4)|2k〉
{0, 4, 2}|2k〉 = |2k − 2〉+ |2k − 4〉+ |2k + 4〉+ |2k + 2〉+ (L− 4)|2k〉

{2, 0, 4, 2}|2k〉 =2 |2k − 4〉+ 2 |2k + 4〉+ (L− 4)|2k〉
{0, 6}|2k〉 =2 |2k − 2〉+ 2 |2k + 2〉+ (L− 4)|2k〉

{0, 2, 6}|2k〉 = |2k − 2〉+ 3 |2k + 2〉+ |2k − 4〉+ (L− 5)|2k〉
{2, 0, 6}|2k〉 =3 |2k − 2〉+ |2k + 2〉+ |2k + 4〉+ (L− 5)|2k〉
{0, 4, 6}|2k〉 = |2k − 4〉+ 3 |2k + 2〉+ |2k − 2〉+ (L− 5)|2k〉
{0, 6, 4}|2k〉 =3 |2k − 2〉+ |2k + 4〉+ |2k + 2〉+ (L− 5)|2k〉

{0, 2, 4, 6}|2k〉 = |2k − 8〉+ 4 |2k + 2〉+ (L− 5)|2k〉
{6, 4, 2, 0}|2k〉 =4 |2k − 2〉+ |2k + 8〉+ (L− 5)|2k〉
{0, 2, 6, 4}|2k〉 = |2k − 2〉+ |2k − 6〉+ |2k + 4〉+ 2 |2k + 2〉+ (L− 5)|2k〉
{2, 0, 4, 6}|2k〉 = |2k − 6〉+ 2 |2k + 2〉+ |2k − 2〉+ |2k + 4〉+ (L− 5)|2k〉
{0, 6, 4, 2}|2k〉 =2 |2k − 2〉+ |2k − 4〉+ |2k + 6〉+ |2k + 2〉+ (L− 5)|2k〉
{4, 2, 0, 6}|2k〉 =2 |2k − 2〉+ |2k + 2〉+ |2k + 6〉+ |2k − 4〉+ (L− 5)|2k〉
{0, 4, 2, 6}|2k〉 =2 |2k − 4〉+ 2 |2k + 2〉+ |2k + 4〉+ (L− 5)|2k〉
{2, 0, 6, 4}|2k〉 = |2k − 4〉+ 2 |2k + 4〉+ 2 |2k − 2〉+ (L− 5)|2k〉 .

(4.27)

Similar results hold for the action of the permutation structures on states with one

impurity at odd sites |2k + 1〉. Obviously, the action of mixed permutation structures



The Dilatation Operator 51

on one-particle states can be reduced to the ones above:

{0, 1}|2k〉 = {0}|2k〉
{0, 1}|2k + 1〉 = {1}|2k + 1〉
{0, 1, 2}|2k〉 = {0, 2}|2k〉

{0, 1, 2}|2k + 1〉 = {1}|2k + 1〉
· · ·

(4.28)

In order to construct the ℓ-loop dilatation operator, we first write the most general

combination of permutation structures up to range ℓ + 1. Then, we fix the unknown

coefficients imposing the following conditions:

1. Impose hermiticity and parity invariance:

D†
ℓ = Dℓ , PDℓP−1 = Dℓ ; (4.29)

2. Require that the vacuum state is protected (i.e., it has zero energy):

Dℓ |0 〉 = 0 ; (4.30)

3. Impose the magnon dispersion relation on one-impurity states on odd and even

sites (let Eℓ be the ℓ-loop coefficient of (4.5) in the small λ expansion):

Dℓ |p〉o,e = Eℓ(p) |p〉o,e ; (4.31)

4. Use the asymptotic Bethe ansatz on two-impurity states in order to fix the remain-

ing parameters.

Point 4 works in the following manner:

• Fix a length of the spin chain, with L > ℓ/2, so that wrapping interactions are

absent;
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• Find a basis of two-impurity operators of length 2L. Note that there are two types

of such bases, as the impurities can be both on even (or odd) sites or one on even

and the other on odd sites2;

• Explicitly diagonalize the matrix representation of D(λ) =
∑ℓ/2

k=1 D2k λ
2k on the

basis of length 2L states;

• Compute the eigenvalues from the asymptotic Bethe equations (4.8) and compare

them with those found in the previous step, containing the unknown parameters.

The explicit diagonalization of the dilatation operator and the solution of the Behte

equations can be performed with Mathematica. We collect in Appendix C the relevant

routines.

At the end of the procedure, some parameters may remain unfixed: some of them

are related to similarity transformations of the dilatation operator:

D′ = e−iχDeiχ . (4.32)

They don’t appear in the spectrum but only affect the eigenvectors. Therefore, they can

be regarded as unphysical and their values depend on the renormalization scheme.

Some other parameters may depend on some coefficients of the dressing phase and

cannot be fixed through the Bethe Ansatz.

Other possible unknown parameters can be fixed through conservation of the first

higher charge Q3: since the charge Q3 should be conserved up to order ℓ, this means

that we have to impose

ℓ/2
∑

k=1

[D2k,Q(ℓ+2−2k)
3 ] = 0 . (4.33)

This requires the construction of the Q3 up to order ℓ with a procedure similar to that

described for the dilatation operator, with the difference that Q(ℓ)
3 has odd parity and is

anti-hermitian. Since Q3 has higher maximal range, ℓ+ 2, at high loops it can be quite

complicated to compute.

2for the same reason, we have seen in section 4.1 that there are two types of Bethe equations for
two-impurity states
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4.3. Construction of the dilatation operator

We are now in a position to compute the perturbative asymptotic dilatation operator of

ABJM theory up to eight loops.

First of all we compute the two-loop dilatation operator. A basis of permutation

structures with range up to R = 3 is

{ } , {0} , {1} , (4.34)

so the two-loop dilatation operator will be of the form

D2 = a { }+ b {0}+ c {1} . (4.35)

Hermiticity implies that the coefficients a, b, c are real. We now use the relations (4.27)

to fix these coefficients. Zero-energy of the vacuum gives the equation

a+ b+ c = 0 . (4.36)

Let’s now compute the action of the four-loop dilatation operator on one-magnon states

(4.4). Using the relations (4.27), for |p〉e we obtain

D2|p〉e = aL |p〉e + c L|p〉e + b

L
∑

k=1

eipk{0}|2k〉

=aL|p〉e + c L|p〉e + b
L
∑

k=1

eipk (|2k + 2〉+ |2k − 2〉+ (L− 2)|2k〉)

=(a+ b+ c)L|p〉e + b

L
∑

k=1

eip(k−1)eip|2(k − 1)〉

+ b
L
∑

k=1

eip(k+1)e−ip|2(k + 1)〉 − 2b|p〉e

=b eip|p〉e + b e−ip|p〉e − 2b|p〉e
=2b (cos p− 1)|p〉e .

(4.37)
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A similar result holds for |p〉o. So we have:

D2 |p〉e = 2b (cos p− 1) |p〉e ,
D2 |p〉o = 2c (cos p− 1) |p〉e .

(4.38)

Comparing these eigenvalues with (4.7) we obtain b = c = −1, so that:

D2 = 2 { } − {0} − {1} , (4.39)

which is exactly the same result of Minahan and Zarembo [12] and Bak and Rey [13].

Let’s now compute the four-loop dilatation operator: this was done in [22] and,

independently, in [25]. The authors of [22] used a procedure similar to ours, up to point

3. This fixes all but one coefficient in the dilatation operator, namely the coefficient

of {0, 1} + {1, 2}. We simply use point 4 of our procedure on length six two-impurity

states to prove that it vanishes, without computing any Feynman diagram! A basis of

permutation structures up to range R = 5 is3

{ } , {0} , {1} , {0, 1} , {1, 2} , {0, 2} , {2, 0} , {1, 3} , {3, 1} .
(4.40)

We can conveniently write the dilatation operator as

D4 = a { }+D4,even +D4,odd +D4,mixed , (4.41)

where D4,even and D4,odd contain permutation structures with only even/odd entries, thus

acting non trivially only on states with impurities on even/odd sites respectively, while

D4,mixed contains permutation structures with both even and odd entries:

D4,even = b {0}+ g1 {0, 2}+ g2 {2, 0} ,
D4,odd = c {1}+ f1 {1, 3}+ f2 {3, 1} ,

D4,mixed = d1 {0, 1}+ d2 {1, 2} ,
(4.42)

3All other permutation structures of range five, such as {0, 1, 2}, don’t contribute at four loops. It is
easily seen from the chiral graphs, which are the graphs displaying the minimum number of loops,
associated to those permutation structures.
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Hermiticity implies that the coefficients a, b, c, d1, d2 are real and that f ∗
1 = f2, g

∗
1 = g2.

Furthermore, parity invariance implies that d1 = d2, f1 = f2 and g1 = g2. Setting

d = d1 = d2, f = f1 = f2 and g = g1 = g2, we can, then, write the dilatation operator as

D4 = a { }+ b {0}+ c {1}+ d ({0, 1}+ {1, 2}) + g ({0, 2}+ {2, 0}) + f ({1, 3}+ {3, 1}) ,
(4.43)

where all the coefficients are now real. Zero-energy of the vacuum implies the following

relation:

a + b+ c + 2d+ 2f + 2g = 0 . (4.44)

The action of D4 on the even one-magnon state is

D4|p〉e = [(−2b− 4d− 6g) + (2b+ 4d+ 4g) cos p+ 2g cos(2p)] |p〉e . (4.45)

A similar result holds for |p〉o. Imposing the validity of the four-loop dispersion relation

on one-magnon states we get the following equations4:

c+ 2d+ 3f = 3− h4 ,

b+ 2d+ 3g = 3− h4 ,

f = g = −1 .

(4.46)

This fixes all but one coefficient, which will be found as described in point 4 of the proce-

dure described in section 4.2. In order to avoid wrapping interactions that would break

the Bethe ansatz procedure, we have to focus on length six two-impurity states. The

matrix representation of the dilatation operator on a basis of states with two impurities

of different types has the following eigenvalues:

γ0 = 0 , γ1 = 6λ2 + (−18 + 3d+ 6h4)λ
4 , γ2 = 6λ2 + (−18 + 9d+ 6h4)λ

4 , (4.47)

while the Bethe Ansatz applied to a spin chain of length six gives the energy eigenvalue

E = 6λ2 + (−18 + 6h4)λ
4 . (4.48)

4We list here only the independent equations.
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We therefore conclude that d = 0; this implies that D4,mixed = 0, as is consistent with the

fact that the two types of magnons don’t interact at 4 loops. The four-loop dilatation

operator, then, reads

D4 = 2 (−4 + h4) { }+ (6− h4) ({0}+ {1})− ({0, 2}+ {2, 0}+ {1, 3}+ {3, 1}).
(4.49)

The six-loop dilatation operator was computed in [26] through Feynman diagrammatics.

Here, we apply our technique to rederive it: the procedure of section 4.2 turns out to

be very simple also in the six-loop case, and, assuming that the dressing phase doesn’t

appear at six loops as mentioned in section 4.1, it allows to completely fix the dilatation

operator without computing any diagram. However, here, we don’t assume this fact,

but directly verify that β
(4)
2,3 = 0, making use of a single input from the results of [26].

Let’s start by writing the six-loop dilatation operator as the most general linear

combination of the permutation structures contributing at six loops. We have

D6 =a { }+D6,even +D6,odd +D6,mixed , (4.50)

where

D6,even = b {0}+ d1 {0, 2}+ d2 {2, 0}+m {0, 4}
+ l1 {0, 2, 4}+ l2 {4, 2, 0}+ l3 {2, 0, 4}+ l4 {0, 4, 2} ,

D6,odd = D6,even({. . . , a, . . .} ↔ {. . . , a + 1, . . .}) ,
D6,mixed = c {0, 1}+ c′ {1, 2}+ e {0, 3}+ e′ {1, 4}

+ f1 {0, 1, 2}+ f2 {2, 1, 0}+ f ′
1 {1, 2, 3}+ f ′

2 {3, 2, 1}
+ g1 {0, 1, 3}+ g2 {0, 3, 1}+ g′1 {1, 2, 4}+ g′2 {1, 4, 2}
+ g3 {0, 2, 3}+ g4 {2, 0, 3}+ g′3 {1, 3, 4}+ g′4 {3, 1, 4} .

(4.51)

Imposing hermiticity on D6, we find that the coefficients a, b, c, e,m are real, while the

others are restricted by the following relations:

d1 =d
∗
2 l1 = l∗2 l3 = l∗4 f1 = f ∗

2 g1 = g∗2 g3 = g∗4

f ′
1 =f

′∗
2 g′1 = g

′∗
2 g′3 = g

′∗
4 .

(4.52)
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Parity invariance, then, gives the following relations:

d1 =d2 ≡ d f1 = f2 ≡ f l1 = l2 ≡ l c = c′ e = e′

f ′
1 =f

′
2 ≡ f ′ g1 = g′4 g2 = g′3 g3 = g′2 g4 = g′1 f ′

1 = f2 f ′
2 = f1 .

(4.53)

Combining hermiticity and parity invariance, we have

g1 = g + i ǫ1 g3 = g̃ + i ǫ2 l3 = l̃ + i ǫ3 (4.54)

We can rewrite the dilatation operator as

D6,even = b {0}+ d ({0, 2}+ {2, 0}) +m {0, 4}
+ l ({0, 2, 4}+ {4, 2, 0}) + l̃ ({2, 0, 4}+ {0, 4, 2})
+ i ǫ3 ({2, 0, 4} − {0, 4, 2})

(4.55)

D6,mixed = c ({0, 1}+ {1, 2}) + e ({0, 3}+ {1, 4})
+ f ({0, 1, 2}+ {2, 1, 0}+ {1, 2, 3}+ {3, 2, 1})
+ g ({0, 1, 3}+ {0, 3, 1}+ {1, 3, 4}+ {3, 1, 4})
+ i ǫ1 ({0, 1, 3} − {0, 3, 1} − {1, 3, 4}+ {3, 1, 4})
+ g̃ ({0, 2, 3}+ {2, 0, 3}+ {1, 4, 2}+ {1, 2, 4})
+ i ǫ2 ({0, 2, 3} − {2, 0, 3}+ {1, 4, 2} − {1, 2, 4})

(4.56)

Zero-energy of the vacuum gives:

a+ 2b+ 4d+ 4l + 4l̃ + 2m+ 2c+ 2e+ 4f + 4g + 4g̃ = 0 . (4.57)



58 The Dilatation Operator

The action of D6 on |p〉e is

D6|p〉e = [(−2b− 4c− 6d− 4e− 10f − 8g − 12g̃

− 8l − 8l̃ − 4m)

+ 2 (b+ 2c+ 2d+ 2e+ 4f + 4g + 4g̃

+ 3l + 2l̃ + 2m) cos(p)

+ 2 (d+ f + 2g̃ + 2l̃) cos(2p)

+ 2l cos(3p) ] |p〉e

(4.58)

Repeating the analogous computation with |p〉o and comparing these eigenvalues with

E6 given in (4.7) we find the following equations:

l = −2 ;

d+ f + 2g̃ + 2l̃ = 2 (6− h4) ;

d+ f + 2g + 2l̃ = 2 (6− h4) ;

b+ 2c+ 2d+ 2e+ 4f + 4g + 4g̃

+ 3l + 2l̃ + 2m = −30 + 8h4 − h6 ;

(4.59)

from second and third equation of (4.59) it follows that g̃ = g. Solving (4.59) for b, d we

find

b = − 48− 2c− 2e− 2f − 4g + 12h4 − h6 + 2l̃ − 2m,

d =12− f − 2g − 2h4 − 2l̃ .
(4.60)

Now we consider two-impurity states. In order to avoid wrapping, we have to start from

L = 4. For L = 4 (length 8 states), comparing the eigenvalues of the dilatation operator

with the solutions of the Bethe equations we get

l̃ = 0 , 2m = 4− 3 β
(4)
2,3 , f = 0 , g = 0 , c+ e = 0 . (4.61)

For L = 5 (length 10 states) we get

c = 0 , e = 0 . (4.62)
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We therefore have explicitly shown that D6,mixed = 0. It means that the two types

of magnons don’t interact at six loops, i.e. the two SU(2) factors are decoupled, as

claimed in [18]. The results of [26] (obtained with an independent approach) imply, in

our notations, thatm = 2. From (4.61) we thus see that β
(4)
2,3 must vanish, as conjectured

in Section 3.5.

The six-loop dilatation operator is then given by:

D6 = 2 (30− 8h4 + h6) { }+ (−52 + 12h4 − h6) ({0}+ {1})
+ 2 ({0, 4}+ {1, 5}) + (12− 2h4) ({0, 2}+ {2, 0}+ {1, 3}+ {3, 1})
− 2 ({0, 2, 4}+ {4, 2, 0}+ {1, 3, 5}+ {5, 3, 1})
+ i ǫ3 ({2, 0, 4} − {0, 4, 2} − {1, 5, 3}+ {3, 1, 5})

(4.63)

and coincides with that presented in [26] up to non physical parameters. Since the

coefficient β
(4)
2,3 of the dressing phase, which could be a priori present according to 4.12,

actually vanishes, the first contribution to the dressing phase should be searched at eight

loops. We are thus led to consider the eight-loop dilatation operator: since it isn’t known

at present, we now use our procedure to constrain it as much as possible.

Its general representation in the basis of permutation structures is:

D8 =a { }+D8,even +D8,odd +D8,mixed , (4.64)

where

D8,even = b {0}+ c1 {0, 2}+ c2 {2, 0}+ d {0, 4}
+ e1 {0, 2, 4}+ e2 {0, 4, 2}+ e3 {2, 0, 4}+ e4 {4, 2, 0}+ f {0, 6}
+ g1 {0, 2, 6}+ g2 {2, 0, 6}+ g3 {0, 4, 6}+ g4 {0, 6, 4}
+ l1 {0, 2, 4, 6}+ l2 {0, 2, 6, 4}+ l3 {0, 4, 2, 6}+ l4 {2, 0, 4, 6}
+ l5 {2, 0, 6, 4}+ l6 {0, 6, 4, 2}+ l7 {4, 2, 0, 6}+ l8 {6, 4, 2, 0}
+m {2, 0, 4, 2}

(4.65)

D8,odd = D8,even({. . . , a, . . .} ↔ {. . . , a+ 1, . . .}) (4.66)
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D8,mixed =α1 {0, 1}+ α2 {0, 1, 2}+ α3 {2, 1, 0}+ α4 {0, 3}
+ α5 {0, 1, 3}+ α6 {0, 3, 1}+ α7 {0, 2, 3}+ α8 {2, 0, 3}
+ α9 {0, 1, 2, 3}+ α10 {2, 1, 0, 3}+ α11 {0, 3, 2, 1}+ α12 {2, 3, 0, 1}
+ α13 {0, 1, 4}+ α14 {0, 3, 4}+ α15 {0, 1, 2, 4}+ α16 {2, 1, 0, 4}
+ α17 {4, 1, 2, 0}+ α18 {4, 1, 0, 2}+ α19 {0, 1, 3, 4}+ α20 {0, 3, 1, 4}
+ α21 {0, 2, 3, 4}+ α22 {2, 0, 3, 4}+ α23 {0, 4, 3, 2}+ α24 {4, 3, 2, 0}
+ α25 {0, 5}+ α26 {0, 1, 5}+ α27 {0, 2, 5}+ α28 {2, 0, 5}+ α29 {0, 3, 5}
+ α30 {0, 5, 3}+ α31 {0, 4, 5}+ α32 {0, 1, 3, 5}+ α33 {0, 3, 1, 5}
+ α34 {0, 1, 5, 3}+ α35 {5, 3, 1, 0}+ α36 {0, 2, 3, 5}+ α37 {2, 0, 3, 5}
+ α38 {0, 2, 5, 3}+ α39 {2, 0, 5, 3}+ α40 {0, 2, 4, 5}+ α41 {2, 0, 4, 5}
+ α42 {0, 4, 2, 5}+ α43 {4, 2, 0, 5}+ α44 {0, 3, 6}+ ({. . . , a↔ a+ 1, . . .})

(4.67)

From now on we will focus only on D8,even and D8,mixed, since the coefficients of D8,odd

are the same of D8,even. The hermitian conjugate of D8,even is

D†
8,even = b∗ {0}+ c∗2 {0, 2}+ c∗1 {2, 0}+ d∗ {0, 4}

+ e∗4 {0, 2, 4}+ e∗3 {0, 4, 2}+ e∗2 {2, 0, 4}+ e∗1 {4, 2, 0}+ f ∗ {0, 6}
+ g∗2 {0, 2, 6}+ g∗1 {2, 0, 6}+ g∗4 {0, 4, 6}+ g∗3 {0, 6, 4}
+ l∗8 {0, 2, 4, 6}+ l∗7 {0, 2, 6, 4}+ l∗5 {0, 4, 2, 6}+ l∗6 {2, 0, 4, 6}
+ l∗3 {2, 0, 6, 4}+ l∗4 {0, 6, 4, 2}+ l∗2 {4, 2, 0, 6}+ l∗1 {6, 4, 2, 0}
+m∗ {2, 0, 4, 2}

(4.68)

Imposing hermiticity D8,even = D†
8,even we obtain the first restrictions on the coefficients:

a =a∗ b = b∗ c1 = c∗2 d = d∗ e1 = e∗4 e2 = e∗3 f = f ∗

g1 =g
∗
2 g3 = g∗4 l1 = l∗8 l2 = l∗7 l3 = l∗5 l4 = l∗6 m = m∗ .

(4.69)
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Similar computations for D8,mixed give

α∗
2 =α3 α∗

5 = α6 α∗
7 = α8 α∗

9 = α12 α∗
10 = α11 α∗

15 = α17 α∗
16 = α18

α∗
19 =α20 α∗

21 = α24 α∗
22 = α23 α∗

27 = α28 α∗
29 = α30 α∗

32 = α35 α∗
33 = α34

α∗
36 =α39 α∗

37 = α38 α∗
40 = α43 α∗

41 = α42 α∗
26 = α26 α∗

31 = α31 . . .

(4.70)

where the ellipses denote real coefficients. Let’s now compute now the parity conjugate

of D8,even:

PD8,evenP−1 = b {0}+ c2 {0, 2}+ c1 {2, 0}+ d {0, 4}
+ e4 {0, 2, 4}+ e2 {0, 4, 2}+ e3 {2, 0, 4}+ e1 {4, 2, 0}+ f {0, 6}
+ g4 {0, 2, 6}+ g3 {2, 0, 6}+ g2 {0, 4, 6}+ g1 {0, 6, 4}
+ l8 {0, 2, 4, 6}+ l6 {0, 2, 6, 4}+ l5 {0, 4, 2, 6}+ l7 {2, 0, 4, 6}
+ l3 {2, 0, 6, 4}+ l2 {0, 6, 4, 2}+ l4 {4, 2, 0, 6}+ l1 {6, 4, 2, 0}
+m {2, 0, 4, 2}

(4.71)

Imposing parity invariance D8,even = PD8,evenP−1 we obtain other restrictions:

c1 =c2 ≡ c e1 = e4 g1 = g4 g2 = g3

l1 =l8 l2 = l6 l3 = l5 l4 = l7 .
(4.72)

Similarly for D8,mixed we get

α2 =α3 α5 = α8 α6 = α7 α9 = α12 α13 = α14 α15 = α24

α16 =α22 α17 = α21 α18 = α23 α19 = α20 α26 = α31 α27 = α30

α28 =α29 α32 = α43 α33 = α41 α34 = α42 α35 = α40 α36 = α39

(4.73)

In D8,mixed, besides {. . . , a, . . .}, one has to consider {. . . , a + 1, . . .}, but this doesn’t

add new coefficients, because under parity we have

P{1, 2}P−1 = {0, 1}
P{1, 2, 3}P−1 = {2, 1, 0}

· · ·
(4.74)
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Combining hermiticity and parity invariance, we have

g1 =g4 ≡ g + i ǫ1 g2 = g3 ≡ g − i ǫ1 e2 ≡ e2 + i ǫ3 e3 ≡ e3 − i ǫ3

l2 =l6 ≡ l2 + i ǫ2 l7 = l4 ≡ l2 − i ǫ2 l3 = l5 ≡ l3 − i ǫ4
(4.75)

α6 =α8 ≡ α6 + i ǫm6 α11 = α11 + i ǫm11 α17 = α17 + i ǫm17 α18 = α18 + i ǫm18

α24 =α24 + i ǫm24 α23 = α23 + i ǫm23 α28 = α28 + i ǫm28 α30 = α30 + i ǫm30

α35 =α35 + i ǫm35 α34 = α34 + i ǫm34 α38 = α38 + i ǫm38 α43 = α43 + i ǫm43

α42 =α42 + i ǫm42

(4.76)

We can rewrite the dilatation operator as

D8,even = b {0}+ c ({0, 2}+ {2, 0}) + d {0, 4}
+ e1 ({0, 2, 4}+ {4, 2, 0}) + e2 ({0, 4, 2}+ {2, 0, 4})
+ i ǫ3 ({0, 4, 2} − {2, 0, 4}) + f {0, 6}
+ g ({0, 2, 6}+ {2, 0, 6}+ {0, 4, 6}+ {0, 6, 4})
+ iǫ1 ({0, 2, 6} − {2, 0, 6}+ {0, 4, 6}+ {0, 6, 4})
+ l1 ({0, 2, 4, 6}+ {6, 4, 2, 0})
+ l2 ({0, 2, 6, 4}+ {2, 0, 4, 6}+ {0, 6, 4, 2}+ {4, 2, 0, 6})
+ i ǫ2 ({0, 2, 6, 4} − {2, 0, 4, 6}+ {0, 6, 4, 2} − {4, 2, 0, 6})
+ l3 ({0, 4, 2, 6}+ {2, 0, 6, 4}) +m {2, 0, 4, 2}

(4.77)
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and for the mixed part5 we get

D8,mixed =α1 {0, 1}+ α2 ({0, 1, 2}+ {2, 1, 0}) + α3 {0, 3}
+ α4 ({0, 1, 3}+ {0, 3, 1}+ {0, 2, 3}+ {2, 0, 3})
+ i ǫm1 ({0, 1, 3} − {0, 3, 1} − {0, 2, 3}+ {2, 0, 3})
+ α5 ({0, 1, 2, 3}+ {3, 2, 1, 0}) + α6 ({2, 1, 0, 3}+ {0, 3, 2, 1})
+ i ǫm2 ({2, 1, 0, 3} − {0, 3, 2, 1}) + α7 ({0, 1, 4}+ {0, 3, 4})
+ α8 ({0, 1, 2, 4}+ {4, 1, 2, 0}+ {0, 2, 3, 4}+ {4, 3, 2, 0})
+ i ǫm3 ({0, 1, 2, 4} − {4, 1, 2, 0} − {0, 2, 3, 4}+ {4, 3, 2, 0})
+ α9 ({2, 1, 0, 4}+ {4, 1, 0, 2}+ {2, 0, 3, 4}+ {0, 4, 3, 2})
+ i ǫm4 ({2, 1, 0, 4} − {4, 1, 0, 2}+ {2, 0, 3, 4} − {0, 4, 3, 2})
+ α10 ({0, 1, 3, 4}+ {0, 3, 1, 4}) + α11 {0, 5}
+ α12 ({0, 1, 5}+ {0, 4, 5})
+ α13 ({0, 2, 5}+ {2, 0, 5}+ {0, 3, 5}+ {0, 5, 3})
+ i ǫm5 ({0, 2, 5} − {2, 0, 5} − {0, 3, 5}+ {0, 5, 3})
+ α14 ({0, 1, 3, 5}+ {4, 2, 0, 5}+ {5, 3, 1, 0}+ {0, 2, 4, 5})
+ i ǫm6 ({0, 1, 3, 5}+ {4, 2, 0, 5} − {5, 3, 1, 0} − {0, 2, 4, 5})
+ α15 ({0, 3, 1, 5}+ {0, 1, 5, 3}+ {2, 0, 4, 5}+ {0, 4, 2, 5})
+ i ǫm7 ({0, 3, 1, 5} − {0, 1, 5, 3}+ {2, 0, 4, 5} − {0, 4, 2, 5})
+ α16 ({0, 2, 3, 5}+ {2, 0, 5, 3}) + α17 ({2, 0, 3, 5}+ {0, 2, 5, 3})
+ i ǫm8 ({2, 0, 3, 5} − {0, 2, 5, 3})
+ α18 {0, 3, 6}+ ({. . . , a↔ a+ 1, . . .}) .

(4.78)

The coefficients are now all real. Requiring that the vacuum state is protected we have

a+ 2b+ 4c+ 2d+ 4e1 + 4e2 + 2f + 8g + 4l1 + 8l2 + 4l3 + 2m+ 2α1

+ 4α2 + 2α3 + 8α4 + 4α5 + 4α6 + 4α7 + 8α8 + 8α9 + 4α10 + 2α11

+ 4α12 + 8α13 + 8α14 + 8α15 + 4α16 + 4α17 + 2α18 = 0

(4.79)

5We have relabelled the coefficients in a more “natural” way.
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We now impose the eight-loop dispersion relation on one-magnon states:

D8 |p〉e = E8 |p〉e ,
D8 |p〉o = E8 |p〉o .

(4.80)

The action of D8 on |p〉e is

(a { }+D8,even)|p〉e = [(−2b− 6c− 4d− 8e1 − 8e2 − 4f − 20g − 10l1

− 20l2 − 10l3 − 4m)

+ 2 (b+ 2c+ 2d+ 3e1 + 2e2 + 2f + 8g + 4l1

+ 6l2 + 2l3) cos(p)

+ 2 (c+ 2e2 + 2g + 2l2 + 3l3 + 2m) cos(2p)

+ 2 (e1 + 2l2) cos(3p)

+ 2l1 cos(4p) ] |p〉e

(4.81)

and

D8,mixed|p〉e = [−(4α1 + 10α2 + 4α3 + 20α4 + 12α5 + 12α6 + 12α7

+ 24α8 + 24α9 + 14α10 + 4α11 + 12α12 + 20α13)

+ 24α14 + 24α15 + 12α16 + 12α17 + 6α18)

+ (4α1 + 8α2 + 4α3 + 16α4 + 8α5 + 8α6 + 12α7

+ 20α8 + 16α9 + 12α10 + 4α11 + 12α12 + 16α13)

+ 20α14 + 16α15 + 8α16 + 8α17 + 6α18) cos(p)

+ (2α2 + 4α4 + 4α5 + 4α6 + 8α9 + 2α10 + 4α13)

+ 8α15 + 4α16 + 4α17) cos(2p)

+ 4 (α8 + α14) cos(3p) ] |p〉e .

(4.82)
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Similar results are true for |p〉o. Comparing these eigenvalues with E8 given in (4.7) we

find the following equations:

l1 = −5 ;

e1 + 2l2 + 2α8 + 2α14 = 40− 6h4 ;

c+ 2e2 + 2g + 2l2 + 3l3 + 2m+ α2 + 2α4 + 2α5 + 2α6

+ 4α9 + α10 + 2α13 + 4α15 + 2α16 + 2α17 = −140 + 36h4 − h24 − 2h6 ;

b+ 2c+ 2d+ 3e1 + 2e2 + 2f + 8g + 4l1 + 6l2 + 2l3 + 2α1 + 4α2

+ 2α3 + 8α4 + 4α5 + 4α6 + 6α7 + 10α8 + 8α9 + 6α10 + 2α11

+ 6α12 + 8α13 + 10α14 + 8α15 + 4α16 + 4α17 + 3α18 =

= 280− 90h4 + 4h24 + 8h6 − h8 ;

b+ 3c+ 2d+ 4e1 + 4e2 + 2f + 10g + 5l1 + 10l2 + 5l3 + 2m

+ 2α1 + 5α2 + 2α3 + 10α4 + 6α5 + 6α6 + 6α7 + 12α8 + 12α9

+ 7α10 + 2α11 + 6α12 + 10α13 + 12α14 + 12α15 + 6α16 + 6α17 + 3α18 =

= 175− 60h4 + 3h24 + 6h6 − h8 .

(4.83)

The last equation isn’t independent. We finally get:

l1 =− 5 ;

e1 =2 (20− l2 − α8 − α14 − 3h4) ;

c =− 140− 2e2 − 2g − 2l2 − 3l3 − 2m− α2 − 2α4 − 2α5 − 2α6

− 4α9 − α10 − 2α13 − 4α15 − 2α16 − 2α17 + 36h4 − h24 − 2h6 ;

b =460− 2d− 2f − 4g + 4l2 + 4l3 + 4m+ 2e2

− 2α1 − 2α2 − 2α3 − 4α4 − 6α7 − 4α8 − 4α10 − 2α11 − 6α12

− 4α13 − 4α14 − 3α18 − 144h4 + 6h24 + 12h6 − h8 .

(4.84)

In order to fix other parameters we consider two-impurity states: for length beyond

wrapping order, with the help of Mathematica, we explicitly diagonalize the dilatation

operator and compare its eigenvalues with those obtained from the perturbative solutions

of the asymptotic Behte equations.
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For L = 5 (length 10 states) we get:

d =10− 4l3 −m+ 2e2 − f − 12g + 6h4 − 2α10

− 2α12 + 4α15 − α18 − 2α7 + 4α9 − 4β ;

α1 =α11 + 4α13 + 2α14 + 4α15 + 4α16 + 3α17 + 4α5

+ 3α6 − 2(α7 + α8 − 2α9) + β

α2 =
1

2
(−α11 − 2α12 − 4α13 − 2α14 − 4α15 − 2α16

− α17 − 4α5 − 3α6 − 2α8 − 4α9 − β)

α3 =− 2(α11 + 2α12 + 2α13 + 2α14 − α16 − α17

+ α18 − α5 − α6 + α7)

α4 =
1

4
(−4α10 + α11 + 2α12 − 2α14 − 4α15 − 6α16

− 5α17 − 4α5 − 3α6 − 2α8 − 4α9 − β)

(4.85)

where β = β
(6)
2,3 is the leading coefficient of the dressing phase.

For L = 6 (length 12 states) we get

e2 =
2

3
(−26 + 2l3 +m+ 5g − l2 − 3α15 − 3α9 + 2β)

f =
1

3
(20− 2l3 − 4m− 8g + 4l2 − 3α18 − 2β)

α13 =
1

4
(−α11 − 2(α12 + 2α15 + α16 − α6 − 2α8 + β))

α14 =
1

4
(−α11 − 2(α12 − α16 + α6 + 2α8 − β))

α17 =
1

2
α11 + α12 − α16

(4.86)

For L = 7 (length 14) states we get

g =
1

2
(10− 2l3 − 2m− β)

l2 =
1

4
(−4 + 2m+ β)

(4.87)

For higher L, no more parameters enter the spectrum. So, point 4 of the procedure

described in section 4.2 isn’t sufficient to completely fix the dilatation operator. Never-

theless, we stress that an important result already follows from equations (4.85)-(4.86):
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a non vanishing6 coefficient β for the dressing phase would imply that the αi coefficients,

appearing in D8,mixed, cannot be all zero. This proves that D8,mixed 6= 0.

In principle, the remaining coefficients could be fixed imposing the commutation of

D with the third charge Q3: this is laborious and we won’t do it, since it isn’t necessary

for the computations of the dressing phase, as we will see in the next chapter. The part

of the dilatation operator which acts on even sites only reads:

D8,even =(536− 4l3 − 6m− 4α5 − 6α6 + 6α7 − 4α9 + 4α10

− 3α11 − 4α15 + 2α16 + 3α18 − 156h4 + 6h24

+ 12h6 − h8 + 2β) {0}
+ (−148 + 3l3 + 5m+ 2α5 + 4α9 + α10 + 4α15 + 2α16

+ 36h4 − h24 − 2h6 +
7

2
β) ({0, 2}+ {2, 0})

+ (−42 + 2l3 + 3m− 2α7 − 2α10 − 2α12 + 6h4) {0, 4}
+ (−8 + 2l3 + 2m− α18 + β) {0, 6}
+ (−2l3 − 3m− 2α9 − 2α15 + 2i ǫ3a − β) {0, 4, 2}
+ (−2l3 − 3m− 2α9 − 2α15 − 2i ǫ3a − β) {2, 0, 4}

+ (5− l3 −m+ i ǫ1a −
1

2
β) ({0, 2, 6}+ {0, 6, 4})

+ (5− l3 −m− i ǫ1a −
1

2
β) ({0, 4, 6}+ {2, 0, 6})

+ (42−m+ α6 +
1

2
α11 + α12 − 6h4 −

3

2
β) ({0, 2, 4}+ {4, 2, 0})

+m {2, 0, 4, 2}
+ l3 ({0, 4, 2, 6}+ {2, 0, 6, 4})

+ (−1 +
1

2
m+ i ǫ2a +

1

4
β) ({0, 2, 6, 4}+ {0, 6, 4, 2})

+ (−1 +
1

2
m− i ǫ2a +

1

4
β) ({2, 0, 4, 6}+ {4, 2, 0, 6})

− 5 ({0, 2, 4, 6}+ {6, 4, 2, 0})

(4.88)

where the coefficients ǫia are combinations of the ǫi: they correspond to similarity trans-

formations and can be fixed only selecting a particular renormalization scheme. The

form of (4.88) is quite similar to the four-loop dilatation operator of N = 4 SYM [82].

6We will see in Chapter 5 that this is, indeed, the case.
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The presence of the “mixed” hamiltonian, coupling the two types of magnons, is a com-

pletely new feature of ABJM theory which appears at eight loops, making this theory

substantially different from the N = 4 SYM theory at four loops. Its coefficients αi

affect also the even and odd parts, as can be seen in (4.88). However, they don’t enter

the coefficients of the last five terms in (4.88). The same is true for the coefficients of

h(λ) (recall that h6 and h8 are not known at present). This will allow us to compute the

coefficients m and l3, as well as β, in the next chapter via direct field theory methods.



Chapter 5.

The Leading Order Dressing Phase

In this chapter we proceed to the computation of the leading-order coefficient of the

dressing phase, i.e. the parameter β
(6)
2,3 which appears in the eight-loop dilatation op-

erator. We determine it by direct field-theory calculations, in a similar fashion to that

used in [82] for the N = 4 SYM case. Here, we use N = 2 superspace methods for the

evaluation of Feynman diagrams. We refer to Appendix A for a very brief review of such

methods. The results of the following analysis are presented in [34].

5.1. The maximal reshuffling hamiltonian

In the last chapter we constructed the eight-loop dilatation operator D8. We have seen

that a large number of permutation structures contributes to D8 and, correspondingly,

many parameters have to be determined in order to completely fix it. Our procedure

based on the Bethe Ansatz could fix only few of them. In particular, as can be seen from

(4.88), lower range interactions depend on the unknown coefficients of the weak-coupling

expansion of h(λ) as well as on some coefficients αi of the mixed hamiltonian, which

couples the two SU(2) sectors. Remarkably, the last five terms in (4.88) don’t contain

such coefficients. These terms have length four. At ℓ loops, interactions of length ℓ/2

are called maximal, since they lead to maximal reshuffling of spins inside the operator.

It turns out that their coefficients are, in principle, the easiest to compute through

Feynman diagrams, since vector interactions are absent, so that they get contribution

from a single diagram. Let’s describe now how to construct such a diagram. To this
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Z1 W1 Z2

W2

W̄2

W̄1 Z̄1Z̄2

Figure 5.1.: Building block for chiral structures

purpose it is useful to rewrite the dilatation operator in a different basis, the basis

of chiral functions, which is defined in terms of the basis of permutation structures

as [24, 81, 88, 89]

χ() = { } ,
χ(a) = {a} − { } ,

χ(a, b) = {a, b} − {a} − {b}+ { } ,
χ(a, b, c) = {a, b, c} − {a, b} − {a, c} − {b, c}+ {a}+ {b}+ {c} − { } ,

χ(a, b, c, d) = {a, b, c, d} − {a, b, c} − {a, b, d} − {a, c, d} − {b, c, d}
+ {a, b}+ {a, c}+ {a, d}+ {b, c}+ {b, d}+ {c, d}
− {a} − {b} − {c} − {d}+ { } .

(5.1)

These functions are directly related to the chiral structure of a supergraph and precisely

describe the flavor flow of fields inside (4.1) under the action of the interaction. All

diagrams contributing to the same chiral function share the same chiral structure. For

maximal interactions, no vector interactions can be present and the chiral structure alone

determines the unique diagram which contributes. The chiral structure of the function

χ(a1, . . . , an) contains n chiral vertices and n antichiral vertices, connected by 〈ZZ̄〉 or
〈WW̄ 〉 propagators. Each pair of chiral and antichiral vertices (plus the propagator

connecting them) describes an elementary permutation of next-to-nearest neighbors and

constitutes the building block of any supergraph. This is represented in Figure 5.1. The

whole chiral structure of a supergraph is recovered by assembling n building blocks in

the order indicated in the chiral function (arguments should be read from right to left).
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Let’s now consider the eight-loop dilatation operator written in the basis of chiral

functions. The part of the hamiltonian leading to maximal reshuffling of spins1 preserves

the form given in terms of the permutation structures:

D8,mr =mχ(2, 0, 4, 2)

+ l3 [χ(0, 4, 2, 6) + χ(2, 0, 6, 4)]

+ (−1 +
1

2
m+ i ǫ2a +

1

4
β) [χ(0, 2, 6, 4) + χ(0, 6, 4, 2)]

+ (−1 +
1

2
m− i ǫ2a +

1

4
β) [χ(2, 0, 4, 6) + χ(4, 2, 0, 6)]

− 5 (χ(0, 2, 4, 6) + χ(6, 4, 2, 0)] .

(5.2)

We note that the form of (5.2) is just the same as the maximal reshuffling hamiltonian

of N = 4 SYM [82]. The coefficients of the five terms in (5.2) can be computed from the

supergraphs contributing to χ(2, 0, 4, 2), χ(0, 4, 2, 6), χ(0, 2, 6, 4), χ(2, 0, 4, 6), χ(0, 2, 4, 6).

As we explained before, only one supergraph contributes to each term and it contains

only scalar interactions. This is a great simplification. The coefficient of the last term

was already fixed by imposing the dispersion relation on one-magnon states. The first

four terms contain precisely four undetermined parameters, namely m, l3, ǫ2a and β.

Therefore, the maximal reshuffling hamiltonian (5.2) can be directly determined by the

computation of a very small number of Feynman diagrams. In particular, this will

provide us with the leading order coefficient of the dressing phase β = β
(6)
2,3 .

5.2. Computation of maximal diagrams

In order to determine the coefficients of the dilatation operator from Feynman diagrams,

we consider the renormalization of composite operators [91] and the subtraction of sub-

divergences, which proceeds by introducing renormalization factors and counterterm

diagrams. This technique was successfully applied to the dilatation operator of N = 4

SYM [77,82,88–90] and to the dilatation operator of ABJM theory up to six loops [22–26].

We will use N = 2 superspace methods.

1We give here only the terms which act non-trivially on even sites. Besides them there are terms
acting on odd sites, which are obtained by the shifting χ(. . . , a → a+ 1, . . .). They have the same
coefficients as (5.2)
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We therefore have to deal with Feynman diagrams with one vertex being the compos-

ite operator and additional vertices which, for maximal reshuffling diagrams, are only

chiral or antichiral vertices.

Let Oa be a vector of operators with the same quantum numbers. The dilatation

operator acts on such operators as

DOa = ∆ b
a Ob , (5.3)

where ∆ b
a represents the matrix of scaling dimensions and in general isn’t diagonal, due

to operator mixing. The relation between bare and renormalized quantities is

Oren
a = Z b

a Obare
b . (5.4)

The matrix Z is the renormalization factor: in a perturbative approach, it can be

expanded as

Z = 1+
∞
∑

k=1

Z2k λ
2k , (5.5)

and gets contributions from all the Feynman diagrams with a single insertion of one of

the composite operatorsOa. The ℓ-loop contribution to Z is found from the overall diver-

gence of ℓ-loop diagrams of that kind. We use dimensional regularization in D = 3− 2ε

dimensions in order to regularize quantum divergences. In dimensional regularization,

these divergences show up as poles in the dimensional regulator ε, in the limit ε → 0.

The relation between the renormalization factor and the dilatation operator is

D = D0 + lim
ε→0

[

2ελ
d

dλ
lnZ(λ, ε)

]

, (5.6)

where D0 gives the classical dimension. We see that only the divergent part of Z con-

tributes to anomalous dimensions. The ℓ-loop dilatation operator is then given by the

λ2ℓ coefficient of the 1
ε
pole of lnZ multiplied by −2ℓ. Higher order poles must be absent

in lnZ.
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Sa Sb Sc Sd Se

Figure 5.2.: Supergraphs corresponding to the maximal reshuffling terms of the eight-loop
dilatation operator of ABJM theory. From left to right, and together with their
reflected diagrams, they are associated to each line in (5.2). The horizontal bar
represents the operator itself, or analogously, the spin chain.

In order to compute the coefficients of (5.2) we need to compute the supergraphs in

Figure 5.2 and isolate the overall UV divergence by subtracting all their UV subdiver-

gences.

First of all, we perform standard D-algebra manipulations (see Appendix A) to reduce

the supergraphs to ordinary momentum-space integrals I8x. The Feynman rules imply

that the color factor is always N8, which combines with
(

4π
k

)8
to give the right power

of the ’t Hooft coupling, i.e. λ8. The (4π)8 factor will be simplified by the factor 1
(4π)8

present in each integral I8x. The pole parts of the integrals with the subdivergenes

subtracted are denoted by Ī8a. The maximal reshuffling supergraphs, thus, evaluate to:

Sa = = λ8 (4π)8 Ī8a| 1
ε
χ(2, 0, 4, 2) , (5.7)

Sb = = λ8 (4π)8 Ī8b| 1
ε
χ(0, 4, 2, 6) , (5.8)

Sc = = λ8 (4π)8 Ī8c| 1
ε
χ(0, 2, 6, 4) , (5.9)
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Sd = = λ8 (4π)8 Ī8d| 1
ε
χ(2, 0, 4, 6) , (5.10)

Se = = λ8 (4π)8 Ī8| 1
ε
χ(0, 2, 4, 6) . (5.11)

The subtracted integrals are computed in Appendix B and are given by:

Ī8a = =
1

(4π)8

(

− 1

3072 ε4
+

1

192 ε3
− 1

48 ε2
+
y

ε

)

, (5.12)

Ī8b = =
1

(4π)8

(

− 5

6144 ε4
+

5

768 ε3
− 1

384 ε2
− 1

32 ε

)

, (5.13)

Ī8c = =
1

(4π)8

(

− 1

2048 ε4
+

1

128 ε3
− 3

64 ε2
+

5

192 ε

)

, (5.14)

Ī8d = =
1

(4π)8

(

− 1

2048 ε4
+

1

192 ε3
− 1

64 ε2
− 11

192 ε

)

, (5.15)

Ī8e = =
1

(4π)8

(

− 1

6144 ε4
+

1

256 ε3
− 19

384 ε2
+

5

16 ε

)

. (5.16)

For their evaluation, we used the Gegenbauer polynomials x-space technique (GPXT)

and, in the simplest cases, the method of contracting bubbles. Nevertheless, these two

methods seem to be quite inefficient for the evaluation of the 1
ε
pole of Ī8a. In this case,

we evaluated the integral numerically through Mellin-Barnes techniques. The result,

together with its error, is obtained in Appendix B and reads

y =
1

(4π)8
(−0.0059921± 0.0000008) . (5.17)
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Remarkably, it is possible to extract the corresponding analytical result from this num-

ber, as we discuss in the next section. The idea is to fit the numerical value with a

combination of some analytical constants via an integer relation detection algorithm.

Fortunately, as we argued in Section 3.6, only few constants can appear in the 1
ε
pole of

Ī8a.

5.3. PSLQ Algorithm

In section 3.6 we argued that the parameter β of (5.2) is purely transcendental and

that it can be a rational combination of just two transcendental constants, namely π3

and ζ(3). Since the only transcendental contribution to β can come from the 1
ε
pole of

Ī8a, such pole should be a rational combination of the constants 1, π3, ζ(3). In order

to extract the coefficients of this generic linear combination from the numerical value

(5.12) we use the Mathematica implementation [104] of the PSLQ algorithm [83] (see

also [105]).

The PSLQ algorithm is, perhaps, the most powerful integer relation detection algo-

rithm. A vector x = (x1, . . . , xn) of real or complex numbers is said to possess an integer

relation (a1, . . . , an), if there exist integers ai, not all zero, such that

a1x1 + · · ·+ anxn = 0 . (5.18)

An integer relation detection algorithm can recover the vector of integers ai, if it exists.

PSLQ takes as inputs the vector x and a given precision and constructs a sequence of

integer-valued matrices Bn that reduces the vector y = xBn, until either the relation is

found (as one of the columns of Bn), or else precision is exhausted. At the same time,

PSLQ generates a steadily growing bound on the size of any possible relation. When

a relation is found, the size of smallest entry of the vector y abruptly drops to roughly

10−p, where p is the number of digits of precision. The size of this drop can be viewed

as a confidence level that the relation is real and not merely a numerical artifact. A

drop of 20 or more orders of magnitude almost always indicates a real relation. PSLQ

usually needs high precision in the numerical input data. If one wishes to recover a

relation of length n, with coefficients of maximum d digits, then the input vector x must

be specified to at least nd digits. In our case, the vector x contains the numerical value
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in Ī8a |1/ε and the transcendental constants it should be fitted with:

x =
(

− 0.0059921, 1, π3, ζ(3)
)

. (5.19)

Application of PSLQ algorithm with precision 10−7, which is the same within which the

numerical value of Ī8a |1/ε has been computed, gives the solution

a = (−32,−5, 0, 4) . (5.20)

It means that the exact value of the 1
ε
pole of the Ī8a integral should be

y =
1

(4π)8

(

− 5

32
+

1

8
ζ(3)

)

. (5.21)

We can verify a posteriori that the value (5.21) matches with (5.17) w.r.t. all the digits

within the numerical precision.

5.4. Results

We now proceed to the computation of the coefficients of the hamiltonian (5.2) following

the procedure we initiated in section 5.2.

The final results for the supergraphs contributing to maximal reshuffling terms of

the dilatation operator are

S = λ8
5

16
χ(0, 2, 4, 6) ,

Sa = λ8
(

− 5

32
+

1

8
ζ(3)

)

χ(2, 0, 4, 2) ,

Sb = − λ8
1

32
χ(0, 4, 2, 6) ,

Sc = λ8
5

192
χ(0, 2, 6, 4) ,

Sd = − λ8
11

192
χ(2, 0, 4, 6) .

(5.22)

The corresponding contributions to the renormalization constant are obtained multiply-

ing these values by -16. At this point, we can find the unknown parameters appearing
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in (5.2). Our results are:

m =
5

2
− 2ζ(3) , l3 =

1

2
, β = 4 ζ(3) , ǫ2a =

2

3
i . (5.23)

We recall that the parameter ǫ2a is unphysical: the value listed in (5.23) depends on the

renormalization scheme we used. The presence of the factor i seems to spoil hermiticity

of the dilatation operator, see [82] for further comments on this. Moreover, the coefficient

of the chiral function χ(0, 2, 4, 6) turns out to be -5, as it was already known from the

previous chapter: it, thus, constitutes a non trivial check of the whole procedure. Finally,

we have computed the value of the leading order coefficient of the dressing phase. Its

value agrees with the prediction (3.65) and is the same as in N = 4 SYM. In the

Conclusions we further comment on this result.





Chapter 6.

Conclusions

In this work we have explored some aspects of integrability in three-dimensional Chern-

Simons-matter theories, focusing in particular on ABJM theory. Integrability provides

powerful tools to analyse the spectrum of the theory, as well as other observables. Nev-

ertheless, integrability of the full theory is only conjectured and proposals such as the

all-loop Bethe Ansatz [18] need to be tested via independent methods. We have per-

formed some perturbative computations in order to check some ideas related to integra-

bility. In particular, we have investigated the weak-coupling dressing phase of ABJM

theory. It appears in the Bethe equations, as well as in the dilatation operator, starting

at eight loops. A simple procedure based on the Bethe Ansatz allowed us to construct

the asymptotic dilatation operator in the SU(2)× SU(2) sector up to six loops without

the computations of Feynman diagrams. We also verified that the dressing phase is

not present up to this order. Furthermore, we could largely constrain the eight-loop

dilatation operator. In this case, we then focused on the terms corresponding to maxi-

mal interactions: they contain the unknown parameter β
(6)
2,3 , which is the leading order

coefficient of the dressing phase. Thanks to superspace techniques and with the help

of the transcendentality principle, we could directly compute its value from Feynman

supergraphs. A great simplification follows from the fact that we considered maximal

interactions: we need to compute a very small number of Feynman diagrams (in fact,

just three are necessary to completely fix β
(6)
2,3) which contain only scalar interactions.

The result we found is β
(6)
2,3 = 4ζ(3) and coincides with the value of the leading coefficient

of the dressing phase of N = 4 SYM. This value was expected on the basis of the results

of [18] where a conjecture for the weak-coupling expansion of the coefficient functions

79
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can be inferred:

βr,s(λ) = −
∞
∑

n=1

c(−n)
r,s h(λ)r+s+n−1 . (6.1)

Here, c
(−n)
r,s denote the analytical continuation [85] of the all-loop strong-coupling coeffi-

cient functions1 proposed in [84]. For r = 2, s = 3, we see that we should obtain

β2,3(λ) = −c(−2)
2,3 λ6 −

(

c
(−4)
2,3 + 3h4c

(−2)
2,3

)

λ8 + · · · (6.2)

We observe that, since the first weak coupling coefficient of h(λ) is h2 = 1, the leading

order contribution to ABJM dressing phase is just β
(6)
2,3 = 4ζ(3), as in N = 4 SYM. Our

field theory computation is consistent with such predictions. At higher orders, however,
the c

(−n)
r,s coefficients mix with the non trivial coefficients of h(λ) yielding dressing phase

coefficients which differ from the N = 4 SYM ones. We notice that, at least, the next-to-
leading order of (6.2) has the right transcendentality. It would be interesting to further
test the validity of (6.1) beyond the leading order, through direct computations: hope-
fully, restricting to the case of maximal interactions, the calculations will be simplified
and have a chance of being performed with standard field theory techniques. It would
be interesting also to extend our analysis to the parity breaking ABJ theory, to check
whether the lack of parity symmetry influence the integrable structure of the theory.

1See Section 3.5.



Appendix A.

N = 2 Superspace Formalism

In this Appendix we give a general overview of the superspace formalism, which was

used in this work both for the formulation of ABJM theory in Chapter 2 and for our

perturbative computations of Chapter 5. As we said in Chapter 2, this formalism is

particularly suitable for perturbative computations in supersymmetric gauge theories,

especially at high loop orders. It happens because supersymmetry is intrinsic to the

formalism and not sovra-imposed. Here, we briefly review the basic facts about three-

dimensional 1 superspace in the N = 2 formalism, basically with the aim to fix the

notations, relevant for the treatment of ABJM theory, used throughout the work. We

follow the conventions of [87]. We don’t pretend to be self-contained and refer to [45,46]

for a wider introduction to the same subjects.

A.1. Superspace Conventions

The Lorentz group in three-dimensional Minkowski space is SL(2,R), rather than the

four-dimensional SL(2,C), and the corresponding fundamental representation acts on

two-component real spinors ψα. For this reason, in three dimensions there’s no difference

between dotted and undotted indices and new types of contractions are allowed. Spinor

indices are raised and lowered with the “spinorial metric” Cαβ = iǫαβ , where ǫαβ is the

1We mean, here, that spacetime dimension is D = 3.
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antysymmetric tensor with ǫ12 = 1:

ψα = Cαβψβ , ψα = ψβCβα . (A.1)

We follow the convention that, when contracting spinor indices, the upper one is always

placed on the left:

ψχ = ψαχα = χαψα = χψ , ψ2 =
1

2
ψαψα (A.2)

We work directly in Wick-rotated Euclidean spacetime, with metric gµν = diag(1, 1, 1).

Gamma matrices satisfy the algebra

(γµ)αγ(γ
ν)γβ = −gµνδαβ − ǫµνρ(γρ)

α
β (A.3)

where the Levi-Civita tensor is such that ǫ012 = 1. Gamma matrices with both spinor

indices raised (or lowered) are symmetric. We use the bi-spinor notation to represent

vectors: our conventions for coordinates, momenta and fields are respectively

xαβ =
1

2
(γµ)

αβxµ , pαβ = (γµ)αβpµ , Aαβ =
1√
2
(γµ)αβAµ (A.4)

and

xµ = xαβ(γµ)αβ , pµ =
1

2
(γµ)

αβpαβ , Aµ =
1√
2
(γµ)

αβAαβ . (A.5)

It follows that the scalar product of two vectors ia given by

u · v = 1

2
uαβvαβ . (A.6)

As usual, from the momentum pαβ one constructs standard derivatives as

pαβ = i∂αβ . (A.7)

Extended supersymmetry transformations are generated by the supercharges QI
α,

I = 1, . . . ,N , which satisfy the algebra

{QI
α, Q

J
β} = 2pαβδ

IJ . (A.8)
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the fundamental relation (A.8) is left invariant by the R-symmetry group SO(N ).

We describe N -extended superspace with bosonic and (anticommuting) fermionic

coordinates (xαβ , θαI ), α = 1, 2, I = 1, . . . ,N . From now on we restrict to the case

N = 2, where the R-symmetry group SO(2) ≃ U(1) is the same for the N = 1 four-

dimensional formalism. It is convenient to change coordinates as

θα = θα1 + iθα2 , θ̄α = θα1 − iθα2 (A.9)

and to define spinor derivatives acting on these coordinates as

∂αθ
β = δβα , ∂̄αθ̄

β = δβα , ∂αθ̄
β = ∂̄αθ

β = 0 . (A.10)

Starting from spinor derivatives one constructs three-dimensional spinor covariant deriva-

tives as

Dα = ∂α +
i

2
θ̄β∂αβ , D̄α = ∂̄α +

i

2
θβ∂αβ (A.11)

which satisfy the algebra2

{Dα,Dβ} = {D̄α, D̄β} = 0 , {Dα, D̄β} = pαβ . (A.12)

We observe that N = 2 three-dimensional superspace is essentially the same as N = 1

four-dimensional superspace, with the only difference that there aren’t undotted indices:

this implies, for example, that contractions such as D̄
α
Dα are now possible.

Quantities such as the action of supersymmetric field theories are very conveniently

written in superspace, where supersymmetry transformations are realized in a natu-

ral way on the coordinates (xαβ , θα, θ̄β). The basic objects are superfields, which are

functions of the bosonic as well as of the fermionic coordinates and may carry external

indices, according to representations of the symmetry algebra. If a superfield is expanded

in Taylor series in θ (which is finite, due to the anticommuting nature of the fermionic

coordinates) we get the corresponding component fields, functions only of the spacetime

2This is the same algebra of the supercharges in momentum space. If we define Qα = 1
2 (Q

(1)
α + iQ

(2)
α )

and Q̄α = 1
2 (Q

(1)
α − iQ

(2)
α ) the non vanishing anticommutator reads {Qα, Q̄β} = Pαβ .



84 N = 2 Superspace Formalism

coordinates. Integration over fermionic coordinates is defined by

∫

d2θ =
1

2
∂α∂α ,

∫

d2θ̄ =
1

2
∂̄α∂̄α ,

∫

d4θ =

∫

d2θd2θ̄ , (A.13)

such that supersymmetric invariant actions can be easily written in superspace and can

be related to ordinary actions through projection:

∫

d3xd2θ =

∫

d3xD2|θ=θ̄=0 ,

∫

d3xd2θ̄ =

∫

d3x D̄
2|θ=θ̄=0 ,

∫

d3xd4θ =

∫

d3xD2D̄
2|θ=θ̄=0 .

(A.14)

The θ-space δ-function is given by

δ4(θ − θ′) = (θ − θ′)2(θ̄ − θ̄′)2 . (A.15)

A.2. Supersymmetric Chern-Simons-Matter Theories

The class of supersymmetric gauge theories which is of interest for the present work is

constructed starting from two basic types of superfields: real scalar superfields V (x, θ, θ̄)

and complex chiral superfields Φ(x, θ, θ̄).

Real unconstrained superfields can be used to describe gauge fields and their super-

partners (plus possible auxiliary fields). The N = 2 vector multiplet contains a real

scalar, a complex fermion and the gauge field. In three dimensions, the complex fermion

has only one physical helicity on-shell. The gauge field, on the other hand, will lose its

longitudinal helicity by gauge invariance as usual, and only one of its two transverse

helicities is physical. Together with the real scalar, these give two bosonic and two

fermionic physical degrees of freedom. As we now see, these degrees of freedom are

provided by the real superfield V .

In the abelian case, one can see that the following action

SCS,abelian =

∫

d3xd4θ
1

2
V D̄

α
DαV (A.16)
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is invariant under the gauge transformations

V ′ = V + i(Λ̄− Λ) , (A.17)

where Λ is a chiral superfield, and yields the following equation of motion:

D̄
α
DαV = 0 . (A.18)

The generalization to the non abelian case is a bit involved [35] and requires the addi-

tion of an extra coordinate t such that t ∈ [0, 1] and the generalized gauge superfield

Ṽ (x, θ, θ̄, t) depends on with the boundary conditions:

Ṽ (x, θ, θ̄, 1) = V (x, θ, θ̄) , Ṽ (x, θ, θ̄, 0) = 0 (A.19)

We refer to [45] for such a construction and we give here only the result, in terms of the

simplest t-parametrization for the generalized gauge superfield, namely Ṽ = tV :

SCS =
k

4π

∫

d3xd4θ

∫ 1

0

dt Tr
(

V D̄
α
(e−tVDαe

tV )
)

, (A.20)

which is invariant under the non abelian gauge transformations

eV
′

= eiΛ̄eV e−iΛ . (A.21)

The θ-expansion of the real superfield in the Wess-Zumino gauge leaves us with the right

degrees of freedom of the vector multiplet3

V (x, θ, θ̄) =θαθ̄ασ(x) + θγµθ̄Aµ(x) + θ2θ̄χ̄α(x)

+ θ̄2θαχα(x) + θ2θ̄2D(x) .
(A.22)

Moreover, we can see that the action (A.20) projects to

S = − ik

4π

∫

d3xǫµνρ
(

Aµ∂νAρ + i
2

3
AµAνAρ − χχ̄− 2σD

)

(A.23)

3One scalar field is always auxiliary for general gauge theories. In particular it turns out, for pure
Chern-Simons theories, that every field is auxiliary.
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which is the Chern-Simons action for the vector field Aµ and the other members of the

vector multiplet. None of these fields has physical, propagating degrees of freedom: they

are all auxiliary fields. Even the gauge field Aµ is, in some sense, topological: since the

action is linear in the derivative of the field, the equation of motion

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ] = 0 (A.24)

is a first order differential equation, which is an unusual situation for a bosonic field.

Therefore, Aµ is a “pure gauge”, in the sense that any solution of (A.24), by a suitable

gauge transformation, can be made to vanish.

We now consider chiral superfields, suitable to describe matter fields, constrained by

the condition4

D̄αΦ(x, θ, θ̄) = 0 . (A.25)

A scalar field with the superspace dependence Φ = Φ(xL, θ), where

xαβL = xαβ +
i

4
(θαθ̄β + θβ θ̄α) , xαβR = xαβ − i

4
(θαθ̄β + θβ θ̄α) , (A.26)

automatically satisfies the chiral constraint (and analogously an anti-chiral superfield

with the dependence Φ̄ = Φ̄(xR, θ̄) satisfies the anti-chiral constraint DαΦ̄(x, θ, θ̄) = 0).

The θ-expansion of such a superfield yields the N = 2 scalar multiplet, containing a

complex scalar boson φ, a two-component complex fermion ψ and a complex scalar F :

Φ(xL, θ) = φ(xL) + θαψα(xL)− θ2F (xL) . (A.27)

The supersymmetric invariant action

S0 =

∫

d3xd4θ Φ̄Φ (A.28)

4Because of the presence of the spinor covariant derivative, this condition is invariant under supersym-
metry transformations.
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gives standard kinetic terms for the component fields (F isn’t dynamical), while the

superpotential

Spot =
λ

4!

∫

d3xd2θΦ4 +
λ

4!

∫

d3xd2θ̄ Φ̄4 (A.29)

gives5 sextic self-interactions for the scalar field φ and quartic Yukawa couplings between

φ and ψ (D-terms). In an on-shell analysis from the N = 1 perspective, the scalar mul-

tiplet is formed by a real scalar and a real two-component fermion. The boson/fermion

balance is satisfied on shell where the two-component fermion looses one of its helicities

since in three dimensions, in contrast to four dimensions, there is a unique physical

helicity. From this perspective, the N = 2 scalar multiplet we have just constructed

with the use of an N = 2 chiral-constrained superfield is composed of a pair of N = 1

scalar multiplets. Its physical on-shell degrees of freedom are a complex scalar and a

complex two-component fermion, both with two physical degrees of freedom since, once

again, the fermion has only one physical helicity. Notice that the complex nature of

the fermion, as opposed to the four-dimensional case, is not related to it being in the

fundamental representation of the Lorentz group but it is related to it being part of an

SO(2) = U(1) R-symmetry multiplet.

We now discuss the coupling of gauge and matter superfields. There are three ways

in which we may couple chiral multiplets in a gauge invariant way with vector multi-

plets: adjoint, fundamental and bifundamental couplings. We restrict to bifundamental

coupling, since it is the relevant coupling for ABJM theory. If V1 and V2 are two gauge

superfields and Φ is a chiral superfield, the action

S =

∫

d3xd4θTr(e−V1Φ̄eV2Φ) (A.30)

is invariant under the gauge transformations

eV
′

1 = eiΛ̄eV1e−iΛ , eV
′

2 = eiΛ̄eV e−iΛ , Φ′ = eiΛ1Φe−iΛ2 , Φ̄′ = eiΛ̄2Φ̄e−iΛ̄1 , (A.31)

where Λ1,2 are chiral superfields. By expanding this action in powers of the gauge

fields, the first term of the expansion corresponds to the kinetic term of the chiral field

(A.28). The rest of the terms determine the interaction between the scalar and gauge

5The auxiliary field F is integrated out by its equation of motion.
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superfields. They give rise to sextic interactions for the scalars and Yukawa interactions

between scalars and fermions (F-terms) in addition to the minimal coupling between

gauge vectors and matter fields through the covariant derivative. We note that, even

though pure Chern-Simons theory seemed trivially identical to pure bosonic CS theory

since the superpartners of the gauge field were auxiliary fields, the lifting of the bosonic

theory to an N = 2 theory, when coupled to matter, has produced non trivial matter

self-interactions.

We have now introduced all the ingredients needed to write the action of the ABJM

theory. It includes two U(N) × U(N) non abelian vector multiplets V and V̂ , with

opposite Chern-Simons levels and transforming in the adjoint representation of the first

and second U(N) respectively, and two pairs of scalar multiplets Z1,2 and W1,2, trans-

forming in the bifundamental and anti-bifundamelntal of the gauge group respectively.

The action is given by

S = SCS + Smat + Spot , (A.32)

where

SCS =
k

4π

∫

d3x d4θ

∫ 1

0

dt Tr
(

V D̄
α
e−tV Dαe

tV − V̂ D̄
α
e−tV̂ Dαe

tV̂
)

,

Smat =

∫

d3x d4θTr
(

Z̄Ae
VZAe−V̂ + W̄BeV̂WBe

−V
)

,

Spot =
2πi

k

[
∫

d3x d2θ ǫACǫ
BD TrZAWBZ

CWD +

∫

d3x d2θ̄ ǫACǫBD TrZ̄AW̄
BZ̄CW̄

D

]

,

(A.33)

where ǫAB is the two-dimensional Levi-Civita tensor. Taking a look to the superpotential

Spot a global SU(2)× SU(2) flavour symmetry, acting separately on Z and W fields, is

manifest. Moreover, we can build doublets (Z1, W̄ 1) and (Z2, W̄2) which transform

under another SU(2) group of R-symmetry. Combining these two symmetries we have

enhanced SU(4) symmetry for the multiplet (Z1, Z2, W̄ 1, W̄ 2) transforming in the 4 of

the group. This SU(4) ≃ SO(6) is the R-symmetry group of N = 6 supersymmetry. In

the N = 2 formalism, only a U(1) × SU(2) × SU(2) symmetry is manifest: the U(1)

factor is the R-symmetry group of N = 2 supersymmetry.
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A.3. Superspace Quantization

We now proceed to the quantization of ABJM theory. It is very useful to quantize

the theory directly in N = 2 superspace. There are may computational simplifications,

when dealing with superspace Feynman diagrams (usually denoted as supergraphs) since

supersymmetry is kept manifest at every stage of the computation.

First of all we rescale the chiral fields as

ZA → k

4π
ZA , WA → k

4π
WA , (A.34)

so that all the terms in (A.33) have the coupling k/4π as in [24]. We use standard func-

tional methods to construct the path integral Z =
∫

eS and apply covariant quantization

introducing gauge-fixing terms, gauge averaging, and superfield Faddeev-Popov ghosts.

To quantize each of the two Chern-Simons terms, we have to choose gauge-fixing

functions. Corresponding to the chiral gauge parameter Λ we need a chiral gauge-variant

function which is made to vanish by a suitable gauge transformation. A suitable choice

is F = D̄
2
V . For every chiral function f we can find gauge transformations such that

F = f . Defining the functional determinant

∆(V ) =

∫

DΛDΛ̄ δ(F (V,Λ, Λ̄)− f)δ(F̄ (V,Λ, Λ̄)− f̄) (A.35)

we insert the factor

∫

DfDf̄∆(V )∆−1(V )exp

(

− k

2α

∫

d3xd2θTr(ff) + h.c.

)

, (A.36)

where α is a dimensionless gauge parameter, into the functional integral Z =
∫

DV eS[V ]

and we average Z with gaussian chiral weights6 obtaining, after some standard manipu-

lations,

Z =

∫

DVDcDc̄Dc′Dc̄′eSCS+SGF+SFP . (A.37)

6Note that in the four-dimensional case one uses non-chiral weights instead.



90 N = 2 Superspace Formalism

The gauge-fixed action is given by

SCS + SGF =
k

4π

∫

d3xd4θ

∫ 1

0

dtTr V

(

D̄
α
e−tVDαe

tV +

(

1

2α
D2 +

1

2ᾱ
D̄

2

)

V

)

.

(A.38)

A similar term, in Z, should be added with V̂ and α̂ in place of V and α and with

k → −k. Moreover, we introduced Faddeev-Popov ghosts c, c′, c̄, c̄′ in order to rewrite

∆−1(V ) in the path integral in terms of anticommuting chiral superfields instead of the

parameters Λ, Λ̄:

SFP =
k

4π

∫

d3xd4θTr(c′ + c̄′)L 1

2
V [c+ c̄ + cothL 1

2
V (c− c̄)] . (A.39)

where LVX = [V,X ]. A similar term, in Z, should be added with V̂ , ĉ, ĉ′, ¯̂c, ¯̂c′ in place

of V , c, c′, c̄, c̄′ and with k → −k. Quantization of the matter action is straightforward

and won’t be derived here.

In order to read propagators and vertices form the actions, it is useful to expand

them. The first term in the gauge action can be expanded as

∫ 1

0

dtTrV D̄
α
e−tV Dαe

tV =
1

2
Tr V D̄

α
DαV − 1

6
TrV D̄

α
[V,DαV ] + · · · (A.40)

and similar for V̂ . The ghost action expands as

Tr(c′ + c̄′)L 1

2
V [c + c̄+ coth L 1

2
V (c− c̄)] = Tr

(

c̄′c− c′c̄+
1

2
(c′ + c̄′)[V, c+ c̄]

)

+ · · ·

(A.41)

The gauge-matter action expands as

Tr Z̄Ae
VZAe−V̂ =Tr Z̄A

(

ZA + V ZA − ZAV̂ +
1

2
(V 2ZA + ZAV̂ 2)− V ZAV̂

)

+ . . .

(A.42)

and similar for WA.

The quadratic piece in (A.40), together with the α- and α̂-dependent gauge fixing

terms, determines the gauge superfield propagators by inversion. We obtain, in momen-
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tum space:

〈V a(p)V b(−p)〉 = 4π

k

1

p2
(D̄

α
Dα + 2αD2 + 2ᾱD̄

2
) δ4(θ1 − θ2)δ

ab ,

〈V̂ a(p)V̂ b(−p)〉 = −4π

k

1

p2
(D̄

α
Dα + 2α̂D2 + 2̄̂αD̄

2
) δ4(θ1 − θ2)δ

ab
(A.43)

In order to simplify the computations, we will choose the Landau gauge where α = α̂ = 0.

The ghost propagators read

〈c̄′a(p)cb(−p)〉 = 〈c̄a(p)c′b(−p)〉 = 4π

k

1

p2
δ4(θ1 − θ2)δ

ab ,

〈¯̂c′a(p)ĉb(−p)〉 = 〈¯̂ca(p)ĉ′b(−p)〉 = −4π

k

1

p2
δ4(θ1 − θ2)δ

ab
(A.44)

Finally, the chiral propagators read

〈(ZB)i
î
(p)(Z̄A)

ĵ
j(−p)〉 = 〈(W̄B)i

î
(p)(WA)

ĵ
j(−p)〉 =

4π

k

δBA
p2
δ4(θ1 − θ2)δ

i
jδ

ĵ

î
, (A.45)

The vertices can be read directly from the lagrangian by making functional derivatives

of the superfields. When a functional derivatives w.r.t. the (anti)-chiral superfields is

taken, factors of (D2) D̄
2
are generated in the vertices. In the case of quartic chiral

(antichiral) vertices, one of the D̄
2
(D2) factors can be absorbed into the (anti)chiral

integration such that the integration measure of the (anti)chiral vertex is promoted to

the full superspace measure.

A.4. D-algebra

Once Feynman rules have been given for the superfields, one can draw Feynman diagrams

in superspace (supergraphs). For every vertex on the graph there is a
∫

d4θ integral

and for every loop there is, as usual, a
∫

d3p integral. The fundamental step in order

to handle such supergraphs is the so called D-algebra, which is a technique aimed to

perform on the graphs the integration by parts on θ coordinates allowing us to reduce

to a standard momentum-space Feynman integral. We summarize here the steps that

should be followed.
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One may transfer spinor covariant derivatives along a line producing a minus sign

for each D-operator transferred. Notice that this does not produce any ambiguity in the

construction of the diagram since the propagators always come with an even number of

derivatives such that their derivatives may be thought to be acting in any of the two

vertices which the line connects. Choosing a given line and integrating by parts the

operators acting on it, lines are contracted to points in θ-space and, at the end of the

procedure, the whole diagram is contracted to a point with a single θ integral. While

dealing with integrations by parts one often uses the following rules, which follow from

the algebra of spinor covariant derivatives:

[Dα, D̄
2
] = i∂αβD̄β , [D̄

α
,D2] = i∂αβDβ

D2D̄
2
D2 = 2D2 , D̄

2
D2D̄

2
= 2D̄

2

DαDβ = CαβD
2 , D̄αD̄β = CαβD̄

2

{D2, D̄
2} = 2+DαD̄

2
Dα = 2+ D̄

α
D2D̄α

[D2, D̄
2
] =

i

2
∂αβ [D̄β ,Dα]

(A.46)

where 2 = ∂µ∂µ is ordinary D’Alembert operator. Moreover, a product of three or more

Ds or D̄s vanishes. Furthermore, when one of the possible paths of integration by parts

produces products of the form pαβC
αβ , symmetry in the indices of p and antisymmetry

in the indices of C imply a zero contribution to the supergraph: this is an intrinsic

three-dimensional phenomenum. Another result specific of three dimensions is that

D̄
α
D = DαD̄α. This permits to have the freedom of combining this operator with the

contiguous ones acting on it and usually leads to simplifications. Finally one uses the

fact that the product of two δ4(θ1 − θ2) on lines connecting the same vertices is zero

due to fermion anticommutation. At the end of the procedure, one has to remove all

the derivatives from all the lines of each loop, but one, which must have precisely four

spinor covariant derivatives in the form D2D̄
2
or D̄

2
D2. Otherwise the result is zero.

When working on the graphs, one can ignore all the signs coming from transfers

and integration by parts and at the end count the number of transpositions of spinorial

indices that the D-algebra produced. An (odd) even number of transpositions produces

a (minus) plus sign.
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Among the advantages of using supergraphs instead of ordinary Feynman diagrams,

with supersymmetric gauge theories, there is the fact that the number of diagrams

is usually significantly smaller. Furthermore, one can often find cancellation patterns

between different supergraphs or demonstrate finiteness theorems for classes of diagrams,

which follow from power-counting arguments. Some of these results, in the case of three-

dimensional theories, are described in [24].





Appendix B.

Techniques for the evaluation of

multiloop Feynman integrals

In this appendix we review some methods for the computation of the UV divergent part

of the Feynman integrals needed in the present work. All the integrals are computed

using dimensional regularization in Euclidean space of dimension

D = 2(λ+ 1) , (B.1)

where

λ =
1

2
− ε (B.2)

in order to get three-dimensional space in the ε → 0 limit.

A generic Wick-rotated ℓ-loop integral without numerators, in momentum space, has

always the form

Iℓ =
1

(2π)ℓD

∫

dDk1 · · · dDkℓ
Π1 · · ·ΠP

, (B.3)

where P is the number of propagators Πi, which, in general, depend on the loop momenta

k1, . . . , kℓ and the external momenta p1, . . . , pe. We always consider massless propagators

in this thesis.
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A propagator with weight α in momentum space is Fourier-transformed to coordinate

space according to the following formula

1

k2α
=

Γ(λ+ 1− α)

Γ(α)πλ+1

∫

dDx e2ikx

x2(λ+1−α)
, (B.4)

where Γ(z) is the Euler gamma function. The weight α is a generic complex number.

We stress the presence of the unconventional factor 2 in the exponential. According to

this definition, we have

∫

dDk e2ikx = π2(λ+1)δ(x) . (B.5)

We don’t consider, here, integrals with non trivial numerators, since they never appear in

the computations of maximal-reshuffling diagrams. Nevertheless, they can be treated via

the same methods we’re going to describe in the following sections: we refer to [81,94–96]

for these subjects.

B.1. Contraction of bubbles

The first method we discuss here, for the computation of multiloop Feynman integrals,

makes use of the so calledG-functions. The one-loop master integral with general weights

for the propagators is easily computed with the help of (B.4) and (B.5):

I1(p;α, β) =
1

(2π)D

∫

dDk

k2α(k − p)2β

=
Γ(λ+ 1− α)Γ(λ+ 1− β)

(2π)2(λ+1)Γ(α)Γ(β)

∫

dDxe2ipx

x2(2λ+2−α−β)

=
Γ(λ+ 1− α)Γ(λ+ 1− β)Γ(α+ β − λ− 1)

(4π)λ+1Γ(α)Γ(β)Γ(2λ+ 2− α− β)

1

p2(α+β−λ−1)

=G(α, β)
1

p2(α+β−λ−1)
,

(B.6)
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where we have defined the G-function

G(α, β) =
Γ(λ+ 1− α)Γ(λ+ 1− β)Γ(α+ β − λ− 1)

(4π)λ+1Γ(α)Γ(β)Γ(2λ+ 2− α− β)
. (B.7)

We can represent graphically the integral I1(p;α, β), indicating the weight of each prop-

agator on the corresponding line, as

α

β

= G(α, β) α + β − 1− λ . (B.8)

From power counting we immediately see that, in three dimensions, the one-loop bubble

integral is finite1:

= G(1, 1) 1

2
+ ε . (B.9)

The two-loop bubble integral, on the contrary, is logarithmically UV divergent and,

thanks to (B.8), is given by :

= G(1, 1)G(1, 1/2 + ε) 2 ǫ . (B.10)

The divergence of a diagram shows up as a pole, in ε, of the gamma function: the

parameter ε thus works as a dimensional regulator. In order to obtain the Laurent

expansions in ε of the integral, we make use of the following formula, valid for |z| < 1:

Γ(1 + z) = exp

(

−γz +
∞
∑

k=2

(−1)k

k
ζ(k)zk

)

, (B.11)

where γ is the Euler-Mascheroni constant and

ζ(k) =
∞
∑

n=1

1

nk
(B.12)

1We recall that the corresponding four-dimensional integral is logarithmically divergent.
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is the Riemann zeta function. The two-loop bubble integral under consideration, e.g.,

has the following expansion2:

I2 =
1

64π2ε
+

1

32π2
(3− γ + log 4π) +O(ε) . (B.13)

We now consider higher loop integrals. In the simplest cases, the loop integral can be

computed by recursively contracting bubbles in momentum space, reducing the number

of loops of the original diagram by repeated use of the (B.8). The following trick often

simplifies the computations: put some external momentum to zero; if this doesn’t in-

troduce any IR divergence, then only the finite part of the result will be affected. So,

if we are interested only in the UV divergent part of the integral (as always in this

work, since the renormalization of operators is concerned) this procedure won’t alter the

result. Graphically, we eliminate the external line connecting to two propagators and

draw a single propagator, whose weight is the sum of the original weights. The method

of contracting bubbles is successful if we end up with a single bubble, which is resolved

again by (B.8).

When dealing with multiloop integrals, the divergence usually shows itself as a higher-

order pole in ε: this signals the presence of subdivergences in the integral which must be

consistently subtracted in order to get the overall divergence (see [97]). We graphically

denote by a box around a diagram the principal part of the diagram itself, after all the

subdivergences have been subtracted.

We explicitly show how this method works with a simple four-loop example:

= G(1, 1)2G(1, 1/2 + ε) 2 ε
1

2
+ ε

= G(1, 1)2G(1, 1/2 + ε)
1

2
+ 3 ε

= G(1, 1)2G(1, 1/2 + ε)G(1, 1/2 + 3 ε) .

(B.14)

2From now on, we will omit the dependence of the result of a loop integral on the external momentum
p.
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= − =
1

(8π)4

(

− 1

2ε2
+

2

ε

)

. (B.15)

In the following, we list the results of the integrals, relevant for the computation of

maximal reshuffling diagrams of ABJM theory in the SU(2)× SU(2) sector, which can

be effectively computed through the method of contracting bubbles described above. We

denote by Ij the value of the integral3 and by Īj the subtracted one. We conveniently

factor out 1/(4π)ℓ from the results:

I2 = = G(1, 1)G(1, 1/2 + ε)

I4 = = G(1, 1)2G(1, 1/2 + ε)G(1, 1/2 + 3 ε)

I4a = = G(1, 1)2G(1, 1/2 + ε)2

(B.16)

I6 = = G(1, 1)2G(1, 1/2 + ε)G(1, 1 + 2 ε)G(1, 1/2 + 3 ε)

×G(1 + 4 ε, 1/2 + ε)

I6a = = G(1, 1)2G(1, 1/2 + ε)2G(1, 1 + 2 ε)G(1 + 2 ε, 1/2 + 3 ε)

I6b = = G(1, 1)2G(1, 1/2 + ε)2G(1, 1 + 2 ε)G(1, 1/2 + 3 ε)

(B.17)

3Recall that, because of the procedure described above, the value of Ij can differ from the true one in
the finite parts.
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I8d = = G(1, 1)2G(1, 1/2 + ε)2G(1, 1 + 2 ε)G(1, 1/2 + 3 ε)

×G(1, 1 + 4 ε)G(1 + 2 ε, 1/2 + 5 ε)

I8e = = G(1, 1)2G(1, 1/2 + ε)G(1, 1 + 2 ε)G(1, 1/2 + 3 ε)

×G(1, 1 + 4 ε)G(1, 1/2 + 5 ε)G(1 + 6 ε, 1/2 + ε)

(B.18)

Ī2 = =
1

(4π)2
1

4 ε

Ī4 = = − =
1

(4π)4

(

− 1

32 ε2
+

1

8 ε

)

Ī4a = = − 2

=
1

(4π)4

(

− 1

16 ε2

)

Ī6 = = − −

=
1

(4π)6

(

− 1

384 ε3
− 1

32 ε2
+

1

6 ε

)

Ī6a = = − 2 −

=
1

(4π)6

(

1

192 ε3
− 1

48 ε2
− 1

24 ε

)

(B.19)
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Ī6b = = −
(

+
)

− −

=
1

(4π)6

(

1

128 ε3
− 1

32 ε2

)

Ī8d = = −



 +





−
(

+

)

−

=
1

(4π)8

(

− 1

2048 ε4
+

1

192 ε3
− 1

64 ε2
− 11

192 ε

)

Ī8e = = −

− −

=
1

(4π)8

(

− 1

6144 ε4
+

1

256 ε3
− 19

384 ε2
+

5

16 ε

)

(B.20)
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B.2. The Gegenbauer polynomials x-space technique

We discuss here a technique which has proved very powerful for the computation of

complicated multiloop Feynman integrals, especially if our goal is the renormalization

of operators. This is the so called “Gegenbauer polynomial x-space technique” and was

introduced in [93] and developed in [94, 95]. See also [81, 96] for useful reviews.

According to this technique, which we will call GPXT, the computations are made

directly in coordinate space rather than in momentum space. The technique is grounded

on the observation that, in x-space, the scalar propagator always depends on the differ-

ence of two points,

∆(xi, xj) =
1

(xi − xj)2λ
, (B.21)

and can thus be expanded in terms of the Gegenbauer polynomials, which form an

orthogonal set on the unit sphere in RD. For the moment, D is an arbitrary integer

dimension and λ = D/2− 1. The analytic continuation to complex D will be done in a

second step.

The Gegenbauer polynomials Cα
n , also known as ultraspherical polynomials, are the

generalization of the Legendre polynomials of ordinary two-dimensional spherical har-

monics to D-dimensional space. They can be defined in terms of a generating function,

1

(1− 2xt + t2)α
=

∞
∑

n=0

= Cα
n (x) t

n , (B.22)

where x ∈ [−1, 1]. We refer to the quantity α as the weight of the polynomial, while n

is its index. When α = λ, the Gegenbauer polynomials are orthogonal with respect to

the weight function (1− x2)λ−1/2:

∫ 1

−1

dx (1− x2)λ−
1

2Cλ
n(x)C

λ
m(x) =

π21−2λΓ(n+ 2λ)

n!(n + λ)Γ(λ)2
δnm . (B.23)

The formulae

Cα
n (x) =

[n/2]
∑

p=0

(2x)n−2p(−1)pΓ(n− p+ α)

(n− 2p)!p!Γ(α)
, (B.24)
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(2x)n

n!
=

[n/2]
∑

p=0

Cα
n−2p(x)

(n− 2p+ α)Γ(α)

p!Γ(n− p+ α + 1)
(B.25)

allow us to express a polynomial with generic weight α as a combination of polynomials

with weight λ:

Cα
n (x) =

[n/2]
∑

k=0

Cλ
n−2k(x)

(n− 2k + λ)Γ(λ)Γ(n− k + α)Γ(k + α− λ)

k!Γ(α)Γ(n+ λ+ 1− k)Γ(α− λ)
. (B.26)

The value of a Gegenbauer polynomial at x = 1 is often needed:

Cα
n (1) =

Γ(n+ 2α)

n!Γ(2α)
. (B.27)

The Gegenbauer polynomials satisfy the recurrence relation:

Cα
0 (x) = 1 ,

Cα
1 (x) = 2αx ,

Cα
n (x) =

1

n
[2x(n + α− 1)Cα

n−1(x)− (n+ 2α− 2)Cα
n−2(x)] .

(B.28)

The product of two polynomials with different indices, evaluate at the same point, can

be converted into a sum

Cλ
l (x)C

λ
m(x) =

l+m
∑

n=|l−m|
n+l+m∈2N

Dλ(l, m;n)Cλ
n(x) (B.29)

with coefficients given by

Dλ(l, m;n) =
n!(n+ λ)Γ(n+m+l

2
+ 2λ)

Γ(λ)2Γ(n+m+l
2

+ λ+ 1)Γ(n+ 2λ)

× Γ(n+m+l
2

− l + λ)Γ(n+m+l
2

−m+ λ)Γ(n+m+l
2

− n + λ)

Γ(n+m+l
2

− l + 1)Γ(n+m+l
2

−m+ 1)Γ(n+m+l
2

− n + 1)
.

(B.30)

Let’s now turn to the description of the technique. We will consider here only diagrams

with a single external momentum p, entering and leaving the graph at points xin and
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xout in x-space. The generic ℓ-loop integral in (B.3) becomes, in x-space,

Iℓ =
Γ(λ)P

(4ℓπP )λ+1

∫

dDx1 · · ·dDxP−ℓ
e2ip(xout−xin)

∆1 · · ·∆P
(B.31)

where ∆i are the propagators in coordinate space.

It is now convenient to move to spherical coordinates inD dimensions: to this purpose

we define

r = x2 , x̂ =
x√
r
. (B.32)

So r is the (squared) radial coordinate and x̂ is the unit vector pointing in the same

direction as x. The integration measure changes to

dDx =
1

2
SD−1r

λdrdx̂ , (B.33)

where

SD−1 =
2πλ+1

Γ(λ+ 1)
(B.34)

is the surface of the unit sphere in RD. The integral (B.31), therefore, transforms to

Iℓ = Nλ(ℓ, P )

∫

dr1 · · ·drP−ℓdx̂1 · · ·dx̂P−ℓr
λ
1 · · · rλP−ℓ e

2ip(xout−xin)

∆1 · · ·∆P

(B.35)

with the normalization factor

Nλ(ℓ, P ) =
Γ(λ+ 1)ℓ

(4π)ℓ(λ+1)λP
. (B.36)

At this point we can expand the propagators in terms of the Gegenbauer polynomials:

from (B.22) we have

∆(xi, xj) =
1

(xi − xj)2λ
=

1

Mλ
i,j

∞
∑

n=0

Cλ
n(x̂i · x̂j)

(

mi,j

Mi,j

)
n
2

, (B.37)
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where we have introduced the notation

mi,j = min(ri, rj) , Mi,j = max(ri, rj) . (B.38)

The exponential too can be expanded in terms of the Gegenbauer polynomials:

e2ipx = Γ(λ)

∞
∑

n=0

in(n+ λ)Cλ
n(x̂ · p̂)(p2r)

n
2 jλ+n(p

2r) , (B.39)

where

jα(t) =

∞
∑

n=0

(−1)n

n!Γ(n + α+ 1)
tn = t−α/2Jα(2

√
t) (B.40)

is related to the Bessel function Jα and has the following property:

∫ ∞

0

dt tajb(t) =
Γ(b+ 1)

Γ(a− b)
, Re b > −1, Re a > 2Re b+

1

2
. (B.41)

We see that the radial integration is somewhat complicated by the appearance of the

Bessel functions and by an additional infinite sum. However, if we are interested only

in the UV divergent part of the loop integral, as in all the cases in this work, a great

simplification occurs: in x-space, the UV divergence is located where all coordinates

are small, so we can approximate the exponential factor with unit, neglecting it. Since

it is equivalent to set to zero the external momentum p, dropping the exponential will

introduce IR divergences which mix to UV ones altering the final result. In x-space, IR

divergences come from the region where some coordinates are large, so we can regulate

them by introducing an infrared cutoff R as upper bound for the radial integrations.

At the end of the computation, when all the subdivergences have been subtracted, the

principal part of the integral must be independent of the regulator R, while the finite

part in general depends on R and should be discarded from the result.

The expansion of the propagators in series of Gegenbauer polynomials allows us to

separate the integral in radial and angular parts and introduces as many infinite sums

as the number of the propagators themselves. However, we can minimize the number of

series in this way: thanks to translational invariance of the integral (B.31), we can choose

one of the vertices of the diagram as the origin of D-dimensional space. We call this
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vertex the root vertex. All the propagators directly connected to the root vertex, which

we call root propagators, are simply given by 1/rλi , where ri is the radial coordinate of

the vertex which connects the propagator to the root verex, and so they don’t produce

any series expansion in the Gegenbauer polynomials. Obviously, the best choice of the

root vertex is usually such that the number of propagators attached to it is maximized.

Therefore, in most cases, the root vertex will coincide with the composite operator.

Once we have chosen the root vertex and we have expanded the propagators depend-

ing on differences of coordinates in terms of Gegenbauer polynomials, the angular and

radial integrations are performed separately.

The angular integration can be performed by repeated use of the orthogonality re-

lation (B.23) of the Gegenbauer polynomials, which can be rewritten in terms of the

angular variables as

∫

dx̂ Cλ
n(x̂i · x̂)Cλ

m(x̂ · x̂j) =
λ

n + λ
δnmC

λ
n(x̂i · x̂j) . (B.42)

The angular integration is normalized as
∫

dx̂ = 1. In particular, since Cλ
0 (x) = 1, we

have

∫

dx̂idx̂j C
λ
n(x̂i · x̂j) = δn0 . (B.43)

If the same angular variables x̂i appear inside more than two polynomials, we have to

expand the product according to (B.29) and (B.30) and then use (B.42). Krönecker

deltas can be used to decrease the number of summations. The angular integration is

the main obstacle in multiloop computations: since complexity of the angular integrals

crucially depends on the choice of the root vertex, one should place it so as to minimize

the angular loop number and the number of infinite summations. In fact, GPXT is at

its best when the number of infinite summations can be reduced at most to one.

Let’s now turn to the radial integration. Having dropped the exponential and intro-

duced the infrared cutoff, radial integrands consist of simple powers. The only difficulty

is that, because of the presence of the min and max functions, the domain of integration

(which is an hypercube of length R) has to be split into (P − ℓ)! subdomains, defined by

the different orderings of the radial variables. This number can be large. Of course this



Techniques for the evaluation of multiloop Feynman integrals 107

is not a problem if the procedure is automated with the help of a computer4. Anyway,

it is useful to find all the possible symmetries of the integrand in order to reduce the

independent domains of integrations.

At this point, when the angular and radial integrations have been performed, the next

point is to promote the dimension D, or equivalently λ, to a complex parameter through

the formula (B.2) and then perform the Laurent expansion of the result around ε = 0.

If multiple poles are present, we proceed to the subtraction of subdivergences. These

must be computed within the same renormalization scheme as the original integral, i.e.

using GPXT and introducing the same cutoff procedure for infrared regularization.

The last step is to perform the summations that possibly survived after the angular

integrations. As stated before, finding analytical results can be very hard, especially

when multiple series are present, and sometimes only a numerical analysis is possible.

In order to illustrate the technique, we explicitly compute the following six-loop

integral, which cannot be resolved through the method of contracting bubbles:

I6c =

0

1

2

3

= Nλ(6, 9)

∫

dr1dr2dr3dx̂1dx̂2dx̂3 r
λ
1r

λ
2r

λ
3

r2λ1 r
3λ
2 r

2λ
3 (x1 − x2)2λ(x2 − x3)2λ

(B.44)

where the root vertex, denoted by 0, has been conveniently chosen as the upper one.

Now we expand the two propagators depending on differences of coordinates in series of

Gegenbauer polynomials and use the orthogonality relation:

I6c =Nλ(6, 9)

∫

dr1dr2dr3dx̂1dx̂2dx̂3
rλ1r

2λ
2 r

λ
3M

λ
1,2M

λ
2,3

∞
∑

n,m=0

(

m1,2

M1,2

)
n
2

(

m2,3

M2,3

)
m
2

Cλ
n(x̂1 · x̂2)Cλ

m(x̂2 · x̂3)

=Nλ(6, 9)

∫

dr1dr2dr3dx̂1dx̂3
rλ1r

2λ
2 r

λ
3M

λ
1,2M

λ
2,3

∞
∑

n,m=0

(

m1,2

M1,2

)n
2

(

m2,3

M2,3

)m
2 λ

n+ λ
δnmC

λ
n(x̂1 · x̂3)

=Nλ(6, 9)

∫

dr1dr2dr3
rλ1r

2λ
2 r

λ
3M

λ
1,2M

λ
2,3

∞
∑

n,m=0

(

m1,2

M1,2

)
n
2

(

m2,3

M2,3

)
m
2 λ

n + λ
δnmδn0

=Nλ(6, 9)

∫

dr1dr2dr3
rλ1r

2λ
2 r

λ
3M

λ
1,2M

λ
2,3

.

(B.45)

4In particular, we used the Mathematica routine for radial integrals described in [96].
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In this case, we could use the two Krönecker deltas coming from angular integrations

to eliminate all the infinite summations, thus obtaining a great simplification. We are

now left with the radial integral: introducing the cutoff R, the domain of integration is

a cube, but, because of the presence of the two max functions, it should be split into

6! subdomains defined by the orderings of 0 ≤ r1 ≤ r2 ≤ r3 ≤ R and permutations

thereof. However, we note that the integrand is symmetric under exchange of the r1 and

r3 variables, so only three independent integrations have to be done:

I6c =Nλ(6, 9)

(

∫ R

0

dr3
r2λ3

∫ r3

0

dr2
r3λ2

∫ r2

0

dr1
rλ1

+

∫ R

0

dr3
r2λ3

∫ r3

0

dr1
r2λ1

∫ r1

0

dr2
rλ2

+

∫ R

0

dr2
r4λ2

∫ r2

0

dr3
rλ3

∫ r3

0

dr1
rλ1

)

=Nλ(6, 9)R
3−6λ

(

1

3(1− λ)(1− 2λ)2
+

1

3(1− 2λ3)
+

1

3(1− λ)2(1− 2λ)

)

.

(B.46)

Using (B.2), we can now make the ε-expansion of the integral. We have:

I6c
Nλ(6, 9)

=
1

24 ε3
+

1

ε2

(

1

6
+

1

4
logR

)

+
1

ε

(

1

3
+ logR +

3

4
log2R

)

. (B.47)

The R-dependence disappears if we subtract the subdivergences from this result:

Ī6c = = −

− 2 .

(B.48)

The pole parts that appear on the right hand side of the last equation obviously coincide

with the ones computed in the previous section. However, the two integrals that multiply

these pole parts have to be computed with GPXT in order to consistently regulate the

infrared divergences hidden in R. Here, it is sufficient to compute the two loop integral:

= Nλ(2, 3)

∫ R

0

dr rλ

r3λ
= Nλ(2, 3)R

1−2λ 1

1− 2λ
. (B.49)
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Expanding in ε and inserting the result in (B.48), we finally obtain

Ī6c =
1

(4π)6

(

1

192 ε3
− 1

24 ε2
+

1

24 ε

)

. (B.50)

In order to perform calculations with GPXT more quickly, it is useful to work directly

on the graphs. Since the expansion of propagators in terms of Gegenbauer polynomials

allows us to separate the integral into its angular and radial part, one can draw separate

graphs.

For the angular graph, we introduce the following rules:

1. Starting from the original graph, draw the same graph without root propagators,

labelling the vertices x̂1, x̂2, . . . and the lines n,m, . . ..

2. For each line introduce an infinite summation
∑∞

n=0

∑∞
m=0 · · ·

3. Associate to each line a Gegenbauer polynomial:

x̂i x̂jn = Cλ
n(x̂i · x̂j) . (B.51)

4. Impose orthogonality relation to reduce the number of lines:

x̂i
x̂jx̂kn m = δnm

λ

λ+ 1
x̂i x̂jn . (B.52)

5. For each bubble, introduce a finite sum
∑l+m

n=|l−m|,l+m+n∈2N and contract it according

to:

x̂i x̂j

l

m

= Dλ(l, m;n) x̂i x̂jn . (B.53)

6. At the end of the procedure, we are left with one of the following situations:
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x̂i x̂jn = δn0 , x̂ n =
Γ(n+ 2λ)

n!Γ(2λ)
. (B.54)

For the radial graph, we introduce the following rules:

1. Draw the original graph, contracting possible bubbles made out of root propaga-

tors, and label the root vertex with 0 and the other vertices with positive integers.

Moreover, label each non-root line with the index of the corresponding Gegenbauer

polynomial.

2. Introduce a factor r
−(k−1)λ
i for each vertex connected to the root vertex (k is the

number of root lines, −1 stands for the integration measure contribution):

0 i(1− k)λ = r
(1−k)λ
i . (B.55)

3. Introduce a factor rλj for each vertex which is not connected to the root vertex

(contribution of the integration measure).

4. Associate to each non-root line the Max and min functions according to:

i jn = M
−λ−n

2

i,j m
n
2

i,j . (B.56)

Once we have written the angular and the radial graphs, we can implement the

Krönecker deltas, perform the radial integrations, multiply by the normalization factor

Nλ(ℓ, P ), expand the result in ε and perform the remaining summations.

Consider, as an example, the following complicated eight-loop integral, which is re-

quired in the present thesis:

I8a = . (B.57)
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We choose to put the root vertex on the composite operator. The angular graph is quite

complicated, since it turns out to be two-loop: this didn’t happen in the N = 4 SYM

counterpart, making the computation much harder in our case5. We obtain:

x̂1

x̂2

x̂3

x̂4

n

mk

l

j = δnl δmk
λ

n + λ

λ

m+ λ
x̂2x̂4

j

n

m

=
λ2

(n+ λ)(m+ λ)
δnl δmkDλ(n,m; r) x̂4 x̂2

r

j

=
λ2

(n+ λ)(m+ λ)
δnl δmk δs0Dλ(n,m; r)Dλ(r, j; s) .

(B.58)

The radial graph is given by

1

2

3

0
4

n

m
k

l

j

−λ

−λ

−2λ = r−λ
1 r−2λ

4 r−λ
3 M

−λ−n
2

1,2 M
−λ−m

2

2,3

×M
−λ− k

2

3,4 M
−λ− l

2

1,4 M
−λ− j

2

2,4 m
n
2

1,2m
m
2

2,3m
k
2

3,4m
l
2

1,4m
j
2

2,4 .

(B.59)

Combining the two contributions, we can write

I8a = Nλ(8, 12)
∞
∑

n,m,j=0

Rn,m,j(λ)An,m,j(λ) , (B.60)

5Note that, if we choose the central vertex as the root vertex, the angular graph becomes one-loop when
the two bubbles have been contracted. One can think that this can be a better choice. Unfortunately,
the contraction of bubbles introduces extra sums and doesn’t lead to any simplification in the
computation.
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where

Rn,m,j(λ) =

∫

dr1dr2dr3dr4 r
λ
2

rλ1r
2λ
4 r

λ
3M

λ
1,2M

λ
2,3M

λ
3,4M

λ
4,1M

λ
2,4

(

m1,2m1,4

M1,2M1,4

)
n
2

(

m2,3m3,4

M2,3M3,4

)
m
2

(

m2,4

M2,4

)
j

2

An,m,j(λ) =

n+m
∑

r=|n−m|
n+m+r∈2N

r+j
∑

s=|r−j|
r+s+j∈2N

λ2

(n + λ)(m+ λ)
Dλ(n,m; r)Dλ(r, j; s)δs0 .

(B.61)

Computing the integral in (B.61), one can see that, for n = m = j = 0, Rn,m,j has a

fourth order pole in ε, otherwise it has a simple pole. On the contrary, An,m,j is always

finite. Manipulations on Krönecker deltas allow us to write

I8a = Nλ(8, 12)

∞
∑

n,m,j=0

n+m
∑

r=|n−m|
n+m+r∈2N

Rn,m,j(λ)
λ2

(n+ λ)(m+ λ)
Dλ(n,m; r)Dλ(r, j; 0)δrj

= Nλ(8, 12)

∞
∑

n,m=0

n+m
∑

j=|n−m|
n+m+j∈2N

Rn,m,j(λ)
λ2

(n+ λ)(m+ λ)
Dλ(n,m; j)Dλ(j, j; 0)

= Nλ(8, 12)

∞
∑

n,m=0

n+m
∑

j=|n−m|
n+m+j∈2N

Tn,m,j(λ) ,

(B.62)

where we have defined

Tn,m,j(λ) = Rn,m,j(λ)
λ2

(n+ λ)(m+ λ)
Dλ(n,m; j)Dλ(j, j; 0) . (B.63)

Since A000(λ) = 1, we can write

I8a = Nλ(8, 12)
{

R000(λ) + 2

∞
∑

n=1

Tn0n(λ) +

∞
∑

n,m=1

n+m
∑

j=|n−m|
n+m+j∈2N

Tn,m,j(λ)
}

, (B.64)
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which, after expanding around ε = 0, becomes6

I8a =Nλ(8, 12)
{ 1

192 ε4
+

1

12 ε3

(

1 +
1

2
logR

)

+
1

3 ε2

(1

4
+ 2 logR +

1

2
log2R

)

+
1

3 ε

(

− 19

18
+

27

4
ζ(3) + 3a− 2 logR + 8 log2R +

4

3
log3R

)}

,

(B.65)

where we have denoted by a the multiple series

a =

∞
∑

n,m=1

n+m
∑

j=|n−m|
n+m+j∈2N

Res
(

Rn,m,j, ε = 0
) 1

(2n+ 1)(2m+ 1)
D1/2(n,m; j)D1/2(j, j; 0) .

(B.66)

It is very hard to find the sum of such a series analytically. One can try to rely on

numerical methods, but the slow convergence of the series would make the result little

accurate. For these reasons, it seems that GPXT isn’t the best strategy to solve I8a

integral. In the next section we will describe a different approach to the same integral.

We computed all the integrals needed for the evaluation of maximal reshuffling dia-

grams of ABJM theory in the SU(2)× SU(2) with GPXT. The integrals Ī2, Ī4, Ī4a, Ī6,

Ī6a, Ī6b, Ī8, Ī8d, consistently, give the answers we already obtained with G-functions. In

addition, we could also compute the following ones7:

I6c = = Nλ(6, 9)
{ 1

24 ε3
+

1

ε2

(1

6
+

1

4
logR

)

+
1

ε

(1

3
+ logR +

3

4
log2R

)}

(B.67)

6We see the appearance of the ζ(3) constant: it comes from the first series in (B.64), which can be
computed analytically.

7For convenience, we leave here the normalization factor unexpanded: this will be easily reintroduced
in the subtraction of subdivergences.
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I8b = = Nλ(8, 12)
{ 5

384 ε4
+

5

48 ε3

(

1 + logR
)

+
1

6 ε2

(1

2
+ 5 logR +

5

2
log2R

)

+
1

ε

(

− 7

4
+

2

3
logR +

10

3
log2R +

10

9
log3R

)}

I8c = = Nλ(8, 12)
{ 1

128 ε4
+

1

4 ε3

(1

3
+

1

4
logR

)

+
1

ε2

( 5

24
+

2

3
logR +

1

4
log2R

)

+
1

3 ε

(1

2
+ 5 logR + 8 log2R + 2 log3R

)}

I8a = = Nλ(8, 12)
{ 1

192 ε4
+

1

12 ε3

(

1 +
1

2
logR

)

+
1

3 ε2

(

− 1

4
+ 2 logR +

1

2
log2R

)

+
1

3 ε

(

− 19

18
+

27

4
ζ(3) + 3a− 2 logR + 8 log2R +

4

3
log3R

)}

,

(B.68)

where a is the sum of the series defined in (B.66).
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For the subtracted diagrams we, then, have

Ī6c = = −

− 2

=
1

(4π)6

(

1

192 ε3
− 1

24 ε2
+

1

24 ε

)

Ī8b = = −



 +





− −



 +





−

=
1

(4π)8

(

− 5

6144 ε4
+

5

768 ε3
− 1

384 ε2
− 1

32 ε

)

(B.69)
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Ī8c = = −

−
(

+
)

−
(

+

)

=
1

(4π)8

(

− 1

2048 ε4
+

1

128 ε3
− 3

64 ε2
+

5

192 ε

)

Ī8a = = −

− 2 −

=
1

(4π)8

{

− 1

3072 ε4
+

1

192 ε3
− 1

48 ε2

+
1

ε

[

− 77

432
+

a

16
+

9

64
ζ(3)

]}

.

(B.70)

Regarding Ī8a, we observe that GPXT allowed us to analytically compute the higher

order poles in ε and to reduce the first order pole to a multiple series.
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B.3. Mellin-Barnes representations

The last technique we discuss makes use of Mellin-Barnes representations of Feynman

integrals [98], [99]. The idea is to replace a sum of two terms raised to some power by

the product of these terms raised to some other powers and to perform integrations in

terms of gamma functions, at the cost of introducing extra integrations over contours in

complex plane along the imaginary axis (Mellin integral). Singularities in ε are, then,

resolved by appropriate techniques and Mellin integrals are finally evaluated by means

of analytical or numerical methods.

At the basis of the whole procedure there is the following formula:

1

(A+B)α
=

1

Γ(α)

∫ i∞

−i∞

dz

2πi
Γ(α+ z)Γ(−z) Bz

Aα+z
, (B.71)

which can be generalized to

1

(A1 + · · ·+ An)α
=

1

Γ(α)

∫ i∞

−i∞

dz2
2πi

· · ·
∫ i∞

−i∞

dzn
2πi

n
∏

i=2

Azi
i

×A−α−z2−···−zn
1 Γ(α + z2 + · · ·+ zn)

n
∏

i=2

Γ(−zi) .
(B.72)

The decompositions (B.71) and (B.72) can be used in various situations, e.g. to turn

massive propagators into massless ones. For our applications, they can be used in

Feynman parametrization of loop integrals. Using the formula for Feynman parameters,

1

Πα1

1 · · ·Παn
n

=
Γ(α1 + · · ·+ αn)

Γ(α1) · · ·Γ(αn)

∫ 1

0

dx1 · · ·
∫ 1

0

dxn
xα1−1
1 · · ·xαn−1

n δ(1− x1 − · · · − xn)

(x1Π1 + · · ·+ xnΠn)α1+αn
,

(B.73)

one can write an ℓ-loop scalar integral with generic powers of the propagators,

Jℓ =
1

(2π)ℓD

∫

dDk1 · · · dDkℓ
Πα1

1 · · ·ΠαP

P

, (B.74)
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in the following form:

Jℓ =
1

(4π)λ+1

Γ(α1 + · · ·+ αP )

Γ(α1) · · ·Γ(αP )

∫ 1

0

dx1 · · ·
∫ 1

0

dxP x
α1−1
1 · · ·xαP−1

P

× δ(1− x1 − · · · − xP )
U(x)α1+···+αP−(ℓ+1)(λ+1)

F (x)α1+···+αP−ℓ(λ+1)
,

(B.75)

where F and U are polynomials in x1, · · · , xP as well as in invariants of external momenta

(U(x) = 1 for one-loop integrals). They are characteristics of the topology of the integral.

We don’t describe here the derivation of these polynomials (see, for example, [100]). Now,

formula (B.72) can be used for F (x)α1+···+αP−ℓ(λ+1) and, then, the integral on Feynman

parameters can be done by means of the formula

∫ 1

0

dx1 · · ·
∫ 1

0

dxP x
q1−1
1 · · ·xqP−1

P δ(1− x1 − · · · − xP ) =
Γ(q1) · · ·Γ(qP )
Γ(q1 + · · ·+ qP )

. (B.76)

Integration on Feynman parameters is possible because, for scalar integrals, one can

rewrite U(x) and F (x) so that (B.76) becomes applicable8. As a result, any scalar Feyn-

man integral may be represented by a single multi-dimensional Mellin-Barnes integral.

Finally, one cane use the following two Barnes’ lemmas to try and reduce the dimen-

sionality of the Mellin-Barnes representation obtained with the previous steps (lower

dimension Mellin integrals are easier to handle):

∫ i∞

−i∞
dz Γ(a+ z)Γ(b+ z)Γ(c− z)Γ(d− z) =

Γ(a + c)Γ(a+ d)Γ(b+ c)Γ(b+ d)

Γ(a + b+ c+ d)
,

∫ i∞

−i∞
dz

Γ(a+ z)Γ(b+ z)Γ(c + z)Γ(d− z)Γ(e− z)

Γ(a + b+ c+ d+ e + z)

=
Γ(a+ d)Γ(a+ e)Γ(b+ d)Γ(b+ e)Γ(c+ d)Γ(c+ e)

Γ(a+ b+ d+ e)Γ(a+ c+ d+ e)Γ(b+ c+ d+ e)
.

(B.77)

The construction of Mellin-Barnes representations of a given ℓ-loop Feynman integral,

and in particular the manipulations on the F and U polynomials, has been automated

in the Mathematica package AMBRE, written by Gluza, Riemann and Kajda [100]. It

finds Mellin-Barnes representations for multiloop integrals by a loop-by-loop technique,

which essentially allows to restrict the formalism described above to the one-loop case.

8This is also true for any integral at one loop. As stated before, in that case only F (x) appears.
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Up to this stage, our ℓ-loop integral has been transformed into a multidimensional

Mellin integral of products and ratios of gamma functions which contain, among other

objects, the dimensional regulator ε. If one chooses the integration contour in (B.71)

such that the poles of the gamma function with +z are separated from the poles with

−z, the MB representation is well defined and corresponds to the original Feynman

integral if the real parts of all of the gamma functions have positive arguments. If these

conditions cannot be satisfied with ε = 0, then the integral may develop divergences and

analytic continuation to 0 is necessary to make an expansion in ε.

In order to perform the analytical continuation in ε, we use the Mathematica package

MB written by Czakon [101]. It assumes fixed contours parallel to the imaginary axis.

If it is not possible for all integration contours, one introduces auxiliary analytic regu-

larization to provide the existence of such straight contours. The analytic continuation

consists in accounting for pole crossings past the contours, which are chosen such that no

two contours can be crossed simultaneously: this assumption can always be satisfied by

infinitesimal shifts of one of the concerned contours. Whenever a pole of some gamma

function is crossed in the limit ε→ 0, one takes into account the corresponding residue

(if the auxiliary analytic regularization was introduced, one first performs, in a similar

way, the analytic continuation to zero values of the corresponding analytic parameters).

For every resulting residue, which involves one integration less, a similar procedure is

applied, and so on.

The MB package also contains a routine suitable for numerical integration of MB rep-

resentations. Besides the built-in Mathematica function NIntegrate, it uses the CUBA

library [102] of numerical integration routines and the CERN libraries [103] for the im-

plementation of gamma and psi functions, in order to prepare Fortran programs, which

are more efficient, in terms of computational time, for high dimension MB integrals.

We now show how the Mellin-Barnes technique works, in the evaluation of the I8a

integral defined in the previous section.

First of all, we contract the bubbles to reduce to the evaluation of a four-loop integral:

I8a = = G(1, 1)3G(1, 1/2 + ε)

1

2
+ ε

1

2
+ ε

2ε

. (B.78)
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Since the G-functions present a simple pole in ε, the four-loop integral

I4b =

1

2
+ ε

1

2
+ ε

2ε

(B.79)

has to be computed up to order zero in ε. Let’s introduce the corresponding four-loop

master integral with generic powers of the propagators:

J4b(α1, . . . , α8) =

α1 α2

α3α4

α5 α6

α7

α8

=
1

(2π)4D

∫

dDk1d
Dk2d

Dk3d
Dk4

1

(k21)
α1(k22)

α2(k23)
α3(k24)

α4

× 1

[(k1 − k4 − p)2]α5 [(k2 − k3 − p)2]α6 [(k1 − k2)2]α7 [(k3 − k4)2]α8

.

(B.80)
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With the help of AMBRE, we find the following six-fold MB representation for the integral:

J4b =
1

(4π)λ+1

∫ i∞

−i∞

dz1
2πi

· · ·
∫ i∞

−i∞

dz6
2πi

Γ(λ+ 1− α17 − z1)Γ(−z1)Γ(λ+ 1− α15 − z2)

Γ(α1)Γ(α3)Γ(α5)Γ(α6)

× Γ(−z2)Γ(α1 + z12)Γ(λ+ 1− α26 + z1 − z3)Γ(2λ+ 2− α1257 − z24)Γ(−z4)
Γ(2λ+ 2− α157)Γ(α7)Γ(α2 − z1)Γ(3λ+ 3− α12567 − z2)

× Γ(α2 − z1 + z34)Γ(−2λ− 2 + α12567 + z234)Γ(3λ+ 3− α1235678 − z2345)

Γ(4λ+ 4α1235678 − z24)Γ(−2λ− 2 + α125678 + z234)Γ(α4 − z5)

× Γ(−z5)Γ(λ+ 1− α4 + z5)Γ(λ+ 1− α3 + z3 − z6)Γ(4λ+ 4− α1235678 − z56)

Γ(5λ+ 5− α12345678 − z6)

× Γ(−z6)Γ(−4λ− 4 + α12345678 + z6)Γ(α3 + z56)Γ(−3λ− 3 + α1235678 + z2456)

Γ(−3λ− 3 + α1235678 + z56)
,

(B.81)

where we have denoted αijk··· = αi + αj + αk + · · · and similarly for zk.

We have to compute

I4b = J4b(1/2 + ε, 1, 1, 1/2 + ε, 2ε, 1, 1, 1) . (B.82)

Putting this integral into the MB package we can make the ε-expansion and find the

following numerical result:

I4b =
2.116213934935895 10−8

ε3
+

(8.26225± 0.00003) 10−7

ε2

+
(0.0000177432± 0.0000000003)

ε
+ (0.0002705914± 0.0000000003) .

(B.83)
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We then insert this result in (B.78), make the ε-expansion and subtract the subdiver-

gences, to obtain the following numerical result:

Ī8a = − 5.2348 . . . 10−13

ε4
+

8.37567 . . . 10−12

ε3
− 3.35028 . . . 10−11

ε2
− 9.63613 . . . 10−12

ε
.

(B.84)

Comparing this result with the one obtained at the end of the previous section, we see

that the poles of second, third and fourth order perfectly agree. We recall that these

poles were computed analytically via GPXT. In addition, we now have the numerical

result for the first order pole:

Ī8a |1/ε =
1

(4π)8
(−0.0059921± 0.0000008) . (B.85)



Appendix C.

Mathematica Routines

We collect in this Appendix the Mathematica codes of the routines used in Chapter 4

for the computation of the spectrum of two-impurity operators in ABJM theory.

C.1. Symbolic diagonalization

The first routine is aimed to the explicit diagonalization of the ℓ-loop dilatation operator

in the SU(2) × SU(2) sector, written in terms of the basis of permutation structures.

It is adapted from the routine available in [79] to the case of the ABJM alternating

spin-chain, where two kinds of basis of operators have to be taken into account. The

first contains two impurities of the same type (Z or W fields), while the second contains

impurities of different kind.

The dilatation operator is entered in abstract notation by the user. The routine

constructs a matrix representation on a basis of operators of specified length, via list

manipulation. Finally, diagonalization is simply achieved by the built-in Mathematica

function Eigenvalues.

Let’s write a generic state, i.e. a single trace operator in the SU(2)× SU(2) sector,

as an undefined function of this kind:

tr[W1, Z1, W2, Z1, W1, Z2, W1, Z1, W2, Z2]; (C.1)

123
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and a generic permutation structure {a, b, c, d} as the following undefined function:

Perm[a, b, c, d]; (C.2)

The function Cyclic implements cyclicity of the trace counting cyclic permutations of

operators inside the trace just once: it sorts these cyclic permutations in a canonical

order and takes a representative as the first operator:

Cyclic[x ] := x/.C tr :> Module[{k},Sort[Table[RotateLeft[C, k],

{k, Length[C]}]][[1]]];
(C.3)

For example, these two operators are equivalent, because of the cyclicity of the trace:

Cyclic[tr[W1, Z1, W2, Z1, W1, Z2, W1, Z1, W2, Z2]]

tr[W1, Z1, W2, Z1, W1, Z2, W1, Z1, W2, Z2]

Cyclic[tr[W1, Z2, W1, Z1, W2, Z2, W1, Z1, W2, Z1]]

tr[W1, Z1, W2, Z1, W1, Z2, W1, Z1, W2, Z2]

(C.4)

PermuteList[C,P,s] implements the permutation structure P on the state C at site

s, working recursively from the right. It uses PermuteElements to perform pairwise

permutations of next-to-nearest neighbor sites, mod L in order to consider closed chains.

The permutation structure { } is treated separately:

PermuteList[C tr, Perm[], s ] := C;

PermuteList[C tr, P Perm, s ] := PermuteList[PermuteElements[C, Last[P]

+ s], Drop[P, -1], s];

PermuteElements[C tr, p ] := Module[{p0 = Mod[p, Length[C], 1], p1 =

Mod[p + 2, Length[C], 1]},
ReplacePart[ReplacePart[C, C[[p0]], p1], C[[p1]], p0]];

(C.5)
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For example, on the state |W1Z
1W2Z

1W1Z
2W1Z

1W2Z
2〉 these functions work in the

following way:

PermuteElements[ tr[W1, Z1, W2, Z1, W1, Z2, W1, Z1, W2, Z2], 10]

tr[W1, Z2, W2, Z1, W1, Z2, W1, Z1, W2, Z1]

PermuteList[tr[W1, Z1, W2, Z1, W1, Z2, W1, Z1, W2, Z2], Perm[1, 2], 2]

tr[W1, Z1, W1, Z2, W2, Z1, W1, Z1, W2, Z2]

PermuteList[tr[W1, Z1, W2, Z1, W1, Z2, W1, Z1, W2, Z2], Perm[], 2]

tr[W1, Z1, W2, Z1, W1, Z2, W1, Z1, W2, Z2]

(C.6)

ActionPermPC[P,C] gives the action of the permutation structure P on the state C,

{. . .}Tr[. . .], summing over single permutations at each site s of the spin chain:

ActionPermPC[P Perm, C tr] := Module[{s}, Sum[PermuteList[C, P, 2 s],

{s, Length[C]/2}]];
(C.7)

For example, {1}|W1Z
1W2Z

1W1Z
2〉 is implemented with ActionPermPC as

ActionPermPC[Perm[1], tr[W1, Z1, W2, Z1, W1, Z2]]

tr[W1, Z1, W1, Z1, W2, Z2] + tr[W1, Z1, W2, Z1, W1, Z2] +

tr[W2, Z1, W1, Z1, W1, Z2]

Cyclic[%]

tr[W1, Z1, W1, Z1, W2, Z2] + tr[W1, Z1, W1, Z2, W2, Z1] +

tr[W1, Z1, W2, Z1, W1, Z2]

(C.8)
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ActionPerm[P,C] gives the action of a linear combination of permutation structures, e.g.

the dilatation operator, on a generic linear combination of states

ActionPerm[P , C ]:= P /.P0 Perm:>(C/C0 tr -> ActionPermPC[P0, C0]);

(C.9)

Example of the use of ActionPerm:

ActionPerm[Perm[] - Perm[1], tr[W1, Z1, W2, Z2] - tr[W2, Z1, W1, Z2]]

4 tr[W1, Z1, W2, Z2] - 4 tr[W2, Z1, W1, Z2]

Cyclic[%]

4 tr[W1, Z1, W2, Z2] - 4 tr[W1, Z2, W2, Z1]

ActionPerm[ Perm[] - Perm[1], {tr[W1, Z1, W2, Z2] - tr[W2, Z1, W1, Z2],

tr[W1, Z1, W2, Z1] - tr[W2, Z1, W1, Z1]}]
{4 tr[W1, Z1, W2, Z2] - 4 tr[W2, Z1, W1, Z2],

4 tr[W1, Z1, W2, Z1] - 4 tr[W2, Z1, W1, Z1]}

Simplify[Cyclic[%]]

{4 (tr[W1, Z1, W2, Z2] - tr[W1, Z2, W2, Z1]), 0}
(C.10)

Basis1[L] generates a basis of operators of length 2L with 2 impurities of the same type;

Basis2[L] generates a basis of operators of length 2L with 2 impurities of the two types.

We create states with impurities from 0 to M on the odd-site and on the even-site spin-

chain (BasisW[L,M1], BasisZ[L,M2]) and then fuse all their possible combinations, in an

alternating way, through FusePerm[L,M1,M2]. The latter function uses Fuse[A,B,L] to

fuse in an alternating way two vectors A and B of length L each:

BasisW[L , M ] := Join[Array[W2 &,M], Array[W1 &,L - M]] // Permutations;

(C.11)
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BasisZ[L , M ] := Join[Array[Z2 &,M], Array[Z1 &,L - M]] // Permutations;

(C.12)

Fuse[A , B , L ] := Table[If[OddQ[k] == True, A[[1 + IntegerPart[k/2]]],

B[[k/2]]], {k, 1, 2 L}];
(C.13)

Basis1[L ] := Flatten[Table[ tr @@ Fuse[BasisW[L, 2][[i]],

BasisZ[L, 0][[1]], L], {i, 1, Binomial[L, 2]}], 1] // Cyclic // Union;

(C.14)

Basis2[L ] := Flatten[Table[ tr @@ Fuse[BasisW[L, 1][[i]],

BasisZ[L, 1][[j]], L], {i, 1, Binomial[L, 1]}, {j, 1, Binomial[L, 1]}],
1] // Cyclic // Union;

(C.15)

The following example shows how these functions work for two impurity states at length

four:

Basis2[3]

{tr[W1, Z1, W1, Z1, W2, Z2], tr[W1, Z1, W1, Z2, W2, Z1],

tr[W1, Z1, W2, Z1, W1, Z2]}
(C.16)

ActionMatrix[P,C] gives the matrix representation of the linear operator P, e.g. the

dilatation operator, on the basis C:

ActionMatrix[P , C ] := CoeffList[ActionPerm[P, C] // Cyclic, C]; (C.17)

CoeffList[x , L ] := Map[Coefficient[x, #] &, L]; (C.18)
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M[l,L] is the matrix representation of the hamiltonian up to l loops on states of length

2L

M1[l , L ] := Sum[λ^ (2 k) ActionMatrix[H[2 k], Basis1[L]], {k, 1, l/2}]
M2[l , L ] := Sum[λ^ (2 k) ActionMatrix[H[2 k], Basis2[L]], {k, 1, l/2}] .

(C.19)

As an example of application of this routine we present the diagonalization of the four-

loop dilatation operator of ABJM theory. From Chapter 4, after having imposed her-

miticity, parity invariance, zero energy of the vacuum and dispersion relation on one-

magnon states we get

D4 =2(h4 − 4 + d) { }+ (6− h4 − 2d) {0}+ (6− h4 − 2d) {1}+ d ({0, 1}+ {1, 2})
− ({0, 2}+ {2, 0}+ ({1, 3}+ {3, 1}) .

(C.20)

If we consider the basis of length 2L = 6 states with two impurities of the same kind we

find:

Bsais1[3]

{tr[W1, Z1, W2, Z1, W2, Z1]} .
(C.21)

This state is protected. We find, indeed,

Normal[Series[Eigenvalues[M1[4, 3]],{λ, 0, 4}]]
{0} .

(C.22)

This is coherent with the fact that the operator O = Tr(Z1,W1, Z
1,W2, Z

1,W2) can be

seen as a state with a single impurity on the even-site spin-chain with vacuum state

Tr(W2,W2,W2) and, because of the trace condition, has zero energy.

With the other type of basis we get instead

Basis2[3]

{tr[W1, Z1, W1, Z1, W2, Z2], tr[W1, Z1, W1, Z2, W2, Z1],

tr[W1, Z1, W2, Z1, W1, Z2]} .

(C.23)
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In this case the diagonalization yields:

Normal[Series[Eigenvalues[M2[4, 3]],{λ, 0, 4}]]
{0, 6λ2 + (−18 + 3d+ 6h4)λ4, 6λ2 + (−18 + 9d+ 6h4)λ4} .

(C.24)

These eigenvalues have to be compared with the ones computed with Bethe Ansatz

through the second routine we are going to describe.

C.2. Perturbative Bethe equations

The second routine is a Mathematica implementation of the all-loop Bethe equations

(4.16) and (4.17), for two impurity states, and their perturbative solution.

First of all we define the functions appearing in such equations, needed for our eight-

loop computation:

x[u ] := (u/2) (1 + Sqrt[1 - 4 h2/u^ 2]); (C.25)

q[r , u ] := (I/(r - 1)) (1/(x[u + I/2])^ (r - 1) -1/(x[u - I/2])^ (r - 1));

(C.26)

θ[u ] := c(q[2,u] q[3,-u]-q[3,u]q[2,-u]); (C.27)

The perturbative expansion of the coefficients of the dressing phase β
(k)
2,3 , relevant for the

eight-loop dilatation operator, is

cpert[k ] := Sum[β[2 j]λ^ (2 j), {j, 2, k/2 - 1}]; (C.28)

In particular, we get

cpert[8]

λ4β[4] + λ6β[6]
(C.29)
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With BAE1 we define the asymptotic Bethe Ansatz equations for two impurities with

Mu = Mv = 1. We denote by w = u, v the Bethe roots and by h2 te interpolating

function h2(λ). DP is for the moment undefined and denotes the dressing factor:

BAE1[L ]:=((w+I/2)/(w-I/2))^ L

((1+Sqrt[1-4 h2/(w+I/2)^ 2])/(1+Sqrt[1-4 h2/(w-I/2)^ 2]))^ L DP
(C.30)

In the same way, BAE2 are the asymptotic Bethe Ansatz equations for two impurities

with either Mu = 2 and Mv = 0 or Mu = 0 and Mv = 2:

BAE2[L ]:=((w+I/2)/(w-I/2))^ (L-1)

((1+Sqrt[1-4 h2/(w+I/2)^ 2])/(1+Sqrt[1-4 h2/(w-I/2)2̂]))^ L DP
(C.31)

We need the perturbative expansion of the Bethe roots w for spin chains of length 2L, up

to k loops. To this end we define the function BetheRoot[L,k]: w =
∑k/2

j=1w2jλ
2(j−1),

with w2j given by RootCoeff[L,2j]. The two-loop contribution is w2. The maximum

order coefficient is renamed u and will be computed as the solution of the Bethe Ansatz

equations.

BetheRoot[L ,k ]:=(Sum[RootCoeff[L,2 j]λ(̂2 (j-1)),

{j,IntegerPart[k/2]}])/.{RootCoeff[L,k] -> u};
(C.32)

The perturbative expansion of h2(λ) up to k loops is called hpert[k]

hpert[k ]:=Sum[h[2 j]λ(̂2 j),{j,1,k/2}]/.h[2] -> 1; (C.33)

With BetheAnsatz[L,k] we solve the k-loop Bethe equations. The user has to solve such

equations order by order in perturbation theory, filling the coefficients RootCoeff[L,2j],

until now not evaluated, by hand. PertBAE[L,k] is the perturbative expansion of the

Bethe equations up to k loops. The solution for the Bethe root w is given by sol[L,k].

The perturbative expansion of the dressing factor is given by DPpert. We stress that is
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suited for the eight-loop computations since it contains only the β2,3 coefficient1.

DPpert[k ,w ]:=Normal[Series[Exp[-Iθ[w]]/.

{c -> cpert[k], h2 -> hpert[k]},{λ,0,k-2}]]
(C.34)

The expansion of the dressing factor up to order λ6, relevant for our eight loop compu-

tations, reads

1 +
128iuλ4β[4]

(−i+ 2u)3(i+ 2u)3
+

128iλ6(−20uβ[4] + 112u3β[4] + uβ[6] + 8u3β[6] + 16u5β[6])

(−i+ 2u)5(i+ 2u)5

(C.35)

PertBAE1[L ,k ]:=Normal[Series[(BAE1[L] /.{DP -> DPpert[k, w]}) /.

{w -> BetheRoot[L, k], h2 -> hpert[k]}, {λ,0,k-1}]]
(C.36)

BetheAnsatz1[L ,k ]:=u /. Solve[PertBAE1[L,k] == 1, u]; (C.37)

PertBAE2[L ,k ]:=Normal[Series[(BAE2[L] /. DP -> DPpert[k,w]) /.

{w -> BetheRoot[L,k], h2 -> hpert[k]}, {λ,0,k-2}]]
(C.38)

BetheAnsatz2[L ,k ]:=u /. Solve[PertBAE2[L,k] == 1, u]; (C.39)

sol[L ,k ]:= BetheRoot[L,k] /. u -> RootCoeff[L,k]; (C.40)

The k-loop anomalous dimensions, i.e. the energy eigenvalues, are given by the function

AnomalousDimension[L,k]. q[2,u] is the eigenvalue of the second conserved charge

for a single magnon. The factor 2 corresponds to the fact that u-root and v-root have

1A generalization of this procedure for generic θ(λ) requires to modify the present routine.
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identical solutions:

AnomalousDimension[L ,k ]:=Collect[Simplify[ Normal[Series[ hpert[k]

Normal[ Series[(2 q[2,sol[L,k]]) /. {h2 -> hpert[k]}, {λ,0,k-1}]],
{λ,0,k}]]], λ];

(C.41)

In order to illustrate this procedure, we compute the anomalous dimension of the oper-

ator of length 2L = 6, with two impurities Mu = Mv = 1. As described above, we run

the following commands:

BetheAnsatz1[3, 2]

{− 1

2
√
3
,

1

2
√
3
}

(C.42)

RootCoeff[3,2] = BetheAnsatz1[3,2][[2]]; (C.43)

sol[3,2]

1

2
√
3

(C.44)

BetheAnsatz1[3,4]

{
√
3}

(C.45)

RootCoeff[3,4] = BetheAnsatz1[3,4][[1]]; (C.46)

sol[3,4]

1

2
√
3
+
√
3λ2

(C.47)
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AnomalousDimension[3,4]

6λ2 + 6λ4(−3 + h[4])
(C.48)

We note that, comparing this result with the one obtained in the previous section, we

can obtain d = 0. Other anomalous dimensions are computed in a similar fashion.
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