
 
 

FACOLTÀ DI SCIENZE AGRARIE E ALIMENTARI 
Department of Food, Environmental and Nutritional Sciences (DeFENS) 
 

Graduate School in Molecular Sciences and Plant, Food and 

Environmental Biotechnology 

 

PhD programme in Food Science, Technology and Biotechnology 

 

XXV cycle 

 

 

 

Studies on the occurrence of thiol related aromas in wine 
 

Scientific field AGR/15 

 

 

 

FEDERICO PIANO 

 

 

 

 

Tutor: Prof. Antonio Tirelli 

Co-tutors: Dr. Daniela Borsa (CRA-ENO, Centro di Ricerca per l’Enologia, Asti, Italy) 

Dr. Bruno Fedrizzi (Wine Science Programme, School of Chemical Sciences, The     

University of Auckland, Auckland, New Zealand) 

 

PhD Coordinator: Prof. Maria Grazia Fortina 

 

 

2011/2012 
 



Studies on the occurrence of thiol related aromas in wine                                                    Federico Piano 
________________________________________________________________________________________________ 

1 

 

Abstract 

Thiol related aromas play a key role in sensory profile of certain wines. In particular, 3-
mercaptohexan-1-ol, 3-mercaptohexyl acetate and 4-mercapto-4-methypentan-2-one were 
firstly identified in Sauvignon blanc wines. Same molecules were then evaluated to contribute 
to several wine made from different grape varieties. The strong smelling properties of volatile 
thiols explain their importance, even if such molecules are present at extremely low 
concentration in wine (ng/L). This characteristic represents the main issue in their identification 
and quantification in wine. 
Aromatic thiols are present in grape and juice as non-volatile compounds. In particular, 
glutathione and cysteine conjugates were identified to be precursors of such smelling 
molecules. During vinification process, yeast activity is responsible for their release from the 
cysteinilated precursors. The amount of thiol precursor in juice is influenced by oenological 
practices. Despite this, no direct correlation between the level of precursors in juice and 
concentration of thiol in wine has been observed, thus suggesting that alternative biogenetic 
pathway and/or more complex interaction are responsible for occurrence of aromatic thiol in 
wine. 
The aims of this PhD were to evaluate new analytical approaches aimed to evaluate the 
occurrence of volatile thiols in wine, to study alternative biogenetic pathway leading to thiol 
realted aroma and  to assess yeast strain effect on the amount in molecules responsible for thiol 
stability in wine. 
The employmet of organo-mercury compounds represents the most effective method for thiol 
quantification in wine. The use of mercury constitutes hazard for health and environmental 
safety. Furthermore, such methods are extremely time-consuming. New analytical approaches 
were evaluated with the aim to develop an easy-to-apply method. 
In gas chromatographic approaches, thiol group reactivity towards nucleophilic addition was 
used to make derivatised product. 
Pentafluorobenzyl bromide has been reported by several authors. This derivatising agent has 
been employed by means of negative ions chemical ionization mass spectrometry. Chemical 
ionization is responsible for low fragmentation and shares with the electron capture detection a 
selective and sensitive response to electrophilic atoms (halogens), as fluorine is. Despite this, 
such techniques are not widespread. In this study electron impact ionization in positive mode 
mass spectrometry was then evaluated. The developed method  allowed to identify 
characteristic fragments even if high amount of fragmentation was present. Derivatisation 
reaction was possible in different organic solvents. 
Derivatisation of aromatic thiol can be carried out in aqueous media too. Thanks to their 
hydrophobicity, reaction products can be extracted by means of different sorbents. Despite this, 
the presence of alkali is required, thus leading to the hydrolysis of esters. 
Solid phase extraction of volatile thiol from aqueous media is possible. Despite this, in-sorbent 
derivatization process, as well as derivatisation of volatile thiol in organic solvent, did not allow 
to quantify thiol related aroma at concentration close to their perception threshold. 
The employment of an unsaturated alkene as derivatising agent was then studied. The key 
feature of ethyl propiolate employment in volatile thiols derivatization, is the thiol nucleophilic 
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addition to ynonates. The derivatised product can be identified by MS technique. The reaction 
take place in aqueous media. Neutral or mild basic conditions are required to carry out the 
derivatization procedure, where no ester hydrolysis was showed. The employment of this new 
derivatising agent allowed the assessment of volatile thiols in wine at concentration close to 
their perception threshold. 
Thanks to the employment of fluorescent derivatising agent, quantification of volatile thiol in 
wine was demonstrated to be possible by means of liquid chromatographic approaches too. The 
key feature in this analytical approach was the optimization of derivatisation reaction and the 
individuation of chemical compounds responsible for volatile thiol loss. 
Interaction between trans-2-hexenal and bisulfte was studied in order to evaluate alternative 
biogenetic pathways leading to 3-mercaptohexan-1-ol (3-MH) in wine. Biogeneic pathway of 
stable sulfonates is stricktly related to species whose structure is similar to 3-MH. The addition 
occours in aqueous acidic media, thus suggesting similar pathway in grape juice. The initial 
addition of bisulfite to the unsaturated aldehyde is at the aldehydic function. Despite this, the 
most stable product is a disulfonate which was demonstrated it is not a putative precursor of 
volatile thiol in wine. The formation of such stable product is correlated to a mono-sulfonate 
whose structure is similar to 3-mercaptohexan-1-ol. Pure species synthesis will allow to 
evaluate if this compound can be regarded as a precursor of the volatile thiol in wine. 
Thiol nucleophilic addition to quinones is the major responsible for thiol related aroma loss in 
wine. The presence of compounds able to reduce such quinone is strictly correlated to thiol 
stability in wine. The tripeptide glutathione, naturally occurring in grape and wine, is 
responsible for this protective effect. Wine making technique can affect GSH content in wine. 
In particular, several yeast strains were tested during laboratory-scale alcoholic fermentation. 
As a result, yeast strain was evaluated to influence GSH content. Moreover, during aging on 
lees total glutathione content did not vary, thus production and liberation of this tripeptide is 
related to living cells. 
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Indagine sulla presenza di aromi a funzione tiolica nei vini 
 

Gli aromi a funzione tiolica svolgono una funzione importante nella determinazione delle 
caratteristiche sensoriali di alcuni vini. In particolare, il 3-mercaptoesanolo, l’acetato di 3-
mercaptoesile ed il 4-mercapto-4-metilpentan-2-one, identificati inizialmente in vini derivanti 
da uve Sauvignon blanc, sono stati riscontrati anche in altre varietà suggerendo che essi possano 
contribuire all’aroma di diversi vini. L’elevato impatto olfattivo di tali molecole ne spiega 
l’importanza nonostante esse siano presenti nei vini a concentrazioni estremamente basse 
(ng/L). Quest’ultima caratteristica rappresenta la difficoltà maggiore alla loro identificazione e 
quantificazione.  
I tioli varietali sono presenti in mosti e uve come precursori non volatili. In particolare, 
coniugati del glutatione e della cisteina sono stati identificati come precursori. Nel corso del 
processo di vinificazione, l’attività del lievito è alla base della liberazione di questi aromi. Le 
pratiche enologiche possono influenzare il contenuto in tali precursori nei mosti anche se non è 
stata identificata una diretta correlazione tra contenuto in precursori nei mosti e tioli liberi nei 
vini, suggerendo che vie sintetiche alternative ed interazioni più complesse siano responsabili 
della presenza di tali aromi nei vini.  
Gli scopi della ricerca sono stati la valutazione di nuovi approcci analitici volti ad evidenziare la 
presenza di aromi a funzione tiolica nei vini, indagini riguardanti possibili vie biosintetiche 
alternative e l’effetto del ceppo di lievito sul contenuto in molecole responsabili della stabilità 
degli aromi tiolici nei vini.  
L’impiego di composti mercurati è il metodo più efficace ad oggi in uso per l’analisi dei tioli 
volatili. L’utilizzo di tali molecole rappresenta tuttavia un rischio per la salute e la sicurezza, 
inoltre le metodiche proposte sono estremamente complesse. Nuovi approcci analitici sono 
quindi stati valutati al fine di individuare una metodica più semplice e sicura. 
Nel corso di approcci gas cromatografici la reattività del gruppo tiolico verso addizioni 
nucleofile è stata utilizzata per la formazione di derivatizzati. 
Alcuni autori hanno proposto la derivatizzazione mediante pentafluorobenzil bromuro, 
solitamente correlata ad acquisizioni spettrometriche con ionizzazione chimica e selezione di 
ioni negativi. Si ottiene pertanto sensibilità favrita da una minor frammentazione delle molecole 
ed una maggior selettività per elettrofili, qual è il fluoro. Tuttavia queste tecniche sono poco 
diffuse. Si è pertanto testata la possibilità di utilizzare la ionizzazione ad impatto elettronico e 
selezione degli ioni positivi (più diffusa nei laboratori di ricerca enologica). La tecnica messa a 
punto ha permesso di individuare ioni caratteristici, nonostante una maggior frammentazione. 
La reazione di derivatizzazione è stata possibile in diversi solventi organici. 
La formazione dei prodotti di derivatizzazione è possibile in ambiente acquoso dal quale 
possono esser estratti selettivamente utilizzando diverse fasi stazionarie, grazie alle loro 
caratteristiche di idrofobicità, anche se l’ambiente fortemente basico determina l’idrolisi di 
gruppi esteri. 
L’estrazione di tioli aromatici da soluzioni acquose mediante fasi solide è possibile. 
Ciononostante, la derivatizzazione  applicata a molecole tioliche trattenute in fase solida od 
eluite mediante solvente organico non ha permesso l’identificazione di aromi a funzione tiolica 
ad un livello sufficiente di sensibilità. 
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Si è pertanto studiato l’impiego di un estere alchinico come derivatizzante capace di addizione 
ai gruppi tiolici. Il prodotto di addizione tra etil propiolato e tioli volatili può essere identificato 
mediante tecniche di spettrometria di massa. La reazione, che avviene in ambiente acquoso, è 
favorita da condizioni basiche non così drastiche da condurre all’drolisi di gruppi esteri. Il 
prodotto ottenuto da tale addizione nucleofila può esser selettivamente estratto da soluzioni 
acquose. Una metodica analitica innovativa basata su tale reazione ha dunque permesso 
l’identificazione di tioli aromatici in vino a concentrazioni prossime alla loro soglia di 
percezione.   
La quantificazione di aromi tiolici in vino anche mediante metodiche di cromatografia liquida è 
possibile grazie all’impiego di derivatizzanti con caratteristiche fluorescenti. L’individuazione 
delle condizioni ottimali di derivatizzazione e di composti responsabili della perdita di tioli 
volatili hanno giocato un ruolo chiave nel successo di tale approccio analitico. 
L’interazione tra ione bisolfito ed esenale è stata indagata nel corso della valutazione di vie 
biosintetiche alternative responsabili della presenza di 3-mercaptoesan-1-olo (3-MH) nei vini. 
La formazione di sulfonati stabili è strettamente correlata a specie la cui struttura è simile al 3-
MH. Tali reazioni avvengono in ambiente acido, suggerendo un simile meccanismo anche nei 
mosti. La prima addizione dello ione bisolfito è al gruppo carbonilico dell’aldeide insatura. 
Ciononostante il prodotto più stabile è rappresentato da un disulfonato che si è rivelato non 
essere un precursore dell’aroma tiolico. La formazione di tale sulfonato è correlata ad un 
monosulfonato di struttura simile al 3-mercaptoesan-1-olo. La sintesi della specie pura 
permetterà di valutare se possa esserne considerato un precursore.   
L’addizione nucleofila di tioli a chinoni è la maggior responsabile della perdita di tali aromi nei 
vini. La presenza di composti che riducano tali chinoni è strettamente correlata alla stabilità 
degli aromi tiolici. Il glutatione, naturalmente presente nelle uve e nei vini, è in grado di 
svolgere tale funzione. Il contenuto di GSH nei vini è influenzato dalle operazioni di 
vinificazione. In particolare, sono stati testati diversi ceppi di lievito nel corso della 
fermentazione alcolica e si è verificato che la scelta del ceppo di lievito può influenzare il 
contenuto in tale tripeptide. Inoltre nel corso della fase sur lies non è stato riscontrata una 
variazione del contenuto totale di glutatione, ascrivendo il rilascio del tripeptide alle fasi di 
attività metabolica.   
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1.Thiol related aromas in wines: state of the art 
 

1.1. Volatile thiols in wine 
 
Sulfur aromas can be present in wine as result of different causes. They can come from grapes 

as non-volatile precursors, from microbial fermentation or from chemical reaction taking place 

during storage. The extraction of thiol compounds from wood is another cause of sulpur related 

aroma in wines (Landaud et al., 2000).  

Some thiol aromas can be generated starting from sulfur-containing amino acids, fermentation 

and metabolism products from the sulfur-containing pesticides. Thermal and chemical reaction 

of sulfur compounds during winemaking and storage are responsible foe thiol aromas in wines 

(Mestres et al., 2000).  

Many volatile sulpur compounds, such as carbon sulfide, ethanethiol, methanethiol, and 

hydrogen sulfide, which are mainly produced at high levels during alcoholic fermentation are 

responsible for olfactory defect (Bartowsky & Pretorius, 2009). Those compounds are 

responsible for notes as cabbage, onion, rotten egg, garlic and rubber (Vermeulen et al., 2005). 

Among negative sulfur compounds, hydrogen sulfide is characterized by high volatility and 

high reactivity. Dimethyl sulfide (DMS) is another sulfur-containing volatile which was found 

in wines, with sub-part per billion to sub-part per million levels (Acinobar Beloqui et al., 1996). 

S-methylmethionine has been reported as possible precursor (Segurel et al., 2005). These 

compounds are responsible for reduced notes in wines.       

On the opposite, some long-chain volatile sulphur compounds supply the typical pleasant 

aromatic profile of certain wines. In particular, 3-mercaptohexan-1-ol (3-MH), 

3mercaptohexylacetate (3-MHA) and 4-mercapto-4-methylpentan-2one (4-MMP) are regarded 

as the most important pleasant volatile thiols in wines. 3-MH and 3-MHA are responsible for 

passion fruit, grapefruit notes and their perception threshold is 4 ng L-1 and 60 ng L-1, 

respectively for 3-MHA and 3-MH. The 4-MMP aroma is described as box tree, black currant, 

or cat urine at high concentration and its perception threshold in wine is 0.8 ng L-1 (Tominaga et 

al., 1998a). 3-MH and 3-MHA can impart sweaty aromas at excessive concentrations.  

4-mercapto-4-methylpentan-2-ol (4-MMPOH) is reminiscent of citrus zest and grapefruit. The 

perception threshold for this compound is 55 ng L-1 in acqueous alcoholic solution (Tominaga 

et al., 1998b).  

The long-chain sulfur compounds mentioned above characterize the typical varietal aroma of 

Sauvignon blanc wine (Tominaga T et al., 1998a). 3-MH and 3-MHA have been identified in 
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certain red wine varieties, such as Merlot and Cabernet Sauvignon (Bouchilloux et al., 1998). 

These  volatile thiols, together with 4-MMP, contribute to the aromas of white wine made from 

different Vitis vinifera grape varieties, such as Gewurtztraminer, Muscat, Riesling, Sylvaner, 

Pinot gris, Pinot blanc, Colombard, Petit Maseng, botrytized Semillon  and Grenache 

(Tominaga et al., 2000a, Ferreira et al., 2002).  

3-MH and 3-MHA are present in wines as two different stereoisomers. The R and S forms of 

these compounds are equivalent in the case of 3-MH (Tominaga et al., 2006). The perception 

thresholds for the R and S enantiomers are similar for 3-MH (50 and 60 ng L-1, respectively for 

S and R forms), but they are responsible for different aromas: the R form is described as 

grapefruit, while the S form evokes passion fruit. The ratio between the two enantiomeric forms 

is close to 1 in dry white wine; on the other hand, for sweet wines made from botryzized grapes 

the proportion of R to S forms is measured as 30:70 (Tominaga et al., 2006). 

3-MHA S enantiomer is more abundant than R form. Moreover, the two enantiomers of 3-MHA 

show different aromas and perception thresholds (Tominaga et al., 2006). The less odoriferous 

R form, which threshold is 9 ng L-1, is characterized by passion fruit descriptor. The S form is 

reminiscent of box tree and its perception threshold is much lower (2.5 ng L-1). In dry 

Sauvignon blanc and Semillon wines the R to S enantiomeric ratios have been reported to be 

30:70, thus the most powerful isomer is even the most abundant (Tominaga et al., 2006).  

Benzenemethanethiol, 2-furanmethanethiol and 3-mercaptopropionate represent another group 

of volatile thiols responsible for pleasant notes in aged wines (Tominaga et al., 2003a). 2-

furanmethanethiol is a particularly strong-smelling compound reminiscent of roasted coffe and 

its perception threshold in a hydroalcoholic solution is extremely low (0.4 ng L-1). This 

compound has been identified in sweet white wines made from Petit maseng grape, and in 

certain red Bordeaux wines made from Merlot, Cabernet franc and Cabernet sauvignon grape 

varieties (Tominaga et al., 2000b). Benzenmethanethiol is a volatile thiol with a strong 

empyreumatic aroma reminiscent smoke, identified in boxwood (Buxus sempervirens L.) 

(Tominaga & Dubourdieu, 1997) and in both in red and white Vitis vinifera wines (i.e. 

Sauvignon blanc, Semillon, Chardonnay) which contain several dozen nanograms per liter, 

which represent 100 folds higher than its perception threshold (0.3 ng L-1 in model 

hydroalcoholic solution) (Tominaga et al., 2003b). Moreover, both this compound, and 2-

furanmethanethiol and 3-mercaptopropionate, have been identified in aged Champagne wines 

(Tominaga et al, 2003a). Nonetheless, 3-methyl-3-mercaptobutanal and 2-methylfuran-3-thiol, 

together with 3-mercaptopropyl acetate, 3-MH and 3-mercaptoheptanal, play a key role in 
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Sautern wine (Bailly et al., 2006. Bailly et al., 2009). In a similar way, wines made from 

Botrytis-infected grapes are characterized by the presence of thiol related aromas as 3-

mercaptopentan-1-ol, 3-mercaptoheptan-1-ol and 2-methyl-3-mercaptobutan-1-ol. The first two 

have citrus and grapefruit aromas whereas the third compound is reminiscent of raw onion. The 

concentration of such aromas in commercial botrytized wines ranges from tens to thousands ng 

L-1. Despite their perception threshold is similar to the measured quantity in wines, their 

olfactory impact on the overall aroma of botrytized wines is confirmed (Sarrazin et al., 2007). 

As described above, several odoriferous thiols have been identified in Vitis vinifera white and 

red wines (figure 1.1). Nonetheless, the most important Sauvignon blanc varietal thiols are 4-

MMP, 3-MHA and 3-MH. 
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Figure 1.1. Volatile thiols identified in Vitis vinifera wines. (Roland et al., 2011).  
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1.2. Sulphur aroma precursors 
 

3-mercaptohexan-1-ol is present in grape and juice as non-volatile precursor. In particular, it is 

present as cysteinyl-conjugates (Tominaga et al., 1995), as glutathione conjugates (Peyrot des 

Gachons et al., 2002a) and as cysteinylglycin-conjugates (Capone et al., 2011a). 4-mercapto-4-

methylpentan-2-one has been identified in grape and must as cysteine conjugate and glutathione 

conjugate (Fedrizzi et al., 2009). As a result, free varietal thiols are practically absent in grape 

juice and are released during the alcoholic fermentation by the wine yeast, Saccharomyces 

cerevisiae, from odourless precursors.  

Cysteinylated precursors are described as S-cysteine conjugates: S-4-(4-methylpenta-2-one)-L-

cysteine (Cys-4-MMP) and S-3-(hexan-1-ol)-L-cysteine (Cys-3-MH), for 4-MMP and 3-MH 

respectively (Tominaga et al., 1995, Thibon et al., 2008).  

In model solution, cell-free enzyme extract of Eubacterium limosum (containing β-carbon-

sulfur lyase enzymes) allows the release of 4-MMP from synthetic Cys-4MMP (Tominaga et 

al., 1998).  

Furthermore, non-volatile crude extracts obtained from Sauvignon blanc must were shown to 

contain Cys-3-MH and Cys-4-MMP (Tominaga et al., 1998). Finally, action of the same cell-

free enzyme extract of E. limosumon in Sauvignon blanc must extract allowed the release of 3-

MH and 4-MMP, 3-MH release being correlated with Cys-3-MH decrease (Tominaga et al., 

1998). This enzyme catalyses the breakage of the thioether bond following the reaction reported 

in figure 2.1. 

 

 

 

Figure 2.1. Reaction of breakage of cysteinylated precursors in the presence of enzyme β-lyase. 

 

Consequently, in wine, the volatile thiols release from their corresponding precursors involves 

similar wine yeast enzymes with carbon-sulfur lyase activities, proposing a β-elimination 

reaction catalyzed by a cysteine-S-conjugate β-lyase activity [EC 4.4.1.13] of S. cerevisiae. 

Studies on putative yeast carbon-sulfur lyases have been performed by Howell et al. (2005). 

Moreover, a stereoselectivity of 3-MH liberation from S-(R/S)-3-(hexan-1-ol)-L-cysteine by 
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oenological yeasts have been demonstrated. (Grant-Preece et al., 2010, Pardon K H et al., 

2008). 

Correlation between Cys-3-MH content of the must and 3-MH concentration in wine has been 

pointed out (Murat et al., 2001b). Moreover, Dubourdieu et al. (2006) have been also 

demonstrated that Cys-3-MH concentration decreases in must during alcoholic fermentation 

and, at the same time, 3-MH amount increases.  

In grape, Cys-4-MMP content was shown to be equivalent in the juice and skin while the Cys-

3-MH concentration was higher in the skin (Peyrot des Gachons et al., 2002).  

3-MHA is also generated from Cys-3-MH, but by an indirect pathway. Infact, it is produced 

through the yeast metabolism during alcoholic fermentation due to the of ester-forming alcohol 

acetyltransferase activity [EC 2.3.1.84], encoded by the ATF1 gene (Swiegers & Pretorius, 

2007).  

Anyway, the molar conversion yields of cysteinylated precursors into their corresponding thiols 

are low: the yield ranges from 0.1 to 12% and from 0.06% to 10% for  Cys-3-MH/3-MH 

(Dubourdieu et al., 2006; Masneuf-Pomarede et al., 2006; Murat et al., 2001b) and Cys-4-

MMP/4-MMP (Masneuf-Pomarede et al., 2006; Murat et al., 2001c) respectively.   

The glutathione derivate precursor of 3-MH has been identified in grapes and juice (Peyrot des 

Gachons et al., 2002), postulating that this conjugate is catabolized to S-3-(hexan-1-ol)-L-

cysteine in grapes by the action of γ-glutamyltranspeptidase and carboxypeptidase activity. 

Because cysteinylated precursor of 3-MH is found to be alongside the metabolic pathway of the 

degradation of the corresponding glutathione conjugate, S-3-(hexan-1ol)-gluathione may be 

considered the biogenetic precursor of S-3-(hexan-1-ol)-L-cysteine, and subsequently 3-

mercaptohexan-1-ol.  

An alternative pathway for the biogenesis of 3-mercaptohexan-1-ol in wine has been proposed  

starting from trans-2-hexenal (Schneider et al., 2006). This unsaturated aldehyde is present in 

grape juices due to the oxidative breakdown of unsaturated fatty-acids (Joslin & Ough, 1978).  

This pathway is based on the addition of the sulfydryl group of a thiol compound to the 

unsaturated carbonyl molecule. Hydrogen sulfide and L-cysteine were proposed firstly as they 

are present in grape juices and must during alcoholic fermentation. 3-MH would directly lead 

by-product of the yeast sulfur metabolism when the sulfur addition is from hydrogen sulfide. 

On the contrary, 3-MH would be indirectly obtained after carbon-sulfur lyase activity by yeast 

via cysteine addition. 
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However, S-3-(hexan-1-ol)-L-cysteine and trans-2-hexenal cannot be longer considered as the 

major 3-MH precursors (Subileau et al., 2008). Indeed, the deletion of the OPT1 gene, encoding 

for glutathione transporter, is responsible for a lower 3-MH and 3-MHA content, thus 

suggesting that the major precursor is a S-glutathionyl conjugate like S-3-(hexan-1ol)-

glutathione.  

Even for 4-MMP, the identification of a glutathionylated conjugate (S-4-methylpentan-2-one)-

glutahione in Sauvignon blanc juice (Fedrizzi et al., 2009) suggests that glutathione conjugates 

can be considered as major precursors.  

The liberation of 3-MH from glutathione conjugates, alongside cysteine conjugates, has been 

shown (Grant-Preece et al., 2010). Moreover, the employment of isotopically labeled synthetic 

compounds gives evidence that S-3-(hexan-1-ol)-glutathione is an absolute precursor of 3-MH 

(Roland et al., 2010b). Despite this, the molar conversion is only 3%. 

Ratio between the amount of glutathione and cysteine conjugates, and between their isomeric 

forms, has to be elucidate. In fact, S-3-(hexan-1-ol)-L-Cysteine has been detected in higher 

concentration than the corresponding glutathione conjugate (Roland et al., 2010b). However, 

more recent researchers suggest that both R and S enantiomers of glutathione conjugate are 

more abundant than both R and S enantiomers of cysteine conjugates (Capone et al., 2010). 

Moreover, these authors showed the S isomer concentration was higher than the R isomer for 

both conjugates.    

The relation between cysteine and glutathione cojugates, itself generated after conjugation of 

glutathione on trans-2-hexenal, has been recently elucidated (Thibon et al., 2011). The 

conjugate between glutathione and 3-MH can be considered as a pro-precursor of 3-MH finally 

released in wines. 

Despite this, the employment of labeled 3-MH and 4-MMP glutathione conjugates suggests that 

the conversion yeld after alcoholic fermentation in wines is close to 0.3%, which can represent 

the starting point for additional studies on varietal thiol biogenesis (Roland et al., 2010). 

The identification of intermediates involved in the biosynthetic pathway of 3-mercaptohexan-1-

ol conjugates in yellow passion fruit (Passiflora edulis f. flavicarpa) (Fedrizzi et al., 2012) 

suggesting a similar pathway in other plants, such as grapevine. In both grape and yellow 

passion fruit, 3-MH may originate from non-volatile precursors linked to the GSH metabolism 

which can begin from the conjugation of GSH with an electrophile under the catalysis of 

glutathione-S-transferase (Dixon et al., 2002, Edwards et al., 2000, Lamoureux & Rusness, 

1987, Ohkama-Ohtsu et al., 2007, Rennenberg, 1982) (figure 2.2) . The building blocks of this 
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molecule suggest a 1,4-Michael addition between (E)-2-hexenal and GSH followed by a 

carbonyl reduction which is carried out by an aldo-keto reductase. This pathway occours in 

several living organisms in response to oxidative stress. 

Three precursors (i.e. S-glutathionylated (1), S-glycyl cysteinylated (2) and S-cysteinylated (4)) 

related to 3-MH have been identified. 

 

 

Figure 2.2. Hypotetical pathway for the biosynthesis of 3-mercaptohexan-1-ol conjugates in yellow 

passion fruit (Fedrizzi et al., 2012). Legend: glutathione-S-tranferase (GST); Aldo-keto reductase (AKR); 

γ-glutamyl transpeptidase (γ-GT); carboxypeptidase (CP) and phytochelatine syntases (PCS).  
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The formation of 3-mercaptohexan-1-ol precursor is a dynamic process and it can be influenced 

by vineyard (Peyrot des Gachons et al., 2005) and winery processing operations (Capone et al., 

2012, Allen et al., 2011).  

Severe water stress and nitrogen deficits limited the formation of S-cysteinil conjugates as a 

first impact of viticulture on these aromas (Peyrot des Gachons et al., 2005). Moreover the 

presence of moulds can influence thiol concentration since Botrytis cinerea stimulated the 

synthesis of the 3-MH cysteine precursor (Sarrazin et al., 2007). This observation would 

explain the high concentrations of 3-MH in sweet wines made from botrytized grape (Sarrazin 

et al., 2007, Tominaga et al., 2006, Tominaga et al., 2000). Moreover, as a result of B. cinerea 

infection, the ratio R:S isomers was modified as well as the R:S ratio of 3-MH in resulting 

wines (Tominaga et al., 2006). 

The grape treatment during harvesting can improve thiol precursors: mechanical harvesting 

determines a higher concentration of thiol precursors (Capone et al., 2011b). Moreover, 

machine harvested grapes transportation leads to a higher content in thiol precursors (Capone et 

al., 2011b). Despite this, the highest content in thiol precursors (cysteine conjugates, 

glutathione conjugates and cysteinylglycin-conjugates) does not correspond to the highest 

content in thiols in corresponding wine (Allen et al., 2011). In a recent study, the lack of 

correlation among putative thiol precursors  in juice and final thiol concentration in wine is 

described, suggesting that 3-MH in wine may derives from alternative pathways (Pinu et al., 

2012).   

The wine making can influence the concentration of thiol-related aromas in wines. As more 

than half of the total cysteine conjugates is located in garape skin (Murat et al., 2001b, Peyrot 

des Gachons et al., 2002), an increased skin contact time augments S-3-(hexan-1-ol)-L-cysteine 

in grape musts (Maggu et al., 2007).  In the same way, stronger pressing condition can lead to 

higher concentration of thiol precursors in juice. Nevertheless, higher concentration in such 

precursors in juice does not correspond to higher concentration in volatile thiol in 

corresponding wine (Patel et al., 2010). In fact, pressed juices are characterized by lower 

concentration in 3-MH and 3-MHA in comparison to free run juices: the higher is the pressure, 

the higher the concentrationin thiol precursor and the higher the oxidative potential in the juice 

(and subsequently the corresponding wine). 

The liberation of volatile thiols from their precursors depends on several fermentation 

conditions: temperature (Masneuf-Pomarède et al., 2006), yeast species (Masneuf-Pomarède et 



Studies on the occurrence of thiol related aromas in wine                                                    Federico Piano 
________________________________________________________________________________________________ 

18 

 

al., 2002) and yeast strain (Howell et al., 2004, Murat et al., 2001c, Swiegers et al., 2009) affect 

release yields. 

Fermentation temperature of juices can modify thiol concentration in resulting wines: in the 

range of alcoholic fermentation for white wines, at higher fermentation temperature, higher 

concentration of thiol-related aromas are released. Among commercialy available S. cerevisiae 

strains commonly used in wine making, VL3 and EG8 release more volatile thiols, in 

comparison to VL1 and 522  (Murat et al., 2001c). Furthermore, S. bayanus var. uvarum strains 

and hybrids between this yeast and S. cerevisiae showed a higher ability to release 3-MH and 4-

MMP if compared to S. cerevisiae strain (Masneuf-Pomarède et al., 2002).  

Although such studies on different yeast species and strains, the employment of 

diammoniummphosphate as a nitrogen source in juices suppresses 3-MH production (Subileau 

et al., 2008b).  

Although the quantity of 3-MH cysteine conjugate in must and 3-MH in corresponding wines is 

proportional (Tominaga et al., 1998), only a small amount of cysteine precursor is converted to 

the active aroma during alcoholic fermentation (Murat et al., 2001b). 

As for 3-MH concentration, yeast can influence the amount of 3-MHA in wines. In particular, 

the ability of commercial wine yeast to convert 3-MH into 3-MHA has been shown to vary 

(Swiegers et al., 2009). The yeast strains with the lowest 3-MH release capacity exhibit the 

highest capacity in conversion 3-MH into 3-MHA. Some non-Saccharomyces yeasts (i.e. Pichia 

kluyveri) are low in capability to release 3-MH from the corresponding precursor but they show 

high conversion rate from 3-MH to 3-MHA (Anfang et al., 2009).  

Therefore, the co-fermentation using both yeast strains heving high 3-MH released and 3-MH/ 

3-MHA conversion can positively affect the volatile thiols concentration in wine. Indeed, the 

co-inoculation of must using S. cerevisiae yeast strains with the two characterisctics as 

described as above leads to higher level of 3-MHA in wine if compared to the employment of a 

single yeast during alcoholic fermentation (King et al., 2008). In a similar way, a mix of 

Saccharomyces and non-Saccharomyces such as P. kluyveri enhances the 3-MHA compared to 

single S. cerevisiae inoculum in Sauvignon blanc wine (Anfang et al., 2009).     

Cysteine conjugates have been identified also for 3-mercaptopentan-1-ol, 3-mercaptoheptan-1-

ol and 3-mercapto-2-methylbutan-1-ol. These compounds have been pointed out in Sauternes 

wine (Sarrazin et al., 2007) and in musts from different grape varieties either infected by noble 

rot or not (Thibon et al., 2010).  
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1.3. Factors affecting volatile thiols stability in wine 
 

As many aromatic wine components, the concentration of thiol related aromas change during 

wine ageing. A rapid decline of 3-MHA is observed after three months of bottle storage, while a 

much slower decline in 3-MH can be noticed. After one year storage the ester is completely 

disappeared, while 3-MH is still present but its content is halved. Different degradation kinetics 

are linked to different degradation mechanism. 

Copper can react with thiols leading to loss of such compounds (Darriet et al., 2001). The wine 

oxidation is also detrimental to the concentration of those key fruity aroma compounds 

(Blanchard et al., 2004).  

Wine is exposed to oxygen at various stages of production and the amount of solubilized 

oxygen is affected by the temperature (Singleton, 1987). Even if thiols do not react directly with 

oxygen, their decrease is linked to other compounds (e.i. phenols) which react readily with 

oxygen (Blanchard et al., 2004). Among the wine compounds potentially oxidable, polyphenols 

represent the initial substrate of oxidative mechanisms. It was showed that polyphenol 

autoxidation products, namely ortho-quinones and hydrogen peroxide, react with varietal thiols 

(figure 1.3.1). As supported as described above, Danilewicz et al. (2008) reported  an oxidative 

degradation mechanism of 3-MH mediated by polyphenols (e.i. (+)-catechin).  

 

 

Figure 1.3.1. Oxidative degradation of volatile thiols (RSH) in wines. 
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The quinones formation in wines is due to the Fenton reaction, wherein not only the oxygen, but 

also iron and copper play a key role.  

Phenols can react directly with oxygen only under basic pH condition. In fact, the weakly acidic 

character of phenolic compounds (pKa 9 to 10) leads the formation of the phenolate anion 

which can react with oxygen. Despite this, since wine has acid pH, and phenols have a high 

dissociation constant, only a small fraction of wine phenols can be deprotonated. Consequently, 

direct oxidation pathway of phenolic compounds is no longer possible (Danilewicz, 2003). 

Because of the poor direct reactivity of oxygen with such wine molecules, the oxidizing 

potential of molecular oxygen is improved by the generation of reactive oxygen species. The 

initial transfer of an electron leads to the formation of superoxide ion which exists as 

hydroperoxide radical at wine pH. This step requires a catalyst: a transition state metal, such as 

iron (Waterhouse & Laurie, 2005). The transfer of a second electron would then produce 

hydrogen peroxide. The reduction of the latter compound leads to an hydroxyl radical which is 

more reactive than the previous one. The reduction pathway is the Fenton reaction occurring 

between hydrogen peroxide and ferrous iron salt (Fe2+) (Danilewicz, 2003). A molecule of 

water is the final product of oxygen reduction.  

Nevertheless, hydroperoxide radical is able to oxidize wine phenols which can readily reduce 

the ferric ion to ferrous form originating a quinone (figure 1.3.2). 

 

 

Figure 1.3.2. Oxidative process of phenolics in wines. 
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Thiols can be bound to oxidized phenolic compounds under wine oxidation conditions. During 

barrel and bottle aging of red and white wines, a decrease  of volatile thiols, such as 3-

mercaptohexan-1-ol, has been showed due to the oxygen dissolved (Blanchard et al., 2004, 

Lopes et al., 2009). 

Thiols exhibit strong antioxidative activity, owed to their property reducing ortho-quinones and 

H2O2. As a result they will are converted to the corresponding disulfide reacting with H2O2 

(Vermeulen et al., 2005). Thiols can easily form a disulfide bound when a metal ion catalyst 

(particularly cupric ions- Cu2+) and oxygen are dissolved; this reaction occours faster by 

temperature increasing (Jocelyn, 1972).  

Anyway, a clear difference exists among the reactivity of phenols (Nikolantonaki et al., 2010). 

Ortho-trihydroxyphenols (pyrogallol derivatives), such as gallic acid, and ortho-

dihydroxyphenols (catechol derivatives), including caffeic acid, (+)-catechin, (-)-epicatechin 

and quercetin are the compounds most susceptible to oxidation (Kilmartin et al., 2001). The 

stability of quinone formed by the polyphenol oxidation is another important aspect. In fact, 

some quinones are more stable and they can be reduced back to the original polyphenol by such 

antioxidants (e.g. SO2 and glutathione). Contrarily, other quinone products break down rapidly 

originating irreversibily oxidative compounds, such as the quinone deriving from quercetin 

(Makhotkina et al., 2009).  

The composition of white wine polyphenols depends on grape variety, vineyard conditions and 

treatments, climate, grape maturity, vinification procedures as well as on chemical reactions 

taking place during the wine ageing. Wine making practices, such as skin contact and hard 

pressing, lead to higher polyphenolic content in wines, in particular the flavonoids content is 

increased (Cheynier et al., 1989).        

The thiols reactivity is due to nucleophilic addition reactions with certain electrophiles. As 

volatile thiols are nucleophiles, they can thus add to the electrophilic sites of quinones in a 

conjugate addition according to a Michael-type addition (Cheynier et al., 1986, Patel et al., 

2010).  

The efficacy of this addition reaction depends upon the nucleophilic strength of the thiol and the 

oxidation rate of each phenolic substrate. The nucleophilicity of thiols is mainly modulated by 

their steric hindrance making primary thiols more reactive than tertiary thiols (Charles-Bernard 

et al., 2005). Among thiol related aromas, 4-mercapro-4methylpentan-2-one shows a lower 

reactivity towards oxidation-quinones, if compared to 3-mercaptohexan-1-ol or 2-

furanmethanethiol. Sulfur dioxide and reduced glutathione are characterized by higher 
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reactivity than aromatic thiols toward quinones thus limiting thiol related aroma loss and 

preventing oxidative spoilage (Nikolantonaki & Waterhouse, 2012a). 

The rate of these reactions is pH-dependent, since at wine pH the concentration of thiolate anion 

(RS-), which is more reactive than its protonated form (RSH), is low. In fact, pKa value for 

thiols ranges from 9 to 12 (Vermuelen et al., 2005). The greater proportion of thiolate anions at 

a higher pH, together with an higher concentration of quinones, may explain the lower levels in 

3-MH in wines with higher pH (4.0 instead of 3.5) (Blanchard et al., 2004). It is well known 

that greater involvement of the phenolate anion form in wine oxidation is related to an higher 

amount of quinones in wines (Sioumis et al., 2005). As already mentioned, polyphenols are 

weak acids with a pKa value ranging between 9 and 10, allowing them to exist as phenolate 

anions, which are capable of reacting directly with molecular oxygen, thus explaining the fast 

autoxidation of polyphenols under alkaline conditions (Cilliers et al., 1989). Under higher pH 

conditions, oxygen uptake in wine is much faster, due to a greater conversion of phenols to 

quinones with limited regenerative polymerization. However, only a small amount of 

polyphenols is deprotonated at wine pH but these compounds can still autoxidize to 

semiquinone and quinone, although at a slower rate. 

Such nucleophilic additions between thiols and quinones have been reported using caftaric acid 

(Salgues et al., 1986), caffeic acid (Cilliers & Singleton, 1990), gallic acid (Quideau et al., 

1995), (+)-catechin (Mordiani et al., 2001) and epicatechin (Tanaka et al., 2002). These 

reactions have been described in alkaline buffer, organic medium,  acidic white grape must and 

wine model system. 

In this scenario, wine composition and oxygen exposure are the major responsible for thiol 

related aroma loses both during winemaking and post-bottling (Brajkovich et al., 2005, Ugliano 

et al., 2011).  

Since 3-MHA is not only a thiol but also an ester, hydrolysis is the predominant mechanism 

rather than oxidation leading to the degradation of this volatile thiol. Acetate esters are present 

in wine in excess in comparison to their equilibrium constant. They are produced enzymatically 

during fermentation by the action of yeasts: biogenetic pathway is linked to the combination of 

acetyl-CoA with an alcohol catalyzed by alcohol acetyltransferases. As most acetate esters, 3-

MHA undergoes to hydrolysis at wine pH during ageing and the hydrolysis-esterification 

equilibrium is the key mechanism to explain its loss (Makhotkina & Kilmartin, 2012). For this 

compound temperature and wine pH are responsible for its decrease rather than oxidative 

condition. 
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The most common antioxidants present in wine are sulfur dioxide, ascorbic acid, and reduced 

glutathione. These antioxidants limit the polyphenol oxidation, either by removing  oxygen 

from wine or by reversing and altering the oxidation process. 

The equilibrium established upon SO2 dissociation in wine, is pH dependent. Moreover, this 

equilibrium is affected by the presence of wine constitutents that bind bisulfite (HSO3-) as well 

as by wine temperature (Usseglio-Tomasset, 1992). Sulfur dioxide exists in wine in both free 

and bound forms, their sum equaling total SO2. Free sulfur dioxide is present as molecular SO2, 

bisulfite (HSO3
-) and sulfite (SO3

2-): the latter can react directly with oxygen, but its 

concentration is extremely low at wine pH. Bisulfite is the predominant form of free SO2 at 

wine pH and binds a wide range of wine compounds, thus producing bound sulfur dioxide. The 

importance of this antioxidant in preventing volatile thiol loses leads in bisulfite competition for 

ortho-quinones. In fact, it has been argued that thebisulfite form HSO3
- converts ortho-quinones 

back to ortho-dihydroxyphenols and react directly with ortho-quinones (Makhotkina & 

Kilmartin, 2009) (figure 1.3.3). As a result, the presence of free sulfur dioxide slows down 

volatile thiols oxidation (Nikolantonaki et al., 2012b). 

 

 

Figure 1.3.3. Antioxidative effect of sulfur dioxide (as HSO3
- ) in wines. 

 

In a similar way, the antioxidative activity of glutathione has been ascribed to its nucleophilic 

addition quinones forming a reduced glutathione conjugate. As the thiols, glutathione is able to 

reduce quiones and hydrogen peroxide. Therefore, it can be hypothesized that glutathione 

competes in these reaction with aromatic thiols, thus preventing these aromatic molecules loss. 

Moreover, the decline of both glutathione and aromatic thiols is limited keeping the wine on 
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lees before bottling. The uptake of oxygen by lees may explain this phenomenon (Salmon et al., 

2002). 

The antioxidant effect of ascorbic acid is due to its rapid scavenging ability of molecular 

oxygen, thereby preventing the onset of oxidative mechanism. The potential of ascorbic acid to 

recycle ortho-quinones back to ortho-dihydroxyphenols has been suggested by various authors 

(Danilewicz et al., 2003, Isaacs et al., 1997, Singleton, 1987). More recently, complete 

reduction  of quinones to phenols by ascorbic acid in wine acidic conditions has been studied 

(Nikolantonaki & Waterhouse, 2012). Even if the lack of rapid interaction between ascorbic 

acid and ortho-quinones has been noticed (Makhotkina & Kilmartin, 2009). However, under 

oxygen-rich conditions, ascorbic acid is readily oxidized, especially in presence of iron (Fe3+) 

and copper (Cu2+) (Danilewicz, 2003), leading to the formation of dehydroascorbic acid  and  

hydrogen  peroxide which are  strong  oxidative  agent. The hydrogen peroxide shares into the 

oxidation of other compounds: among the wine components, it can oxidize volatile thiols. 

Therefore, since SO2 is capable of quenching hydrogen peroxide, ascorbic acid covers a 

supplementary role scavenging directly the oxygen released by the SO2 activity.    
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2. Aims of the study 
 

The aims of this PhD were to evaluate new analytical approaches aimed to evaluate the 
occurrence of volatile thiols in wine, to study alternative biogenetic pathway leading to thiol 
realted aroma and  to assess yeast strain effect on the amount in molecules responsible for thiol 
stability in wine. 
Despite their strong contribute to smelling properties of wine, aromatic thiols are present at 
trace concentration. In fact, their analytical quantification has always posed the most significant 
obstacle for their study. Moreover, thiols strong reactivity towards various molecules in wine 
makes them fairly susceptible to oxidation. As the presence of the thiol group represents the 
most important issue for the analytical quantification, several derivatizing agent were tested. 
Nowadays, the most effective methods apply organomercury molecules. These are the only 
methods capable of detecting thiols at level sufficiently low to be applicable in wine matrices. 
Despite this, the use of mercury constitutes a health and safety risk in the laboratory and 
additionally these methods are very time-consuming. Other very promising derivatising agents 
have been suggested in the literature. Nevertheless all these methods failed in achieving the 
quantification of volatile thiols at their perception threshold or were extremely time consuming, 
leaving the mercury methods the only way to quantify such strong smelling molecules. The 
development of a novel analytical method applicable to determine volatile thiols is then 
necessary in order to gain a useful tool to identify, quantify and evaluate occurrence of thiol 
related aromas in wines. 
The volatile thiols determination will be approached by gaschromatographic and liquid 
chromatographic methods.  
During gaschromatographic approaches, pentafluorobenzyl bromide will be first studied as 
derivatizing agent. This derivatising agent has been employed by means of negative ions 
chemical ionization mass spectrometry. Chemical ionization is responsible for low 
fragmentation and shares with the electron capture detection a selective and sensitive response 
to electrophilic atoms (halogens), as fluorine is. Despite this, such techniques are not 
widespread. In this study electron impact ionization in positive mode mass spectrometry was 
then evaluated. The applicability of derivatization step will be evaluated in both organic solvent 
and aqueous media. Knowledge coming from this preliminarly results will be employed to 
develop purification methods with the aim to reach enough sensitivity in aromatic thiol 
determination in wine. Applicability of new derivatizing agent will be also evaluated. 
During liquid chromatographic approaches, most promising derivatizing agents will be tested. 
Purification and concentration of aromatic thiols will be then studied to reach sensitivity and 
selectivity.   
Occurrence of aromatic thiols in wine, expecially 3-mercaptohexan-1-ol, has been correlated to 
cysteine and glutathione conjugates precursors in grapes. Despite this, lack of correlation 
among thiol precursors  in juice and final thiol concentration in wines, suggest that thiol 
precursors and aromatic thiol are related in a more complex way and/or the 3-MH in wine may 
derive from alternative pathways. Possible mechanisms for 3-MH occurrence in wine involve 
hexenal pathway, which includes direct addition of a sulfur donor to trans-2-hexenal. Among 
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sulfur donors, cysteine, glutathione and H2S  have been proposed. Sulfur in its bisulfite form 
can be considered a sulfur donor. Aimed to study alternative biogenetic pathway in 3-
mercaptohexan-1-ol in wine, interaction between hexenal and bisulfite were then considered. In 
particular, addition products between the unsaturated aldehyde and bisulfite were  evaluated as 
putative precursors of 3-MH in wine.  
Loss of aromatic thiols in wine is due to oxidative processes. The presence of molecules which 
interefere in the process of polyphenol oxidation is then related to the stability of such smelling 
molecules in wines. The most common antioxidants present in wine are sulfur dioxide, ascorbic 
acid and glutathione in its reduced form. The latter molecules occours naturally in grape must, 
existing either in its reduced and oxidized form. Despite this, it diminishes during crushing due 
to its reaction with ortho-quinones and/or oxidation to the disulfide form. Moreover, it 
represents sulfur source for S.cerevisiae during alcoholic fermentation.  As a result, at the 
beginning of the alcoholic fermentation GSH almost disappears and it increases during 
vinification process due to yeast activity. Wine making technique can affect GSH content in 
wine. In particular, several yeast strains were tested during laboratory-scale alcoholic 
fermentation. Glutathione in reduced and oxidized forms were evaluated in wine as a result of 
various S. cerevisiae yeast strains conducting the alcoholic fermentation.  
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3. Gaschromatographic approaches in volatile thiols 
determination in wines 

 

Gaschromatography involves the analysis of volatile organic compounds, that is, molecules that 

exist in the vapour phase, at least at the typical GC operating temperatures between 40 and 

300°C. Since aroma compounds must, by their nature, leave the wine matrix and travel through 

the air to be perceived, they are generally excellent candidates for analysis by GC.  

 

3.1. Headspace sampling technique in volatile thiol determination  
 

Although many volatile compounds may be solvent extracted, distilled, or otherwise isolated 

from the wine matrix, it is frequently preferable to take advantage of their volatility and rely 

instead on techniques of headspace analysis.  

Static or dynamic headspace are two used methods in flavour analysis (Pawliszyn, 1999). In 

each case, however, sampling procedure is carried out in the atmosphere adiacent to the sample, 

leaving the actual sample material behind. In static headspace technique analytes are sampled at 

the equilibrium state between the liquid and the gas phases by using a fiber where analytes are 

adsorbed. Choices in fiber material, as well as sample temperature, and the presence of salt can 

improve extraction yield.  

In a different way, dynamic headspace involves moving the analytes away from the sample 

matrix in the heaspace phase but instead of allowing the sample volatiles to come to equilibrium 

between the sample matrix and the surrounding headspace, the atmosphere around the sample 

material is constantly swept away from by a flow of carrier gas, taking volatile analytes with it. 

On the one hand, this technique prevents the establishment of an equilibrium state, thus, more 

of the volatile dispersed in the matrix will leave the sample and pass into the headspace. On the 

other hand, it increases the size of the headspace used in sampling phase. As a consequence the 

trapping stage of the analysis offers increased sensitivity (Lepine et al., 1997). Further, sorbents 

offer some selectivity within the range of collected volatiles. Choices in sorbent and 

temperature may permit collection and concentration of specific analytes while venting others. 

Despite this, the instrumentation requires more complexity. As a consequence, it is more 

expensive to purchase than other sampling techniques. Moreover, many sources of error in 

purge-and-trap instruments have been reviewed (Washall et al., 1990).   
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Sulphur compounds in wine are frequently divided into “light” (boiling point < 90°C) and 

“heavy” (boiling point > 90°C) compounds (Mestres et al., 2000) indicating difficulty of using 

a relevant common sampling/enrichment technique. 

In volatile thilols analysis, static headspace analysis is applied in low boiling point sulfur 

compounds analysis in wine. In particular, the employment of Carboxen-polydimethylsiloxane 

fibre (CAR-PDMS) (Mestres et al., 1999) or Carboxen-polydimethylsiloxane-divinylbenzene 

(CAR-PDMS-DVB) (Fedrizzi et al., 2007, Fedrizzi et al., 2010) allows the determination of 

thiols, sulphides and disulphides in wines. Despite this, the volatiles analyzed by this technique 

are characterized by low boiling point (lower than 90°C) unlike 3-MH, 3-MHA and 4-MMP. 

Among headspace sampling techniques, only purge and trap has been described to analyze 3-

MH and 3-MHA in wines, reaching detection limits closer to their sensory threshold (Fedrizzi 

et al., 2008). Despite this, the other heavy volatile sulphur aromas were not identified at 

perception threshold, thus leaving derivatization procedures as the most promising techniques in 

thiol aromas extraction and analysis.      

 

3.2. p-hydroxymercuribenzoate as derivatizing agent in volatile thiol 
extraction  

 

Volatile thiols are present in wines at sub-ppb concentration levels. Their analysis requires to 

concentrate the analytes hundreds or thousands times to be able to identify the molecule of 

interest. Moreover wine represent a very complex matrix where such reactive compounds can 

decrease during wine aging but also during concentration step of analytes. In this scenario, 

concentration and purification of such molecules are key factors in order to reach appropriate 

methods. 

For several methods, mercuric compounds are found to be an optimal choice in method 

development. In particular p-hydroxymercuribenzoate (pHMB) is the compound used in 

numerous methods. One of the properties of pHMB is to combine thiol-containing compounds 

function. Once derivatized, such compounds are no more reactive and can be extracted and 

purified as very polar compounds.    

The first published method, employing such compound as derivatizing agent, used to extract 

volatile thiols by bubbling nitrogen gas through the wine. Extracted thiols were then forced to 

react with pHMB in water solution. Such method combines the extraction of wines volatiles 

constituents using a dynamic headspace technique and the selective reaction between thiols and 
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the mercuric compound (Bouchilloux et al., 1996). As the rection between thiol and mercuric 

salt is reversible, thiols are released by using an excess of cysteine (twenty times the molarity of 

pHMB). Once not derivatized, thiol polarity decreases and such compounds can be extracted in 

a liquid-liquid extraction using an organic solvent: dichloromethane and pentane mixture are 

proposed in this first method (Bouchilloux et al., 1996). Thanks to the low boiling point of 

organic solvents, extracted thiols can be concentrated without loses and, in the end submitted to 

gaschromatographic analysis. Despite analytes are concentrated 5000 times by using this 

method, a selective detector is necessary to identify thiol aromas (4-mercapto-4-methylpentan-

2-one) in Sauvignon blanc wines. In particular, mass spectrometry and photometric flame 

detector are employed in this method (Bouchilloux et al., 1996). 

Extraction of volatiles from wines was then modified using dichloromethane (Tominaga et al., 

1996). Despite such organic solvent allowed to extract volatile thiols, many ineterferents were 

extracted. In fact, once extracted thiol in water solution, using pHMB, the aqueous layer was 

washed using dichloromethane after pH modification. This method, which allows a final 

concentration factor of 1500,  allowed to identify 3-mercaptohexyl acetate by using FPD as 

detector (Tominaga et al., 1996). The same extraction method, applied to vegetable matrix, 

allowed to identify 4-MMP extracted from Box tree and Broom (Tominaga & Dubourdieu, 

1997). 

pHMB was used to identify and determine volatile thiols also in red wines (Bouchilloux et al., 

1998). Once formed thio-adducts can be dried dryness, redissolved in water, where the 

employment of excess in cysteine and organic solvent allows to de-combine thiols and extract 

them. Since it is a very specific method that avoid phenols extraction, it allowed to identify 3-

MH and 3-MHA in red wines, especially Cabernet Sauvignon and Merlot (Bouchilloux et al., 

1998). Despite this, the employment of three liters of the same wine to be extracted made this 

procedure not easy.      

The application of this method, with slightly modification, allowed to identify 4-MMP, 3-MH, 

4-mercapto-4-methylpentan-2-ol and 3-mercapto-3-methylbutan-1-ol in Sauvignon blanc wines 

by gaschromatography-mass spectrometry technique (Tominaga et al.,1998a). Even if such 

sensitive detection technique was used, one liter of wine was necessary to reach satisfactory 

sensitivity. 

The employment of a new purification step applied to this method allowed to reduce wine 

volume. In particular, a strong basic anion exchange column was used to retain pHMB-thiol 

complexes, once formed (Tominaga et al., 1998b). In this method, thiols were extracted from 
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dichloromethane using a pHMB solution in water which was loaded onto anion exchange resin. 

Once washed by acetate buffer solution, thiols were selectively released by a cysteine solution. 

The original aspect of this modified method was that the application of the resin allowed to 

eliminates compounds other than thiols in the aqueous phase of pHMB (Tominaga et al., 

1998b), leading to a more clean chromatogram and higher sensitivity.  

As a result of those improvements, the application of such method allowed to identify and 

quantify thiols in wines made from several Vitis vinifera grape varieties (Tominaga et al., 

2000a) suggesting a key role of such components in the aroma of different white wines. 

Moreover, thiol molecules with a very low perception threshold as 2-Furanmethanethiol 

(Tominaga et al., 2000b) and Benzenemethanethiol (Tominaga et al., 2003a) were identified 

and quantified in wines. The identification of these two latter molecules, together with the 

identification of ethyl 3-mercaptopropionate, allowed to establish the role of certain volatile 

thiols in the bouquet of aged champagne wines (Tominaga et al., 2003b).  

Although very efficient, this procedure is time consuming. An effort in reduce required time in 

sample preparation was the employment of covalent chromatography for the enrichment of the 

thiols from the wine extract. In particular, Affigel 501, a cross-linked agarose gel containing 

phenylmercurium chloride was used (Full et al., 1994). Such method extracted volatile thiols 

from wine using dichloromethane; then, the organic solvent was loaded on covalent 

chromatography gel. Finally, a dithiotreitol solution in dichloromethane was use elute thiols 

which were concentrated to a final concentration factor of 5000 employing 0.5 liters of wine 

(Schneider et al., 2003). 

The ability of some common solid phase extraction sorbents to retain organomercuric salts for 

selective concentration of thiols in wines was also investigated (Mateo-Vivaracho et al., 2009). 

In particular styrene-divinylbenzene copolymer sorbents were used. Since these kind of 

sorbents can work both in aqueous and organic-hydrophobic media retaining their 

chromatographic and retention properties, this work allowed an improvement in thiol extraction 

system (Mateo-Vivaracho et al., 2009). The organomercury salt (considered as hazardous 

poison) still remain the key point of this method.  

Although described methods are powerful in obtaining purified extracts of thiol aroma 

compounds, their major drawback was the internal standard. In particular, a tertiary aliphatic 

thiol and ether was used: 4-methoxy-2-methyl-2mercaptobutane (Tominaga et al., 1998b). This 

compound was only partially functionally similar to the target compounds. As a result a non-
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accurate quantification can be achieved, especially in the case of reactive compounds as in the 

case of thiols (Kotseridis et al., 2000, Hoffmann et al., 1996). 

Indeed, 3-MH and 3-MHA are secondary thiols and, in addition, primary alcohol and acetate, 

respectively, while 4-MMP is also a ketone; as a result, their physicochemical properties can be 

different from those of the internal standard used.  Development and Application of Stable 

Dilution Assay (SIDA) allowed an efficient quantification of voletile thiols in mass 

spectrometry (Schneider et al., 2003). 

A faster method in volatile thiol determination was reached by derivatizing thiols directly in 

wine and purifying the adducts by anion exchange resins (Tominaga & Dubourdieu, 2006). In 

particular, 50 mL is enough to reach satisfactory sensitivity to quantify 2-methyl-3-furanthiol 

and 2-furanmethanethiol in wines (Tominaga & Dubourdieu, 2006).   
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3.3. Pentafluorobenzyl bromideas derivatizing agent in volatile thiol 
analysis 

 

The key feature of pentafluorobenzyl bromide (PFBBr) employment in volatile thiols analysis is 

the transformation of mercaptans into their corresponding pentafluorobenzyl derivatives (Figure 

2.1). 

 

 

Figure 2.1. Reaction scheme between thiols and pentafluorobenzyl bromide (PFBBr). 

 

The reaction is a nucleophilic substitution, which proceeds via the corresponding thiolate of the 

sulfydryl group. Similar reaction are used for the derivatization of fatty acids or phenols (Jia et 

al., 2003, Lerch & Zinn, 2003). 

As derivatized products, thiol-conjugate extraction would become easier. As thiols are quite 

stable, considering the short period of the derivatization, required  reactions are usually carried 

out in aqueous media using quite energetic conditions (high concentration of alkali, high 

temperature). Such condition cannot be used directly in wines, since in these conditions phenols 

would react with mercaptans leading to their oxidation and/or degradation processes. A 

selective purification of thiols, prior the derivatization step, is then required. Despite this, the 

most important features in reaching high sensitivity are the analytical properties  of  

pentafluoro-compounds. In fact, by using pentafluorobenzyl bromide as derivatisation reagent, 

the derivatives formed show excellent electron-capturing properties. These properties can be 

then used by means of negative ions chemical ionization mass spectrometry (NCI-MS) (Mateo-

Vivaracho et al., 2006). NCI shares with the electron-capture detection a selective and sensitive 

response to electrophilic atoms (halogens), as fluorine is. 

The first application of such derivatising agent was carried out by on-fibre derivatisation of 

volatile thiols (Mateo-vivaracho et al., 2006). The main purpose  of this work was to develop a 

simultaneous extraction and derivatisation procedure. Among pentafluorobenzyl derivatizing 
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agent, in fact, the employment of o-2,3,4,5,6-(pentafluorobenzyl)hydroxylamine hydrochloride 

allowed to determine low-molecular mass aldehyde by in-fibre derivatization (Wang et al., 

2005).  

The proposed method allowed to determine 3-MH, 3-MHA and 4-MMP in wines. Despite this, 

the method failed at determining 4-MMP and 3-MH at low levels (Mateo-Vivaracho et al., 

2006). The amount of fragmentation in mass spectrometry was identified as the major reason of 

this result. 

Stating that higer amount of analytes were necessary to reach enough sensitivity, a different 

kind of analytes purification was employed. In particular styrene- divinylbenzene copolymer 

sorbents (Lichrolut EN) were tested in their property to retain thiols of interest, which were 

derivatized in the solvent used as eluent (Mateo-Vivaracho et al., 2007). As solvent used as 

eluent could affect both the derivatsation reaction and the recovery of analytes, hexane, ether, 

ethyl acetate toluene, benzene, methylisobutylketone, tetrahydrofurane were tested. In the end   

benzene was chosen as solvent. Moreover, the presence of alkali was required to achieve good 

yields (Mateo-Vivaracho et al., 2007). The use of a carcinogenic solvent, which is forbidden in 

numerous laboratory, was the main limit of such method, despite it resolved some of the 

limitations of previous procedure. 

The possibility to carry out the derivatization reaction in a solid-phase extraction sorbent was 

then evaluated (Mateo-Vivaracho et al., 2008). The formation of derivatives in a solid phase 

extraction cartridge was influenced by the kind of sorbent used. Despite this, such approach 

allowed to determine volatile thiols in wine (Mateo-Vivaracho et al., 2007). Moreover, a lower 

pentafluorobenzyl alkylation of 4-MMP was noticed and solved by carrying out an oximation of 

such compound prior to derivatizing step (Mateo-Vivaracho et al., 2008). 

Although the extraction pentafluorobenzyl bromide derivatives by head space solid phase 

extraction was evaluated too (Ròdriguez-Bencomo et al., 2009),  on cartridge derivatization  of 

thiols and liquid injection is the most widespread method to determine 3-MH, 3-MHA and 4-

MMP by means of pentafluorobenzyl bromide (Mateo-Vivaracho et al., 2010). 

Since negative chemical ionization is not widespread in analytical laboratories, studies 

concerning electron ionization mass spectrometry were carried out. The developed method 

allowed to determine 3-MH in wines with a limit of quantification of 40 ng L-1 (Capone et al., 

2011). In particular, a solvent extraction was followed by a second extraction in aqueous basic 

media where derivatisation step was carried out. Derivatised thiol are then extracted by 
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headspace solidphase microextraction. The presence of an aromatic ring allows both to modify 

thiols physical properties in purification steps and higher sensitivity in mass spectrometry. 

 

Aims 

The analytical methods that employ PFBBr to derivatize thiols, are usually coupled to negative 

chemical ionization mass spectrometry. Despite this, electron impact mass spectrometry has 

been reported to be a suitable tool to determine derivatized product. Thus, the aim of this 

experimental session was to evaluate if electron impact mass spectrometry can be looked as a 

suitable tool for derivatized thiol product using PFBBr as derivatizing agent in both organic 

solvent and aqueous media. In this stage thiols (3-MH), (3-MHA), (4-MMP), 1-heptanthiol (1-

HEPT), 6-mercaptohexan-1-ol (6-MH) and 3-mercapto-2-butanol (3M2B)) leading or not to 

wine are used. These latter molecules are used because of their polarity, which could be useful 

during extraction studies. In fact, 1-HEPT is lower in polarity, while 3M2B is higher in 

comparison to wine occurring thiol molecules. Two different concentration in thiols were tested 

in order to identify, together with mass spectra, peaks of interest.  

     

Materials and methods 

3M2B (> 97%, sum of isomers) and 6-MH were purchased from SAFC, 4-MMP (98%),  was 

purchased from AK Scientific, 3-MH was purchased from AlfaAesar (96%), 3-MHA from 

Endeavour (98%) and 1-HEPT from Sigma-Aldrich.   

Mercaptoglycerol (> 98%), 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU), and 2,3,4,5,6-

pentafluorobenzyl bromide (PFBBr) were obtained from Sigma-Aldrich (St. Louis, MO). 

Dichloromethane, hexane and methanol were obtained from Panreac.  

Derivatisation procedure was applied as reported by Mateo-Vivaracho et al., 2007 with minor 

modifications. Nine hundred microliter of thiol standard in organic solvent was transferred to a 

clean and dry 3 mL screw-capped vial. Then, 50 µL of the reagent solution (2 g L-1 PFBBr in 

methanol) and 50 µL of the alkali solution (20% DBU in methanol) were added. The reaction 

was left for 40 min at room temperature. Excess of reagent was then removed by adding 1 mL 

of a 2 g L-1 solution of mercaptoglycerol in 6.7% DBU acqueous solution, and letting the 

reaction 20 min at room temperature. After this time, the organic phase is washed twice with 1 

mL of  brine. The organic phase is finally transferred to a 2 mL autosampler vial and spiked 

with a small amount of anhydrous sodium sulfate. 1 µL of this sample is then injected into the 



Studies on the occurrence of thiol related aromas in wine                                                    Federico Piano 
________________________________________________________________________________________________ 

40 

 

GC-EI-MS system. Trial were carried out in duplicate. Two organic solvent were used: hexane 

and dichlorometane.  

 

GC-EI-MS analysis 

Agilent 6890N gas chromatograph (Santa Clara, CA) equipped with 5975 mass selective 

detector was used. The inlet temperature was held at 240°C, 1 µL was manually injected in 

splitless mode, and delivered onto a HP-Innowax capillary column (30 m x 0.250 mm ID, 0.25 

µm film thickness) using helium as carrier gas at a constant rate of 1 mL min-1. The initial 

temperature of the column was 48 °C for 5 min. the column was then heated to 240 °C at 6 °C 

min-1; remaining at that temperature for 10 min. The temperature of the interface line is set to 

250 °C. The ion source, operating in electron impact mode at 70 eV, was held at 250 °C. The 

quadrupole temperature is set at 150 °C. SCAN mode (40 ÷ 400 m/z) is used. 

 

Results and discussion 

In derivatizing reaction at least 40 equivalents in PFBBr were used. In particular, 384 µmol 

PFBBr were used during this reaction. As reported in table 2.1, derivatising agent exceeds the 

thiol groups. 

 

 

Table 2.1 . Amount, moles and equivalent in derivatising agent of volatile thiols used.  

 

Under these conditions, the derivatized products were identified by GC EI mass spectrometry. 

Moreover, no remaining thiol was present after the derivatizing reaction. 

The amount of fragmentation did not allow to identify the molecular ion. Only in the case of 

3M2B it was possible to identify such ion. Despite this, the existence of fragmentation allowed 

to identify analytes and choose ions working in single ion monitoring mode (SIM). At least two 

thiol amount (g) I mol I eq of PFBBr I amount (g) II mol II eq of PFBBr II

1HEPT 0.892 10
-3 

6.75 10
-6 

56.89 0.445 10
-3 

3.38 10
-6 

113.78

3M2B 0.960 10
-3 

9.06 10
-6 

42.38 0.480 10
-3 

4.53 10
-6 

84.76

4MMP 1.120 10
-3 

8.48 10
-6 

45.28 0.560 10
-3 

4.24 10
-6 

90.56

3MHA 0.963 10
-3 

5.47 10
-6 

70.20 0.4815 10
-3 

2.74 10
-6 

140.40

3MH 1.008 10
-3 

7.52 10
-6 

51.06 0.504 10
-3 

3.76 10
-6 

102.12

6MH 1.010 10
-3

7.53 10
-6

50.99 0.505 10
-3

3.76 10
-7

101.98
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ions are required: one quantifying ion (the most abundant and selective) and one qualifying ion 

(the next most abundant).   

In the case of 1-heptanethiol alkyl derivatives, molecular ion (m/z 312) could not be identified. 

Most abundant and characterizing ions are m/z 181, corresponding to the thioalkyl loss, and 

131, which correspond to the pentafluorobenzyl loss. Ion m/z 71 (-241) and m/z 97 (-215) were 

identified, as well (figure 2.2). 

 

 

Figure 2.2 . EI positive mode MS spectra of PFB-1HEPT, obtained from derivatization with PFBBr of 

standard solution of  1-HEPT in hexane. 

 

The most hydrophilic molecule used in this section, 3M2B, was identified as sum of isomers. 

As a result, two peaks were identified even if a non-chiral column was used during 

chromatographic separation (figure 2.3). Both recognized peaks showed characteristic 

fragmentation pattern as shown in figure 2.4 and 2.5. 

The most abundant ion was  ion m/z 181, corresponding to the thioalkyl loss. Among 

characteristic ions, ion 286 was chosen as identifier, since it is the molecular ion. Ions m/z 105 

(-181) and m/z 61 (-225) were identified as identifier ions. 
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Figure 2.3. GC separation of PFB-3M2B, obtained from derivatization with PFBBr of standard solution of  

3M2B in hexane. 

 

Figure 2.4 . EI positive mode MS spectra of PFB-3M2B, isomer 1. 
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Figure 2.5. EI positive mode MS spectra of PFB-3M2B, isomer 2. 

 

Derivatisation of 4-MMP by using PFBBr showed surprisingly two different peaks related to 

derivatization procedure (fig 2.6). The area of those peaks was related to thiol concentration. 

Despite this, only peak at 30 min showed a fragmentation pattern which could be related to 

4MMP derivative product (figure 2.7). Also in this case, although the amount of fragmentation 

did not allow to identify molecular ions (m/z 312), m/z 255 (-57), 181 (-131), 131 (-181), 99 (-

213) allows to identify the derivative product as reported in figure 2.7. It was assumed that the 

other peak was related to byproducts of derivatization reaction caused by impurities in the used 

standard.      
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Figue 2.6. GC separation of PFB-4MMP, obtained from derivatization with PFBBr of standard solution of  

4MMP in hexane. 

 

 

Figure 2.7. EI positive mode MS spectra of PFB-4MMP. 

 

Although molecular ion of 3-mercaptohexyl acetate derivative product was not identified under 

experimental conditions, fragmentation pattern allowed peak identification. In particular, 
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fragments m/z 253, 181, 161, 115 and 83 are recognized as characteristics (figure 2.8). The 

most abuntant ion was ion m/z 115 which is also identified; ion m/z 181 is also useful for 

identification in single ion monitoring acquisitions.  

 

 

Figure 2.8. EI positive mode MS spectra of PFB-3MHA obtained from derivatization with PFBBr of 

standard solution of  3MHA in hexane. 

 

Also in the case of 3-mercaptohexanol alkyl derivatives, molecular ion cannot be identified 

(m/z 314). Despite this, fragmentation patterns identify this molecules (figure 2.9). In particular, 

the most abundant ion was m/z 181, corresponding to the thioalkyl loss and m/z 133, which 

corresponded to the loss of the pentafluorobenzyl ring loss. Fragments m/z 100, 82 and 55 are 

related to 3-MH fragmentation. 
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Figure 2.9 . EI positive mode MS spectra of PFB-3MH, obtained from derivatization with PFBBr of 

standard solution of  3-MH in hexane. 

 

Derivative product of the last thiol employed, 6-MH, was characterized by a molar mass of 314. 

Amount of fragmentation did not allow to identify molecular ion. Despite this, fragmentation 

pattern allowed to identify the derivative product between PFBBr and 6MH (figure 2.10). In 

particular m/z 181 correspond to the loss of thiol alky chain, whereas m/z 133 corresponds to 

pentafluorobenzyl loss. Ions m/z 115 and 81 were recognized to be part of fragmentation 

pattern of such molecules.  

F

F

F

F

F

S

OH

CH3



Studies on the occurrence of thiol related aromas in wine                                                    Federico Piano 
________________________________________________________________________________________________ 

47 

 

 

Figure 2.10. EI positive mode MS spectra of PFB-6MH, obtained from derivatization with PFBBr of 

standard solution of  6MH in hexane. 

 

Due to the interpretation of the obtained mass spectra data, the quantifier and identifier ions for 

single ion monitoring acquisition were chosen as reported in table 2.2. In almost every 

derivatized thiols, ion m/z 181 was the most abundant in fragmentation pattern.   

 

 

Table 2.2. Retention times and ions of quantification and qualification of the derivatized mercaptans 

analyzed by Positive EI mass spectrometry.  

 

Since different organic solvents are reported in literature in order to purify thiols during this 

trial two solvents, characterized by different polarity, were tested. Evaluation of the influence of 

the relative yield of the derivatization, expressed as the percentage of the maxima, suggested 

that derivatization yield is very similar in both the tested organic solvents (figure 2.11).    

thiols retention time (min) Quantitation ion Qualifier ions

PFB-1HEPT 26.62 181 131; 97

PFB-3M2B 29.93; 30.13 181 286; 105; 61

PFB-4MMP 30.08 181 131; 99

PFB-3MHA 32.21 115 181; 83

PFB-3MH 36.64 181 133; 100

PFB-6MH 37.38 181 133; 115
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Figure 2.11. Influence of the solvent on the relative yield of the derivatization (expressed as percentage of 

the maxima).  

 

Even if Pentafluorobenzyl bromide has been studied as derivatizing agent in organic solvent, it 

has been reported to be reactive in water in the presence of alkali; once the derivatives are 

formed theycan be extracted from aqueous media by HS-SPME (Capone et al., 2011). 

Moreover, the employment of both organic solvents and aqueous media is a useful tool to purify 

and determine 3-MH in wines (Capone et al., 2011). Thus, derivatization process was also 

tested in acqueous media. In this purpose the derivatives were extracted by using solid phase 

extraction. In particular, C18 (500 mg, 3 mL volume, Waters) and polymeric sorbents (500 mg, 

3 mL volume StrataX polymeric reversed phase, Phenomenex) were used.  

 

Derivatization procedure in aqueous media 

Derivatisation procedures was carried out as follows: thiol standards (9.06 µmol 3M2B, 7.53 

µmol 6-MH, 8.48 µmol 4-MMP, 5.47 µmol 3-MHA and 7.52 µmol 3-MH) were prepared in 10 

mL NaOH 1 N. Then, 100 µL of the reagent solution (PFBBr 1 g L-1 in methanol, 384 µmol) 

were added. The reaction was left for 40 min at room temperature. The exceeding PFBBr was 

removed by adding 2 mL of a 2 g L-1 water solution of mercaptoglycerol, then leaving the 

mixture 20 min at room temperature. The latter was acidified to pH 3.0 by using a tartaric acid 

solution 0.75 M. Aqueous solution was then loaded onto a solid phase extraction, C18  and 
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polymeric (SDVB) sorbents were used previously conditioned using 5 mL dichloromethane, 

followed by 5 mL of methanol and 5 mL of milliQ water. Derivatised thiols were then eluted by 

using 10mL dichloromethane. The organic phase was then dried using anhydrous sodium 

sulfate. One microliter of this sample was then injected into the GC-EI-MS system. Peak areas 

were compared with derivatised product prepared as follows: 9.06 µmol 3M2B and 7.53 µmol 

6-MH were dissolved in 8.9 mL hexane. Then, 100 µL of the reagent solution (PFBBr 1 g L-1 in 

methanol, 384 µmol) and 1 mL of the alkali solution (20% DBU in methanol) were added (10 

mL final volume). The reaction was left for 40 min at room temperature. Excess of reagent was 

removed by adding 2 mL of a 2 g L-1 solution of mercaptoglycerol in 6.7% DBU acqueous 

solution, and letting the reaction 20 min at room temperature. After this time the organic phase 

was washed twice with an equal volume of brine. The organic phase was then dried using 

anhydrous sodium sulfate. One microliter of this sample was then injected into the GC-EI-MS 

system Trial were carried out in duplicate.           

 

Results and discussion 

Results suggest that derivatisation in hexane and in water solution are comparable in yield. In 

fact, peak areas were similar.  Moreover both C18 and polymeric sorbents are able to retain 

pentafluorobenzyl derivative products of 3M2B and 6-MH, which can be eluted by using 

dichloromethane as shown in figure 2.12. Derivatization in aqueous media and purification by 

solid phase extraction is a suitable tool for these compounds.     
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Figure 2.12. Recovery of pentafluorobenzyl derivatives of thiols on different resins, expressed as percent 

of peak area obtained by derivatization of equal amount in organic solvent.    
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Although thiol derivatisation can be carried out in aqueous media under basic condition, 

required high pH were responsible for 3-MHA hydrolysis. As shown in figure 2.13, coeluting 

peaks were obtained in both 3-MH and 3-MHA derivatives if reaction was carried out in 

sodium hydroxide. Retention times were characteristics for derivatized product between 3-MH 

and pentafluorobenzylbromide. Moreover, no peak was obtained for 3-MHA derivative product. 

Fragmentation pattern (Figures 2.14 and 2.15) confirm that in both cases the product obtained 

was the derivatized 3-MH. This result confirmed that high pH determined the total hydrolysis of 

3-MHA into 3-MH during drivatization step.  

 

Figure 2.13. GC separation of PFB-3MH and PFB-3MHA, obtained from derivatization with PFBBr of 

standard solution of  3-MH and 3-MHA in NaOH 1 N 
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Figure 2.14. EI positive mode MS spectra of PFB-3MH obtained from derivatization with PFBBr of 

standard solution of  3-MH in NaOH 1 N. 

 

 

Figure 2.15. EI positive mode MS spectra of PFB-3MHA obtained from derivatization with PFBBr of 

standard solution of  3-MHA in NaOH 1 N. 
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In conclusion it was noted that identification of derivative products between volatile thiols and 

PFBBr using electron impact mass spectrometry as detector was possible. Although the amount 

in fragmentation did not allow to identify molecular ion for derivative products, they were 

identified by their fragmentation pattern. Moreover ions for single ion monitoring in mass 

spectrometry were chosen. 

Among organic solvent used, reaction was possible in similar yield in both hexane and 

dichloromethane. 

Derivatization can be carried out in aqueous media too. Moreover, derivative products can be 

purified by solid phase extraction by using both C18 and styrene divinylbenzene sorbents.  

Despite this, high concentration in alkali is required during derivative procedure. In such 

conditions hydrolysis of 3-MHA was observed, thus suggesting that this derivative conditions 

are not optimal for derivatization of thiols aroma in wines, where both 3-MHA and its 

hydrolysis product, 3-MH, are present.  

As a consequence, derivatization in organic solvent was preferred. Extraction and purification 

of analytes can be carried out using various techniques. Among them, extraction of thiol aromas 

on solid phases has been reported (Mateo-Vivaracho et al., 2008). Thus, different polymeric 

sorbents will be evaluated in their ability to retain thiols from wine-like model system. 

Dichloromethane will be used as solvent since it was evaluated to be a suitable organic solvent 

where  derivatization can be carried out.  

 

Materials and methods 

Polymeric reversed phase (strataX, 500 mg, 3 mL volume, Phenomenex) and styrene-

divinylbenzene sorbents (Lichrolut EN, 40-120 µm, 500 mg, 3 mL volume, Merk) were used. 

Ten milliliter of wine-like model solution (tartaric buffer 33 mM, pH 3.20, 12% v/v ethanol) 

containing 100 µg L-1 1-HEPT, 100 µg L-1 3M2B and 100 µg L-1 6-MH were loaded onto spe 

cartridges previously conditioned using 10 mL of dichloromethane, followed by 10 mL of 

methanol and 10 mL water. Thiol compounds were eluted by passing 10 mL of 

dichloromethane. The organic phase was then dehydrated using anhydrous sodium sulfate and 

1µL microliter of this sample was injected into the GC-EI-MS system. Recovery of such 

extraction method was calculated in comparison to a solution 100 µg L-1 1-HEPT, 100 µg L-1 

3M2B and 100 µg L-1 6-MH prepred in 10 mL dichloromethane.  
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Results and discussion 

1-heptanthiol (1-HEPT), 6-mercapto-1-hexanol (6-MH) and 3-mercapto-2-butanol (3M2B)  

were chosen to assess the recovery of thiols on polymeric sorbents because of their different 

polarity properties being 3M2B highly polar, whereas 1-HEPT shows low polarity. Together 

with 6-MH these three thiol compounds represent a quite large range of polarity of thiols in 

wine. 

As shown in figure 2.16 styrene-divinylbenzene copolymer sorbents (Lichrolut EN) and 

polymeric sorbents Strata X were suitable tool to retain thiols with different polarity. In fact, 

recovery of such compounds were high and close to 100% for both used cartridges using 

dichloromethane as eluent.  

 

  

Figure 2.16. Recovery of volatile thiols on different polymeric sorbents. 

 

Once aromatic thiols can be extracted and purified from wine-like model system by solid phase 

extraction and eluted using dichloromethane as organic solvent, they can be derivatized both on 

SPE cartridge (Mateo-Vivaracho et al., 2008) or in the organic solvent (Mateo-Vivaracho et al., 

2007), when eluted. Moreover, dichloromethane has been demonstrated to be a suitable organic 

solvent for both elution of volatile thiols and derivatiation procedure.     

Because of this, both methods (on cartridge and derivatization of thiols in organic solvent used 

as eluent) will be evaluated to determine thiols. 
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Solid-phase extraction and in-sorbent pentafluorobenzyl alkylation  of 
volatile thiols 
 

Experimental procedure 

Ten milliliters of wine-like model solution (tartaric buffer 33 mM, pH 3.20, 12% v/v ethanol) 

containing 89 µg L-1 1-heptane thiol (1-HEPT), 112 µg L-1 3-mercapto-2-butanol (3M2B) and 

97 µg L-1 6-mercaptohexan-1-ol (6-MH) were loaded onto SPE cartridges previously 

conditioned using 10 mL of dichloromethane, followed by 10 mL of methanol and 10 mL of 

water. Retained thiols were then derivatized by using PFBBr as described by Mateo-Vivaracho 

et al. (2008) with minor modifications. 3 mL of an aqueous solution of DBU (6.7%) are loaded 

onto the cartdridge, then 2 mL of 2 g L-1 solution of PFBBr in hexane was loaded onto the 

column and letting the cartdridge imbibited with the reagent for 30 min at room temperature. 

Excess of reagent was removed by adding 2 mL of 2 g L-1 solution of mercaptoglycerol in 6.7% 

DBU solution, and letting the cartridge again for 30 min at room temperature. Derivatized 

analytes were finally eluted with 10 mL of dichloromethane. The organic phase was then 

dehydrated using anhydrous sodium sulfate. One microliter of this sample is then injected into 

the GC-EI-MS system. 

Peak areas were compared with derivatised product prepared as follows: 9.06 µmol 3M2B and 

7.53 µmol 6-MH were prepared in 8.9 mL dichloromethane. Then, 100 µL of the reagent 

solution (PFBBr 1 g L-1 in methanol, 384 µmol) and 1mL of the alkali solution (20% DBU in 

methanol) were added to 8.9mL dichloromethane containing thiols. The final volume of the 

reaction mixture was 10 mL containing  89 µg L-1 1-HEPT, 112 µg L-1 3M2B and 97 µg L-1 6-

MH. The reaction was left for 40 min at room temperature. Excess of reagent was eliminated by 

adding 2 mL of a 2 g L-1 solution of mercaptoglycerol in 6.7% DBU acqueous solution, and 

letting the reaction 20 min at room temperature. After this time the organic phase is washed 

twice with an equal volume of brine. The organic phase was then dehydrated using anhydrous 

sodium sulfate. One microliter of the organic phase was then injected into the GC-EI-MS 

system. Results were expressed as percentage of the maxima obtained in organic solvent. 
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Results and discussion 

As reported by Mateo-Vivaracho et al. (2008), the extraction and formation of derivatives in 

solid phase extraction cartridge by using a microporous structure (Lichrolut EN) was a failure. 

In fact, peak area were lower than 10% if compared to the derivatization carried out in organic 

solvent.  

The employment of polymeric sorbents with a different structure (Strata X) allowed to obtain 

derivatives in higher yield. Despite this, high differences were present among replicates. 

Moreover even if polymeric sorbent (Strata X) allowed higher derivatization yield, relative area 

were lower than 80%.  

 

 

 

Figure 2.21. Relative yield of derivatization carried out on thiols (1-heptane thiol PFB-1HEPT, 3-

mercapto-2-butanol 3M2B, 6-mercaptohexan-1-ol 6MH) extracted by polymeric sorbents. Results 

expressed as percentage of the maxima obtained in organic solvent. 
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Solid-phase extraction of volatile thiols and pentafluorobenzyl alkylation in 
elution  organic solvent 
 

Materials and methods 

60mL of Sauvignon blanc wine, spiked using 12.6 µ gL-1 3-MH, 15.2 µg L-1 3-MHA, 9.5 µg L-1 

4-MMP  and 11.4 µg L-1 6-MH were loaded onto 1 g, 3 mL Lichrolut EN resin previously 

conditioned using 10 mL of dichloromethane, followed by 10 mL of methanol and 10 mL 

water. The cartridge was then rinsed by passing 10 mL phosphate buffer 20 mM, pH 7.0. 

Retained thiols were eluted by passing 10 mL of dichloromethane. Then, 100 µL of the reagent 

solution (PFBBr 1 g L-1 in methanol, 384 µmol) and 1 mL of the alkali solution (20% DBU in 

methanol) were added in order to derivatize thiols. The mixture was left 40 min at room 

temperature. Excess of reagent was removed by adding 2 mL of a 2 g L-1 solution of 

mercaptoglycerol in 6.7% DBU acqueous solution, and letting the reaction 20 min at room 

temperature. After this time the organic phase was washed twice with an equal volume of brine. 

The organic phase was then dehydrated using anhydrous sodium sulfate. Dichloromethane was 

then concentrated under gentle N2 gas flow to ~ 100 µL. One microliter was then injected into 

the GC-EI-MS system. Spiked wine was evaluated in comparison to non-spiked wine.   

 

Results and discussion 

The amount of thiol aromas (above 10 µg L-1) used to spike analysed wine is extremely high in 

comparison to the concentration naturally occurring in wines, which is lower than 100 ng L-1. 

Despite this, the method employed did not allow to identify peaks related to derivatized thiol 

compounds in spiked wine (fig 2.22), even if single ion monitoring acquisition was used. The 

two overlapped chromatograms are acquired by following the only fragment ion m/z 181, which 

represent the most abundant ion in derivatized thiols fragmentation pattern in electron impact 

mass spectrometry.   
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Figure 2.22. GC separation of wine (black line) and wine spiked with thiols (10 µg L-1 level) (blue line). 

Thiol extraction on polymeric sorbents and derivatization in organic solvent. SIM acquisition m/z 181.  

 

Solid phase extraction can be used to extract thiols from wine-like model system, in particular 

copolymer sorbents were identified to be characterized by good recovery. Although in-sorbent 

derivatization by using PFBBr as derivatizing agent has been reported in literature, poor 

recovery and reproducibility was noted in experimental conditions applied.  

Thiols extraction from wines using polymeric sorbents in solid phase extraction, and 

derivatization in organic solvent, did not allow to reach enough sensitivity, even if SIM mode 

was applied in GC-MS and final concentration factor was 500. 

As a result, PFBBr is evaluated to a useful tool to derivatize thiol compounds in organic 

solvents. Despite this, the application of proposed method did not allow to identify volatile 

thiols in white wines.    
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Conclusions 
Electron impact mass spectrometry is a suitable tool to determine derivative products between 

thiols and pentafluorobenzyl bromide. Derivatization process can be carried out in both organic 

solvent and aqueus media; despite this, presence of alkali is required. As a consequence, 

hydrolysis of 3MHA was noted in aqueous media, thus leading derivatization procedure in 

organic solvent the only suitable method. 

Polymeric sorbents allowed good recovery of volatile thiol from wine-like model system. 

Despite this, in-sorbent derivatization procedure showed low derivatization yield and/ or poor 

recovery in derivatives. On the other hand, in organic solvent derivatization of thiol extracted 

with solid phase sorbents did not allow to determine volatile thiols in real matrices with enough 

sensitivity.      
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3.4. Ethyl propiolate as derivatizing agent in volatile thiol determination  
 

Ethyl propiolate is a compound largely used in organic chemistry. Its reaction towards thiol 

function is due to a Michael-type addition and the reaction can be carried out also in water 

solution in good yields (Randive et al., 2010). This addition of thiols or amines to  ynones and 

ynonates structures has been known for long time in organic chemistry (Xiao & Alper, 1997, 

Xu et al., 2008). 

Among ynonates, ethyl propiolate has been studied for its reactivity in water with nucleophilic 

structures as thiols (Arcadi et al., 2009). 

The reaction mechanism is based on the nucleophilic attack of the thiolate ion to the α-carbon 

atom to the triple bond generating a stable alkylthioacrylate compound (figure 2.23). The 

reaction rate depends on the dissociation of the thiol group which reacts as nucleophilic reagent. 

Since thiol group should be firstly deprotonized to act as nucleophile, generally ETP reacts 

under basic pH. 

 

 

Figure 2.23. Reaction between ethyl propiolate and thiols. 

 

The main advantages connected with this reaction are its rapidity, effectiveness and the 

generation of UV active species (Owen, 2008). In analytical chemistry, ethyl propiolate has 

been evaluated as derivatizing agent for thiol group for development of liquid chromatofgraphic 

method for the determination of glutathione (Zacharis et al., 2009, Tzanavaras et al., 2010, 

Zacharis et al., 2011). 

Even though derivatisation of thiol species followed by detection via LC-UV, the detection 

limit reached without pre-concentration was not satisfactory and when a SPE step was 

preliminarily introduced, the presence of other species absorbing in the UV region made the 

identification of derivatised thiols impossible. 
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Chemicals and reagents  

Ethyl propiolate was purchased from Sigma-Aldrich (St. Louis, MO), The sulfur compounds 

studied i.e. 3-mercaptohexan-1-ol (3-MH) was from Acros Organics, 3-mercaptohexyl acetate 

(3-MHA) was from Oxford Chemicals and 4-mercapto-4-methyl pentan-2- one was purchased 

from Aldrich. Inorganic compounds, methanol, dichloromethane and solid phase extraction 

resins were purchased from Sigma-Aldrich (Castle Hill, NSW, Australia)   

 

Synthesis and identification of reference compounds  
 

Synthesis of ethyl 3-((1'-hydroxyhexan-3'-yl)thio)acrylate. (3MH-ETP). To 0.1 g of ethyl 

propiolate (1mmol) methanol (0.5 mL) was added, followed by 50 mM phosphate buffer pH 9.0 

(9.5 mL). 3-Mercaptohexan-1-ol (9.6 mg, 0.072 mmol) dissolved in 0.5 mL methanol was then 

added. The reaction mixture was stirred for 5 min at room temperature. Purification of the 

product was carried out by extracting the reaction crude twice with an equal volume of 

dichloromethane (10 mL). Organic layer was then dried with Na2SO4, and evaporated under 

reduced pressure (750 mbar, 45 °C) to obtain the product.  

1H NMR (CDCl 3): 0.93 (3H, t, J =7.2 Hz, 6'-CH3); 1.29 (3H, t, J =7.0 Hz, CH3CH2O); 1.40 – 

1.67 (4H, m, 4'-CH2 and 5'-CH2); 1.78 – 2.05 (3H, m, 2'-CH2 and OH); 3.00 – 3.07 (1H, m, 3'-

H); 3.78 – 3.81 (2H, m, 1'-CH2); 4.19 (2H, q, J = 7.0 Hz, OCH2CH3); 5.84 (1H, d, J = 10.2 Hz, 

2-H); 7.19 (1H, d, J = 10.2 Hz, 3 –H); 7.71 (0.1H, d, J = 15.4 Hz, (E)-3H). 13C NMR (CDCl 3): 

13.7 (CH3CH2O); 14.2 (C-6'); 19.8 (C-5'); 37.8, 38.1 (C-3', C-4'); 46.9 (C-2'); 59.5, 59.9 (C-1' 

and OCH2CH3); 112.6 (C-2); 148.8 (C-3); 166.6 (C-1). HRMS (ESI +) found (MNa+) 255.1034 

C11H20NaO3S, required 255.1025  
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Figure 2.24. 3-((1'-hydroxyhexan-3'-yl)thio)acrylate (3MH-ETP) structure and characteristic spectrum 

(MS EI+). 

 

Synthesis of ethyl 3-((1'-acetoxyhexan-3'-yl)thio)acrylate (3MHA-ETP) To 0.1 g of ethyl 

propiolate (1mmol), methanol (0.5 mL) was added, followed by 9.5 mL of 50 mM phosphate 

buffer pH 9.0. 3-Mercaptohexyl acetate (9.8 mg, 0.055 mmol) dissolved in 0.5 mL of methanol 

was then added. The reaction mixture was stirred for 5 min at room temperature. Purification of 

the product was carried out by extracting the reaction crude twice with an equal volume of 

dichloromethane (10 mL). Organic layer was then dried over Na2SO4, and evaporated under 

reduced pressure (750 mbar, 45°C) to obtain the product. 
 1H NMR (CDCl 3): 0.93 (3H, t, J =7.12 Hz, 6'-CH3); 1.29 (3H, t, J =7.2 Hz, OCH2CH3); 1.41 – 

1.70 (4H, m, 4'-CH2 and 5'-CH2); 1.86 – 2.05 (2H, m, 2'-CH2); 2.06 (3H, s, CH3CO); 2.89 – 

2.91 (1H, m, 3'-H); 4.15 – 4.31 (4H, m, OCH2CH3 and 1'-CH2); 5.85 (1H, d, J = 10.1 Hz, 2-H); 

7.10 (1H, d, J = 10.1 Hz, 3–H); 7.66 (0.1H, d, J = 15.3 Hz, (E)-3H). 13C NMR (CDCl 3): 13.7 

(OCH2CH3); 14.3 (C-6'); 19.9 (C-5'); 20.9 (CH3CO); 34.4 (C-3'); 37.6 (C-4'); 47.1 (C-2'); 60.2 

(C-1'); 62.0 (OCH2CH3); 113.2 (C-2); 148.0 (C-3); 166.6 (C-1); 120.8 (COCH3). HRMS (ESI 

+) found (MNa+) 297.1136, C13H22NaO4S, required 297.1131.  
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Figure 2.25. 3-((1'-acetoxyhexan-3'-yl)thio)acrylate (3MHA-ETP) structure and characteristic spectrum 

(MS EI+). 

 

Synthesis of ethyl 3-((2’-methyl-4’-oxopentan-2’-yl)thio)acrylate (4MMP-ETP). 0.1 g of ethyl 

propiolate (1 mmol) were added with 0.5 mL methanol, and 9.5 mL of 50 mM phosphate buffer 

pH 9.0. 4-Mercapto-4-methyl pentan-2-one (11.2 mg, 0.085 mmol) dissolved in 0.5 mL 

methanol was then added. The reaction mixture was stirred for 5 min at room temperature. The 

mixture was loaded onto a 1200 HPLC (Agilent, Australia) equipped with a C18 semi-

preparative column (Synergi Fusionn RP column, 15 cm x 1 cm, 4µm, Phenomenex, Australia) 

and coupled to a Diode Array Detector. Eluent A was 0.9% water solution of formic acid and 

eluent B was 100% acetonitrile. A 5 mL min-1 constant flow rate was applied. The eluting 

gradient was he compound was 5% to 80% in 16 min and 80% for 7 minutes as eluent B. 

Elution of target compound was monitored spectrophotometrically at λ 285 nm. Compound of 

interest was collected at 21.5 min elution. The eluted fraction was diluted with an equal volume 

of water and twice extracted with equal volumes of dichloromethane. The organic phase was 

then dehydrated with Na2SO4, and evaporated under reduced pressure (750 mbar, 45°C) to 

obtain the product. 

 1H NMR (CDCl 3): 1.28 (3H, t, J =7.3 Hz, OCH2CH3); 1.51 (6H, s, 2 x 1’-CH3); 1.95-2.07 

(2H, m, 3’-CH2); 2.18 (3H, s, 5’-CH3); 4.10 (2H, d, J =7.3 Hz, OCH2CH3); 5.88 (1H, d, J = 

10.4 Hz, 2–H) 7.32 (1H, d, J = 10.4 Hz, 3–H). 13C NMR (CDCl 3): 13.7 (OCH2CH3); 27.5 (2 x 
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1’-CH3); 29.1 (C-2’); 31.4 (C-5’); 44.8 (C-3’); 59.5  (OCH2CH3);112.6 (C-2); 144.2 (C-3); 

166.0 (C-1); 205.6. 

 

 

Figure 2.26. 3-((2’-methyl-4’-oxopentan-2’-yl)-thio)acrylate (4MMP-ETP) structure and characteristic 

spectrum (MS EI+). 

 

Although formation of Z and E isomers were found during synthesis of reference compounds, Z 

to E ratio was at least 90:10.   

Factors affecting thiols derivatization procedure with ethyl-propiolate 
 

Although the reaction between ETP and volatile thiol is fast and selective, pH play a key role in 

derivatization reaction and product stability. On the one hand, the yield of this reaction is 

strongly affected by the presence of free ETP in the media and by the presence of the thiolate 

group acting as nucleophile. On the other hand, derivatization proceeds at mild basic pH, where 

hydrolysis of ester groups can occour (Makhotkina & Kilmartin, 2012).  

Relative area of 3MH-ETP, 3MHA-ETP were then considered at different pH between 6.0 and 

9.0. Neutral or mild basic conditions are required to carry out the derivatization procedure. In 

fact, no derivative product could be identified under mild acidic conditions (pH 6.0) (figure 

2.27). Moreover, the higher was the pH, no decrease in 3MHA-ETP area was noticed, thus 

suggesting that no hydrolysis took place under the experimental conditions. On the other hand, 

3MH-ETP and 3MHA-ETP showed a practically linear increase with the pH.  
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Figure 2.27. pH effect on derivatization yield between ethyl propiolate and 3-MH, 3-MHA.  

 

 

As a result, the application of this novel derivatising agent and of a pre-concentration step 

allowed to identify 3MH and 3MHA in both wine and spiked wine at µgL-1 level (figure 2.28).  
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Figure 2.28. Identification of reference compound in wine (A) and wine containing 10 µg L-1 3-MHA and 

3-MH (B).  

Conclusions 
Michael type reaction between thiols and ethyl propiolate in water gives stable products. These 
products were identified by their NMR and mass spectra. Moreover, the fragmentation pattern 
allows to identify characteristic fragments thus increasing sensitivity. Neutral or mild basic pH 
is required to obtain derivatization. Despite this, hydrolysis of 3MHA does not occour. 
Reference compounds can be retained on solid phase cartridges. Derivatization and extraction 
procedure can be applied to real matrices too. As a consequence, volatile thiols can be identified 
at concentration close to their perception threshold in wines.  

 

 

 

 

  

 
 

A 

B 

3MH-ETP 

3MHA-ETP 



Studies on the occurrence of thiol related aromas in wine                                                    Federico Piano 
________________________________________________________________________________________________ 

67 

 

References 
 
Arcadi A et al., 2009, Facile reaction of thiols and amines with alkyl 4-hydroxy-2-alkynonates 
in water under neutral conditions and ultrasound irradiation, Tetrahedron Letters, 50:2060-
2064. 
Bouchiollux P et al., 1998, Identification of volatile and powerful odorous thiols in Bordeaux 
red wine varieties J Agric Food  Chem 46:3095-3099. 
Bouchilloux P et al., 1996 Quantitative determination of 4-mercapto-4-methylpentan-2-one in 
Sauvignon wines J Int sci Vigne Vin 30:23-29. 
Capone D et al., 2011, Application of a modified method for 3-mercaptohexan-1-ol 
determination to investigate the reatioship between free thiol and related conjugates in grape 
juice and wine, J Agric Food Chem 59:469-4658. 
Full G et al., 1994, Covalent chromatography: a worthwhile means for analyzing thiol aroma 
compounds in trace levels Lebensmittelchemie 48:1-4. 
Hebditch K R et al., 2007, Synthesis of isotopically labeled thiol volatiles and cysteine 
conjugates for quantification  of Sauvignon Blanc wine J Label Compd Radiopharm 50:237-
243.  
Hofmann T et al., 1996, Model studies on the oxidative stability of odor-active thiols occurring 
in food flavors J Agric Food Chem 44:251-255. 
Fedrizzi B et al., 2010, Variation of Some fermentative sulfur compounds in Italian 
“Millesimè” Classic sparkling wines during aging and storage on lees J agric food chem 
58:9716-9722.   
Fedrizzi B et al., 2008, Hyphenated gas chromatography-mass spectrometry analysis of 3-
mercaptohexan-1-ol and 3-mercaptohexyl acetate in wine Comparison with results of other 
sampling procedures via a robust regression, Anal Chim Acta 621:38-43. 
Fedrizzi B et al., 2007, Concurrent quantification of light and heavy sulphur volatiles in wine 
by headspace solid-phase microextraction coupled with gas chromatography/mass spectrometry 
Rapid Comm in Mass Spectrometry, 21:707-714. 
Jia M H et al., 2003, Simultaneous Determination of trace levels of nine haloacetic acids in 
biological samples as their pentafluorobenzyl derivatives by gas chromatography/tandem mass 
spectrometry in electron capture negative ion chemical ionization mode, Anal Chem, 75:4065-
4080. 
Kotseridis Y et al., 2000, Quantitative determination of sulfur containing wine odorants at sub-
ppb levels. 1. Synthesis of the deuterated analogues J Agric Food chem 48:5819-5823. 
Lepine L & Archambault J, 1992, Parts-per-trilion determination of trihalomethanes in water by 
purge and trap gas chromatography with electron capture detection, Anal Chem 64:810-815. 
Lerch O et al., 2003, derivatization and gas chromatography-chemical ionization mass 
spectrometry of selected synthetic and natural endocrine disruptive chemicals, J Chrom A, 
991:77-97.  
Makhotkina O & Kilmartin P A, 2012, Hydrolysis and formation of volatile esters in New 
Zealand Sauvignon balnc Food Chem 135:486-493. 
Mateo-Vivaracho L et al., 2010, Analysis, Occurrence, and potential sensory significance of 
five polyfunctional mercaptans in white wines, J Food Chem  58:10184-10194. 



Studies on the occurrence of thiol related aromas in wine                                                    Federico Piano 
________________________________________________________________________________________________ 

68 

 

Mateo-Vivaracho L et al., 2008, Improved solid-phase extraction procedure for the isolation 
and in-sorbent pentafluorobenzyl alkylation of polyfunctional mercaptans optimized procedure 
and analytical applications, J chrom A 1185:9-18. 
Mateo-Vivaracho L et al., 2007, Quantitative determination of wine polyfunctional mercaptans 
at nanogram per liter level by gas-chromatography-negative ion mass spectrometric analysis of 
their pentafluorobenzyl derivatives, J chrom A 1146:242-250. 
Mateo-Vivaracho L et al., 2006, Automated analysis of 2-methyl-3-furanthiol and 3-
mercaptohexyl acetate at ngL-1 level by headspace solid-phase microextraction with on-fibre 
derivatisation and gas chromatography-negative chemical ionization mass spectrometric 
determination, J chrom A 1121:1-9. 
Mestres M et al., 2000, Analysis of low-volatility organic sulphur compounds in wines by 
solid-phase microextraction and gas chromatography J Chrom A, 881:583-590. 
Mestres M et al., 1999, Simultaneous analysis of thiols, sulphides and disulphides in wine 
aroma by headspace solid-phase microextraction-gas chromography, J Chrom A, 849:293-297 
Owen T C, 2008, Thiol detection, derivatization and tagging at micromole to nanomole levels 
using propiolates, Bioorg chem 36:156-160. 
Pawliszyn J, Application of solid phase microextraction. Smith R M eds., The Royal Society of 
Chemistry 1999, pp 349-460. 
Randive N A et al., 2010, A facile approach to substituted acrylates by regioselective and 
stereoselective addition of thiols and amines to an alkynyl aster in water, Monatsh Chem 
141:1329-1332.   
Ridrìguez-Bencomo J J et al., 2009, Improved method to quantitatively determine powerful 
odorant volatile thiols in wine by headspace solid-phase microextraction after derivatization, J 
Chrom A 1216:5640-5646. 
Schneider R et al., 2003, Quantitative determination of sulfur-containing wine odorants at sub 
parts per billion levels. 2. Development and application of a stable isotope dilution assay J agric 
food chem 51:3243-3248. 
Tominaga T & Dubourdieu D, 2006, A novel method for quantification of 2-methyl-3-
furanthiol and 2-furanmethanethiol in wines made from Vitis vinifera Grape varieties J agric 
food chem 54:29-33. 
Tominaga T et al., 2003a, Contribution of benzenmethanethiol to smoky aroma of certain Vitis 
vinifera L. wines. J Agric Food Chem 51, 1373-1376.  
Tominaga T et al., 2003b, Role of certain volatile thiols in the bouquet of aged champagne 
wines. J Agric Food Chem 51:1016-1020. 
Tominaga T et al., 2000a, Contribution of volatile thiols to the aromas of white wines made 
from several Vitis vinifera Grape varieties. Am J Enol Vitic 51,2:178-181. 
Tominaga T et al., 2000b, A powerful aromatic volatile thiol, 2-Furanmethanethiol, exhibiting 
roast coffee aroma in wines made from several vitis vinifera Grape varieties. J Agric Food 
Chem 48, 1799-1802. 
Tominaga T et al., 1998a, Identification of new volatile thiols in the aroma of Vitis vinifera L. 
var Sauvignon blanc wines. Flavour Fragr J 13, 159-162.  



Studies on the occurrence of thiol related aromas in wine                                                    Federico Piano 
________________________________________________________________________________________________ 

69 

 

Tominaga T et al., 1998b Development of a method for analyzing the volatile thiols involved in 
the characteristic aroma of wines made from Vitis vinifera L. cv sauvignon blanc J Agric food 
chem 46:1044-1048. 
Tzanavaras P D, 2010, Derivatization of thiols under flow conditions using commercially 
available propiolate esters J of Pharm Biomed Anal, 53:790-794. 
Wang Q et al., 2005, Determination of low-molecular mass aldehydes by automated headspace 
solid-phase microextraction with in-fibre derivatisation J Chrom A 1071:147-154. 
Washall J W & Wampler T P, 1990, Sources of error in purge and trap analysis of volatile 
organic compounds, Am Lab 22:38-43. 
Xiao W-J & Alper H, 1997, The first examples of the palladium-catalyzed thiocarbonylation of 
propargylic alcohols with thiols and carbon monoxide, J Org Chem 62:3422-3423. 
Xu C et al, 2008, On the synthesis of β-keto-1,3-dithianes from conjugated ynones catalyzed by 
magnesium oxide, Tetrahedron Lett, 49:2454-2456.  
Zacharis C K et al., 2011, Ethyl propiolate as a post-column derivatization reagent of thiols: 
development of a green liquid chromatographic method for the determination of glutathione in 
vegetables, Analytica Chimica Acta 690:122-128. 
Zacharis C K et al., 2009, Ethyl propiolate as a novel and promising analytical reagent for the 
derivatization of thiols: study of the reaction under flow conditions, J of Pharm Biomed Anal, 
50:384-391.  
  
 

  

 
  

 

 

 

 

 

 

  



Studies on the occurrence of thiol related aromas in wine                                                    Federico Piano 
________________________________________________________________________________________________ 

70 

 

4. Liquid chromatographic approaches in volatile thiols 
determination in wines 

 

Aromatic thiol compounds involved in Sauvignon blanc aroma have boiling point higher than 

90°C (Mestres et al., 2000). Therefore, the extraction of such compounds from wine matrix 

involving their volatility needs harsh conditions to reach enough sensitivity (Fedrizzi et al., 

2008).  This suggest that, although gaschromatography has been identified as excellent tool for 

analysis of wine aroma, in certain condition liquid chromatography could be more reliable to 

analyse thiol related aroma compounds.  

Various analytical methods have been reported in literature to assess thiol containing molecules 

in grape juices and wines employing high-performance liquid chromatography. In particular, 

several methods have been carried out to determine glutathione in its reduced form. Among 

derivatizing agents, glutathione has been reported to react with p-benzoquinone, to introduce 

chromophores making detection of this thiol molecule by UV possible (Tirelli et al., 2010). 

If fluorescence detector is employed, o-phthalaldehyde (Park et al., 2000, Janet et al., 2010), as 

well as 2,3-naphtalenedialdehyde (Marchand de Revel, 2010) can be used as derivatizing agent 

of glutathione. Capillary electrophoresis was used to separate reaction fluorescent adducts of 

glutathione with monobromobimane (Lavigne et al., 2007).    

Since thiol aroma compounds are water soluble, the analytical approaches described above 

could be suitable tools to their evaluation. Despite this, thiol occurrence at trace concentration is 

the main obstacle to direct application of such derivatizing agents to wines. 
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4.1. p-benzoquinone as derivatizing agent in volatile thiol determination  
 

Reaction between thiol compounds and p-benzoquinone (pBQ) has been reported. The 

mechanism of this reaction is a nucleophilic addition carried out by the thiol to an unsaturated 

carbonyl (figure 4.1) (Jocelyn, 1972). 

 

Figure 4.1 reaction of thiols with pBQ. 

 

As extremely reactive compounds, thiols rapidly react with pBQ. The formation of thiol-

substituted hydroquinones is fast and stechiometric. As a conseguence, sensitive and reliable 

quantification of glutathione and cysteine of yeast cell-wall fractions (Tirelli et al., 2010) as 

well as reduced glutathione in grape juice and white wine (Fracassetti et al., 2011) can be 

carried out.  Derivative products are detectet at 303 nm. 

The main advantages connected with this reaction are its rapidity, effectiveness and the 

generation of UV active species. Moreover, pBQ is a symmetric molecule and thiol addition 

makes molecules which are equal in their structure. As a consequence, a single product is 

obtained during derivatization reaction which means a single peak in chromatography. 

Thanks to this, the employement of pBQ was evaluated to be a suitable tool to test in order to 

determine volatile thiols.  

 

Materials and methods 

3-mercaptopropionic acid (3MPA) and p-benzoquinone (pBQ) were purchased from Fluka 

(Swizerland). Trifluoroacetic acid (TFA) was purchased from Sigma-Aldrich (St. Louis, MO).  

The derivatisation was conducted as described by Tirelli et al. (2010): 2mL of thiol standard in 

citate buffer 75 mM pH 5.0 were added with 100 µL of 43.2 mg L-1 pBQ and mixed for 1 min. 

One milliliter 53 mg L-1 MPA was added, in order to remove the the exceeding amount of pBQ. 

The reaction mixture was mixed again and then microfiltered (0.22 µm, PVDF, Millipore). The 

reversed phase (RP)-HPLC of thiol substituted  hydroquinones and p-hydroquinone (pHQ) was 
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performed with a Water Alliance  2695 (Milliford MA) equipped with a photodiode array 

detector Waters 2996. The separation column was a hexyl-phenyl column, 250 mm x 4.6 mm, 5 

µm, 110 Å (Phenomenex, Torrence, CA). Eluting solvents were water/trifluoroacetic acid 

(0.05% v/v) and methanol; the concentration of the latter increased from 30% to 80% in 15 

minutes, to carry out the separation at 1.0 mL min-1 flow. 

 

Results and discussion 

As reported in figure 4.2 derivatisation of 3M2B, 3MH, 6MH and 3MHA using the proposed 

procedure was possible at mg L-1 level. Moreover, separation of derivatised products was 

possible. 

 

Figure 4.2 HPLC separation of 3MPA-HQ, 3M2B-HQ, 3MH-HQ, 6MH-HQ and 3MHA-HQ. 

 

Despite this, volatile thiol concentration in wines is 4 to 5 orders of magnitude lower than the 

concentration reported in figure 4.2. As a result, this technique is not sensitive enough for a 

direct use in wines and it needs the analytes to be concentrated. Because of thiol reactivity and 

volatility under certain condition, it is not possible to concentrate wine, thus a specific 

extraction of volatile thiols should be carried out. 

Among various technique to extract volatiles from wine, the employment of liquid-liquid 

extraction with various organic solvent has been widely used for many compounds. Depending 

on their repartition constant, volatiles (and other compounds) are distributed between sample 
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matrix and the organic solvent used as extractor. As a result, a specific extraction of analytes 

can be carried out.  

Although different solvents can be used to extract volatiles from wines, usually 

dichloromethane, pentane, or a mixture of them are used. In particular, dichloromethane (DCM) 

has been proposed as solvent to extract volatile thiols from wines (Tominaga et al., 1998). 

Thus, in this work DCM will be used to extract volatile thiols. 

Depending on the nature of the sample matrix, the solvent used, the characteristic  

hydrophobicity of the analyte and the presence of modifiers (i.e. salts), volatile compounds can 

be extracted from wine by using DCM. Stating that thiols (as other molecules in wine) are at 

least partially soluble in aqueous system, part of the analytes will remain in aqueous system 

during the liquid-liquid extraction. A quantitative measure of the distribution between aqueous 

system and organic phases is the distribution coefficient K, which is constant for a single 

analyte and the solvents used. The constant K is the ratio of the concentration of the solute in 

the two solvents once the system reaches the equilibrium. It can be used to calculate the 

effectiveness of multiple small volume extraction in extracting the total amount of analytes 

from the aqueous system.  

In the case of volatile thiols (RSH), if the mercapto group is in its uncharged form (RSH form), 

the hydrophobicity depends on the alkyl chain R. Different volatile thiols are present in wines: 

although 3-mercaptohexan-1-ol, its corresponding acetate and 4-mercapto-4methyl-pentan-2-

one are considered the most important and studied, many other less hydrophobic thiol 

molecules can contribute to aroma complexity. In order to develop a method able to determine 

such less hydrophobic molecules too, two different thiols will be used in this trial: 6-

mercaptohexan-1-ol, which is as hydrophobic as wine thiols and 3-mercapto-2-butanol, which 

is more hydrophilic than the previous one. 

 

Experimental procedure 

10 mg L-1 solution of 6-mercaptohexan-1-ol (6-MH) and of 3-mercapto-2-butanol in 50mL 

wine-like model system (tartaric buffer 5 g L-1, pH 3.20, 12% v/v ethanol) was extracted by 

using an equal volume (50 mL) of dichloromethane. The presence of NaCl (50 g L-1) was 

evaluated. the emulsion  was stirred for 1 hour to reach the equilibrium, then the two phases 

were separated. Concentration of volatile thiol in aqueous media before and after the extraction 

was determined by pBQ derivatization, as reported below. Trial was carried out in duplicate                 
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As expected the more hydrophobic thiol (6-MH) was more easily extracted using 

dichloromethane, while 3M2B showed a lower distribution constant. The presence of NaCl (50 

g L-1) clearly improve the extraction yield for both thiols used in this section (Table 4.1). 

 

Table 4.1 . Repartition constant (K) of thiols between dichloromethane and wine-like model system. 

 

The yeld of extraction following to n extraction steps can be described for each analyte as:      

�� 	= �� � ��	��
 + ��

�

 

Where: 

xn is the amount of analyte exctracted during the nth extraction 

x0 is the amount of analyte at the beginning of the extraction procedure 

K is the distribution constant specific for an analyte between two specific solvents 

Vs is the volume of solvent used during the extraction 

Va is the volume of liquid to be extracted 

 

The ratio between the amount of analyte extracted during each extraction and the total amount 

of analyte represent the yield of the extraction (Y) 
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As a consequence, if the initial volume of liquid to be extracted as well as the number of 

multiple extraction is established, it is possible to calculate the volume of organic solvent to be 

used during the extraction to gain certain yield 
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Analytes KDCM/Wine; (NaCl 0g/L) KDCM/Wine; (NaCl 50g/L)

3-mercapto-2-butanol 3M2B 4.57 8.95

6-mercaptohexan-1-ol 6MH 5.83 16.82
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If the lower distribution constant in the presence of NaCl is used (KDCM/W 3M2B) to calculate its 

total extraction starting from 1 L solution by multiple extraction, three volumes of 129 mL 

dichloromethane allow to  extract 99.9% of total 3M2B. Since the other thiol showed an higher 

distribution constant, this volume of organic solvent is clearly sufficient to completely extract 

total 6MH from wine-like model system.  

 

Once extracted in organic solvent, volatiles can be concentrated thus allowing to increase the 

sensitivity of the analytical method. Despite this, dichloromethane cannot be injected in HPLC 

system. Moreover, derivatisation procedure can be used for aqueous system under acid pH 

(Fracassetti et al., 2011). Thus, thiols should be back-extracted in aqueous media. 

Hydrophobicity of alkyl mercaptans is clearly influenced by the status of the thiol group. In 

fact, if this group is dissociated the hydrophobicity is lower and solubility of thiols in aqueous 

media higher. Stating that the pKa of such molecules is in the range pH 9÷11, the employment 

of alkaline solution seemed to be the best choice for this back-extraction step. Moreover, the 

extraction of mercaptans from organic solvents and gasoline by using alkaline  solution have 

been reported in literature (Yabroff, 1940). 

From a theoretical point of view, the distribution of a mercaptan between an oil phase and an 

aqueous solution depends on the solubility of the un-dissociated mercaptan in the organic 

solvent. Despite this, if alkaline solution is used,  the mercaptan will be present in the aqueous 

phase in both dissociated and undissociated forms. If the former molar fraction is great, more 

undissociated mercaptan will be solubilized in the aqueous media, thus determining a stronger 

extraction from the organic layer. 

On this idea, distribution constant between DCM and sodium hydroxide 10 mM (pH 12) were 

calculated in order to back-extract mercaptans from the organic layer. 

 

Experimental procedure 

Solution of mercaptans (3M2B 4.9 µM, 6-MH 4.2 µM, 3-MH 3.5 µM and 3-MHA 2.7 µM) 

were prepared in sodium hydroxide (Merk chemicals) 10 mM, 50 mL. An equal volume of 

dichloromethane (50 mL) was added. The emulsion  was stirred for 1hour to reach the 

equilibrium, then the two phases were separated. Sample pH was then adjusted to 5.0 with 

tartaric acid 1 M before the derivatizing was carried out. Concentration of mercaptans in 

aqueous media was then determined and distribution constant were then calculated. 
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Results and discussion 

As reported in table 4.2 distribution constant under experimental condition showed that NaOH 

10 mM was not a suitable tool for back-extraction of mercaptans from dichloromethane. In fact, 

solubility of thiols was still higher in dichloromethane, even if pH is higher than dissociation 

constant for thiols thus too high volume in alkaline solution has to be used to extract thiol, even 

if multiple extraction are used.  

 

 

Table 4.2. Repartition constant (K) of thiols between NaOH 10 mM  and dichloromethane. 

 

Despite higher alkaline concentration has been suggested to improve back extraction of 

mercaptans from oil phases (Yabroff, 1940), this condition has not been tested because of two 

main reasons. On the one hand, NaOH concentration used allowed to have higher pH than thiol 

dissociation constant. Moreover, hydrolysis of 3MHA has been noticed under higher pH also 

during gaschromatographic approaches.  

This trial showed that back-extraction of mercaptans from dichloromethane with alkaline 

solution did not allowed to back extract thiols from dichloromethane in an efficient way. 

 

Solubility of mercaptans in dichloromethane has been demonstrated to be higher than in water 

system. Despite this, from a physical point of view, DCM density is higher than water density 

and this two solvents are unsoluble, thus implying that if both water and solvent are present, the 

bottom layer will be dichloromethane. Moreover, thanks to its low boiling point, 

dichloromethane is a suitable solvent in which mercaptans can be concentrated. 

Since thiols showed they cannot be back-extracted in water by dissociating thiol group using 

alkaline solution, trial to “force” thiol to pass from dichloromethane to water by removing the 

organic solvent under reduced pressure was carried out. 

 

Analytes KNaOH/DCM

3-mercapto-2-butanol 3M2B 8.91

6-mercaptohexan-1-ol 6MH 0.91

3-mercaptohexan-1-ol 3MH 0.61
3-mercaptoheyl acetate 3MHA n.d.
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Figure 4.3. Recovery of thiols during back-extraction from dichloromethane using water under reduced 

pressure. 

 

Although the solubility of mercaptans in dichloromethane is higher than in water, good 

recovery could be achieved if such molecules were “forced” to solubilize in water by 

eliminating the organic solvent (fig 4.3). Moreover, in this case, distribution constant did not 

influence the extraction, since the end of the process only water is present.  

Water and dichloromethane were identified as suitable tool to purify thiol from wine-like model 

system and carry out their derivatization by using p-benzoquinone as derivatizing agent. 

Despite this, the method, as described, needed to use 10 mL of water to back-extract thiols from 

dichloromethane to reach good recovery. Considering that 50 µL were injected, further 

concentration of the sample would be necessary (up to 1 mL) in order to reach a final 

concentration factor of 1000, which would allow to gain enough sensitivity. 

In this purpose, extraction of derivatized thiols by solid phase extraction was carried out. Since 

derivatized thiol hydrophobicity is clearly different if compared to thiols, different resins were 

used. In particular C18, polymeric sorbents, and PVPP were used. Because of their different 

hydrophobicity, two thiols not present in wines were chosen for this trial: 6-MH and 3M2B. 

The former being very similar to thiol present in wines, the latter being lower in 

hydrophobicity. 
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Experimental procedure 

10 mL citrate buffer 50 mM pH 5.0 containing 3M2B 56 µM and 6-MH 45 µM were 

derivatized using pBQ. Derivatization was carried out on 10 mL sample by adjusting amount of 

pBQ and MPA in order to have the same final concentration (pBQ 258 µM, MPA 630 µM). 

C18, polymeric and polyvinyl polypyrrolidone (PVPP) sorbents were tested during this trial. 

Derivatized thiols were loaded onto solid phase extraction resins previuosly conditioned by 

passing 5 mL methanol followed by 5 mL of water. Elution step was carried out by passing 2 

mL methanol 100%.  

Determination of derivatized thiols by HPLC-UV detection was carried out as previously 

described. 

 

Results 

As hydro quinone derivatives (RS-HQ), thiols are very hydrophobic molecules and they were 

retained on various sorbents. In fact, no derivatized thiol could be measured in citrate buffer 

coming from the sample loading step of the resin. Moreover, elution of such compounds using 

methanol allowed to gain satisfactory recovery in every sorbents used (figure 4.3). 

 

 

Figure 4.3 Recovery of 3M2B-HQ and 6MH-HQ using different resins as sorbents. 
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During recovery trial, at least 2 mL of methanol were to be used during the elution step of 

analytes thus affecting final factor concentration. Despite this, analytes in methanol could be 

concentrated under reduced pressure with good recovery and the absence of interfering species 

absorbing at specific wavelength was noted. 

Thus, extraction and final concentration factor of 1000 was reached. Considering the detection 

limit showed by pBQ method in determining glutathione (Tirelli et al., 2010), this concentration 

factor could be enough to reach the needed sensitivity to determine volatile thiols in wines. As a 

consequence, extraction and derivatization was applied to wine like model system containing 

volatile thiols.    

 

Experimental procedure 

3M2B 7.2 nM, 6-MH 5.7 nM were prepared in 1 L wine-like model system (tartaric buffer 5 g 

L-1, pH 3.20, 12% v/v ethanol). Wine was added with  50 g L-1 NaCl and extracted three times 

using 150 mL DCM. The organic phases were then combined and concentrated up to 10 mL 

under reduced pressure. Ten milliliters of water were then added and the organic layer was 

eliminated. Water pH was then adjusted to 5.0 and derivatization step was carried out with pBQ 

as previously reported. Derivatized thiols were then retained onto a polymeric sorbent (200 mg, 

3 mL volume, Strata X Phenomenex) and eluted by passing 2 mL methanol 100%. Methanol 

was then concentrated to 1 mL under reduced pressure. 

50 µL were injected in the HPLC-UV system to determine derivatized thiols as described 

below. 

 

Results 

Experimental trial showed that the presence of other species absorbing at the same wavelength 

(303 nm), made the identification of derivatised thiols impossible (figure 4.3). Even if trial was 

carried out in wine-like model system, where no interference should be present, impurities 

contained in the chemicals were concentrated 1000 times and were responsible for the 

impossibility to identify derivatised products. 

As a consequence, pBQ was no longer considered a suitable tool to determine derivatised thiols 

using diode array (λ= 303 nm) as detector. 
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Figure 4.3 HPLC-DAD chromatogram of wine-like model system extracted three time using 

dichloromethane, back-extracted with water, derivatized with pBQ and concentrated to 1 mL. (λ: 303 nm).  
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4.2. o-phthalaldehyde as derivatizing agent in volatile thiol determination 
 

Among derivatizing agent employed for thiol groups, o-phthalaldehyde (OPA) has been 

received interest because of its sensitivity. The reaction of OPA with a primary amino group 

and a thiol group leads to the formation of an indole (figure 4.3) (Simons & Johnson, 1978).  

 

 

Figure 4.4. Reaction of thiols with OPA. 

 

Derivatized products are fluorescent, thus leading to an improvement in sensitivity of the 

method itself. Among thiol molecules, such method has been proposed for glutathione and 

cysteine determination in grape juices and wines (Park et al., 2000).  

This derivatizing agent was proposed to determine amino acids and amines (Kutlàn & Molnàr-

Perl, 2003, Molnàr-Perl & Bozor, 1998, Vasanits et al., 2000). 

Behavior and stability of amino acid derivatives have been largely studied (Molnar-Perl, 2001, 

Kutlàn et al., 2002). 

Since the presence of interference UV adsorbing molecules made impossible to determine 

volatile thiols extracted from wine-like model system, the employment of high sensitive 

derivatizing agent was assumed a suitable tool to use. 

  

Materials and methods   

Amino ethanol (AE) and o-phthaldialdehyde (OPA) were purchased from Fluka (Swizerland).  

Thiol standards were prepared in water. Pre-column derivatization was carried out as follows: 

50 µL of sample were withdrawn, 5 µL of OPA (5 mg mL-1 in methanol) (final concentration 3 

mM) and 5 µL AE (10 mg mL-1 in borate buffer 80 mM, pH 7.30), final concentration 9 mM 

were then withdrawn. The derivatization mixture (total volume 60 µL) was then let react for 1 

min and then injected for analysis. The reversed phase (RP)-HPLC of derivatized thiol was 

performed with a Water Alliance 2695 (Milliford MA) equipped with a fluorescence detector 

Jasco FP-920 (λex: 330 nm, λem: 440 nm). The separation column was a hexyl-phenyl column, 

CHO

CHO

+ RSH + R'NH2 NR'

SR
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250 mm x 4.6 mm, 5 µm, 110 Å (Phenomenex, Torrence, CA). Eluting solvents were water and 

methanol, eluting gradient and flow is indicated in table 4.3. 

  

 

Table 4.3. HPLC separation gradient for thiol derivatized with OPA. Eluent A: water, eluent B: methanol. 

 

Results and discussion 

Volatile thiols could be derivatized and separated under the experimental condition used (figure 

4.5). Only 4-MMP did not allow to be derivatized. Despite this, used concentration are above 1 

mg L-1. This concentration represents at least 10000 times real concentration of volatile thiols in 

wine. Thus, extraction and concentration procedure have to be applied to reach enough 

sensitivity.  

 

 

Figure 4.5 HPLC separation of 3M2B-OPA, 3MH-OPA, 6MH-OPA and 3MHA-OPA. 

 

time flow 

 (min) (mLmin
-1

)

0.0 0.1 95.0 5

5.0 0.1 95.0 5

5.1 0.1 40.0 60

7.0 1.0 40.0 60

20.0 1.0 20.0 80

20.2 1.0 0.0 100

B %A %

3M2B-OPA 

6MH-OPA 

3MH-OPA 

3MHA-OPA 
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Optimization of derivatization procedure with OPA 
 

Derivatization by OPA and AE of thiols back-extracted with water was then tried. From 

previuos trials, derivatized thiols with pBQ could be concentrated by solid phase extraction 

resins and, once eluted by in methanol, concentrated under reduced pressure. 

As indoles are more hydrophobic than volatile thiols, extraction of indoles derivatives of 

analytes was tried on polymeric sorbents. Derivative products between OPA, primary amines 

and thiols have been reported to be high reactive species (Kutlàn et al., 2002). Extraction and 

concentration steps increased by-products formation, characterized by the same fluorescent 

properties, thus letting impossible to identify presence of derivatized thiols in the analyzed 

samples. As a result, pre-column derivatization was chosen as the best one. Despite this, many 

factors can affect derivatization yield. Among others, pH can influence derivatization yield 

(Nakamura & Tamura, 1982). 

Derivative procedure was then carried out at different pH to evaluate which was the best range 

for volatile thiols. 

Standard solutions were then prepared in citrate buffer 10 mM pH 5.0, phosphate buffer 10mM 

pH 6.5, borate buffer 10 mM pH 8.0, borate buffer 10 mM pH 9.0, carbonate buffer 10 mM pH 

10, carbonate buffer 10 mM pH 11.0; pH 12.0 was prepared using NaOH. 

Pre-column derivatization procedure and separation of derivatized product was carried out as 

reported previously.      

Optimal pH for derivatization process was different with various volatile thiols studied (figure 

4.5). pH conditions lower than 6 did not formed indole. This suggested that acidic medium was 

not optimal for volatile thiol derivatization with OPA-AE. 

In neutral and mild basic pH, 3M2B derivatization yield was higher as pH increased. A similar 

behavior was noticed for 3-MH whereas 3-MHA derivatization yield dropped at high pH, while 

3-MH increased thus suggesting an hydrolysis of this ester into the corresponding alcohol. 6-

MH derivatization yield was constant within the pH range 6.5-12.0. As a consequence, the 

optimal pH range to determine volatile thiols was noticed to be the pH range between 6.5 and 

9.0. 
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Figure 4.5 pH effect on derivatization yield using OPA as derivatizing agent. 

 

During pre-column derivatization sample containing thiols, derivatizing agent and co-

derivatizing agent (amino ethanol) can be withdrawn in various sequences, thus affecting 

derivatization yield. In order to maximize derivatization procedure, different combination of 

sample (S), amino ethanol (AE) and o-phthaldialdehyde (OPA) withdrawing sequences were 

tested. 6-mercaptohexan-1-ol was used as reference thiol in this optimization trial. Chosen pH 

was 7.0, since this pH was noticed to be optimum for every studied volatile thiol. As reported in 

figure 4.6 relative yield was maximum for the withdrawing sequence S-OPA-AE.  

 

 

Figure 4.6. Effect of sample (S), amino ethanol (AE) and o-phthaldialdehyde (OPA) on derivatization 

yield. 
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As derivatizing process was optimized, extraction of volatile thiol from wine-like model system 

(tartaric buffer 5 g L-1, pH 3.20, 12% v/v ethanol) was applied as follows: wine was added with 

50 g L-1 NaCl and extracted three times using 150 mL dichloromethane. The organic phases 

were then mixed together and concentrated up to 5 mL under reduced pressure. One milliliter of  

water was then added and the organic layer was eliminated. The aqueous phase containing 

volatile thiol was then submitted to HPLC-Fluor analysis with pre-column derivatization as 

described previously. 

The optimized derivatization and the employment of specific fluorescent detection, allowed to 

identify volatile thiols in wine like model system at µg L-1 levels.  

Stating this result, the same extraction and derivatization procedure was applied for white wines 

but the identification of thiols in real matrix was not possible. The complexity of wine matrix 

was responsible for the lack of derivatization or thiol reactivity towards various chemical 

species. In order to identify the major responsible of this result and let the extraction and 

derivatization method work, different aspects were evaluated.   

 

Interferents extraction from wine affecting volatile thiol determination   
 

Although dichloromethane has been reported to be an ideal solvent to extract volatile thiols 

from wines (Tominaga et al., 1998) and other vegetable matrices (Tominaga et al., 1997), this 

organic solvent has been widely used to extract and analyze many other compounds from wines 

(Ortega-Heras et al., 2002). In particular, dichloromethane was identified to be able to extract 

acids, alcohols, carbonyl compounds, esters, volatile phenols, lactones and terpenes (Hernanz et 

al., 2008).  Many of the cited compounds are able to interact with volatile thiols both in water 

and in organic solvent, or they may influence derivatization reaction yield. 

Hexanoic acid, octanoic acid and decanoic acid extraction as well as hydroxybenzoic and 

hydroxycinnamic acids extraction could be responsible for pH modification of back-extraction 

water. On the other hand, extracted phenolics and corresponding quinones could react with 

thiols in aqueous media (Nikolantonaki & Waterhouse, 2012), as well as in organic solvent 

under certain conditions. Moreover, as strong nucleophilic compounds, thiols can be involved 

in several reactions which are based on Michael-type mechanism. Since these variables can 

interact in a complex way, one variable at time was investigated. 
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Evaluation of acids extraction: effect on back-extraction water pH 
 

Since derivatization yield has been noticed to be strongly affected by pH, influence of wine 

matrix on the pH in back-extraction was firstly evaluated. In this purpose, 1 L of white wine 

containing 50 gL-1 NaCl was extracted three times using 150 mL dichloromethane. organic 

solvent was then concentrated to 10 mL and an equal amount of water was added. Once the 

organic phase was eliminated, back-extraction water pH was measured. Back-extraction water 

pH was 4.56 (as average of two replicates). Moreover, water color was brown thus suggesting 

that both acids and phenolics were dissolved in dichloromethane and in back-extraction water. 

To avoid organic acids extraction from aqueous media using dichloromethane as organic 

solvent, dissociation of carboxylic function or the formation of the corresponding salt can be 

evaluated as the most interesting way. 

Total dissociation of organic acids present in wines can be reached at high pH. despite this, 

under these condition both quinones and thiolates formation is favoured (Danilewicz et al., 

2008; Jocelyn, 1972), thus improving nucleophile additions of thiol to quinones, leading to the 

loss of aroma compounds.     

The addition of CaCO3 to transform carboxylic acids into the corresponding Calcium salts was 

then evaluated. As deacidification tool of musts and wines, calcium carbonate is well-known 

(Steele & Kunkee, 1978). In fact, it reacts rapidly with tartaric and malic acids (the major acids 

in grapes and white wines) to form calcium tartrate and calcium malate unless the wine being 

treated is maintained at pH 4.5 or above. When the pH is higher, calcium malate-tartrate 

(double salt) can be formed. This treatment can be carried out in order to increase must and 

wine pH. Despite this, it can be used to develop salt precipitation processes and avoid 

solubilization in dichloromethane of  (Ca) salified organic acids. 

In this purpose, white wines were submitted to deacidification. In particular, CaCO3 was added 

adjusting pH to 5.0. 

Back-extraction water pH of treated wines was then evaluated as follows: 1 L of white wine 

was added of 50 g NaCl. pH was the adjusted to 5.0 using CaCO3. Treated wine was extracted 

three times with 150 mL volume of dichloromethane. The combined organic phases were then 

concentrated to above 10 mL under reduced pressure. 10 mL of water were then added and the 

organic solvent was eliminated under reduced pressure. Back-extraction water pH was then 

measured.  
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CaCO3 treatment allowed to obtain optimal pH for OPA derivatization  process in back-

extraction water. Measured pH was 6.75 as average. On the opposite, not treated wine lowered 

back-extraction water pH: measured pH was lower than 5.0.    

Evaluation of phenolics extraction  
 

The reaction between thiol compounds and quinones has been reported to be a major 

responsible of thiol loss in wines. The reactivity between these two species depends on the 

characteristics of both thiol compounds (Nikolantonaki & Waterhouse, 2012) and phenolics 

(Nikolantonaki et al., 2010, Kilmartin et al., 2001).  

Conjugate addition of thiol compounds to quinones has reported to proceed both in wine 

(Nikolantonaki et al., 2010), in water (Yadav et al., 2007).  

In general, this type of addition reaction of nucleophiles to unsaturated carbonyl compounds 

requires basic condition or the presence of a catalyst is required (Yadav et al., 2007). 

Depending on their repartition constant, phenols and quinones could be extracted in 

dichloromethane, thus being responsible for thiol loss during extraction procedures.    

Ferric Chloride-Phenol reaction has been used to identify phenolic compounds (Wesp & Brode, 

1934). Many studies have been carried out to improve such specific test for phenols in various 

solvents. The production of a blue, violet, or red coloration by the addition of ferric chloride to 

solutions of phenols has been used as a qualitative test for this aromatic hydroxyl group 

(Soloway & Wilen, 1952). 

Qualitative evaluation of the presence of phenolics in back-extraction water from wine 

extraction was then carried out by ferric chloride test. When treated with this salt, back-

extraction water turned brown, suggesting the extraction of phenolics from wine with 

dichloromethane.  

 

Effect of phenols extraction on volatile thiol determination 

Effect of phenols in back extraction water was the evaluated as follows: (+)-Catechin 5 mM and 

caffeic acid 5 mM were prepared in dichloromethane (50 mL). 6-mercaptohexan-1-ol  was then 

added to the organic solvent to give a final concentration 100 µM. The organic solvent was then 

evaporated under reduced pressure and back-extracted using 1 mL of water as described 

previously.  

In the presence of such reactive phenolic species in dichloromethane, identification of 6-

mercaptohexanol was not possible. On the other hand, even if the thiol standard was added to 
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the back-extraction water, no peak was measured. Thus suggesting that thiol loss could proceed 

in organic solvent or in aqueous media if phenols were extacted during liquid-liquid extraction. 

To confirm the presence of reactive species in back-extraction water from wine able to 

determine thiol loss during extraction process or interfering with derivatization reaction, 

addition of 6-mercaptohexan-1-ol to back extraction water was carried out. 

 

Experimental procedure 

One liter of wine containing 7.6 nM of 6-MH, 50 g L-1 NaCl, pH adjusted to 5.0 with CaCO3, 

was extracted three times using 150 mL of DCM. The organic phases were combined, reduced 

under reduced pressure and back-extracted with 1 mL water. Increasing amounts in 6-MH (0.76 

µM, 1.60 µM, 2.52 µM, 3.55 µM) were then added to back-extraction water and determination 

of thiol with OPA as derivatizing agent was carried out as previously reported. 

As reported in figure 4.7, 6-MH identification was not possible in extracted wine. Moreover, 

identification of 6-MH was possible only at high concentration (3.55 µM), thus suggesting that 

interferents extracted from wine matrix can interact with thiols causing their loss and/or not 

allowing derivatization procedure. 

 

  

Figure 4.7. HPLC separation wine extracted sample spiked in back-water extraction with 6-MH.  

 

6MH-OPA 
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Since phenolics affect the presence of volatile thiol in back-extraction water and/or interfering 

with derivatization reaction, and their putative presence has been noticed during extraction from 

white wines, fining agents and washing step of the organic solvent have been evaluated. 

Phenolic compounds can be largely eliminated from wine by adsorbing them on fining agents. 

Among those latter, water-insoluble polyvinyl polypyrrolidone (PVPP) is a synthetic polymer 

which is used to adsorb phenols from beverages. It is though that the adsorbtion of polyphenols 

by PVPP is through hydrogen bonding between the proton donor from the polyphenol and the 

carbonyl group from PVPP, together with π-bond overlap and hydrophobic interaction between 

the aromatic ring of the polyphenol and the PVPP ring (Laborde et al., 2006). The affinity of 

PVPP increases as the number of phenolic hydroxyl groups increase, as more groups are 

available for hydrogen bonding (Doner et al., 1993). The use of PVPP revealed to be a very 

efficient for adsorption of phenolic compounds such as catechin, epicatechin and quercetin 

(Magalhaes et al., 2010), as well as proanthocyanidins (McMurrough et al., 1995). 

Although PVPP is able to adsorb polyphenolics in a selective way, entire elimination of such 

molecules is difficult. In fact, number and kind of substituents on the aromatic ring of phenolics 

can affect the interaction between phenols and the fining agent (Laborde et al., 2006).  As a 

consequence, phenolic compounds which are not eliminated from wine can be extracted during 

the process thus leading to thiol loss. 

Washing step of organic solvents during liquid-liquid extraction is a usual procedure to 

eliminate interferents. Phenolics have been reported to be extracted from organic solvents and 

oil by using aqueous media. In particular, good recovery can be achieved by using alkaline 

solutions (Murray, 1949). Despite such media showed good recovery in extracting phenols from 

gasoline, strong alkaline solution cannot be used in the case of thiol extraction. As discussed 

above, sodium hydroxide could extract thiols from DCM (Capone et al., 2011) thus meaning 

their loss. On the other hand, alkaline solution would lead to the formation of quinones which 

would react quickly with thiols and also in this case the result would be thiol loss (Danilewicz 

et al., 2008). Thus, washing step by using water seems to be the most suitable choice. With the 

aim to minimize phenols content in dichloromethane during the extraction process and in the 

back-extraction water, PVPP treatment on wine samples and washing dichloromethane with 

water were tested. Presence of phenolic compounds in both water used for washing step and 

back extraction water was evaluated by ferric chloride test. 
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Experimental procedure 

3.0 g Na2S2O5 and 5 g of PVPP were added to 1 L of white wine and stirred for 15 min. The 

sample was then centrifuged at 4500 rpm for 10 min to remove  unsoluble PVPP. 50 g NaCl 

were then added to the sample and the pH was adjusted to 5.0 with CaCO3. Wine was then 

extracted three times with 150 mL dichloromethane. The emulsion was broken by 

centrifugation (4500 rpm 10 min). Collected organic phases were mixed (450 mL) and washed 

three times with 50 mL water. The organic solvent was then concentrated under reduced 

pressure to above 2 mL. then an equal amount of water was added and dichloromethane was 

eliminated under reduced pressure.  

Presence of phenolic species in water used during washing step was carried out by 

concentrating water (150 mL) to above 2 mL under reduced pressure and treating it with ferric 

chloride. 

Back-extraction water was submitted to thiol analysis using OPA as derivatizing agent as 

reported above. Once analyzed, back-extraction water was treated with ferric chloride to 

evaluate the presence of phenolics. 

 

Results 

Brown color obtained in ferric chloride test applied to water used during the washing step 

suggested that PVPP treatment was not able, if used alone, to eliminate extractable phenolics 

from wine. On the other hand, the capability of the washing step to partially remove extracted 

phenolics was tested. Back-extraction water, when treated with ferric chloride, showed light-

yellow color. This result suggested that PVPP treatment and washing step carried out on 

organic layer were able to drastically reduce phenolics content in back-extraction water. Despite 

this, volatile thiols were not detectable in spiked wine. 

To evaluate interactions between thiol compounds and applied treatments, 3.0 g Na2S2O5 and 5 

g of PVPP were added to 1 L of wine like model system containing thiols and stirred for 15 

min. The sample was then centrifuged at 4500 rpm for 10 min to remove  unsoluble PVPP. 50 g 

NaCl was then added to the sample and the pH was adjusted to 5.0 with CaCO3 and extracted 

once with 150 mL dichloromethane. The organic solvent was washed with water 50 mL, then 

concentrated under reduced pressure and back-extracted with water 1mL as described above. 

Peaks area was compared to non-treated wine-like model system. CaCO3 and PVPP treatment, 

together with the washing step of dichloromethane by water did not affect thiol concentration in 

comparison to non-treated wine like model system (figure 4.8). As a consequence, those 
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treatments can be considered as selective in elimination of interfernts which can be regarded as 

responsible of thiol loss during extraction process. 

  

 

Figure 4.8. Effect of CaCO3 and PVPP treatments on volatile thiols in wine-like model system. 

 

Evaluation of various Michael addition type reactions responsible for thiol 
loss 
 

Reactivity of thiols as strong nucleophilic group is the reason of their conjugation reactions. 

The latter are the main responsible for thiol loss during wine aging as well as during their 

extraction from wines. In particular, Michael type addition explains the reaction mechanism.  

Quinones, and in particular p-quinones can be considered as the most reactive species for the 

conjugate addition of thiols (Yadav et al., 2007). Despite this, many other structures can be 

considerate as putative strong electrophile in both aqueous media and organic solvent. In fact, 

the Michael addition accepted mechanism involves a direct addition of a nucleophile to a 

remote carbon of the conjugated C=O, or related system. Among various putative molecules, 

αβ-unsaturated acids and esters are able to give Michael type additions in the presence of thiol 

group. Among thiols, the addition between thiol acetic acid and molecules containing “enal” 

group have been studied (Ilyashenko et al., 2010, Rossiter & Swingle, 1992). 

In particular, during the proposed extraction method, some phenolics can be still present in 

organic solvent, although fining treatments and washing step are carried out during the 
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extraction procedure of thiols. As a result, on the one hand many putative structures for 

nucleophilic addition of thiols are present in the organic solvent. On the other hand, 

concentration step of the organic solvent and back-extraction can force such addition. As a 

consequence, conjugate additions of volatile thiols can occour.  

As reported in previous session, thiol compounds could not be identified in spiked wine 

although phenols concentration was minimized and optimal derivatizing conditions were 

present. 

Among reducing agents, sodium borohydride is responsible in the reduction of different 

functional groups in organic synthesis. In particular, reactivity towards conjugated carbonyl 

compounds was observed while chemo- and regioselectivity demonstrated (de Souza & 

Vasconcelos, 2006). On the other hand, borohydride hydrolysis reaction in water generates 

hydrogen (Liu & Li, 2009), thus suggesting that sodium borohydride interaction with 

interferents compound in wine matrix, organic solvents or water is complex. Despite this, such 

reducing agent is not soluble in dichloromethane, while the presence of sodium borohydride 

during derivatization step may be responsible for reducing carbonyl group of o-phtalaldehyde 

(OPA). The effect of NaBH4 treatment on interferents in wine prior to the liquid extraction with 

dichloromethane was then evaluated. 

 

Experimental procedure 

One liter of Sauvignon blanc wine spiked with thiols was added with 3.0 g Na2S2O5 and 5 g of 

PVPP and stirred for 15 min. The sample was then centrifuged at 4500 rpm for 10 min to 

remove  unsoluble PVPP. 50 g NaCl were then added to the sample and the pH was adjusted to 

5.0 with CaCO3. 3.84 g NaBH4 were added. Wine was then extracted three times with 150 mL 

dichloromethane. The emulsion was broken by centrifugation (4500 rpm 10 min). Collected 

organic phases were combined  (450 mL) and washed three times with 50 mL water. The 

organic solvent was then concentrated under reduced pressure to above 5 mL. then an equal 

amount of water was added and dichloromethane was eliminated under reduced pressure. 

Determination of thiols was then carried out using OPA as derivatizing agent as previously 

described. 
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Figure 4.9. HPLC-FLUO separation of wine (red line) and wine containing 1µgL-1 3MH, 6MH and 3MHA 

(black line) extracted with the proposed method. Derivatization of thiols with OPA.   

 

The reduction treatment with sodium borohydride, together with PVPP fining treatment and 

washing step, allowed to identify volatile thiols in wine at µgL-1 level in spiked wine. 

Moreover, 3-MH was detectable also in Sauvignon blanc wine using the proposed method 

(figure 4.9).       

 

Conclusions   
 

Although volatile thiols have always been analyzed by gaschromatographic methods, their 
quantification with HPLC approaches can be carried out, thanks to their high boiling point and 
to the employment of specific derivatizing agents. Extraction procedure based on organic 
solvent employment and back extraction in aqueous media allows to reach required detection 
limit in methods development. Despite this, the key factor in achieving good results is the 
evaluation of interferents responsible both for lack of derivatized species detection and 
derivatization reaction, as well as the elimination of reactive species towards thiols. In 
particular, UV absorbing derivatized thiol by p-benzoquinone as derivatizing agent were 
affected by many interferents UV absorbing molecules. 
The employment of fluorescent derivatizing agent allowed higher sensitivity. Despite this, only 
the evaluation of the effect caused by interferent species allowed to reach identification of thiol 
aromas in real matrices. Due to the extraction capacity of dichloromethane, variuos interferents 
were extracted. In particular, on the one hand derivatization process was not possible because of 
extraction of species causing low pH in back-extraction water. On the other hand, phenolics 
have been noticed to be responsible for thiol loss during extraction process. Moreover, the 

3MHA-OPA 

6MH-OPA 

3MH-OPA 
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minimization of Michael-type reactions  by reductive agents was needed. Specific treatments 
and washing steps were evaluated to be successful in eliminating interferents. As a result, 
volatile thiols were determined both in spiked wine at µg L-1 level, and in Sauvignon blanc 
wines.  
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5. Putative 3-mercapto-1-hexanol precursors: evaluation of the 
reaction of bisulfite with trans-2-hexenal 

 

Various studies concerning 3-mercaptohexan-1-ol (3-MH) biogenic pathway have been carried 
out (Peña-Gallego et al., 2012). As a result, cysteine and glutathione conjugates were evaluated 
to be the major precursors. The identification of intermediates cysteinilglycine precursor 
(Capone et al., 2011), together with the action of γ-glutamyltranspeptidase and 
carboxypeptidase, suggested that cysteinilated precursor of 3-mercaptohexan-1-ol is alongside 
the metabolic pathway of the degradation of the corresponding glutathione conjugate thus 
confirming that this latter compound can be regarded as the major precursor of 3MH in wines 
following the described biogenic pathway (Roland et al., 2010).  
Alternative pathway for the biogenesis of 3-MH in wine has been proposed focusing on trans 2-
hexenal as starting material leading to thio-conjugates (Schneider et al., 2006). The proposed 
pathway is based on Michael addition of the sulfydryl group from different molecules which act 
as sulfur donor. Yeast lyase activity would be then responsible for 3-MH formation. On the 
other hand the addition of hydrogen sulfide would lead directly to the smelling molecules. 
The occurrence of trans-2-hexenal and other unsaturated C6 compounds in grape juice is 
related to oxidative metabolism of unsaturated fatty-acids. They are present or form after grape 
damage (Joslin & Ough, 1978). Thus, C6 unsaturated compounds concentration in grape juice 
increases  during skin contact (Ramney et al., 1986). Moreover, trans-2-hexenal content 
decreases during storage period after machine-harvesting, thus suggesting reactivity towards 
other compounds present in grape juice (Capone et al., 2012). 
Among thiol compounds hydrogen sulfide and L-Cysteine were evaluated to react with hexenal 
(Schneider et al., 2006). Despite this, the former sulfur donor compounds is produced during 
the alcoholic fermentation, while the concentration of trans-2-hexenal is known to decline prior 
to the fermentation (Joslin & Ough, 1978, Capone et al., 2012). Cysteine and, most of all, 
glutathione can be regarded as sulfydryl group donor during prefermentative operation leading 
to glutathionylated thiol precursor formation (Roland et al., 2010). 
The evaluation of the biogenic pathway of this thiol precursor based on C6 unsaturated 
aldehyde, explain higher concentration in both cysteine and glutathione conjugates in grapes 
submitted to oxidative treatments and transportation prior to crushing (Capone et al., 2012, 
Capone et al., 2011, Capone & Jeffery, 2011). Despite this, the highest content of thiol 
precurors is not related to the highest content in thiols in the corresponding wines (Allen et al., 
2011, Pinu et al, 2012) thus suggesting that thiol precursors and aromatic thiol are related in a 
more complex way and/or the 3MH in wine may derive from alternative pathway.    
Occurrence of aromatic thiols in wine can be affected by SO2 following to various  mechanism, 
including both enzyme inhibition and direct chemical effects. Bisulfite can act as an antioxidant 
and lower the build-up of reactive quinones (Makhotkina & Kilmartin, 2009). Reduced 
glutathione loss can be lowered thanks to the presence of free SO2, at least until this latter is 
bound by fermentation products. As a result, on the one hand a higher amount in sulfydryl 
donor molecules is preserved. On the other hand, the lower the quinone content in the juice the 
lower the oxidative losses of the 3-MH formed during the early stages of alcoholic 
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fermentation. At the same time, SO2 is responsible for disrupting grape membrane structures 
leading to higher extraction of compounds into the juice, which could include some thiol 
precursor and  polyphenols. 
Effect of SO2 in preventing oxidative degradation of 3-MH precursors can be excluded, since 
thiol conjugates are not sensitive to oxidation. In fact, the sulfydryl group is involved in a 
carbon-sulfur bond and such products do not decrease as a result of juice oxygenation (Roland 
et al., 2010). Likewise, no difference was noted in glutathione conjugates in the presence of 
SO2 at nil or 50 mg L-1. On the other hand, excessive addition of SO2 led to lower concentration 
in both cysteine and glutathione conjugates (Capone & Jeffery, 2011) thus suggesting that 
bisulfite has some influence in thiol precursor formation during prefermentative stage.        
Bisulfite is a strong nucleophile reagent which could act as a sulfur donor, leading to a sulfonate 
product that yeast might be able to convert to 3-MH. Moreover, interaction between unsaturated 
aldehyde and bisulfite are characterized by complex behavior leading to the formation of 
various species (Dufour et al., 1999, Barker et al., 1983).  
In order to evaluate if this putative precursor can be generated during prefermentative stages, 
interaction between trans-2-hexenal and bisulfite will be studied. Synthesis of sulfonate 
products will be then carried out to obtain pure species and evaluate if they can be considered as 
putative precursors of 3MH in wines. 
 

5.1 Interactions between bisulfite with trans-2-hexenal 
 
As a strong nucleophile, bisulfite may interact with the carbonyl group of trans-2-hexenal (A) 
to generate trans-1-hydroxyhexen-2-ene-1-sulfonic acid (B). On the other hand, following to a 
Michal-type addition reaction (similarly to sulfydryl group of Cysteine, glutathione and 
hydrogen sulfide), 1-oxohexane-3-sulfonic acid (C) can be produced. In the end, if both 
Michael reaction and nucleophile addition to carbonyl group are followed, 1-hydroxyhexane-
1,3-disulfonic acid (D) will be the major product (figure 5.1).    
Mono adducts (species B and C) are characterized by the same accurate mass, even if their 
similarity to 3-MH is different.  
 

 

 
 
Figure 5.1. Chemical structures of trans-2-hexenal and putative products generate from bisulfite addition 
to species A. 
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Materials and methods 
trans-2-hexenal (98%), Sodium bisulfite (40% solution), deuterium oxide and deuterated 
methanol were purchased from Sigma-Aldrich. 1H and 13C NMR spectra of addition products 
between the unsaturated aldehyde and bisulfite were obtained  on a Bruker Avance 300 
spectrometer operating at 400 MHz. 
 
1H and 13C NMR spectroscopy could be used to characterize both starting material and species 
formed during the interaction between the unsaturated aldehyde and bisulfite. The most 
interesting protons to describe structure during bisulfite addition are proton at 9.33 ppm 
(doublet) which is characteristic of the carbonyl group, and protons at 6.05 and 7.25 ppm that 
are characteristics of the double bond between carbons in the starting material. Protons at lower 
ppm are linked to the alkyl chain.  
13C NMR data allowed assignments for species A in its most interesting carbon. 13C at 200 ppm 
is characteristic for the carbonyl group, while carbons at 161 and 134 ppm were assigned to be 
the carbon linked with the double bond.  
 

 
 
Figure 5.2. 1H NMR spectra of trans-2-hexenal. 

CH3 O
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Figure 5.3. 13C NMR spectra of trans-2-hexenal. 

 
The level of bisulfite in grape juice is in the ppm range, whereas trans-2-hexenal is present at 
ppb levels. Nevertheless, the level of free bisulfite in juice available to react with the 
unsaturated aldehyde is variable and dependent on competing reactions. In fact, various species 
can react with bisulfite in grape juice, first of all quinones. Consequently, the bisulfite 
concentration relative to the unsaturated aldehyde may or not be in excess. Therefore the 
analysis of the addition of bisulfite to trans-2-hexenal was investigated both in excess or not of 
bisulfite (table 5.1).  
Formation of 3MH glutathione and cysteine conjugate precursors is a dynamic process, 
influenced by various operations. Among others, prolonged storage time has been identified to 
be crucial. On the other hand hexenal concentration during this time evolves. As a consequence, 
time was evaluated to be an interesting variable for bisulfite and hexenal interaction too (table 
5.1). 

 
Table 5.1. Reaction condition for the sulfonylation of trans-2-hexenal. 

 
The initial addition of the bisolfite to trans-2-hexenal was to the aldehydic function. This 
occourred within the first four hours and represents the only reaction product both in case of 
bisulfite  and usaturated aldehyde excess (entry 1 and 2 table 5.1).  
If enough bisulfite was present to bind every carbonyl group, no starting unsaturated aldehyde 
was present, while if excess in aldehyde was present only two species were detectable: species 

Entry Equiv of NaHSO 3 time (h)

1 0.6 4

2 100 4

3 0.6 24

4 100 24

CH3 O
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A and species B (figure 5.4). In particular, proton at 4.85 ppm was assigned to be the proton 
related to the carbon bounded with the hydroxyl and sulfonate groups, while protons at 5.6 and 
6.05ppm are characteristics of the remaining double bond with an upfield shift (figure 5.4). 
13C NMR data confirmed the formation of the species B as the major product. In particular 13C 
at 84.97 ppm was assigned to be the carbon bounded to the sulfonate group, while carbons at 
123.11 ppm and 138.79 ppm were assigned to the remaninig carbons bounded with double bond 
(figure 5.5). 
 

 
Figure 5.4. 1H NMR spectra of bisulfite addition to trans-2-hexenal, 4h stirrig at room temperature. 
 

 
 
Figure 5.5. 13C NMR spectra of bisulfite addition to trans-2-hexenal, 4h stirrig at room temperature.  
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Although the addition to the carbonyl function was evaluated to be the first occurring during 
interaction between bisulfite and hexenal, other products could be noted. In fact species D was 
produced as minor compound after 4 hours at room temperature even if bisulfite was present as 
0.6 equivalents of the unsaturated aldehyde. Protons at 4.8and 4.5ppm were assigned to be 
linked to the carbons bounded to the sulfonates groups. Moreover, the absence of left protons 
related to the double bound (zone 6 ÷ 7 ppm) confirmed the formation of species D (figure 5.6). 
Moreover, species D could be purified by drying crude reaction mixture to dryness.   

 

 
Figure 5.6. 1H NMR spectra of spectra of bisulfite addition to trans-2-hexenal, 4h stirrig at room 
temperature. 

 
Species D was the major product  deriving from the interaction between trans-2-hexenal and 
bisulfite after 24 hours stirring if the bisulfite was in excess  in comparison to the unsaturated 
aldehyde (entries 3 and 4 table 5.1). 
 
Stating these results, the addition of bisulfite to the double bond of species B to yield the 
disulfonates suggested to take place. Despite this, the absence of the carbonyl group would lead 
to the lack of an acidic carbon which would be necessary for the nucleophilic addition of 
bisulfite. As a result, the fornation of disulfonates would imply that the first bisulfite addition 
would follow a Michael reaction type. 
Since reflux conditions were necessary for Michael addition of bisulfite to αβ-unsaturated 
carbonyl compounds (Kellog et al., 2003), similar conditions were used to increase yield in 
mono-sulfonate in order to investigate the pathway leading to the species D. 
Synthesis was carried out in acetate buffer pH 5.0, 10% v/v methanol, since at that pH molar 
fraction of bisulfite form is maximum. Amount in trans-2-hexenal and bisulfite are reported in 
table 4.2. Crude reaction was stirred for 12 hours under reflux.  
 

CH3 OH

HO3SHO3S
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It is noteworthy that under these conditions only C and D species are produced suggesting that 
these two addition products between bisulfite and hexenal are strictly related.  
Stating that more unsaturated aldehyde was present in comparison to the nucleophilic reagent, 
some starting material is still present. Its presence was shown by both 1H and 13C NMR spectra 
(figures 5.5 and 5.6). 
Presence of both species C and D was suggested by both 1H and 13C NMR spectra(figures 5.7 
and 5.8). In particular, protons at 9.5 ppm and 13C at 205.48 ppm were assigned to species C, 
while protons at 4.66 ppm and carbon at 83 ppm and 53 ppm allowed to identify species D. 
 

 
Figure 5.7. 1H NMR spectrum of bisulfite addition to trans-2-hexenal, 12 h stirrig under reflux. 

 
 

 
Figure 5.8. 13C NMR spectrum of bisulfite addition to trans-2-hexenal, 12 h stirring under reflux. 
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Although less equivalent of bisulfite in comparison to unsaturated aldehyde were used, both 
monosulfonates and disulfonates were obtained. Moreover, ratio between species C and D was 
1:4. It was assumed that once 1-oxohexane-3-sulfonic acid was formed, it competed with trans -
2-hexenal to bind bisulfite to the aldehydic function. 
 
Thanks to the obtained results potential equilibria of trans-2-hexenal/bisulfite was proposed as 
reported in figure 5.9 
 

 
Figure 5.9. Proposed trans-2-hexenal bisulfite equilibria. 

 
The initial addition of bisulfite to αβ-unsatured aldehyde is at the aldehydic function. This 
reaction occours rapidly and species B was seen as the kinetic product. The formation of species 
D (disulfonates) occours much slowly than the first. As species D evolved, a concomitant 
decrease in the level of species B was observed. Within 24 hours, there was a complete loss of 
the proton signals associated with the double bond of species B, and species D was the most 
abundant one. As a result, species D can be regarded as the most stable product in the 
interaction between trans-2-hexenal and bisulfite, if this latter is in excess amount. 
Formation pathway of species D was shown to be related to the species C, formed following  
Michael-type addition reaction. Once formed, spicies C competes with trans-2-hexenal to bind 
bisulfite to the aldehydic function. In fact, 1-hydroxyhexane-1,3-disulfonic acid was formed 
even if less than one equivalent of bisulfite was used during synthesis. 
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5.2. Synthesis and evaluation of  1-hydroxyhexane-1,3-disulfonic acid as 3-
mercaptohexan-1-ol putative precursor  

 

During the evaluation of interactions between trans-2-hexenal and bisulfite, 1-hydroxyhexane-
1,3-disulfonic acid was noted to be the most stable product. In fact, the reaction leding to its 
formation proceeded even if less than one equivalent of bisulfite was used. The evaluation of 
this product as putative 3-mercaptohexan-1-ol was then carried out. 
 
Synthesis of  1-hydroxyhexane-1,3-disulfonic acid  
To 0.098 g of trans-2-hexenal (1 mmol, 1 eq), in 25mL acetate buffer 50 mM, pH 5.0, 10% 
methanol, 0.78 mL NaHSO3 3.84 M (3 mmol, 3 eq) were added. The reaction mixture was then 
stirred for 12 hours under reflux. Crude reaction was then dried dryness leading to the pure 
standard.  
1H NMR spectra (figure 5.10) and 13C NMR spectra (figure 5.11) allowed to identify the 
disulfonate product. HRMS (ESI +) found (MNa+) 282.9934, C6H13NaO7S2, required 283.2829. 
 
  
 

 
 

Figure 5.10. 1H NMR spectrum of 1-hydroxyhexane-1,3-disulfonic acid 

CH3 OH

HO3SHO3S
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Figure 5.11. 13C NMR spectrum of of 1-hydroxyhexane-1,3-disulfonic acid. 
 
Micro-fermentation in presence of 1-hydroxyhexane-1,3-disulfonic acid 
The yeast strains used in this study were purchased from School of Biological Science, 
University of Auckland (NZ). In particular two yeast strains tipically used for alcoholic 
fermentation of New Zealand Sauvignon blanc grape juices were used: ECIII8 and X5. Yeasts 
were cultured for 48 h at 28° C in YPD medium (1% yeast extract, 2% tryptone, 2% glucose) 
before inoculation into experimental microferments. Concentration of 100 µg L-1 and 500 µg L-1 
of disulfonates were used. Ferments were initially conducted at 25°C with 100-rpm shaking in 
250mL Erlenmeyer flasks with 210 mL synthetic grape media (SGM) or sterile Sauvignon 
Blanc grape juice. The grape juice was sterilized by incubation with 200 µL dimethyl 
dicarbonate per litre of grape juice at room temperature overnight to kill all microbes. 
Fermentation progress was monitored daily by weighing the flasks. At the end of alcoholic 
fermentation, the ferments were harvested. The contents of the flask were centrifuged at 6000 x 
g for 10 min to pellet the solids. The supernatant was then submitted to further analysis. 
Fermentation were carried out in duplicate. 
 
3-mercaptohexan-1-ol and 3-mercaptohexyl acetate analysis 
Thiols were extracted and quantified as follows: five mL of 1 mM Na-4-
hydroxymercuribenzoate (pHMB) and 0.5 mL of 2 mM butylated hydroxyanisole (BHA) were 
added to 50mL of wine and then 50 µL of a mixture of the deuterated compounds for 3-MH and 
3-MHA were added (Hebditch et al., 2007) to standardize the quantification. The pH was 
adjusted to 7 and the samples were loaded onto a washed Dowex resin column and passed 
through at a flow rate of one drop every 5 seconds. The column was then washed with 50 mL of 
0.1 M Na-acetate, pH 6, 0.02 mM BHA at a flow rate of one drop every 4 seconds. Any bound 
thios were eluted with 50 mL cysteine elution buffer (0.1 M Na-acetate, 0.02 mM BHA, 400 mg 
cysteine-HCl, adjusted to pH 6) at a flow rate of one drop every 7 seconds. The thiols were 
extracted with 4 and then 2 mL of dichloromethane. Each time, the lower organic phase was 
recovered and then dried with anhydrous Na2SO4, filtered and concentrated under N2 gas flow 
to above 25 µL. The thiols were detected and quantified by injection of 1 µL in splitless mode 
into an Agilent 6890N gas chromatograph (Santa Clara, CA) equipped with a 7683B automatic 

CH3 OH

HO3SHO3S
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liquid sampler, a G2614A autosampler, and a 5973 mass selective detector. The inlet 
temperature was held at 240°C, the column used was an Agilent HP-INNOWax capillary 
column (60 m x 0.250 mm ID, 0.25µm film) using helium (BOC) as carrier gas (112kPa) at an 
initial flow rate of 1mL/min (for 43.60 minutes). The initial oven temperature (50°C for 5 min) 
was ramped to 162°C at a rate of 3°C/min, then raised to 250°C at 70°C/min (held for 10min) 
before dropping down to 50°C. 3-MH and 3-MHA were detected in SIM mode. 
 
Results 
The addition of putative precursor (1-hydroxyhexane-1,3-disulfonic acid) to Sauvignon blanc 
grape juice did not increase the amount in 3-mercaptohexan-1-ol (figure 5.12) and its acetate 
(figure 5.13) in corresponding wines. Same results were obtained for both used yeast strains. 
Moreover, no 3MH or 3MHA was produced during alcoholic fermentation of syntethic grape 
media in the presence of disulfonate as putative precursor. Interaction studies suggested that the 
disulfonates product is the most stable in the addition of bisulfite to trans-2-hexenal, if enough 
bisulfite is present. Despite this, this product cannot be  considered as a putative precursor of 3-
MH and 3-MHA in wine.     
 

 

 
 

Figure 5.12. 3-mercapto-1hexanol content in wines after alcoholic fermentation of Sauvignon blanc grape 
juice containing 0 µgL-1 (CONTROL), 100 µg L-1 and 500 µg L-1 of putative precursor (1-hydroxyhexane-
1,3-disulfonic acid).    
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Figure 5.13. 3-mercaptohexyl acetate content in wines after alcoholic fermentation of Sauvignon blanc 
grape juice containing 0 µg L-1 (CONTROL), 100 µg L-1 and 500 µg L-1 of putative precursor (1-
hydroxyhexane-1,3-disulfonic acid).   
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5.3. Temptative synthesis of  1-oxohexane-3-sulfonic acid 
 

Among addition products between bisulfite and trans-2-hexenal, 1-hydroxyhexane-1,3-
disulfonic acid cannot be considered as a 3-MH precursor in wines. On the other hand, trans-1-
hydroxyhexen-2-ene is the most similar compound to 3-MH. Reduction of this sulfonate 
compound would lead directly to the aromatic compound in  wines. Moreover its formation is a 
Michael type addition which is similar to the formation of other thiol precursors and its 
presence has been noted during interaction studies between bisulfite and the unsatuarated 
aldehyde. 
Sulfonylation of unsaturated carbonyl compounds at room temperature have been studied (Fini 
et al., 2010). The presence of a Brønsted bases (i.e. amine) was evaluated to increase the 
reaction yield. In particular, the employment of triethyl amine as base in large excess in 
comparison to other reactants, together with water/methanol as solvents, was demonstrated to 
maximize the reaction yield (Fini et al., 2010). 
Synthesis of 3-MH conjugates to cysteine and glutathione uses water:acetonitrile 50:50 as 
solvent, while pyridine is used as base. Maximum reaction yield is reached in 48 hours reaction 
without heating (Fedrizzi et al., 2012, Grant-Preece et al., 2010). 
Interaction studies between bisulfite and trans-2-hexenal, suggested that if more than 2 
equivalents of bisulfite are present, double addition product (disulfonates) is the only obtained 
species. On the other hand, in the case of less then two equivalents of bisulfite, Michael 
addition product may be obtained as species. 
With the aim to abtain Michael addition sulfonates species as major product, the following 
synthesis were carried out. To 1 mmol trans-2-hexenal, 1 equivalent of bisulfite was added. 
Solvent used were water 50% acetonitrile or water 10% methanol. In the case of the former 
solvent used, pyridine was used as Brønsted base (2.37 eq). When the latter solvent was used, 
triethylamine (1.2 eq) was used as base. Synthesis conditions are summarized in table 5.2. 
Crude reaction mixture was stirred for 48 hours at room temperature, then dried dryness under 
reduced pressure. Obtained product was redissolved in deuterium oxide and submitted to 1H 
NMR analysis. 
 

 
 
Table 5.2. Reaction conditions for the sulfonylation of trans-2-hexenal. 

 
In both cases, as observed during interaction studies, both  trans-1-hydroxyhexen-2-ene and 1-
hydroxyhexane-1,3-disulfonic acid were obtained as products. Moreover, double addition 
product was the major obtained species. Temptative purification by SiO2 chromatography or by 
anion exchange resins did not allow to gain single species. 
 
  

Solvent Base Equiv of NaHSO 3

water 50% Acetonitrile Triethylamine 1.2 eq 1

water 10% Methanol Pyridine 2.37 eq 1
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Since direct addition of bisulfite to trans-2-hexenal in experimental conditions did not allow to 
obtain pure  trans-1-hydroxyhexen-2-ene, the addition of thiolacetic acid was then evaluated 
(Ilyashenko et al., 2010). 
 
Synthesis of S-(1-oxohexan-3-yl) ethanethioate 
To 5.1 mmol trans-2-hexenal in water 50% acetonitrile, 7.55 mmol thiolacetic acid  (1.48 eq) 
and  12.11 mmol pyridine (2.375 eq) were added. The reaction was stirred for 48 hours at room 
temperature. Crude reaction was then vacuum dried. The residue was redissolved in 50 mL 
dichloromethane and washed first with an equal volume of hydrochloric acid 2 M, then using an 
equal volume of saturated NaHCO3. The organic layer was then dried over sodium sulfate, and 
evaporated under reduced pressure (750 mbar, 45°C) to afford the pure product (4.885 mmol). 
1H and 13C NMR analysis were carried out using deuterated chloroform as solvent (figures 5.14 
and 5.15) 
 

 
Figure 5.14. 1H NMR spectrum of S-(1-oxohexan-3-yl) ethanethioate. 

 

 
Figure 5.15. 13C NMR spectrum of S-(1-oxohexan-3-yl) ethanethioate. 
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Oxidation of acetylthio conjugates have been reported to be successful to obtain corresponding 
sulfonate product (Zhao et al., 2010). With this purpose the following synthesis trial was carried 
out: to S-(1-oxohexan-3-yl) ethanethioate (0.85 g, 4.885 mmol) in acetic acid (20 mL) was 
added 30% H2O2 (6.5 mL). The mixture was stirred overnight at room temperature (25° C).  
The crude reaction mixture was then vacuum dried. The product was redissolved in D2O and 
submitted to 1H and 13C analysis. 
The reaction was responsible for oxidation of the acethyltio aldehyde to the corresponding 
carboxylic acid. The lack of proton signal at 9.6 ppm (figure 5.16) showed the absence of the 
aldehyde. At the same time, 13C spectrum (figure 5.17) showed very low signal at 202 ppm, 
correlated to the aldehyde group, while signal at 197 ppm suggested the presence of carboxylic 
acid. Moreover, the signal at 197 ppm was still present thus showing that the acetylthio group 
was not oxidized. As a result, the synthesis trial gave  3-(acetylsulfanyl)hexanoic acid as the 
only product.  

 
Figure 5.16. 1H NMR spectrum deriving from  S-(1-oxohexan-3-yl) ethanethioate oxidation. 

 
Figure 5.17. 13C NMR spectrum deriving from  S-(1-oxohexan-3-yl) ethanethioate oxidation. 
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Oxidation step applied to the acetyltio conjugate to hexanal determinded the oxidation of 
aldehyde to the corresponding carboxylic acid. On the other hand, addition of bisulfite to 
unsaturated aldehyde showed both addition to the aldehydic function and Michael type reaction 
leading to a mixture of sulfonate products. Purification trials both using silica gel column and 
anion exchange column did not allow to obtain pure products.  
The addition of thioacetic acid in Michael type reactions, may be carried out on unsatured 
esters. Reduction of esters to corresponding alcohol has been reported by various reducing 
agent (Zhao et al., 2010). Among unsaturated esters, ethylhexenoate was chosen for this 
synthesis trial. 
 
Ethyl hexenoate synthesis  
26.76 mmol of freshly distilled butyraldehyde (1.326 g, 1.2 eq) was dissolved in 50 mL 
tetrahydrofuran anhydrous, then 22.3 mmol (1 eq) of triethylphosphonoacetate was added. The 
solution was then stirred and 22.3 mmol (1 eq) and tert-butyl hydroxide was added. The crude 
reaction mixture was then stirred for 3 hours under reflux. Reaction process was followed by 
TLC plates (λ: 254 nm) using hexane:ethylacetate 2:1 as eluent. Once no spot was longer 
visible for butyr aldehyde, an equal amount of hydrochloric acid 2 M was added and the organic 
solvent eliminated under reduced pressure. The aqueous layer was extracted twice with an equal 
volume of ethylacetate. The organic layer was then dried over sodium sulfate, and evaporated 
under reduced pressure to obtain a yellow oil. Ethyl hexenoate was then purified by distillation 
under reduced pressure at 165 °C to reach 18.5 mmol ethylhexenoate (figure 5.18).  

 

 
 
Figure 5.18. 1H NMR spectrum of ethyl hexenoate. 

 
Ethyl 3-(acetylsulfanyl)hexanoate synthesis: to ethyl hexenoate (0.3 g, 2.11 mmol) in 20 mL 
of THF at 0°C were added a mixture of thioacetic acid (0.222 mL, 1.48 eq) and DIPEA 
(diisopropylethylamine) (0.59 mL, 1.61 eq) in 20 mL THF over 20 min. After being stirred at 
0°C for 1 hour, the mixture was allowed to warm at room temperature, then stirred at room 
temperature overnight and evaporated dryness. The residue was redissolved in dichloromethane, 
washed with NaHCO3 (sat.), dried over MgSO4, filtered, evaporated and chromatographed on 
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silica. The product was eluted with an ethyl acetate / hexane gradient (1:14 to 1:4) to afford the 
title product. 1H NMR spectrum was used to identify synthetized compound (figure 5.19). 

 
Figure 5.19. 1H NMR spectrum of 3-(acetylsulfanyl)hexanoate. 
 
 
1-ethoxy-1-oxohexane-3-sulfonic acid temptative synthesis by oxidation of 3-
(acetylsulfanyl)hexanoate 
 
Oxidation of acetylthio conjugate was carried out using H2O2 following two different synthesis 
trial:  

� To ethyl 3-(acetylsulfanyl)hexanoate (0.414 g, 1.9 mmol) in acetic acid (7.8 mL) was 
added 30% H2O2 (3 mL). The mixture was stirred overnight, then dried dryness. (Zhao 
et al., 2010). 

� A peroxyformic acid solution generated by adding 30% H2O2  (2.0mL ) to 10mL 
formic acid (98%) and stirring 0.5 h at 0°C. Then, ethyl 3-(acetylsulfanyl)hexanoate 
(0.436g, 2.0 mmol) in THF (4.0 mL) and added to the peroxyformic acid solution at 
room temperature. The solution was then stirred overnight at room temperature (Chen 
& Xu, 2012).  

The crude reaction mixture, in both cases, was then concentrated under reduced pressure and 
dried dryness. The methods used did not allow to oxidize the alkylthioacetate conjugate (figure 
5.20). 

 

 
 
Figure 5.20. Temptative 3-(acetylsulfanyl)hexanoate oxidation to 1-ethoxy-1-oxohexane-3-sulfonic acid.  
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1-ethoxy-1-oxohexane-3-sulfonic acid synthesis by ethyl hexenoate sulfonylation 
The sulfonylation of activated alkenes can be carry out with direct addition of bisulfite in the 
methanol/water solution at room temperature (Fini et al., 2010). Synthesis of sulfonates 
conjugates to ethyl hexenoate by direct addition of bisulfite to the unsaturated ester was then 
tried. The successful addion and purification was as follows: to ethylhexenoate (1.083 g, 7.63 
mmol, 1 eq) in 50 mL water 10% methanol 2.83 mL NaHSO3 3.84 M (9.156 mmol, 1.2 eq) and 
1.27 mL triethylamine (9.156 mmol, 1.2 eq) were added. The crude reaction mixture was stirred 
overnight under reflux. The mixture was then dried dryness and chromatographed on silica. The 
product was eluted with methanol/dichloromethane/acetic acid (10:90:1  to 20:80:1) to afford 
0.7g of the title compound. HRMS (ESI +) found (M+) 223.0645 C8H15O5S, required 223.064. 
 

 
 
Figure 5.20. Ethyl hexenoate sulfonylation to 1-ethoxy-1-oxohexane-3-sulfonic acid. 

 
 
Temptative synthesis of  1-oxohexane-3-sulfonic acidby reduction of 1-ethoxy-1-oxohexane-
3-sulfonic acid  
 
Reduction of sulfonic conjugate to saturated ester was then tried with two different reducing 
agents: 
In the first case, Diisobutylaluminium hydride (DIBAL H ) was used as reducing agent. 1-
ethoxy-1-oxohexane-3-sulfonic acid (0.344 g, 1.5 mmol) was dissolved in 50 mL anhydrous 
THF at 0°C, then 3 mL Diisobutylaluminium hydride (DIBAL H) 1 M in cyclohexane (3 mmol, 
2 eq) were added dropwise. After being stirred at 0 °C for 1 h, the mixture was allowed to warm 
at room temperature, then stirred at room temperature overnight. An equal volume of 
hydrochloric acid 2 M was added to quench DIBAL and stirred at room temperature for 0.5 h. 
The mixture was then dried dryness and chromatographed on silica by passing 
methanol/dichloromethane/acetic acid (20:80:1 to 50:50:1).  
This reaction did not allow to reduce the ester to aldehyde or to alcohol. Although the reaction 
was carried out overnight under reflux, corresponding sulfonate conjugate to alkyl aldehyde or 
alcohol was not obtained. 
LiAlH 4 was then tested as reducing agent: 2.75 g 1-ethoxy-1-oxohexane-3-sulfonic acid (12.6 
mmol, 1 eq) was dissolved in 50 mL anydrous THF, then 1.43 g (37.8 mmol, 3 eq) LiAlH4 and 
the crude reaction mixture was stirred over night under reflux. An equal volume of hydrochloric 
acid was added and the mixture was stirred at room temperature for 0.5 h, then dried dryness. 
The product was chromatographed on silica by passing methanol/dichloromethane/acetic acid 
(20:80:1 to 50:50:1). Also in the case of this second reducing agent, alcohol or aldehyde were 
not obtained. Reducing trial did not reduce the ester.    
As a result, effort to obtain pure 1-oxohexane-3-sulfonic acid were not successful and the 
evaluation of this species as putative precursor of 3-MH in wines was not possible. 
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Conclusions 
 
Biogenetic pathway of stable sulfonates formation reaction between bisulfite and trans-2-
hexenal, is stricktly related to 1-oxohexane-3-sulfonic acid, whose structure is similar to 3-MH. 
The addition occours in aqueous acidic media, thus suggesting a similar biogenetic pathway in 
grape juice. The initial addition of bisulfite to trans-2-hexenal is at the aldehydic function. This 
reaction occours rapidly and it leads to trans-1-hydroxyhex-2-ene sulfonic acid, whose structure 
is neither similar to 3-MH nor stable. The formation of the stable 1-hydroxyhexane-1,3-
disulfonic acid occours much slowly. Nevertheless, it is not a precursor of 3-MH and 3-MHA in 
wine. 
Although trans-2-hexenal must exceed bisulfite to form 1-oxohexane-3-sulfonic acid, 
disulfonate is the most abundant reaction product. Moreover, the unsaturated aldehyde 
concentration in grape juice is 3 to 4 orders of magnitude lower than bisulfite concentration 
usually employed during harvesting. Despite this, many compounds can react with bisulfite, 
thus it may or not be in excess, thus suggesting that 1-oxohexane-3-sulfonic acid could be 
formed in grape juice as minor product of bisulfite addition to trans-2-hexenal. 
The evaluation of this sulfonate as precursor of 3-MH was not possible since effort to synthetize 
1-oxohexane-3-sulfonic acid did not allow to obtain pure species. New alternative synthesis 
pathway will be tested with the aim to study sulfonates as putative precursors of 3-MH in wine.  
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6. Reduced and total glutathione in wine using different 
Saccharomyces cerevisiae yeast strains 

 
Thiol nucleophilic addition to quinones is the major responsible for thiol related aroma loss in 
wine (Nikolantonaki et al., 2012). The presence of compounds able to reduce such quinone is 
strictly correlated to thiol stability in wine. The tripeptide glutathione(GSH), naturally occurring 
in grape and wine, can be responsible for this protective effect (Ugliano et al., 2011). Moreover, 
its nucleophilicity has been demonstrated to be higher than thiol related aromas (Nikolantonaki 
& Waterhouse, 2012) and its concentration in wine is about 1000 folds higer than volatile 
thiols. 
GSH is constituted by L-cysteine, γ-glutammic acid and glycine and is known to reduce o-
quinones deriving from both enzymatic oxidation  carried out by polyphenoloxidase in juice 
and chemical oxidation in wines (Singleton et al., 1984, Li et al., 2008). During the former 
oxidation process in grape juice, caffeoyl-tartaric acid and coumaric-tartaric acid are the 
phenols mainly involved in the enzymic activity. The nucleophilic addition of GSH to oxidized 
caftaric acid generates the 2-glutathionylcaffeoyl-tartaric acid (Grape Reaction Product GRP) 
(Singleton et al., 1984) thus limiting both the condensation reaction of quinones with phenols 
and the brown compounds formation.  
Glutathione occurs naturally in grape must up to 100 mg L-1 (Chenier et al., 1989), it can be 
present either as reduced or oxidized form. The accumulation of GSH starts at the onset of 
ripening (Adams & Liyanage, 1993, Okuda & Yokotsua, 1999) and its level is influenced by the 
nitrogen uptake in the vine (Chonè et al., 2006).   
During grape crushing, GSH decreases rapidly due to its reactions with ortho-quinones 
(Singleton et al., 1985) and/or oxidation to the disulfide (Cassol & Adams, 1995). Wine making 
practices influence the tripetpide loss. Pressing condition, skin contact (Maggu et al., 2007), and 
oxygen exposure are known to influence the rate of glutathione decrease. In particular, 
reductive treatments (low dissolved O2 during pressing) results in higher concentration in GSH 
(du Toit et al., 2007). 
GSH represents an essential endogenous (Elskens et al., 1991) and exogenous sulphur source 
for the yeast (Grant C M et al., 1996, Kumar et al., 2003). At the beginning of the alcoholic 
fermentation GSH almost disappears and it increases during vinification process due to yeast 
activity (Fracassetti & Tirelli, 2011).  
Cell lysis induces the GSH release in wine affected by the content of the nitrogen assimilable in 
must (Lavigne & Dubourdieu, 2004). 
This tripeptide is about the 1% of the dry weight of S. cerevisiae (Penninckx & Elskens, 1993) 
and the main intracellular sulfur compounds having low molecular weight (Pennickx, 2002). Its 
presence is related to oxidative stresses response through glutathione peroxidase activity and 
detoxification process. 
GSH is synthesized by the consecutive action of L-γ-glutamate-L-cysteine ligase (γ-GCS 
ligase) and L-γ-glutamylcysteine-glycine-γ-ligase (GSH synthetase) (figure 6.1). γ-GCS ligase 
appears to be a highly regulated enzyme (Lee et al 1999). Its activity is feedback-inhibited by 
GSH, preventing over-accumulation of the tripeptide (Penninckx & Elskens, 1993). Unlike to γ-
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GCS ligase, GSH synthetase appeared to be a constituent unregulated enzyme (Inoue et al., 
1998). 

 
 
Figure 6.1. The γ-glutamyl cycle (Penninckx, 2002): (1) γ-glutamylcysteine synthetase; (2) GSH 
synthetase; (3) γ-glutamyltranspeptidase; (4) cysteinylglycine dipeptidase; (5) γ-glutamylcyclotransferase; 
(6) 5-oxoprolinase. 

 
Glutathione is degradated by the activity of γ-glutamyltranspeptidase enzyme (γ-GT) in yeast. 
This enzyme catalyzes either the transfer of the γ-glutamyl residue to amino acids or the 
hydrolytic release of L-glutamate from GSH, different γ-glutamyl compounds, and S-
substituted derivatives (Tate & Meister, 1981).  
Besides methionine, homocysteine and cysteine, S. cerevisiae can metabolize GSH as sulfur 
source. It happens when S. cerevisiae growths with no sulfur source (Elskens et al., 1991). 
In case of nitrogen starvation, more than 90% of the cellular GSH is shifted toward the central 
vacuole of the yeast (Mehdi & Penninckx, 1997) where γ-GT is responsible for its degradation. 
As a consequence, in sulfur and nitrogen starvation only small amounts of GSH can be released 
into the growth medium. 
GSH is involved in cell response to reactive oxygen species (ROS) which may derive from 
yeast metabolism. These molecules are peroxides, including hydrogen peroxide (H2O2) and 
alkylhydroperoxides (ROOH) as well as lipid hydroperoxide (LOOH) which are generated in 
biological membranes from unsaturated fatty acids (Grant et al., 1996, Stephen & Jamieson, 
1996), and superoxide anion.  
Glutathione peroxidase is the key enzyme in the defence mechanism against hydroperoxides. 
Such enzyme catalyzes the reduction of hydrogen peroxide to water and the organic peroxide to 
the corresponding alcohol. The reduction reaction uses the reduced glutathione as equivalent 
source, leading to its oxidation to disulfide. 
Toxic heavy metals (e.i. copper, zinc, silver, lead and cadmium) and xenobiotics can be 
accumulated by yeast (Penninckx, 2000). GSH plays a key role in cellular defence against 
reactive electrophiles such as halogenated aromatics. Many xenobiotics can react either 
spontaneously with the thiol moiety of glutathione to form S-conjugates, or via GSH S-
transferases (GST) enzyme activity. 
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Even if many factors can affect glutathione concentration in wine, the yeast strain seemed have 
a strong effect (Lavigne et al., 2007). However, yeast lysis increases the concentration of amino 
acids, peptides and proteins and stabilize the thiol-related aromas, while yeasts absorb the 
oxygen (Salmon et al., 2000), during both wine ageing and storage. 
Due to the great importance of GSH in preventing thiol aromas loss, the content of this 
compound was assessed (both reduced and oxidized forms) in wine which was produced after 
alcoholic fermentation carried by several S. cerevisiae strains. Moreover, the effect of 
prolonged wine ageing on the lees was deepened on GSH content. 
 
Determination of reduced glutathione 
Reduced glutathione was determined by HPLC-FLUO analysis using pre-column derivatization 
with o-phthalaldehyde (OPA) and 2-aminoethanol (AE) (Park et al., 2000). An Agilent HPLC 
system (1200 series) equipped with an autosampler which permits on-line derivatization was 
used for the analyses. This automatic HPLC system was controlled by Agilent chemstation. 
Using the gradient program shown in table 6.1 derivatives were separated on a Synergi 4u 
Hydro RP 80A column (150 mm x 4.6 mm ID 4 µm, Phenomenex, Torrence, CA) and detected 
by a fluorescence detector where wavelengths for excitation and emission were 340 nm and 450 
nm, respectively. 
 

 
 

Table 6.1. HPLC separation gradient for thiol compounds derivatized with OPA. Eluents acetate buffer 50 
mM pH 5.7 (A) and methanol (B). 
 
N-acetylcysteine was added as internal standard (IS) (5 mg L-1) to wine samples and submitted 
to precolumn derivatization as follows: 4 µL OPA in methanol were withdrawn (2 mg mL-1), 
then 5 µL of sample and 4 µL AE (4 mg mL-1 in borate buffer 20 mM pH 8.0) were withdrawn 
and mixed for 2 minutes. The derivatized sample (total 13 µL) was then injected for analysis. 
Ratio between reduced glutathione (GSH) and IS amount were compared to ratio between 
corresponding peak areas to obtain calibration curve (figure 6.2). It showed linear response for 
GSH concentration up to 40 mg L-1. 
 

time flow 

 (min) (mLmin
-1

)

0.0 0.45 90.0 10

2.0 0.45 85.0 15

6.0 0.45 72.0 28

7.0 0.45 68.0 32

9.0 0.45 64.0 36

10.0 0.45 56.0 44

12.0 0.45 52.0 48

19.0 0.45 50.0 50

21.0 0.45 40.0 60

26.0 0.45 0.0 100

A % B %
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Figure 6.2. Calibration curve of reduced glutathione GSH dissolved in acetate buffer 5 mM, pH 5.40. 
 
Determination of total glutathione 
The total glutathione (tGSH) was calculated as  the sum of GSH and oxidized glutathione 
(GSSG) which was reduced to the thiol form before the derivatization as described by 
Kusmierek & Bald (2008). Aliquots of standard solutions and samples (0.5 mL) were added 
with 0.25 mL of sodium borohydride (NaBH4) 6 M dissolved in dimethyl sulfoxide and 0.12 
mL HCl 3 M. The mixture was stirred for 2 minutes and then 0.12 mL HCl 3 M in order to 
decompose the excess of NaBH4. N-acetylcysteine 500 mg L-1 as internal standard was added (5 
µL) and pre-column derivatization was performed as previously reported.  
 
Micro-fermentation of grape juice 
S. cerevisiae yeast strains (ISE 128, ISE 77, ISE 24, ISE117, ISE81, BK1) from the collection 
of the CRA-Centro di Ricerca per l’Enologia (Asti, Italy) were first propagated in YPD medium 
(1% yeast extract, 2% tryptone, 2% glucose), then inoculated at 106 UFC mL-1 in a white grape 
must (20.2 Bx) (Arneis cv.) previously sterilized by incubation with 200 µL L -1 (v/v) dimethyl 
dicarbonate per liter of grape juice at room temperature overnight to kill all microbes, with no 
addition of nitrogen source. Ferments were conducted at 20 °C in 1 L Erlenmeyer flasks with 
750 mL sterile grape juice. The cell growth was monitored at 600 nm and the fermentation 
process was monitored by HPLC analysis of the medium using a refractometric detector. At the 
end of alcoholic fermentation, the ferments were harvested. One milliliter of wine was 
centrifuged at 6000 x g for 10 min to pellet the solids. The supernatant was then submitted to 
further analysis. Fermentation were carried out in duplicate. Yeast lees were resuspended 
weekly for three months. The determination of reduced and total GSH was carried out in wines 
at the end of alcoholic fermentation and after three months of ageing on lees.    
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Results and discussion 
The alcoholic fermentation was completed in 15 days. Similar growth curves were obtained for 
the yeast strains used. Only the strain ISE 128 showed a different pattern (figure 6.3)     
 

 
 
Figure 6.3. Growth curves durng alcoholic fermentation of grape juice (Arneis cv) carried out by different 
S. cerevisiae yeast strains. 
 
GSH concentration in juice before alcoholic fermentation was lower than 1 mg L-1.  The 
formation of 2-S-glutathionyl caffeoyl tartaric acid (GRP), when glutathione reacts with certain 
quinones, during extraction of the must has been clearly described (Singleton et al., 1985). 
Moreover, GSH could also disappear from must by oxidation into disulfide (Cassol & Adams, 
1995). Thus GSH content at the end of alcoholic fermentation, could be related to the yeast.  
The content of readily assimilable nitrogen could represent a limiting parameter on the S. 
cerevisiae GSH biosynthesis. The readily assimilable nitrogen content in the must used for the 
trial was 295  mg L-1. As a result, the GSH content in wine was higher than in musts. These data 
are in agreement with Lavigne & Dubourdieu (2004) which suggested 200 mg L-1 of readily 
assimilable nitrogen is needed to allow the release of GSH by the yeast. 
In particular, the employement of various yeast strains during laboratory-scale alcoholic 
fermentation led to different reduced glutathione content (figure 6.3). At the end of alcoholic 
fermentation, glutathione was mainly in its reduced form (GSH). In fact, the amount of GSH 
and tGSH (figure 6.4) was similar.   
The employment of several yeast strains affected tGSH content too (figure 6.4). It is noteworthy 
that ISE 128 yeast strain showed the lowest GSH and tGSH release. During the three months of 
ageing on lees the total GSH content did not increase (figure 6.4): neither reduced nor oxidized 
glutathione were released during aging on lees. This suggests that production and liberation of 
this tripeptide is clearly related to living cells.   
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Figure 6.4. Reduced glutathione (GSH) in wines after alcoholic fermentation carried out by different S. 
cerevisiae yeast strains. 
 

 
 
Figure 6.4. Total glutathione after alcoholic fermentation and after three months ageing on lees. 
 

Conclusions 
The fermentative activity of yeast strain influences reduced and total glutathione content in 
wine. During ageing on lees neither reduced nor oxidized glutathione is released, thus 
suggesting that production and liberation of this tripeptide in is related to living cells. 
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33rd World Congress of Vine and Wine, 20-25 June 2010. Tblisi, Georgia 
 
Valorisation and characterisation of native Piedmont grape variety: the Uvalino 
 
Borsa D., Guaschino R., Bertolone E., Asproudi A., Piano F. 
CRA- Centro di Ricerca per l’Enologia 
Via Pietro Micca 35, Asti, Italia 
 
The recovery of old native varieties  can play an important role to preserve the biodiversity of  
wine area, allowing to obtain useful information  about  genetic, viticultural and enological 
knowledge. In this work, Uvalino, a Piedmont indigenous  cv,  was characterized by  the  
analysis  of grape  and wine. The analysis of varietal  glycosides aromatic compounds had  
shown  a prevalence of  benzenoids, particularly  benzyl  alcohol  and 2–phenilethanol; 
moreover a relevant content in eugenol was observed. Within monoterpenic compounds,  
geraniol and its derivates were prevalent. Ocimenols, actinidols and Riesling acetal were the  
main molecules obtained by the chemical idrolysis reaction on the grape extract. These latter  
compounds,  together with esters, charaterized also the wine aromatic profile. The  malvidin  
and peonidin were prevalent monomeric anthocyanins in the Uvalino grapes. Moreover the  
content in resveratrol, a phenolic compound known for its remarkable antioxidant properties,  
was high both in grapes and wines. 
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ItPA, Italian Proteomics Association Congresso Nazionale 2010. 9-12 Giugno 2010. Firenze, 
Italy 
 
Interaction between proteins of plant origin and wine components: molecular-based 
choice of protein fining agents for organoleptic improvement 

Tiziana Mariarita Granatoa, Federico Pianoa, Antonella Nasib, Pasquale Ferrantib, Stefania 
Iamettia, Francesco Bonomia 
a Section of Biochemistry, DISMA, University of Milan, Milan, (Italy) 
b  Department of Food Science, University of Naples " Federico II",  Portici (Italy). 
 
Gelatine, casein, egg albumin, and, more recently, proteins of from plant sources are commonly 
used in winemaking as fining agents to remove particles responsible for turbidity, to improve 
stability, and to control browning, over-oxidation, and bitterness during ageing. The formation 
of covalent and non-covalent interactions between the protein matrix and wine polyphenolics is 
the basis of the flocculation and of the consequent clarification which results in an overall 
improvement of wine quality parameters. In this work we studied the molecular basis of the 
interactions between plant proteins (soy, gluten, lentil and pea proteins) and polyphenolic 
compounds responsible for organoleptic as well as stability properties of wines, by using mass 
spectrometry methodologies (LC-ESI MS, MALDI TOF MS). Protein surface hydrophobicity 
was investigated in wine-like model system by spectrofluorimetric determination of changes in 
the binding properties of 1,8-anilinonaphthalenesulfonate (ANS), used as extrinsic fluorescent 
probe. Hydrophobic interactions between phenolic compounds and protein finings were 
evaluated by the study of competition of phenolic compounds with the ANS probe for the same 
binding sites. Structural characterization of phenolic compounds (polymer chain length and 
chemical structure and composition of individual chains), as well as their interactions with the 
plant proteins, essential for the definition of protein binding affinity, was performed by means 
of mass spectrometry techniques. Differences among interactions between polyphenols with the 
various protein matrices have been related with the quality parameters of the resulting wines. 
 
 
  



Studies on the occurrence of thiol related aromas in wine                                                    Federico Piano 
________________________________________________________________________________________________ 

129 

 

Congresso Internazionale sulla Viticoltura di Montagna. 12/14 Maggio 2010. Castiglione di 
Sicilia (Catania) Italy 
  
Sensory profile and chemical composition of “Albarola” and “Bosco” white wines of 
“Cinque Terre” – vintage 2007 
M.C. Cravero(1), F. Bonello(1), F.Piano(1),  L. Chiusano(1), D. Borsa(1), C. Tsolakis(1), P. Lale 
Demoz(2). 
(1) CRA-ENO Centro di Ricerca per l’Enologia, Via Pietro Micca, 35 – 14100 Asti (AT) Italy  
(2) Institut Agricole Régional, Regione La Rochère, 1/A – 11100 Aosta (AO) Italy  
 
The DOC white wines of the “Parco Nazionale delle Cinque Terre”,  a region whose charm is 
well known, are blends produced with the following three cultivars  “Albarola”, “Bosco” and 
“Vermentino”. Bosco, unlike the others, is mainly cultivated near the sea. This study was part 
of a project of valorisation of this “terroir”, (LABTER, MIPAAF). Its aim was to compare 
Albarola and Bosco wines obtained in purity with grapes grown at two different altitudes (430 
m and 240 m a.s.l.) in the 2007 vintage. Wine physical-chemical parameters, colour intensity 
and hue, volatile and phenolic compounds were analysed.  A trained panel described the 
sensory profiles of the wines and evaluated their acceptability. The wines of the both varieties 
obtained with grapes grown at 430 m had a lower content of alcohol, a higher acidity and a 
lower pH. These parameters were also pointed out by the sensory analyses. Bosco wine 
obtained with grapes grown at 430 m had a lower colour intensity and resulted less agreeable. A 
higher content of isoamyl acetate (exotic fruit), 2-phenylethanol, 2-phenylethylacetate (flower) 
was detected in the Albarola wine produced with grapes grown at the lowest altitude. A higher 
sugar content and a lower acidity were pointed out in the Bosco grapes cultivated nearest the 
sea. This wine was also characterized by a greater harmony and body but no relevant 
differences were observed in the aromatic profile. The Albarola wine, obtained from vineyard 
grown at 240 m, showed a more intense aroma and was more acceptable. 
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Macrowine 2010 Third International Symposium on macromolecules and secondary 
metabolites of grapevine and wines. 16/18 June 2010. Torino, Italy 
 
Uvalino wine: chemical and sensory profile 
 
Borsa D., Piano F., Bonello F., Chiusano L., Cravero MC  
CRA-ENO Centro di Ricerca per l’Enologia 
Via Pietro Micca 35, Asti, Italia 
 
Uvalino cv is a Piedmont native variety only recent admitted as licensed Italian grapevine. The 
wines needs two years of ageing. In the present work two experimental wines from different 
vintages (2004 and 2006) were evaluated in 2009. The chemical data were compared with the 
sensory profiles. 
Uvalino wines showed a high alcohol content, a low acidity and a high pH. Moreover, they 
presented a remarkable content of phenolic compounds. The concentration of anthocyanins was 
particularly low, whereas the content of tannins, responsible for intense astringency, was high. 
Flavan-3-ols content was consistent during wine aging. In spite of low concentration of 
anthocyanins, the perceived intensity of color was high: this proved that the molecules giving 
the color to wines reached a high degree of stability. This color stability was also observed in 
the oldest wine demonstrating that co-pigmentation reactions took place. 
The characterization of varietal and fermentative aromatic compounds showed a high content of 
benzenoids, particularly benzyl alcohol. Their presence, together with C13-norisoprenoid 
compounds, gave to the wines important sensory features correlated to the sensory analysis. 
The evaluation of the wine sensory profile showed that fermentative aromatic compounds 
phenylethanol and 2-phenylethyl acetate, responsible for fruity and floral notes of wines, were 
most correlated with the sensory descriptors identified. 
The chemical and sensory analysis showed how different molecules present in wines can 
contribute in a complex way to the formation of the sensory profile of a product.  
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Oeno 2011 9éme edition du Symposium International d’Oenologie. 15/17 June 2011. 
Bordeaux, France 
 
Uvalino wine: chemical and sensory profile 
 
Borsa D., Bertolone E., Guaschino R., Piano F.  
CRA- Centro di Ricerca per l’Enologia 
Via Pietro Micca 35, Asti, Italia 
 
Numerous factors, such as exposition, soil composition, climatic conditions and growing-
technique, influence the evolution of grapevine maturity in different locations. Moreover, also 
in the same vineyard and at a given date of harvest, the physiological characteristics of berries 
result related to the position of the cluster and/or the single berry, leading to wide heterogeneity. 
The wine making of heterogeneous grapes can modify the wine composition, altering its 
quality. Unripe berries from red grapes lead to low extractability of anthocyanins and 
proanthocyanidins from skins, while the galloylated proanthocyanidins from seeds result more 
easily extracted, contributing to increase bitterness and astringency. The distribution of berries, 
according to the concentration of total soluble solids at a given date, follows the trend of a 
Gaussian function: then a large number of unripe berries are harvested. 
The aim of this work was to evaluate the differences of aromatic and polyphenolic patterns of 
berries harvested at the same date but characterized by different sugar concentrations. 
Three Piedmont varieties were analysed: an aromatic (cv. Moscato Bianco), a white neutral (cv. 
Arneis) and a red neutral (cv. Barbera) grapevines. For each cultivar two different location were 
considered and analysed in two vintages (2008 and 2009). The berries of each cultivar were 
harvested and separated according to their percentage distribution in salt solutions. Barbera was 
characterized by high heterogeneity of berry density, independently from location and year; 
instead Moscato and Arneis showed a different degree of berries distribution according to the 
localization, independently from the year of harvesting. Different aromatic and polyphenolic 
patterns were observed for the cultivars, both for the comparison between groups of flotation 
and between groups and mass; these differences increased when the data were expressed per kg 
of grape than per number of berries, suggesting that the berries characterized by higher content 
of total soluble solids showed a slight dehydration.   
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Enoforum 2011, 3-5 May 2011, (Arezzo, Italy) 
   
Effetto del trattamento con proteine vegetali sulle componenti aromatiche e tanniche del 
vino 
 
Tiziana Mariarita Granatoa, Federico Pianoa, Antonella Nasib, Pasquale Ferrantib, Stefania 
Iamettia, Francesco Bonomia 
a Section of Biochemistry, DISMA, University of Milan, Milan, (Italy) 
b  Department of Food Science, University of Naples " Federico II",  Portici (Italy). 
 
La chiarifica mediante collaggio proteico consente di rimuovere dal vino le sostanze di natura 
colloidale responsabili della torbidità, migliorandone stabilità e caratteristiche organolettiche, 
controllando l’imbrunimento e la polimerizzazione ossidativa di composti polifenolici e 
riducendo la sensazione di astringenza. Le proteine animali sono state per anni le più utilizzate, 
ma le restrizioni normative rispetto ai coadiuvanti enologici di origine animale, rendono 
interessante l’impiego di proteine vegetali. Nel presente lavoro sono state studiate le interazioni 
non covalenti tra molecole idrofobiche responsabili di note organolettiche nei vini, quali 
polifenoli e molecole odorose, e chiarificanti proteici di origine vegetale da leguminose (soia, 
pisello e lenticchia) e da cereali (frumento). L’obiettivo della sperimentazione è comprendere il 
meccanismo di interazione di tali proteine per consentirne un impiego più selettivo e razionale, 
verificando l’ipotetica esistenza di interazioni preferenziali che possano essere sfruttate per 
rimuovere e/o trattenere nel vino classi specifiche di composti. L’indagine è partita da soluzioni 
idroalcoliche modello ed è stata estesa a vini bianchi e rossi. I composti coinvolti 
nell’interazione ed i complessi generati sono stati caratterizzati combinando tecniche separative 
e di spettrometria di massa. Nella fase successiva dello studio è stata valutata l’incidenza del 
trattamento di chiarifica sulle componenti sromatiche ed aromatiche di vini bianchi e rossi.   
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Enoforum 2011, 3-5 May 2011, (Arezzo, Italy) 
   
Influenza della pacciamatura sui precursori aromatici di uve Arneis 
 
Asproudi A., Piano F., Borsa D. 
CRA-ENO Centro di Ricerca per l’Enologia 
Via Pietro Micca 35, Asti, Italia 
 
La gestione del vigneto influenza notevolmente la qualità dell’uva e del vino e molte sono le 
tecniche agronomiche utilizzate a tale scopo. 
Recentemente è stato introdotto l’uso di teli riflettentie coperture del suolo che possono 
incrementare la luce solare nella zona dei frutti quindi migliorandone la maturazione e avere 
effetti positivi sulla qualità dei vini. 
In questo lavoro si è valutata l’influenza della pacciamatura con telo bianco sul profilo dei 
precursori aromatici di uve Langhe Arneis DOC, in tre stadi di maturzione (preinvaiatura, 
invaiatura e raccolta) con tre ripetizioi biologiche.  
Non sono state evidenziate differenze in nessuno stadio di maturazione sull’accumulo di solidi 
solubili, pH e acidità totale tra le due tesi. Relativamente ai composti aromatici glicosilati si 
osserva un ritardo iniziale nell’accumulo dei terpeni nella tesi pacciamata, ma alla raccolta le 
concentrazioni sono simili. Il geraniolo glicoside tende ad aumentare durante la maturazione ed 
è sempre un po’ più elevato nella tesi non pacciamata. L’α-terpineolo sembra diminuire mentre 
il linalolo è rilevabile solo alla raccolta in entrambe le tesi, tuttavia nessuna differenza 
significativa è stata evidenziata dall’analisi statistica effettuata con XLSTAT. 
Per i benzenoidi glicosilati si osserva un andamento simile a quanto già descritto per i terpeni 
mentre i norisoprenoidi aumentano in maturazione in entrambe le tesi e mostrano valori un po’ 
più elevati all’invaiatura e alla raccolta nella tesi pacciamata. 
Si ritiene pertanto che l’uso di teli per pacciamatura non abbia comportato alcuna perdita di 
qualità delle uve Arneis, né dal punto di vista tecnologico, né dal punto di vista dei precursori 
d’aroma, non si sono però riscontrati miglioramenti evidenti.   
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Various aroma volatiles decrease during wine aging. These compounds include acetate esters, 
ethyl esters, terpenes, and others such as volatile thiols; losses in volatile components may be 
due to oxidation or other chemical reactions. For example ester concentration may change 
because of hydrolysis and esterification. 
The typical aroma of the sweet-dessert wine Moscato d’Asti D.O.C.G. is due to low olfactory 
threshold terpenes and fermentation volatile compounds. The vulnerability of Muscat wine is 
also well-known problem imputed to the loss of their characteristic aroma during storage in 
bottle. Previous researches have revealed that both high acidity and conservation temperature as 
well as  light exposure can accelerate terpenoid’s chemical degradation and generally can 
shorten wine’s “shelf-life”. Terpenes as geraniol and nerol can interconvert and then form α-
terpineol while linalool, the most important terpene for the Muscat aroma may be replaced by a 
α-terpineol too. 
The oxidative spoilage of white young wines, from an aromatic point of view, is also a 
phenomenon that leads to a loss of floral and fruity aromas with subsequently formation of 
atypical notes associated with the deterioration of the product. 
Currently in the market, sweet-dessert aromatic wines like Moscato d’asti D.O.C.G. contain 
high levels of free sulfur dioxide, even if under the EU law limit. As a result of the sulfur 
dioxide disadvantages on human healt, the trend is to limit this use. 
Moreover, Roussis and co-workers (2007) found that sulphur dioxide gives limited protection to 
wine volatile after bottling while caffeic acid and glutathione or their mixture, natural 
constituents of wine, slow the decrease of several esters and terpenes during white wine storage. 
Consequntly, the aim of this work was to examine the effect that glutathione and caffeic acid 
have on the characteristics of a particular and vulnerable wine as Moscato d’Asti D.O.C.G.  
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The chemical compounds belonging to the stilbenes have recently received a particular attention 
due to the role they play in plant physiology (phytoalexins) and for their anti-oxidant properties. 
The Uvalino is a red-berry grape variety typically growth in Piedmont, Italy. This cultivar is 
characterized by its ability to synthesise large amounts of resveratrol glucoside (trans piceid). 
This explains its high resistance to Botrytis cinerea. The aim of the work is the evaluation of 
stylbenes and other phenolics during ripening and drying of Uvalino grapes. After 
accumulation, values for trans-piceatannol and trans-pterostylbene remain constant during the 
whole ripening period, while the piceide isomers continue to be synthesized until harvest. At the 
harvest time, the most abundant stylbene appears to be piceide (trans and cis) and trans-
pterostylbene, while trans-piceatannol is the lowest. The amount of total stylbenes found is 
remarkably higher than other Piedmontese, Italian and international wines. Due to the 
highlevels of resveratrol also in the Uvalino wines, the study of the different stylbenes found in 
grapes, both in their glucoside and free forms, could be interesting for nutraceutic purposes, or 
alternatively, be used as varietal marker. The determination of the stylbenes during ripening, 
suggests that their synthesis begin at veraison, as for anthocyanins, but the stylbenes 
accumulation in berries happens suddenly. The high content in stylbenes and the low quantity 
of anthocyanins are a varietal character. The amount and evolution of stylbenes and other 
phenolic compounds have been monitored during drying in a drying room and over –ripening 
on the plant. As expected, the berries drying process appears to be more intense in grapes 
placed in a drying room, while all compounds are reduced when drying directly on the plant. 
When drying takes place under optimal temperature and humidity conditions, as in the drying 
room, the values of the main phenolic indices are higher than that found at harvest. On the other 
hand, on the plant, the reductions are far more important, with the exception of stylbenes and 
hydroy-cynnamic acids.  
  



Studies on the occurrence of thiol related aromas in wine                                                    Federico Piano 
________________________________________________________________________________________________ 

136 

 

35th World Congress of Vine and Wine,  18-22 June 2012. Izmir, Turkey 
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Grape tasting gives a global characterization of the product with the evaluation of flavour and 
texture parameters. It is more and more used by professionals as an instrument to decide the 
harvest time and to allow the winemakers to adapt the vinification techniques. Nevertheless, the 
definition of the sensory profile of grapes can be also important to characterize a cultivar. In 
this experience the grape sensory profile of grapes can be also important to characterize a 
cultivar. In this experience the grape sensory profiles of some important Italian varieties have 
been realized: the white and aromatic cv. Moscato Bianco di Canelli, the white cv. Arneis and 
Manzoni Bianco, the red cv. Barbera, Croatina and Nebbiolo. At the technological maturity the 
berries were collected in different locations in north-western Itay (Piedmont) on the same 
vineyards in two vintages – 2008 and 2009- with different climatic conditions. They were 
calibrated according to their density estimated by flotation in salt solutions. Only the largest 
classes were chosen for the sensory analysis. The grape sensory profile was realized by a 
trained panel of CRA-ENO (9 assessors) using a method set up from previous experiences. A 
common vocabulary and a tasting sheet were developed using table grapes. The final 
descriptors of grape were twenty-seven and allowed a characterization of berry, skin, pulp and 
seeds. Their intensity (except for 4 qualitative descriptors) was evaluated in duplicate on an 
unstructured scale. The largest classes were not the same in 2008 and 2009, but they were 
representative of the grape condition at the moment of the technological maturity. The results 
showed that the sensory profile of berries can discriminate and characterize a cultivar despite 
the vintage and the origin of grapes. Only in the case of the “Moscato bianco di Canelli” the 
sensory profile was influenced by the different location of the vineyards. 


