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1. ABSTRACT 

In eukaryotes the genetic information is stored in chromatin, a highly structured 

nucleoprotein complex that mediates the coordinated regulation of gene expression. The 

basic unit of chromatin is the nucleosome, which consists of 147bp of DNA wound around 

a histone octamer core containing two copies of the histones H2A, H2B, H3 and H4. 

Changes in chromatin structure, which do not involve the nucleotide sequence, can 

translate into transient or heritable adjustments in gene expression. Various mechanisms 

modulate chromatin states: among them a pivotal role is played by covalent histone post-

translational modifications (hPTMs), for which the repertoires of combinations and 

positions are extremely varied. In addition to hPTM patterns, chromatin is characterized by 

the local enrichment of a distinct set of histone variants; binding proteins, including 

various ATP-dependent chromatin remodelling complexes; DNA methylation and 

differential nucleosome density. Together, these components contribute to the 

establishment of specific “chromatin landscapes”, defining the functional state of the 

genome in that territory. 

Chromatin immunoprecipitation (ChIP) and Mass Spectrometry (MS) are 

complementary strategies to investigate the epigenetic components of chromatin. ChIP 

followed by deep sequencing (ChIP-Seq) allows genome-wide profiling of hPTMs and 

binders at individual genes and regulatory regions, up to a resolution of inividual 

nucleosomes. However, ChIP does not inform about the protein portion of chromatin, 

knowledge instead offered by MS-based proteomics. At the level of individual histones, 

MS enables to detect virtually all hPTMs in an unambiguous and unbiased fashion and to 

reveal interplays between them. Yet, MS analysis on bulk chromatin preparations limits the 

inspection of PTMs to a global view, with no information about their patterning in distinct 

functional regions. Nowadays, a global investigation of synergies between histone PTMs, 
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variants, and chromatin-associated proteins in a locus-specific manner remains a very 

attractive unachieved goal. 

During the course of my PhD, I contributed in this direction developing and 

optimizing a global, quantitative proteomic strategy, named ChroP (Chromatin 

Proteomics), for the analysis of the protein component of distinct chromatin regions, 

enriched by modified and preparative version of ChIP. I developed two ChroP protocols, 

which differ in the step of chromatin IP:  the Native-ChIP (N-ChIP) was used to dissect 

histone PTM patterns whereas the Crosslinking ChIP (X-ChIP) was used in combination 

with SILAC-based interactomics to characterize proteins interacting with the domains of 

interest. I used the antibodies against tri-methylated Lysine 9 and Lysine 4 on histone H3 

(H3K9me3 and H3K4me3) to enrich functionally distinct and non-overlapping chromatin 

regions from HeLa nuclei. High-resolution MS of the fractionated nucleosomes enabled a 

dissection of the domain-specific composition in terms of histone modifications, variants 

and non-histonic proteins, which we refer to as the modificome and interactome.  

First of all, I observed the expected combinatorial enrichment of silent 

modifications in H3K9me3, and of active ones in H3K4me3. The accordance of my results 

with previous studies allows to validate the robustness of the approach and, with this 

confidence, I could investigate novel PTMs. Remarkably, ChroP exhibited a unique and 

peculiar strength in revealing PTMs associations not only at the intra-molecular level 

within H3, but also across the different core histones, within the same nucleosome. 

The SILAC-based investigation of co-associated proteins revealed a number of 

histone variants and multi-protein complexes differentially enriched in the two functional 

territories. Some of them confirmed several previously described interactions, thereby 

validating our method. In addition, I identified numerous novel interactors, suggesting 

potential novel roles and regulating chromatin pathways for these proteins. A 

representative case was the variant H2A.X with the WICH chromatin-remodeling complex, 

accumulating in the H3K9me3 regions. I thus propose a higher local density model for 
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H2A.X in heterochromatin and provide evidence that this accumulation, together with the 

recruitment of WICH, represents an additional level of modulation of the DNA damage 

response (DDR) in this chromatin compartment. 

 The ChroP approach is relatively easy to setup, given the limited changes made to 

the conventional N- and X- ChIP protocols. Hence, ChroP emerges as a potential useful 

tool to dissect chromatin composition and understand how all the distinct protein 

components can act in a concerted manner to enforce a specific chromatin status.  
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2. INTRODUCTION 

2.1  Chromatin, epigenetics and histone post-translational modifications 

Chromatin is a highly ordered nucleoprotein complex that mediates both the DNA 

compaction into the eukaryotic nucleus and the regulation of gene expression. At the 

structural level, the basic unit of chromatin is the nucleosome, consisting of 147bp of DNA 

wound around an octamer core containing one histone H3-H4 tetramer and two histone 

H2A-H2B dimers (1, 2). Functionally, chromatin is organized into two distinct regions: 

euchromatin is less condensed and generally permissive for transcription, whereas 

heterochromatin is highly condensed and transcriptionally silent. Heterochromatin is 

classified as being either constitutive or facultative. In constitutive heterochromatin, the 

DNA remains condensed throughout the cell cycle. In facultative heterochromatin however 

the DNA can loose its condensed form and become transcriptionally active in response to 

distinct signals (3-5). 

Changes in chromatin structure that do not involve the nucleotide sequence can 

translate into heritable adjustments of gene expression and thus constitute an “epigenetic 

memory” system of the cell (6-10). Epigenetic inheritance can be explained through a step-

wise model proposing that “epigenator, initiator and maintainer” factors operate 

sequentially and synergistically to enforce and maintain specific functional states of the 

genome (11). The “epigenator”, a signal emanating from the external environment, is 

translated by an “initiator” into a specific chromatin/DNA functional state, which is 

sustained by a number of different “maintainer” factors. These include the methylation of 

cytosine in CpG islands (12, 13), covalent post-translational modifications of histones 

(hPTMs) and, in light of more recent studies, the activities of non-coding RNAs (ncRNA) 

(14, 15).  
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Among the epigenetic maintainers listed, histone PTMs are largely recognized as 

key regulators of chromatin structure and function. hPTMs include acetylation, 

ubiquitination and sumoylation of Lysines; different methylation degrees of Arginines and 

Lysines; phosphorylation of Serines, Threonines and Tyrosines; ADP-ribosylation of 

Arginines, Glutamic and Aspartic acids; deimination (or citrullination) of Arginine; Proline 

isomerization (Figure 1) (16-18), and in addition some less-characterized modifications. 

 

Figure 1. Histone post-translational modifications. The nucleosome core particle, with 

the N-terminal tail of core histone and the annotation of sites of post-translational 

modification. Numbers along the DNA indicate each complete helical turn on either side of 

the dyad axis. Sites marked by green arrows are susceptible to cutting by trypsin in intact 

nucleosomes. Most important modifications are Acetyl Lysine (acK); methyl Lysine 

(meK); methyl arginine (meR); phosphoryl serine (PS); ubiquitinated lysine (uK). Adapted 

from Bennister A.J. and Kouzarides T. Cell Res 2011. 

 

                                 

 

The histone code hypothesis proposes that histone post-translational modifications act 

either singly or in combination to control distinct downstream pathways or processes on 

chromatin, ultimately defining the functional status of the underling DNA (19). The 

“letters” of this code are the modifications themselves, which are placed and removed by 

enzymes known as “writers” and “erasers”, respectively. hPTMs exert their function on 

chromatin through two distinct mechanisms. In the first, higher orders of chromatin 

structure are altered via changes in inter-nucleosomal or histone-DNA interactions, thus 
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controlling the accessibility of DNA-binding proteins such as transcription factors (cis 

mechanisms). Alternatively, hPTMs can generate binding platforms for the recruitment of 

effector proteins containing specialized domains (trans mechanisms): the so-called 

“readers” of the code (Figure 2). The “readers” translate the information encoded by the 

modification patterns into specific biological outcomes (20-23). 

 

Figure 2. Domains binding modified histones. Representation of some proteins with 

specific domains able to specifically bind modified histones. Adapted from Kouzarides T. Cell 

2007. 

 

 

                

 

In addition to hPTM patterns, chromatin is characterized by the local enrichment of a 

distinct set of histone variants; binding proteins, including various ATP-dependent 

chromatin remodelling complexes; and differential nucleosome density and position. 

Together, these components contribute to the establishment of specific “chromatin 

landscapes”, defining the functional state of the genome in that territory (Figure 3) (24). 
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Figure 3. The distinct components contributing to define the functional state of 

chromatin domain. Adapted from Margueron R. and Reinberg D. Nat Rev Genet 2010.  

 
 

 
 

 

Antibodies directed against specific hPTMs are traditionally used to study the language of 

histone modification in various assays. These include: immunofluorescence (IF) analyses 

of modifications at the single cell level; immunoblotting (WB), which allows profiling of 

PTMs in different samples and/or conditions; as well as chromatin immunoprecipitation 

(ChIP), which can be coupled to either PCR, DNA microarray (ChIP-on-chip) or deep 

sequencing (ChIP-Seq) for description of their local enrichments. The last two methods 

allow the genome-wide mapping of modifications, with a resolution of a few nucleosomes 

(25-27). Antibody-based assays are hampered by limitations in their specificity and 

efficiency when used to reveal the combinatorial aspect of the code. In fact, modifications 

can occur on adjacent or closely spaced residues within the same histone, making an 

epitope-masking effect more likely. To address this issue, a number of strategies have been 

developed to assess accurately the specificity of antibodies used in chromatin research. 

Peach et al. combine immunoprecipitation (IP) of native HPLC-purified H3 with mass 

spectrometry to detect PTMs co-enriched by a certain antibody on the same polypeptide. In 
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addition, Fuchs et al. have developed a peptide-array assay, based on a comprehensive 

library of modified peptides (28, 29).  

Mass spectrometry (MS) has emerged as a promising complementary analytical 

strategy to identify known and novel PTMs on proteins, as well as for the relative 

quantitation and detection of interactions between them (30). The recent advent of high-

resolution mass spectrometry has increased the relevance of MS-based hPTM analysis by 

enabling the discrimination of near-isobaric modifications, either singly or in 

combinations, on very long polypeptides and even on intact histones (31-39). Finally, the 

use of different labeling strategies, both chemical and metabolic, has enabled the accurate 

quantitation of modifications, both in a relative and absolute manner (40).  

The “epigenomics” and “chromatomics” fields share a common goal in studying 

chromatin structure, composition and features: to gain a comprehensive view, from 

genome to proteome, of the epigenetic phenomena underlying the establishment and 

inheritance of specific expression patterns (41, 42).  

2.2 Mass Spectrometry analysis and MS based-proteomics  

The steps of a typical proteomic experiment are shown in Figure 4. Briefly, after 

reducing the complexity of a protein preparation by electrophoretic speparation the 

proteins are subjected to enzymatic digestion, tipically using trypsin as protease. After MS 

analysis, by which the MS informations at the peptide level are obtained, the specific 

proteins are identified by software-assisted database searching, with which it is also 

possible to identify and localize PTMs within the peptide. 
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Figure 4. Proteomics experiment overview. A protein mixture is prepared from a 

biological sample and separated by SDS–PAGE. The generated peptides are separated by 

HPLC. Peptides are then ionized then analyzed by different mass spectrometers. Finally, 

the peptide-sequencing data that are obtained from the mass spectra are searched against 

protein databases using one of a number of database-searching programs.  

 

 

 

Generally, the classical proteomic workflow for proteins identification is also applicable to 

the analysis of PTMs, although the analysis is inherently more difficult than simple 

protein/peptide identification for the following reasons: 

1. PTMs of proteins are typically of low abundance. Hence high sensitivity of detection 

is required to identify the PTM and to assign its position within the peptide sequence. 

 2. PTMs are frequently labile: sometimes is difficult to maintain the peptide in its 

modified state during sample preparation and subsequent ionization in the mass 

spectrometer, since the covalent bond between the PTM and amino acid side chain in the 

peptide is typically labile.  

Before describing in detail the different MS approaches applied to in-depth investigation of 

histones and their PTMs, as well as non-histonic chromatin proteins, it is first necessary to 

provide an overview of the basic principles of mass spectrometry (43, 44). 
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2.2.1 Basic concepts of Mass Spectrometry 

The mass spectrometer is a multistage instrument that measure the mass-to-charge 

ratio (m/z) of freely moving gas-phase ions in electric and/or magnetic fields. The 

elemental composition of the peptide can then be derived from his m/z ratio, whereas 

direct information about amino acid sequence cannot be deduced from m/z alone. To this 

aim, the desired peptide ion (precursor) needs first to be isolated and then fragmented, by a 

second cycle of MS, into its constituent amino acids. The fragments can be revealed in the 

MS/MS spectrum, providing unambiguous identification of the peptide sequence. 

Importantly, MS/MS enables the precise localization of modifications present on specific 

residues (45). A mass spectrometer consists of three main parts (Figure 5): 

1. an ion source: it converts the peptides into gas-phase ions. 

2. a mass analyzer: it separates the ions according to their mass/charge ratio (m/z).  

3. a detector: it records the number of ions at each m/z value. 

 

Figure 5. Schematic representation of the basic components of a mass spectrometer. 
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1. Ion Source and ionization of peptides 

Proteins and peptides are polar, nonvolatile species that require an ionization 

method to transfer them into the gas phase, without extensive degradation. One of the most 

important developments in instrumentation has been the introduction of “soft-ionization” 

technology, which permits proteins and peptides to be analyzed by MS. Two techniques 

paved the way for the modern bench-top MS proteomics: Matrix-assisted laser desorption 

ionization (MALDI) (46, 47), and Electrospray ionization (ESI) (48). In a MALDI source, 

peptides are co-crystallized with a solid-phase matrix onto a metal plate. The matrix 

typically consists of a small organic molecule such as α-cyano-4-hydroxycinnamic acid or 

dihydrobenzoic acid (DHB). When laser pulses irradiate the resulting solid mixture, this 

absorbs the laser energy and transfers it to the acidified peptides. At the same time, the 

rapid heating causes desorption of both matrix and newly formed [M+H]+ protonated 

peptides into the gas phase. Currently, MALDI ionization can support different types of 

mass analyzers, but the most common combination for proteomics studies is the 

MALDI/time-of-flight (TOF) setup (49). In recent mass analyzers, ions generated in the 

source are accelerated to a fixed amount of kinetic energy and travel down a flight tube. 

The small ions have a higher velocity and are recorded by a detector before the larger ones. 

The m/z value displayed in a TOF spectrum is proportional to the time, for a given analyte, 

required to reach the detector. Unlike MALDI, the ESI source produces ions from the 

solution. Peptides exist as ions in solution because they contain functional groups whose 

ionization is controlled by the pH of the solution. At acidic pH values, protonation of the 

amines will confer overall net positive charge to peptides and proteins, while at basic pH, 

de-protonation of the amines and carboxyl groups confers a more negative overall charge. 

Fragmentation of peptide ions is favored by positive charges on the peptide ions. For these 

reasons, ESI of peptides is most commonly done in the positive ion mode to analyze acidic 

samples.  
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Briefly, the ESI process consists of the formation of an electrically charged spray 

(Figure 6), driven by high voltage (2–6 kV), which then drives the desolvation of 

peptide/protein-solvent droplets. This process is aided by the high temperature provided by 

a heated capillary and, in some cases, by sheath gas flow at the mass spectrometer inlet. 

There are different theoretical models to describe ESI ion formation, however the 

important features are: formation of multiply charged species; sensitivity to analyte 

concentration and flow rate.  

 

Figure 6. The process of electrospary ionization (ESI). The charged liquid exits the tip 

and forms a cone shape (known as a Taylor cone). After, the droplets burst away from each 

other into a fine spray. 

                                                           
  

Tipically, liquid chromatography (LC) instruments are usually coupled “on-line” with the 

ESI source to achieve continuous or high throughput analysis (Figure 7). After ionization, 

the peptide ions pass from the source into the mass analyzer where the ions are then 

separated in according to their mass/charge ratio.  

 

Figure 7. Liquid chromatography directly coupled to the mass spectrometry (nanoLC-

MS). After separation on a reverse-phase C18 nano-column, eluting peptides are directly 

electro-sprayed into the mass spectrometer. 
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2. Mass Analyzer (and tandem mass analysis) 

The mass analyzer is the heart of the instrument. Several types of tandem mass 

analyzers are commonly paired with ESI sources for proteomics work. These are: time of 

flight (TOF), quadrupole (Q), ion trap, orbitrap (OT) and Fourier transform-ion cyclotron 

resonance (FT-ICR). Although these mass analyzers differ in the details of how they work, 

they all perform the same type of analysis. From a mixture of peptide ions generated by the 

ion source, the tandem MS analyzers select a single m/z species. Collision-induced 

dissociation (CID) has been the most widely used MS/MS technique in proteomics 

research (50). Briefly, gas-phase peptide/protein cations are internally heated by multiple 

collisions with rare gas atoms. This leads to breakage of the C-N bond in the peptide 

backbone, resulting in a series of characteristic ions (b- and y- fragment ions). As a result 

of the slow-heating energetic aspect of this method, internal fragmentation and neutral-

losses of water, ammonia and labile PTMs are common. This often results in limited 

sequence information for large peptides (>15 amino acids) and intact proteins.  

This limitation has been addressed by the development of novel methods for ion-

electron reactions to carry out peptide fragmentation: electron capture dissociation (ECD) 

and electron transfer dissociation (ETD) enable sequencing of larger peptides, providing an 

option to investigate combinatorial features of hPTMs (51-54). Both ECD and ETD are 

based on the transfer of electrons to the multi-protonated longer peptides (>2 kDa). In 

ECD, the electrons are generated from a heated filament, whereas in ETD they are 

transferred by gas-phase radical ions. Despite the similarity between the two techniques, 

ECD can be used only in combination with Fourier transform ion cyclotron resonance (FT-

ICR) instruments, whereas ETD can be implemented in low-cost, high-capacity ion traps 

or new generation Orbitrap mass spectrometers and it has thus a wider applicability. The 

information contained in this tandem or MS-MS spectrum permits the sequence of the 

peptide to be deduced. Moreover, the nature and sequence location of peptide modification 

also can be established from an MS-MS spectrum (Figure 8). 
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Figure 8. Example of collision-induced dissociation (CID) MS/MS spectra. 

Representative MS/MS spectra using CID fragmentation. The b-ion and y-ion series allow 

to define the sequence of (9-17) peptide of histone H3 and to localize specifically the di-

methylation on K9 residue.   

 

                                                       

3. Detector 

A detector, as “Channeltron” or “Electron multiplier tubes (EMT)”, is placed at the 

end of MS to record the number of ions at each m/z value. “Channeltron” is a dynode 

coated with semiconductor material. The ions that strike the inner walls cause the emission 

of electrons, which are recorded in a counting system. “EMT” consists in a series of 

dynodes that cause the same effect of “Channeltron”, but it is able to amplify the signal of 

electric current until it is quantifiable. The final output is represented by data.RAW file. 

 

Modern mass spectrometers provide high-quality data in combination with high 

MS/MS sequencing speed. Moreover, the mass spectrometric resolution (a dimensionless 

number calculated by dividing the width of a peak by its mass) and the “dynamic range” 

(the ratio of the strongest signal to the weakest signal that can still be detected in a 

spectrum) represent other two key parameters. Nowadays, most mass spectrometers are so-
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called hybrid instruments because they consist of a combination of two or more m/z 

separation devices of different types. Usually, they are built either as a combination of a 

quadruple mass filter and a time-of-flight analyzer, or as a combination of a linear ion trap 

and an Orbitrap analyzer. Both types of hybrid instruments offer sequencing speeds of 

several MS/MS spectra per second. Orbitrap analyzers are based on frequency detection 

and offer routine resolution of more than 50000 with matching mass accuracy. The 

dynamic ranges in single spectra are in the range of 1000 to 10000 for both types of 

instrument. A very recent linear ion trap Orbitrap instrument (LTQ-Orbitrap Velos) allows 

cycles of one MS followed by 20 MS/MS events in only 2.5 s. It is also routinely capable 

of recording MS/MS spectra at high resolution either by CID or by “higher-energy 

collisional dissociation” (HCD) methods (55).  

In the most common well-established analytical workflow, peptides are resolved 

over time via Reversed-Phase liquid chromatography (RP-LC) prior to MS analysis to 

achieve continuous or high throughput analysis. Tipically, peptide samples are separated 

based on their hydrophobicity using a long capillary column with a typical flow of ~200 

nL/min (nanoflow). The column is packed with C-18 resin to capture the majority of the 

peptides that are loaded in acidified aqueous solution. A gradient of organic solvent 

(acetonitrile, ACN, usually) gradually elute the peptides, which are injected and analyzed 

by the mass spectrometers. For instance, Reverse Phase High-pressure Liquid 

Chromatography (RP-HPLC) has been widely adopted in proteomics to resolve very 

complex peptide mixtures prior to MS analysis (LC-MS), due to its high resolution, 

efficiency, reproducibility, and mobile phase compatibility with ESI. A further 

development of this technology is nano-ESI (56, 57), in which the flow rates are lowered 

to a nanoliter-per-minute regime to improve the method’s sensitivity. Nano-ESI is 

compatible with capillary RP-HPLC columns (58) which allow users to perform higher 

sensitivity analyses than has been possible with standard analytical methods (59).  

http://en.wikipedia.org/wiki/M/z
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2.2.2 Different MS approaches for hPTMs analysis: from “Bottom Up” to “Top Down”, via 

“Middle Down” 

The “Bottom Up” approach is highly popular in proteomics studies for 

investigations of protein PTMs (30). It is a “peptide-centric” strategy, based on the 

enzymatic digestion of proteins into peptides prior to MS analysis (Figure 9). The “Bottom 

Up” approach has been demonstrated to detect known and novel modifications on histones, 

combining its sensitivity in detecting peptide m/z in full MS with its efficient MS/MS 

fragmentation via CID (31). The most common protease used in bottom up proteomics 

studies is trypsin, which cleaves at the C-terminal end of Arginine and Lysine residues 

(60). However, trypsin digestion is not ideal for the analysis of histones that are highly rich 

in these basic residues (expecially at the N-terminal regions, where the modifications 

accumulate), because the peptides produced are too short to be efficiently retained and 

separated in RP-HPLC and detected by mass spectrometer (61). Arg-C is a good 

alternative because of its unique specificity for the C-terminal region of Arginines, which 

produces peptides of optimal length for LC-MS, which are longer and easy-to-ionize (61, 

62). In addition, Arg-C peptides are compatible for sequencing, as the C-terminal Arginine 

retains a positive charge, leading to a well-defined y-ion series (63-65). Alternatively, 

histones can be chemically derivatized using either propionic anhydride [(C3H5O)2O] or 

deuterated acetic anhydride (D6-acetic anhydride [(CD3CO)2O]), prior to trypsin 

digestion: these compounds alkylate Lysine residues preventing tryptic cleavages and 

resulting in an Arg-C-like digestion. The advantage of this approach is that it is possible to 

obtain the previously described benefits of an Arg-C-like digestion while using trypsin as 

the protease, which is well suited to in-gel digestion methods (66). The in-gel approach, 

commonly performed by SDS-PAGE, facilitates separation at the level of individual 

histone molecules (67). 
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An additional effect of derivatization is that it labels unmodified and mono-methylated 

Lysines with a deuterated acetyl moiety (showing a delta mass of 45.0294 Da) but does not 

react with di-methyl, tri-methyl and acetyl Lysines. This effect can be exploited to 

distinguish between isobaric modification-bearing peptides. 

A limitation of the “Bottom Up” approach emerges when analyzing histone variants 

or combinations of histone modifications. In fact, the short tryptic and Arg-C-like peptides 

do not permit detection of simultaneously occurring, long-distance PTMs. Offline 

chromatography, to separate histone variants or differently modified versions of the same 

histone molecule prior to “Bottom Up” analysis, is one solution to this problem. For 

instance, the three mammalian variants of histone H3 (H3.1, H3.2 and H3.3) have the vast 

majority of their peptides in common after enzymatic digestion but the full-length proteins 

can be separated prior to digestion and LC-MS analysis using tap-tag purifications and/or 

RP-HPLC (68, 69). Alternatively, intact proteins or larger histone domains can be analyzed 

by mass spectrometry with the so-called “Top Down” and “Middle Down” strategies 

(Figure 9) (70, 71). Histones are basic proteins and, in the acidic conditions used in MS, 

they are typically highly charged and capable of producing multiply charged fragment ions 

in MS/MS. Consequently, non-ergodic fragmentation methods (72) such as ETD and ECD 

on high-resolution instruments (Orbitrap, FT-ICR) are feasible in “Top Down” analysis 

(53, 54). “Top Down” enables the user to distinguish between co-occurring histone 

variants and differently modified isoforms, with information about the relative abundances, 

thus providing a so-called “bird’s eye view” on the complete panel of histone isoforms 

present in a specific functional state (73). The approach however lacks the sensitivity of 

“Bottom Up” and, furthermore, the analysis of the spectra obtained is less straightforward. 

These two restraints have limited a broad application of this method so far, even though 

recent advances in online separation of intact proteins by ultra high-pressure (UPLC) liquid 

chromatography have made the approach more feasible. Further improvements in 
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implementations are therefore still required to make “Top Down” analysis of intact 

histones, with variants and modified forms, a more routine approach (74, 75).  

The “Middle Down” approach is an optimal compromise between “Top Down” and 

“Bottom Up” approaches, when the mass spectrometer is hyphenated to online liquid 

chromatography. In “Middle Down” approach, large histone peptides (>2 kDa) are 

analyzed upon the enzymatic digestion of histones with endoproteinases that have 

specificities to less frequently-occurring amino acids within histone sequences, such as 

Glu-C or Asp-N.  In fact, since mammalian H3 contains the first Glutamic acid at position 

50, Glu-C produces an N-terminal peptide (1-50) of 6 kDa that contains the majority of 

PTMs decorating this histone, as well as being suitable for MS analysis and sequencing by 

ETD MS/MS fragmentation. Similarly, Asp-N is useful for “Middle Down” analysis of 

histone H4, because it cleaves at the N-terminal side of Aspartic acid, present in position 

24. Again, the resulting peptide (1-24) includes all modifications annotated for the H4 tail 

(32). The “Middle Down” approach therefore allows a more precise detection of PTM 

combinations on particular histone regions, especially when combined with pre-

fractionation of the enzymatic digestion products. For instance, a combination of weak-

cation exchange with hydrophilic interaction liquid chromatography (WCX-HILIC) prior 

to high-resolution MS, is a powerful analytical setup to resolve co-occurring and/or (near-) 

isobaric modified histone species (76), separating longer peptides first by their charge state 

and then by hydrophilicity. Based on this, Young et al. proposed a high-throughput 

approach using a gradient of decreasing organic solvent and decreasing pH on a 

commercial WCX-HILIC resin to separate and analyze by a “Middle Down” approach 

differentially modified histones domains (77) (See also paragraph 2.5). 

In summary, an inconvenience of the “Top Down” and “Middle Down” approach is 

the need for specialized software to summarize the complex combinatorial networks 

existing among hPTMs. The main problems concern the complexity of the MS/MS spectra 

generated, either from intact histones or from large peptides, and the increased incidence of 
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internal peptide sequence fragments that further complicate the sequence annotation and 

consequently the PTM site-specific attribution in the MS/MS spectra (78-80). 

Improvements in computational approaches should enable more detailed comprehension 

and visualization of the inter-reliant relationships between unique modified forms. 

 

Figure 9. Schematic representation of “peptide-centric” versus “protein-centric” MS 

analytical strategies. 

 

 

 

2.2.3 Data analysis and bioinformatics tools for hPTM analysis by MS 

Efficient analysis of very large amounts of raw data is crucial in MS-based 

proteomics. Several MS/MS database search programs have been developed to interpret 

the large amount of data generated by modern mass spectrometers and their basic 

functionality is illustrated in Figure 10. Typically protein identification algorithms work as 

follows: they take the fragment ion spectrum of a peptide as input and score it against 

theoretical fragmentation patterns constructed for peptides from the searched database. The 

pool of candidate peptides is restricted based on user-specified criteria such as mass 

tolerance, proteolytic enzyme constraint and types of post-translational modification 

allowed. The output from the program is a list of fragment ions spectra matched to peptide 

sequences, ranked according to the search score. The search score measures the degree of 
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similarity between the experimental spectrum and the theoretical spectrum, and therefore 

serves as the primary discriminating parameter for separating correct from incorrect 

identifications. 

 

Figure 10. Peptide identification by MS/MS database searching. Adapted from  Nesvizhskii 

A.I. et al. Nature Methods 2007. 

 

                   
 

Of particular relevance for the analysis of the modifications that occur on histones are tools 

that enable identification of several different PTMs, often co-existing on the same peptide. 

Identification of PTM-bearing peptides in sequence databases, however, is more 

challenging than that of unmodified forms because the database search engine needs to 

take into account the diversity of modified forms that might exist. There are at present a 

number of computational methods available for the automated annotation of PTMs in 

peptides (Table 1). These methods analyze the MS and MS/MS data, taking into account 

the delta-mass values, and sometimes also neutral losses and other diagnostic ions for the 

PTM of interest (81). 



30 
 

Table 1. Software and search algorithms used to study hPTMs 

                           

The computational methods used to identify PTMs fall into two categories (31). In the first, 

the user selects a set of PTMs of interest prior to employ the bioinformatics tool for peptide 

and protein identification. This option is applied during the sequence database search, 

when PTMs are assigned to the relevant amino acids of a candidate peptide sequence. To 

limit the complexity required to search a very large set of possible modified forms, a 

restriction is usually imposed on the number of modifications that may be included in this 

search. 

In the second approach, which is unbiased, PTMs are identified through a “blind” 

database search. In the initial step, a basic database search is performed, excluding the 

specification of PTMs of interest, but often specifying recurring/standard modifications 

such as oxidized Methionine, for example. The specification of this relatively common 

modification avoids false-positive PTM assignments later on. Once a set of peptides is 

identified in an MS/MS-based proteomics experiment the idea is that, since the PTM leads 

to a mass increment or deficit of the modified peptide relative to the form without the 

modification present, all unassigned MS/MS spectra can be searched to find those which 

might match a post-translationally modified form. The software therefore inspects 
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unassigned spectra, using information based on a list of known modifications such as delta-

mass values and lists of predicted and observed peptide masses. 

Computational methods that search for post-translational modifications are however 

associated with higher rates of false-positive identifications. The combinatorial issues 

associated with assigning the masses of included modifications can dramatically increase 

the number of peptide and protein candidates in the output. In this regard though, 

technological improvements that enable higher mass accuracies when generating the MS 

and/or MS/MS spectra have helped to address this issue (82). 

High-resolution mass analyzers can resolve and identify peptides bearing 

modifications with similar delta-mass values as well as multiply charged ions in MS/MS 

spectra. Recent data analysis software therefore considers product ions with multiple 

charges either before or during database searching.  

There are some constraints currently beyond the reach of current algorithms. The 

first is that some modifications may arise from in vitro artefacts rather than in vivo 

enzymatic activity. A well known example is the di-glycine (GG) tag which occurs on 

Lysine, and is used to determine ubiquitination sites: the elemental composition of this tag 

is identical to that of iodoacetamine, commonly used for the alkylation of Cysteines in 

standard shotgun MS proteomics workflows (83). 

Another issue is that most of the available methods are sub-optimal for the analysis 

of MS/MS spectra deriving from long peptide sequences and intact proteins, which may 

result from a “Top Down” or “Middle Down” proteomics approach. As described in the 

recent review by Sidoli et al. (31), the complexity of these spectra require more specialised 

search algorithms, which can efficiently determine monoisoptic peaks, recognize ion 

charge states and deconvolute multiply-charged ion signals into singly-charged ion mass 

values. Currently, only a few software packages are available for this purpose.
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2.3 Quantitation strategies in MS-based proteomics  

In the last few years, following the spread of mass spectrometry-based techniques, 

it became evident that qualitative identification of proteins is not sufficient for comparative 

analysis, which often require quantitative data. The direct comparison of the amount of a 

given protein across different samples is not often accurate because the intensity of MS and 

MS/MS peaks is poorly reproducible between different LC-MS runs. This is due to the 

variation in experimental conditions and the intrinsic variability of the selection of the 

precursor peptides in data dependent acquisition (DDA). Regarding the first factor, 

minimal variations in the LC system (e.g., buffer composition) or in sample preparation 

(e.g., salt or detergent content) can influence the retention time of the peptides and also the 

intensity and quality of the spectra. Minimal variations of the chromatographic run can 

affect the choice of the precursor ion to be fragmented, thus causing the acquisition of a 

MS/MS spectrum in one LC-MS run, but not in another. This phenomenon, called 

“undersampling”, limits the possibility to profile a sample completely and principally 

affects low abundance peptides in complex mixtures.  

Various strategies have been developed in MS-based proteomics for accurate 

protein quantitation, from single proteins up to global proteome profiling. These 

quantification strategies can be broadly divided in two groups. Label-free (LF) strategies 

use no labels, thus they can be used to compare the amount of proteins in different LC-MS 

runs without requiring particular sample handlings. Conversely, strategies based on isotope 

labeling require a specific preparation of the sample prior to LC-MS analysis. The rationale 

behind stable isotope labeling is to create a mass shift that distinguishes peptides deriving 

from different samples within a single MS analysis, thus avoiding run-to-run variations. 

Generally, a labeled and an unlabeled sample are mixed to obtain a snapshot of 

concentration of proteins associated with different biological conditions. The signals 

deriving from the two samples can be distinguished due to a known mass shift between 
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labeled and unlabeled peptides. The ratios of the intensity of heavy and light signals allow 

the accurate quantification of the relative amounts of peptides and proteins originally 

present in the two samples. The isotope can be introduced in the peptides at different 

stages, depending on the labeling approach. It is possible distinguish two main strategies: 

metabolic labeling and chemical labeling (Figure 11). 

 

Figure 11. Metabolic and chemical labeling methods. Adapted from Ong S.E. and Mann M. 

MCP 2002. 

 
 

                     

 

In the metabolic labeling, the isotope is added to growing cells as a metabolic precursor, to 

be incorporated uniformly in the proteome during protein biosynthesis. Major advantages 

of metabolic labeling techniques are that they can be applied to in vivo studies and they are 

compatible with complex purification procedures, since the samples can be mixed at the 

beginning of the workflow (even before the cell lysis) and handled together, thus 

minimizing the introduction of processing errors. Conversely, a clear drawback of these 

techniques is that it can be easily applied only to cultured cells. 

 Peptides can be chemically modified with an isotope labeled molecule that 

covalently binds the amino acids side chains or the peptide terminus. The labeling can be 

performed either before or after the proteolysis. The most common methods are isotope 
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coded affinity tagging (ICAT) (84) and isobaric tags for relative and absolute quantitation 

(iTRAQ) (85). In ICAT, two samples to be compared are labeled with Cysteine-specific 

reagents containing an affinity biotin tag for purification and a differentially isotope-

labeled chain displaying a known mass difference. Heavy- and light-labeled proteins are 

mixed and digested. Then, the tagged peptides are purified and analyzed by LC-MS. In 

iTRAQ technique, a reagent that reacts with the N-terminus and Lysine side-chains of 

peptides is used. Advantage of iTRAQ is represented by possibility of multiplexing, using 

up to eight different tags. This is of particular relevance to biological experiments in which 

multiple conditions or multiple time-points are being evaluated such as signalling 

networks. Overall, the quantification based on chemical derivatization can be applied to 

different types of sample (such as ex-vivo tissue and clinical biopsies) and is not limited to 

cultured cells, as metabolic labeling is. However, discrepancies in sample processing 

discrepancies can lead to the introduction of errors with these methods and side reactions 

can produce unwanted products. Moreover, since chemical labeling is often sequence-

dependent, a complete incorporation of the isotope can be difficult to achieve, with 

consequent risk of biased quantification. One example of metabolic labeling strategy is 

represented by SILAC (stable isotope labeling with amino acids in cell culture, see next 

paragraph).  

2.3.1 Stable isotope labeling with amino acids in cell culture (SILAC) 

SILAC is simple, powerful and accurate procedure that can be used as a 

quantitative proteomic approach in any cell culture system (86). Since mammalian cells 

cannot synthesize a number of amino acid, therefore these “essential” amino acids must be 

supplied in cell culture medium as free amino acids for the medium to support cell growth. 

Isotopically labeled analogs of these amino acids, called “heavy” form, can be synthesized 

and are available commercially. Isotopes are variants of atoms of a particular chemical 

element, which have different numbers of neutrons. The number of protons and neutrons in 

http://en.wikipedia.org/wiki/Isobaric_tag_for_relative_and_absolute_quantitation
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the nucleus, known as the mass number, is not the same for two isotopes of any element. 

For example, carbon-12, carbon-13 and carbon-14 are three isotopes of the element carbon 

with mass numbers 12, 13 and 14 respectively. If the “heavy” isotope of an amino acid is 

supplied instead of the natural (or “light” form) amino acid, it will be incorporated into 

each newly synthesized protein chain. After a certain number of cell doubling, this 

particular amino acid will be replaced by its isotopically labeled analog. Hence, the SILAC 

strategy requires that two populations of cells are grown in two separate medium 

formulations, the “light” medium containing the amino acid with the natural isotope 

abundance and the “heavy” medium containing non-radioactive stable isotope chose 

(Figure 12). When light and heavy cell populations are mixed, they remain distinguishable 

by MS, and protein abundances are determined from the relative MS signal intensities (86).  

 

Figure 12. Overview of standard SILAC experiment. The SILAC experiment consists in 

two distinct phases: (a) an adaptation and (b) experiment phase. (a) Cell are grown in 

“light” and “heavy” media until fully incorporation (red star) (b) The two cell populations 

are mixed, protein are purified, digested and analyzed by MS. Adapted from Ong SE, Mann M. 

MCP 2002. 
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The possibility offered by this strategy to combine two cell populations from distinct 

media at a very early stage of the MS-proteomics workflow, significantly reduces the 

effects of experimental variations in sample preparation, thus leading to very accurate 

quantitation, which only takes into account changes caused by the different functional 

states.  

The first SILAC experiments used 2H3-Leu; the current protocols instead use 

labeled Arginine and Lysine (e.g. 13C6-Lysine and 13C6-Arginine), which offer the 

advantage to produce, upon digestion with Trypsin, most peptides containing a labeled 

amino acid. Typically, a cell line is cultured for at least 5 rounds of divisions in labeling 

medium, to achieve extensive proteins labeling (>95%): this procedure does not interfere 

with protein activity. Labeled and unlabeled cell lines or extracts are then mixed and 

analyzed together by LC-MS. SILAC has become a very popular technique and has been 

applied to the study of protein interactions (87, 88) and signaling networks (89, 90) but 

also in the investigation of post-translational modifications.  

2.4 Quantitative MS-based approaches in epigenetic research 

Different quantification strategies have been employed to the measurement of 

histone modification, variants and turnover. Chemical derivatization as a means to modify 

cleavable residues has been widely applied in epigenetic studies for their technical 

advantages, previously described (63, 64). In addition, the alkylation of Lysines with the 

deuterated acetic anhydride can also be used to quantitatively estimate the acetylation 

status of histones. For instance, distinct acetylated forms of H4 in Drosophila 

melanogaster and their developmental changes have been profiled using D6-acetic 

anhydride prior digestion and MS-analysis (61). Similarly, propionylation of histones was 

used to observe the effect of G9a/Glp1 methyltransferase knockdown on global histone 

modifications (39). 
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Other chemical derivatization strategies, such as TMT (tandem mass tag) and 

iTRAQ, have only been employed on chromatin for protein-level profiling, with focus on 

PTM level changes (91-93). 

In vivo metabolic labeling with isotope-encoded amino acids has emerged as the 

most powerful approach to accurately quantify changes of histones and their PTMs. In the 

last years, SILAC has gained wide popularity in proteomics and, more recently, also in 

chromatin studies (35, 94-96). SILAC is preferentially used to profile protein levels; 

however it has also been successfully applied to identify and quantify hPTMs, and in 

particular to profile modification dynamics during the cell cycle: Bonenfant et al showed 

increasing phosphorylation on histone H3 and H4 and decreasing methylation of 

H3K27/K36 during mitosis (97) while Pesavento et al. proved that H4K20 methylation 

degree was tightly linked to cell cycle progression (99). A SILAC-indipendent approach is 

used by Scharf et al. to demonstrate that H4K20 mono-methyaltion facilitates chromatin 

maturation ((98, 99). Using a SILAC MS-based experiment, Jung et al. showed that 

Polycomb repressive complex Suz-12 promotes the establishment of H3K27 di/tri-

methylation in mouse embryonic stem cells, with a functional interplay between H3K27 

tri-methylation and H3K27 acetylation, functioning as molecular switch in this system 

(100). Our group also used a modified version of the SILAC approach to determine breast 

cancer-specific histone PTM signatures. In this study, we focused on human breast cancer 

and comprehensively analyzed PTMs on histone H3 and H4 from four cancer cell lines 

(MCF7, MDA-MB231, MDA-MB453 and T-47D), in comparison with normal epithelial 

breast cells (MCF10). The SILAC-MS based approach enabled to quantitatively track the 

modification changes in cancer cells, as compared to their normal counterpart. With the 

accuracy of this strategy, it was possible to identify PTMs specifically associated to 

distinct type of breast cancer cell line with different properties (aggressiveness/prognosis). 

Among them some were already known as modifications linked to cancer, such as a 



38 
 

decrease of H4K20 tri-methylation, whereas some emerged as novel markers of breast 

cancer, such as decreased levels of H3K9 tri-methylation (101). 

SILAC labeling in a pulse experiments were used to probe the turnover of both 

hPTMs and histone variants: Zee et al. showed that H2A.Z has higher turnover rates than 

canonical H2A variants and, more generally, that acetylated histone peptides appear to 

turn-over much faster than methylated ones (102). 

Heavy-methyl SILAC (hmSILAC) is a variation of SILAC used for high 

confidence identification of protein methylation at Lysines and Arginines. In heavy methyl 

SILAC labeling, 13CD3-methionine is added to Methionine-depleted media; upon uptake in 

the cell, the “heavy” Methionine is converted into S-adenosyl Methionine (SAM), the sole 

donor of methyl groups in enzymatic methylation reaction. As such, histone and all non-

histonic proteins that contain methylations are enzymatically heavy-methyl labeled. Such 

isotopically methylated peptides are then identified with high confidence in MS, based on 

the presence of the specific ‘light and heavy peak pair’, markers of methylation, and 

subsequently quantified. Ong et al. first used this strategy to identify unambiguously 

methylated sites in vivo on both histones and non-histonic proteins (103). Afterwards, 

hmSILAC was applied to study the dynamic turnover at H3K9 tri-methylation in 

pericentric chromatin (103, 104). More recently, the same approach was applied to profile 

the dynamic turnover of histone Lysine methylation, revealing that mono-, di-, and tri-

methylated residues generally have progressively slower rates of formation. Furthermore, 

methylations associated with active genes were found to have faster rates than 

methylations associated with silent genes (105). 

A combination of both standard and heavy-methyl SILAC in pulse-chase 

experiments, carried out on synchronized cells, enabled Sweet et al. to track the 

progression of H3K79 methylations throughout the cell cycle (106). In addition, it was 

observed that H3K79 mono-methylations from newly-synthesized histone H3 proteins 
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have the same turnover rates as those in pre-existing histones, with no differences among 

the three histone H3 variants (106). 

Label-free or ion intensity-based quantitation strategies have been applied in a few 

studies to profile differently modified, but isobaric histone isoforms, which have a special 

feature to present identical molecular weight/mass (isobars) but different PTMs 

configurations, so they are undistinguishable in full MS and can be hardly separated by 

standard LC. Since in MS/MS such isobaric species are distinguishable based on the 

positional selectivity of ion fragmentation, a relative quantitation is possible in a label-free 

MS/MS-based manner, using the relative ratios of their fragment ions. “Top Down” intact 

histone protein analyses were successfully used to quantify different modified forms of 

H3.2 and H4, in a label-free approach (107, 108) (See also paragraph 2.5). 

Lastly, synthetic, isotopically labeled peptides can be used as internal standards for 

both relative and absolute quantitation of histones and their PTMs, in “spike in” assays. 

Briefly, isotope-encoded peptides are synthesized with the same sequence of the modified 

histone peptide of interest, derived from the endoproteinase digestion used in the study. 

Relative quantitation is obtained when a known concentration of the standard peptide is 

“spiked into” each histone sample from the panel under investigation, and the intensity of 

the each native modified peptide is compared with that of the standard. With the same 

approach the absolute quantitation of modified peptides can be also achieved, when a 

calibration curve of the ion intensity versus the peptide standard, injected at distinct 

concentrations, is calculated. Typically, this approach is combined with single or multiple 

reaction monitoring MS (SRM/MRM), which allows a very sensitive detection of even 

sub-stoichiometric modifications. This technique benefits from the triple quadropole 

(QQQ) instrumentation. Briefly, targeted peptides are selected in the first mass analyzer 

(Q1), fragmented by CID (in Q2) and one or several of the fragment ions uniquely derived 

from the targeted peptide are measured by the third analyzer (Q3). In this way, each 

peptide is characterized by a specific “transition” which links both the precursor and 
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fragment ions, observed in both analyzers. The identity of each peptide can be inferred 

from the “transition” and the relative abundance can be estimated from the transition 

intensity relative to that of the standard (109). Darwanto and coworkers have successfully 

employed SRM upon spike in of isotopically encoded histone peptides in U937 lymphoma 

cells, expressing a mutated form of the hDot1a methyltransferase. They profiled changes in 

a set of hPTMs and observing that in these conditions the observed decrease of H3K79 

methylation parallels a corresponding increase in H2B K120 ubiquitination (110). 

2.5 Mass Spectrometry analysis of histone variants and their modifications  

In addition to post-translational modifications, histone variants contribute to the 

epigenetic regulation of gene expression (111). Histone variants typically accumulate at 

specific genomic regions and show unique modification patterns, affecting a variety of 

chromatin-related processes. Some interpretative models propose that they represent an 

“extra layer” of the histone code (112), providing additional mechanisms to modulate 

chromatin structure. However, at least for the majority of variants, the processes by which 

specific variants accumulate at certain regions and are transmitted throughout the cell cycle 

remain unclear. Except for H4, all core histones and linker histones H1 have a number of 

variant counterparts (Figure 13), often differing in a few amino acids, which hampers their 

analysis via conventional approaches, such as antibody-based assays. 
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Figure 13. Comparison between histone variant sequences. Histone variants contain a 

highly conserved histone fold domain and differ mainly in their C and N-terminal 

sequences. Boxes represent the histone fold domain and orange lines represent site-specific 

sequence variations. Histones that are in different shades of the same color are from the 

same histone family but have large differences in sequence. Adapted from Arnaudo A.M et al. 

Crit Rev Biochem Mol Biol. 2011 (113). 

 

                                        

 

Mammalian histone H3 has three major variants (H3.1, H3.2 and H3.3), in addition to a 

testis-specific variant (H3t) and a centromeric variant (CENP-A). The major variants are 

very similar in sequence composition. Histone H3.1 differs from H3.2 by a change in 

Cysteine 96 to Serine, while H3.3 differs from H3.1 by only 5 residues. However, they 

display differences in their expression, enrichment at specific chromatin domains, and in 

their post-translational modification signatures. Studies of the PTM patterns of H3 variants 

have been performed, profiting from all MS approaches described: “Bottom Up”, “Top 

Down” and “Middle Down”. “Bottom Up” analysis of mammalian, Arabidopsis thaliana, 

and Drosophila melanogaster H3 variants revealed that H3.3 is enriched in modifications 

associated with transcriptional activity (114-116). “Top Down” analysis of H3 variants 
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from rat brains showed comparable results using this complementary approach (117). 

Affinity purification of epitope-tagged H3.1 and H3.3 revealed a distinct set of 

modifications occurring on these two H3 variants before and after their assembly on 

chromatin, suggesting that pre-assembly modifications determine their final fate, as well as 

their PTM patterns on chromatin (68). A combinatorial view of modifications on H3.1 and 

H3.3 from asynchronous or colchicine-treated HeLa was achieved by “Top Down” 

revealing that, in asynchronous cells, only 5% of K4 was mono-methylated and about 50% 

of K9 was di-methylated in the H3.1 pool. In addition, more than 90% of the H3.1 pool 

was observed to be acetylated: K14 and K23 represent the major sites of acetylation. Upon 

colchicine treatment however the unmodified, mono- and di- phosphorylated S10 and S28 

are detected in a 2:3:1 ratio, in addition to the K9 methylation and acetylations described. 

The absence of the K4 methylation in the colchicine-treated samples was probably due to 

the relatively small pool of molecules containing this modification (73). “Middle Down” 

analysis of H3 variants in a panel of rat tissues showed distinct patterns of H3.2 and H3.3 

levels and modification status between various tissues (118). “Middle Down” was also 

successfully applied to the identification of more than 200 modifications in H3.2 and 70 

modifications in H4 from human samples, including several that were not previously 

reported (77, 108). 

Canonical human histone H2A is encoded by sixteen genes that cluster on the 

genome. Kelleher and co-workers identified and characterized twelve unique sequences by 

using intact mass and fragmentation spectra (71). The modifications on the canonical H2A 

are incompletely characterized: only phosphorylation of S1 and acetylation on the N-

terminal K5 are reproducibly reported (119), as well as mono-ubiquitination at K119, 

involved in gene silencing and mediated by Polycomb proteins (120).  The non-canonical 

H2A variants include H2A.X, H2A.Bbd, H2A.Z and macro-H2A. H2A.X phosphorylated 

at S139 is the so-called γ-H2A.X, which localizes to sites of DNA double strand breaks 

(DSB) in response to DNA damage and thus represents a mark of the DNA damage 
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response (DDR). Acetylation and ubiquitination of H2A.X were also shown to be involved 

in this process: acetylation of K5 is a prerequisite for the poly-ubiquitination and the 

subsequent release of H2A.X from the DNA damage sites (121). H2A.Z is present at 

promoters where it is believed to maintain active chromatin in regions adjacent to silent 

ones. However, potential roles in gene silencing have also been proposed (122). 

Acetylation of K4 and K7 of this variant were identified by a “Middle Down” approach in 

Jurkat cells (119). Macro-H2A, the largest H2A variant, is generally enriched at 

transcriptionally silent regions. MS characterization of macro-H2A identified K115 

ubiquitination and S137 phosphorylation. The former is implicated in X-inactivation 

whereas the latter is enriched in mitosis (123, 124). In addition, K17 mono-methylation, 

K122 di-methylation and Y128 phosphorylation are identified (123).  

A combination of CID and ECD MS fragmentation at protein and peptide levels led 

to the characterization of several H2B variants and associated PTMs (119, 125): 

acetylation on K5, K12, K15 and K20, and ubiquitination on K120. These PTMs were 

confirmed by peptide mass fingerprinting (PMT), performed on bovine H2B, which 

revealed also K43 mono-methylation and K85 acetylation (126). “Bottom Up” approaches 

have also served to characterize modifications specific for the testis-specific variants of 

H2B (TH2B) (127). In addition, “Top Down” analysis using ECD fragmentation of the two 

major H2B variants of Tetrahymena thermophila led to the characterization of their 

primary sequences and modification patterns (128). Recently, mono-methylation and di-

methylation at the N-terminal Proline of Drosophila melanogaster H2B have been 

identified using a combination of different strategies for sample preparation prior to MS 

analysis including D6-acetic anhydride derivatization followed by Trypsin digestion and 

Asp-N digestion. The abundance of this Proline methylation seems be dependent of the 

developmental stage and is regulated by the enzyme dART8. The authors also observed 

predominant acetylation of H2B at K11 and K17 (129).  
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Histone H1 is commonly referred to as the linker histone. A single copy of this 

histone is proposed to bind near the entry/exit site of DNA on the nucleosome (the so 

called dyad), stabilizing the 30nm fiber and thus regulating higher order chromatin 

structure and stability (Figure 14) (130). Sequence divergence between histone H1 

isoforms occurs mainly in the N- and C-terminal regions of the proteins, generating as 

many as eleven mammalian isoforms. 

 

Figure 14. Binding of linker histone H1 to the nucleosomal string induces chromatin 

compaction. Chromatin fiber compaction induced by binding of linker histone H1. The left 

fiber represents an open conformation with straight linker DNA in the absence of linker 

histones, in which DNA access is facilitated for other proteins. The binding of linker 

histone H1 changes the local nucleosome geometry. This induces a transition to more 

compacted fiber  conformations  in  which  the  DNA  is  less  accessible. Adapted from 

Wachsmuth M. et al. Biochimica et Biophysica Acta 2008. 

 

                            

 

Mass spectrometry analysis, in combination with other experimental techniques, led to the 

identification of a number of PTMs specifically enriched on distinct linker histones, such 

as methylation, phosphorylation, acetylation, ubiquitination, formylation and ADP 

ribosylation (131-135). RP-HPLC of the different H1 variants, followed by chemical 
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derivatization of the protein with propionic anhydride and subsequent LC-MS/MS analysis 

revealed a K26 methylation and S27 phosphorylation on histone H1.4. Methylation on K26 

appears to recruit heterochromatin protein1 (HP1), whereas phosphorylation at S27 

appears to inhibit HP1 binding, so that these two adjacent PTMs are believed to function as 

a molecular switch for the modulation of gene expression silencing (133, 136). Moreover, 

the “Top Down” analysis of intact H1.2 and H1.4 molecules purified at distinct cell cycle 

stages suggested that S173 on H1.2 and S187 on H1.4 are phosphorylated only during 

interphase. Interphase phosphorylated H1.2 and H1.4 are associated with active rDNA and 

facilitate RNA pol I transcription. Finally, phosphorylation of H1 affects its chromatin 

dissociation and, in turn, chromatin accessibility to factors that regulate transcription and 

replication (137). 

2.6 Interaction proteomics to study chromatin architecture 

An improved knowledge of chromatin composition can contribute to a more 

comprehensive view of its higher-order structure and function. Until now, no purification 

method has emerged as a “gold standard” for chromatin purification and characterization 

due to the difficulty in enriching chromatin samples from specific functional regions in a 

quantity and purity sufficient for subsequent analysis. However, thanks to recent 

improvements in sensitivity and accuracy of MS-based quantitative proteomics a number 

of studies have demonstrated the high potential of this technology to characterize the 

chromatin proteome, with a specific focus on the histone code readers associated with 

specific functional states of chromatin (Figure 15). 

The first attempt to characterize proteins associated with chromatin was the 

analysis of changes in protein levels in response to the overexpression of the oncoprotein 

MYC. This was done using differential detergent/salt extraction and chemical isotopic 

labeling by ICAT, in combination with multi-dimensional chromatography and mass 



46 
 

spectrometry (138). Subsequently, when ad hoc biochemical protocols were established for 

the purification of distinct chromosomes, MS proved to be a successful tool to characterize 

their protein composition: mitotic chromosomes were purified at different stages of the cell 

cycle (mitosis, metaphase and interphase) and co-associated non-histone proteins were 

characterized by MS (139-144). More recently, a multiclassifier combinatorial proteomics 

(MCCP) approach was developed where SILAC quantitative proteomics is integrated with 

a bioinformatics analysis pipeline. A statistical approach is applied to confirm which 

known and uncharacterized proteins are chromosomal, to obtain a more comprehensive 

collection of proteins associated at high confidence with mitotic chromosomes (145).  

One elegant methodology to study the proteomic composition of telomeric regions 

was developed by the Kingston group using the PICh (proteomics of isolated chromatin) 

approach. In this approach, enrichment of cross-linked telomeric chromatin was achieved 

using DNA probes complementary to the telomeres, rich in repetitive sequences. The co-

enriched proteins were characterized by MS and new telomere-associated proteins were 

observed (146). Yet, a drawback of PICh was the limited applicability to regions rich in 

repetitive DNA sequences. 

All these methods provide a useful contribution to the knowledge of protein 

composition in large chromosomal regions or even intact chromosomes, but they are 

inadequate for obtaining information on chromatin locus-specific composition. 

Recently, a number of interactomics assays combining affinity-interaction mapping 

with SILAC-quantitative MS read-out have been developed for the comprehensive 

characterization of hPTM “readers”. Vermeulen et al. used pull-down assays with peptides 

that differ by a single post-translational modification to identify specific binders, either as 

individual interactors or as multiprotein complexes. Whit such approach, they discovered 

that TFIID binds H3K4 tri-methylation and recruits the entire transcription initiation 

complex, thereby providing a functional link between this modification and activation of 

transcription (88). The approach was extended further to screen all major tri-methylation 
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marks on histones and, in combination with ChIP-Seq and BAC-GFP pull-downs, to define 

the comprehensive Lysine trimethyl-interactome (147). As an additional elaboration of the 

strategy, a SNAP (SILAC Nucleosome Affinity Purification) approach was established 

where recombinant nucleosomes bearing combinations of hPTMs and methylated DNA 

were used as baits to provide a “modification binding profile” for proteins regulated by the 

contribution of both DNA and histone methylations (148). Similarly, a SILAC-based 

affinity purification assay was carried out with recombinant, uniformly modified chromatin 

templates (149). In addition, the CLASPI (Cross-Linking Assisted and SILAC-based 

Protein Identification) approach has been described, which combines SILAC with 

chemical proteomics using photo-crosslinking-based histone peptide probes, to detect weak 

but specific interactions that may escape standard pull-down approaches (150). Finally, 

peptide arrays and MS have been employed to systematically uncover methyl-Lysine and 

chromatin-binding module interactors, as well as to identify novel H3K23 mono-

methylation marks, able to facilitate the recruitment of HP1β to the heterochromatin (151). 

These in vitro studies are very powerful tools for screening the soluble binders of 

hPTMs, but fall short in extracting information on the relative PTM stoichiometry, 

combinations as well as their synergies with histone variants and chromatin modifiers, 

under physiological conditions. Hence, the locus-specific determination of hPTM patterns 

and their interactions with protein complexes remains a very attractive, partially 

unachieved goal. 

A SILAC-based quantitative proteomics approach was employed to generate a 

differential profile of proteins associated with specific euchromatin and heterochromatin 

regions. This approach exploited the different accessibility of these regions to MNase, as a 

consequence of their differential nucleosome packaging. Upon limited MNase treatment, 

the two fractions of chromatin were separated by centrifugation, based on the differential 

density of the nucleosomal stretches, and SILAC was used to discriminate the proteins 

associated with these two functional chromatin regions (152). Another approach developed 
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for detection and characterization of proteins associated with specific chromatin domains 

was mChIP (153), where chromatin is isolated, sheared and then analysed by MS. mChIP 

was successfully applied to study the interactomes of H2A (Hta2p) and its variant Htz1p in 

Saccharomyces cerevisiae.  However, this study did not provide quantitative information 

on binding proteins.  

In this respect, global investigations of synergies between histone PTMs, variants, 

and chromatin-associated proteins in a locus-specific manner still remain a very attractive 

unachieved goal. 

 

Figure 15. Different biochemical approaches for the proteomic characterization of 

chromatin composition and architecture. Some strategies address the chromosome as a 

whole (A), whereas others are focused on the characterization of specific chromatin 

regions: telomeres (B); regions enriched with distinct hPTMs (C, D), or certain histone 

variants (E).   
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3. AIM OF THE PROJECT 

Chromatin architecture and its functional state are regulated by different associated 

proteins, post-translational modification of histone (hPTMs) and DNA methylation, which 

act in a concerted manner to create a “chromatin landscape”, with regulatory effect on gene 

expression. While extensive ChIP-Seq data are already available for all virtually known 

hPTM, and for a large set of chromatin binders, the investigation of the proteomic 

composition of chromatin started more recently and is still an ongoing effort. Recent 

studies focusing on protein components of chromatin were mainly focused on the 

characterization of histone code readers. These in vitro studies are very powerful tools for 

screening the soluble binders of hPTMs, but information on the relative PTM 

stoichiometry, combinations as well as their synergies with histone variants and chromatin 

modifiers remain still largely incomplete. 

With these restraints in mind, and since I joined a group studying chromatin-

mediated regulation of gene expression by quantitative proteomics, I developed a PhD 

project focused on the design and optimization of a novel biochemical and analytical 

method for the large-scale characterization of hPTM patterns and non-histonic proteins co-

associated with specific functional regions of chromatin.  

To this purpose, I combined chromatin immunoprecipitation (ChIP) and Mass 

Spectrometry (MS) analysis in order to establish an approach that could profit from the 

strengths of both methods, overcoming their respective limitations. ChIP using antibodies 

against specific modifications as “bait” were carried out to enrich specific functional 

chromatin domains at yield and purity sufficient for subsequent MS analysis. MS was then 

employed to characterize the co-associated hPTMs and to annotate all the proteins 

specifically interacting within the same chromatin domains. In particular native ChIP (N-

ChIP), using unfixed chromatin selectively digested by micrococcal nuclease (MNase) was 

used in combination with MS to dissect PTM interactions, whereas cross-linking ChIP (X-
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ChIP) in combination with SILAC quantitative proteomics was set to screen the specific 

interactions at the selected regions. It has already been widely demonstrated that in fact 

SILAC-based interactomics is particularly efficient in discriminating with high confidence 

specifically binders from backgrounds (see paragraph 2.5).  

Since the method is completely novel, it was essential to demonstrate its robustness 

and reliability, which involved part of my work during these years. As proof of principle I 

used this approach to characterize silent and active chromatin regions, marked by 

H3K9me3 and H3K4me3, respectively. The accordance of the obtained results on hPTMs 

analysis and co-associated proteins with previous studies proved the robustness of our 

strategy. Basing on these achievements, the future perspective is to apply this strategy to 

extend the analysis on new modifications and variants enriched at regulatory regions, in a 

more biological and relevant model system (see paragraph 7). 
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4. MATERIALS and METHODS  

4.1 General biochemistry buffers  

(for buffers used in specific protocols, see the dedicated corresponding paragraphs) 

1. Phosphate-Buffered Saline (PBS), pH 7.4: 

            137 mM NaCl 

            2.7 mM KCl 

            8.1 mM Na2HPO4(7H2O)  

 1.76 mM KH2PO4 

2.  Tris-Buffered Saline (TBS): 

           150 mM NaCl 

           2.7 mM KCl 

           25 mM Trizma HCl 

3. Urea lysis buffer: 

 20 mM Hepes, pH 8.0 

 9 M Urea 

4. Running gel mix  (1 gel at 17.5%): 

Acrilamide/Bis-acrylamide stock solution - 37.5:1 ratio (3.48 mL) 

Tris-HCl,  pH 8.8 (1.5 mL) 

ddH2O (0.96 mL) 

SDS 20% (30 µL) 

APS 20% (30 µL) 

TEMED (3 µL) 
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5. Stacking gel mix (2 gel): 

Acrilamide/Bis-acrylamide stock solution - 37.5:1 ratio (0.52 mL) 

Tris-HCl, pH 6.8 (1.25 mL) 

ddH2O (3.10 mL) 

SDS 20% (25 µL) 

APS 20% (25 µL) 

TEMED (5 µL) 

6. LDS sample loading buffer (1X): 

10% Glycerol 

1% Lithium dodecyl sulfate (LDS) 

1% Ficoll-400 

0.2 M Triethanolamine-Cl pH 7.6 

0.00625% Coomassie G250 

0.5 mM EDTA disodium 

7. SDS-PAGE running buffer: 

 25 mM Tris base 

 192 mM Glycine 

  2% SDS 

8. Fixing gel solution: 

50% Methanol 

10% Acetic acid  

9. Staining gel solution: 

20% Methanol 

20% Stainer A (Colloidal Blue Stain Invitrogen Kit) 

5% Stainer B (Colloidal Blue Stain Invitrogen Kit) 
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10. Western transfer buffer: 

 25 mM Tris base 

 192 mM Glycine 

 20% Methanol 

11. Stripping buffer: 

62.5 mM Tris-HCl, pH 7.6 

 2% SDS 

100 mM β-Mercaptoethanol 

12. Tris-borate-EDTA (TBE): 

89.2 mM Tris base, pH 7.6 

88.95 mM Boric acid 

2 mM EDTA, pH 8.0 

4.2 Cell Culture and SILAC labeling 

HeLaS3 cells were grown in Dulbecco's modified Eagle's medium (DMEM, 

Invitrogen) supplemented with 10 % Fetal Bovine Serum (FBS, Invitrogen 10270-106), 

1% Glutamine, 1% Pen/Strep and 10 mM HEPES pH 7.5. For metabolic labeling, HeLa S3 

cells were grown in ‘‘Heavy’’ and ‘‘Light’’ SILAC media prepared adding to the SILAC 

DMEM (M-Medical FA30E15086), depleted of Lysine and Arginine, 10% dialyzed FBS 

(Invitrogen, 26400-044), 1% Glutamine, 1% Pen/Strep, 10 mM HEPES pH 7.5 and either 

the light isotope-coded amino acids 12C6 14N2 L-Lysine (Lys 0, Sigma L8662) and 12C6 

14N4 L-Arginine (Arg0, Sigma A6969) or their heavy isotope-counterparts: 13C6 15N2 L-

Lysine (Lys 8, Sigma 68041) and 13C6 15N4 L-Arginine (Arg10, Sigma 608033). Lys and 

Arg were added at a concentration of 73 mg/L and 42 mg/L, respectively. HeLaS3 were 

cultivated in SILAC media for 9 generations, with careful monitoring of growth rate, 

viability and overall morphology, to ensure that normal physiology is preserved.  
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NIH 3T3 mouse fibroblasts were grown in DMEM supplemented with 10 % Calf 

Serum (CS, Lonza 14-401F), 1% glutamine and 1% Pen/Strep. 

4.3 Native chromatin immunoprecipitation (N-ChIP)  

The protocol developed was modified from a previously described one (154). Two 

hundred millions HeLa S3 cells were homogenized in Lysis Buffer and nuclei were 

separated from cytoplasm, by centrifugation at 3750 rpm (4°C) for 30 minutes, putting 

cellular lysate on sucrose cushions. Nuclear pellets were washed twice with PBS, re-

suspended in Digestion Buffer and digested with micrococcal nuclease (MNase, Roche) at 

a final concentration of 0.005 U/ml, at 37 °C for 60 minutes. The reaction was stopped by 

adding 1 mM EDTA and chilling on ice. The soluble fraction of chromatin (S1), 

comprising small fragments (mono-, di-nucleosomes), was collected as the supernatant 

obtained after centrifugation of re-suspended nuclei at 10000 rpm (4 °C) for 10 minutes. 

Pellets were instead re-suspended in Dialysis Buffer and dialyzed overnight at 4 °C in a 

dialysis tube (cut off 3.5 kDa). The second soluble fraction of chromatin (S2), comprising 

large fragments (tri- to epta-nucleosomes), was as the supernatant obtained after 

centrifugation at 10000 rpm (4 °C) for 10 minutes. DNA extracted by Qiaquick columns 

(QUIAGEN) was run on 1% agarose gel to evaluate fractions of chromatin. The S1 

fraction is combined with a small aliquot of S2 fraction (1/100) in order to obtain an Input 

compose of about 95% of mono-nucleosomes. Chromatin was immunoprecipitated with 10 

µg of the following antibodies: H3K9me3, H3K4me3 and H2AX. Antibodies were 

incubated overnight with chromatin; in parallel, 100 µl of G protein-coupled magnetic 

beads (Dynabeads, Invitrogen 100.04D) were blocked in BSA 0.5% PBS for an overnight. 

Blocked beads were washed and added to chromatin and incubated for 3 h at 4°C on a 

rotating wheel. Beads were washed four times (50 mM Tris-HCl pH 7.6, 10 mM EDTA) at 

increasing salt concentration (75, 125 and 175 mM NaCl). LDS Sample Buffer (Invitrogen 
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NP0007) supplemented with 50 mM DTT was added to the beads for 5 min at 70 °C to 

elute the immunoprecipitated proteins from the beads. Proteins were resolved on 4-12% 

Bis-Tris acrylamide SDS-PAGE pre-cast gels (Invitrogen NP0335BOX) on an Invitrogen 

system and visualized on the gel using Colloidal Comassie staining Kit (Invitrogen 

LC6025). 

4.3.1 Buffers for N-ChIP: 

1. Lysis Buffer: 10% sucrose, 0.5 mM EGTA pH 8.0, 15 mM NaCl, 60 mM KCl, 15 

mM HEPES, 0.5% Triton, 0.5 mM PMSF, 1mM DTT, 5 mM NAF, 5 mM Na3VO4, 

5mM NaButyrate, 5 mg/ml Aprotinin, 5 mg/ml Pepstatin A, 5 mg/ml Leupeptin. 

2. Digestion Buffer: 0.32 M sucrose, 50 mM Tris-HCl pH 7.6, 4 mM MgCl2, 1 mM 

CaCl2, 0.1 mM PMSF.  

3. Dialysis Buffer: 10 mM Tris-HCl pH 7.6, 1 mM EDTA, 0.5 mM PMSF, 5 mM 

NAF, 5 mM Na3VO4, 5mM NaButyrate, protease inhibitors cocktail. 

4.4 Cross-linking Chromatin immunoprecipitation (X-ChIP) 

The protocol developed was a modification from a previously published one (155). 

Two hundred millions SILAC-labelled HeLa S3 cells were harvested; cell pellets were 

cross-linked in 0.75% formaldehyde PBS for 20 min at room temperature (RT) to stabilize 

protein-DNA and protein-protein interactions, with shaking on rotating wheel. 

Formaldehyde was quenched adding 125 mM Glycine for 5 min. After four washes with 

cold PBS, cells were suspended in Lysis Buffer for 10 min at 4°C. After centrifugation the 

nuclear pellets were washed once with Washing Buffer and then re-suspended in ChIP 

Incubation Buffer. Chromatin from nuclei was sonicated at 200 W for 15 min (cycles of 30 

sec “on” and 1 min “off”, in a cooled Bioruptor (Diagenode). After sonication, 1% of 

Triton-100 was added to sonicated chromatin to pellet debris. Soluble nucleosomes, 
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contained in the soluble supernatant after centrifugation at 13000 rpm (4°C) for 10 

minutes, were immunoprecipitated by adding 10 µg of the following antibodies: H3K9me3 

and H3K4me3 and H2A.X. The immunoprecipitation procedure followed the steps as for 

the N-ChIP, except for the washes, which were carried out in 20 mM Tris-HCl pH 7.6, 2 

mM EDTA, 0.1% SDS,1% Triton-100 and increasing NaCl concentration (150 and 300 

mM). To reverse the crosslinking and elute the immunoprecipitated proteins, SDS-PAGE 

sample buffer (250 mM Tri-HCl pH 8.8, 0.5M β-mercaptoethanol, 2% SDS) was added to 

the beads for 25 min at 95 °C. Proteins were resolved on 4-12% Bis-Tris acrylamide SDS-

PAGE pre-cast gradient gels Invitrogen system and visualized by Colloidal Comassie 

staining kit (Invitrogen). For DNA damage experiment the cells were treated with 

etoposide (Sigma E1383) at the concentration of 30 µM or DMSO (as control) for 1h, 2h, 

4h and 8h to induce DSBs. After 3 h washing cells with fresh medium, cells were 

harvested and treated for a X-ChIP as previously described using antibodies against 

H3K9me3 and H3K4me3.  

4.4.1 Buffers for X-ChIP: 

1. Lysis Buffer: 50 mM HEPES-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% 

glycerol, 0.5% NP-40, 0.25% Triton-100, 0.5 mM PMSF, 5 mM NAF, 5 mM Na3VO4, 

5mM NaButyrate, 5 mg/ml Aprotinin, 5 mg/ml Pepstatin A, 5 mg/ml Leupeptin. 

2. Washing Buffer: 10 mM Tris-HCl pH 8, 200 mM NaCl, 1 mM EDTA, 0.5 mM 

EGTA, 0.5 mM PMSF, 5 mM NAF, 5 mM Na3VO4, 5mM NaButyrate, 5 mg/ml 

Aprotinin, 5 mg/ml Pepstatin A, 5 mg/ml Leupeptin. 

3. ChIP Incubation Buffer: 10 mM Tris-HCl pH 8, 100 mM NaCl, 1 mM EDTA, 0.5 

mM EGTA, 0.1% sodium deoxycholate, 0.5% sodium lauroylsarcoside, 0.5 mM 

PMSF, 5 mM NAF, 5 mM Na3VO4, 5mM NaButyrate, 5 mg/ml Aprotinin, 5 mg/ml 

Pepstatin A, 5 mg/ml Leupeptin. 
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4.5 In-gel digestion of histones for MS analysis  

Bands corresponding to the core histones were excised from the gel, de-stained 

with repeated washes in 50% acetonitrile (ACN) in ddH2O, alternated with dehydration 

steps in 100% ACN. Gel pieces were in gel chemically alkylated as previously described, 

by incubation with D6-acetic anhydride (Sigma 175641) 1:9 in 1M NH4HCO3 and 

CH3COONa solution as catalyzer (61). After 3h at 37 °C with high shaking in thermo 

mixer, chemically modified gel slices were washed increasing ACN % (50% and 100%). 

In-gel digestion was performed with 100 ng/µl trypsin (Promega V5113) in 50 mM 

NH4HCO3 at 37 °C overnight, in order to obtain an “in-gel”-like Arg-C digestion, which 

cleaves at the amide bond C-terminal to Arginine residues, producing peptides with an 

optimal length for MS analysis. Digested peptides were extracted, desalted and 

concentrated using a combination of reverse-phase C18/Carbon “sandwich” system and 

ion-exchange (SCX) chromatography, on hand-made nano-columns (StageTips) (156): 

digested peptides loaded on C18/C and SCX StageTips were then eluted with high organic 

solvent (80% ACN) and NH4OH, respectively. Eluted peptides were lyophilized, re-

suspended in 0.1% TFA and 0.5% acetic acid in ddH2O, pooled and subjected to LC-

MS/MS. 

4.6 In-gel digestion of immunopurified proteins 

 Processing of gel- separated proteins prior MS analysis was carried out as 

previously described, with minor modifications (66). Briefly, slices were cut from gels and 

de-stained in 50% v/v acetonitrile (ACN)/50 mM NH4HCO3. Reduction was carried out 

with 10 mM DTT in 50 mM NH4HCO3, followed by alkylation with 55 mM 

iodoacetamide in 50 mM NH4HCO3. In-gel digestion was performed with 12.5 ng/µL 

trypsin (Promega V5113) in 50mM NH4HCO3, overnight at 37 °C.  
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Digested peptide were extracted with 3%TFA, 30%ACN and finally with 100% ACN, 

lyophilized, desalted and concentrated on C18 Stage Tips (156). Samples were loaded in 

1% TFA and 5% ACN and eluted with high organic solvent (80% ACN). Eluted peptides 

were lyophilized, re-suspended in 0.1% TFA and 0.5% acetic acid in ddH2O, and 

subjected to LC-MS/MS analysis.  

4.7 Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS) 

 Peptide mixtures were separated by nano-liquid chromatography using Agilent 

1100 Series (Agilent Technologies), coupled to a 7-Tesla LTQ-FT-ICR-Ultra mass 

spectrometer (ThermoFisher Scientific, Bremen, Germany). The nanoliter flow LC was 

operated in one column set-up with a 15 cm analytical column (75 µm inner diameter, 350 

µm outer diameter) packed with C18 resin (ReproSil, Pur C18AQ 3 µm, Dr. Maisch, 

Germany). Solvent A was 0.1% FA and 5% ACN in ddH2O and solvent B was 95% ACN 

with 0.1% FA. Sample was injected in an aqueous solution at a flow rate of 500 nl/min. 

Peptides were separated with a gradient of 0-36% over 120 min followed by a gradient of 

36-60% for 10 min 60-80% over 5 min at a flow rate of 250 nl/min. For histones, liquid 

chromatography separation was performed with a gradient of 0-40% solvent B over 90 min 

followed by a gradient of 40-60% for 10 min and 60-80% over 5 min at a flow rate of 250 

nl/min. The nanoelectrospray ion source (Proxeon, Odense, Denmark) was used with a 

spray voltage of 2.4 kV. No sheath, sweep and auxiliary gasses were used and capillary 

temperature was set to 190 °C. The mass spectrometer was operated in data-dependent 

mode to automatically switch between MS and MS/MS acquisition. In the LTQ-FT Ultra, 

full scan MS spectra (200-1650 m/z) were acquired with a resolution of 100,000 (FWHM) 

at 400 m/z setting an AGC target of 1,000,000. The five most intense ions were isolated for 

fragmentation in the linear ion trap using collision-induced dissociation (CID) at a target 

value of 5,000. Singly charged precursor ions were excluded. Collision gas pressure was 
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1.3 millitorrs and normalized collision energy using wide band activation mode was 35%. 

Ion selection threshold was 250 counts with an activation q=0.25. The activation time of 30 

ms was applied in MS2 acquisitions.  

4.8 Quantitative MS analysis of hPTMs co-enriched in precipitated chromatin  

Raw data from LTQ-FT Ultra were converted to mgf files using Raw2MSM 

software (version 1.10) (157). MS/MS spectra were searched with Mascot Daemon 

(version 2.2.2, Matrix Science) against the IPI human database (version 3.68, 87,061 

entries). MS mass tolerance was set to 10 ppm and MS/MS mass tolerance was set to 0.5 

Da. Chemical alkylation with D6-acetic anhydride, which labels unmodified and mono-

methylated Lysines with a deuterated acetyl moiety but does not react with di-methyl, tri-

methyl and acetyl Lysines, results in a delta mass of 45.0294 amu for each D3-acetyl group 

added and thus allows to unambiguously distinguish isobaric modified peptides by their 

different LC retention times. The search included variable modifications: Lysines D3-

acetylation (+45.0294 Da), Lysine mono-methylation (calculated as the sum of the masses 

of D3-acetylation (+45.0294) and mono-methylation (+14.016 Da)), di-methylation (+ 

28.031 Da), tri-methylation (+42.046 Da), Lysine acetylation (+42.010 Da), Methionine 

oxidation (+15.995 Da) and N-terminal protein acetylation (+42.010 Da). Low-confidence 

peptide identifications were filtered from Mascot results according to following criteria: 

peptides with either ion score lower than 15 or more than 5 putative PTMs were removed 

(100); redundant peptides with same ID were filtered out by selecting the peptide with the 

highest Mascot score. Extracted ion chromatograms (XIC) were constructed for each 

precursor based on the m/z value, using a mass tolerance 10 ppm and a mass precision up 

to 4 decimals. Histone PTMs were first quantified by calculating the area under the curve 

(AUC) of each peak corresponding to every specific modified peptide. Then, their relative 

abundance was estimated by dividing the area under the curve (AUC) of each peptide by 
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the sum of the areas corresponding to all observed modified forms of that peptide [(XIC 

modified peak/∑ XIC all peaks)x100)]. Modification enrichment was calculated as the 

ratio between the relative abundance in the ChIP-ed octamer and the corresponding 

relative abundance estimated from input. Peptides containing modifications were validated 

by manual annotation of MS/MS spectra (see Appendix I and II for peptide (3-8) and (9-

17) of histone H3), using the QualBrowser version 2.0.7 (ThermoFisher Scientific).  

4.8.1  Masses (in Da) of site-specific identification of PTMs on Histone H3 

Peptide 3-8: TKQTAR, K4unmod=375.2208, K4me1= 382.2286, K4me2= 366.7218, 

K4me3=373.7296; peptide 9-17: KSTGGKAPR, K9unmod=496.2937, 

K9me1=503.3016, K9me2=487.7947, K9me3=494.8025, K9unmod/K14Ac=494.7843, 

K9me1/K14Ac=501.7921, K9me2/K14Ac=486.2853, K9me3/K14Ac=493.2931, 

K9Ac/K14Ac=493.2749; peptide 18-23: KQLATKAAR, K18/23unmod=538.8383, 

K18me1/K23unmod=545.8461, K18unmod/K23Ac or K18unmod/K23Ac=537.3289, 

K18me1/K23Ac=544.3367, K18Ac/K23Ac=535.8195; peptide 27-40: 

KSAPATGGVKKPHR, K27/36/37unmod=784.9645, K27me1 or K36me1=791.9723, 

K27me2 or K36me2=776.4655, K27me3 or K27me2/K36me1 or 

K36me2/K27me1=783.4733, K27me1/K36me1=798.9802, 

K27me2/K36me2=767.9664, K27me3/K36me1=790.4811; peptide 73-83: 

EIAQDFKTDLR, K79unmod=690.8635, K79me1=697.8713, K79me2=682.3644.  

4.8.2. Masses (in Da) of site-specific identification of PTMs on Histone H2A 

peptide 4-11: GKQGGKAR, K5/9unmod=446.2675, KAc=444.7581, Kdi-

Ac=443.2487. 
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4.8.3. Masses (in Da) of site-specific identification of PTMs on Histone H4 

peptide 4-17: GKGGKGLGKGGAKR, K5/K8/K12/K16unmod=725.9476, 

KAc=724.4381, Kdi-Ac=722.9287, Ktri-Ac =721.4193, Ktetra-Ac=719.9099.  

4.9 Proteomic analysis of proteins co-associated within precipitated chromatin fractions  

Protein interactors from the X-ChIPs were identified and quantified using 

MaxQuant software (158) (version 1.1.1.36). MS/MS spectra were recorded in “centroid” 

mode and the six most abundant peaks per 100 Da mass intervals were selected for search. 

Filtered MS/MS spectra were searched against the IPI human database (version 3.68, 

87,061 entries), combined with the standard MaxQuant contaminants database, by 

Andromeda search engine (159, 160). MaxQuant analysis included an initial search with a 

precursor mass tolerance of 20 ppm, whose results were used for subsequent mass 

recalibration (161). Enzyme specificity was set to trypsin, allowing two misscleaveges and 

cleavage at the N-terminus of Proline. Peptide identification was based on a search with 

mass deviation of the precursor ion of 6 ppm and the fragment mass tolerance was set to 

0.5 Da. The mass accuracy of the precursor ions was improved by the time-dependent 

recalibration. MaxQuant was employed to filter identifications at 1% false discovery rate 

(FDR) at three levels, namely: site, peptide, and protein. Carbamidomethylation of 

Cysteine was selected as a fixed modification whereas oxidation of Methionine, and 

acetylation of protein N-terminus were included as variable modifications. The 

modifications corresponding to Arginine and Lysine labeled with heavy stable isotopes are 

treated as fixed modifications in the Andromeda search. Additional peptides were 

identified by "the match between run" option in MaxQuant, which matches precursor 

masses in a 2-min retention time window (after realignment of the runs) based on the 

accurate mass measurement. Proteins were accepted if identified with at least two peptides 

one of which unique. Protein ratios were normalized by standard deviation; complete 
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output tables for the H3K9me3 and H3K4me3 chromatomes are provided in Appendix IV 

and V, respectively. Analysis and visualization of the data were performed using the open-

source package R with in-house scripts and Perseus program (J. Cox, manuscript in 

preparation or www.maxquant.org). 

4.10 Quantitative RT-PCR of immunopurified DNA  

DNA from ChIP-ed material was eluted in TE (Tris-HCl pH 7.5, EDTA) containing 

2% SDS for 15minutes at 65°C (for X-ChIP experiments DNA was also de-crosslinked at 

65°C overnight) and DNA was then purified through Qiaquick columns (QUIAGEN). 1µl 

of purified DNA was used for substrate for amplification on Applied Biosystems 7500 Fast 

Real-time PCR system applying Biosystem Sybr-green). 

3.10.1 Primers for quantitative PCR upon conventional ChIP: 

AP945 (chr4:57142864(start)-57142927(end)) 

Forward primer: 5´-CGCTACTGTTGGGTGCTGG-3´ 

Reverse primer: 5´-GCCTGGAAAGCTGTATTTGCTG-3´ 

 

AP777 (chr2:198189648(start)-198189843(end))  

Forward: 5´-TCCATCACGTGCGACGC-3´  

Reverse: 5´-GAGGCGCGGTATCCCAG-3´ 

 

α-Repeats Regions  

Forward primer: 5´-CTCAGTAACTTCCTTGTGTTGTG-3´  

Reverse primer: 5´-ATTCTGTCTAGTTTCTATAAGAAG-3´ 
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 4.11 Immunoblot analysis 

Input chromatin and immunoprecipitated histone octamers were separated in 17.5% 

SDS-PAGE and transferred to PVDF membranes (Millipore). Membranes were blocked 1 

h in 5% milk in TBS supplemented with 0.1% Tween (TBS-T). After blocking, membranes 

were incubated at 4°C for an overnight with primary antibodies specific for histone 

modifications, diluted in TBS-T 5% milk.  After three washes in TBS-T, binding was 

revealed by ECL Plus® Immunoblotting Detection System (Amersham Biosciences); 

antibodies against the unmodified version of both H3 and H4 were used as loading control. 

For Western blot analysis the following antibodies were used, according to the 

manufacturer’s instructions: H3K9me3 (Abcam 8898, dilution 1:1000), H3K36me2 

(Abcam 9049, dilution 1:1000), H3K27me3 (Upstate Millipore 07-449, dilution 1:2500), 

H3K4me3 (Active Motif 39159, dilution 1:1000), H4K20me3 (Abcam 9053, dilution 

1:1000), acetyl-Histone H4 (Upstate Millipore 06-866, dilution 1:2000) where K5/8/12/16 

were acetylated, H3K79me2 (Abcam 3594-00, dilution 1:1000), acetyl-Histone H3 

(Upstate 05-599, dilution 1:5000) where K9/14 were acetylated, H3K18me1 (Active Motif 

39667, dilution 1:500), Histone H2A.X (phospho Tyr142) (Upstate Millipore 07-1590, 

dilution 1:100; Abcam 94602, dilution 1µg/µl), phospho-Histone H2A.X (Ser139) 

(Millipore 05-636, dilution 1:1000), histone H2A.X (Abcam 11175, dilution 1:5000), 

histone H3.3 (Abcam ab62642, dilution 1:1000), unmodified histone H3 (Abcam 1791, 

dilution 1:5000), unmodified histone H4 (Millipore Upstate 07-108, dilution 1:1000). 

4.12 Immunofluorescence analysis 

Cells grown on coverslips were washed twice with PBS, fixed with 4% para-

formaldehyde for 20 min, permeabilized in 0.5% Triton X-100 in PBS for 5 min and then 

blocked in 10% BSA for 1 h. Cells were subsequently probed with the following mix of 

antibodies: WSTF (Sigma W3516, dilution 1:250) and HP1β (Millipore MAB34448, 
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dilution 1:500); H3K9me3 (Abcam 8898, dilution 1:500) and HP1β. After 1 h of primary 

antibody incubation, cells were washed three times with PBS and then incubated with 

either a-rabbit secondary antibody conjugated with Cy3 (diluted 1:800), or with a-rabbit 

secondary antibody conjugated with fluorescein isothiocyanate (FITC-conjugate), diluted 

1:50. DNA was stained with DAPI, diluted 1:5000 in PBS, for 15 sec. Slides were 

mounted in Mowiol and images were acquired using a wide field Olympus Biosystem 

Microscope BX51.  

4.13 ChIP-Sequencing: preparation of ChIP DNA libraries, sequencing and data 

analysis 

ChIP DNA was prepared for Solexa 2G sequencing using a standard protocol. 

ChIP-ed DNA was treated to remove 3’ overhangs and fill in 5’ overhangs resulted in blunt 

ended DNA fragments. An A residue was added by terminal transferase to the 3’ end and 

the resulting fragments were ligated with Illumina adapters. The resulting Adapter-

modified DNA fragments were separated by agarose gel electrophoresis and the band 

between 120-200 bp was excised and the DNA fragments were extracted using a Qiaquick 

Gel Extraction Kit (Qiagen Inc). The specific DNA fragments were subjected to 18 cycles 

of PCR amplification; amplified fragments were then gel purified from an excess of PCR 

primers, using Qiagen columns. The DNA fragment library was quantified with 

Bioanalyzer using High Sensitivity Chip, diluted to a 10 nM working stock concentration 

for cluster generation. Finally, cluster generation was performed according to standard 

protocols of the manufacturer (Illumina) and loaded into individual lanes of a flow cell (4 

picomoles/sample). ChIP-Seq data were acquired with the Illumina Genome Analyzer II, 

producing a fixed 36bp read length. After each base incorporation step, the flow cell 

surface was washed to remove reactants and then imaged by microscope objective. For the 

analysis of sequencing Illumina data, read tags passing standard Illumina quality filter 
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(Failed-chastity < 0.6) were aligned to hg18 genome using BWA 0.5.9 with default 

parameters (162). H2AX data and  H3K9me3 and H3K4me3 ChIP-Seq data from (147), 

stored in the NCBI GEO SuperSeries GSE20303, were analyzed with dspchip 

0.8.5 (http://code.google.com/p/dspchip). Non-duplicated tags with mapping quality higher 

than 15 were retained; normalized profile of IP data were subtracted from the Input; the 

resulting profile was processed using a Hanning Window low-pass filter (window size: 500 

kbp) and negative values were removed. Correlations between ChIP profiles were 

calculated with wigCorrelate from UCSC Genome Browser utilities.  

http://code.google.com/p/dspchip
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5. RESULTS 

5.1 Characterization of hPTM patterns co-enriched at specific chromatin regions by N-

ChIP combined with high resolution MS analysis  

Chromatin Immunoprecipitation enables profiling of the localization of a protein or 

a histone modification along the genome by deep sequencing. In a proteomics equivalent 

of such an experiment, ChIP is followed by the analysis of the immunopurified proteins by 

MS. We established a preparative version of the classical “Native ChIP” (N-ChIP, namely 

ChIP without crosslinking) to purify chromatin regions enriched in a specific histone 

modification, in order to characterize by MS the hPTMs patterns and proteins associating 

with such regions. We investigated fractions enriched in silent or active chromatin by 

taking advantage of the well-characterized enrichment of H3K9me3 at both pericentric 

heterochromatin and repressed euchromatic genes, and of H3K4me3 in active promoters. 

The protocol is outlined in figure 16A. Briefly, chromatin from HeLaS3 cells was digested 

with MNase to obtain a first soluble fraction (S1), comprising small fragments (mono-, di-

nucleosomes), and a second soluble fraction (S2), comprising large fragments (tri- to epta-

nucleosomes) (Figure 16B, left panel). The fraction enriched in mono-nucleosomes (Figure 

16B, right panel) was incubated with antibodies recognizing either H3K9me3 or 

H3K4me3. For immunoprecipitation we chose two antibodies widely employed by the 

community for ChIP-Seq studies, with proved specificity and efficiency (163, 164). 

Control ChIP was chromatin input not incubated with antibody. Immunopurified chromatin 

was captured on magnetic beads and the extracted proteins were separated by SDS-PAGE 

(Figure 16C). Each core histone from the fractionated nucleosomes was analyzed by LC-

MS/MS.  

 

 

 



67 
 

 

Figure 16. Scheme of the N-ChroP strategy, combining N-ChIP and MS analysis. A) 

Scheme of the experimental approach. B) DNA isolated after digestion with micrococcal 

nuclease S7 (MNase), separated in fractions containing mono- (S1) or poly-nucleosome 

(S2) (left panel) and chromatin input (right panel), resolved on a 1% agarose gel stained 

with ethidium bromide. C) SDS-PAGE of ChIP-ed S1 fraction: core histones H3, H4, H2A 

and H2B are visible around and below the 17kDa band of the pre-stained protein marker, 

with H3 and H2B co-migrating. 

                           

     

A) 

B) C) 
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Histone PTMs were first identified and then quantified by calculating the area 

under the curve (AUC) of each peak corresponding to every specific modified peptide 

(Figure 17). Then, their relative abundance was estimated, both in the Input and in the 

ChIP, by dividing the area under the curve (AUC) of each peptide by the sum of the areas 

corresponding to all observed modified forms of that peptide. Modification enrichment was 

calculated as the ratio between the relative abundance in the ChIP-ed octamer and the 

corresponding relative abundance estimated from input. 

 

Figure 17. Representative scheme of hPTMs analysis. Zoomed mass spectra for the 2+ 

charge of the unmodified, mono-, di-, and tri-methylated K9, for Input and ChIP, and 

extracted ion chromatograms (XIC) constructed for each precursor at the corresponding 

m/z value for the same samples.  

 
 

                 

 

The analysis first focused on histone H3 (9-17) and (3-8) peptides: a specific enrichment of 

K9me3, as well as K4me3, associated with the depletion of unmodified H3 and H3 mono-

methylated at K9 and K4, demonstrated the efficiency and specificity of the ChIP with the 

respective antibody (18A). The depletion of acetylated H3K9/K14 was also observed in 
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H3K9me3-nucleosomes (Figure 18A). Western blot (WB) analysis confirmed the 

enrichment of K9me3 and K4me3 obtained at MS level (Figure 18B).  

 

Figure 18. Validation of the N-ChroP approach. A) Relative enrichment of K9me3 (co-

existing or not with acetylated K14) and K4me3, in peptides (9-17) and (3-8) of H3, 

respectively. The results were obtained upon N-ChIP using antibodies α-H3K9me3 and α-

H3K4me3 (#1 and #2 indicate two replicates). The enrichment is expressed as a log2 Ratio 

of the relative abundance of each methylation in the ChIP sample as compared to input and 

represents the averages ± SEM (Standard error of the mean) from three independent 

experiments. B) WB validation of H3K9me3 and H3K4me3 enrichment in the 

corresponding ChIPs: an aliquot of ChIP-ed material and of Input were loaded on SDS-

PAGE, and immunoblotted with antibodies H3K9me3 and H3K4me3. 0.2 % and 0.04% of 

input were loaded for H3K9me3 and H3K4me3, respectively, for a semi-quantitative 

comparison with IP. Unmodified H3 is the loading control.  

                                 

                             

                                                       

 

The potential cross-reactivity of the anti-H3K9me3 antibody with other methyl Lysines 

was excluded with a competition assay where the chromatin was incubated with antibody 

α-H3K9me3 in the presence of an excess of different soluble peptides bearing the 

following modifications: K9me2, K4me3, K27me3 in H3 and K20me3 in H4. Unspecific 

A) 

B) 
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recognition of other Kme was excluded, except for K9me2, where a mild binding was 

detected (Figure 19A). The comparison between H3K9me3 abundance in flow-through and 

input demonstrated that about 50% of the chromatin regions of interest were captured in 

the ChIP, ruling out a potential bias due to the enrichment of only a sub-fraction of 

chromatin (Figure 19B). 

 

Figure 19. Evaluation of H3K9me3 antibody specificity and efficiency. A) Competition 

assays for antibody specificity test: after MNase digestion chromatin is incubated with 

H3K9me3 antibody with or without excess (150X) of different soluble peptides bearing 

methylations at distinct sites (H3K9me3, H3K9me2, H3K4me3, H3K27me3 and 

H4K20me3): immunoprecipitated materials are separated by SDS-PAGE and stained with 

Colloidal Comassie blue. B) Relative enrichment of unmodified, mono-, di-, and tri-

methylated K9 in flow-through (FT) as compared to input (IN). Histogram represents the 

averages ± SEM from three independent experiments and results in significant depletion of 

K9me3 and K9me2 in FT.  

 
 

              

 

 

 

A) B) 
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5.2 Label free quantification of histone PTMs enriched in repressed and active 

chromatin domains 

The hPTMs enriched in silent and active chromatin domains are summarized in the 

heatmap and histograms (Figure 20).  

 

Figure 20. Relative enrichment of modifications in H3K9me3 and H3K4me3 

mononucleosome. Heatmap of hPTMs enrichment for all the modified resides identified 

on H3, H4 and H2A histones. Each row corresponds to a distinct histone modification, 

whereas columns correspond to the different antibodies used for the ChIP (n.d. means not 

detected). 
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Focusing on the modifications associated on histone 3, our analysis on intact native 

nucleosomes validated the selectivity of our antibodies and overall recapitulated the 

“chromatin canonical states” described by Ernst and Kellis and based on a meta-analysis of 

a large set of data (165). In particular, H3K4me1 was found depleted in H3K9me3 

nucleosomes (Figure 21A), since K4me1 is preferentially associated with hyperacetylated 

H3 and never observed in combination with H3K9me3; proving that H3K4me1, likewise 

H3K4me2 and H3K4me3, occurs mostly in transcriptionally active chromatin (108). In 

addition, we observed a depletion of K9 methylations and a parallel increase of K14ac and 

K9ac/K14ac in H3K4me3-euchromatin (Figure 21B), in line with genome-wide 

localization studies showing that H3K4me3 marks active promoters in human cells, with a 

pattern very similar to H3K9ac/K14ac (166).      

    

Figure 21. Relative enrichment of modifications in (3-8) and (9-17) peptides of H3 in 

H3K9me3 and H3K4me3 ChIPs. A) Relative enrichment of K4 methylations with α-

H3K9me3. B) Relative enrichment of K9 methylations with α-H3K4me3. Relative 

enrichment of each PTM is expressed as a log2 Ratio, as previously described. 

 

 

 

 

A) B) 
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H3R26me2, in association with K23Ac, was found enriched in H3K4me3 domains 

(Figure 22A and 22B): information on Arginine methylations is overall partial, however 

emerging evidence suggests that H3R26me2 may antagonize Polycomb repression due its 

proximity to K27 (167, 168).  

We found H3K18me1 enriched in silent domains and depleted in active ones 

(Figure 23A and 23B). Indeed, a silencing role for this mark had been already proposed, 

based on two observations: first, its half-maximal life was reported as significantly lower 

than other mono-methylations with gene-activating function (105); second, it could be 

antagonizes K18ac, an active mark (169). 

 

Figure 22. Identification of R26me2 in H3K4me3 regions, enriched by N-ChIP. A) 

Relative enrichment of R26me2 in (18-26) peptide of H3, upon N-ChIP using antibody α-

H3K4me3. Relative enrichment is expressed as a log2 Ratio, as previously described. B) 

MS/MS spectra of H3 (18-26) peptide containing R26 di-methylated. 

 

  

 
 

 

 

 

 

A) B) 
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Figure 23. Relative enrichment of modifications on (18-23) peptides of H3 in H3K9me3 

and H3K4me3 ChIPs. A) Relative enrichment of K18 and K23 methylation and 

acetylation in H3K9me3 and H3K4me3-enriched domains. Relative enrichment of each 

PTM is expressed as a log2 Ratio, as previously described. B) WB validation of 

H3K18me1 enrichment in the H3K9me3 ChIP. Antibodies against H3K9me3 and 

H3K4me3 are used to verify the effective enrichment of specific modifications in the 

corresponding IPs, and unmodified H3 is the loading control.  

 

                            

     

A) 

B) 
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Analysis of methylation profiles on peptide H3 (27-40) identified several distinct 

modified peptides. The chemical alkylation with D6-acetic anhydride, which labels 

unmodified and mono-methylated Lysines with a deuterated acetyl moiety but does not 

react with di-methyl, tri-methyl and acetyl Lysines, allowed distinguishing different 

methylations on K27 and on K36/37. In a case where two of these Lysines are mono-

methylated, it would be challenging to distinguish this species from an isobaric peptide 

containing a single di-methylation modification (Figure 24A). The derivatization approach 

however can remove this isobaric property (Figure 24B). The addition of the deuterated 

acetyl moiety to unmodified and mono-methylated Lysines leads to a mass difference 

between the two peptide-forms. Furthermore, the nature of this modification permits 

specific assignment to Lysines, for example in the case of K27 and K36. These properties 

are displayed in the shifted elution profile (Figure 24A and 24B). 
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Figure 24. Elution profile of H3 (27-40) modified peptide. A) Extracted ion 

chromatograms (XIC) of various 2+ charge modified forms relative to H3(27-40) peptide 

are reported, upon Arg-C digestion, for the time range corresponding to 20-34 min. Peptide 

ions at the specific m/z values correspond  to unmodified, mono- (me1), di- (me2) and tri-

(me3) methylated  H3(27-40) peptides, respectively. B) Extracted ion chromatograms 

(XIC) of various 2+ charge modified forms relative to H3(27-40) peptide are reported, 

upon deuterated acetic anhydride alkylation, prior to trypsin digestion, for the time range 

corresponding to 36-50 min. Peptide ions at the specific m/z values correspond to 

unmodified, mono-(me1), di-(me2) and tri-(me3) methylated H3(27-40) peptides, 

respectively. Peptide ion at 798.9802 m/z is assigned to mono-methylations at K27 and 

K36. Based on the number of D3-acetyl groups and methylations, distinct modification 

degrees at specific Lysines residues can be assigned unambiguously. Furthermore, with 

this strategy certain isobaric peptides (i.e. K27me2 and K36me2) can be efficiently 

resolved during chromatography by their distinct elution times.  
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Quantitative analysis showed that H3K27me1 was enriched in heterochromatin 

(Figure 25A), confirming previous studies where constitutive heterochromatin was 

characterized by the focal enrichment of H3K9me3 and H3K27me1 (170). H3K27me3 was 

slightly enriched in heterochromatin and depleted in euchromatin, as previously described 

(Figure 25A and 25C) (42).  

As expected, H3K79me1/me2 were depleted in H3K9me3 while significantly 

increased in H3K4me3 domains (Figure 25B and 25C); indeed H3K79 methylation is 

proposed to mark active, or at least accessible, genes and to function as a barrier to 

heterochromatin spreading (171).  

Overall, the confirmation of previously described or predicted PTMs synergisms 

confirmed the robustness of the newly established strategy and thus corroborated the 

discovery of novel associations among histone marks, both intra-molecularly and inter-

molecularly within the immunopurified nucleosomes. For instance, we observed that di-

methylated K36 is depleted in both chromatin domains (Figure 25A and 25C): the 

unexpected underrepresentation of this mark in H3K4me3 regions can be explained by 

reasoning that H3K4me3 is typically enriched at proximal promoters whereas 

H3K36me2/3 associate with gene elongation and thus are highly overrepresented at the 3´ 

of genes (172, 173): as such, this evidence further corroborates the high resolution of our 

analysis in dissecting PTMs clustering at a single nucleosome level.   
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Figure 25. Relative enrichment of modifications on (27-40) and (73-83)  peptides of H3 

in H3K9me3 and H3K4me3 ChIPs. A) Relative enrichment of K27 and K36 (A) as well 

as K79 (B) methylations in H3K9me3 and H3K4me3-enriched domains. Relative 

enrichment of each PTM is expressed aas log2 Ratio, as previously described. C) WB 

validation of specific Lysine methylations enrichment in the both ChIPs (#1 and #2 

indicate two replicates): antibodies α-H3K27me3, K79me2 and K36me2 were used. 

Unmodified H3 is the loading control.  

 

 

               
           

                           

 

                  

 

 

A) 

B) 
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We then extended the study to the PTMs on the co-purified histone H2A and H4: 

acetylations on the H2A N-terminus were reduced in the H3K9me3-domains and enriched 

in H3K4me3-regions (Figure 26A); similarly, hyper acetylated H4 was found enriched in 

euchromatin (Figure 26B and 26C) (3). Methylation at Lysine 20 of H4 was over-

represented in H3K9me3-domains while reduced in H3K4me3-domains, as detected by 

WB (Figure 26C): in fact H4K20me3 follows H3K9 methylation during initiation of a 

heterochromatic environment (174).  

 

Figure 26. Relative enrichment of modifications on (4-11) peptide of H2A and on (4-17) 

peptide of H4 in H3K9me3 and H3K4me3 ChIPs. A) Relative enrichment of H2A (A) 

and H4 (B) Lysines acetylation in H3K9me3 and H3K4me3-enriched domains (#1 and #2 

indicate two replicates). Relative enrichment of each PTM is expressed as a log2 Ratio 

Relative enrichment of each PTM is expressed as a log2 Ratio, as previously described. C) 

WB validation of H2A and H4 acetylation enrichment in H3K4me3 ChIP (right panel) and 

H4K20me3 enrichment in H3K9me3 ChIP (left panel). 

 

                                         
   

                                                                     

                         

A) 

B) 

C) 
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In conclusion, our approach indicates that ‘‘active’’ modifications (methylated K4, 

K36, K79, acetylated K9/K14, K18/K23 of H3 and hyper acetylated H2A and H4) are 

enriched in H3K4me3 domains, whereas ‘‘silent’’ modifications (methylated K9, K27 of 

H3 and K20 of H4) are overrepresented in H3K9me3 territories (42, 108, 175).  
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5.3 Large-scale study of chromatin-associated proteins by X-ChIP combined with high 

resolution MS analysis 

To characterize H3K9me3 and H3K4me3-interacting proteins we modified the 

crosslinking ChIP protocol to adapt it for SILAC-based quantitative interactomics (88). 

The protocol is outlined in figure 27A: HeLaS3 cells grown in “light” and “heavy” media 

were fixed with formaldehyde and chromatin was subjected to sonication to generate 300-

500bp lengths of DNA fragments (Figure 27B). Both isotope-coded samples (heavy H and 

light L) were incubated with specific antibodies; in one of the two isotope-channels the 

antibody was saturated with an excess of soluble H3 peptide bearing the modification used 

as bait (either H3K9me3 or H3K4me3). All nucleosomes exposing those PTMs were 

competed out, as well as all co-associating proteins; unspecific proteins, instead, were not 

selectively competed. Two replicates of the X-ChIP were performed swapping the H and L 

channels in which the peptide-competition control was carried out (the so-called “forward” 

and “reverse” format), to increase the discriminating potential of the approach: in the 

forward experiment we incubated the specific antibody with a heavy (H)-labelled 

chromatin preparation while the excess of soluble peptide was added to the light (L)-

labelled chromatin input; in the “reverse” format the two samples were inverted.  

After incubation, the H and L immunopurified chromatins were pooled and 

extracted proteins were separated by SDS-PAGE (Figure 27C).  
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Figure 27. Scheme of the X-ChroP strategy, combining X-ChIP and SILAC 

quantitation. A) Scheme of the experimental approach. B) DNA isolated after shearing by 

sonication, resolved on a 1.3% agarose gel and stained with ethidium bromide. The sample 

prepared for X-ChIP usually contains fragments of 300-500bp. C) SDS-PAGE of co-

immunoprecipitated proteins: lanes were sliced in ten pieces, digested with trypsin and 

analyzed by LC-MS/MS.             
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Samples were subjected to trypsin digestion, followed by MS analysis. Proteins 

were identified and quantified by the MaxQuant software (158). Using a confidence level 

of 99% (protein FDR 1%), 637 and 381 proteins were identified in the H3K9me3 and 

H3K4me3 X-ChIPs, respectively (Figure 28A and 28B). 

 

Figure 28. Proteins identified and quantified in H3K9me3 and H3K4mee3 ChIPs. A) 

Venn Diagrams show the overlap of identified and quantified proteins (Ratio Count 

(RC)≥1) in two experimental replicates of ChIPs for the modification of interest: 

H3K9me3 (left) and H3K4me3 (right), respectively (For=Forward, Rev=Reverse). B) 

Table of identified and quantified proteins for H3K9me3 and H3K4me3 X-ChIPs. 
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The specific enrichment of the modifications used as bait (H3K9me3 and 

H3K4me3), together with the corresponding depletion of the unmodified and mono-

methylated forms, confirmed the efficiency and specificity of the X-ChIP (Figure 29A, 

29B and 29C). 

 

Figure 29. Validation of the X-ChroP approach. A) Zoomed mass spectra for the 2+ 

charge state of the H3K9me2 and H3K9me3 peptides (9-17), in both light and heavy forms 

(upper panel) and extracted ion chromatograms (XIC) constructed for each precursor m/z 

value (lower panel). B) Relative enrichment of K9me3 after H3K9me3 X-ChIP at MS 

level. C) Validation of H3K4me3 enrichment in the corresponding Forward (For) and 

Reverse (Rev) X-ChIPs: aliquot of ChIP-ed and input samples were probed with α-

H3K4me3 antibody. Unmodified H3 is used as loading control.  
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A log2 plot of the H/L ratios of the two sets of identified proteins from forward and 

reverse experiments allowed unambiguous identification of binders (Figure 30A and 30B 

for H3K9me3 and H3K4me3, respectively). 

 

Figure 30. The heterochromatome and euchromatome identified with the X-ChroP. 

Proteins are plotted by their SILAC-ratios in the first (x axis) and second (y axis) SILAC 

experiment for H3K9me3 (A) and H3K4me3 (B) (For=Forward, Rev=Reverse). Specific 

interactors should lie in the upper right quadrant enlarged, close to the diagonal. Red, 

dotted lines represents the cutoffs, selecting the top 40% and 30% of protein. In Blue are 

highlighted already annotated specific interactors, in green the histone variants and 

inorange/violet proteins associated with heterochromatin.  
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The overall spread distribution of the SILAC ratios observed in the scatter plots can 

be explained by the fact that completely independent cells and chromatin preparations were 

used as input for each X-ChIP in the “forward’ and “reverse” experiments, which thus 

represent full biological replicates, resulting in increased variability. Yet, specific 

interactors could be selectively distinguished based on their SILAC H/L ratios (H/L>1 in 

the forward and H/L<1 in the reverse experiment, upper right quadrant of the scatter plot) 

from the background proteins, which have a constant ratio close to 1. In particular, we 

considered a protein to be specifically enriched when present in the top 40% of proteins 

with H/L ratios >1, a filter that, selected 214 and 100 interactors for H3K9me3 and 

H3K4me3, respectively (Figure 31A and 31B), among which we found several well known 

K9me3 and K4me3 binders. For the biological follow-up of novel interactors, we however 

chose even higher stringency and focused on proteins present in the top 20% of the ratios.  

 
Figure 31. Features of the H3K4me3 and H3K9me3 interactomes.  A) Protein ratio 

distribution for the H3K9me3 ChIP Forward (For) and Reverse (Rev) experiments. Venn 

Diagrams of Top 40% of protein ratios for two H3K9me3 X-ChIP replicates, with 71% 

overlap. B) Protein ratio distribution for the H3K4me3 ChIP For and Rev experiments. 

Venn Diagrams of Top 40% of protein ratios for two H3K4me3 replicates, with 65% 

overlap. 
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5.4 X-ChroP characterizes novel players in H3K9me3 and H3K4me3 chromatomes 

Several of the top 40% heterochromatic interactors were previously ascribed to this 

region by independent biochemical experiments and were our positive controls (see table 

in Appendix IV): the three isoforms (α, β, γ) of heterochromatin protein 1 (HP1) (176), 

CDYL1 (177), SETDB1, the euchromatic HMT of the Suv39 family that tri-methylates 

H3K9 (178, 179), the DNMT1 (180); and its interactor  UHRF1 (181), whose recognition 

of H3K9me3 is inhibited when by the acetylation of the same residue (181). RIF1, whose 

localization to a subset of replicating pericentromeric heterochromatin has been described 

(182). In addition to direct H3K9me3 binders, our approach also enabled the identification 

of novel and probably indirect interactions among heterochromatic proteins: for instance, 

we detected the HP1-associated proteins ADNP and POGZ (183, 184) and KDM2A, a 

H3K36 demethylase that associates indirectly to heterochromatin by HP1 binding (148, 

185, 186).  

In the H3K4me3 chromatome (see table in Appendix V) we identified Spindlin1 

(148) and the subunits of the MLL-complexes WDR5, RbPB5 and ASH2 (187, 188). 

Furthermore, our screening confirmed various proteins also identified by Vermeulen with 

the SILAC peptide-pull downs, such as BPTF (189), IWS1 (190), PHF2 and various TBP-

associated factors (TAFs) of the TFIID complex (88). 

These results overall confirmed the robustness of our approach and allowed 

screening for novel interactors with higher confidence. Among the newly identified 

heterochromatin components (Table in Appendix IV), we found heterochromatin protein 1-

binding protein 3 (HP1-BP74) (191). Since the role of HP1-BP74 is still elusive, our result 

suggests a potential role in formation and/or maintenance of the compacted chromatin 

structure, through HP1 binding. We also identified different scaffold attachment factors 

(SAFs) including SAFB1, SAFB2 and SAFA, which bind the AT-rich scaffold/matrix 

attachment regions (S/MARs) of DNA through their scaffold attachment factor-box (SAF-
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Box) (192). Other members of the family found in the H3K9me3 interactome are: SAFB-

like transcriptional modulator (SLTM) (193) and Matrin3 (MATR3), shown to bind to 

S/MARs and to localize in heterochromatin regions, similarly to SAFA (194, 195). With 

this as a basis, SAFB proteins could have a role in higher order heterochromatin 

organization, by interacting with chromatin remodeling complexes, to achieve a more 

compact structure.  

Among novel H3K4me3-interactors we identified the FACT (facilitates chromatin 

transcription) complex, a heterodimer composed of two subunits of 140kDa and 80kDa 

(196). FACT is essential for Pol II-driven transcription on chromatin templates (196) and it 

has an intrinsic histone chaperone activity to reassemble histones onto DNA (197). In 

addition, FACT seems to be associated with actively transcribed Pol II genes in Drosophila 

(198) and in Arabidopsis FACT co-localizes with actively transcribed genes, whereas it 

seems excluded by heterochromatin and intragenic regions (199).  

When directly comparing the chromatomes of silent and active chromatin we 

interestingly observed also minor subset of proteins equally, yet specifically, enriched in 

both fractions (Figure 32): for instance, SMARCC2 and SMARCA5, subunits of the ATP-

dependent chromatin remodeling complex SWI/SNF (200) and HMGB2, a member of the 

high mobility-group family, (201). In addition, we identified various structural components 

of chromatin, with functions in chromosome condensation and separation, such as SCC112 

that binds the Cohesin complex and associates with chromatin throughout the cell cycle, 

regulating sister chromatid cohesion during mitosis (202-204). Interestingly, the vast 

majority of these proteins homogeneously distributed exert more universal structural roles 

in chromatin homeostasis and dynamics, processes not linked to the transcriptional state. 

This may be suggestive of similar roles for those proteins in the same class whose function 

is still uncharacterized. 
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Figure 32. Proteins in common between the H3K9me3 and H3K4me3 interactomes. 

Chromatin purifications identify both distinct and common sets of proteins in the 

H3K4me3 and H3K9me3 interactomes: Venn diagrams show numbers of proteins 

identified and enriched (Ratio ≥ 1) in both data sets (upper) and present in the top 40% of 

proteins ratios (lower).  
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5.5 Accumulation of histone variants at specific chromatin domains 

A great advantage offered by the ChroP approach in respect to other strategies is 

the possibility to characterize histone variants enriched at specific chromatin domains:  

histone macro-H2A.1 (mH2A1), was found among the top 20% interactors of H3K9me3 

chromatin suggesting its prevalent heterochromatic localization (Figure 33A), in line with 

evidences of a putative structural role of this variant in organizing constitutive 

heterochromatin (205, 206). 

The H3.3 variant was instead overrepresented in the H3K4me3 regions (Figure 33B 

and Figure 33C). H3.3 is incorporated into chromatin in a replication-independent manner 

upon chromatin assembly following active transcription of genes; consequently it localizes 

mainly at the promoters of active genes, it is decorated by active marks and contributes to 

the epigenetic memory maintenance of active regions (68, 114, 115, 207). Interestingly, it 

has been suggested that H3.3 reduces the association of linker histone H1 to chromatin, 

thus causing a pronounced drop of H1 occupancy at TSSs and at more distant cis-

regulatory sites of active genes (208). We confirmed this theory finding that H1.4 and H1.5 

were increased in H3K9me3 chromatin, while not changed in H3K4me3 domains (Figure 

33A and 33B, respectively) (209). Instead, the SILAC ratio of H1.2 suggested its 

ubiquitous distribution (Figure 33A and 33B), in apparent contradiction with previous 

reports proposing its euchromatic occurrence (210). The accumulation of individual H1 

variants in either active or repressive chromatin suggests their specific contribution to 

establish or maintain the functional status of these regions. Intriguingly, when investigating 

the modification patterns of these variants, we found evidence of at least one novel mono-

methylation on Lysine 90 of H1.2/H1.4, corresponding Lysine 93 of the H1.5 variant 

(Figure 34A and 34B). This preliminary evidence opens the path to the further 

characterization of PTMs of the H1 variants, at present less investigated, due to the lack of 

the adequate variant-specific antibodies.  
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Figure 33. Histone variants enriched in heterochromatin and euchromatin. A) Mass 

spectra of light and heavy SILAC peak pairs from H2AFY, H1.4, H1.5 and H1.2 

demonstrating a specific enrichment of these proteins in the K9me3 ChIP-ed material 

(heavy), over the mock control (light). B) Mass spectra of light and heavy SILAC peak 

pairs from H3.3, H1.4, H1.5 and H1.2 demonstrating a specific enrichment of this variant 

in the K4me3-ChIPed material over the mock control. C) Confirmation of H3.3 enrichment 

in H3K4me3 domains by standard ChIP followed by WB.  
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Figure 34. Novel Lysine 90 or Lysine 93 mono-methylation associate to H1.2/H1.4 and 

H1.5, respectively. A) Zoomed mass spectrum of precursor ions at m/z [637.8879]2+ and 

[645.9029]2+ corresponding to the peptide SLVSKme1GTLVQTK of linker H1.2, H1.4 

and H1.5 species, in light and heavy forms. B) MS/MS spectrum of the peptide H1.2/H1.4 

(86-97) or H1.5 (89-100), from which sequence and methylation was detected. 

 

 

                  

                    

 

 

 

B) 

A) 



94 
 

The enrichment of H2A.X in heterochromatin (Figure 35A) was the most 

unexpected finding, given the prevalent literature that focuses only on its Ser139-

phosphorylated form (γ-H2A.X), typically described at the DNA damage foci (211, 212). 

Independent validation of the SILAC-based results by standard ChIP, followed by WB, 

confirmed the accumulation of H2A.X in chromatin regions marked by H3K9me3 (Figure 

35B and 35C).       

 

Figure 35. H2A.X heterochromatic enrichment, measured at the protein level.   A) Mass 

spectra of light and heavy SILAC peak pairs from H2AX in the forward H3K9me3 X-

ChIP: the H/L ratio >1 indicate specific enrichment of this protein. B) Western blot of 

unmodified H2A.X upon ChIP with α-K9me3 and α-K4me3. C) Western blot analysis of 

H3K9me3 and H3K4me3 upon ChIP with α-H2A.X (#1 and #2 indicate two replicates). 

Unmodified H3 is the loading control in both cases.  
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In addition, the measurement of α-satellite repeats and of two H3K4me3 target 

genes (213) by qPCR in α-H2A.X ChIPs indicated that this variant enriches for 

heterochromatic DNA regions but not for active genes (Figure 36A and 36B). Finally, 

H2A.X profiles in ChIP-Seq strongly correlated with H3K9me3, not with H3K4me3 

(Pearson's r: 0.796 and 0.139, respectively) (Figure 36C). 

 

Figure 36. H2A.X heterochromatic enrichment, measured at the gene level. qRT-PCR 

measures the levels of α-satellite repeat regions in H2A.X, H3K9me3 and H3K4me3 

domains IP-ed by N-ChIP (A) and X-ChIP (B), over the mock control. The actively 

transcribed genes PAICS and HSPD1 are used as negative controls. C) ChIP-Seq profile of 

H2A.X, H3K9me3 and H3K4me3 compared to the input, across regions of human 

chromosomes 15 (chr15:15,396,089-38,421,489) and 19 (chr19:6,465,305-41,462,000). 

 

          

                          

B) A) 

C) 



96 
 

In order to reconcile this compelling set of results with the general evidence that 

DNA damage foci marked by γ-H2A.X appear both in silenced and actively transcribed 

chromatin, we formulated a higher local density model, where H2A.X is present all along 

the genome, but its accumulation in repressed regions results either from a higher 

frequency of the variant in heterochromatin than in euchromatin within poly-nucleosomal 

stretches of the same length (the beads-on-string structure), or from a general higher 

density of nucleosomes in heterochromatin, as a consequence of narrower nucleosome 

spacing and/or a more compacted higher-order structure of chromatin (30nm fibers or 

loops) (Figure 37). Accurate measurement of H2A.X enrichment using as input 

nucleosome stretches of distinct and defined lengths, obtained via fine tuned MNAse 

digestion, followed by CsCl purification, may enable to dissect the model (214, 215). 

 

Figure 37. Model of “higher local density” of H2A.X in heterochromatin 
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5.6 Heterochromatic enrichment of the WICH complex, recruited to H2A.X 

An in depth analysis of the H3K9me3-interactome revealed a reproducible 

overrepresentation (top 20%) of the WICH (WSTF-ISWI Chromatin remodeling) complex 

(Figure 38A), an observation that we corroborated by immunofluorescence (Figure 38B). 

WICH consists of two subunits: ISWI, the ATPase subunit common to several remodeling 

complexes that mediate nucleosome positioning (216), and WSTF, encoded by the BAZ1B 

gene. Descriptive studies by immunofluorescence had already observed the accumulation 

of WICH in replicating pericentric heterochromatin (217), however these observation were 

not followed by studies elucidating the mechanism of its recruitment and function in this 

region. 

 

Figure 38. WICH involvement in heterochromatin. A) Mass spectra of light and heavy 

SILAC peak pairs from WSTF and ISWI:  the H/L ratios >1 indicate specific enrichment 

of these proteins. B) WSTF co-localize with HP1β, marker of pericentromeric 

heterochromatin (merge) (1 pixel=0.172 mm; original magnification 60X).  
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The interaction between H2A.X and the WICH complex has been recently proven, 

together with the phosphorylation of Tyrosine 142, in bulk extract, of the same variant by 

WSTF. Phosphorylation of Tyr142 seems to be present in basal conditions, but decreases 

upon double strand breaks (DBSs) (218) (Figure 39A), by EYA-mediated de-

phosphorylation (219). These observations indicate that Tyr142p loss may correlate with  

γ-H2A.X appearance; in line with this idea it has been proposed that the two neighboring 

phosphorylations on Try142 and Ser139 may function as a molecular switch that acts as an 

additional level of regulation of the DNA damage response (DDR) (218). Additionally, we 

discovered an enrichment of this Tyr142p in H3K9me3 domains (Figure 39B), opening the 

possibility that this modification could be associated with heterochromtin.  

Taking together these observations, we thus hypothesize that in basal conditions the 

higher local density of H2A.X may lead to preferential Tyr142 phosphorylation in 

heterochromatin by the accumulating WICH complex and that a delayed DDR, marked by 

γ-H2A.X, may be elicited in this region upon DSBs-induction as a consequence of the 

additional required step of Tyr142 de-phosphorylation (Figure 40).  
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Figure 39. H2A.X Y142p enrichment in H3K9me3-enriched domains. A) Left: WB 

analysis of γ-H2A.X and H2A.X Tyr142p in the Input used for X-ChIP in untreated cells 

and 1 and 4 hours after etoposide treatment, with chat expressing relative quantitation upon 

normalization with loading control H3 (right). B) WB of unmodified H2A.X and H2A.X-

Tyr142p (red arrow), upon ChIP with α-K9me3 and α-K4me3. Unmodified H3 is the 

loading control. Black arrow indicates an unspecific band at lower molecular weight, also 

detected in control. Red upper arrow indicates the specific signal for Tyr142p.  

 

 

                                
 

 

 Figure 40. Model of H2A.X/WICH involvement in DDR, with temporal shift of γ-H2A.X 

appearance upon DSBs between eu- and heterochromatin. 
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ChIP experiments with α-H3K9me3 and α-H3K4me3 (Figure 41A) followed by 

WB to monitor the phosphorylation state of H2A.X confirmed the enrichment of H2A.X 

Tyr142p in heterochromatin versus euchromatin in basal conditions (time point 0 hrs). The 

same assay carried out at two time-points after etoposide treatment suggested that the 

decline of Tyr142p in silenced chromatin slightly precedes the appearance of γ-H2AX 

mark (Figure 41B). To confirm this result we repeated the experiment, extending the 

kinetics of DNA damage until 16h (Figure 41C).  

 

Figure 41. Evaluation of γ-H2A.X and H2A.X Y142p levels upon DNA damage. A) WB 

validation of H3K9me3 and H3K4me3 enrichment in the corresponding ChIPs: an aliquot 

of both input and ChIP samples were loaded on SDS-PAGE, transferred on PVDF and 

probed with α-H3K4me3 (up) α-H3K9me3 (down). B) Upper chart: normalised level of γ-

H2AX and H2AX Y142p for H3K4me3 and H3K9me3 chromatin plotted at basal level 

and after at two time points (1 and 4 hrs) upon etoposide treatment and after X-ChIP 

enrichment, as monitored by WB (bottom panel). The signal for unmodified H3 was used 

as the control to normalize for loading variation. C) WB validation of γ-H2AX and H2AX 

Y142p levels in H3K4me3 and H3K9me3 domains at basal level and after four time points 

(2, 4, 8 and 16 hrs) upon etoposide treatment. 
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6. DISCUSSION 

Chromatin is a highly structured nucleoprotein complex made of histone proteins 

and DNA that controls nearly all DNA-dependent processes. Chromatin plasticity is 

regulated by different associated proteins, post-translational modifications on histones 

(hPTMs) and DNA methylation, which act in a concerted manner to enforce a specific  

“chromatin landscape”, with a regulatory effect on gene expression. Mass spectrometry-

based proteomics has emerged as a powerful analytical method for the analysis of histone 

proteins, their post-translational modifications and variants, as well as their associated 

“writers” and “readers”. ChroP approach represents a novel analytical strategy for the 

proteomic investigation of chromatin at the resolution of a few nucleosomes. ChroP uses a 

modified version of ChIP to isolate native mononuclesomes up to crosslinked 500bp 

oligonucleosomal stretches derived from distinct chromatin domains. Amount, purity and 

quality of the isolated chromatin enable the subsequent mass spectrometric examination of 

the protein component, providing information on histone modification patterns, variants 

and interactors. For the optimization of the method, we focused on two distinct, non 

overlapping chromatin compartments: on the one hand inactive pericentromeric 

heterochromatin and transcriptionally repressed patches of chromatin in actively 

transcribed areas, marked by H3K9me3 and on the other hand active promoters in 

euchromatin, characterized by H3K4me3.  

The analysis of the PTMs enrichment on histone 3 in the H3K9me3 and H3K4me3 

domains confirmed the results recently described using IP of HPLC-purified H3 (28), thus 

verifying the selectivity of the antibodies used in our study. Overall the annotation of the 

H3K9me3 modificome revealed a significant enrichment of known heterochromatic marks, 

with the corresponding depletion of active modifications, whereas an opposite trend was 

observed in the H3K4me3 domains, as expected. The accordance of our results with 

previous studies describing PTMs patterning within the same histone molecule proved the 
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robustness of the strategy, for the following investigation of novel PTMs; more 

importantly, ChroP exhibits a unique strength in revealing PTMs associations also between 

the different core histones within the same mono-nucleosome, enriched at quasi-purity in 

N-ChIP. 

The SILAC-based investigation of the corresponding interactomes by X-ChIP 

confirmed several previously described interactions, thereby validating our method; in 

addition, we identified numerous novel candidate interactors, which have not been 

experimentally described previously. 

The remarkable advantage offered by ChroP consists in the fact that homogeneous 

300-500bp nucleosomal stretches, in which weak protein–protein interactions are stabilized 

by formaldehyde crosslinking, are purified and MS-analyzed: this enables the dissection of 

not only modification “readers”, but also more complex architectural structures, resulting 

from both direct and indirect interactions within intact chromatin domains. For instance, 

the selected H3K9me3 interactome revealed the enrichment of both KDM2A and HP1, 

which previously could be functionally associated only by the intersection of distinct 

independent assays, such as peptide- and GFP- pull downs (147). This gain comes at the 

cost of simplicity of interpretation of the proteomic readout; hence these new composite 

hierarchical protein architectures need to be further dissected (220).   

The two facets of ChroP, N- and X-ChIP, are highly complementary, with the 

possibility of arranging in a unique puzzle the different pieces composing chromatin 

architecture: for instance, the analysis of the H3K9me3 modificome reveals an unexpected 

depletion of H3K36me2/me3, which is explained by the recruitment of KDM2A found by 

the interactomics investigation of the same region. 

Besides recapitulating known interactors, ChroP indicates putative localization in 

distinct chromatin compartments for histone variants and binders not previously described; 

a representative case is offered by the H1 isoforms: the accumulation of individual H1 

variants in either active or repressive chromatin suggests their specific contribution to 
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establish or maintain the functional status of these regions. Intriguingly, when investigating 

the modification patterns of these variants, we found evidence of at least one novel mono-

methylation. This preliminary evidence opens the path to the further characterization of 

PTMs on H1 variants, at present less investigated, due to the lack of the adequate variant-

specific antibodies.  

The presence of the WICH complex and H2A.X in the H3K9me3 chromatome is 

particularly exciting: the “higher local density” of H2A.X in heterochromatin can be 

further developed including the evidence of WICH heterochromatic enrichment, thus 

leading to the hypothesis that H2A.X accumulating in heterochromatin is preferentially 

phosphorylated on Tyr142 by WSTF. Since it has already been proposed that Tyr142p and 

Ser139p function as a molecular switch, we believe that WICH and Tyr142p provide an 

additional regulatory step of DDR in heterochromatin, with an impact on the genomic 

stability in this chromatin region. Some evidence seems to support our model: first,            

γ-H2A.X foci are largely excluded from heterochromatin as compared to active 

euchromatic compartments both in human cells and budding yeast (221-223); second, in 

both human and mouse embryonic fibroblasts, radiation-induced DSBs associated with 

condensed chromatin are repaired more slowly than in euchromatin (224). Despite these 

suggestions, the mechanism underlying the delayed and diminished γ-H2A.X signal in 

heterochromatin remains unclear. According to our model, the delay in γ-H2A.X 

occurrence in heterochromatin may be due to the presence of basal H2A.X Tyr142p that 

must be erased in a regulated manner, preceding γ-H2A.X appearance. In euchromatin,      

γ-H2A.X takes place more quickly, in early DDR, since this intermediate regulatory step is 

not present. Our results represent a very preliminary validation of this model and the first 

step towards the understanding of how the cells may adjust the DNA repair process in 

relation to chromatin compartmentalization (225). In this perspective, the observed 

correlation between aberrant expression of Su(var)3-9, with the consequent alteration of 
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H3K9me3 pattern and HP1 binding and the genomic instability of heterochromatin during 

mammalian development, is highly suggestive (226-228). 

The recruitment of WICH to heterochromatin cannot be explained solely by the 

described binding of WSTF to H2A.X; in fact, although our results suggest a higher local 

density of this variant in heterochromatin, the appearance of the Ser139-phosphorylated 

isoform in both silent and active regions upon DNA damage is not deniable; hence, 

additional mechanisms, including either the binding of the complex to co-clustering 

hPTMs or its interaction with co-enriching proteins, must be postulated. Further studies on 

WSTF interactomes, both soluble and chromatin-bound, will address this open question 

Overall the ChroP approach described here offers the possibility to dissect the 

synergism of hPTMs, variants and non-histonic interactors at functionally distinct 

chromatin domains, with a resolution of mono- to oligo-nuclesomes. The approach is 

relatively easy to setup and to be implemented in the epigenetics groups, given the limited 

changes made to the conventional N- and X- ChIP protocols, used for ChIP-Seq studies. 

Hence, for the relatively straightforward optimization, we predict that ChroP will be 

amenable to numerous applications in more functional studies, for instance to study the 

dynamic changes of the modificome and intractome of specific chromatin regions upon 

various perturbations, such as global transcriptional activation, differentiation, depletion of 

distinct chromatin components, or treatment with epigenetic drugs.  Therefore our ChroP 

strategy emerges as an additional and valuable tool in the arsenal of analytical strategies 

available to study chromatin composition and dynamics in a system-wide fashion. 
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7. CONCLUSIONS AND PRESPECTIVES 

During these years I have established a novel proteomics approach combining two 

common and complementary methods, typically employed separately by the researchers to 

investigate the epigenetic components of chromatin: chromatin immunoprecipitation and 

Mass Spectrometry analysis. On the one hand MS served to characterize the PTMs co-

associated to enriched sub-domains and on the other hand to annotate the corresponding 

“chromatin interactome”, representing all the non-histonic proteins specifically interacting 

within the same chromatin domains. The results that I have obtained characterizing the 

composition of heterochromatin and euchromatin support the vision that chromatin is a 

composite puzzle, made of many pieces, which coordinately act to regulate the functional 

state of the underlying DNA. Due to this complexity, novel approaches such as ChroP, 

based on the combination of different analytical techniques, may represent the solution to 

better understand how the structural and functional interactions among different epigenetic 

components of chromatin enforce specific functional transition on the genome. 

Although ChroP proved to be a very robust approach and highly complementary to 

more conventional strategies to analyze chromatin, I have envisaged two minor limitations 

of the project: the first is more methodological, and the second regards the application of 

the method to functional studies.  

Concerning the methodological aspect, although N-ChroP followed by “Bottom 

Up” MS analysis enables to characterize the modifications associated with distinct 

chromatin domains, the detection of the combinatorial aspect of the histone code has been 

only partially addressed in my study. As discussed in the introduction (see paragraph 

2.2.2), the “Bottom Up” analysis with CID fragmentation offers only a partial view of the 

complex cross-talks among different hPTMs; therefore I would be interested in analyzing 

the nucleosomes purified by N-ChroP with a combination of “Bottom Up” and “Middle 

and Top Down” approaches, to effectively achieve a more comprehensive view on the 
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hPTMs stochiometry and abundances at specific regions and to finally “crack” the code. In 

fact, “Middle and Top Down” methods are employed to study longer peptides up to intact 

proteins, respectively. The longer peptides can be generated either spontaneously by 

missed cleavage of trypsin or by using different proteases, such as Asp-N and Glu-C. The 

fragmentation technique employed to analyze those longer and highly charged peptides is 

electron transfer dissociation (ETD). Recently, ETD was also employed to improve the 

detection of Arginine methylation; hence I plan to focus on histone Arginine methylation, a 

modification that is less characterized than Lysine methylation, but instead equally 

biological relevant. 

The second limitation of my study regards the fact that I restricted the use of ChroP 

for the analysis to chromatin domains of HeLa cells, which makes my study an optimal 

proof of principle but not particularly relevant in a functional perspective. In fact HeLa 

were a useful cell line for the set up of the method because they are easy to culture and to 

scale up; furthermore the hPTMs patterns are largely characterized in bulk. However, they 

are not representative of specific cell type or specific function. In this respect, I think that 

applying this approach to a different model system and in a dynamic manner will be useful 

to profile the epigenetic changes during functional transitions, such as a global wave of 

transcriptional activation or a change from healthy condition to disease. In the follow up of 

my project, we started to explore distinct chromatin domains using macrophages as a 

model system, upon LPS stimulation. Moreover, we intend to use ChroP for a more in-

depth dissection of euchromatin, investigating cis-regulatory regions characterized by 

H3K4me1 (enhancers) and H3K4me3 (transcription start sites, TSSs). Taking advantage of 

these two modifications as bait, we started to use N-ChIP and X-ChIP to enrich these 

regions and to use MS to analyse hPTMs, variants and protein complexes, before and after 

LPS stimulation. As such we will be able to quantitatively profile how they dynamically 

change in a coordinated manner, upon inflammation. 
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9. APPENDIX 

APPENDIX I. MS/MS spectra of H3 (3-8) peptide, containing the Lysine 4. 

Fragmentation spectra were used for the site-specific assignment of modifications within 

the peptides; MASCOT search, with the most intense ions identified in the MSMS spectra 

and relative calculated score: experimental spectra are displayed. 
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APPENDIX II. MS/MS spectra of H3 (9-17) peptide, containing the Lysine 9 and 14. 

Fragmentation spectra were used for the site-specific assignment of modifications within 

the peptides; MASCOT search, with the most intense ions identified in the MSMS spectra 

and relative calculated score: experimental spectra are displayed. 
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APPENDIX III. Informations contained in the interactome tables. 

Gene Names: Name(s) of the gene(s) associated to the protein(s). 

Uniprot: UniProt (http://www.uniprot.org) ID(s) of the protein(s).  

Peptides: The total number of peptide sequences associated with the protein group (i.e. for 

all the proteins in the group) (For and Rev, indicate Forward and Reverse experiments, 

respectively). 

Unique Peptides: The total number of unique peptides associated with the protein group 

(e.g. these peptides are not shared with another protein group). (For and Rev, indicate 

Forward and Reverse experiments, respectively). 

Sequence Coverage [%]: Percentage of the sequence that is covered by the identified 

peptides of the best protein sequence contained within the group. 

Mol. Weight [kDa]: Molecular weight of the best protein sequence contained within the 

protein group. 

Sequence Length: The total length of the best protein sequence contained within the group. 

Ratio H/L For: Ratio H/L Normalized divided to the standard deviation in the Forward 

experiment.  

Ratio H/L Count For: Number of redundant peptides used for quantitation in Forward 

experiment. 

Ratio H/L Rev: Ratio H/L Normalized divided to the standard deviation in the Reverse 

experiment.  

Ratio H/L Count Rev: Number of redundant peptides used for quantitation in the Reverse 

experiment. 
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APPENDIX IV. Proteins identified and quantified with a least two peptides, one of 

which unique, in the H3K9me3 interactome. Protein Group output from MaxQuant 

software, representing the Top40% of proteins binders. 

 

 



Gene Names Uniprot Peptides 
For 

Peptides 
Rev 

Unique 
Pep. For 

Unique 
Pep. Rev 

Sequence Coverage     
[%] 

Mol. 
Weight     
[kDa] 

Sequence Length Ratio 
H/L For 

Ratio H/L 
Count For 

Ratio 
H/L Rev 

Ratio H/L 
Count Rev 

CBX1 B5MD17 3 2 2 1 18.5 21.915 189 3.2932 3 0.0996 1 

HIST2H3PS2 Q5TEC6 6 5 1 1 27.2 15.43 136 4.4974 13 0.1133 6 

BAF O75531 3 2 3 2 56.2 10.058 89 4.3362 4 0.1347 2 

H2AFA P04908 6 4 1 1 57.7 14.135 130 7.8716 6 0.1578 1 

SFRS10 Q59GA1 6 5 6 5 20.4 33.571 289 3.9058 10 0.1863 16 

DEK P35659 12 9 12 9 30.1 42.674 375 3.0638 29 0.2130 26 

SP140L Q9H930-1 2 2 1 1 3.4 67.005 580 2.5578 2 0.2315 1 

SFRS3 P84103 6 5 5 4 38.4 19.329 164 2.7555 9 0.2460 10 

NP220 Q14966-1 21 13 21 13 12.9 220.62 1978 4.6609 22 0.2464 16 

SFRS6 Q13247-1 8 6 7 5 24.4 39.586 344 3.6453 12 0.2479 16 

ASF Q07955-1 11 10 10 10 47.6 27.744 248 4.0771 29 0.2491 35 

TRA2A Q13595-1 2 2 2 2 8.2 32.688 282 5.1072 3 0.2492 3 

HIST2H2AB Q8IUE6 4 2 1 1 40 13.995 130 3.3613 3 0.2505 1 

SFRS7 Q16629-1 7 5 6 4 29.4 27.366 238 3.0631 18 0.2587 16 

SAFB A0AV56 17 16 8 6 22.4 102.85 917 5.4024 16 0.2606 11 

HNRNPU Q00839-1 33 30 33 30 41.3 90.583 825 3.6163 125 0.2642 122 

SFRS2 Q01130 7 6 7 6 37.1 25.476 221 3.8919 10 0.2721 19 

CBX3 Q13185 7 5 5 4 36.6 20.811 183 3.5583 18 0.2739 15 

KIAA0138 Q14151 25 26 16 16 31 107.47 953 5.8520 42 0.2744 41 

YLPM1 B4DMQ9 10 4 10 4 5.3 241.64 2146 4.5553 9 0.2813 4 

RNPU1Z P08621-1 9 10 9 10 29.5 51.556 437 3.2193 10 0.2819 19 

 
Q1AHP8 4 2 1 1 17.6 28.019 245 3.5338 5 0.2840 1 

RBM12B Q8IXT5 13 11 13 11 18.5 118.1 1001 5.3077 26 0.2843 11 

H4/A P62805 11 10 11 10 54.4 11.367 103 3.4679 212 0.2869 122 

H1F2 P16403 18 13 5 3 46 21.364 213 3.0975 108 0.2935 94 

H2AFY O75367-1 15 16 15 16 51.9 39.617 372 3.2085 68 0.2955 37 



RBAP48 Q09028 5 4 1 1 12 47.655 425 4.3997 1 0.2985 1 

TOP2 P11388-4 34 34 25 25 22 182.68 1612 2.4628 71 0.3030 77 

AHCTF1 Q8WYP5-2 12 12 12 12 7.2 256.25 2304 2.4872 18 0.3033 8 

ATAD2 Q6PL18-1 16 14 16 14 17.9 158.55 1390 2.4075 26 0.3039 17 

HRS Q13243-1 5 3 4 2 19.9 31.263 272 3.3101 6 0.3051 2 

H2BFD B4DR52 13 12 2 2 50 18.041 166 2.3233 27 0.3057 20 

RIF1 C9JI70 2 4 2 4 2.9 274.48 2472 2.1838 3 0.3057 4 

HNRNPA1 P09651-1 18 18 12 11 51.9 38.845 372 3.7049 123 0.3148 66 

INCENP Q9NQS7-1 8 4 8 4 9 105.43 918 2.5677 9 0.3149 3 

SFRS9 Q13242 8 6 7 6 35.3 25.542 221 4.5666 12 0.3209 4 

MET Q9NWH9 15 14 15 14 17.2 117.15 1034 4.5699 28 0.3222 13 

BRE1A Q5VTR2 3 3 2 2 5.9 113.98 977 4.2904 2 0.3236 2 

HNRPG P38159 16 14 5 5 39.1 42.331 391 4.7885 50 0.3251 41 

BRE1B O75150-1 2 2 1 1 2.5 113.68 1001 2.5983 1 0.3254 1 

FUSIP1 O75494-1 5 4 5 4 23.3 31.3 262 5.1612 7 0.3338 8 

H2BFH P23527 13 12 2 2 65.9 13.906 126 2.4963 158 0.3350 92 

ADNP Q9H2P0 2 2 2 2 2.6 123.56 1102 2.5284 3 0.3371 2 

CBX5 P45973 9 8 8 8 53.4 22.225 191 2.3396 17 0.3393 11 

FTP3 P55795 6 5 1 1 17.1 49.263 449 6.2432 1 0.3444 1 

BTF3 P20290-1 4 3 4 3 20.9 22.168 206 2.9262 5 0.3457 3 

H1F5 P16401 12 10 6 7 34.5 22.58 226 2.6446 15 0.3503 16 

WIZ O95785-1 6 5 6 5 7.7 178.67 1651 4.4522 5 0.3515 3 

CGI-55 Q8NC51-1 5 6 5 6 17.4 44.965 408 6.5009 7 0.3517 9 

HNRPDL O14979-1 4 5 3 4 14.5 46.437 420 3.0269 8 0.3520 7 

HNRNPA3 P51991-1 6 8 5 6 31.2 39.594 378 3.6357 21 0.3568 14 

H2AFZ P0C0S5 4 4 2 2 22.1 18.414 181 3.2308 11 0.3572 7 

H1F4 P10412 14 11 1 1 42.5 21.865 219 2.6054 13 0.3583 4 

BAZ1B Q9UIG0-1 36 31 36 31 29.9 170.9 1483 2.5349 56 0.3594 39 



ZFR B5MEH6 8 10 8 10 15.4 115.15 1056 2.7555 9 0.3645 9 

C3orf63 Q9UK61-1 2 11 2 11 7 189.03 1670 2.4775 2 0.3671 8 

PHIP Q8WWQ0 9 6 9 6 6.2 206.64 1821 2.7464 10 0.3688 7 

RCC1 Q16269 9 8 9 8 27.9 48.145 452 3.0074 24 0.3716 12 

U2AF2 P26368-1 3 3 3 3 15.8 53.5 475 3.1405 3 0.3721 4 

HCC1 Q14498-1 6 6 6 6 23.2 59.379 530 2.2574 12 0.3726 17 

HP1BP3 Q5SSJ5-1 19 15 19 15 30.9 61.206 553 3.2489 44 0.3764 29 

KIAA0650 A6NHR9-1 36 29 36 29 20.7 226.37 2005 2.2309 53 0.3804 31 

CENPV Q7Z7K6-1 5 5 1 1 29.1 29.946 275 2.6043 8 0.3856 7 

ORC1 Q13415 2 3 2 3 4.4 97.349 861 3.6960 2 0.3901 3 

TOP2B Q02880-1 18 18 9 9 14.1 183.26 1626 3.2180 11 0.3924 8 

HDGF P51858 7 7 7 7 34.6 26.788 240 3.0906 14 0.3961 9 

TRIP12 Q14CA3 8 8 8 8 6.3 225.52 2040 2.4182 7 0.4025 8 

NONO Q15233 21 20 18 17 46.5 54.231 471 3.6094 69 0.4036 41 

HMG1 P09429 9 7 6 4 40 24.893 215 2.8833 21 0.4052 8 

GEMIN5 Q8TEQ6 2 2 2 2 1.1 168.56 1508 3.0161 1 0.4074 1 

hCG_15646 B1AMT5 10 11 10 11 10.4 145.75 1268 2.5166 11 0.4083 9 

 
C9JMX5 5 4 1 1 24.6 27.378 240 2.7292 5 0.4105 6 

ITM1 P46977 2 4 2 4 5.8 80.529 705 2.2627 3 0.4139 5 

CHD4 Q14839-2 14 14 14 14 8.7 220.83 1940 2.1331 19 0.4143 19 

CREAP1 O95232-1 4 2 4 2 12 51.466 432 2.2664 4 0.4156 3 

U2AF1 Q01081 4 5 4 5 17.9 27.872 240 2.5454 8 0.4166 9 

ANP32B Q92688-1 6 2 4 2 28.7 28.787 251 2.4901 6 0.4173 2 

PC4 P53999 3 2 3 2 26 14.395 127 2.7610 7 0.4185 6 

SMT3B P61956 2 2 1 1 23.2 10.871 95 2.6900 12 0.4187 13 

KIAA0067 Q15047-1 7 8 7 8 8 143.16 1291 8.4735 4 0.4235 1 

USP31 Q86UV5-1 3 2 3 2 5.3 120.52 1047 3.0686 2 0.4255 1 

PBSCG A8MWD9 5 3 5 3 36.8 8.544 76 2.4652 6 0.4290 4 



CXXC8 Q9Y2K7-1 8 7 8 7 8.8 132.79 1162 2.1987 17 0.4304 7 

AUF1 Q14103-1 9 12 8 11 32.1 38.434 355 3.2811 29 0.4307 32 

RPL23A P62750 11 11 11 11 43.6 17.695 156 2.7402 29 0.4362 36 

SMARCA5 O60264 39 36 39 36 36.7 121.9 1052 2.4841 60 0.4377 45 

UHRF1 A8K024 15 12 15 12 29.3 91.099 806 2.2292 21 0.4393 13 

LMN2 Q03252 25 20 19 15 42.3 69.948 620 2.2876 36 0.4394 16 

CDC46 P33992 25 22 25 22 45.1 82.285 734 2.2345 50 0.4400 31 

HNRNPH3 P31942-1 6 6 5 5 26.3 36.926 346 3.2615 11 0.4445 9 

UBA52 P62987 9 8 9 8 53.9 14.728 128 2.8335 97 0.4455 89 

CENPV Q7Z7K6-3 5 5 1 1 28.3 29.73 272 2.3588 1 0.4473 1 

AIM P26358-1 35 28 35 28 26.3 189.56 1678 2.2571 40 0.4533 29 

KIAA1637 Q9HCD5 3 3 3 3 7.8 65.536 579 6.9046 2 0.4570 2 

ARGLU1 Q9NWB6-1 3 2 3 2 15 33.216 273 2.5414 4 0.4611 4 

KIAA0461 Q7Z3K3-1 2 3 2 3 3.3 155.34 1410 3.0215 2 0.4618 2 

HNRNPF P52597 8 7 6 5 25.3 45.671 415 2.9972 14 0.4620 11 

HNRNPC P07910-2 13 12 13 12 44.4 32.337 293 2.5864 86 0.4624 50 

HNRNPA2B1 P22626-1 21 21 20 20 63.5 37.429 353 3.4488 114 0.4657 93 

CDCA8 Q53HL2 7 2 7 2 30.4 31.323 280 2.3632 8 0.4659 2 

SET Q01105-1 3 4 3 4 22.8 33.488 290 2.4842 6 0.4661 5 

hCG_22498 B2R7C5 31 29 31 29 44.2 95.907 853 2.2148 66 0.4675 36 

LMN1 P02545-1 50 49 3 3 64.8 74.139 664 2.2876 345 0.4685 236 

ZNF326 Q5BKZ1-1 6 4 6 4 12 65.653 582 2.6638 8 0.4720 6 

FANCI Q9NVI1-3 8 7 8 7 11.3 149.32 1328 2.6239 6 0.4730 6 

KIAA1291 Q9HAV4-1 2 2 2 2 1.7 136.31 1204 2.4632 2 0.4730 2 

HNRNPL P14866 15 14 14 13 29.4 64.132 589 3.5264 43 0.4735 35 

HNRPCL2 Q9UKM9-1 11 11 11 11 29.3 32.55 307 2.7391 17 0.4741 15 

ILF2 Q12905 10 9 10 9 33.1 43.062 390 2.4864 19 0.4741 15 

KHDRBS1 Q07666-1 6 5 6 5 14 48.227 443 3.9629 11 0.4752 10 



CGI-59 Q9Y383-1 7 5 3 1 16.8 54.223 458 2.5075 12 0.4761 14 

LMN2 P20700 38 35 32 30 59.7 66.408 586 2.3030 114 0.4785 79 

RBM14 Q96PK6-1 15 14 13 11 27.5 69.491 669 2.8425 39 0.4792 22 

DDX46 Q7L014 19 13 19 13 23 117.46 1032 2.1652 22 0.4807 24 

H1F0 P07305 4 4 4 4 20.6 20.863 194 3.0118 6 0.4814 4 

TARDBP Q13148 4 4 4 4 12.3 44.991 416 2.5003 6 0.4814 5 

KIAA0648 Q29RF7-1 10 14 9 12 15.8 150.83 1337 2.2261 11 0.4861 14 

CG1 Q86UP2-1 9 20 9 20 18.3 156.27 1357 2.5712 11 0.4894 24 

SPNR Q96SI9-1 7 8 4 5 13.7 73.652 672 3.5726 4 0.4899 5 

HNRNPA0 Q13151 9 7 9 7 39.3 30.84 305 3.1982 20 0.4906 17 

ANP32A P39687 7 3 3 2 26.5 28.585 249 2.5897 8 0.4942 3 

PSF P23246-1 22 24 20 22 38.3 76.149 707 3.1636 74 0.4950 68 

H1FX Q92522 10 9 10 9 41.3 22.487 213 2.9653 29 0.4958 15 

MLN70 P31949 5 4 5 4 52.4 11.74 105 3.0840 8 0.4966 5 

DDX5 P17844 29 28 22 21 41.5 69.147 614 2.6988 73 0.4968 54 

FUS P35637-1 6 6 4 4 11.2 53.376 528 3.6193 18 0.4997 18 

DNAJC9 Q8WXX5 9 4 9 4 28.8 29.909 260 3.3611 10 0.5003 3 

CPSF1 Q10570 6 6 6 6 6.8 160.88 1443 3.1944 7 0.5028 5 

DBP2 O60231 4 2 4 2 4.3 119.26 1041 2.6248 4 0.5038 2 

RBAP46 Q16576 6 4 2 1 15.3 47.82 425 4.5516 7 0.5084 5 

KIAA0144 Q14157-2 3 6 3 6 6.5 114.53 1087 2.6252 3 0.5105 8 

HNRNPK P61978-3 19 18 19 18 53 48.562 440 3.2319 77 0.5105 79 

HNRNPR O43390-1 20 20 1 1 37.9 70.942 633 3.0983 66 0.5136 62 

MATR3 A8MXP9 21 21 21 21 33.4 99.966 895 2.6669 55 0.5152 70 

HELLS Q9NRZ9-1 14 7 14 7 18.6 97.073 838 2.7513 16 0.5214 5 

ABBP1 Q99729-2 10 9 10 9 29.8 35.967 332 2.9267 28 0.5251 23 

SNRPE P62304 4 2 4 2 65.2 10.803 92 3.0900 4 0.5256 1 

BAF170 Q8TAQ2-1 2 5 1 2 5.4 132.88 1214 3.1546 2 0.5285 6 



CTDSPL2 Q05D32-1 3 3 3 3 5.8 52.998 466 3.2513 3 0.5334 2 

DXS423E Q14683 33 35 33 35 34 143.23 1233 2.1855 56 0.5385 41 

HNRNPH1 P31943 11 9 5 4 35.2 51.229 472 2.3682 47 0.5432 28 

CFIM25 O43809 9 8 9 8 39.2 26.227 227 2.8758 15 0.5444 9 

APE P27695 9 8 9 8 46.2 35.554 318 3.0723 16 0.5484 10 

MCM6 Q14566 30 26 30 26 43 92.888 821 2.1212 49 0.5492 31 

HNRNPUL2 Q1KMD3 13 17 13 17 26.4 85.104 747 3.0236 20 0.5498 20 

RPS11 P62280 11 11 5 4 57.6 18.431 158 2.2376 26 0.5533 25 

FUBP2 Q92945-1 16 14 13 12 31.4 73.114 711 2.7493 17 0.5550 15 

RPS24 P62847-1 4 3 4 3 16.3 32.43 289 2.4187 5 0.5578 6 

KIF4 O95239-1 3 2 3 2 2.4 139.88 1232 3.0106 3 0.5589 1 

EIF4B P23588 3 2 3 2 6.5 69.725 616 2.4866 4 0.5598 3 

HMG2 P26583 8 6 6 4 33 24.033 209 2.8399 17 0.5607 4 

CSTF3 Q12996 5 4 5 4 12.7 82.921 717 2.7508 5 0.5611 3 

FUBP1 Q96AE4-1 21 17 17 15 43.9 67.689 645 2.7642 38 0.5618 31 

CDC47 P33993-1 25 18 25 18 47.8 81.307 719 2.1318 52 0.5618 25 

RPS7 P62081 12 10 12 10 50 22.127 194 2.4593 25 0.5632 21 

CDC21 P33991 24 22 24 22 36.7 96.557 863 2.4214 63 0.5673 27 

hCG_20560 Q9BUQ0 13 9 13 9 35 59.632 557 2.7678 39 0.5734 27 

KIAA1470 Q9P258 14 12 14 12 34.7 56.084 522 2.9194 30 0.5746 26 

E1BAP5 Q9BUJ2-1 5 6 5 6 10.6 95.737 856 2.5961 9 0.5831 6 

WDR76 Q9H967 8 9 8 9 14.7 69.752 626 2.4178 12 0.5854 8 

DDX17 Q59F66 23 21 16 14 35.2 80.457 731 2.6552 43 0.5856 36 

RPL38 P63173 6 4 6 4 52.9 8.2178 70 3.6526 9 0.5868 6 

RPL6 B2R4K7 13 14 13 14 49.5 32.872 289 2.4866 27 0.5887 37 

DDX38 Q92620 4 3 4 3 5.5 140.5 1227 2.2700 3 0.5900 3 

LEMD3 Q9Y2U8 6 4 6 4 9.7 99.996 911 2.1906 6 0.5947 4 

ERH P84090 3 3 3 3 37.5 12.259 104 2.2329 3 0.5985 3 



VRK1 Q99986 2 2 2 2 11.6 45.476 396 5.0153 2 0.6002 2 

SRP9 P49458 4 4 4 4 43 10.112 86 2.5566 5 0.6041 5 

RPL17 P18621 9 9 9 9 51.6 21.397 184 2.4736 24 0.6090 27 

HAUSP Q93009 14 12 14 12 16.2 128.3 1102 2.1417 17 0.6108 13 

EEF1D P29692-1 9 8 1 1 55.2 31.121 281 3.1740 1 0.6108 4 

DRBF Q12906-4 21 19 18 16 26.8 95.807 898 2.4906 62 0.6151 36 

SRP14 P37108 7 5 7 5 44.1 14.57 136 2.8571 9 0.6166 6 

HSD48 Q13765 4 4 4 4 5.9 94.68 925 2.1525 10 0.6185 13 

RBP56 Q92804-1 3 4 1 2 8.3 61.829 592 3.0270 1 0.6228 2 

KIAA1401 Q2NL82 13 11 13 11 21 91.809 804 2.2232 18 0.6253 12 

C6orf150 Q8N884-1 7 6 7 6 18.4 58.814 522 2.8504 9 0.6308 4 

HNRNPM P52272-1 31 26 31 26 50.1 77.515 730 2.6294 87 0.6336 73 

WBSCR22 C9K060 3 2 3 2 16.4 33.845 298 2.5071 3 0.6337 3 

AAG P29372-1 10 4 10 4 41.3 32.868 298 2.9860 10 0.6394 5 

ELAVL1 B4DVB8 12 9 12 9 36.5 38.996 353 2.9276 17 0.6398 17 

EMC19 P63208-1 3 3 3 3 20.2 18.658 163 2.1302 3 0.6436 3 

ARS2 Q9BXP5-1 6 4 6 4 10.2 100.67 876 2.2638 6 0.6503 6 

UHX1 P51784 2 2 1 2 2.8 109.82 963 2.8429 2 0.6527 2 

FEN1 P39748 9 9 9 9 31.8 42.592 380 2.3008 13 0.6546 8 

BAM Q9UQE7 22 25 22 25 25.6 141.54 1217 2.1525 34 0.6549 26 

DBC1 Q8N163-1 11 12 11 12 20.3 102.9 923 2.1721 13 0.6554 18 

RPL1 P36578 16 17 16 17 38.9 47.697 427 2.4236 37 0.6595 33 

FLYWCH1 Q4VC44-3 7 5 1 1 17.1 85.152 765 2.1598 9 0.6618 2 

HCA90 Q96RR5 3 2 3 2 5.5 89.392 783 2.8632 4 0.6626 2 

LBR Q14739 2 2 2 2 3.1 70.702 615 2.3942 3 0.6666 7 

EIF2G P41091 6 5 6 5 12.9 51.109 472 4.6697 8 0.6686 6 

LAP2 P42167-1 9 10 4 4 29.3 50.67 454 6.3721 5 0.6727 4 

DFS70 O75475-1 5 4 5 4 13.2 60.103 530 2.6389 6 0.6767 6 



TKT B4DE31 25 23 25 23 45.3 68.741 631 2.2096 72 0.6891 46 

CDYL Q9Y232-1 2 2 2 2 4.2 66.481 598 2.3043 2 0.6921 1 

hCG_2016483 B3KUY2 3 3 3 3 31.5 19.448 165 2.2226 4 0.6949 3 

RPL7A P62424 16 15 16 15 45.5 29.995 266 2.3846 31 0.6972 33 

POLR2B P30876 4 4 4 4 6.5 133.9 1174 2.4870 4 0.6980 4 

AEG1 Q86UE4 3 5 3 5 13.9 63.836 582 2.2140 3 0.6980 6 

CFIM68 Q16630-2 3 4 3 4 8.8 63.47 588 2.6267 5 0.6988 4 

DAD1 P61803 3 3 3 3 26.5 12.497 113 2.2949 4 0.6991 3 

RPL12 P30050-1 8 7 8 7 68.5 17.818 165 2.3098 10 0.6999 11 

EEF1G P26641 12 12 12 12 37.8 50.118 437 2.8496 30 0.7096 20 

NSUN2 Q08J23 18 13 18 13 30.2 86.47 767 2.1227 26 0.7124 15 

GTF3C4 Q9UKN8 4 2 4 2 4.5 91.981 822 2.4275 4 0.7139 2 

RPS10 P46783 6 7 6 7 37.6 18.898 165 2.2386 12 0.7148 13 

PA2G4 Q05D08 9 9 9 9 33.7 45.151 406 2.5044 11 0.7182 15 

TIAL1 A8K4L9 2 3 1 1 11 43.448 392 2.9172 3 0.7206 4 

KIAA0664 O75153 6 13 6 13 11.1 146.67 1309 2.4806 6 0.7237 12 

CACY P06703 2 2 2 2 16.7 10.18 90 2.6325 3 0.7265 2 
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APPENDIX V. Proteins identified and quantified with a least two peptides, one of which 

unique, in the H3K4me3 interactome. Protein Group output from MaxQuant software, 

representing the Top40% of proteins binders. 

 

 



Gene Names Uniprot Peptides         
For 

Peptides           
Rev 

Unique 
Pep.                 
For 

Unique 
Pep.                   
Rev 

Sequence Coverage             
[%] 

Mol. 
Weight              
[kDa] 

Sequence Length 
Ratio 
H/L               
For 

Ratio H/L 
Count              

For 

Ratio 
H/L                   
Rev 

Ratio H/L 
Count               
Rev 

MKI67 P46013-1 43 52 43 52 23 358.69 3256 1.7868 83 0.4569 103 

H4/A P62805 10 11 10 11 53.4 11.367 103 2.1203 91 0.4112 99 

ADPRT P09874 33 32 33 32 38.3 113.08 1014 1.7925 55 0.4903 78 

H3F2 Q71DI3 8 8 1 1 60.3 15.388 136 2.3171 79 0.2245 71 

UBA52 P62987 9 9 9 9 53.9 14.728 128 1.8880 67 0.5509 69 

H1F2 P16403 9 13 3 5 41.8 21.364 213 1.9563 71 0.2012 66 

DDX21 Q9NR30-1 29 30 27 28 44.7 87.343 783 1.7614 53 0.5866 60 

TOP2 P11388-4 39 35 28 23 25 182.68 1612 1.9910 63 0.4972 53 

BAP135 P78347-1 21 26 21 26 28.4 112.42 998 1.7741 37 0.4932 38 

H2AFY O75367-1 13 16 13 16 51.9 39.617 372 1.7913 27 0.3936 32 

SMARCA5 O60264 20 26 20 26 26 121.9 1052 1.9681 30 0.5696 32 

CHD4 Q14839-2 25 29 25 29 14.9 220.83 1940 2.0812 38 0.4547 30 

KIAA1470 Q9P258 7 13 7 13 34.7 56.084 522 2.4348 12 0.4757 25 

OK/SW-cl.32 P39023 12 12 12 12 24.8 46.108 403 1.8436 22 0.4282 24 

NCL P19338 16 15 16 15 28.5 76.613 710 2.1770 21 0.6351 20 

CATX11 O76021 15 16 15 16 30 54.972 490 2.0376 18 0.5078 20 

POLR2B P30876 18 17 18 17 25.1 133.9 1174 4.3296 19 0.3597 20 

SIN3A Q96ST3 20 18 20 18 19.6 145.17 1273 4.9947 27 0.3457 19 

H1FX Q92522 4 5 4 5 26.3 22.487 213 1.7493 15 0.5633 18 

H2BFD B4DR52 7 9 2 2 42.8 18.041 166 2.3429 22 0.2335 18 

RPL7 A8MVV7 10 11 10 11 46.3 32.275 272 1.7305 16 0.5883 17 

HMGB1 Q5T7C6 6 8 5 7 30.6 25.814 216 4.5691 11 0.1385 16 

IFI16 Q16666-1 14 13 14 13 21.5 88.255 785 1.8129 16 0.5098 16 

FACT140 Q9Y5B9 11 14 11 14 16.5 119.91 1047 2.7876 16 0.6320 16 

DEK P35659 8 8 8 8 24.5 42.674 375 2.4557 13 0.4984 15 

hCG_1744585 B5MDF5 8 8 8 8 28.4 26.409 236 1.8618 17 0.6449 15 



CCG2 P62701 12 10 12 10 42.6 29.597 263 1.7695 21 0.5316 15 

DDB1 Q16531 9 13 9 13 12 126.97 1140 2.0345 10 0.6181 15 

POLR2 P24928 20 19 20 19 12.8 217.17 1970 3.4119 27 0.5150 15 

HCFC1 A6NEM2 13 14 12 13 9.3 213.47 2080 4.0966 17 0.2985 14 

HRX2 Q9UMN6-1 25 34 23 30 17.4 293.51 2715 9.1265 7 0.6063 14 

SPT5 O00267-1 9 14 9 14 17.8 121 1087 4.2804 7 0.3172 13 

BRIX Q8TDN6 7 8 7 8 25.2 41.401 353 1.8298 11 0.5072 12 

DDX48 P38919 11 10 9 8 29.4 46.871 411 1.9080 8 0.4565 12 

FACT80 Q08945 11 11 11 11 20.5 81.074 709 2.9439 11 0.4560 12 

FBL P22087 7 8 6 7 29 33.784 321 2.6688 10 0.1622 11 

KIAA0648 Q29RF7-1 11 13 9 11 11.3 150.83 1337 1.7513 12 0.5711 11 

H2AFZ P0C0S5 4 4 2 2 22.1 18.414 181 3.4120 10 0.4642 10 

OK/SW-cl.103 P32969 5 6 5 6 32.3 21.863 192 1.7475 7 0.6451 10 

PA2G4 Q05D08 4 7 4 7 20.2 45.151 406 1.9197 4 0.6417 10 

HDGF P51858 6 7 5 6 32.5 26.788 240 2.2109 7 0.3490 10 

HNRNPA3 P51991-1 5 6 5 6 21.2 39.594 378 1.9481 6 0.3712 9 

HIST2H3PS2 Q5TEC6 6 6 1 1 36.8 15.43 136 5.3761 9 0.0939 9 

EBNA1BP2 Q99848 7 6 7 6 19.9 40.684 361 2.4007 9 0.1223 9 

ILF2 Q12905 6 7 6 7 21.5 43.062 390 1.8692 6 0.5533 9 

DDX27 Q96GQ7 9 10 9 10 15.2 89.834 796 1.8093 10 0.6135 9 

HNRNPA0 Q13151 2 2 2 2 5.2 30.84 305 1.7985 7 0.4188 8 

RPL38 P63173 5 5 5 5 50 8.2178 70 2.2918 7 0.1413 8 

NPM P06748-1 3 6 3 6 35.7 32.575 294 1.7325 6 0.4265 8 

RPL6 B2R4K7 8 8 8 8 31.5 32.872 289 2.0003 8 0.2603 8 

APE P27695 3 7 3 7 30.2 35.554 318 2.5524 3 0.3147 7 

GTBP P52701-1 4 7 4 7 5.8 152.78 1360 1.8848 5 0.6428 7 

RECQ1 P46063 7 7 7 7 15.4 73.457 649 2.6266 9 0.4508 7 

UBF P17480-1 5 8 5 8 11.4 89.405 764 2.5658 5 0.5814 7 



VCP P55072 11 9 11 9 23.3 89.321 806 5.2788 7 0.3455 7 

SMT3B P61956 2 2 2 2 23.2 10.871 95 2.1903 8 0.5237 6 

DB1 Q14119 3 3 2 2 5.6 56.931 521 5.0997 5 0.1494 6 

RPL13A P40429 3 4 3 4 17.7 23.577 203 2.0527 4 0.5182 6 

EEF1G P26641 3 5 3 5 16 50.118 437 1.8519 3 0.2553 6 

CDABP0061 Q9Y5J1 5 5 5 5 14.3 64.063 573 1.7505 4 0.5171 6 

BAF170 Q8TAQ2-1 3 6 1 4 6 132.88 1214 1.8881 4 0.5652 6 

HR21 O60216 4 7 4 7 13.5 71.689 631 2.2118 4 0.5660 6 

KIAA0162 Q7KZ85-1 10 10 10 10 11.7 199.07 1726 3.0494 10 0.3732 6 

SRP14 P37108 4 4 4 4 55.1 14.57 136 1.8638 6 0.1708 5 

CYPA P62937 4 5 3 4 23 18.012 165 2.1145 3 0.6245 5 

RBBP5 Q15291-1 6 7 6 7 17.1 63.303 573 7.2304 2 0.4485 5 

SAMD1 Q6SPF0 8 8 8 8 13.9 56.051 538 5.1117 6 0.3015 5 

BAF180 Q86U86-1 8 10 8 10 6.5 192.95 1689 2.1068 5 0.6228 5 

CTCF P49711 3 3 3 3 3.6 82.785 727 3.3665 4 0.1636 4 

RCC1 Q16269 4 3 4 3 11.1 48.145 452 2.3307 6 0.3352 4 

FEN1 P39748 4 3 4 3 9.2 42.592 380 1.7766 4 0.3441 4 

GLYR1 Q49A26-1 4 4 4 4 10.1 60.556 553 1.7678 4 0.4382 4 

CGI-37 Q9Y221-1 2 2 2 2 13.3 20.462 180 1.9645 3 0.6161 3 

EIF2A P05198 2 2 2 2 8.6 36.112 315 1.8728 1 0.1305 3 

BZAP45 B4DLZ8 2 3 2 2 6 51.281 451 2.2579 2 0.5996 3 

BIG3 P61964 3 3 3 3 15.3 36.588 334 3.4671 4 0.2711 3 

BXDC1 Q9H7B2 3 3 3 3 13.4 35.582 306 1.8820 4 0.1162 3 

ASH2L Q9UBL3-1 5 3 5 3 12.3 68.722 628 2.8407 5 0.5975 3 

DFS70 O75475-1 3 4 2 3 8.5 60.103 530 1.9358 4 0.0581 3 

hCG_1811093 Q96AN2 4 5 4 5 10.7 55.673 522 9.1732 3 0.2341 3 

SAP130 Q9H0E3-2 2 2 2 2 1.9 113.97 1083 5.5375 1 0.6393 2 

GIG38 O00422 2 2 2 2 12.2 19.526 172 1.9946 2 0.5518 2 



SRPR P08240 2 2 2 2 3 69.81 638 1.8588 2 0.6246 2 

LIG3 P49916-1 2 2 2 2 3 112.91 1009 1.7615 2 0.4606 2 

HMG2 P26583 2 2 1 1 12 24.033 209 1.7286 2 0.5274 2 

RIG P62841 2 3 2 3 13.8 17.04 145 2.5875 2 0.1277 2 

KIAA0662 O75151 3 3 3 2 4.9 121.06 1099 4.3333 2 0.1540 2 

MIG10 P00558 4 3 4 3 14.9 44.614 417 1.9933 3 0.2479 2 

SMARCA4 B9EGQ8 3 4 3 4 4.3 189.45 1681 1.7334 2 0.3606 2 

WDR76 Q9H967 4 5 4 5 8.9 69.752 626 2.0364 4 0.6207 2 

C20orf158 Q9BTC0-4 2 6 2 6 3.5 243.87 2240 2.1987 2 0.3005 2 

EZR P15311 5 8 1 3 13.7 69.412 586 2.3783 1 0.6425 2 

OCR Q9Y657 2 2 2 2 13 29.6 262 2.4112 1 0.0821 1 

BANP Q8N9N5-1 3 2 3 2 8.5 56.484 519 4.8794 1 0.6173 1 

ZBP89 Q9UQR1 3 4 3 4 8.3 88.975 794 4.9128 2 0.2865 1 

PPP1CB P62140 4 6 1 2 17.4 37.186 327 4.3475 1 0.0738 1 

CIF150 Q6P1X5 2 1 2 1 1.3 136.97 1199 3.1018 1   0 

IWS1 Q96ST2-1 3 2 3 2 4 91.954 819 2.2656 3   0 

BPTF Q12830-1 1 3 1 3 1.1 338.26 3046   0   0 

BRD4 O60885-1 2 3 2 2 2.5 152.22 1362   0   0 
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