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ABSTRACT 

STATE OF ART:  The literature reports that, contrary to most other cell types, adult 
hepatocytes are polyploid cells with a DNA content of 4, 8 or even 16 haploid 
genomes. In fetal and early neonatal life, hepatocytes are mononucleated diploid 
cells that, quite abruptly, become binucleated and polyploid soon after weaning.  
The generation of tetraploid intermediates is not an uncommon event in the liver.  
These cells have the potential to generate aneuploid progeny in the subsequent 
cell division, because of the presence of four centrosomes. Normally in diploid 
cells, at the beginning of mitosis, a single centrosome duplicates and the mother 
and daughter organelles migrate to opposite cell poles, directing the formation of 
the spindle, to guarantee a balanced chromosomal segregation. Four centrosomes 
can cluster together, mimicking a bipolar spindle, or, as reported for tumoral cells, 
act as single entities that generate multipolar spindle.  The result of a multipolar 
division is a progeny with an unbalanced DNA content, differing in 1 or a few 
chromosomes.  The formation of aneuploid progeny in hepatocytes has never been 
supported by experimental evidence for two reasons: 1) the classical approaches 
chosen to assess the hepatocyte ploidy lack the sensitivity to detect the small 
differences in DNA content that result from unbalanced chromosomal segregation;  
in addition, a quantitative and behavioural analysis of centrosomes in normal liver 
cells has not been thoroughly investigated; thus the presence of extranumerary 
centrosomes (i.e.,more than four) has never been postulated  2) The detrimental 
effects commonly attributed to aneuploidy made difficult to only hypothesize that a 
highly regenerative tissue such as the liver can contain aneuploid cells. It is thus of 
interest to note that some tissues are naturally aneuploid, like the embryonic brain, 
and in these tissues chromosome instability confers advantages properties to the 
cells. 
AIM: The main goal of my present work is to determine whether aneuploidy is a 
common feature of hepatocytes in physiological conditions. To address this goal I 
performed a quantitative analysis of the DNA content in normal hepatocytes during 
liver development and adulthood (at 18.5 post coitum, at 15 days, 1.5 months, 4 
months) combined with a quantitative and behavioural analysis of centrosomes.  
MATERIALS AND METHODS: I applied a novel approach employing a 2-color 
FISH on interphase cells that provides highly quantitative and reproducible 
polyploidy data for individual chromosomes by assessing ploidy of a cell based on 
a comparison between an autosome (17 or 18) and a sexual chromosome (Y).  I 
used a double staining for centrosome associated proteins to assess the number of 
centrosomes at different time point and I combined this approach to the interphase 
FISH to determine a correspondence between the DNA content and the number of 
centrosomes.  
RESULTS: I have demonstrated that aneuploidy and unbalanced DNA content in 
binucleated hepatocytes are common features of the normal adult liver. Despite the 
common belief that hepatocytes contain 1, 2 or no more than 4 centrosomes, our 
double staining for centrosome associated proteins reveals extranumerary 
centrosomes in a high percentage of cells as early as 15 days of age. I showed 
that in mice the period between 15 days and 1.5 months marks the transition from 
a liver with a prevalence of mononucleated cells to a liver with up to 75% of 
binucleated cells. My data demonstrate that this timing correlates with a switch of 
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specific centrosomes numbers. At 15 days, in addition to cells that show the 
expected number of centrosomes (1 or 2), we also found several hepatocytes with 
3 centrosomes; at 1.5 months the percentage of cells with 3 centrosomes 
decreased concomitantly with the increase of cells with more than 4 centrosomes. 
My analysis shows that the number of extranumerary centrosomes develops in 
concomitance with the process of binucleation and polyploidization. In addition, 
supernumerary centrosomes maintain the ability to nucleate α-tubulin, one of the 
main components of the cytoskeleton and of the mitotic spindle. This observation is 
intriguing based on the knowledge that adult hepatocytes are commonly 
considered to reside in G0 phase. Finally, by integrating interphase FISH and 
immunofluorescent approaches, we detected an imbalance between centrosome 
number and DNA content in liver cells that deviates from the equilibrium expected 
in normal cells. 
CONCLUSIONS: We demonstrated that half of the mature hepatocytes in mice are 
aneuploid. This discovery could have a different impact to several fields. On one 
hand it provides new insights on the role of aneuploidy in adult somatic tissues. 
Thus, the low tumorigenicity of liver suggests that this unique feature is relevant to 
the peculiar biological function of hepatic cells, which are continuously challenged 
by metabolic stress and other insults rather than a cause of tumor formation.  We 
can speculate that the liver, with its high level of aneuploidy detected consistently 
overall the ages analyzed can be pictured as a store of well tolerated genetic 
heterogeneity. In response to toxic stresses and diseases the liver may select the 
more beneficial chromosomal pattern to promote cellular fitness against cell 
deterioration. On the other hand, not less important is the contribution of this 
discovery to the field of liver cell therapies with mature hepatocytes and the 
consequences of aneuploidy after transplantation.  
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SOMMARIO 

 
SITUAZIONE INIZIALE: La letteratura riporta, che contrariamente alla maggior 
parte dei tipi cellulari, gli epatociti adulti sono cellule poliploidi con un contenuto di 
DNA pari a 4, 8 o anche 16 genomi aploidi. Durante lo sviluppo fetale e nella vita 
neonatale, gli epatociti si presentano come cellule mononucleate diploidi, che 
abbastanza bruscamente, diventano binucleate e poliploidi subito dopo il periodo di 
svezzamento. Una delle peculiarità del fegato è la presenza di intermedi tetraploidi. 
Queste cellule hanno il potenziale di generare progenie aneuploide nelle 
successive divisioni cellulari, a causa della presenza di quattro centrosomi. 
Normalmente in cellule diploidi, all’inizio della mitosi, un singolo centrosoma si 
duplica, a ciò segue la migrazione dei due organelli, madre e figlia, ai lati opposti 
della cellula, dove andranno ad organizzare la formazione del fuso mitotico e 
garantiranno una corretta segregazione dei cromosomi. Quattro centrosomi 
possono formare dei cluster, mimando una divisione bipolare, oppure, come è già 
stato descritto per le cellule tumorali, agire come singole entità e generare un fuso 
mitotico multipolare. Il risultato di questa divisione è una progenie con una quantità 
di DNA non bilanciata, che differisce di uno o più cromosomi dall’atteso contenuto 
diploide. La formazione di progenie aneuploide nel fegato non è mai stata 
documentata sperimentalmente per due motivi: 1) gli approcci classici utilizzati nel 
determinare la ploidia degli epatociti mancano della sensibilità necessaria per 
rilevare piccole differenze di contenuto di DNA, come i singoli cromosomi, che 
derivano da una segregazione non bilanciata; inoltre un’analisi quantitativa e 
funzionale dei centrosomi e quindi dell’eventuale presenza di extra-centrosomi non 
è mai stata realizzata nel fegato in condizioni fisiologiche, tanto da supporre eventi 
di segregazione non corretti; 2) Gli effetti negativi comunemente legati al concetto 
di aneuploidia hanno reso difficile anche solo ipotizzare che un tessuto altamente 
rigenerativo come il fegato possa contenere delle cellule aneuploidi. Ma è 
certamente importante sottolineare che non è strano trovare cellule aneuploidi in 
condizioni fisiologiche; alcuni tessuti sono naturalmente aneuploidi, come il cervello 
durante lo sviluppo embrionale, e in quei tessuti l’instabilità dei cromosomi 
addirittura conferisce dei vantaggi alle cellule, invece che creare un danno. 
SCOPO: Il principale obiettivo del mio presente lavoro è quello di determinare se 
l’aneuploidia è una caratteristica tipica degli epatociti in condizioni fisiologiche. Per 
rispondere a questo quesito io ho realizzato un’analisi quantitativa del contenuto di 
DNA in epatociti in condizioni fisiologiche durante lo sviluppo del fegato e durante 
l’età adulta considerando diversi time points, quali i 18.5 giorni post coitum, 15 
giorni, 1.5 mesi e 4 mesi. Gli stessi time points sono stati utilizzati per un’analisi 
quantitativa e funzionale dei centrosomi. 
MATERIALI E METODI:  Il mio approccio nel determinare la ploidia degli epatociti 
consiste nell’utilizzo di una FISH a due colori applicata a cellule in interfase, perché 
basata sul confronto tra i segnali derivanti da un autosoma (17 o 18) e un 
cromosoma sessuale (Y) applicati all’interno della stessa cellula. Per stabilire il 
numero di centrosomi nei diversi time points ho utilizzato un doppio staining, 
costituito dall’uso contemporaneo di due proteine diverse che co-localizzano. 
Inoltre ho combinato questo staining con la FISH in interfase per determinare sulle 
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stesse cellule una corrispondenza tra il contenuto di DNA e il numero di centrosomi 
corrispondente. 
RISULTATI: Per la prima volta abbiamo dimostrato che l’aneuploidia e un 
contenuto genetico non bilanciato negli epatociti binucleati sono caratteristiche 
comuni nel fegato adulto che non presenti uno stato patologico. Nonostante che si 
ritenga comunemente che gli epatociti contengano 1, 2 o non più di 4 centrosomi, il 
nostro duplice staining per due diverse proteine strutturali del centrosoma ha 
mostrato che un elevato numero di cellule contiene extra- centrosomi anche in 
giovane età (15 giorni). Abbiamo dimostrato che nel topo la fascia temporale tra i 
15 giorni e 1.5 mesi di età rappresenta una fase di transizione da un fegato 
popolato prevalentemente da cellule mononucleate a un tessuto composto fino al 
75% di cellule binucleate. I nostri dati dimostrano che questo passaggio è correlato 
con un cambiamento specifico anche nel numero dei centrosomi. A 15 giorni, 
assieme a cellule con 1 o 2 centrosomi ce ne sono numerose che presentano già 
un numero insolito, 3 centrosomi; a 1.5 mesi la percentuale di cellule con 3 
centrosomi diminuisce assieme a un concomitante aumento di cellule con più di 4 
centrosomi. Questo significa che l’acquisizione di centrosomi sovrannumerari è 
correlata con il processo di binucleazione e poliploidizzazione. In aggiunta, gli 
extra-centrosomi trovati nel fegato di topo adulto hanno dimostrato di mantenere la 
capacità di nucleare α-tubulina, uno dei maggiori componenti del citoscheletro e 
del fuso mitotico. Quest’ultimo dato è particolarmente interessante se si pensa che 
gli epatociti adulti sono da sempre noti come cellule quiescenti, che risiedono in 
fase G0. Infine, l’integrazione di due approcci sperimentali, quali la FISH in 
interfase e l’immunofluorescenza, ci ha permesso di rilevare una mancata 
corrispondenza tra il numero di centrosomi e il supposto contenuto di DNA, a 
dimostrazione che anche in cellule normali le regole di duplicazione dei centrosomi 
e di sintesi di DNA non vengono sempre rispettate. Questi nuovi risultati ci 
spingono a credere che a questa unicità di struttura corrisponda una complessa 
funzione biologica delle cellule epatiche, che sono continuamente sottoposte a 
stress, una condizione che potrebbe predisporre a instabilità genetica.  
CONCLUSIONI: Con questo lavoro abbiamo dimostrato che la metà degli epatociti 
maturi sono aneuploidi. L’elevata percentuale di cellule aneuploidi nel tessuto 
epatico adulto in condizioni fisiologiche conferisce un nuovo significato al ruolo 
giocato dall’aneuploidia nei tessuti somatici adulti. Infatti la bassa tumorigenicità 
del fegato suggerisce che questi alti livelli di aneuploidia siano più da interpretare 
come una caratteristica unica e peculiare della biologia delle cellule epatiche, che 
sono continuamente sottoposte a stress metabolico e ad altri tipi di insulti, piuttosto 
che come causa di trasformazione cancerosa. A questo proposito possiamo 
avanzare l’ipotesi che il fegato sia un magazzino di cellule altamente eterogenee 
dal punto di vista genetico, il che comprenderebbe alti livelli di aneuploidia ben 
tollerata. A seguito di stress ed eventi patologici il fegato potrebbe selezionare il 
corredo cromosomico più vantaggioso in grado di promuovere in quelle circostanze 
la salute della cellula o del tessuto contrastando il danno tissutale o cellulare 
inferto. D’altro canto non meno importante è il contributo di questa scoperta al 
settore delle terapie cellulari del fegato eseguite con epatociti maturi e alle 
conseguenze dell’aneuploidia dopo trapianto.  
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1. LIVER 

 
 

1.1 Structure 
 

The liver, as highly specialized tissue, regulates a wide variety of high-

volume biochemical reactions with a major role in metabolism. Its functions 

include glycogen storage, decomposition of red blood cells, plasma protein 

synthesis, hormone production, detoxification and the synthesis and 

breakdown of small and complex molecules, many of which are necessary 

for normal vital functions. Hepatocytes are the chief functional parenchymal 

cells of the liver, contributing to roughly 80% of its mass.  In three 

dimensions, hepatocytes are arranged in plates separated by vascular 

channels (sinusoids). The cells are polygonal in shape and very 

heterogeneous in size, with diameters ranging from 8 to 40 µm [1]. The 

remaining liver volume represented by non-parenchymal cells includes  

Kupffer cells, specialized macrophages that are part of the 

reticuloendothelial system  (RES), hepatic stellate cells, producer of 

extracellular matrix and collagen and located among endothelial cells, and 

the sinusoidal endothelial cells.  Liver is  exceptionally active in synthesis of 

protein and lipids for export; among these, the bile secretion occurs 

throught bile duct epithelial cells, that constitute the well-known biliary tree, 

developed within and outside the liver (Figure1).  
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Figure 1. Liver anatomy. A) The liver consists of four lobes. The Right lobe is by 
far the larger and the Left lobe, made up by multisided units called lobules.  B) 
Each lobule consists of a central vein surrounded by tiny liver cells grouped in 
sheets or bundles. C) The vascular channels of the liver, called sinusoid, are lined 
by liver sinusoid endothelial cells (LSEC), which separate the sinusoid lumen from 
hepatocytes. They receive blood from the terminal branches of the hepatic artery 
and portal vein at the periphery of lobules and deliver it into central veins where the 
exchange of oxygen and nutrients occurs. Kupffer cells are specialized 
macrophages that patrol the sinusoids and bind to LSEC and occasionally 
hepatocytes through the gaps of two adjacent LSEC.  
Adapted from Crispe IN, Nat Rev Immunol., 2003, Vol. 3, no. 1, pp. 51-62.  
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In common with few other tissues, including heart, muscle cells and 

platelet-progenitors megakaryocytes, the liver parenchyma (hepatocytes) 

develops a certain degree of polyploidy during its lifespan. Diploid cells 

contain two copies of the genome (2n), whereas polyploid cells show an 

increase in genome size caused by the inheritance of one or more 

additional sets of chromosomes. Indeed, by contrast to aneuploidy, the 

genomic state is balanced in polyploidy cells.  

Under physiological conditions, the rat liver develops from the ventral 

foregut endoderm in the form of epatoblasts, undifferentiated bipotential 

cells that retains the ability to divide and proliferate throughout life to 

provide progenitor cells that can differentiate into hepatocytes and 

cholangiocytes [2-7]. Starting from E14, during the remaining period of 

gestation and the first four post-natal weeks, hepatoblasts acquire functions 

of differentiated hepatocytes, correlated with the onset of polyploidy [8-9]. 

This process generates the successive appearance of mono and 

binucleated hepatocytes, with a DNA content that spans from a range of 

2n, 4n, 8n to even greater DNA amounts [10-11]. Earlier reports have also 

identified in C3H mice the existence of nuclei in the liver with ploidies of 3n, 

6n and 12n,  avoiding the geometric 2n  progression proposed by Epstein 

and coworkers in 1967 [12]. Albeit the percentage of cells with intermediate 

ploidy was pretty high (in the first 2 weeks of life it amounts to 25 to 50%) 

[13], this phenomenon has been considered as a consequence of 

systematic errors possibly produced by the methods of preparation and 

measurement of the material, since these old reports were performed on 

sections of fixed tissues with micro-spectrophotometric methods that were 

less than optimal). In rodents, the hepatocyte ploidy level reaches a plateau 

three months after birth [14].  
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1.2 The reasons of mammalian liver polyploidy 
 

Although most eukaryotic organisms are diploid, cells that have more than 

two chromosome sets are not exceptional. Polyploidy is a surprisingly 

common phenomenon in nature, suggesting that changes in DNA content 

may have an effect on the phenotype and the fitness of the cells. In 

particular, liver polyploidization is generally consider to indicate 

advancement toward differentiation and cellular senescence [15] and to 

lead to both progressive loss of cell pluripotency and markedly decreased 

replication capacity [16]. A study based on the analysis of fetal, suckling 

and adult rats, associated the decrease of DNA synthesis with the 

progression of polyploidy and binucleation. The incorporation of 

radiolabeled thymidine into DNA revealed that hepatocytes in newborns are 

exclusively diploid mononucleated cells with a considerable DNA synthesis 

(up to 18%) [17]. However this percentage decreases rapidly at weaning, 

with fewer of 5% nuclei being in the S phase. The predominance of  

binucleated hepatocytes (53% of the cells are at least tetraploid, with a 2n 

content in each nucleus) [18] in the adult young rat, with a mitotic index 

ranging from 0.10-0.40%, indicates that parenchymal cells lose their 

replicative potential upon the onset of terminal differentiation [15, 18]. Two 

alternative hypotheses may explain the causes of mammalian liver 

polyploidization: the theory of “economy in mitosis” and the theory of 

“metabolic stress defense”. According to the first hypothesis, the omission 

of mitosis is beneficial in rapidly growing and differentiating tissues that 

should early perform their specialized functions [19, 20]. As a matter of fact, 

in physiological conditions, the onset of polyploidy in the liver is clearly 

associated with weaning and assumption of independent feeding [21-23]. 

Hepatocyte polyploidy could be viewed as a cheap short term adaptation of 

selected animals allowing them to funnel additional resources in rapid 

development and reproduction, typical of short lived species. Indeed, the 

degree of polyploidization varies between mammals [24]. In the adult rat 
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the level of hepatocyte ploidy is as high as 80 to 90% [14], whereas  in 

humans, the mean percentage of polyploid cells is 30 to 40% [25-26].  On 

the other side, the liver of mammals is known to be the place where many 

exo- and endogenous toxic chemical are processed and detoxicated. 

Therefore the additional gene copies provided through polyploidization 

could help the cells to express detoxifying genes to higher levels and 

survive under these conditions [27]. This hypothesis is grounded on the 

observation that short-lived species, that have been shown to have less 

effective DNA repair system [28-29], develop higher hepatocytes ploidy.   

 

1.3 Induction of polyploidy in pathological states and in the 
regenerating liver 
 

Unlike blood, skin and intestine, tissue maintenance in the liver is not driven 

by stem cells, but rather by division of the mature cells, hepatocytes and 

bile duct epithelial cells. Parenchymal cells lose their replicative potential 

upon the onset of terminal differentiation [18, 30]. Indeed, hepatocytes in 

the normal liver are quiescent (G0 phase) and exhibit only a minimal 

response to potent in vitro mitogens, such as transforming growth factor 

alpha (TGF), epidermal growth factor (EGF), and hepatocyte growth factor 

(HGF). However, the regenerative capacity of hepatocytes has been 

assessed in animal models of liver repopulation, in which transplanted cells 

have a selective advantage over the host [31]. Mature hepatocytes were 

transplanted into livers of FAH knockout mice, which lack 

fumarylacetoacetate hydrolase, an enzyme that disrupts tyrosine 

catabolism. The FAH mouse is an adequate model for hereditary 

tyrosinemia type I, a severe recessive autosomal metabolic disease. The 

disorder is characterized by severe liver and kidney defects [32]. After 

transplantation large, binucleated hepatocytes that represented 70% of the 

hepatocytes population were found to mediate most of the liver 

repopulation, to restore its biochemical function and to rescue the mouse 
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[33]. A second report still related to the FAH mouse model showed that 

fusion-derived hepatocytes, which by definition are at least tetraploid, after 

serial transplantation were capable of at least 30 cell divisions without loss 

of function [34]. To examine the process of liver repopulation by 

transplanted hepatocytes in a different mouse model, Weglarz and 

colleagues developed a mouse with an urokinase plasminogen activator 

transgene which induced diffuse hepatocellular damage beginning at 3 

weeks of age. The transplantation of healthy donor hepatocytes into the 

liver of these mice was responsible for the parenchymal repopulation [35]. 

By use of such models, it has been shown that mature transplanted 

hepatocytes, that were sorted for a polyploid content by FACS 

(Fluorescence-activated cell sorting), have a stem cell–like regenerative 

capacity rivaling that of hematopoietic stem cells and are able to divide 

more than 100 times without loss of function [33]. It is important to note that 

the nature of the human cells that are capable of liver repopulation [36] has 

not been definitively determined. However, in human patients with 

hereditary tyrosinemia, the large size of clonal revertant nodules (i.e., 

healthy liver tissue derived from spontaneous hepatocyte mutations that 

correct the underlying genetic defect) indicates that mature human 

hepatocytes also have extensive regenerative potential [37]. 

The adult liver also involves the mitosis of mature cells in response to 

specific injuries. During liver regeneration, induced by two-thirds of 

hepatectomy (PH) in the rat, quiescent hepatocytes undergo one or two 

rounds of replication to restore the liver mass by a process of 

compensatory hyperplasia. The excised parts do not grow back, rather, the 

remaining liver expands in mass to compensate for the lost tissue. Many 

studies have shown that during this process hepatic polyploidy is modified 

[15, 38-41]. Indeed, regenerative liver growth differs markedly from 

developmental liver growth, the most striking difference being the rapid 

disappearance of binucleated hepatocytes. In rodents, after PH, the 
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proportion of binucleated cells decreases to less than 5%, while there is an 

overall increase in ploidy characterized by a decrease in 2n hepatocytes 

and an increase in 4n and 8n mononucleated hepatocytes. Interestingly, 

the diploid hepatocytes seem to have a higher tendency than the polyploid 

ones to undergo several rounds of division [40]. Moreover, after partial 

hepatectomy, polyploid hepatocytes exhibit senescence-type changes with 

increased lipofuscin accumulation, β-galactosidase activity [42] and 

accumulation of p21 [40]. Only when liver injury is combined with an 

inability of hepatocytes to divide in response to the damage, liver mass is 

replenished by the replication of the (intrahepatic) facultative progenitor 

cells, also known as oval cells [43-46]. Oval cells are not liver stem cells, 

rather bi-potential offsprings of stem cells that can differentiate into both 

bile duct and hepatocytes [47-49]. They also provide information about the 

lineage decision making in the liver [50-51]. Oval cells have high levels of 

phase II detoxifying enzymes, which may ensure their survival in the 

presence of toxic agents [52-53]; in the regeneration of the liver that follows 

loss of parenchymal cells and the delay of hepatocyte DNA synthesis 

induced by toxins, such as galactosamine, the oval cells proliferate and 

differentiate in mature hepatocytes. 

Hepatic polyploidy can be also modified by metabolic overload that induces 

liver lesions. The Long Evans Cinnamon (LEC) rat bears a spontaneous 

mutation in the atp7b gene, which is known to regulate the biliary copper 

excretion. The absence of the normal function of this gene leads to 

abnormal copper metabolism and, as a consequence, LEC rats develop 

hepatitis and liver cancer. LEC rats develop excessive copper in the liver, 

reduced excretion of copper into bile, a reduced level of serum copper and 

a remarkable decrease in serum ceruloplasmin activity [54-55], similar to 

patients with Wilson's disease (WD). In this animal model, hepatocytes 

present large polyploid nuclei and a delay in mitotic progression has been 

also observed [56-57]. Interestingly, in normal mice, the injection of iron-
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dextran induces liver polyploidization; this effect is inhibited by the oral 

intake of iron chelator [58]. Oxidative damage to the liver is also associated 

with a pronounced increase in the population of polyploid hepatocytes. 

Gorla and coworkers have demonstrated that subsequent to radiation, 

hepatocytes exhibit evidence for oxidative injuries with elimination of 

intracellular anti-oxidants (as glutathione and catalase) and for increase of 

polyploidy [16, 59]. In the same line, another study has demonstrated that 

the over-expression of antioxidant enzymes (glutathione peroxidase, Cu, 

Zn-superoxide dismutase) in transgenic mice decreases hepatocyte ploidy 

during liver regeneration [60]. All these results agree with the fact that an 

extensive correlation exists between the generation of polyploid 

hepatocytes and a variety of cellular stress in the adult liver. 

 

1.4 Several routes to polyploidy 
 

One fascinating question is how diploid organisms develop polyploid cells. 

In a physiological or pathological state, polyploidy cells can arise by any 

one of the following mechanisms: endoreplication, mitotic slippage, 

cytokinesis failure and cell fusion (Figure 2).  

The term “endoreplication” indicates different mechanisms that arise 

from variation of the canonical G1-S-G2-M cell cycle [61]. One mechanism 

is addressed as “re-replication”, which results from the perturbation of the 

molecular mechanism that controls “ones and only ones” firing of 

replication.  DNA synthesis is initiated multiple times at individual origins of 

replication within a single S phase, with an indistinct accumulation of DNA. 

In contrast, in the process of endomitosis, cells fail to complete the mitosis. 

After entering in mitosis, they condense the chromosomes but instead of 

proceeding in the segregation step, they enter into a G1-like state and re-

enter into the S phase.  The best-studied example of endomitosis occurs in 

polyploid megakaryocytes [62]. Endomitotic megakaryocytes reach 

metaphase or anaphase A, but never fully separate sister chromatids or 
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undergo cytokinesis, resulting in globulated polyploid nuclei. Endomitosis is 

a variant of mitosis without nuclear (karyokinesis) and cytoplasmic division 

(cytokinesis).  

Somatic polyploidization can also occur by cell fusion, a process in 

which two or more cells become one by merging their plasma membranes 

[63]. This process inevitably leads to the formation of a cell with at least a 

double amount of DNA compared to the cells of origin. In cancer, cell fusion 

has been shown to promote the formation of tetraploid hybrids, which are 

believed to play a role in generating cell diversity and increase tumor 

malignancy. Faster growth rate, drug-resistance and increased metastatic 

potential are some of the new features developed by hybrids that arise by 

cell fusion. It is noteworthy that polyploidy hybrids in the following cell 

division can generate aneuploid progeny as a consequence of abnormal 

chromosome segregation. In contrast, in physiological conditions, cell 

fusion is a tightly controlled process that is restricted to only few cell types 

in humans, i.e. osteoclasts, trophoblasts and skeletal muscle cells [64-65]. 

In physiological conditions, with the exception of fusion of gametes and 

stem cells, in which cell fusion contributes to tissues proliferation and cell 

mass growth, cell fusion results in terminally differentiated multinuclear 

cells incapable of proliferation [66-67].  

Polyploid cells can be also formed by a mechanism of mitotic 

slippage. During this pathological process, cells present an altered spindle 

assembly checkpoint (SAC). The SAC prolongs mitosis until all 

kinetochores are stably attached to spindle microtubules; when the SAC 

cannot be satisfied, cells exit mitosis without undergoing anaphase or 

cytokinesis (genesis of mononucleated tetraploid cells). Mitotic slippage 

has been observed for example in cells after prolonged mitotic arrest in 

response to spindle toxins [68] or in APC-deficient cells (Adenomatous 

Polyposis Coli is a gene frequently mutated in colon cancers) [69]. Finally, 

cytokinesis failure is observed in certain pathological contexts and leads to 
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the genesis of binucleated tetraploid cells [69, 70]. Indeed, these cells can 

appear following dysfunction of any of a large number of different proteins 

controlling cytokinesis process [71]. In addition, bulk chromatin or even a 

single lagging chromosome trapped in the cleavage furrow can induce 

cytokinesis failure and tetraploidization [72-73].  

The most widely accepted paradigm is that polyploidy in the liver 

originates from endoreplication followed by aborted cytokinesis [10]. 

Further data corroborating this mechanism have been reported by 

Desdouets’ [74-75] and Grompe’s groups [76]. However, after several 

studies on bone marrow transplantation of liver in deficient FAH -/- mice, it 

has been demonstrated that binucleated cells can be generated through 

cell fusion between exogenous cells and mature hepatocytes [34, 77]. The 

observation spewed by these studies, that liver cells are prone to cell 

fusion, led us to investigate whether cell fusion could also contribute to the 

polyploidization in liver under physiological condition, avoiding ablation 

regimens, mouse model of damaged livers and artificial injections of adult 

cells into host recipients [78]. By using several approaches in chimeric 

mice, we showed that cellular patterns suggestive of cell fusion are present 

in adult mouse liver. These data include single cell analysis performed with 

chromosome probes which demonstrated that some binuclear hepatocytes 

from male/female chimeric mice contain one male genome (XY) in one 

nucleus and one female genome (XX) in the other ( [78], Figs 6 and 7). In 

addition we showed by an immunohistochemical approach that both 

transgenes in LACZ/GFP chimaeric mice coexist in 20% of analyzed 

hepatocytes. This recent study attributes a new role to cell fusion: a 

programmed step in normal development of liver. 
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Figure 2. Several routes to polyploidy. A) Endoreplication : DNA replication in 
the absence of a complete mitosis. Cells that undergo endoreplication can skip 
different aspects of mitosis. B) Cell fusion: following fusion, the cell enters the cell 
cycle with two centrosomes, which are subsequently duplicated. The nuclear 
envelope disassembles and cells go through mitosis, giving rise to a binucleated 
cell.  The same final product arises from defect in cytokinesis C).  Finally when the 
mitotic arrest persists, the cell bypasses anaphase, telophase and cytokinesis and 
progress into the next G1 phase without correcting the mitotic error that triggered 
the arrest (D). As a consequence, cell derived from a mitotic slippage contain a 
single tetraploid (4N) nucleus with two centrosomes. Whenever a cell contains 
extra-centrosomes, it can then undergo either a bipolar or a multipolar mitosis, 
giving rise to aneuploidy. 
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2. ANEUPLOIDY 
 

In the context of this discussion, it is especially important to distinguish 

between ‘aneuploidy’ and ‘polyploidy’. These terms describe two different 

cellular states that have distinct effects on cells and organisms. Aneuploidy, 

derived from the Greek “an” meaning ‘not’, “eu” meaning ‘good’, and “ploos” 

meaning ‘fold’, is a state in which  a cell shows alterations in chromosome 

number that are not a multiple of the haploid complement. Therefore, 

aneuploidy refers to an unbalanced genomic state. By contrast as already 

mentioned, polyploidy refers to a state in which a cell contains a whole 

number multiple of the entire genome, literally ‘many fold’. Thus the 

genomic state is balanced in polyploid cells. Just as ‘polyploidy’ can 

describe cells with a range of ploidies, from diploid to tetraploid to octoploid 

and beyond, ‘aneuploidy’ is a general term that can describe a wide range 

of unbalanced karyotypes. In contrast to polyploidy, that is well tolerated in 

specific cases at both the cellular and organismal level, aneuploidy has 

paradoxical effects on cellular fitness and depending on the context it can 

be associated with severe abnormalities, cell death or even growth-

advantageous properties. Aneuploidy can arise in gametes/embryonic cell 

(costitutional) or in differentiated somatic cells (somatic) and can involve 

autosomes (chromosome 1-22 in humans) and gonosomes (chromosomes 

X or Y). 

 

2.1 Costitutional aneuploidy 
 

Studying the development of sea urchin eggs undergoing abnormal mitotic 

division, the German zoologist Theodor Bovery showed that aneuploidy is 

detrimental on cell and organism physiology when it occurs at embryonic 

level. The embryos that resulted from dispermic fertilizations exhibited 

developmental defects and died [79]. Boveri concluded that chromosome 

gain or loss leads to abnormal development and lethality. Thus, among 



13 
 

Boveri’s many seminal contributions to biology is the discovery that an 

abnormal number of chromosomes disrupts development. This deleterious 

effect has been well established in many species, including Drosophila 

Melanogaster, Caenorhabditis elegans, mice, plants and humans. In flies, 

with the exception of chromosome 4, all whole-chromosome trisomies and 

monosomies are lethal [80]. Similar results are observed in worms, where 

all trisomies and monosomies are inviable [81]. In the mouse, all 

monosomies and trisomies, except for trisomy 19, are embryonic lethal. In 

humans, all whole-chromosome aneuploidies, except for trisomy 13, 18, or 

21, result in embryonic lethality. Even these viable trisomies display severe 

abnormalities. Trisomy 13 or 18 individuals die within the first few months of 

life and exhibit developmental abnormalities such as cardiovascular and 

craniofacial defects, developmental abnormalities of the nervous system, 

as well as growth retardation [82-83]. These phenotypes are also seen in 

the only viable human trisomy, trisomy 21 [84].  

 

2.2 Acquired autosomal aneuploidy 
 

In addition to constitutional aneuploidy, chromosomal missegregation can 

occur in differentiated somatic cells, resulting in acquired aneuploidy. 

 

2.2.1 When aneuploidy is detrimental  
 

The most prominent process where aneuploidy is observed in somatic cells 

is cancer, a disease of hyper-proliferation. Here aneuploidy is not restricted 

to one chromosome but the disease is characterized by a high degree of 

numeric as well as structural karyotipic abnormalities. The 90% of solid 

tumors are aneuploid [85], suggesting that some patterns of chromosome 

gain and loss enable cells to escape normal growth restraints and develop 

into malignant tumors, for example by acquiring extra-copies of an 

oncogene or losing a tumor suppressing gene [86-87]. Even the role of 

aneuploidy in cancer has been the center of debate for almost a century, 
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whether it is a cause or a consequence of the malignant transformation is 

still under debate.  

The role of aneuploidy in tumorigenesis has been extensively studied in 

mouse models of mitotic checkpoint dysfunction. So far, conventional gene 

knockouts have been constructed for almost all known mitotic checkpoint 

genes, including those encoding MAD1, MAD2, BUB1, BUB3, BUBR1 and 

centromere protein E (CENP-E) [88-94]. In addition, hypomorphic alleles 

that express dramatically reduced levels of BUB1 and BUBR1 have also 

been generated [95-96]. Whereas complete loss of these gene products 

results in early embryonic lethality, heterozygous and hypomorphic mice 

are viable and fertile. In all cases, mice with genetically reduced levels of 

mitotic checkpoint components have an increased level of aneuploidy and 

chromosomal instability (=CIN) [97] in mouse embryonic fibroblasts (MEFs) 

and tissues [88-94]. It is important to note that aneuploidy and CIN are not 

synonymous: whereas aneuploidy describes the state of the karyotype, CIN 

refers to the ‘rate’ of karyotypic change. Although CIN leads to aneuploidy, 

not all aneuploid cells exhibit CIN; some cells are aneuploid with a uniform, 

stable karyotype — a phenomenon exemplified by Down’s syndrome, a 

condition that is associated with widespread aneuploidy but not CIN. In 

general, the degree of aneuploidy, including the proportion of aneuploid 

cells and the range of chromosome losses and gains, varies depending on 

the gene product and to what level it has been reduced. However, as these 

animal models induce aneuploidy through continued CIN, the effect of 

aneuploidy in tumor development independently of CIN cannot be 

assessed.  

Current evidence shows that the degree of aneuploidy is not an 

accurate predictor of tumor susceptibility in mice. Here, the first 

incongruence of this phenomenon that contributes to develop the 

“aneuploidy paradox” theory. Despite the association of aneuploidy with 

tumors, the accumulation of an abnormal chromosome content does not 
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always imply cancer progression. It is becoming increasingly clear that the 

consequences of aneuploidy are context-dependent and in certain 

circumstances aneuploidy can act as tumor suppressor [98]. This is clearly 

illustrated in individuals with Down syndrome, who have a significant 

increase in haematological cancers, but a reduced incidence of solid 

tumors. Although aneuploidy has long been implicated in driving cancer, 

aneuploidy can suppress tumorigenesis in certain cases. Cenp-E 

haploinsufficiency reduces the incidence of carcinogen-induced tumours 

and greatly extends the survival of mice that lack the p19Arf tumour 

suppressor by an average of 93 days [99]. Moreover, mice that are 

heterozygous for BubR1 develop ~50% fewer tumours in the sensitized 

ApcMin/+ background [100], whereas deletion of the securin gene reduces 

the incidence of pituitary tumours by ~50% in Rb heterozygous animals 

[101] (although, in the case of Rb, it remains unclear if tumour suppression 

results from increased levels of aneuploidy). Tumour repression has also 

been observed in stably aneuploid mice that are trisomic for ~50% of the 

orthologue genes on human chromosome 21 [102]. One explanation for 

these observations is that exposure to carcinogens or loss of tumour 

suppressor function results in low levels of genetic damage and/or 

chromosome missegregation that, when combined with aneuploidy, drive 

rates of genetic instability above a threshold compatible with cell viability 

[99]. Consistently, aneuploidy and apoptosis are also increased in the 

intestines of BubR1+/–ApcMin/+ mice, thereby providing evidence that too 

much aneuploidy might promote cell death and inhibit tumour growth [100].  

In conclusion, under normal circumstances, aneuploidy might act as 

a barrier to suppress tumorigenesis by reducing the growth of pre-

neoplastic cells. However aneuploidy promotes tumorigenesis in some 

contexts when it provides a selective pressure for the accumulation of 

additional mutations that allow cells to tolerate the adverse effects of 

chromosomal imbalances [103]. The unbalanced gene expression caused 
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by aneuploidy might increase the rate at which cells acquire the mutations 

that are necessary for their survival and proliferation. Once gained, these 

adaptations would unlock the oncogenic potential of aneuploidy, allowing 

cells to survive and continue to proliferate in the face of increased genomic 

instability. Aneuploidy can alter the course of tumour development. 

However, whether it does so in a positive or negative manner depends on 

the cell type and the genetic context. 

 

2.2.2 When aneuploidy is normal 
 

It is thus of interest to note that some tissues are naturally aneuploid. This 

observation raises the question of whether aneuploidy is always 

detrimental. In mice and humans, one third of the dividing cerebral 

neuroblasts in the embryonic brain is aneuploid [104]. Many of these 

aneuploid cells are eliminated during the course of the development, as 

there are fewer, around 10%, aneuploid cells in the adult brain [104-106]. 

Nevertheless the aneuploid cells that survive into adulthood are functional, 

as judged by their ability to form synapses and contribute to the normal 

neuronal and glia population of the adult brain [107]. Single chromosomal 

abnormalities, monosomies and trisomies, are the predominant form of 

aneuploidy detected in the brain. The apparent absence of the detrimental 

effects of aneuploidy in brain cells could be due to the specific functions of 

these cells types. Neurons, once differentiated, never divide again. In this 

post-mitotic state, the anti-proliferative effect of aneuploidy probably have a 

limited impact on cell function. Aneuploidy in the brain might allow cells to 

define and modify their functional capacities. In the case of neuroblasts, the 

high level of aneuploidy has been correlated with their capacity to confer 

genetic variability, necessary for the high-structural and functional 

complexity of cerebral circuitries [108]. Recently, I have been able to 

demonstrate that aneuploidy increases significantly with age in the mouse 

cortex, a part of the brain especially vulnerable to age related changes 

[109]. Based on a 2-color interphase FISH strategy we showed that the 
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age-related increase in aneuploidy is chromosome specific and 

predominantly affects the non-neuronal cells (glia). Contrary to neurons, the 

glia preserves the ability to divide in adulthood and expecially during aging 

their acute proliferation provides a protective role for the integrity and 

nutrition of neurons [110]. Our recent data suggest that mosaic aneuploidy 

in the old brain is more complex than that previously predicted. The fraction 

of aneuploid neurons surviving embryonic selection into adulthood remains 

constant (1%), but coexists with a much higher level of aneuploid non–

neuronal cells (9.8%) accumulated during aging.  Because alteration of 

gene expression has been shown to occur as a consequence of single 

chromosome aneuploidies [111], we postulated that the accumulation of 

aneuploidy observed during aging in the cortex as well as during embryonic 

development may be responsible for changes in the trascriptome profile.  

 

2.3 Cellular responses to extra copies of chromosomes 
 

A major focus of current research is to determine how cells respond at the 

transcriptional or proteomic level to gene expression imbalances that are 

caused by aneuploidy. In particular, some of these studies address the 

question of whether aneuploidy causes transcriptional and protein 

expression changes in direct proportion to the copy number alteration of the 

DNA or whether the cell minimizes the effects of aneuploidy through 

dosage compensation. There is also the more complex possibility of gene 

expression effects beyond the chromosomes that are affected by 

aneuploidy through altering feedback loops of transcriptional regulators or 

through epigenetic effects [103]. The possibility that cells induce a specific 

transcriptional stress response to aneuploidy has also been raised [112]. 

Beyond the importance of this point in understanding the basic physiology 

of aneuploidy, this is also a crucial concept. If aneuploidy triggers a 

common stress response and all aneuploid cells need to develop 

specificadaptations in order to proliferate with their altered genomes, this 
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opens the possibility that aneuploidy itself may be targeted as a cancer 

therapy. 

Two types of model are being used to analyze the effects of aneuploidy on 

cell physiology. Some studies analyze cells that contain defined 

chromosomal aneuploidies created through single-chromosome transfers 

or spontaneous meiotic non-disjunction. We refer to these systems as 

‘chronic defined aneuploidies’ because the identity of the aneuploid 

chromosome is known and it is present from the genesis of the cell or 

organism. Other studies use cells that have CIN, that is, a high rate of 

chromosome mis-segregation due to mutations in genes required to ensure 

accurate chromosome segregation [113]. We refer to aneuploid cells 

derived from CIN as ‘acute random aneuploidies’ because they are 

generated spontaneously as the cell divides, and the identity of the mis-

segregated chromosome(s) varies with each non-disjunction event. In cells 

with CIN, it can be difficult to separate the effects of aneuploidy from other 

CIN-associated phenotypes, such as structural chromosomal aberrations, 

or from potential functions of mutated genes that induce chromosome 

missegregation.  

 

2.3.1 Chronic defined aneuploidies. 
 

Analyses of chronic defined aneuploidies have provided insight into the 

consequences of changing the gene expression pattern of entire 

chromosomes in organisms that do not have prevalent compensatory 

mechanisms. 

Transcriptome effects. Two recent studies in aneuploid yeast strains — 

which were generated using different methods, used gene expression 

microarrays to investigate the effects of aneuploidy on the transcriptome. 

Both studies report that gene expression, in general, is proportional to gene 

dosage in aneuploid yeast. Interestingly, Torres et al. [112] used a 

chromosome transfer strategy and selectable markers to generate 



19 
 

aneuploid yeast strains with a single extra chromosome (gain). All the 

aneuploid strains proliferated more slowly than the wild-type cells, although 

in some cases the differences were modest and only apparent in co-culture 

experiments. The aneuploid yeast cells demonstrated a delay in the G1 

phase of the cell cycle, increased sensitivity to drugs targeting protein 

synthesis and folding, and metabolic changes with increased glucose 

uptake and use. These aneuploid yeast cells also exhibited modest but 

statistically significant increases in genomic instability with elevated rates of 

point mutations, mitotic recombination and loss of whole chromosomes, as 

well defective DNA repair [114]. The systematic nature of this work 

represents a major advance in the field and not only demonstrates that 

aneuploidy is detrimental to haploid yeast that has been grown under non-

selective conditions, but it also begins to elucidate the mechanisms that 

lead to these growth defects [112, 115]. In addition, they also found that 

many yeast strains showed a common gene expression signature, that 

were observed only in strains carrying additional yeast genes, which 

indicate that they reflect the consequences of additional protein production 

as well as the resulting imbalances in cellular protein composition. They 

concluded that this common phenotype is independent of the identity of the 

individual extra-chromosome. This signature was originally described by 

Gasch et al. [116] as an environmental stress response (ESR) in yeast, that 

has been characterized by defects in cell growth, altered metabolic 

properties and proteotoxic stress. In particular, proteotoxicity manifests 

itself as temperature sensitivity, sensitivity to protein folding and 

degradation inhibitors, and protein aggregate formation. When normalized 

for growth rate in phosphate-limited conditions, the aneuploid strains 

showed increased expression of genes related to ribosomal biogenesis and 

nucleic acid metabolism [112]. Pavelka and coworkers [117] induced 

meiosis in yeast strains with an odd ploidy (3n or 5n), which produces 

aneuploid progenies at high frequencies, and then isolated aneuploid 
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strains without any drug selection. Using this technique, the authors 

generated 38 stable aneuploid strains (12.5% of spores analysed) with 35 

distinct karyotypes. This group only identified this ESR signature using their 

most stringent analysis, and it was not correlated with either growth rate or 

number of aneuploid chromosomes. However, the different approaches 

used in these studies for strain construction, selection, growth and data 

analysis make a direct comparison difficult. One issue, discussed below, is 

whether the strains being studied are genetically stable. The genetic 

heterogeneity of unstable strains might mask gene expression patterns that 

are detectable in stable strains. Thus, although both studies agree that 

aneuploidy can induce a general transcriptional response beyond the copy 

number alteration of the affected chromosome (or chromosomes), it is less 

clear whether this response mainly reflects the impaired growth of some 

strains or whether it reflects a specific aneuploidy-sensing mechanism that 

is wired into cells. Chronic defined aneuploidies also have an adverse 

effect on mammalian cells. Williams and colleagues [118] cultured mouse 

cells that were engineered to express a specific additional chromosome 

(trisomy for chr. 1, 13, 16 or 19), by mating mouse strains carrying 

Robertsonian translocation with wild-type mice. Between 7 and 40% of the 

resulting progeny were trisomic for the chromosome that is common to the 

two Robertsonian translocations because of a meiotic non-disjunction event 

in the male germline. The consequent analysis of the effects of aneuploidy 

on cell proliferation and physiology revealed that these cell lines had 

decreased rates of proliferation, and increased cell size and metabolic 

rates, all conditions that reduce cell fitness and differential kinetics of 

spontaneous immortalization in culture. These findings are compatible with 

the theory that having an abnormal number of chromosomes is 

disadvantageous for mammalian cells.  

Proteome effects. The effect of aneuploidy on the proteome is also 

controversial. The stochiometry of certain protein complexes, such as the 
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ribosome, is maintained by the proteolysis of subunits that fail to assemble 

into the complex [119-120]. In the absence of mechanisms for 

compensation, aneuploidy could lead to an excess of uncomplexed 

proteins and proteotoxic stress [112, 121]. Proteotoxic stress results from 

the accumulation of unfolded, misfolded and aggregated proteins in a cell 

and can lead to the activation of factors and pathways that are designed to 

mitigate the burden of these unfolded proteins. This includes the ubiquitin–

proteasome and chaperone pathways and could place an energetic burden 

on aneuploid cells. The above yeast transcriptome studies also looked for 

dosage compensation at the level of the proteome. Providing evidence for 

dosage compensation, Torres et al. [112] found that most proteins 

examined (13 of 16) did not scale with gene copy number and that these 

proteins were members of multi-protein complexes. Consistent results were 

subsequently found in a more global proteome analysis [121], leading the 

authors to hypothesize that increasing protein degradation to compensate 

for gene copy number abnormalities may be a general response to 

aneuploidy. In further support of this hypothesis, the group found that some 

of their aneuploid yeast strains were more sensitive to proteasome 

inhibitors than the isogenic euploid control cells. By contrast, Pavelka and 

coworkers [117] found that the chromosome copy number generally scaled 

with protein abundance, that proteomic changes clustered among similar 

karyotypes and that there was minimal dosage compensation for core 

complex proteins. The reason for these differences is not completely clear; 

however, differences in the sensitivity of the protein detection techniques 

[122-123] namely, stable isotope labelling by amino acids in cell culture 

(SILAC) and multidimensional protein identification technology (MudPIT) 

mass spectrometry  and/or the stability of the aneuploid yeast strains used 

[114, 124] are potential explanations. When characterizing cellular 

responses to aneuploidy with the aim of defining a cellular state or 

vulnerability that might form the basis of an aneuploidy-specific cancer 
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therapy, it is important to know whether the findings from yeast can be 

generalized to higher eukaryotes. Preliminary data imply that aneuploid 

cells that are derived from diploid HCT116 human colon cancer cells do 

show some evidence of protein-level dosage compensation and display an 

upregulation of the autophagy pathway (Z. Storchova, Max Planck Institute 

of Biochemistry, Martinsried, Germany, personal communication). Taken 

together, these results imply that aneuploid cells may share adaptive 

cellular responses of dosage compensation at the level of the proteome, 

but the details of the extent, importance and mechanism of this 

compensation remain to be elucidated. 

Chronic defined aneuploidies are a major genetic perturbation, and 

collectively, these studies suggest that aneuploidy causes—among other 

detrimental outcomes—a set of shared phenotypes that are both 

independent of the specific set of genes amplified on the extra 

chromosome and are indicative of energy and proteotoxic stress. These 

general phenotypes are seen in addition to the chromosome-specific 

effects caused by amplification of individual genes and combinations of a 

small number of genes on the aneuploid chromosome. 

 

2.3.2 Acute random aneuploidies. 
 

Cells that contain acute random aneuploidies due to CIN also have 

proliferation defects and show features of cellular stress. This was first 

noted in human cells using live cell-imaging and clonal-cell analyses, which 

showed that chemically induced chromosome missegregation compromises 

cell proliferation [125].  

The cellular response to CIN-induced aneuploidy differs depending 

on the degree of aneuploidy, where p53 promote cell death or cell-cycle 

arrest in response to massive or low level of chromosome missegregation 

[126]. Cells with CIN caused by chemically induced chromosome 

missegregation, by gain-of-function alleles of Cdc20 [126], or loss of 
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function alleles of Bub1B [95], or by overexpressing the checkpoint factor 

Mad2 [127] proliferate poorly. However, not all cells with CIN-induced 

aneuploidy have been reported to have proliferation defects. Cells 

heterozygous for deletions in the SAC genes BUB3 or RAE1 [128], cells 

heterozygous for deletions in CENP-E [99] and cells that overexpress the 

ubiquitin-conjugating enzyme UbcH10 [129] become aneuploid in vitro but 

do not seem to slow cell proliferation. This apparent inconsequence of 

aneuploidy on cell proliferation could be due to several reasons. As 

observed in BUB1-deficient MEFs, perhaps the gene that is mutated is 

itself involved in promoting cell-cycle arrest and apoptosis when 

missegregation events occur [130]. Thus, even if cells acquire 

aneuploidies, they are not eliminated. It is also possible that in these mouse 

models of aneuploidy, only a subset of cells in the population acquire low-

grade aneuploidies. Growth defects or death of a small fraction of the cell 

population could go unnoticed in population doubling measurements. Live 

cell analysis might be needed to detect proliferation defects of individual 

aneuploid cells. Moreover, aneuploidy could be beneficial in the presence 

of strong selective pressure [131-132]. For example, where yeast has two 

similar genes on different chromosomes, cells in which one of these 

paralogues is detected may compensate by the casual gain of an extra 

copy of the chromosome bearing the other paralogue [132]. 

 

2.4 Several routes to aneuploidy 
 

In a human adult, millions of cell divisions occur every minute, and the 

maintenance of a diploid karyotype requires the proper segregation of 

chromosomes with every cell division. However, the chromosome 

segregation machinery is imperfect, and in vitro estimates suggest that 

normal, diploid cells missegregate a chromosome once every hundred cell 

divisions [133]. The basal rate of spontaneous chromosome 

missegregation in vivo is an unknown but important quantity that could vary 
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between cell types. Even if this in vivo rate is extremely low, strong 

selective pressure could enable the proliferation of rare aneuploid cells 

under certain conditions, as discussed below. 

The disruption of multiple genes and pathways has been implicated in 

increasing the rate of chromosome gains and losses above the basal rate 

and generating CIN. Errors in chromosome segregation during mitosis are 

generally considered as one of the mechanisms leading to aneuploidy. The 

mitotic checkpoint, also known as the spindle assembly checkpoint, is the 

major cell cycle control mechanism that ensures high fidelity of 

chromosome segregation. The mitotic checkpoint is responsible to delay 

anaphase until all chromosomes are properly oriented on the microtubule 

spindle. Under normal conditions, the checkpoint is released only when all 

chromosomes are correctly attached to the kinetochore.  Any perturbation 

of the checkpoint leads to initiation of anaphase before the spindle has 

established proper orientation and proper attachment to its chromosomes. 

This can lead to chromosome missegregation and, consequently, to 

aneuploidy.  

There are several specific checkpoint problems that may cause gain or loss 

of one or more chromosome (Figure 3): a) alteration of signaling within the 

mitotic checkpoint where cells with unattached or misaligned chromosomes 

can proceed trough anaphase and lead to a daughter cell with both copies 

of a chromosomes. A compromised SAC (=spindle assembly checkpoint), 

which arrests cells with improper spindle kinetochore attachments, can lead 

to CIN and aneuploidy [97, 134]. The human syndrome mosaic variegated 

aneuploidy (MVA) is caused by inactivation of the SAC protein BUBR1 

[135]; b) cohesion defects where one sister chromatid could be lost 

prematurely and thus be missegregated. Accurate chromosome 

segregation is achieved through carefully orchestrated interactions between 

the mitotic spindle, kinetochores and cohesion [136-137]; c) Merotelic 

attachment when one kinetocore is attached to both poles of the spindle 
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and generate lagging chromosomes that can be either excluded from both 

daughter cells or be missegregated. A possible explanation of the 

erroneous merotelic attachments could be the presence of extra-

centrosomes, that can generate a multipolar cell division or more frequently 

a pseudo bi-polar spindle. The consequences of  centrosome clustering, 

that enables cells to survive,  is reflected in an increased frequency of 

merotelic attachments [138], at least in tumors.; d) uncontrolled 

centrosome duplication  (multipolar mitosis). The duplication of the 

centrosome normally occurs during S phase through a cdk2 dependent 

mechanism [139], and is under a system of constraint that ensures there is 

one and only one duplication event during interphase. As a result of fidelity 

in duplication, a non-transformed cell has two centrosomes at mitosis, 

which dictate the formation of two spindle poles. If more than one 

duplication event has occurred in interphase, a multipolar spindle will result, 

and the genome will be segregated in an aneuploid manner. In the future, it 

will be important to define precisely how centrosome amplification affects 

the dynamics of spindle microtubules and whether centrosome 

amplification increases the rate at which merotelic attachments are formed 

or whether it impairs the error correction mechanisms that fix them; e) 

unstable tetraploid intermediate. 
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Figure 3.  Mechanisms that lead to aneuploidy. There are several pathways by 
which a cell may become aneuploid. A) A compromised SAC could allow cells to 
enter anaphase with unattached or misaligned chromosomes. As a result, both 
copies of one chromosome may end up in a single daughter cell. B) Chromosomes 
can be missegregated if sister chromatid cohesion is lost prematurely or if it 
persists during anaphase. C) A single kinetochore can attach to microtubules that 
arise from both poles of the spindle. If the merotelic attachments are not corrected 
before anaphase, then both sister chromatids can missegregate towards the same 
pole to generate aneuploid cells, or they can lag in the spindle midzone and be 
excluded from both daughter nuclei. D) Cells with centrosome amplification usually 
cluster extra centrosomes during mitosis to form a pseudo-bipolar spindle that can 
result in an increased frequency of merotelic attachments. 

A B C 

D 
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Tetraploidy is frequently an intermediate in tumor progression toward 

aneuploid status. In many human carcinomas, cells with tetraploid DNA 

content arise as an early step in tumorigenesis and precede the formation 

of aneuploid cells [70]. The first step of this process involves an aberrant 

mitotic exit to tetraploid status in G1, and the second, the absence of a G1 

surveillance mechanism that normally would prevent cell cycle progression 

of cells with an abnormal chromosome complement. Tetraploid cells harbor 

extra-centrosomes. These supernumerary centrosomes can lead to chaotic 

multipolar mitoses in which chromosomes are haphazardly segregated into 

two or more daughter cells, a defect that directly causes whole-

chromosome aneuploidy (Figure 4). 
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Figure 4. The fate of tetraploid cells. A) Most tetraploid cells will be detected by 
the tetraploidy checkpoint. Activation of this checkpoint results in G1 arrest, 
eventually followed by apoptosis. B) When the tetraploidy checkpoint is 
compromised (for example, in p53-defective cells), tetraploid cells proceed through 
cell division. This most often results in aneuploidy and cell death, but if this occurs 
during transformation, viable aneuploid clones can emerge. C) A reduction mitosis 
results by the segregation of a diploid genome to one pole during a multipolar 
mitosis. D)In dividing hepatocytes and many cancer cell types, the extra 
centrosomes in a tetraploid cell can be clustered, enabling a bipolar mitosis. 
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3. AIMS 

 

Polyploidization is the most peculiar feature of the liver. The literature 

reports that, contrary to most other cell types, adult hepatocytes are 

polyploid cells with a DNA content of 4, 8 or even 16 haploid genomes and 

any deviation from this mathematic assumption is the result of technical 

errors. However, the phenomenon of polyploidization includes, as first step, 

the generation of tetraploid intermediates. An underestimated aspect is that 

these cells in a tumoral context have shown to generate aneuploid 

progenies in the subsequent cell division, because of the presence of four 

centrosomes that promote multipolar spindles. The same cell fate could be 

shared by the progeny of tetraploid hepatocytes that re-enter in the cell 

cycle or even by binucleated or mononucleated cells arisen by cell fusion, a 

recent well-recognized process involved in normal liver development.  

Thus, we believe that the ploidy of liver is a more complex phenomenon 

that needs to be investigated. Because polyploidization arises through liver 

aging, at specific time-points, we decide to perform our analysis on 

aneuploidy in correspondence of those time-points, like weaning (21 days) 

and adulthood (4 months), and enriched of others in between, that could 

reveal more interesting features of liver cells (15 days, 1.5 months). 

In summary, the main objectives of my present work are: 

  to check for events of chromosomal imbalance in hepatocytes at 

the single cell level in physiological conditions. 

 to determine whether aneuplody occurs in these cells at a 

significant degree. These goals will be addressed performing a 2-color 

FISH on interphase cells for two different chromosomes (an autosome and 

a gonosome). The DNA content will be assessed by the comparison 

between the signals of the chromosomes tested. In binucleated 

hepatocytes, the comparison will be referred to one single nucleus as well 

as within the two nuclei. 
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  to determine whether aneuploidy is a widespread phenomenon or, 

as is the case for polyploidization, occurs at specific time-points. My 

experimental analysis will be comprehensive of the developmental stages 

of the liver until the adulthood.  

  to check for the presence of abnormal centrosome number. To 

address this aim I will perform a quantitative analysis of centrosomes at the 

single cell level following the same temporal outline of the DNA content 

analysis described above. The use of a combined immunostaining for two 

different proteins that co-localize at the centrosome level will guarantee a 

correct and trustworthy analysis of centrosomes number. Any numerical 

value different from the expected progression of centrosome number for a 

polyploid cell (i.e., 1, 2, 4 etc.) as well as dispare values will be considered. 

 to investigate whether the expected stoichiometric ratio between 

copies of DNA and centrosomes number within a diploid cell is 

conceivable also for a  polyploid /aneuploid cell. To address this aim I 

will perform sequential experiments of FISH/immunostaining for 

centrosome proteins at the single cellular level. 

 to determine the mechanism by which binucleated hepatocytes 

reach an unbalanced DNA content. This goal will be address testing the 

hypothesis that asynchronous cell division contributes to the aneuploidy 

observed in binucleated cells. 

 to test whether extra centrosomes are functionally active and act as 

independent entity of cluster in aggregates.  

The nucleation assay performed on young and old mice will provide the 

answer to the behavior of extra-centrosomes. 

In conclusion, a detailed analysis of hepatocytes at the single cell level is 

fundamental to better understand either the properties of terminally 

differentiated cell, or the consequences of liver cell therapies with mature 

hepatocytes. 
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4. MATERIAL AND METHODS 

 
4.1 Experimental Plan 
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CD1 mice (18 days p.c., 15 and 21 days, 1.5, 4, 5 and 7 months old) were 

obtained from Charles River. Mice were maintained in accordance with the 

guidelines from the Italian Ministry of Health. To obtain fresh suspensions 

of juvenile and adult hepatocytes, liver perfusion was carried out as 

previously described [78].  

 

4.2 Fluorescence in situ hybridization 

 

Fluorescence in situ hybridization (FISH) was performed using a locus 

specific probe for the X chromosome and painting probes for the 17, 18 and 

Y chromosomes. The BAC clone RP23-113K2, mapping to the distal region 

of the X chromosome, was obtained from the Children’s Hospital, Oakland 

CA. This probe was labeled by nick translation using biotin-16-dUTP 

(Roche Diagnostic, Indianapolis, IN) and was detected by Alexa Fluor 647-

conjugated streptavidin antibody (Invitrogen, Carlsbad, CA). To obtain 

painting chromosomes for the 17, 18 and Y chromosomes, flow sorted DNA 

for 17, 18 and Y chromosomes (M.A. Ferguson-Smith, University of 

Cambridge, Cambridge UK) were labelled by DOP-PCR with Spectrum 

Aqua-dUTP (Perkin Elmer, Waltham, MA) and Spectrum Orange-dUTP 

(Abbott Laboratories, Abbot Park, IL). Square coverslips in which 

hepatocytes were plated after perfusion were incubated in denaturation 

solution (FA/SSC) at 90°C for 1’ and 45’’ and then dehydrated with serial 

ethanol washing steps (70 ice-cold, 90, 100% for 3’ each). Probes were 

denaturated in the hybridization solution (50% dextran sulfate/SSC) at 85°C 

for 5 min, applied onto the slides and incubated overnight at 37°C in a 

humidified chamber. After washing with 50% formamide/2X SSC and 1X 

SSC for 5’ the coverslips were incubated at 37°C with blocking solution (3% 

BSA). Thereafter for the detection of the locus specific probe the coverslips 

were incubated with the previously mentioned secondary antibody. Slides 
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were counterstained with DAPI, dehydrated with ethanol series and 

mounted for imaging. 

 

4.3 Centrosome analysis, nucleation assay and H3 staining 

 

After perfusion, single hepatocytes were plated in chamber slides and 

incubated at 37°C overnight in William’s E medium (Invitrogen, Carlsbad, 

CA) supplemented with 15% Fetal Calf Serum (FCS) (Sigma, St Louis, MO) 

and antibiotics (100 U/ml penicillin and 100 µg/ml streptomycin). For 

centrosome visualization, cells were fixed in ice cold MeOH for 10’ rinsed 3 

times with PBS 1x and incubated with goat serum 5% for 1h at 37°C. 

Hepatocytes were incubated with mouse anti γ-tubulin and rabbit anti 

pericentrin (Abcam, Cambridge, MA 1:500) and detected with anti-mouse 

Alexa-488 and anti-rabbit Alexa-647 (Invitrogen AlexaFluor 1:1000). For 

nucleation assay, cells were incubated with Nocodazole (10 mg/mL) for 1.5 

h at 37°C followed by 15’ on ice. Hepatocytes were washed with PBS 1x at 

room temperature and incubated with fresh medium at 37°C for 5’ to allow 

for α-tubulin polymerization, thus testing centrosome nucleation activity. 

The cells were fixed in MeOH on ice for 10’ and store at 4°C until their use. 

For microtubules and centrosome detection after blocking (10% goat 

serum, Sigma) hepatocytes were incubated with mouse α-tubulin (Abcam 

1:500), rabbit anti γ-tubulin or rabbit anti-pericentrin (Abcam 1:500) specific 

antibodies.  Secondary detection was performed with anti-mouse 488 

antibody (AlexaFluor 1:1000) and goat anti-rabbit 647 antibody (Abcam 

1:1000). The cells were finally counterstained with DAPI. For phospho-

histone H3 assay, hepatocytes were fixed in 1% PFA for 10 minutes, 

washed 3 times in PBS 1x and permeabilized with Triton X-100, 0.3% for 

10 minutes at room temperature. After blocking with 5% goat serum 

(Sigma, St Louis MO), the cells were incubated with a mouse monoclonal 
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antibody against histone H3S10P (mAbcam 14955, 1:500) and detected 

with anti-mouse AlexaFluor 488 secondary antibody (1:1000). 

 

4.4 Two colors combined FISH and immunofluorescence 

 

Liver cells from a 45 day-old mouse were plated in special glass coverslips 

carrying a grid that allows mapping of the exact position of the cells 

(BELLCO, Vineland, NJ). To determine the centrosome number 

hepatocytes were stained with an anti γ-tubulin antibody as previously 

described. In the first step of our experiment images corresponding to 

centrosome signals were acquired with a dye specific cube together with its 

differential interference contrast image (DIC). The physical location of each 

cell was recorded with the aid of numbers and letters engraved on the grid. 

The second step consisted of removing the antifade and carrying out a 

FISH hybridization with a Y-specific painting probe to determine the ploidy 

(see above for the procedure). During this second step, the previously 

acquired DIC image was essential for recognizing the same field used for 

the γ-tubulin staining and used to unambiguously associate the number of 

centrosomes and the DNA content of each cell. 

 

4.5 Image acquisition 

 

For Figure 6 images were acquired using an inverted epi-fluorescent 

microscope (Nikon eclipse TE 200) after cytological staining. For Figure 7, 

Figure 8A and Figures 11 and 12 specimens were acquired using a 

motorized inverted fluorescence microscope, CellR (Olympus) also 

equipped with DIC. FISH images were acquired with fine focusing oil 

immersion lens (× 60, NA 1.35 and × 40) in optical sections of 0.5 µm. The 

microscope was equipped with a CCD Olympus Fluo View camera. For 

Figures 8B-C, interphase cells were imaged with an Olympus BX61 

microscope with an UPlanSApo 40 X oil immersion len, an Hg arc lamp for 
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excitation and narrow band filters for all fluorescent emission and equipped 

with a Cooke SensicamQE camera with IPLab imaging software for image 

acquisition. Images of interphase cells for each slide were acquired for the 

Spectrum Orange, Cy5 and Spectrum Aqua dyes. An IP lab script was 

generated to acquire images; a DIC image was acquired first to ensure that 

bi-nucleated cells shared the same cytoplasm even though the hepatocytes 

were diluted enough to avoid high density cell plating. Multiple focal planes 

were acquired for each channel to ensure that signals on different focal 

planes were included: eight focal planes for chromosome painting and 

thirteen different focal planes for locus specific probes were acquired. For 

Figure 9, images were acquired with a manual inverted fluorescence 

microscope (Axiovert 200, Zeiss) with fine focusing oil immersion lens (× 

60, NA 1.35). The microscope was equipped with a Camera Hall 100 and 

with the Applied Spectral Imaging software. For Figure 15, cells were 

acquired with fine focusing oil immersion lens (× 40) in optical sections of 

equipped with a FV1000 software, and operating in channel mode with 405, 

488 and 633 nm excitations; DIC was also used. The z stacks were 

acquired with resolution of 1 Airy unit to allow three-dimensional 

reconstructions. For Figure 8A and Figures 11 and 12, images were 

analyzed with tools available through ImageJ (http://rsb.info.nih.gov/ij/) and 

Photoshop (Adobe). 
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The resulting fluorescence emissions were collected using the following 

band-pass filters: 

 

DYE BAND-PASS FILTER 

 

DAPI 

 

425-to-475 nm 

 

SPECTRUM AQUA  

 

430-to-450 nm 

 

ALEXAFLUOR 488 

 

500-to-550 nm 

 

SPECTRUM ORANGE 

 

565-to-615 nm 

 

ALEXAFLUOR 647 or 

CY5 

 

655-750 nm 
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5. RESULTS and DISCUSSION 

 
 

5.1 Some binucleated hepatocytes show an unbalanced chromosome 
content.  
 

Fetal and neonatal mouse hepatocytes are diploid cells. Polyploidy usually 

starts at the second/third week of age, in concomitance with weaning, 

although the appearance of binucleation and polyploidy can change 

according to the mouse strain examined [10-11, 18]. To confirm that this 

also applies to the strain we used in this study (CD1), we analyzed the 

frequency of binucleated and mononucleated cells with classical 

haematoxylin/eosin staining at different mouse ages. We performed our 

analysis on two CD1 mice for four different ages: fetal (18 days post 

coitum), before weaning (15 days), young (1.5 months) and adult (4 

months) mice. 

Our results show that CD1 hepatocytes are mainly mononucleated cells in 

fetal and perinatal life, but become binucleated at 15 days post-partum. At 

1.5 months most hepatocytes are binucleated cells and their percentage 

does not vary appreciably later in life (Figure 6).  

To investigate the ploidy of single hepatocytes we took advantage of our 

previous experience based on the use of chromosome specific probes for 

the analysis of chromosome content of liver cells [78, 140]. In general, a 

tool for the analysis of hepatocyte DNA content is the staining of nuclei 

upon digestion of liver tissue with propidium iodide followed by 

quantification of fluorescent intensity with a flow cytometer [10]. Another 

approach is based on the evaluation of fluorescence intensity of thin liver 

tissue sections stained with Hoechst 33342 using an epi-fluorescent 

microscope. The identity of mono- or binucleated hepatocytes is 

determined by comparing nuclear to membrane labelling [74]. These 

classical approaches lack the sensitivity to detect the small differences in 

DNA content that result from unbalanced chromosomal segregation. 
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Figure 6. Classical hematoxilin/eosin staining of liver during the normal 
development. A) Top and bottom panel show the typical staining of cytoplasm and 
nucleus of single hepatocytes, obtained by liver perfusion of 15 days and 3 months 
old mice. Magnification 40x. B) The graph summarizes the percentage of mono 
and binucleated liver cells at different mouse ages. 
 
 
Moreover, the use of tissue sections stained with Hoechst or DAPI for the 

determination of DNA content incurs in several technical problems, which 

make difficult to determine the individual cell identity, and consequentially a 

correct evaluation of the staining. I therefore designed and extensively 

validated a two-color FISH approach that provides highly quantitative and 

reproducible polyploidy data for individual chromosomes in interphase 

nuclei by assessing ploidy of a cell based on a comparison between an 

autosome (17 or 18) and a sexual chromosome (Y) [78]. The 

chromosomes, selected for the small size, were suitable for the analysis of 

liver ploidy. First, I confirmed with this approach that in cells from fetal livers 

and in 15 day-old mice, all signals were compatible with a diploid content 

for both nuclei (Y and 17 probes used, Figure 7). 

 

15 days 

3 months 
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Figure 7. Interphase FISH on single hepatocytes before weaning. Example of 
FISH with 2-color labelled probes of 15 days old male liver. A) The hybridization 
with a Y-paint probe (spectrum orange=so) shows that each nucleus contains one 
single signal, as expected for male diploid cells for sexual chromosomes. The 
combination with DIC (=differential interference contrast image) allowed to classify 
the single hepatocytes, as mono or binucleated cell. B) The merged images of 
stained nuclei with DAPI and the 17-paint probe, detected with Cy5 dye, show that 
even for the autosome tested the signals corresponds to a correct diploid content. 
 

 

However the ploidy analysis of the subsequent time points (1.5 and 4 

month-old mouse) revealed an unbalanced DNA content between the two 

nuclei (Figure 8). In binucleated liver cells, it is often assumed that the 

chromosome content is similar in both nuclei and that binuclear cells divide 

synchronously into two mononuclear 4n hepatocytes [73]. However, our 

analysis with chromosome Y and chromosome 18 in 4 months old mouse 

revealed two different unbalanced conditions, as illustrated in Figure 8A. In 

some binucleated hepatocytes the signals of the two chromosomes tested 

within a nucleus didn’t match. This condition is indicative of aneuploidy and, 

as reported before, is generally related to a pathological condition. In 

addition, I also found binucleated hepatocytes that show a perfect match of 

signals between the two chromosomes within a nucleus, but an unbalanced 

DNA content between the two nuclei (i.e., one nucleus is diploid and the 
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other is tetraploid). Altogether, I estimated that the entity of these 

phenomena is in the order of 21% (18/87 cells). 

To exclude that the observed phenomenon was related to the autosome 

selected for the experiment, I performed an interphase FISH with both 

sexual chromosomes (X and Y) on single hepatocytes of 7 months. I 

observed that, based on the ploidy of sex chromosomes, most binucleated 

cells from mature livers carry nuclei with the same chromosomal content 

(2n, 4n or even 8n).  However, in two different experiments I found a 

numerical discrepancy between the visualized signals. The analysis with 

only the Y chromosome painting probe revealed that 8.7% of binucleated 

hepatocytes showed a discordant number of Y chromosomes between the 

two nuclei, (Figure 8B). In addition, a similar percentage (8%) of cells with 

an unbalanced DNA content in the two nuclei but with a perfect match of 

the signals in each nucleus (discordant nuclei for ploidy) was found when 

the Y chromosome painting probe was used in combination with a BAC X-

chromosome specific probe (Figure 8C). The perfect match between X and 

Y signals found in the same nucleus ensured the quality and the reliability  

of my analysis, demonstrating that the observed aneuploidy is real and not 

a consequence of technical challenges.  

 

Figure 8. Interphase FISH of adult binucleated hepatocytes. (A) Binucleated 
hepatocytes with unbalanced DNA content for chromosome Y (cyan) to which 
corresponds aneuploidy for the autosome 18 (in red) (top: 1 Y chr. with 3 copies of 
18 chr. in the left nucleus  and 2 Y with 2 copies of 18 in the right nucleus; bottom: 
2 Y with 3 copies of chr. 18 in the left nucleus. In this nucleus one spot for chr. 18, 
the top one, could also be the result of two overlapping  chromosomes 18, resulting 
in 4 signals. In either case the left nucleus is unbalanced with respect to the right 
nucleus, which contains 1Y with 2 copies of 18 (B) Representative binucleated cell 
with discordant DNA content between the two nuclei (8n vs. 4n, top and 2n vs. 4n, 
bottom) as detected by the number of copies of chromosome Y (in red) (continue to 

the following page). 
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Figure 8. (continue from previous page) (C) Ploidy of binucleated hepatocyte analyzed 
with a chromosome paint for Y (cyan) and a locus specific probe for X (yellow). In 
each nucleus the number of copies for the Y chromosome match the expected 
number for the X chromosome (top 3X, 3Y and 4X, 4Y; bottom 2X, 2Y and 1X, 1Y). 
However, the ploidy between the two nuclei is discordant). The cartoons on the 
right of each panel summarize the ploidy for each cell. 
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Although polyploid hepatocytes were historically thought to have limited 

mitotic capacity, several groups [141-143] have recently shown that 

tetraploid and octaploid mouse hepatocytes are highly regenerative. 

Polyploid hepatocytes could undergo reductive divisions and generate 

diploid daughters [140-141] both in vitro and in vivo [34], through a process 

termed “ploidy conveyor.” When polyploid hepatocytes divide, multiple 

mitotic spindles are initially established. In most cases, these multiple 

spindles resolve in a single bipolar spindle, but multipolar mitoses also 

occur. However, the asymmetry of mitotic spindle predisposes to 

aneuploidy, genome instability and lately neoplastic transformation [70, 

144-146]. The association between tumor transformation and aneuploidy 

made difficult to accept that a highly regenerative tissue such as the liver 

contains a large percentage of aneuploid cells. However, by using probes 

from the sex chromosomes and two autosomes (MMU 17 and 18), we 

obtained unambiguous images of unbalanced chromosome content in 21% 

of hepatocytes analyzed for Y and 18 chromosomes and 8% for sexual 

chromosomes, in 4 months old male mice. The observed aneuploidy 

frequencies suggested that the chromosomes analyzed show a different 

susceptibility to be lost or gained. Because the aneuploidy for autosomes 

were not considered vital or highly detrimental it was quite surprisingly to 

find the chromosome 18 more aneuploid than the sexual chromosome 

analyzed (X and Y) in an adult normal tissue. To note, based on the 

calculated average of 4% per sexual chromosome in adult mouse liver as 

many as the 40% of cells may be affected. In agreement with our data, 

other groups recently reported that aneuploidy occurred at high frequency 

in the liver of young, adult and aged WT mice [141].  The aneuploidy was 

detected in a range of 25 to 60%, based on chromosome counting in 

hepatocytes metaphases. Even if both approaches have limits in 

determining the exact percentage of aneuploidy due to the high complexity 

of ploidy in adult liver, it is a fact that half of the mature hepatocytes in mice 
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are aneuploid and yet retain full ability to divide. Similar results were 

collected for humans [147]. The calculated aneuploidy for each age group 

analyzed (Young, Adult and Senior) was 58% (range, 31%–91%), 

suggesting that the degree of aneuploidy is exceptionally high even in 

humans but more important that it remains constant throughout postnatal 

life. In many cases, the calculated aneuploidy was nearly identical for each 

probe set (i.e., H6); in other instances, the predicted aneuploidy varied by 

as much as 2-fold (i.e., H18). This was also in agreement with the 

difference of aneuploidy rate found for the chromosomes tested in the 

present work. To note, the synteny of chromosome 18 in humans and 

mouse is really high, suggesting that the observed increase of instability of 

chromosome 18 during aging may play the same role in both species. 

Contrary to the other reports, our data support the occurrence of 

aneuploidy in a completely normal setting, suggesting that the continuous 

duplication and/or cell fusion process facilitate the acquisition of an 

unbalanced genome content. Recent findings have shown that such 

exceptionally high levels of aneuploidy are likely to have functional 

consequences. First demonstrated in yeast, aneuploidy has shown to be 

beneficial in terms of providing a rapid cellular adaptation under pleiotropic 

stress, promoting the survival of the fittest phenotypes [117, 148]. Recently, 

a similar mechanism of adaptation has been demonstrated also for the liver 

[147]. To test whether aneuploidy could be beneficial in the liver, Grompe’s 

group utilized the Fah–/– model of hereditary tyrosinemia. Loss of Fah leads 

to accumulation of fumarylacetoacetate and associated toxic metabolites, 

resulting in liver failure and death. Liver function can be maintained by 

blocking the pathway upstream of FAH by treatment with the drug NTBC (= 

2-(2-nitro-4-trifluoro- methylbenzoyl)-1, 3-cyclohexanedione) or loss of HGD 

(=homogentisic acid dioxygenase). In Hgd+/–Fah–/– mice, after drug 

treatment interruption, livers were repopulated with reverted hepatocytes, 

which rapidly emerged organized in spread healthy nodules. Approximately 
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25% of these nodules contained spontaneous mutations in Hgd and a 

markedly enrichment for chromosome 16 loss (e.g., either whole 

chromosome loss or terminal deletion), containing functional Hgd. These 

mutations led to the complete loss of HGD activity, producing hepatocytes 

resistant to tyrosinemia and demonstrated that aneuploidy is as a 

mechanism for stress-induced liver adaptation to chronic injury. 

Our analysis based on interphase FISH allows for a more precise 

quantification of DNA content of binucleated cells, compared to the 

chromosome counting in metaphases in which the identity of binucleated 

hepatocytes is lost due to the breakage of the nuclear and cytoplasmic 

membranes. We confirmed that the majority of hepatocytes had balanced 

DNA content, as reported by Guidotti et al. [74]; however a high rate of 

binucleated cells have a discordant chromosome number between the two 

nuclei. This finding suggests either that they originate by fusion of two cells 

with different DNA content or that the two nuclei have the ability to divide 

asynchronously. We previously investigated the role of cell fusion in normal 

liver development, demonstrating a consistent contribute of cell fusion to 

the liver polyploidization [78]. In this work we investigated the second 

hypothesis, that is that asymmetric cell division can explain the unbalanced 

DNA content in binucleated hepatocytes (see below). 
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5.2 Nuclei of binucleated hepatocytes are mostly synchronous 
  

To test the hypothesis that the unbalanced DNA content in binucleated 

hepatocytes is the result of asynchronous cell division within the same cell, 

I visualized in a 15 day- and a 5 month-old mouse the level of chromatin 

modification through immunostaining with anti phosho-histone H3. The 

phosphorylation of H3 at serine 10 occurs during interphase and mitosis. In 

interphase the phosphorylation of H3 affects only a subset of genes, 

correlates to their transcriptional activation and appears as small H3SP10 

foci. However, in late G2 phase the phosphorylation of H3 occurs also in 

pericentromeric heterochromatin. At the G2/M stage thus an anti-H3S10P 

antibody is visible as a dot-like structure and is indicative of active 

replication. This is consistent with a role of “mitotic marker” attributed to 

H3S10P.  In mice from both age, mononucleated cells showed a variety of 

dot-like structures along with a more diffuse or weak staining suggestive of 

cells in different stages of the cell cycle (Figure 9 A,C,E). A similar situation 

was found for binucleated hepatocytes (Figure 9 B,D,F), but the pattern of 

staining between the two nuclei was usually identical. This observation 

suggests that binucleated cells nuclei are synchronous, as suggested by 

Guidotti et al [74]. However, it cannot be excluded the possibility of fusion 

of two cells in different phases, like G1 or G2 and S,  in which  the two 

nuclei are synchronized  before proceeding through the next phase of the 

cell cycle, as shown by Wong and Stearns [149]. We can also speculate 

that with this approach I can detect only the final step of the phenomenon. 

Based on this consideration, the use of an in vitro system of cell fusion 

would represent an additional approach to monitor this process and 

establish how synchronous cells evolve.  
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Figure 9. Immunofluorescence with anti-histone H3S10P antibody. (A, B) 
Examples of binucleated and mononucleated cells from a 15 day-old mouse. In this 
young mouse the mononucleated cells show different status of chromatin 
modification as detected by an anti phospho-histone H3 antibody (green). Small 
H3S10P foci or a diffuse staining (white arrows) are indicative of non replicative 
cells, while larger H3S10P foci at pericentric chromatin (red arrows) suggest that 
cells are proceeding to the G2/M phase. (C-F) Cells from a 5 month-old mouse. 
(B,D,F) Binucleated cells from young (B) and old (D,E) mice with small H3S10P 
foci (B,D) and with dot-like structures (F). The staining for both nuclei is 
comparable. 
 

5.3 Normal hepatocytes bear extra-numerary centrosomes 
  
The centrosome is a complex organelle that serves as the main 

microtubule organizing centre as well as the regulator of cell cycle 

progression. Centrosomes consist of microtubule-based cylinders, defined 

as centrioles, with a highly conserved nine-fold radial symmetry. The 

centriole pair are identified as the mother centriole, the old and fully mature, 

and the young, the immature, daughter centriole, assembled during the 
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previous cell cycle. The young centriole is about 80% the length of the 

mother centriole. Centrosomes duplicate once and only once per cell cycle. 

The tight regulation of centrosome number ensures that two centrosomes 

are present during mitosis, leading to a correct chromosome segregation 

into two daughter cells. The majority of diploid cells contain either one or 

two centrosomes, depending on their phase within the cell cycle. In order to 

correlate centrosome number with the occurrence of polyploidy and 

aneuploidy, I tested centrosomes behaviour in mouse hepatocytes by 

enumerating and performing functional analysis at different ages. To 

provide strict controls for the entire procedure, hepatocytes obtained after 

liver perfusion were analyzed using two distinct antibodies against γ-tubulin 

and pericentrin, that both recognize the centrosome structure, and for this 

reason colocalize.  

We found a clear relationship between ploidy and centrosome number. 

Diploid hepatocytes from young mice contained one or two centrosome(s) 

as expected, however adult hepatocytes, concomitantly with switching in 

ploidy, contained variable numbers of centrosomes. In tetraploid and 

octaploid cells, 2, 4 or an even number of centrosomes is expected. Cells 

with these numbers were indeed present in the adult liver and were 

accounted as normal. On the other hand, we also detected a large fraction 

of cells with an unexpected centrosome number (3 or more than 4, see 

Table 1). This percentage increases with the age of the mice, since no 

abnormal centrosome distribution was seen in fetal liver cells. At 15 and 1.5 

months of age, however, 11/122 (9%) and 71/123 (58%) of hepatocytes 

had an abnormal centrosome count (either 3 or > 4) respectively. 

Therefore, the level of centrosome abnormalities correlates with the 

changes in ploidy occurring with mouse aging. At 4 months of age, 35/56 

cells (62.5%) had an abnormal centrosome number, indicating that at 

around 2 months of age a plateau is reached. Interestingly, binucleated 

liver cells with 3 centrosomes seem to be restricted to specific liver 
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development times, since I identified a high percentage of 3-centrosome 

cells concomitantly with the appearance of binucleated cells at 15 days, 

and this rate declines progressively until 4 months of age, at which stage 

cells with more than 4 centrosomes predominate (Figure 10 A,B). 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 10. Centrosome analysis. (A, B). The plots summarize the percentage of 
mononucleated (A) and binucleated cells (B) classified according to the number of 
centrosomes found by co-immunostaining with anti  γ-tubulin and anti-pericentrin. 
In this plotting the percentage of cells with 4 centrosomes is kept separate from 
cells carrying 1 and 2 centrosomes since, depending upon the DNA content, cells 
with 4 centrosomes could be classified as normal or abnormal. 
 

 

Figure 11 shows examples of mono and binucleated hepatocytes with a 

normal number of centrosomes for the 15-day mice analyzed and an 

abnormal number of centrosomes for the older ages analyzed. In this 

regard, Wong and Stearns showed that the number of centrosomes of 
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fused cells is strongly related to their phase in the cell cycle. Interestingly 

they found that fusion of a G1-phase to an S-phase cell results in 

generation of cells with three centrosomes [149]. It is intriguing that we 

found the presence of binucleated cells with 3 centrosomes as a recurrent 

motive during the polyploidization process in mono- as well as in 

binucleated hepatocytes. However the theory of asymmetric cell division 

was not supported by the H3 histone assay, the possibility of fusion, 

previously suggested by our group [78] on the basis of chimeric binucleated 

cells with different patterns of sex chromosomes would explain the 

frequency of cells with three centrosomes.  

 

 

 

 

Figure 11. Examples of normal and extranumerary centrosomes.  The 
centrosomes detected by colocalization of γ- tubulin (green) and pericentrin (red) in 
mono (top) and binucleated (bottom) hepatocytes for the different ages analyzed 
are shown.  

15 DAYS 1.5 MONTHS 4 MONTHS 



50 
 

 

I next attempted to directly correlate centrosome numbers to the DNA 

content by simultaneously detecting ploidy by FISH and centrosomes by 

immunofluorescence. To this end, liver cells from a 45 day-old mouse were 

plated in glass coverslips with an enumerated grid that allows the 

identification of the localization of the cells.  The cells were stained with 

anti-α-tubulin antibody and then hybridized for the detection of chromosome 

Y in a combined experiment (see Materials and methods section for detail). 

Examples of the obtained results are shown in Figure 12. 

 

 

 
Figure 12. Analysis of centrosomes in relation to the DNA content.  Examples 
of hepatocytes analyzed by combined FISH (chromosome Y red) and 
immunofluorescence for  γ-tubulin (green). A binucleated hepatocyte with two 
tetraploid nuclei as detected by copies of the Y chromosome carries only three 
centrosomes (top). A tetraploid mononucleated cell with one centrosome (abnormal 
condition) is shown in the middle panel together with a binucleated tetraploid cell 
with 4 centrosomes. We note that the centrosomes are positioned asymmetrically. 
A binucleated hepatocyte with six centrosomes is shown in the bottom panel. 
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 Among 147 binucleated cells, I found that 65 showed a diploid content for 

each nucleus, 50 had a tetraploid content, only 1 an octaploid content and 

3 had a triploid content; in the remaining cells, the DNA content was non 

concordant or technically difficult to assess. I confirmed that out of 65 

binucleated cells with tetraploid content (two diploid nuclei) analyzed, a 

large proportion (35%) had an abnormal centrosome number (Figure 13), 

in agreement with the results reported above. Interestingly, the majority of 

cells with abnormal centrosomes was represented by binucleated cells with 

3 centrosomes (32%). On the other end, an octaploid content (two 

tetraploid nuclei) was more often associated to a highest number of 

centrosomes (36% of these cells had more than 4 centrosomes). 

 

 

 
Figure 13.  The top pie 
summarizes the percentage of 
binucleated hepatocytes with 
both diploid nuclei showing 
the distribution of 
centrosomes (1, 2, 3, 4 and 
>4); on the bottom the 
centrosome distribution is 
plotted for binucleated cells 
with tetraploid nuclei. 
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The same trend was also seen in mononucleated cells (n= 41, Figure 14), 

although the number of examined cells for the mononucleated hepatocytes 

 was too small for statistical relevance. The finding of an increase in the 

centrosome number (>4) and ploidy occurring with age (see text and 

Figure 11 A,B and Figure 13), suggests that the 3-centrosome stage 

represents an intermediate step in the progression of the hepatocyte 

toward a full mature phenotype. 

 

 

 

Figure 14. Analysis of centrosomes in relation to the DNA content of 
mononucleated hepatocytes. The pies summarize the distribution of 
centrosomes number in the group of mononucleated hepatocytes with diploid (A), 
tetraploid (B) and octaploid (C) DNA content determined on chromosome Y 
signals.  
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The presence of abnormalities in centrosome number is an additional 

conundrum in the biology of hepatocytes. How a normal division could 

occur in presence of these abnormalities is unclear since most 

centrosomes appear to be able to nucleate microtubules and direct spindle 

formation. The high level of aneuploidy found at different ages suggests 

that harbouring extra-centrosomes is probably one of the liver tools to 

acquire genetic heterogeneity. Alternatively, cells with a high number of 

centrosomes could represent terminally differentiated senescent cells that 

would not further divide and in this case centrosomes would be the relict of 

previous mitoses. The next step was to investigate whether the extra-

centrosomes retain the ability to nucleate microtubules and participate 

actively to mitosis.  

 

5.4 Extranumerary centrosomes maintain nucleation capacity 
 

It is well known that most mature hepatocytes are quiescent cells. These 

findings regarding the presence of extra-centrosomes in adult hepatocytes 

prompted me to investigate their role in cell physiology. Supernumerary 

centrosomes are actually a specific peculiarity of certain tumour cells, and 

even in a high proliferative context it has been shown that not all these 

centrosomes maintain their ability to nucleate microtubules [150]. Therefore 

we investigated whether the same occurs in normal hepatocytes. We 

performed this analysis on 21 day- and 4 month-old mice. In the young 

mice, in which most cells are diploid, all centrosomes showed the ability to 

nucleate α-tubulin, as shown in Figure 15 Interestingly, binucleated 

hepatocytes with 3 centrosomes do not show functional clustering (Figure 

15, row 2) since the organelles seem to be distinct entities that preserve the 

ability to polymerize microtubules independently. The results on adult mice 

(4 months) showed that most centrosomes in normal hepatocytes are still 

potentially active and able to nucleate microtubules, even though we expect 

these cells to be in a quiescent state. (Figure 15 rows 3 and 4). Therefore 
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centrosome “inactivation” does not appear to be at work in normal polyploid 

liver cells. The last possibility could suggests the hypothesis of a different, 

yet undiscovered role for extra-centrosomes in hepatocytes biology or 

function. Centrosomes are involved in cilia and flagella formation, and in 

some specialized cells hundreds of basal bodies are formed [151]. 

Centrosome proteins in liver cells could mediate cell-cell interaction and a 

high centrosome number could play a role in the adhesion of these large 

cells. Although this is highly speculative, it is noteworthy that polycystic 

kidney patients, who have structural abnormalities of primary cilia, have 

additional defects in other organs including the liver [152]. Very recently, it 

has been found that Joubert syndrome and related disorders, whose 

clinical picture includes liver fibrosis, is due to a defect in the TMEM216 

gene (a protein involved in ciliogenesis and centrosomal docking) [153]. 
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Figure 15. Nucleation assay. (A, B) Examples of one mono and two binucleated 
cells in a 15 day- old mouse with normal and abnormal centrosomes number. All 
centrosomes maintain the ability to polymerase tubulin, even the binucleated cell in 
B with three centrosomes. (C, D) In 5 month- old mice binucleated cells with 
normal (1, as shown in C) and abnormal (3, as shown in D) centrosomes the 
nucleation assay suggests that all centrosomes are potentially active even at 4 
months of age when cells are prevalently in the Go phase.  
 
 

 
 
 
 
 
 
 
 
 



56 
 

6. CONCLUSIONS 

  

In conclusion, for the first time, we provided a detailed single cell analysis 

of physiological development in the liver (at 15 days, 1.5 months, 4 months, 

and 7 months). In this study we have documented, at the single cell level, 

that: 

 aneuploidy is a natural phenomenon in healthy liver and arises 

progressively together with polyploidization; 

 the extra-centrosomes represent another peculiar feature of hepatocytes. 

They are still active and able to nucleate α-tubulin even in mature liver 

cells;  

 none asynchronous cell division was observed for the binucleated 

hepatocytes analyzed. Therefore, the loss of stoichiometry between DNA 

copies and centrosomes number observed in adult hepatocytes is more 

likely attributed to cell fusion between two cells with a different ploidy and or 

to an unbalanced segregation of centrosomes. 

 

All these unexpected features of hepatocytes provide new insights on the 

role of aneuploidy in adult somatic tissues. Thus, selective proliferation by 

subsets of aneuploid hepatocytes could yield divergent effects. On one 

hand, hepatic aneuploidy could have pathological consequences. 

Aneuploidy has been extensively described in hepatocellular carcinoma 

[154-155], but it is unknown whether tumors arose from preexisting 

aneuploid hepatocytes or simply became aneuploid during tumorigenesis. It 

is intriguing that whole chromosome gains/losses were reported in dozens 

of lesions [154]. However, the unexpected high rate of aneuploidy found in 

healthy liver suggests that preexisting aneuploid hepatocytes could have 

beneficial effects or could be better tolerated in a polyploidy context. 

Studies in yeast have shown that increased ploidy ‘buffers’ against the 

adverse effects of aneuploidy [103, 114]. Analogously, the lack of 
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detrimental aneuploidy-associated phenotypes in hepatocytes could be due 

to better tolerance of altered genomic content in the presence of higher 

ploidy. Consistent with this idea, hepatocytes are remarkably resistant to 

genomic insults such as telomere erosion and defects in the chromosome 

segregation machinery [156-157]. On the other hand, the selection of a 

chromosome-specific aneuploidy in a context of chronic liver injury that 

restores the hepatocytes functionality demonstrates that aneuploidy can be 

adaptive and beneficial to the fitness of the cells. In this regard, we can 

speculate that the liver, with its high level of aneuploidy detected 

consistently overall the ages analyzed in humans and in the mouse by our 

group and others, can be pictured as a store of well tolerated genetic 

heterogeneity. In response to toxic stresses and diseases the liver may 

select the more beneficial chromosomic pattern to promote cellular fitness 

against cell deterioration. The centrosomes amplification and the 

unbalanced DNA content within binucleated hepatocytes, described in this 

work, are both features predisposing to genomic instability and could be 

related to the necessity of liver cells to develop aneuploidy, as it is 

continuously challenged by stress events that could require high gene 

expression of particular loci. Taken together, these observations raise an 

interesting conundrum. How is it possible that the presence of extra 

chromosomes leads to tumorigenic transformation, but at the same time 

cells with severe karyotypic abnormalities, like hepatocytes, are well 

tolerated and beneficial? To begin to shed light on this question, Williams 

and coworkers [118] provide an interesting twist, by showing that 

harbouring an extra chromosome may or may not drive a mammalian cell 

into oncogenesis, depending on the chromosome itself and on the state of 

the cells.  

Further studies, at the molecular and transcriptional level, to 

elucidate how the hepatocytes manage to avoid neoplastic transformation 

are needed to better understand in deep the biology of these peculiar cells. 
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However, looking for a specific cellular marker for aneuploid cells will give 

the chance to extrapolate aneuploid cells from their natural context and to 

provide an invaluable resource for the analysis of several phenomena, like 

aging, cancer and cellular senescence. 
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