
 

 

U N I V E R S I T A ’  D E G L I  S T U D I  D I  M I L A N O  

 

 

 

 

Facoltà di Medicina e Chirurgia 
 

DOTTORATO DI RICERCA IN MALATTIE INFETTIVE 
 
 

 

 

 

Evaluation of virological response to antiretroviral therapy  

in patients carrying HIV-1 non-B subtypes  

according to baseline mutational patterns 

 

 

 

 

Coordinatore: Prof. Antonella d’Arminio Monforte 

Tutore: Prof. Claudia Balotta 

 

 

 

 

Tesi di dottorato di Ricerca 

Dr. Marco Franzetti 

Matricola N° R08735 

  

 

 

 

 

Anno Accademico 2012-2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187905168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 2

Index 

 

 

Index……………………………………………………………………………………..2 

Abstract………………………….………………………………………………………3 

Acknowledgements………..………………………………………………………..4 

Introduction…………………………………………………………………………….5 

The origin and variability of HIV…………………………………………………………………… 6 

The impact of HIV variability………………………………………………………………………….8 

HIV variability and response to treatment…………………………………………………. 10 

Aim of this study………….……………………………………………………………………………... 11 

Methods……………………………………………………………………….……… 13 

Inclusion criteria and endpoints………………………………………………………….…….. 14 

Genotypic resistance and subtype assignment …..……………………….…………….14 

HIV-1 genotype and treatment coding……………..………………………….……………. 16 

Statistical analysis………………………………………………………………………….…………….17 

Results……………………………………………………………………….……… 18 

Characteristics of the population………………………………………………………….……..19 

Previous treatment and starting regimens…..……………………….…………….……..23 

Virological response to HAART……………..………………………….………………………….24 

Predictors of response to treatment…………………………………………………………….17 

HAART effect in paired pol genotype…………………………………………………………….29 

Discussion…………………………………………………………………….……… 31 

References…………………………………………………………………….………37 

 

 

  



 

 3

Abstract 

 

OBJECTIVES: Notwithstanding the growing proportion of HIV-1 non-B 

subtypes in Europe, the impact of their genetic background on 

response to antiretroviral therapy is still unclear. The aim of this study 

was to compare response to protease inhibitor (PI) or non-nucleoside 

reverse transcriptase inhibitor (NNRTI) containing regimens in patients 

carrying non-B or B clades with matched resistance mutation patterns. 

 

METHODS: We analyzed HIV-1 pol sequences of 1,108 patients stored 

in the ARCA (Antiretroviral Resistance Cohort Analysis) database and 

obtained before treatment. Response to therapy was defined as viral 

load suppression below 50 HIV-1 RNA copies/ml at week 12. By 

evaluating the combination of major resistance mutations, genotype 

coding generated 35 and 12 different vectors for PI or NNRTI 

treatments.  

 

RESULTS: The proportion of subjects achieving virological suppression 

was comparable in patients with non-B or  B variants stratified for 

treatment status (51.5% vs. 41.5% in naïve and 46.7% vs. 38.7% in 

experienced patients) and regimens including PIs (46.9% vs. 39.7%) 

or NNRTIs (56.7% vs. 40%). No difference in response to therapy in 

patients with non-B and B HIV-1 was observed in any matched 

genotype with respect to treatment combination. When B vs. specific 

non-B clades (C, F1, CRF02_AG) were compared, the only difference 

was a better response of CRF02_AG compared to B clade (75.0% vs. 

36.7%; p=.012).  

 

CONCLUSIONS: Response to PI- and NNRTI-based therapy is 

comparable in patients carrying non-B or B subtype matched for HIV-1 

pol genotype. Further clade-specific studies are advisable to 

investigate possible minor effects on response to treatment. 
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The origin and variability of HIV  
 

 

HIV-1 pandemic is a relevant challenge for global health nowadays, 

with more than 35 million people living with this infection [1]. The 

virus was originated in West and Central Africa from a zoonotic 

transmission of simian immunodeficiency virus (SIV) from non-human 

primates. HIV type 1 (HIV-1) groups M, N, O and P and HIV type 2 

(HIV-2) groups A-H were generated by independent zoonotic 

transmission events. HIV-1 group M, the pandemic branch of HIV, 

originated from SIVcpz in the chimpanzee Pan troglodytes troglodytes 

[2].  

After transmission to humans at the beginning of the century, HIV-1 

group M probably diversified into genetic subtypes (named A-D, F-H 

and J-K) during the first decades of the 20th century [3]. 

Recombinants between subtypes have been designated as circulating 

recombinant forms (CRFs) if fully sequenced and found in three or 

more epidemiologically unlinked individuals. At present, 54 different 

CRFs have been described. Recombinants are defined unique 

recombinant forms (URFs) if not meeting these criteria [4].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Phylogenetic tree 
showing relationships between 
SIV, HIV-2 and HIV-1. 
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In the second half of the 20th century the global spread of HIV-1 

group M resulted in a differential global distribution of HIV-1 subtypes 

and recombinants, as shown in Figure 1.  

Notably, the circulation of non-B clades has recently increased in 

previously subtype B-restricted areas such as Western Europe and 

North America, mainly due to immigration from other regions of the 

world [5].  

The analysis of HIV-1 heterogeneity has shown a high inter-subtype 

nucleotide sequence divergence in gag, pol and env genes [6]. This 

genetic variability of HIV results from recombination and the high 

mutation rates of the reverse transcriptase enzyme, which lacks a 

proof-reading mechanism, and to the high rates of viral replication. 

Also within a single individual viral sequences can differ by up to 10% 

[7] and genetic variation within a subtype is generally in the order of 

8-17%, sometimes reaching more important proportions, as high as 

30%. Variation between subtypes is usually between 17 and 35% but 

can be up to 42% [7].  

The high variability may lead to specific differences among different 

subtypes in pathogenesis, infectivity, resistance to antiretrovirals and 

response to therapy. 

 

 

The impact of HIV variability 

 

The origin and molecular epidemiology of HIV, as far as their potential 

impact on disease progression, have recently been comprehensively 

reviewed [8, 9]. HIV-1 variability is crucial in describing the size and 

features of the pandemic, since groups, subtypes and recombinants 

differ in both epidemic size and geographical spread (Figure 1). It is 

uncertain whether the differential strain distribution can be accounted 
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for by founder effects alone or if intrinsic biological properties of the 

different HIV variants have played a role in their differential spread. 

Nevertheless, it is somehow described an impact of HIV diversity on 

cell biology, transmission, pathogenesis and clinical management. In 

addition, a key role of escape mutations in the immune response to 

HIV has been described and challenges to HIV vaccine development 

have risen from HIV diversity [10]. 

 

 

 

 

 

 

 
 
 
Figure 3. The role of HIV diversity: aspects of HIV infection 
which are affected by the viral genetic variability (Figure 
reproduced from Ref. 9). 
 

 
A recent study found that human genetic variation, together with 

demographic variables, accounted for only 22% of the variability in 

HIV viral load and disease progression rates. Other factors, including 

environmental and viral factors, seem to be responsible for the 

remaining 78% of divergence in the clinical progression of the disease 

[11]. 

While these effects have been shown within subtype B infected 

populations, subtypes may play a significant role in determining viral 

load setpoint, considering the large genetic variability between 

subtypes. Indeed, cohort studies performed in areas where different 

subtypes co-circulate have provided some insights. According to recent 

studies, subtype C appeared to have a higher viral load and lower CD4 
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counts than those infected with subtype A [12], while CRF02_AG 

seems to have a higher viral load than other subtypes [13]. 

Some independent African studies indicated that subtype D infection is 

associated with faster disease progression to death than subtype A in 

populations where these subtypes co-circulate [14, 15]. This reduced 

survival was found in association with lower CD4 counts in subtype D 

infection rather than subtype A [14. 15]. Moreover, among individuals 

with advanced immunosuppression, subtype D was also associated 

with higher rates of dementia compared to subtype A [16]. 

As a possible consequence of different pathological properties, studies 

from Uganda and Kenya found significant decreases in the prevalence 

of subtype D and increases in subtype A frequency overtime [17, 18]. 

The changes in these proportions may have an explanation in both the 

faster disease progression and lower rate of heterosexual transmission 

of subtype D. 

 

 

HIV variability and response to therapy 

 

Previous studies did not show significant variations in virologic and 

immunologic responses to highly active antiretroviral therapy (HAART) 

between HIV-1 subtype B and all non-B subtypes grouped together. No 

differences in achieving viral load suppression following treatment did 

emerge in limited comparisons between subtype B and specific non-B 

variants such as clades C, A, D and CRF02_AG [19-23]. 

Moreover, information regarding resistance to antiretroviral drugs has 

been mainly derived from patients infected with HIV-1 subtype B [24].  

The selection of resistance to antiretroviral drugs continues to be an 

important problem in the treatment of HIV-infected individuals. 

Indeed, most major resistance mutations in subtype B are also found 
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in non-B subtypes, but several novel mutations occur in non-B 

subtypes [25]. 

Although most of the resistance-associated mutations have been 

characterized in subtype B viruses, they are also found in treatment-

failing patients harboring non-B subtypes [26, 27].  

Nevertheless, some differences have been documented in the 

pathways to resistance in different clades [28] and subtype-specific 

natural polymorphisms have been suggested to play a possible role in 

drug activity in vitro and in vivo in some studies [29]. 

Of note, of 67 resistance mutations found in non-B subtype, 61 were 

also seen in subtype B isolates, indicating that some novel mutations 

only occur in non-B subtypes [25]. Examples of the latter are the non-

nucleoside reverse transcriptase inhibitor (NNRTI) resistance mutation 

V106M which occurs in subtype C and CRF01_AE and the protease 

inhibitor (PI) mutation L891V which has been described in subtypes C, 

F and G [30]. The mutational pathway leading to resistance is shorter 

in some non-B subtypes, which may have a role in the faster 

development of cross-resistance and compromise second-line regimens 

[30]. A differential pathway leading to resistance to is well known for 

mutation K65R, which has a faster selection in subtype C rather than 

in B clade [31] and has an important role in conferring resistance to 

non-nucleos(t)ide reverse transcriptase inhibitors (NNRTI). 

Among specific non-B subtypes some differences are also notable. In 

fact, nevirapine resistance mutations seem to develop more frequently 

in subtype D than A in a mother-to-child transmission prevention study 

using single-dose nevirapine [32].  

Of note, among strains not belonging to group M a high proportion of 

group O viruses are naturally resistant to NNRTIs due to the presence 

of the C181Y substitution in the RT region [33]. 
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Aim of this study 

 

Since the majority of data about highly active antiretroviral therapy 

(HAART) efficacy and resistance has been obtained from clinical trials 

involving mainly patients harboring subtype B virus, implications of 

subtype divergence in HAART efficacy still need to be studied in detail. 

This achievement is urgent because antiretroviral drugs are being 

introduced into developing countries where non-B subtypes are highly 

prevalent and non-B clades are expanding in previously clade B 

homogeneous areas, including Italy [34-39]. 

The aim of this study was to explore an innovative methodology to 

compare the impact of specific patterns of mutations on virological 

response to treatment in patients harboring different HIV-1 clades. 

Herein, we evaluated the overall and subtype specific response to PI or 

NNRTI containing regimens in patients carrying non-B or B clades with 

matched pre-therapy genotype, in a multicenter nationwide cohort. 
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Inclusion criteria and endpoints 

 

Patients included in this analysis participated to the Antiretroviral 

Resistance Cohort Analysis (ARCA, www.hivarca.net) database and gave 

their informed consent to have their anonymised data stored on a central 

server and used for non-profit research purposes.  

Patient cases were selected based on availability of baseline HIV-1 

genotype obtained at maximum 12 weeks before treatment start and 

availability of a 12-week (range 8-16 weeks) follow-up HIV-1 RNA 

determination. Response to therapy was defined as viral load suppression 

below 50 HIV-1 RNA copies/ml at week 12. As secondary end-points HIV-

1 viral load reduction between baseline and 12-week follow up and 

proportions of individuals reaching undetectable viral load at week 24 

were also considered. Comparisons between response to treatment in 

subjects carrying B and non-B variants were conducted with and without 

matching for baseline resistance pattern and treatment (see below). 

 

 

Genotypic resistance and subtype assignment  

 

Resistance mutations were identified for IAS-USA 2011 tables [40]. 

Subtyping was based on a partial HIV-1 pol sequence about 1,000 to 

1,280 nucleotides long, depending on the sequencing protocol used at 

the contributing laboratory. Sequences were firstly analyzed using the 

NCBI HIV-1 subtyping tool to discriminate between B and non-B strains.  

Non-B sequences were subsequently aligned to the most recent reference 

dataset from Los Alamos National Laboratory website 

(http://hiv.lanl.gov/) using BioEdit 7.0.5 and ClustalX 1.83. The resulting 

alignment was analyzed with Phylip package version 3.67 

(http://evolution.genetics.washington.edu/phylip.html) building a 

Neighbor-Joining tree based on the F84 substitution model. Reliability of 

the tree topology was assessed through bootstrapping using 1,000 



Methods 

 15

replicate datasets. Sequences that could not be unequivocally assigned to 

a pure subtype or CRF were considered as possible recombinants and 

examined using Simplot 3.5.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Mutations in the reverse transcriptase gene associated with 
resistance to reverse transcriptase inhibitors [40]. 
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Figure 5. Mutations in the protease gene associated with resistance to 
protease inhibitors [40]. 

 

HIV-1 genotype and treatment coding 

 

Response to therapy was evaluated in patients carrying either non-B or B 

subtypes with matched resistance patterns and treatment type. HIV-1 

genotype was coded by considering the following mutations: any 

thymidine analogue mutations (TAMs) (M41L, D67N, K70R, L210W, 

T215Y/F and K219Q/E), K65R, L74I/V, Q151M, 69ins, M184I/V, any 

major NNRTI mutation (K103N/S/T, Y181C/I, Y188C/H/L, G190A/E/S/T) 
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and the number (0, 1-3, or >3) of major PI mutations (D30N, I47A/V, 

G48V, I50L/V, I54L/M, L76V, V82A/F/L/S/T, N88D/S, I84V, L90M). 

Treatments were coded as two nucleoside reverse transcriptase inhibitors 

(NRTIs) plus one NNRTI or two NRTIs plus one PI. Each case was then 

defined by the vector combining resistance pattern and treatment type 

(Table 1).  

 
 
Table 1. Generation of vectors and response evaluation. 
Treatments were coded as 2 NRTIs + NNRTI or 2 NRTIs + PI; each case 
was defined by the vectors combining resistance pattern and treatment. 
Sufficient numerous vectors allowing for statistical analysis were coded 
from 1 to 17. 
 

 

 

 

Statistical analysis 

 

The distribution of study subjects with regard to categorical parameters 

was compared using X2 or Fisher exact test. Standard non parametric 

methods (Wilcoxon signed-rank test) were used to compare the median 

Vectors  Mutation pattern  

TAM  65R  74V  151M  184V  PI a  

1  0  0  0  0  0  0  

2  0  0  0  0  1  0  

3  1  0  0  0  0  0  

4  1  0  0  0  1  0  

5 

…  

1 

…  

0 

…  

0 

…  

0 

…  

0 

…  

1 

…  

 TAM  65R  74V  151M  184V  NNRTI  

14  0  0  0  0  0  0  

15  0  0  0  0  0  1  

16  0  0  0  0  1  0  

17  1  0  0  0  1  0  
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age, HIV-1 RNA levels and CD4 counts.  

The crude and Mantel-Haenszel adjusted odds ratios (OR) of response to 

therapy with 95% confidence interval (CI) were calculated. Univariate 

analysis was performed using logistic regression and a subsequent 

multivariate analysis was done on all variables, using the same tests with 

a full model.  

The changes in HIV-1 viral load following therapy in genotype and 

treatment matched cases derived from HIV-1 B and non-B cases were 

compared by Wilcoxon signed rank test.  

In all tests, a p-value below 0.05 was considered significant. 
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(heterosexual mode of infection in 81.8% and 43.7% of patients, 

respectively, p<.0001), gender (males in 52% and 68.5% of cases 

p<.0001) and median age (35 vs. 41 years, p=0.01). No difference in 

baseline HIV-1 RNA levels was observed (4.6 vs. 4.6 Log copies/ml), 

while a difference in CD4 cell count at baseline was found in patients 

carrying non-B rather than B variants (201 cells/µl vs. 245 cells/µl, 

p=.0007).  

The prevalence of non-B subtypes was higher among drug-naïve than 

drug experienced patients (20.7%, 66/319 vs. 60/789, respectively, 

p<.0001). The demographic, immunologic and virological data of the 

patients stratified between naïve and experienced individuals are 

shown in Table 1, part A.  

In the overall population, the prevalence of any drug resistance was 

57% (631/1,108). NRTI, NNRTI and PI-associated resistance 

mutations were detected in 52.0%, 28.7% and 24.3%, respectively. 

The prevalence of drug resistance mutations was lower in subjects 

carrying non-B rather than B subtypes, either considering any 

mutation (35.7% vs. 59.7%, p<.0001) or NRTI (33.3% vs. 54.4%, 

p<.0001), NNRTI (12.2% vs. 30%, p=.006) and PI (15.1% vs. 25.5%, 

p=.010) mutations.  

No difference in the proportions of drug resistance was observed 

between non-B and B strains  when grouped in naïve or previously 

experienced individuals. 

Table 1 shows the characteristics of our study population according to 

demographic and immunovirologic parameters, for the whole 

population and for subjects carrying B or non-B variants. 

The distribution of epidemiologic and immunovirologic parameters 

among 319 naïve individuals and 789 experienced individuals is shown 

in Table 3 and 4, respectively. 
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Table 2. Demographic, virological and immunological features of 
1,108 patients enrolled in our cohort. 

 
 
Table 3. Demographic, virological and immunological features among 
319 naïve individuals, according to subtype. 

 
ALL PATIENTS B SUBTYPE NON-B CLADE 

Ethnic group, % (n) 

Europeans 

Africans 

Latin Americans 

Asians 

Others 

 

77.3 (856) 

3.0 (33) 

2.4 (27) 

0.5 (6) 

16.8 (186) 

 

79.9 (785) 

0.3 (3) 

2.5 (24) 

0.5 (5) 

11.4 (126) 

 

56.3 (71) 

23.8 (30) 

2.4 (3) 

0.8 (1) 

0.2 (21) 

Risk factor, % (n) 

Heterosexual sex 

Men having sex with men 

Intravenous drug use 

Other 

 

48 (532) 

20.4 (226) 

28 (310) 

3.6 (40) 

 

43.7 (429) 

21.9 (215) 

31.0 (304) 

3.5 (34) 

 

81.8 (103) 

8.7 (11) 

4.8 (6) 

4.7 (6) 

Gender, % (n) 

Males 

 

68.8 (758) 

 

68.5 (754) 

 

52.2 (71) 

Age (yr), median (IQR*) 40 (36-45) 41 (36-46) 35 (32-43) 

HIV-1 RNA (Log cp/mL), median (IQR) 4.6 (3.9-5.2) 4.6 (3.9-5.2) 4.6 (4.0-5.3) 

CD4 count (cells/mL), median (IQR) 237 (118-380) 245 (128-390) 201 (81-290) 

Total patients, % (n) 100 (1,108) 88.6 (982) 11.4 (126) 

   B subtype Non-B subtype p 

   Ethnic group, % (n)     

       Europeans  

       Africans 

       Latin Americans 

       Asians 

       Others  

 

79.4 (579) 

0.1 (1) 

1.9 (14) 

0.3 (2) 

18.2 (123) 

 

65.7 (34) 

26.7(16) 

3.3 (2) 

0 

13.3 (8) 

 

 

<.0001  

   Risk factor, % (n)  

       Heterosexual sex 

       Men having sex with men 

       Intravenous drug use 

       Other  

 

38.4 (280) 

19.3 (141) 

38.5 (281) 

3.7 (27) 

85.0 (51) 

5.0 (3) 

3.3 (2) 

6.7 (4) 

 

 

<.0001  

   Gender, % (n) 

       Males  

 

69.74 (507) 

 

45.0 (27) 

 

<.0001 

   Age (yr), median (IQR*)  41 (37-45) 36.5 (32-46) .001 

   HIV-1 RNA (Log cp/mL), median (IQR)  4.3 (3.7-5) 4.3 (3.9-4.7) n.s. 

   CD4 count (cells/mL), median (IQR)  262 (150-411) 209 (101-317) .029 

   Total patients, % (n)   92.4 (729) 7.6 (60)  
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Table 4. Demographic, virological and immunological features among 
789 previously experienced patients, according to subtype. 

 

 

 

Previous treatments and starting regimens 
 

Drug experienced patients had a median number of 6 regimens (IQR 

3-9), with a lower number of drug regimens taken in subtype non-B 

vs. B infected individuals (3 vs. 5 median previous regimens, 

p=.0008). The proportion of experienced subjects carrying a non-B 

clade was lower (47.6%) than that found in patients with B strains 

(74.2%) (p<.0001).  

Complete previous treatment history was available for 424 patients. All 

these subjects were NRTI experienced, 53 and 109 patients had 

previously been administered an NNRTI- or PI-containing therapy, 

respectively; 232 received both NNRTIs and PIs.  

Overall, subjects beginning a PI-based HAART regimen were 883. 

   B subtype 
Non-B 

subtype 
p 

   Ethnic group, % (n)     

       Europeans  

       Africans 

       Latin Americans 

       Asians 

       Others  

 

81.4 (206) 

0.8 (2) 

4.0 (10) 

1.2 (3) 

12.6 (32) 

 

56.1 (37) 

21.2 (14) 

1.5 (1) 

1.5 (1) 

0.2 (13) 

 

 

 

<.0001 

 

   Risk factor, % (n)  

       Heterosexual sex 

       Men having sex with men 

       Intravenous drug use 

       Other  

 

58.9 (149) 

29.3 (74) 

9.1 (23) 

2.8 (7) 

 

78.8 (52) 

12.1 (8) 

6.1 (4) 

3.3 (2) 

 

 

.013 

   Gender, % (n) 

       Males  

 

73.9 (184) 

 

60.6 (40) 

.046 

   Age (yr), median (IQR*)  41 (34-47) 35 (32-41) .001 

   HIV-1 RNA (Log cp/mL), median (IQR)  5.1 (4.7-5.5) 4.9 (4.2-5.4) .049 

   CD4 count (cells/mL), median (IQR)  198 (64-323) 182 (64-286) n.s. 

   Total patients, % (n)   79.3 (253) 20.7 (66)  
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Among these individuals 54.5% (n=153), 36.3% (n=102) and 9.2% 

(n=26) carried 0, 1-3 and >3 mutations in protease region as detected 

before starting or changing therapy. An antiretroviral regimen 

containing an NNRTI was started in 225 individuals, 7 of whom had a 

transmitted NNRTI mutation.  

 

Table 5. Prevalence of drug resistance before the beginning of a new 
HAART regimen in naïve and experienced subjects, according to 
subtype. 
 
 

All 

patients 

NAÏVE PATIENTS EXPERIENCED 

PATIENTS 

B non-B B Non- B 

Any resistance % (n)  
57.0 

(631) 
9.9 (25) 6.1 (4) 76.9 (561) 68.3 (41) 

NRTI resistance % (n)  
52.0 

(576) 
7.5 (19) 6.1 (4) 70.6 (515) 63.3 (38) 

NNRTI resistance% (n)  
28.7 

(318) 
3. 2 (8) 4.6 (3) 39.4 (287) 33.3 (20) 

PI resistance % (n)  
24.3 

(269) 
2.8 (7) 0 33.3 (243) 31.7 (19) 

Previous drug regimens,  

median (IQR)  
3 (0-7) - - 5 (3-8) 3 (1-7) 

Total patients, % (n)   
100 

(1,108) 

79.3 

(253) 
20.7 (66) 92.4 (729) 7.6 (60) 

 

 

Virological response to HAART 

 

In the whole study population the proportion of subjects achieving 

virological suppression on HAART at median week 12 was higher in 

individuals carrying non-B (62/126, 49.2%) rather than B variants 

(387/982, 39.4%, p=.035). Subgroup analysis showed no difference 

either among drug-naïve (34/66, 51.5% vs. 105/253, 41.5%) or 

pretreated individuals (28/60, 46.7% vs. 282/729, 38.7%). No 

difference in virological response was detected in the proportion of 



 

 

individuals starting a PI

subtype (45/96, 46.9% vs. 309/787, 39.7%, in patients with non

and B clades). A trend to a better virological response was observed in 

subjects undergoing NNRTI

subtypes (17/30, 56.7% vs. 78/195, 40%; p=.085

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Prevalence of virological response to HAART at the median 
week 12 among naïve and experienced subjects.
 

 

No difference was detected when comparing the viral load reduction 

between baseline and the median week 12 between 

non-B and B subtypes when stratified between drug

experienced subjects (2.24 vs. 1.82 and 2.83 vs. 2.98 Log copies/ml, 

individuals starting a PI-containing HAART regimen accordi

subtype (45/96, 46.9% vs. 309/787, 39.7%, in patients with non

and B clades). A trend to a better virological response was observed in 

subjects undergoing NNRTI-based HAART carrying non-B rather than B 

subtypes (17/30, 56.7% vs. 78/195, 40%; p=.085).  

. Prevalence of virological response to HAART at the median 
week 12 among naïve and experienced subjects. 

No difference was detected when comparing the viral load reduction 

between baseline and the median week 12 between subjects harbo

B and B subtypes when stratified between drug
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containing HAART regimen according to 

subtype (45/96, 46.9% vs. 309/787, 39.7%, in patients with non-B 

and B clades). A trend to a better virological response was observed in 

B rather than B 

. Prevalence of virological response to HAART at the median 

No difference was detected when comparing the viral load reduction 

jects harboring 

B and B subtypes when stratified between drug-naïve and 

experienced subjects (2.24 vs. 1.82 and 2.83 vs. 2.98 Log copies/ml, 
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respectively). 

We investigated the response to treatment as the proportion of 

subjects achieving virological response at median week 24 in a subset 

of 777 individuals (70.1%) with an available follow up at this time-

point. No difference was found when grouped together (56/89, 62.9% 

vs. 379/688, 55.1%), in naïve (35/49, 71.6% vs. 145/189, 76.7%) or 

in experienced patients (21/.40, 52.5% vs. 234/499, 46.9%). 

 

 

Predictors of response to treatment 

 

With the whole case file, predictors of a higher probability of virological 

suppression at week 12 in the univariate analysis included subtype 

(OR, for non-B variants: 1.49; 95% CI: 1.02-2.16; p=.035), viral load 

at baseline (OR per 1 Log higher: 0.55; 95% CI: 0.47-0.65; p<.0001), 

time of virological follow-up (OR per 1 week higher: 1.01; 95% CI: 1-

1.11; p=.051), number of previous regimens (OR per 1 regimen 

higher: 0.95; 95% CI: 0.92-0.97; p<.0001) and calendar year (OR per 

1 year later: 1.21; 95% CI: 1.14-1.28; p<.0001). By contrast, 

ethnicity, mode of transmission, gender and age, as well as NNRTI or 

PI-containing regimens, did not influence the outcome of therapy. 

Predictors of viral load below 50 copies/ml in the multivariate model 

were viral load at baseline (OR per 1 Log higher: 0.41; 95% CI: 0.34-

0.50; p<.0001), number of previous regimens (OR per 1 regimen 

higher: 0.92; 95% CI: 0.89-0.95; p<.0001) and calendar year (OR per 

1 year higher: 1.27; 95% CI: 1.19-1.37; p<.0001).  
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Table 6. Logistic regression analysis investigating possible predictors 
of undetectable levels of HIV1 RNA at median week 12 in naïve 
individuals.  

a Other: Africans, Latin Americans, Asians or not available;   
b Other: professional risk, transfusions, vertical transmission. 

 

 

 

 

 

  

 Univariate Multivariate 

Covariate OR 95%CI p OR 95%CI p 

Subtype 

B 

Non-B 

 

- 

1.498 

 

- 

0.870-2.579 

 

- 

0. 145 

 

- 

0.963 

 

- 

0.467-1.986 

 

- 

0.919 

Ethnicity 

Europeans 

Other
a
 

 

- 

2.264 

 

- 

1.052-4.873 

 

- 

0.037 

 

- 

2.145 

 

- 

0.797-5.773 

 

- 

0.131 

 

Risk category 

HE 

HO 

IDU 

Other
b
 

 

 

- 

0.567 

0.875 

0.547 

 

 

- 

0.333-0.967 

0.390-1.963 

0.133-2.247 

 

 

- 

0.037 

0.746 

0.403 

 

 

- 

1.136 

1.715 

0.130 

 

 

- 

0.549-2.353 

0.662-4.441 

0.014-1.241 

 

 

- 

0.731 

0.266 

0.076 

 

Gender 

Male 

Female 

 

 

- 

2.085 

 

 

- 

1.272-3.418 

 

 

- 

0.004 

 

 

- 

2.201 

 

 

- 

1.141-4.243 

 

 

- 

0.018 

 

Age 

per 10  years older 

 

 

1.067 

 

 

0.857-1.328 

 

 

0.561 

 

 

1.331 

 

 

0.988-1.793 

 

 

0.060 

 

Time of viral load follow-up 

per 1 week higher 

 

1.099 

 

0.994-1.216 

 

0.065 

 

1.174 

 

1.032-1.336 

 

0.015 

 

Baseline viral load  

per 1 log higher 

 

0.369 

 

0.257-0.530 

 

<.0001 

 

0.335 

 

0.216-0.512 

 

<.0001 

 

Starting HAART 

PI  

NNRTI 

 

 

- 

0.735 

 

 

- 

0.453-1.192 

 

 

- 

0.212 

 

 

- 

0.590 

 

 

- 

0.323-1.077 

 

 

- 

0.086 

 

Number of previous regimens 

per 1 regimen higher 

 

- 

 

- 

 

- 

 

- 

 

- 

 

- 

Calendar year 

per 1 year higher 

1.123 1.024-1.231 0.014 1.190 1.066 -1.342 0.002 
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Table 6. Logistic regression analysis investigating possible predictors 
of undetectable levels of HIV1 RNA at median week 12 in drug-
experienced individuals.  
a Other: Africans, Latin Americans, Asians or not available;   
b Other: professional risk, transfusions, vertical transmission. 

 

 

 

 

  

 Univariate Multivariate 

Covariate OR 95%CI p OR 95%CI p 

Subtype 

B 

Non-B 

 

- 

1.387 

 

- 

0.817-2.353 

 

- 

0.225 

 

- 

1.283 

 

- 

0.639-2.576 

 

- 

0.483 

Ethnicity 

Europeans 

Other
a
 

 

- 

0.728 

 

- 

0.356-1.489 

 

- 

0.384 

 

- 

0.585 

 

- 

0.254-1.348 

 

- 

0.208 

 

Risk category 

HE 

HO 

IDU 

Other
b
 

 

 

- 

0.882 

0.977 

0.602 

 

 

- 

0.590-1.319 

0.707-1.351 

0.269-1.347 

 

 

- 

0.541 

0.889 

0.216 

 

 

- 

1.247 

1.060 

0.425 

 

 

- 

0.727-2.140 

0.698-1.608 

0.133-1.359 

 

 

- 

0.423 

0.785 

0.149 

 

Gender 

Male 

Female 

 

 

- 

1.041 

 

 

- 

0.767-1.414 

 

 

- 

0.794 

 

 

- 

0.996 

 

 

- 

0.654-1.517 

 

 

- 

0.985 

 

Age 

per 10  years older 

 

 

1.138 

 

 

0.950-1.364 

 

 

0.164 

 

 

1.091 

 

 

0.870-1.368 

 

 

0.452 

 

Time of viral load follow-up 

per 1 week higher 

 

1.038 

 

0.975-1.106 

 

0.245 

 

1.026 

 

0.950-1.107 

 

0.516 

 

Baseline viral load  

per 1 log higher 

 

0.519 

 

0.426-0.633 

 

<.0001 

 

0.4230 

 

0.338-0.548 

 

<.0001 

 

Starting HAART 

PI  

NNRTI 

 

 

- 

1.100 

 

 

- 

0.747-1.620 

 

 

- 

0.628 

 

 

- 

1.260 

 

 

- 

0.807-1.968 

 

 

- 

0.309 

 

Number of previous regimens 

per 1 regimen higher 

 

0.942 

 

0.910-0.975 

 

0.0008 

 

0.922 

 

0.884-0.963 

 

0.0002 

Calendar year 

per 1 year higher 

1.255 1.170-1.345 <.0001 1.352 1.233 -1.482 <.0001 
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HAART effect in paired pol genotype 

 

We evaluated whether mutations associated to resistance differently 

influence the proportions of subtype B and non-B infected patients 

achieving an undetectable viral load at week 12 when beginning a PI- 

or an NNRTI-containing HAART. The procedure used to code HIV-1 

genotype generated 35 and 12 vectors for PI- and NNRTI-treated 

patients, respectively. Table 3 shows the patterns of mutations 

identified and the proportions of patients with B or non-B subtypes 

who achieved an undetectable viral load at week 12.  

Among patients on PI-based regimens, the rate of virological response 

was not different between subtype B and non-B virus either in the 

absence of drug resistance mutations (group 1) or in the presence of 

any of the most common mutational patterns found. Patients harboring 

a wild type HIV-1 genotype were the only group allowing comparisons 

between subtype B and specific non-B subtypes. No significant 

difference was observed in this group when subtype F1 (n=13) and C 

(n=9) were compared to subtype B (n=324) (response rates of 23.1% 

and 44.4% vs. 36.7%,respectively). By contrast, a better response in 

patients carrying CRF02_AG (n=12) compared to those with HIV-1 B 

clade (75.0% vs. 36.7%, p=.012) was observed.  

Among patients on NNRTI-based regimens, no difference in the 

response rate was found between subjects harboring non-B or B 

subtypes when mutations were absent at baseline. Finally, HIV-1 RNA 

reduction at the median week 12 and the proportions of response to 

treatment at median week 24 in patients matched for specific mutation 

patterns and specific genotype did not  significantly differ between 

non-B and B clade. 
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Table 7. Resistance patterns and response to treatment in patients 
carrying non-B and B subtypes. 

a
0: no mutations; 1: 1-3 mutations; 2: >3 mutations 

b
0: no mutations; 1: any mutations 

 

 

Vectors  Mutation pattern  

Subtype  Response to HAART  

TAM  65R  74V  151M  184V  PI 
a

  

Non-B  
% (num.)  

B  
% (num.)  

Non-B  
% (num.)  

B  
% (num.)  

1  0  0  0  0  0  0  15.4 (59)  84.6 (324)  40.7 (24)  36.7 (119)  

2  0  0  0  0  1  0  13.2 (9)  86.8 (59)  44.4 (4)  57.6 (34)  

3  1  0  0  0  0  0  4.4 (4)  95.6 (86)  75.0 (3)  41.9 (36)  

4  1  0  0  0  1  0  5.2 (4)  94.8 (73)  75.0 (3)  42.5 (31)  

5  1  0  0  0  0  1  10.9 (7)  89.1 (57)  28.6 (2)  26.3 (15)  

6  1  0  0  0  1  1  4.1 (3)  95.9 (71)  33.3 (1)  42.3 (30)  

7  0  0  0  0  0  1  12.5 (2)  87.5 (14)  100 (2)  42.9 (6)  

8  0  0  0  0  1  1  7.7 (1)  92.3 (12)  0 (0)  33.3 (4)  

9  0  0  1  0  0  0  50 (2)  50 (2)  100 (2)  50 (1)  

10  0  1  0  0  0  0  20 (1)  80 (4)  100 (1)  100 (4)  

11  1  0  1  0  1  0  10 (1)  90 (9)  100 (1)  66.7 (6)  

12  1  0  1  0  1  1  20 (1)  80 (4)  100 (1)  50 (2)  

13  1  0  1  0  1  2  20 (1)  80 (4)  100 (1)  100 (4)  

 
TAM  65R  74V  151M  184V  NNRTI  

        

14  0  0  0  0  0  0  16.3 (24)  83.7 (123)  62.5 (15)  50.4 (62)  

15  0  0  0  0  0  1  50 (1)  50 (1)  100 (1)  100 (1)  

16  0  0  0  0  1  0  12.5 (2)  87.5 (14)  0 (0)  57.1 (8)  

17  1  0  0  0  1  0  6.9 (2)  93.1 (27)  50 (1)  18.5 (5)  
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Overall access to antiretrovirals through global or local treatment 

programs is increasing in low-income areas where non-B HIV-1 strains 

are highly prevalent. Although the circulation of non-B subtypes has 

recently increased in most European countries, response to treatment 

in Western countries has been mainly analyzed with subtype B viruses 

and in some cases compared with that of non-B subtypes considered 

as a single cumulative group [19, 20]. This approach may mask 

differences among specific subtypes in disease progression and drug 

susceptibility [25, 41]. Indeed, medium-term outcome of large studies 

in low-income countries demonstrated good virological and 

immunological responses to therapy, but few studies have addressed 

treatment response with specific subtypes [42-44]. Some reports 

indicated subtype-independent effects of HAART [45] while others 

suggested that D subtype, compared to C and A clades, negatively 

impacts on disease progression and response to treatment [47-49]. 

 

We studied a large population of either naïve or drug experienced HIV-

1 patients who started an antiretroviral therapy guided by a baseline 

genotype over the last 13 years in Italy. We recently reported evidence 

of onward transmission of non-B variants through migration and 

travels among Caucasian living in Italy [36]. Other Italian studies 

indicated that such viral variants are spreading to heterosexuals and 

male homosexuals, thus non-B subtypes are no longer restricted to 

African ethnicity and heterosexuality [37, 38]. 

 

A high heterogeneity of group M HIV-1 clades was detected in our 
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study population. Of note, F1 subtype and CRF02_AG accounted for 

similar proportions (about 20%) of non-B strains. In previous studies 

the very low frequency of F1 subtypes did not allow to address their 

response to HAART therapy [27, 45, 49]. Overall, the prevalence of 

any and class-specific drug resistance mutations was lower in non-B 

compared to B clade in our case-file. However, no difference in TDR 

was detected in naive patients carrying either non-B or B subtype. This 

finding indicates that primary resistance is no longer restricted to 

patients of Caucasian ethnicity mainly infected with subtype B. An 

explanation of these data may be the lower frequency (about 8%) of 

non-B clades in drug experienced patients compared to that found in 

naive individuals (about 21%). The former subjects may have acquired 

HIV-1 infection at an earlier time point when the circulation of non-B 

variants, including transmission of resistant strains, was lower than 

that found in the last years [39]. 

 

As expected, the relative proportion of treated individuals was lower 

among those with a non-B clade, who received a median lower number 

of regimens compared to patients carrying a B subtype. By studying 

the overall population we observed a better response to HAART of non-

B variants regardless of the class of drugs used together with an NRTI 

backbone. However, this difference in the virological outcome was still 

present but not significant when comparing patients who received an 

NNRTI- or PI containing regimen either in naïve or previously treated 

individuals, probably due to a size effect. A slightly better response 

was observed in patients with non-B clades on NNRTI-containing 

regimens. This finding is not in agreement with the results of the ACTG 

5095 trial that indicated a higher risk of virological failure of efavirenz 

therapy in black patients with respect to white Americans [50]. 

Nonetheless, the multivariate analysis supported our finding 

demonstrating that the ethnicity does not influence the short-term 

response to HAART. 
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Moreover, a limited proportion of subjects achieved viral suppression 

at week 12. This result may be partly explained by i) the high 

proportion (more than 25%) of patients with HIV-1 viral load above 

106 copies/ml and ii) the relatively short follow-up which was 

deliberately chosen to focus on the impact of genotype on virological 

response. In any case, no worse response of non-B clades was 

detected even analyzing the difference in HIV-RNA reduction at week 

12 or the proportion of individuals reaching viral load suppression at 

week 24. 

Due to its retrospective nature, our study has several limitations, 

particularly the lack of any information about adherence to treatment. 

It has been proposed that the maintenance of long-term adherence 

may be influenced by effective engagement of health care facilities 

[50]. Although we could not check for adherence in our database, the 

free access to Italian medical services and the availability of therapy 

for legal or illegal immigrants could have favoured their compliance to 

therapy regardless of their ethnicity. Moreover, an interaction between 

race and adherence has been only reported for an NNRTI, efavirenz, 

due to a genetic polymorphism of the subfamily of cytochrome P450 

(CYP2B26) in blacks that leads to a decreased metabolism of this drug, 

relevant side effects and low adherence [50]. A number of factors 

possibly affecting adherence, such as ethnicity, age, gender and risk 

factors, were considered as possible confounders in our regression 

model. None of these covariates significantly resulted to impact the 

virological outcome of patients stratified according to treatment status 

and subtypes in the multivariate analysis. In addition, although CD4 

cell count at baseline was higher in subjects carrying a subtype B, this 

parameter was not associated with different virological outcome 

neither in univariate nor  multivariate analysis. 

 

Furthermore, even though a genotype guided choice of regimens 
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warrants for avoiding suboptimal therapy in naïve patients, this may 

not be fully applied to experienced patients, particularly those with 

multiple failures. Indeed, we observed that the number of previous 

regimens interacts with treatment response, however, this factor was 

considered as a confounder in the multivariate analysis. The treatment 

cases included in our study span 14 years. During this period several 

drugs have been replaced by more potent compounds and, as 

expected, the more recent calendar year of treatment was a predictor 

of virological success.  

 

Our findings indicate that the efficacy of NNRTI- or PI-containing 

HAART is similar with B and non-B subtypes matched for major 

resistance mutations. This suggests that HIV-1 pol minor mutations 

and polymorphisms do not significantly impact response to HAART with 

HIV-1 subtype B vs. non-B. Based upon discrepant results of different 

interpretation algorithms, it has been suggested that polymorphisms 

could impact the outcome of patients with non-B variants [51, 52]. 

However, the potential influence of mutations associated to minor 

resistance has been studied in detail in a paper analyzing amino acid 

protease and RT changes of about two hundred non-B clinical isolates 

of naïve and treated HIV-1 patients. By using the Virtual PhenotypeTM 

tool and linear regression analysis it has been observed that individual 

unreported changes not belonging to known resistance mutations are 

not predictors of resistance of non-B variants [27].  

 

By comparing sequences with identical patterns of major resistance 

mutations, we could compare virological outcome only in a limited 

number of individual HIV-1 clades (F1, CRF02_AG and C). The data 

suggest that response to HAART for these HIV-1 variants is 

comparable to that detected for B subtype. These data support 

previous results and extend them to the F1 subtype [45]. However, 

achievement of viral suppression was detected in an higher proportion 
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of patients infected with the CRF02_AG clade, compared to B subtype, 

starting a PI-containing regimen with a wild type virus. Even though 

the number of patients carrying CRF02_AG is limited, a possible 

influence of clade-specific polymorphisms on the therapeutic outcome 

cannot be excluded, thus requiring further investigations. 

 

Our study provides early data showing similar responses of non-B and 

B clades even when paired for genotype, even though extended follow-

up data are required to provide conclusive results. While it cannot be 

ruled out that specific combinations of mutations and specific 

polymorphisms exert different effects on drug susceptibility with a 

particular clade, larger datasets, most likely derived from international 

cohorts, are required to address this possibility. 
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