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2 LIST OF ABBREVIATIONS 
2D: bi-dimensional  

3D: three-dimensional  

ANOVA: analysis of variance  

ASYM: asymmetry index for sequence of natural numbers and words 

CCD: charge coupled device  

EMG: electromyography  

NS: not significant  

OMES - Orofacial Myofunctional Evaluation with Scores Protocol 

RDC: research diagnostic criteria  

RMS: root mean square  

SD: standard deviation  

TMD: temporomandibular disorder  

TMJ: temporomandibular joint  
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3 ABSTRACT 
Functional impairments of facial movements alter the quality of life, and their 

quantitative analysis is a key step in the description and grading of facial function and 

dysfunction. In this investigation we assessed the symmetry of lip movements in verbal 

and non-verbal movements in healthy subjects. 

A non-invasive recording protocol, integrating an electromyographic system and 

an optoelectronic 3D-motion analyzer, has been developed and used to detect lip 

movements in verbal and non-verbal movements. 

Two separate investigations have been made. In the first study, functional 

symmetries of the lip movements were assessed in a control group of clinically healthy 

subjects. Data were evaluated separately for men and women, and a gender-related 

effect was tested. 

The aim of the second study was to assess the onset of the EMG activity of 

zygomaticus and depressor labii inferioris muscles that play a role in speech 

pronunciation and smiling movements. 

The outcomes suggest that the proposed method could be a useful tool to 

evaluate the asymmetry of the lips and of the facial muscles during the performance of 

smiling, lip purse and speech pronunciation, and to detect functionally altered facial 

conditions. 

 

Key words: 3D motion analysis; electromyography; health; speech; facial muscles. 
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4 INTRODUCTION 
The face characterizes human beings and in particular the mouth and lips plays a 

key role in the evaluation and recognition of the craniofacial complex. 

The smile is one of the most frequent facial expressions, and is used to transmit 

positive emotional state, as well as to serve social functions such as greeting. Like many 

facial expressions, the smile can be produced either deliberately by voluntary movement 

of the Zygomaticus major muscles or spontaneously (Lapatki et al., 2003; Schmidt et 

al., 2006). 

During speech pronunciation, the movements of the articulators create temporal 

sequences of sounds, characterized by activations of the tongue, jaw, lips, vocal folds 

and velum muscles, i.e. movements of the vocal tract articulators, and the resulting 

vocal tract shapes correspond to the produced patterns of speech. At the extrinsic level, 

acoustic signals, visual and perceptual salience similarly correspond to the produced 

patterns of speech (Smith 1992; Green et al., 2000; Bianchini and Andrade, 2006; Van 

der Geld et al., 2008; Sawyer et al., 2010; Grimme et al., 2011). 

For speech pronunciation the timing is critical, since it can carry relevant 

information for the communication process, and generally involves the coordination of 

different end-effectors and different movements of the face, and requires a sequence of 

well-coordinated orofacial movements (Grimme et al., 2011). 

Facial expressions can be altered in various pathologic conditions and 

malformations, deriving from central nervous system diseases, neuromuscular and 

peripheral nerve paralysis (mostly, facial nerve paralysis), drug administration, 

dentofacial deformities and scars, congenital anomalies (Trotman et al., 1998a; Okada, 

2001; Wachtman et al., 2001; Mishima et al., 2004; Nooreyazdan et al., 2004; Tarantili 

et al., 2005; Tzou et al., 2005; Proff et al., 2006; Agostino et al., 2008; Mehta et al., 

2008; Sawyer et al., 2010; Sforza et al., 2012). 

In several medical and dental fields, facial dysfunctions are usually assessed 

independently from their origin, and several clinical and instrumental assessments can 

be used to grade both spontaneous and instructed movements (Trotman et al., 2000; 

Wachtman et al., 2001; Linstrom et al., 2002; Giovanoli et al., 2003; Nooreyazdan et 

al., 2004; Proff et al., 2006; Ferrario and Sforza, 2007; Hontanilla and Aubá, 2008; 

Mehta et al., 2008; Popat et al., 2008a). 
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Clinical assessments focalize on total and local facial motion, synkinesis and 

movement asymmetries (Proff et al., 2006; Ferrario and Sforza, 2007; Reitzen et al., 

2009), whilst quantitative methods can assess both the movements of selected facial 

landmarks and their trajectories (Linstrom et al., 2002; Giovanoli et al., 2003; Ferrario 

and Sforza, 2007; Hontanilla and Aubá, 2008; Mehta et al., 2008; Popat et al., 2008b; 

Sawyer et al., 2010). Clinical evaluations can have a reduced inter-examiners 

repeatability, with problems in data sharing among different care takers or research 

centers. To overcome these limitations, quantitative methods for the assessment of 

facial movements have been proposed (Trotman et al., 2000; Okada, 2001; Kang et al., 

2002; Linstrom et al., 2002; Tzou et al., 2005; Proff et al., 2006). 

Nowadays, several three-dimensional motion analyzers allow a non-invasive 

quantitative assessment of soft tissue facial movements without interfering with the 

subject (Weeden et al., 2001; Coulson et al., 2000; 2002; Giovanoli et al., 2003; 

Johnston et al., 2003; Mishima et al., 2004; Nooreyazdan et al., 2004; Proff et al., 2006; 

Ferrario and Sforza, 2007; Agostino et al., 2008; Popat et al., 2008a,b; Sforza et al., 

2010b,c; 2012; Verzé et al., 2011a,b). 

The detection and quantitative analysis of facial movements is a key step in the 

description and grading of facial function and dysfunction, during diagnosis, treatment 

and follow-up of their disorders (Trotman et al., 2000; Okada et al., 2001; Coulson et 

al., 2002; Kang et al., 2002; Tzou et al., 2005; Proff et al., 2006; Hontanilla and Aubá, 

2008; Mehta et al., 2008; Okamoto et al., 2010; Sawyer et al., 2010).  

In our laboratory, we developed a method for the non-invasive, three-

dimensional assessment of facial movements using an optoelectronic motion analyser 

(Ferrario and Sforza, 2007; Sforza et al., 2010b,c; 2012). This method was found to be 

minimally disturbing, reliable, and to accurately detect total and local motion during the 

performance of standardized facial animations (Sforza et al., 2010b,c; 2012). It offers a 

valuable support for the extraction of numeric values, which are very useful in the 

differential diagnosis (Ferrario and Sforza, 2007; Popat et al., 2008a,b; Mapelli et al., 

2009; Sforza et al., 2010b; Verzé et al., 2011a,b).  

Patient can be compared to reference values obtained from healthy individuals 

according to age, gender and ethnicity (Frey et al., 1999; Tzou et al., 2005; Sforza et al., 

2010b,c). Longitudinal assessments can also be performed during treatment and 

rehabilitation. 
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Another useful system in the differential diagnosis process and in the therapeutic 

planning is surface electromyography (EMG). EMG can monitor orofacial functions, it 

is highly sensitive in measuring muscle performance, monitoring their efficiency, and 

comparing different groups of individuals (Ferrario et al., 2000a, 2006a,b, Galo et al., 

2006, 2007; Tartaglia et al 2008; Felício et al., 2009b, 2012). 

Among the various assessments of facial function, the detection of symmetry (or 

its counterpart, asymmetry) is one of the most important, and even lay observers can 

detect facial asymmetries at rest and during mimicry. Considering the well-known 

fluctuating asymmetry existing in all subjects (Sforza et al., 2010d), before defining 

clinical values for “asymmetry”, it is necessary to define a threshold in healthy 

individuals.  

Several studies about the quantitative evaluation of the symmetric and 

asymmetric facial movements using non-invasive methods like three-dimensional 

optoelectronic analysis (Ferrario and Sforza, 2007; Sforza et al. 2010 b,c; 2012) and 

EMG (Ferrario et al., 2000a, 2001; Felício et al., 2009b) were performed, but in all 

cases only not-verbal animations were analyzed. Indeed, facial and labial movements 

during speech production are an integral part of the social life of each person, and their 

quantitative analysis is mandatory in several clinical fields. 

The assessments of healthy individuals would provide data that can be used as 

normality parameters for the comparison with the patients with morphologic and/or 

functional problems in the skull-facial area. 

In the present investigation, three-dimensional motion analysis and surface EMG 

have been applied to analyse both facial kinematics and facial muscle function in a 

group of young healthy subjects. 
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5 ANATOMY AND FUNCTION 
 

5.1 FACE 
The aspect of the face, from above downwards, consists of the temporal region, 

cheek and lower jaw. The temporal region lies in front of the external ear and above the 

zygomatic arch. It is demarcated superiorly by the superior and inferior temporal lines, 

and inferiorly and laterally by the zygomatic arch. 

The variable prominence of the zygoma is largely attributable to the shape of the 

body of the underlying zygomatic bone. If the sharp posterior margin of the frontal 

process of the zygomatic bone is followed upwards, its fusion with the zygomatic 

process of the frontal bone at the zygomaticofrontal suture may be detected. 

The face should be divided into three parts (Fig.1). The upper third of the face is 

outlined superiorly by hairline and inferiorly by the glabella and frontonasal groove 

(centrally), and laterally by the eyebrows and the supraorbital ridges. 

The middle third of the face is defined as that area bounded above by a 

transverse line connecting the two zygomaticofrontal sutures, passing through the 

frontomaxillary and frontonasal sutures, and limited below by the occlusal plane of the 

maxillary teeth. Posteriorly the region is limited by the sphenoethmoidal junction, but it 

includes the free margins of the pterygoid plates inferiorly. 

The lower third of face extends from subnasale to menton. The lower third is 

further divided into its own thirds, with the upper lip occupying one third, and the lower 

lip and chin defined occupying the other two thirds. 

 

 
Figure 1. Thirds of facial proportions (Papel et al., 2008). 
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5.2 FACIAL NERVE  
The facial nerve emerges from the skull base at the stylomastoid foramen and 

almost immediately gives off the nerves to the posterior belly of digastric and 

stylohyoid, and the posterior auricular nerve, which supplies the occipital belly of 

occipitofrontalis and some of the auricular muscles (Fig. 2). 

 

 
Figure 2. Distribution of the facial nerve. The branches given off immediately after the nerve exits the 

stylomastoid foramen. (Standring et al., 2008, modified). 
 

The nerve next enters the parotid gland high up on its posteromedial surface and 

passes forwards and downwards behind the mandibular ramus. Within the substance of 

the gland it branches into superior (temporofacial) and inferior (cervicofacial) trunks, 

usually just behind and superficial to the retromandibular vein. The trunks branch 

further to form a parotid plexus. Five main terminal branches arise from the plexus, they 

diverge within the gland and leave by its anteromedial surface, medial to its anterior 

margin, to supply the muscles of facial expression (Fig. 3). 
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Figure 3. The branches of the facial nerve on the face. (Rizzolo and Madeira, 2005, modified) 

 

The temporal branch usually divides into anterior and posterior rami soon after 

piercing the parotidomasseteric fascia below the zygomatic arch; there is often a middle 

(frontal) ramus. Twigs supply intrinsic muscles on the lateral surface of the auricle, and 

the anterior and superior auricular muscles, and communicate with the 

zygomaticotemporal branch of the maxillary nerve and the auriculotemporal branch of 

the mandibular nerve. The more anterior branches supply the frontal belly of 

occipitofrontalis, orbicularis oculi and corrugator, and join the supraorbital and lacrimal 

branches of the ophthalmic nerve. 

Zygomatic branches are generally multiple. They cross the zygomatic bone to 

the lateral canthus of the eye and supply orbicularis oculi: they may also supply muscles 

innervated by the buccal branch. Twigs communicate with filaments of the lacrimal 

nerve and the zygomaticofacial branch of the maxillary nerve. 

The buccal branch is usually single. It has a close relationship to the parotid duct 

for about 2.5 cm after emerging from the parotid gland, and typically lies below the 

duct. Superficial branches run beneath the subcutaneous fat and superficial musculo-

aponeurotic system. Some branches pass deep to procerus and join the infratrochlear 

and external nasal nerves. Upper deep branches supply zygomaticus major and levator 
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labii superioris, and form an infraorbital plexus with the superior labial branches of the 

infraorbital nerve. They also supply levator anguli oris, zygomaticus minor, levator labii 

superioris alaequae nasi and the small nasal muscles: these branches are sometimes 

described as lower zygomatic branches. Lower deep branches supply buccinator and 

orbicularis oris; they communicate with filaments of the buccal branch of the 

mandibular nerve. 

There are usually two marginal mandibular branches. They run forwards towards 

the angle of the mandible under platysma, then turn upwards across the body of the 

mandible to pass under depressor anguli oris. The branches supply risorius and the 

muscles of the lower lip and chin, and filaments communicate with the mental nerve. 

The cervical branch emerges from the lower part of the parotid gland and runs 

anteroinferiorly under platysma to the front of the neck. Typically single, it supplies 

platysma and communicates with the transverse cutaneous cervical nerve. 

Cutaneous branches of the facial nerve accompany the auricular branch of the 

vagus; they are believed to innervate the skin on both auricular aspects, in the conchal 

depression and over its eminence. 
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5.3 MUSCLES OF FACIAL EXPRESSION 
The shape of the mouth and labial postures are controlled by an intricate three-

dimensional complex of muscular slips, including: the elevators, retractors and evertors 

of the upper lip and buccal angle (levator labii superioris alaeque nasi, levator labii 

superioris, zygomaticus major and minor, levator anguli oris and risorius); the 

depressors, retractors and evertors of the lower lip and buccal angle (depressor labii 

inferioris, depressor anguli oris and mentalis); antagonists of the foregoing, a compound 

sphincter (orbicularis oris with its sub regions, incisivus superior and inferior) and 

buccinator. 

Although these muscles produce movements of the facial skin that reflect 

emotions, it is usually argued that their primary function is to act as sphincters and 

dilators of the facial orifices and that the function of facial expression has developed 

secondarily. Embryologically, they are derived from the mesenchyme of the second 

pharyngeal arch and so are innervated by the facial nerve. Topographically and 

functionally the muscles of facial expression may be subdivided into epicranial, 

circumorbital and palpebral, nasal, and buccolabial groups (Fig. 4). 

 

 
Figure 4. The superficial muscles of the head and neck. (Standring et al., 2008, modified) 
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5.3.1 MUSCLES OF THE UPPER FACE 

 

Occipitofrontalis  

Occipitofrontalis covers the dome of the skull from the highest nuchal lines to 

the eyebrows. It is innervated by the posterior auricular branch of the facial nerve and 

the frontal part is supplied by the temporal branches of the facial nerve. 

The frontal parts raise the eyebrows and the skin over the root of the nose, acting 

from above, like in expressions of surprise or horror. 

 
Corrugator supercilii 

This muscle is located at the medial end of each eyebrow, lying deep to the 

frontal part of occipitofrontalis and orbicularis oculi, with which it is partially blended. 

The innervation is given by temporal branches of the facial nerve. 

Corrugator supercilii cooperates with orbicularis oculi to draw the eyebrows 

medially and downwards to shield the eyes in bright sunlight. It is also involved in 

frowning. 

 

 
Figure 5. Muscles of facial expression (1) Orbicularis Oris. (2) Levator labii superioris alaeque nasi. (3) 

Levator labii superiori. (4) Zygomaticus minor. (5) Levator anguli oris. (6) Zygomaticus major (7) 
Buccinator. (8) Depressor labii inferioris. (9) Depressor anguli oris. (10) Mentalis. (11) Orbicularis oculi. 

(Rizzolo and Madeira, 2005, modified) 
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Procerus 

It arises from a fascial aponeurosis attached to the periosteum covering the lower 

part of the nasal bone, the perichondrium covering the upper part of the lateral nasal 

cartilage and the aponeurosis of the transverse part of nasalis. It is inserted into the 

glabellar skin over the lower part of the forehead between the eyebrows. 

It is innervated by temporal and lower zygomatic branches from the facial nerve. 

Procerus draws down the medial angle of the eyebrow and produces transverse 

wrinkles over the bridge of the nose. It is active in frowning and ‘concentration', and 

helps to reduce the glare of bright sunlight. 

 
Orbicularis Oculi 

Orbicularis oculi is a broad, flat, elliptical muscle which surrounds the 

circumference of the orbit and spreads into the adjacent regions of the eyelids, anterior 

temporal region, infraorbital cheek and superciliary region (Fig. 5 [11]). 

The temporal and zygomatic branches of the facial nerve perform its 

innervation. This muscle is the sphincter muscle of the eyelids and plays an important 

role in facial expression and various ocular reflexes. 
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5.3.2 MUSCLES OF THE MIDFACE 

 

Nasalis 

Nasalis muscle consists of transverse and alar components. The transverse part 

(compressor naris) is attached to the maxilla above and lateral to the incisive fossa, and 

lateral to the alar part. The alar part (pars alaris or dilator naris posterior) is attached to 

the maxilla above the lateral incisor and canine, lateral to the bony attachment of 

depressor septi, and medial to the transverse part, with which it partly merges. The 

innervation of nasalis muscle is performed by the buccal branch of the facial nerve. It 

may also be supplied by the zygomatic branch of the facial nerve. 

The transverse part compresses the nasal aperture at the junction of the vestibule 

and the nasal cavity. The alar parts draw the alae and posterior part of the columella 

downwards and laterally and so assist in widening the nares and in elongating the nose. 

They are active immediately before inspiration. 

 
Levator Labii Superioris Alaeque Nasi 

It is attached to the upper part of the frontal process of the maxilla, then 

descends inferolaterally, dividing into a medial slip attached to the greater alar cartilage 

and the skin over it and a lateral slip prolonged inferolaterally to blend with levator labii 

superioris and orbicularis oris (Fig. 5 [2]). The innervation is given by zygomatic and 

superior buccal branches of the facial nerve. The lateral slip raises and everts the upper 

lip and raises, depends and increases the curvature of the nasolabial furrow’s superior 

part; the medial slip dilates the nostril and displaces laterally and modifies the curvature 

of the inferolaterally convex circumalar furrow. 

 
Levator Labii Superioris 

It descends from the inferior orbital margin, being attached to the maxilla and 

zygomatic bone above the infra-orbital foramen, and converges into the upper lip 

between the lateral slip of elevator labii superioris alaeque nasi and zygomaticus minor 

with, more deeply, levator anguli oris (Fig. 5 [3]). Levator labii superioris is innervated 

by the zygomatic and buccal branches of the facial nerve, and it elevates and events the 

upper lip. 
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Zygomaticus Minor 

It is attached to the zygomatic bone behind the zygomaticomaxillary suture, 

descends medially into the upper lip; separated superiorly from levator labii superioris 

by a narrow triangular interval, but inferiorly blends with this muscle (Fig. 5 [4]). It is 

innervated by the zygomatic and buccal branches of the facial nerve, and elevates the 

upper lip exposing maxillary teeth and assists in deepening and elevating the nasolabial 

furrow. With the other main elevators, it curls the upper lip in smiling and in smugness, 

contempt or disdain. 

 
Zygomaticus major 

It extends from the zygomatic bone, in front of the zygomaticotemporal suture, 

to the modiolus near the buccal angle, blending here with levator anguli oris and 

orbicularis oris and also, more deeply, with order modiolar muscles (Fig. 5 [6]). The 

innervation is performed by the zygomatic and buccal branches of the facial nerve. 

Zygomaticus major retracts and elevates the modiolus and buccal angle, as in laughing. 

It is also a fixator of the modiolus. 

 
Levator Anguli Oris 

It is attached to the canine fossa below the infra-orbital foramen, whence it 

converges and mingles near the buccal angle (at the modiolus) with zygomaticus major, 

depressor anguli oris and other muscular bands including orbicularis oris. (Fig. 5 [5]). 

Zygomatic and buccal branches of the facial nerve perform its innervation. It raises the 

modiolus and buccal angle, incidentally displaying the teeth in smiling, and contributes 

to the depth and contour of the nasolabial furrow. 

 

Buccinator 

It is attached linearly to the external surfaces of the alveolar processes of maxilla 

and mandible, opposite the molar teeth; curving posteromedially around the sites of the 

third molar teeth, the upper part crosses the maxillary tuberosity. Inferiorly it attaches at 

the junction of the ramus and body of the mandible joint to the posterior end of 

mylohyoid line. Posteriorly it insets at the anterior border of pterygomandibular raphe, 

which is interposed between it and the superior pharyngeal constrictor (Fig. 5 [7]). 

Buccinator muscle is innervated by the buccal branch of the facial nerve. This muscle 
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compresses the cheeks against the teeth, passing food between them in mastication, or 

expelling air when the cheeks are distended. Its labial extensions are mentioned below. 

 

Orbicularis Oris 

Actually this muscle consists of four substantially independent quadrants (upper, 

lower, left and right), each of which contains a larger pars peripheralis and a smaller 

pars marginalis (Fig. 6 [A, B, C, D]). This muscle is innervated by the buccal and 

mandibular branches of the facial nerve (Fig. 5 [1]). 

 

 
Figure. 6. (A) Principal sulci, creases and ridges of the face. (B) The disposition of the modiolus and 

orbicularis oris pars peripheralis and pars marginalis. (C) Parasagittal section of the upper lip in repose. 
(D) As C but slightly contracted forming a narrowed profile. (E) Superimposed outlines of C and D. 

(Standring et al., 2008, modified). 

 

Risorius  

Risorius is a highly variable muscle that ranges from one or more slender 

fascicles to a wide, thin superficial fan. The buccal branches of the facial nerve give 

itsinnervation. Muscle risorius pulls the corner of the mouth laterally in numerous facial 

activities, including grinning and laughing.  
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5.3.3 MUSCLES OF THE LOWER FACE AND NECK 

 

Depressor Labii Inferioris 

This quadrilateral muscle isattached to the mandibular oblique line, between 

symphysis menti and the mental foramen, ascending medially into the skin and mucosa 

of the lower lip, blending and intersecting with its contralateral and with orbicularis 

oris. It is continuous below and laterally with platysma (pars labialis); its superficial 

part contains some admixed fat but its overlying panniculus adiposus is very thin (Fig. 5 

[9]). It is innervated by the mandibular branch of the facial nerve. It depresses the lower 

lip laterally in mastication, may assist its eversion and contributes to expressing irony, 

sorrow, melancholy, doubt etc. 

 

Depressor Anguli Oris 

It ascends from the mandibular mental tubercle and its continuation, the oblique 

line, inferolateral to depressor labii inferioris, and then converges into a narrow 

fasciculus blending with others muscles at the modiolus near the buccal angle. (Fig. 5 

[8]). The buccal and mandibular branches of the facial nerve perform the innervation. It 

depresses the modiolus and buccal angle laterally in opening the mouth and in 

expressing sadness. During opening of the mouth the buccolabial sulci are stretched, 

flattened and become indistinct; the mentolabial sulcus becomes more horizontal and its 

central part deepened. 

 

Mentalis 

A conical fasciculus lying lateral to the inferior labial frenulum, it is attached in 

the mandibular incisive fossa and descends to the mental skin (Fig. 5 [10]). Mentalis is 

innervated by the mandibular branch of the facial nerve. It raises the mental tissues, 

mentolabial sulcus, (wrinkling the mental skin) and base of the lower lip, aiding its 

protrusion / eversion, as in drinking, speech and also expressing doubt or distain. 

 

Platysma 

Platysma is described as a muscle of the neck but it is considered here as a 

contributor to the orbicularis oris muscle complex; this muscle arises from the fascia 

over the upper chest and clavicle and extends over the anterolateral neck to meet in the 

midline at the lower chin margin. It has mandibular, labial and modiolar parts. 
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5.4 LABIAL STRUCTURE 
The almost endless variety of neuromuscular controls of the lips and oral fissure 

during speech and non-verbal expressive communication are commonly integrated with 

fluctuating patterns in the masticatory, lingopharyngeal, laryngeal, circumnasal, 

circumorbital and palpebral, and so intraocular and extraocular muscle groups. 

When the face is in repose, the lips are in gentle contact and the teeth 

maintaining a narrow interocclusal clearance, describing an approximately hexagonal 

area(borders: superior, inferior, paired superolateral and inferolateral). 

The superior border is between the attached margin of the lower external nose 

and the upper lips and includes the bilateral curved circumalar sulci, the ridge forming 

the posterior rim of each nostril; it then continues beneath the junction of the anterior 

nasal spine of the maxillae and the mobile part of the nasal septum. 

The superolateral boundaries, described above, incline downwards and laterally 

from the upper end of the circumalar sulcus to the modiolus and correspond to the so-

called nasolabial sulci (or superior buccolabial sulci). 

The inferolateral boundaries extend downwards and medially from the lateral 

angles of the hexagon over the modioli to the down-curved lateral ends of the centrally 

transverse mentolabial sulcus, the latter forming the inferior boundary. A transverse line 

between the external angle (i.e. between the equilibrium ‘resting’ positions of the 

modioli) separates the area, and crosses the level of the usually slightly undulant line of 

the contact between apposed free ‘red-lip’ surfaces at the closed oral fissure. A 

considerable variation (between individuals, sexes and races) in the dimensions and 

curvatures of the exposed red-lip surfaces is commonplace. 
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5.5 MOVEMENTS OF THE LIPS  
The various groups of direct labial tractors may act together or individually, and 

their effects may involve a complete labial quadrant, or be restricted to a short segment. 

For example, partial contraction of the superior labial tractors can result in localized 

elevation of a segment of the upper lip, in a postural expression reminiscent of the 

“canine snarl”. 

Normally, however, the activity of the tractors is modified by the superimposed 

activity of orbicularis oris and the modiolar muscles. The resultant actions range from 

delicate adjustments of the tension and profile of the lip margins to large increases of 

the oral fissure with eversion of the lips. 

Lip protrusion is passive in its initial stages. It may be suppressed by powerful 

contraction of the whole of orbicularis oris or enhanced by selective activation of parts 

of the direct labial tractors. 

However, lip movements must accommodate separation of the teeth brought 

about by mandibular depression at the temporomandibular joints. Beyond a certain 

range of mouth opening, labial movements are almost completely dominated by 

mandibular movements. Thus over the last 2.5–3 cm interincisal distance of wide jaw 

separation, strong contraction of orbicularis oris cannot effect lip contact, and instead it 

causes full-thickness inflection of upper and lower lips, including the vermilion zone, 

towards the oral cavity, wrapping them around the incisal edges, canine cusps and 

premolar occlusal surfaces. 

Contraction of marginalis is considered to alter the cross-sectional profile of the 

free margin of the vermilion zone such that both the gentle bulbous profile of the upper 

lip and the smooth posterosuperior convexity of the lower lip change to a narrow, 

symmetrical triangular profile. The transformed rims, whose length and tension can be 

delicately controlled, have been named labial cords. They are known to be involved in 

the production of some consonantal (labial) sounds. A labial cord may also function as a 

‘vibrating reed’ in whistling or playing a wind instrument such as the trumpet. 
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5.6 ANATOMY OF SPEECH 
 

5.6.1 OVERVIEW OF SPEECH PRODUCTION 

All speech requires an input of energy. For all sounds in Western European 

languages, and most sounds in other languages, this energy takes the form of a 

pulmonary expiration. This continuous airflow is converted into a vibration within the 

larynx by a mechanism called phonation, in which the vocal folds vibrate periodically, 

interrupting the column of air as it leaves the lungs and converting it into a series of 

discrete puffs of air. Speech sounds that are produced by vocal fold vibration in this 

way are said to be voiced. Speech sounds that are produced without vocal fold vibration 

are termed unvoiced sounds. 

Amplification and modification of the sound occur in the supralaryngeal vocal 

tract, narrow at the larynx and broadening out proximally as it passes through the 

pharynx, and oral and nasal cavities. This tube acts as a passive amplifier of the sound. 

The supralaryngeal vocal tract modifies the basic vibration of the larynx by altering its 

geometry, length and calibre: it provides a series of resonators that can dampen or 

amplify certain sound frequencies and can transiently interrupt the exhaled air flow and 

modify it to produce speech. This process is known as articulation. The range of sounds 

that the human vocal tract is capable of producing is very wide, although any one 

human language will employ a subset of these sounds to convey meaning. 

 

5.6.2 ARTICULATION  

The sound produced by the phonation is not a pure tone because several 

harmonics at multiples of the fundamental frequency are also generated. In the human 

vocal tract, the fundamental frequency and its harmonics are transmitted to the column 

of air which extends from the vocal cords to the exterior, mainly through the mouth. 

Part of the airstream can also be diverted through the nasal cavities when the soft palate 

is depressed to allow air into the nasopharynx. The supralaryngeal vocal tract acts as a 

selective resonator whose length, shape and volume can be varied by the actions of the 

muscles of the pharynx, soft palate, fauces, tongue, cheeks and lips; the relative 

positions of the upper and lower teeth, which are determined by the degree of opening 

and protrusion or retraction of the mandible; and alterations in the tension of the walls 

of the column, especially in the pharynx. Thus, the fundamental frequency (pitch) and 
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harmonics produced by the passage of air through the glottis are modified by changes in 

the supralaryngeal vocal tract. 

During articulation the egressive airstream is given a rapidly changing specific 

quality by the articulatory organs, the lips, oral cavity, tongue, teeth, palate, pharynx, 

and nasal cavity. In order to analyse the way in which the articulators are used in 

different speech sounds, words are broken down into units called phonemes, which are 

defined as the minimal sequential contrastive units used in any language. 

The human vocal tract can produce many more phonemes than are employed in 

any one language. Not all languages have the same phonemes, and within the same 

language, the phonemes can vary in different parts of the same country and in other 

countries where that language is also spoken. Reproducing phonemes that are not used 

in native speech is difficult because such phonemes require unfamiliar positioning of 

the speech organs. 

 

5.6.3 PRODUCTION OF VOWELS  

All vowel sounds require phonation by vibration of the vocal cords. The sounds 

of the different vowels are determined by the shape and size of the mouth, and the 

positions of the tongue and lips are the most important variables. The tongue may be 

placed high or low (close and open vowels), or further forwards or back (front and back 

vowels) and the lips may be rounded or spread. 

 

5.6.4 PRODUCTION OF CONSONANTS  

The production of consonants always involves some degree of constriction of the 

vocal tract. There are many more consonants than vowels, and, in general, consonants 

cannot be combined to produce syllables. 

Consonants may be classified of the basis of where the constriction occurs, 

termed the place of articulation; the degree or extent of constriction, termed the manner 

of articulation; the shape of the constriction, termed the stricture; and whether or not 

there is vibration of the vocal folds, when consonants are described as voiced or 

unvoiced respectively. 

Consonants may also be classified as labial, dental, alveolar, velar, uvular, 

pharyngeal or glottic, depending upon whether the point of maximum constriction 

occurs at the level of the lips, teeth, bony ridge behind the teeth, palate, uvula or 

pharynx (Fig. 7). Different parts of the tongue can be used in combination with the 
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above places of articulation. Stricture describes the shape of the constriction, e.g. a 

lateral consonant involves depression of the sides of the tongue, while a grooved 

consonant is produced by grooving the dorsum of the tongue. Consonants can be 

produced with the vocal folds vibrating, when they are termed voiced, or without vocal 

fold vibration, in which case they are termed unvoiced. 

 

 
Figure 7. Sagittal view of the left side of the head, showing the supralaryngeal vocal tract, the articulators 

and places of articulation. The broken line indicates the tongue position during retroflexion (10). 
(Standring et al., 2008, modified). 
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6 MATERIAL AND METHODS 
 

6.1 CLINICAL EXAMINATION 
Subjects were examined while sitting on a dental chair in a room with 

appropriate lighting, by the same examiner, specialist in temporomandibular joint 

disorders (TMD) and orofacial pain. Data considered in the present study referred to 

tenderness to palpation in the masseter, temporal and supra-hyoid muscles and in the 

temporomandibular joint (TMJs). The subjects were asked to grade their pain using a 

printed numerical scale from zero (absence of pain) to 10 points (greatest pain possible). 

The TMJ region was also palpated during the mandibular movements for the 

identification of joint noises, which were confirmed by auscultation. The Research 

Diagnostic Criteria for TMD (RDC/TMD - axis I, Dworkin and LeResche, 1992) was 

used for classification. 

 

6.1.1 SELF-JUDGEMENT OF SEVERITY 

The ProTMDmulti questionnaire was used to determine the perception (presence 

and severity) of TMD signs and symptoms by the subjects. The questionnaire is divided 

into two parts; the first part asks about the presence of TMD signs and symptoms with a 

series of 12 questions requiring a positive or negative reply. In the second part, the 

subjects were asked to indicate the severity of nine signs and symptoms present (or no) 

according to the situation, i.e. when waking up, during mastication, when speaking and 

at rest. Severity was indicated on a printed 11-point numerical scale where zero 

corresponded to the complete absence of the symptom, and 10 corresponded to the 

highest possible severity. The severity score was the sum of the scores attributed to each 

sign and symptom in the four questioned situations. The severity score varies between 

zero (absence) and 40 (the highest possible severity) (Felício et al., 2009a). 
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6.1.2 OROFACIAL MYOFUNCTIONAL EVALUATION  

The components of the stomatognathic system were evaluated in terms of 

mobility according to the Orofacial Myofunctional Evaluation with Scores Protocol 

(OMES – Part I) (Felício and Ferreira, 2008) when the healthy subject was asked to 

perform the following movements: 

• Lips: protrusion, retrusion, lateral to the right and left; 

• Tongue: protrusion, retrusion, lateral to the right and left, raising, and 

lowering and ability to keep the tongue in stable protrusion for 5 seconds; 

• Mandible: protrusion, lowering, raising, lateral to the right and left. 

In the analysis, separate movements of each component were considered normal 

if precise and without tremors. Dysfunction was considered present when lack of 

precision in the movement, tremor, associated movements of other components (e.g., 

lips accompanying the movements of the tongue) or inability to perform the movement 

was observed. 

According to the OMES Protocol, the examiner attributed scores on a 3 point 

scale: 3 = normal; 2 = insufficient ability; 1 = absence of ability or being unable to 

perform the task. 

To complement the analysis for jaw movements, measurements (in mm), 

symmetry/asymmetry during mouth opening and closing, right and left laterality and 

protrusion will also be considered. Scores were attributed according to the protocol. 
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6.2 SUBJECTS 
Twenty healthy young adults (10 men and 10 women) aged 20 to 41 years, 

natural speakers of Italian language, participated in the study. They were recruited from 

the students and staff attending the Department of Biomedical Sciences for Health, 

University of Milan. All subjects had a clinically normal facial function, no previous 

facial trauma, paralysis or surgery, no known neurological diseases, and no and current 

orthodontic treatment. 

To be recruited, the healthy subjects had no to present TMD according to the 

Research Diagnostic Criteria for TMD (RDC/TMD, Dworkin and LeResche, 1992), to 

the ProTMDmulti protocol (Felício et al, 2009a), and an orofacial myofunctional 

evaluation (Felício and Ferreira, 2008), as detailed in Chapter 5.1. 
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6.3 INSTRUMENTATIONS 
 

6.3.1 OPTOELECTRONIC MOTION ANALYZER 

Lip movements in verbal and non-verbal activities were recorded using an 

optoelectronic three-dimensional motion analyzer, the SMART-E system (BTS S.p.a, 

Garbagnate Milanese, Italy). 

High-precision infrared sensitive CCD video cameras (Fig. 8) are coupled with 

the video processor with up to 120 Hz sampling ratio. The 3D positions of lightweight, 

passive and retro-reflective markers are instantly recorded with a spatial accuracy of up 

to 0.1 mm. 

 

 
Figure 8. Detail of a camera. 

 

In brief, stroboscopic infrared light (wavelength, 880 nm) is emitted by an array 

of LED (light emitting diodes) mounted around the lens of each camera, and the CCD 

sensor detects the reflection from the markers placed on the body. 

The process of recognizing passive markers in the 2D video frames is performed 

via enhanced blob analysis. The 3D coordinates of each marker are finally computed 

based upon the 2D data of at least two cameras. This process, called spatial 

triangulation, needs the system to be previously calibrated. Calibration allows the 

system to estimate the capture volume, the relative position and orientation of the 

cameras (external parameters), their geometric and optical characteristics (internal 

parameters). 

The BTS SMART system requires two calibration phases. The “static 

calibration” sets the position and the orientation of the global reference system: all 
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cameras simultaneously record a still, special reference device (Fig. 9), whose marker 

reciprocal distances are known to the system. The “dynamic” calibration exploits the 

epipolar constraint between a 3D point and its 2D projections on the sensor of two 

cameras: all cameras simultaneously record a rigid bar (Y axis) in motion throughout 

the working volume. 

 

 
Figure 9. Global reference system. 

 

At the end of the metric calibration and correction of optical and electronic 

distortions, the system provides the current accuracy level, which will characterize the 

following acquisition sessions. 

Once a movement has been recorded, special software provides the spatial 

configuration of the marker set (Fig. 10). 

 

 
Figure 10. 3D graphic representation of the marker set at issue. 

 

X 

Y 

Z 
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The operator has to label the markers of interest in one frame, opening the 

corresponding model previously created; afterward, the system should be able to 

recognize all moving markers, tracking their pathways. 

To record lip movements (Ferrario and Sforza et al., 2007; Sforza et al., 2010b,c; 

2012), nine cameras were deployed around a stool (Fig. 11), and calibrated to create a 

60 (width) cm x 60 (height) cm x 60 (depth) cm working volume; metric calibration and 

correction of optical and electronic distortions are performed before each acquisition 

session using a 20-cm wand, with a resulting mean dynamic accuracy of 0.121mm (SD 

0.086), corresponding to 0.0158% (Sforza et al., 2010c). A 60 Hz capture rate was used 

for all acquisitions. 

 

 
Figure 11. Setting of the cameras with respect to the subject sat on a stool. 
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6.3.2 ELECTROMYOGRAPHIC SYSTEM 

The BTS FREEEMG system (BTS S.p.a, Garbagnate Milanese, Italy) is a 

wireless electromyographic device with active probes weighting just 8 grams for signal 

acquisition and wireless transmission (Fig. 12). The probes amplify the differential 

EMG signals captured by disposable pre-gelled silver/silver chloride bipolar surface 

electrodes, digitize them and communicate with a portable receiving unit. The complete 

absence of cables allows for quick and comfortable preparation of the subject, without 

affecting in any way the motor pattern. This system is easily connectable with the 

motion analyzer, permitting the real time recording of synchronized kinematic and 

electromyographic data. 

 
Figure 12. Detail of an EMG probe clipped on a pair of electrodes. 

(http://www.btsbioengineering.com/BTSBioengineering/Surfaceemg/BTSFREEEMG300/BTS_FREEEMG300.html, 
last accessed 11 December 2012). 

 

In surface EMG, a bipolar probe measures the voltage difference between two 

electrodes, which is the sum of the electrical contributions of the active motor units; 

thus it reflects both the muscle membrane properties and the central control strategies. 

With small inter-electrode distance with respect to the muscle size, the activity 

conducted from adjacent muscles is similar on the two leads, and therefore is partly 

rejected (Castroflorio et al., 2008). 
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6.3.3 RECORDING PROTOCOL 

For each subject, the recordings took approximately 40 minutes (considering 

also the time needed for subject’s preparation). The protocol did not involve dangerous 

or painful procedures, and it was preventively approved by the ethics committee of the 

Department of Biomedical Sciences for Health, University of Milan. 

After the methods and aims of the investigation had been completely described, 

written informed consent was obtained from each participant. 

 

Kinematic assessment of speech and lip movements 

Subjects sat on a stool inside the working volume and were asked to perform a 

series of standardized lip movements and speech pronunciation. During the execution of 

the movements, for each camera special software detected the two-dimensional 

coordinates of facial landmarks identified by a set of 2-mm round reflective markers. 

Landmarks were chosen from classic anthropometry (Farkas, et al., 1994): n, nasion; ft, 

right and left frontotemporale; ng, right and left naso-genian; cph, right and left crista 

philtri; ch, right and left cheilion; li, right and left lower lip midpoints (Figs. 13, 14). 

The positions of the markers were carefully controlled to avoid any interference with lip 

and speech movements (Trotman et al., 2003; Hontanilla and Aubá, 2008; Sforza et al., 

2010b,c; 2012). Subsequently, all the coordinates were converted to metric data, and a 

set of three-dimensional coordinates for each landmark in each frame that constituted 

each movement was obtained. 

Each animation was explained and shown to the subjects, which practiced before 

data acquisition. For each expression, each subject performed ten standardized 

maximum facial expression from rest (Wachtman et al., 2001; Hontanilla and Aubá, 

2008; Mehta et al., 2008; Sforza et al., 2010b,c), without modifications of the markers 

positions. 

The healthy subjects performed four standardized non-verbal movements: open 

mouth smile, closed mouth smile, spontaneous smile and lip purse; and verbal 

movements: natural and random (e.g. o, a, i, u, e) sequence of the five vowel, a 

sequence of natural numbers (e.g. 1 to 10) and 29 Italian words (Table 1).  
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Figure 13. Position of the reflective markers. (n) nasion, (ft) right and left frontotemporale, (ng) right and 

left naso-genian, (cph) right and left crista philtri, (ch) right and left cheilion, (li) right and left lower lip 

midpoints. 

 

Electromyographic assessment of speech and lip movements 

During the EMG recording, the environment must be calm, quiet and with little 

luminosity. The subject was seated on a chair, with erect posture and with both feet on 

the ground and both arms leaning on the legs. The head was positioned in an erect way, 

being the Frankfort plane considered as positioning parameter. 

To reduce skin impedance, facial epidermis was carefully cleaned with alcohol 

prior to the 10 mm-electrodes placement (Kendall Arbo; Tyco Healthcare, Neustadt, 

Germany). The greater zygomatic major muscles and depressor labii inferioris from 

right and left sizes were examined with the positioning of four probes parallel to the 

muscular fibers of the relevant muscles (Fig. 14). The main criterion for determining the 

recording sites was to maximize the distance to the adjacent muscles in order to reduce 

crosstalk. 
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Figure 14. Position of the reflective markers and the electrodes of the BTS FREEEMG system (BTS 

S.p.a, Garbagnate Milanese, Italy). 

 

All the necessary explanations were given previously, as well as the lip 

movements were practiced with the examiner prior to test performance. 

The subjects were asked to perform 10 consecutive voluntary open and closed-

mouth smiles, and a spontaneous smile, while watching a fun film. The resting time 

between the open and closed smiles was about 3 seconds (Fig. 15). 

 

 
Figure 15. Raw EMG signal of the right zygomatic major muscle during open-mouth smile. 
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For verbal movements they were asked to pronounce a sequence of natural 

numbers (eg. 1 to 10), and 29 Italian words (Table 1). 

 
Table 1. Italian words pronunciation. 

Italian words pronunciations 

1. Panico 11. Velocità 21. Arrivederci 

2. Logopedista 12. Nocivo 22. Caricatura 

3. Terapia 13. Distanza 23. Scendiletto 

4. Bevanda 14. Affascinante 24. Circolare 

5. Riabilitazione 15. Significato 25. Imagine 

6. Gamba 16. Isola 26. Criminologia 

7. Metamorfosi 17. Rissa 27. Gnocchi 

8. Gemma 18. Presidente 28. Ogni 

9. Famiglia 19. Zinco 29.Foglia 

10. Sceriffo 20. Zero  
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6.3.4 MEASUREMENT PROTOCOL 

Both raw EMG signals and marker coordinates constituted the input data for the 

protocol calculations, which were implemented on Microsoft Excel and Smart Analyzer. 

Descriptive and inferential statistics were evaluated by means of SPSS Statistics. 

 

Kinematic of speech and lip movements 

For each subject, head and neck motion was subtracted from the raw facial 

movements using the three cranial (reference) markers, so only movements occurring in 

the face (activity of mimetic muscles) were further considered. Subsequently, for each 

of the 8 facial markers, the three-dimensional movements during both verbal and non-

verbal activities were computed, and the modulus (intensity) of the three-dimensional 

vector of maximum displacement from rest was calculated (Ferrario and Sforza, 2007; 

Sforza et al., 2010b,c; 2012). For the natural sequence of numbers and words 

production, instantaneous displacements was also calculated. 

For each animation, the landmark (single or paired) with the largest 

displacement from rest was identified. For smile movements, the latero-lateral (right-left 

direction) component of the maximum displacement of the analysed landmarks was 

computed. 

The frontal area of movement (XY planes; unit, mm2) for smiles, lip purse and 

vowels is estimated with the perimeter defined by the 6 labial markers (cph, ch and li). 

The ∆ area (unit, mm2) was calculated between the areas of maximum expression and 

rest position. 

To assess differential movements between the two hemi-faces, percentage 

indices of asymmetry were computed as: 

 

(right side displacement - left side displacement) /  
(right side displacement + left side displacement) × 100. 

 

The indices were computed for the total movement, as well as for the single 

landmarks. The indices range between -100% (complete left-side prevalence during the 

movement) and +100% (complete right-side prevalence) (Linstrom et al., 2002; Sforza 

et al., 2010c; 2012). 
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For the kinematic analysis of the markers of number sequences and words 

pronunciation, data were low-pass filtered using a Butterworth filter with cutoff 

frequency at 8 Hz. 

The percentage overlapping coefficient (POC, unit: %) for words and numbers was 

calculated as: 

 

POC = [1 – Σ right side displacement i – left side displacement i  /  
Σ right side displacement i + left side displacement i ] × 100 

(i - instantaneous) 

 

The index ranges between 0% (no symmetry) and 100% (perfect symmetry).  

The total percentage indices of asymmetry for sequence of numbers and words 

pronunciation (ASYM, unit %) was computed as: 

 

ASYM = mean (right side displacement i – left side displacement i) /  
mean (right side displacement i + left side displacement i) × 100 

(i - instantaneous) 

 

The ASYM index ranges between -100% (left-side prevalence of pronunciation) 

and +100% (right-side prevalence of pronunciation). 

 

Electromyographic signals of speech and lip movements 

For each muscle the EMG signal was filtered with a Butterworth "high pass" 

filter at the cutoff frequency of 50 Hz. Then we calculated the root mean square (RMS) 

signal with a time window of 25 ms, which was “low pass” filtered at 5 Hz. 

For each movement, a custom made algorithm allowed the semi-automatic 

detection of the beginning of the muscle activity, and the time of latency between the 

activities of the four muscles was calculated. 

The time difference in the onsets of electrical activity between the right and the 

left side of the face is referred to as asymmetry. Asymmetry is related to either the 

zygomatic muscles or the depressor labii inferioris (Fig. 17). It is expressed in seconds 

(s). The time difference in the onsets of electrical activity between zygomatic and 

depressor labii inferioris muscles is referred to as asynchrony. Asynchrony is related to 

each side of the face separately, either right or left (Fig. 18). Like asymmetry, it is 
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expressed in seconds (s).  

For open-mouth, closed-mouth and spontaneous smiles, the time of activation, 

the asymmetry between the right and left zygomatic major or depressor labii inferioris 

muscles, and the asynchrony between the zygomatic major and depressor labii inferioris 

were analyzed. 

For speech pronunciation (natural sequence of numbers, and words), we 

calculated only by the asymmetry between the right and left depressor labii inferioris 

muscles. 

 

 
Figure 16. Asymmetry onset time of signal of the (1) right zygomatic major muscle, (2) left zygomatic 
major muscle, (3) right depressori labii inferioris muscle, and (4) left depressori labii inferioris muscle 

during open-mouth smile. 
 

 
Figure 17. Asynchrony onset time of signal of the (1) right zygomatic major muscle, (2) left zygomatic 
major muscle, (3) right depressori labii inferioris muscle, and (4) left depressori labii inferioris muscle 

during open-mouth smile.  
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6.3.5 METHOD ERROR 

For the optoelectronic three-dimensional motion analyzer, within- and between-

session repeatability was previously assessed in healthy subjects. Within session, the 

technical error of the measurement for single landmarks (random error) was, on 

average, 0.5 and 3.38 mm, showing good reproducibility. Between sessions, all facial 

movements had standard deviations lower than 1mm (Sforza et al., 2010b,c). 

For EMG analysis, the repeatability was assessed with hierarchical ANOVA, 

showing good reproducibility in the recorded smiles activities. 
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7 KINEMATICS ANALYSIS OF LIP MOTION IN 

HEALTHY SUBJECTS 
 

7.1 METHODS  
 

7.1.1 DATA COLLECTION 

The kinematic indices calculated for verbal and non-verbal activities are 

summarized in table 2. 

 
Table 2. Kinematics indices for verbal and non-verbal activities: (cph) crista philtri, (ch) cheilion, (li) 
lower lip midpoints. 

 

KINEMATIC INDICES 

Asymmetry 
(%) 

(ch, cph, li, 
total) 

Landmarks 
and Total 
Mobility 

(mm) 

Frontal 
area (mm2) 

∆ area 
(mm2) 

POC 
(%) 

ASYM 
(%) 

Open-mouth smile       

Closed-mouth smile       

Spontaneous smile       

Lip purse       

Natural sequence vowels       

Random sequence vowels       

Natural sequence numbers       

Italian words       
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7.1.2 STATISTICAL ANALYSIS 

For all subjects, ten series of lip movements (open-mouth smile, closed-mouth 

smile, spontaneous smile, lip purse), natural and random sequences of vowels 

production were averaged, and the mean values of maximum marker displacement for 

each movement used for subsequent analysis. For the natural sequence of numbers and 

words production, the instantaneous displacements of landmarks was calculated. 

Descriptive statistics were obtained for each marker, the total lip movements, the 

asymmetry indices, and frontal area, separately for each sex. 

The normal distribution of data was checked with the Kolmogorov-Smirnov test. 

The largest displacement from rest, total mobility and frontal area were 

compared between sexes by Student’s t-Test for unpaired samples in all smiles and lip 

purse movements. To assess if the asymmetry indices significantly deviated from the 

expected value of 0, Student’s t-tests for paired samples were made. 

For natural and random sequences of vowels, the largest displacement from rest 

was compared between sexes by Student’s t-Test for unpaired samples, and the total 

mobility was compared by three-way factorial analysis of variance (factors: sexes, side, 

and vowels pronunciation). For words and sequences of numbers, the POC and 

asymmetry indices were compared by two-way factorial analysis of variance (factors: 

sex and pronunciation). 

The significance level was set at 5% for all statistical analyses (p < 0.05). 
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7.2 RESULTS 
All data within each subgroup (men, women) were normally distributed 

(Kolmogorov–Smirnov tests, p > 0.05), and no significant difference was found 

between male and female mean ages (Student’s unpaired t-test; all p-values > 0.05). 

On average, during the execution of the non-verbal activities the cheilion 

landmarks had the largest displacements in both sex groups. For open-mouth smile and 

lip purse activities, the largest displacement from rest was similar between sex groups 

without statistically significant differences (Student’s unpaired t-test; all p-values > 

0.05). In contrast, men had significant larger movements than women during the 

execution of the closed-mouth smile (right crista philtri and left naso-genian landmarks, 

both p = 0.04), and the spontaneous smile (right and left lower lip, and left naso-genian 

landmarks, respectively, p = 0.01, p = 0.03 and p = 0.02) (Table 3). 

Within open mouth smile, closed-mouth smile and lip purse movements, the 

total facial mobility was similar in both sexes, without statistically significant 

differences (Student’s unpaired t-test; all p-values > 0.05). In contrast, in spontaneous 

smile sex-related differences were found on the left side (p = 0.041; Student’s unpaired 

t-test): the male group performed this movement with larger landmark displacements 

than the female group (Fig. 18). 

  



 45 

Table 3. Maximum displacement of single landmarks (mm) during the execution of non verbal activities: mean ± SD values in 10 women and in 10 men. (R –right; L – left; 
ng – naso-genian; ch – cheilion; cph – crista philtri; li - lower lip midpoints). 
 

Landmarks 
(mm) 

Open mouth smile  Closed-mouth smile  Spontaneous smile  Lip purse  

Women Men  Women Men  Women Men  Women Men  

Mean SD Mean SD  Mean SD Mean SD  Mean SD Mean SD  Mean SD Mean SD  

ng R 7.2 2.3 8.1 2.2  5.2 2.3 7.4 2.6  7.4 2.1 9.8 3.7  5.6 1.6 5.9 2.7  

ch R 16.5 4.5 14.3 3.8  11.3 3.6 13.2 4.1  14.8 5.0 17.2 5.8  11.2 2.4 12.6 2.3  

cph R 8.3 3.4 8.5 2.6  4.3* 2.0 6.7* 2.8  8.3 2.8 10.9 3.6  8.2 1.9 9.2 1.8  

li R 8.0 3.2 9.5 3.3  5.6 2.6 6.3 2.6  7.1* 2.8 11.5* 4.9  8.6 1.9 10.6 2.9  

ng L 7.3 1.8 8.2 3.1  4.9* 1.8 7.3* 3.1  7.0* 2.3 10.8* 3.9  5.2 1.3 6.0 2.0  

ch L 16.8 3.2 15.7 5.1  12.0 3.3 13.7 5.4  15.1 4.3 17.9 4.9  11.3 2.6 13.0 3.0  

cph L 8.7 2.7 8.6 3.6  4.9 1.9 7.0 3.6  8.4 3.0 10.8 2.8  7.9 2.3 9.4 2.1  

li L 8.0 2.9 9.7 3.5  5.6 2.5 6.7 2.7  6.9* 2.8 11.4* 4.2  8.5 2.1 10.1 2.6  

 

 * Significant differences, Student’s unpaired t-test (men vs women). 



 46 

 
Figure 18. Total mobility in the four standardized lip movements (mean + 1SD).  

* Significant differences on the left side in spontaneous smile, Student’s unpaired t-test (men vs women). 
 

The asymmetry of the upper lip landmarks was significantly different from 0 

during closed-mouth smile in women (p = 0.033, Student’s t-Test for paired samples), 

in the other movements (open-mouth smile, spontaneous smile and lip purse) no 

significant differences were found in asymmetry indices in all landmarks (cph, ch and 

li) and in total asymmetry (Fig. 19). 

 

 
Figure 19. Mouth asymmetry indices for the four symmetric lip movements (mean ± 1SD). 

* Significant difference in women during closed-mouth smile, Student’s paired t-test. 
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The lateral displacement of labial commissure landmark (ch) was significantly 

different between sexes in open-mouth smile on the right side (p = 0.043; Student’s 

unpaired t-test), while in the others smiles all labial landmarks (cph, li, and total) had no 

statistically significant differences between sexes (Fig. 20). 

 

 
Figure 20. Smile activities: lateral displacement (right and left direction, mm) of labial landmarks (mean 
± 1 SD). Positive displacements: right side prevalence; negative displacements: left side prevalence (M: 

men; W: women). 
* Significant differences on the right side in open-mouth smile, Student’s unpaired t-test (men vs women). 

 

Total lip frontal area was larger in men than in women with significant 

differences in closed-mouth smile and spontaneous smile and lip purse activities (Table 

4). In both sequences of vowels between sexes differences in frontal lip areas were 

found (Tables 6, 8) (Student’s unpaired t-test). 

In ∆ frontal area, between sexes differences were found only for the random 

sequence pronunciation of vowel (u) (Student’s unpaired t-test) (Tables 5, 7, 9). 
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Table 4. Frontal area (mm2) in smiles and lip purse movements. 

NS, not significant, p > 0.05. 
 

Table 5. Frontal ∆ area (mm2) in smiles and lip purse movements. 

NS, not significant, p > 0.05. 
 

Table 6. Frontal area (mm2) in vowels in natural sequence. 

NS, not significant, p > 0.05. 
  

 Frontal area (mm2)  

 women men t-test 
p-value 

 mean SD mean SD 
Open mouth smile 981.3 152.4 1059.9 166.5 NS 

Closed mouth smile 540.2 70.0 734.7 144.2 p = 0.002 

Spontaneous smile 874.7 228.5 1105.7 193.3 p = 0.0031 

Lip purse 655.9 69.0 806.1 102.5 p = 0.001 

 ∆ frontal area (mm2)  

 women men t-test 
p-value 

 mean SD mean SD 

Open mouth smile 434.0 155.1 404.3 161.4 NS 

Closed mouth smile -12.8 77.9 76.7 149.4 NS 

Spontaneous smile 311.5 235.3 442.4 159.9 NS 

Lip purse 87.6 57.2 148.8 85.0 NS 

 Frontal area (mm2)  

vowels women men t-test 
p-value 

Mean SD mean SD 
a 1089.9 233.6 1208.8 130.6 NS 

e 918.6 146.7 1030.9 142.6 NS 

i 837.1 76.2 991.0 146.9 p = 0.011 

o 845.9 97.1 1011.9 107.4 p = 0.002 

u 653.2 56.6 820.0 115.9 p = 0.001 
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Table 7. Frontal ∆ area (mm2) in vowels in natural sequence. 

NS, not significant, p > 0.05. 
 

Table 8. Frontal area (mm2) in vowels in random sequence. 

 
Table 9. Frontal ∆ area (mm2) in vowels in random sequence. 

NS, not significant, p > 0.05. 
 

 ∆ frontal area (mm2)  

vowels women men t-test 
p-value Mean SD mean SD 

a 530.9 252.4 554.4 110.5 NS 

e 359.6 166.1 376.5 98.7 NS 

i 278.1 74.2 336.6 104.0 NS 

o 286.9 96.4 357.5 82.0 NS 

u 94.2 52.4 165.7 92.4 NS 

 Frontal area (mm2)  

vowels women men t-test 
p-value Mean SD mean SD 

a 995.8 109.3 1166.0 62.7 0.001 

e 878.5 122.9 1075.7 123.7 0.002 

i 860.4 118.1 931.6 1041.2 0.010 

o 853.1 122.7 1084.7 1031.2 0.001 

u 666.0 40.1 829.0 846.9 0.002 

 ∆ frontal area (mm2)  

vowels women men t-test 
p-value 

Mean SD mean SD 
a 434.2 119.9 501.4 82.4 NS 

e 316.9 142.0 411.2 80.3 NS 

i 298.8 125.4 376.6 131.7 NS 

o 291.5 138.1 366.6 77.1 NS 

u 104.4 65.7 182.4 82.3 0.032 
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On average, during the execution of the natural and random sequences of 

vowels, the lower lip midpoint landmarks had the largest displacements in both sex 

groups. Significant sex-related differences of vowels pronunciation were found for the 

right cheilion landmarks for natural sequence of vowels (a) (p = 0.043), (e) (p = 0.040), 

and for left crista philtri landmark for random sequence of vowel (o) (p = 0.013) (Tables 

10, 11). 

For both sequences of vowel pronunciation (natural and random), the total 

mobility in vowels (o, i, u) was similar, without significant differences (three-way 

factorial analysis of variance; factors sex, vowels and sides, all p-values > 0.05). In 

contrast, significant side-related differences of vowels pronunciation were found for the 

vowels (a) (p = 0.010), and (e) (p = 0.007) (Fig. 21). 

 

 
Figure 21. Total mobility in the natural and random sequences of vowels production (mean + 1SD). 

* Significant side-related differences of vowels (natural and random) pronunciation, three-way ANOVA. 
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Table 10. Maximum displacement of single landmarks (mm) during the execution of natural sequence vowels: mean ± SD values in 10 women and in 10 men. (R –right; L – 
left; ng – naso-genian; ch – cheilion; cph – crista philtri; li - lower lip midpoints). 

Natural sequence vowels 

Landmarks 
(mm) 

a  e  i  o  u 

Women Men  Women Men  Women Men  Women Men  Women Men 

Mean SD Mean SD  Mean SD Mean SD  Mean SD Mean SD  Mean SD Mean SD  Mean SD Mean SD 

ng R 3.6 1.6 3.4 1.3  2.2 1.1 2.2 0.8  1.7 1.4 1.7 0.8  3.0 1.6 3.1 1.1  3.1 1.4 3.3 1.1 

ch R 9.7* 2.7 7.6* 1.4  6.8* 2.4 4.8* 1.5  4.2 2.2 3.0 1.2  5.5 2.8 5.0 1.3  6.2 2.4 5.8 2.2 

cph R 2.1 1.2 1.6 1.0  2.1 1.4 1.5 1.0  2.1 1.1 1.6 1.0  1.8 1.0 2.5 1.8  4.1 1.5 3.9 1.6 

li R 19.7 6.9 17.6 2.2  12.9 5.3 11.4 3.8  8.7 2.3 9.2 3.2  12.4 4.2 12.7 3.2  7.4 1.9 9.0 2.2 

ng L 3.8 1.5 3.1 0.9  2.3 1.4 1.9 0.8  1.7 1.3 1.7 0.6  2.7 1.2 3.2 1.4  2.8 1.4 3.1 2.1 

ch L 9.3 3.3 7.2 1.5  6.9 3.3 4.4 1.6  4.1 2.2 3.6 1.2  5.4 2.2 6.1 3.0  5.5 2.2 6.2 4.5 

cph L 2.0 1.3 1.7 1.4  1.8 1.2 1.5 1.1  1.7 0.9 1.8 1.2  1.4 0.7 2.7 2.2  3.5 1.5 4.2 2.0 

li L 19.9 7.9 17.2 1.9  12.7 5.5 12.0 3.8  8.9 3.2 9.1 3.4  12.2 4.3 12.0 2.9  7.7 2.0 8.8 2.6 

* Significant differences, Student’s unpaired t-test (men vs women). 
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Table 11. Maximum displacement of single landmarks (mm) during the execution of random sequence vowels: mean ± SD values in 10 women and in 10 men. (R –right; L – 
left; ng – naso-genian; ch – cheilion; cph – crista philtri; li - lower lip midpoints). 

Random sequence vowels 

Landmarks 
(mm) 

a  e  i  o  u 

Women Men  Women Men  Women Men  Women Men  Women Men 

Mean SD Mean SD  Mean SD Mean SD  Mean SD Mean SD  Mean SD Mean SD  Mean SD Mean SD 

ng R 3.4 1.4 2.9 1.4  2.0 1.2 2.0 0.6  1.9 1.1 1.9 1.1  3.3 1.1 3.4 1.7  3.0 1.2 2.9 1.3 

ch R 7.8 1.8 6.9 1.7  6.7 3.7 5.3 2.0  5.0 3.1 4.1 2.5  5.9 1.7 5.2 2.1  6.1 2.1 5.6 1.8 

cph R 2.1 1.5 1.5 0.8  2.6 2.3 1.9 1.4  2.6 2.8 2.4 1.3  1.9 0.7 2.4 0.9  3.3 0.7 3.2 1.9 

li R 16.6 4.2 15.8 3.2  11.8 4.3 12.7 3.1  8.9 2.4 10.3 4.6  12.9 3.4 13.4 4.6  8.8 2.4 9.0 2.7 

ng L 3.0 0.9 2.6 1.0  2.2 1.0 1.8 0.6  1.7 1.0 1.6 1.1  2.8 0.6 2.9 1.2  2.8 1.0 2.6 0.9 

ch L 7.6 2.4 6.4 1.3  6.0 2.9 5.1 2.1  4.4 2.5 4.2 2.5  6.2 1.4 5.0 1.8  6.5 2.0 5.7 2.2 

cph L 1.3 0.4 1.8 1.1  1.7 1.1 1.8 1.4  2.0 1.6 2.3 1.2  1.5* 0.9 2.8* 1.3  3.4 1.2 3.3 1.9 

li L 16.6 4.3 15.5 3.2  11.5 4.3 12.2 3.2  9.0 2.7 9.9 4.8  13.3 3.3 12.5 4.3  8.5 2.4 8.6 2.1 

* Significant differences, Student’s unpaired t-test (men vs women). 
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Mouth asymmetry indices were not significantly different between sexes in both 

sequences of vowels (a, i) (Student’s unpaired t-test; p-values < 0.05). On the other 

hand, in vowels pronunciation in natural sequence, significant differences were found in 

(li) landmark for vowel (e) (p = 0.046) and in (cph) landmark for vowel (u). In the 

random sequence vowel pronunciation, a significant difference was found in (cph) and 

(li) landmarks for vowel (o) (p = 0.007; p = 0.017) (Tables 12, 13).  

For both sequences of vowel pronunciation, some significant differences from 0 

were found. For the natural sequence, vowels e (li, p = 0.046) and u (cph, p = 0.039) 

were significantly asymmetric in women, and vowels a (total, p = 0.024), e (li, p = 

0.021 and total, p = 0.004) and o (li, p = 0.039) in men. For the random sequence, a 

significant difference was found in women for vowels a (total, p = 0.006), e (cph, p = 

0.031 and total p = 0.025) and o (cph, p = 0.036), and in men for vowels e (li, p = 0.015) 

and o (cph, p = 0.020 and li, p = 0.042). 
 
Table 12. Mouth asymmetry indices for natural sequence of vowels in women and men (ch – cheilion; 
cph – crista philtri; li - lower lip midpoints). 

* Significant differences, Student’s unpaired t-test (men vs women). 
# Significant differences, Student’s paired t-test (difference from 0). 

% Asymmetry (ch) Asymmetry (cph) Asymmetry (li) Total Asymmetry 

women mean SD mean SD mean SD mean SD 
a 3.5 8.3 4.6 27.9 0.0 2.3 1.1 4.1 

e 2.6 10.8 0.9 29.2 -0.8*# 4.1 0.7 4.9 

i 0.3 7.9 8.7 26.1 0.1 5.5 1.5 4.5 

o -1.7 14.5 10.2 16.6 0.6 3.2 1.3 5.0 

u 6.8 10.8 9.7*# 12.9 -1.9 6.3 4.1 6.7 

men mean SD mean SD mean SD mean SD 
a 3.0 5.2 -2.6 23.7 1.1 2.2 1.8# 2.0 

e 5.4 9.2 2.9 13.5 2.8*# 3.2 3.4# 2.6 

i -9.8 15.8 -3.1 26.4 1.9 5.2 -1.8 6.7 

o -5.9 16.5 -0.4 9.0 2.6# 3.6 -0.5 7.0 

u 3.1 22.5 -2.5* 7.0 2.1 5.7 1.2 9.4 
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Table 13. Mouth asymmetry indices for random sequence of vowels in women and men (ch – cheilion; 
cph – crista philtri; li - lower lip midpoints). 

* Significant differences, Student’s unpaired t-test (men vs women). 
# Significant differences, Student’s paired t-test (difference from 0). 

 

On average, the ASYM index of the sequence of numbers and words 

pronunciation was similar in both sexes, without significant differences (p > 0.05, two-

way factorial analysis of variance) (Figs. 22, 23). 

% Asymmetry (ch) Asymmetry (cph) Asymmetry (li) Total Asymmetry 

women Mean SD mean SD mean SD mean SD 

a 2.9 7.0 13.4 28.5 0.1 2.0 2.7# 2.3 

e 5.6 8.2 19.8# 24.6 1.5 3.9 5.2# 6.2 

i 5.6 10.5 5.7 14.3 -0.4 3.7 3.3 6.3 

o -3.9 9.4 18.4*# 23.6 -2.1* 4.7 0.1 4.1 

u -3.7 7.7 -0.2 11.2 1.5 6.3 0.3 5.4 

men Mean SD mean SD mean SD mean SD 

a 3.7 7.1 -6.9 23.5 0.9 2.1 1.4 3.0 

e 2.5 13.8 4.0 27.2 2.4# 2.6 3.5 6.9 

i -0.8 15.2 -5.2 18.4 2.8 5.4 1.9 6.6 

o 0.6 9.6 -7.7*# 8.5 3.3*# 4.5 2.0 4.8 

u 0.1 9.2 -1.8 10.8 1.9 5.0 1.5 5.3 
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Figure 22. ASYM index in Italian words pronunciation (mean ± 1SD). 

 

 
Figure 23. ASYM index in numbers pronunciation (mean ±1SD). 

 

On average, the POC index for Italian words and sequence of numbers ranged 

between 91 and 96%, with significant differences in speech pronunciation (p = 0.031, 

two-way factorial analysis of variance; factors: sexes and speech pronunciation).   
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8 ELECTROMYOGRAPHIC ANALYSIS - HEALTHY 

SUBJECTS 
 

8.1 METHODS 
 

8.1.1 DATA COLLECTION 

EMG indices for verbal and non-verbal activities are summarized in table 14. 

Data of 2 men and 2 women were lost for technical reasons in closed-mouth smile. In 

spontaneous smile, we analyzed only 15 subjects, because one subject did not perform 

the spontaneous smiles and data of other four subjects were lost for technical reasons. 

 
Table 14. EMG indices for verbal and non-verbal activities (r: right, l: left ). 

 

EMG INDICES 

Asymmetry 
(r and l 

zygomaticus major) 

Asymmetry 
(r and l depressor 
labii inferioris) 

Asynchrony 
(r zygomaticus 

major and r 
depressor labii 

inferioris) 

Asynchrony 
(l zygomaticus 

major and l 
depressor labii 

inferioris) 

Open-mouth 
smile     

Closed-mouth 
smile     

Spontaneous 
smile     

Natural 
numbers     

Italian words     
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8.1.2 STATISTICAL ANALYSIS 

For all subjects, ten series of open and closed-mouth smiles, spontaneous smile, 

natural sequence of numbers and words pronunciation were made. Descriptive statistics 

were obtained for electromyographic time onset in open-mouth, closed-mouth and 

spontaneous smiles, natural sequence of numbers, and words pronunciation. 

The normal distribution of data was checked with the Kolmogorov-Smirnov test. 

Both instructed smiles (open and closed-mouth), were compared by 4-way 

analyses of variance (factors: sexes; muscles; side; subjects). The spontaneous smile 

was compared by two-way analysis of variance (factors muscle, side, and muscle × side 

interaction). 

The natural sequence of numbers and words pronunciations was compared by 

two-way analysis of variance (factors sexes and pronunciation). 

The significance level was set at 5% for all statistical analyses (p < 0.05). 
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8.2 RESULTS 
All data within each subgroup (men, women) were normally distributed 

(Kolmogorov–Smirnov tests, p > 0.05), and no significant difference was found 

between male and female mean ages (Student’s unpaired t-test; all p-values > 0.05). 

Significant interactions were found in muscle × subject in open (p < 0.001) and 

closed-mouth smile (p < 0.001; four-way factorial analysis of variance). 

Overall, for both smiles the zygomatic muscles tend to anticipate the depressor 

labii inferioris muscles in women, while in men the opposite was found (Tables 15, 16). 
 
Table 15. Onset timing of muscle activity in closed-mouth smiles. 

 
Table 16. Onset timing of muscle activity in open-mouth smiled. 

 

In spontaneous smiles no differences were found (Table 17, two-way factorial analysis 
of variance; factors muscle, side and muscle × side interaction: all p-values > 0.05). 

  

Onset time  
 women men 

Closed-mouth smile (s) mean SD mean SD 
right zygomatic major 0.05 0.07 0.06 0.10 

left zygomatic major 0.04 0.07 0.05 0.10 

right depressor labii inferioris 0.07 0.07 0.06 0.06 

left depressor labii inferioris 0.07 0.09 0.05 0.05 

Onset time  
 women men 

Open-mouth smile (s) mean SD mean SD 
right zygomatic major 0.06 0.07 0.07 0.07 

left zygomatic major 0.07 0.07 0.06 0.07 

right depressor labii inferioris 0.06 0.06 0.03 0.06 

left depressor labii inferioris 0.07 0.07 0.04 0.05 
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Table 17. Onset timing of muscle activity in spontaneous smiles. 

NS, not significant, p > 0.05. 
 

For speech pronunciation, the onset time of activation was calculated only by the 

asymmetry between the right and left depressor labii inferioris muscles. No significant 

differences were found in both sexes and in speech pronunciation (two-way factorial 

analysis of variance; factor sexes, factor pronunciation: all p-values > 0.05). 

 

 
Figure 24. Asymmetry between right and left depressor labii inferioris muscles in both sexes (Italian 

words pronunciation) (mean ±1SD). 
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 Onset time  
 right left ANOVA 2 

ways Spontaneous smile (s) mean SD mean SD 

zygomatic major 0.10 0.12 0.13 0.12 NS 

depressor labii inferioris 0.09 0.11 0.10 0.11 NS 
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Figure 25. Asymmetry between right and left depressor labii inferioris muscles in both sexes (Italian 

numbers pronunciation) (mean ±1SD). 
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9 DISCUSSION 
Emotions play a key role in social communication, and interactions in humans 

crucially depend on facial expressions. Spontaneous facial mimicry provides unique 

insights into the biological determinants of emotional responses. The neurological 

control of a smile consists of a complex process involving many facets, central 

pathways of voluntary and evoked smiling (Root and Stephens, 2003; Achaibou et al., 

2008; Rymarczyk et al., 2011). 

Facial expressions and speech articulation are produced by the synergistic or co-

operative action of many different facial muscles, involving movements of the mouth 

(lower and upper lips) (Root and Stephens, 2003; Holberg et al., 2006; Van der Geld et 

al., 2008; Sjögreen et al., 2011). 

The smile is characterized by an upward curving of the corners of the mouth, 

indicating pleasure, amusement, or derision, a pleasant or favorable disposition or 

aspect, which is produced by the contraction of the zygomatic major muscle. Zygomatic 

minor muscle (drawing the skin of the lip between the philtrum and the lip corner 

obliquely upwards and laterally) and levator Anguli Oris (incidentally displaying the 

teeth) also contributes to smiling. 

According to Frank and Ekman (1993), each smile, using a combination of 

different muscles, conveys different messages, for example the spontaneous smiles are 

formed by the contraction of both the zygomatic major and the orbicularis oculi 

muscles, while posed smiles involve only the zygomatic major muscle. These different 

types of smiles are often distinguishable during social interaction. 

Facial movements reflect spontaneous responses of viewers to emotional stimuli, 

and the identification of the neural correlates of this phenomenon can supply important 

findings about the brain mechanisms of emotion and social cognition. However, little is 

known about the neural processes underlying facial mimicry, and in particular whether 

emotional face perception and the subsequent emotion reaction are somehow related or 

completely independent processes (Achaibou et al., 2008). 
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The instruments  

Facial mimicry can be assessed in two ways: by analyzing the effectors of the 

movements (that is, by surface or needle EMG of facial muscles) or by investigating the 

final result of muscle contraction (that is, by three-dimensional motion analysis of 

selected facial landmarks). Both methods have advantages and limitations. 

Several instruments have been developed for the non-invasive assessment of 

facial movements; in particular, optoelectronic motion analyzers working with passive, 

retroreflective markers appear to be the best suitable for data collection in both patients 

and healthy subjects. These instruments allow a complete and detailed assessment of 

motion in all parts of the face collecting both qualitative and quantitative data (Trotman 

et al., 1998a,b; Weeden et al., 2001; Coulson et al., 2002; Johnston et al., 2003; 

Mishima et al., 2004; Nooreyazdan et al., 2004; Ferrario and Sforza, 2007; Agostino et 

al., 2008; Sforza et al., 2010b,c; 2012; Popat et al., 2010; Verzé et al., 2011a,b). 

The optoelectronic instrument used in this study was calibrated with an accuracy 

lower than 0.02%. This means that the movement of each 2-mm marker could be 

detected within 0.12 mm, a value similar (Hontanilla and Aubá, 2008), or even better 

(Trotman et al., 1998a, 2003) than those reported in previous studies. 

While motion analysis inform only about the amount and quality of the 

movements, EMG can offer more insight into the neuromuscular determinants of the 

action. In particular, needle EMG is used mainly in clinics for the detection of the 

activity of selected parts of the muscles, and its applications in research are limited by 

its invasiveness. In contrast, surface EMG provides non-invasive data that can be easily 

obtained also in control subjects without side effects, discomfort or pain. A limitation of 

surface EMG is the electrode dimension: small muscles and single muscular bellies or 

bundles cannot be investigated by themselves, and all recordings will be contaminated 

by cross-talk.  

In the current study, great care was taken to ensure the best positioning of the 

electrodes, limiting the occurrence of cross-talk. Additionally, surface EMG is 

vulnerable to extra-muscular factors that may alter and distort the true electric signal. 

One of the principal problems that limit a widespread use of surface EMG in clinics is 

the necessary normalization of its recordings, to reduce the ‘biological noise’, and to 

allow useful comparisons between different subjects and different studies (DeLuca, 

1997; Ferrario et al., 2000a). 
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Normalized data can inform the influence of various conditions on the 

neuromuscular activity, avoiding individual variability (anatomical variations, 

physiological and psychological status, etc.) and technical variations (muscle cross-talk, 

electrode position, etc.), toward the performance of clinically useful longitudinal and 

cross-sectional assessments (Ferrario et al., 2009). 

Data normalization is a practice currently used for the assessment of other body 

muscles (DeLuca, 1997; Hagg et al., 2004). Indeed, to compare EMG recordings in the 

amplitude and frequency domains among different subjects it is necessary to relate all 

measurements to the electrical muscle activity detected during some standardization 

recording, like a maximum voluntary contraction (MVC) (Castroflorio et al., 2005, 

2008; Cecílio et al., 2010; Forrester et al., 2010; Santana-Mora et al., 2009). EMG 

potentials collected in MVC have been reported to have the best repeatability (Suvinen 

et al., 2009; Forrester et al., 2010).  

For the jaw elevator muscles, masseter and temporalis muscles, an MVC on 

cotton rolls has been reported to have the lowest inter-individual variability (Ferrario et 

al., 2006b; Felício et al., 2009b; Forrester et al., 2010), and a method based on this 

standardization has been in use in the last 10 years (Ferrario et al., 2000a; Tecco et al., 

2011). Unfortunately, no protocol of this kind has been devised for mimetic muscles 

yet, and further investigations on this topic are necessary.  

To avoid this limitation, we used only the time-related information provided by 

surface EMG, and analysed asymmetry and asynchrony in time and not in the amplitude 

domain of the EMG signal. Nonetheless, a large variability of EMG onset timing was 

found in this study. Part of the variability may derive from the measurement protocol. 

Indeed, EMG data were sampled with a 1 ms temporal resolution (1 kHz data 

sampling). Considering both signal noise, and that we used a semiautomatic method for 

the detection of the beginning of muscle activity, with some inter-observer variability, 

we decided to report data with a 10 ms resolution (0.01 s).  
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The movements  

In the current investigation symmetric lip movements involving the lower facial 

third were analyzed. Lips movements and a speech pronunciation were performed with 

landmarks positioned around the mouth, as previously reported in literature (Holberg et 

al., 2006; Trotman et al., 1998a; Weeden et al., 2001; Sforza et al., 2010b,c; 2012). Data 

were collected in healthy subjects that performed rest/maximum lip movements 

(Weeden et al., 2001; Coulson et al., 2000; 2002; Hontanilla and Aubá, 2008; Sforza et 

al., 2010b,c; Sjögreen et al., 2011). Two categories of movements were analyzed: 

standardized smiles and lip purse, and speech (verbal) movements (Popat et al., 

2008a,b; 2012; Vimercati et al., 2012; Sidequersky et al., 2012). In a recently study, 

Popat et al. (2010) reported better reproducibility for speech movements than for non-

verbal ones. The use of standardized non-verbal movements should therefore always be 

coupled with more natural motions that may enhance individual performance (Holberg 

et al., 2006; Proff et al., 2006; Sforza et al., 2010b,c; 2012).  

In this study the used words are composed by Italian language phonemes in 

various positions. Some of the word postures are bilabial speech that were used to give 

a good representation of lip movement, that were coupled with sequences of numbers 

and vowels, to better analyze the performance of lip movements.  

In vowel (a) we observed the largest total mobility, but this movement is 

accomplished by both the temporomandibular joints movements and facial muscles. 

Previous investigations found that the largest labial movements involved open mouth 

animations (Ferrario and Sforza, 2007; Sforza et al., 2010c). 
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Sex differences 

In spontaneous smile, a sex difference was found, showing larger displacement 

in men than in women. Previous studies reported significantly larger movements in men 

than in women (Giovanoli et al., 2003; Tzou et al. 2005; Sforza et al., 2010b), but those 

differences were explained by the larger male facial dimensions. Sforza et al. (2010b) 

used standardized movements and investigated actual proportional differences 

independently from facial dimensions. In the current study, men had a total lip frontal 

area larger than women. Similar anthropometric differences were recently reported in 

stereophotogrammetric studies (Ferrario et al., 2000b; Sforza et al., 2010a). 

During non-verbal activities, the cheilion landmarks had the largest 

displacements in both sex groups, paralleling the results reported by Sforza et al. 

(2010c) in both young and mid-aged healthy adults of both sexes. 

No sex-related differences were found in non-verbal movements, pronunciation 

of numbers and words sequence, whereas sex-related differences were found in vowels 

(e, o, u). In closed-mouth smile, a significant asymmetry in crista philtri landmark 

movements was found in women. In young healthy women, Sforza et al. (2010c) found 

a left-side prevalence in mouth asymmetry in the “surprise” animation, and during eye 

closing (cheilion and lower lip landmarks). 
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Asymmetry and asynchrony 

In accord with the current findings, the movements were larger on the left than 

on the right side of the face during the execution of both instructed symmetric 

movement (Coulson et al., 2002; Giovanoli et al., 2003; Tzou et al., 2005), and 

emotional facial expressions (Borod et al., 1998; Nicholls et al., 2004; Okamoto et al., 

2010), while in others studies the right-side movements were somewhat larger than the 

left-side ones in instructed symmetric movement (Ferrario et al., 1994, 1995, Shaner et 

al., 2000; Sforza et al., 2010c). 

Some investigations explain the asymmetries found for facial expressions by the 

different information processing styles of two hemispheres: the right-side cerebral 

hemisphere exceeds the left-side one in processing emotional information, and it can 

control the left side of the face better (Borod et al., 1998, Nicholls et al., 2004; Okamoto 

et al, 2010; Sforza et al., 2010d). The different nervous supplies of the upper facial third 

(bilateral central nervous system commands to the facial nerve nuclei) and lower facial 

third (only commands to the contralateral nucleus) should also be considered (Urban et 

al., 2001; Ercan et al., 2008; Okamoto et al, 2010). Another hypothesis for larger left 

side facial movements is the influence of handedness (Coulson et al., 2002). 

Some differences were found between the natural and random sequences of 

vowels pronunciation, with a somewhat larger asymmetry for random sequences. We 

tested both conditions to better describe the movements even in relatively “unusual” 

situations. Unfortunately, no previous study reported data on this topic, and further 

investigations are necessary. 

In literature the influence of gender on hemispheric specialization for emotion 

was suggested, and some studies of emotional processing suggested that females show 

more lateralization than males (Ladavas et al., 1980 in Borod et al., 1998). 

In the current study, no sides-related differences were found in EMG onset 

timing in smiles and speech movements. In literature, some studies have broadly 

investigated the asymmetry in facial expressions from the zygomatic muscle, and 

greater activity on the left than on the right side was reported (Dimberg and Petterson, 

2000; Zhou and Hou, 2006). These investigations analyzed the strength of the EMG 

signal and not the timing of the onset. When measuring asymmetry and asynchrony in 

the strength of muscular action, both measures may be affected by anatomical factors 

independent on the strength of muscular contraction (e.g. thickness, mass and elasticity 

of the skin). 
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For open-mouth and closed-mouth smiles the zygomaticus major muscles tends 

to anticipate the depressor labii inferioris muscles in women, while in men the 

asynchrony between these muscles was opposite. The asynchrony differences in EMG 

onset timing may result from differences in the innervation and mechanical properties of 

upper and lower facial muscles. 

The motoneurons pools controlling the muscles of facial expression reside in a 

brainstem nucleus called the facial motor nucleus. This nucleus lies in the caudal 

pontine tegmentum, and contains a musculotopic arrangement of subnuclei, each 

innervating a small group of facial muscles (Root and Stephens, 2003). 

The upper facial muscles are bilaterally innervated, while the lower facial 

muscles are contralaterally innervated, with the largest group associated with the mouth 

(Urban et al., 2001; Ercan et al., 2008; Okamoto et al, 2010). Furthermore, the facial 

muscles groups are partially overlapping, and the cheek region represents a particularly 

crowded region. The zygomaticus major and depressor labii inferioris muscles lie in 

close proximity to a variety of muscle groups, thus being surface EMG recordings of 

these muscles groups is susceptible to cross talk (Larsen et al., 2003). 

For speech pronunciation, the brain must generate motor commands to control 

the activation of many different motoneurons pools, which include those innervating the 

muscles of the articulators, the larynx, and the chest wall (Smith, 2006). The physiology 

of how the different facial nerve branches activate their target muscles when we smile is 

a mechanism to be explored. Within each facial nerve, motoneurons may fire at a 

different timing to produce a facial movement, such as a smile. 
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10 GENERAL CONCLUSIONS 
The three-dimensional movement analysis is an important step in the description 

of facial function and morphology. In Speech-Language Therapy, nowadays, one of the 

greatest challenges is to quantify the results obtained by rehabilitation processes, 

associated to motor patterns and muscle contraction control. 

Quantitative, objective and accurate evaluation of lips, facial muscle activity and 

speech pronunciation is essential for a better understanding of the normal function and 

for grading of facial dysfunction in patients during diagnosis, treatment and follow-up 

of their disorders. 

Current clinical assessments and medical treatments are increasingly evidence-

based, relying on a widespread diffusion of diagnostic tools and treatment protocols that 

should make scientific-based options available to the largest number of health 

professionals. In an effort to make diagnosis as objective as possible, a non-invasive 

protocol of involving both EMG signals and kinematic data was developed, in order to 

develop estimations of expressions and speech in clinically healthy subjects. 

The outcomes suggest that the proposed method could be a useful tool to 

evaluate the patients with facial lesions. Assessment of these patients would profit from 

this quantitative approach, thus reducing the discordance among several clinical 

examinations. 

The principal limitation of this study is the number of analysed subjects, which 

was under the proper sample size to avoid type II errors. Another limitation is the 

variability of the electromyography onset timing of the subjects in verbal and not verbal 

activities.  

Additionally, a concurrent analyses of the EMG and landmark displacements 

signals is missing: we limited our present investigation to separate assessments, but a 

new data analysis protocol is currently under development, and these data will be re-

analyzed trying to combine the information on the effector (muscular activation) and on 

the final effect (landmark displacement). 
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