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Abstract

The theme of this Thesis is Iwasawa theory of Hida p-adic analytic families of modular forms. Our
main goal is to describe special values of Hida’s p-adic L-functions in the context of a p-adic Birch and
Swinnerton-Dyer conjecture for the weight variable.

Let E/Q be an elliptic curve with ordinary reduction at a prime p, corresponding to a weight two new-
form f. The exceptional zero formulas of Bertolini-Darmon [BD07] and Greenberg-Stevens [GS93| estab-
lish deep relations between the arithmetic of E and the behaviour at (k,s) = (2,1) of the Mazur-Kitagawa
two-variable p-adic L-function L,(fs,k, s) attached to the Hida family f,, containing f. The goal of Part
1 is to give an interpretation of these formulas in the framework of a p-adic Birch and Swinnerton-Dyer
conjecture for L,(fw,k,s). The main problem consists in the construction of p-adic regulators encoding
the arithmetic of the special L-values of the classical specializations of f,,. We address this problem by
appealing to Nekovar’s theory of Selmer complexes [Nek06|. More precisely, the key ingredient in the
definition of the p-adic regulator is the p-adic weight pairing, defined on the extended Mordell-Weil group
of E/Q. This pairing comes from Nekovar duality for a suitable big Selmer complex attached to Hida’s
universal ordinary deformation A(fs) of the p-adic Tate module of E.

In Part 2 we consider the algebraic side of the matter, i.e. we study the special values of algebraic
Hida’s p-adic L-functions. These are defined as characteristic ideals of ‘big’ Selmer groups (or complexes)
attached to A(fs) and Z,-power extensions of number fields. Making use of Mazur-Rubin theory of
organizing modules and of a general theory of abstract height pairings that we develop in Appendix C,
we deduce various several-variable algebraic p-adic Birch and Swinnerton-Dyer formulas, generalizing well
known results of Schneider, Perrin-Riou, Jones, Nekovar et. al. Via the Main Conjectures of Iwasawa
theory for GLo, recently proved thanks to the work of Kato-Rohrlich, Bertolini-Darmon, Vatsal, Ochiai,
Skinner-Urban et. al., these formulas provide strong evidence in support of the conjectures proposed in
Part 1.

In Part 3 we study the Mazur-Tate-Teitelbaum conjecture for elliptic curves E/Q with split multi-
plicative reduction at p (i.e. in the presence of an exceptional zero for the cyclotomic p-adic L-function in
the sense of [MITT86]). Making use of Nekovar’s theory we prove exceptional zero formulas for the p-adic
L-functions arising from norm-compatible systems of cohomology classes via Perrin-Riou-Coleman ‘big’
logarithm. Applying this formulas to Kato’s Euler system for the p-adic Tate module of E, we are able to
reprove the main result of [GS93], and to relate the second derivative of the cyclotomic p-adic L-function of
FE to the cyclotomic p-adic regulator. Besides providing evidence in support of the Mazur-Tate-Teitelbaum
conjecture, our result suggests an analogue in the multiplicative setting of a conjecture of Perrin-Riou,
relating Beilinson-Kato elements to Heegner points.

More detailed descriptions of the results are given in the introduction to each part of the Thesis.
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Part 1

p-adic regulators and Hida p-adic L-functions



Introduction

Hida theory of p-adic analytic families of modular forms has proved to be a powerful tool in the study
of the arithmetic of (p-ordinary) elliptic curves. The proof by Greenberg and Stevens of the Mazur-Tate-
Teitelbaum exceptional zero conjecture is a well-known example. As another remarkable example, recently
Bertolini and Darmon [BDO07] proved a p-adic Gross-Zagier formula allowing us to produce (in some cases)
rational points on elliptic curves from derivatives of certain Hida p-adic L-functions. In this note we relate
the ‘analytic’ results of [BDO7] to Nekovar ‘algebraic’ theory of Selmer complexes [Nek06]. This leads us
to propose a p-adic Birch and Swinnerton-Dyer conjecture for the ‘weight variable’, placing the results of
[BDO7] in a more general and natural setting (cfr. [BDO7, pag. 375, Rem. §|).

Let E be an elliptic curve defined over Q of conductor Ng = pM, having a prime p > 5 of multiplicative
reduction, and let fr be the newform of weight 2 on I'o(Ng) attached to F/Q. Hida theory allows us to
consider fg = fo as the weight 2 element in a p-adic analytic family of modular forms foo = {fi}revpnz2-
Here k runs through the even integers in a p-adic disc Ug C Z, centered at 2, and f}, is the p-stabilisation of
a normalized eigenform of weight k and level 'y (M). For every k € UgNZ=2, we denote by a, (k) := a,(fx)
the p-th Fourier coefficient of f.

Fix a quadratic character x, of conductor coprime with Ng. We denote by L,(fx, X, k, s) the Mazur-
Kitagawa two-variable p-adic L-function, attached to fg, x and the choice of ‘Shimura periods’ Q2 € C
(k € Us NZ>2). Tt is a Cp-valued p-adic analytic function defined on Ug x Z,, interpolating the critical
values of the Hecke L-series L(fx,x,s) of fr twisted by x (see [BDO7] or Section (2.2)). We consider the
restriction

Ly(foo, X, k,k/2) : Up — C,
of L,(fso, X, k,s) to the central critical line s = k/2. It satisfies the following interpolation properties: for
every k € Ug

(1) Ly (foor Xo ki, k/2) = (1= x(p)op (k)" p**71) - L(fa, X, k/2),

where = denotes equality up to a non-zero scalar. The ‘Euler factor’ (1 — x(p)a,(k)~'p*/2~1) appearing
in (1) is zero precisely when k = 2 and

(2) x(p) = a,p(2).

In this case Ly(fs, X, k,s) has an exceptional zero at (k,s) = (2,1), meaning that L,(fx,X,2,1) = 0
independently on whether L(E/Q, s) vanishes or not at s = 1. In this note we are especially interested in
this exceptional zero situation, and we assume for the rest of this introduction that (2) is satisfied.

The arithmetic of ‘the data’ (fu,p, x) strongly depends on the sign sign(F, x) € {£1} appearing in the
functional equation satisfied by L(E, x,s) := L(fg, x,s). If sign(E, x) = +1, then L,(fx, X, k,k/2) =0
vanishes identically (see Section (2.2)). This is the situation considered (for x = 1) by Greenberg and
Stevens in [GS93]. If

(3) Sign(E7 X) = _17
a conjecture of Greenberg predicts that L, (foo, X, k, k/2) is not identically zero, i.e. that L(fx, x,k/2) # 0
for almost all k£ € Ug. Assume for the rest of the introduction that (3) is satisfied.

The assumptions (2) and (3) imply that L,(feo, X, k, k/2) vanishes to order at least 2 at k = 2. For the
second derivative, we have the following result. Write K, /Q for the quadratic field attached to x (resp.,
K, :=Q), if x # 1 (resp., x = 1). There is a global point P, € E(K,)X and a rational number ¢ € Q*
such that

d2
(4) @Lp(fOOaXvk7k/2)k:2 ={- IOgE(PX)27

where logy : E(Q,) — G4(Q,) is the formal group logarithm on E/Q,. The point P, is a Heegner point,
coming from an appropriate Shimura curve parametrisation of E/Q, and it is of infinite order if and only
if L'(E, x,1) # 0. This result has been proved by Bertolini and Darmon in [BD07] (assuming an extra
hypothesis subsequently removed by Mok in [Mok11]).
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As remarked by the authors in [BDO7], it would be worthwhile to understand (4) in the framework
of a Birch and Swinnerton-Dyer conjecture for the Hida p-adic L-function L,(fo, X, k, k/2). This faces us
with the problem of constructing a regulator term ‘compatible’ with (4). The aim of this note is to show
that we can indeed construct such a regulator via Nekovar duality for the Selmer complex attached to a
suitable Hida big Galois representation, interpolating the Deligne representations of the elements of f.,
(see Sec. (2.3)).

More precisely, Nekovar’s construction of abstract Cassels-Tate pairings (recalled in Sec. 3) produces
a cohomologically-defined p-adic weight pairing

(= =)yt B (K, ® Qp x EN(Ky) @@, — @,

where ET(K,) is the extended Mordell-Weil group of E/K,. We can think of (—, —>1;I(ik,p as an analogue in
this context of the canonical p-adic height considered in [MTT86], [BD96] and [PR92|, and as a p-adic

variant of the classical Neron-Tate height, with the essential difference that (—, —)IN(ikp is alternating.

Write E(K, )X and ET(K,)X for the subgroups of E(K,) and Ef(K,) on which Gal(K, /Q) acts via
X. Under our assumptions (2) and (3)

rankz BT (K, )X = rankz E(K, )X + 1.

More precisely, ET(K, )X modulo torsion is generated by a basis of E(K, )X modulo torsion and a suitable
‘Tate period’ q, € ET(K,)X (see Sec. (5.5)). This is the ‘algebraic manifestation’ of the presence of an
exceptional zero for the p-adic L-function. In Section (4.4) (see also the proof of Prop. (5.6)) we prove the
following ‘explicit formula’:

THEOREM 0.1. For every P € E(K, )X we have
Nek
(5) (s PYX, = ¢ logp(P),
wherec=11if x #1 and c=1/2 if x = 1.

Using (5), we can rephrase (4) in the following way, emphasizing the analogy with the classical Gross-
Zagier formula: there is a scalar £ € Q* such that

d? e
Tz Lo(foos X0 by K/ 2)k—2 = £ (<qX’Px>;N(;p)

This result, combined with Nekovar theory, suggests a close relation between the dominant term in the
Taylor expansion of Ly (fs, X, k, k/2) at k = 2 and the determinant of (—, —>11\I<ilfp. This leads us to propose
in Sec. 11.8 a p-adic Birch and Swinnerton-Dyer conjecture for the weight variable, in the spirit of the
conjectures formulated in [MTT86] and [BD96].

More generally: let E/Q be an elliptic curve of conductor Ng ordinary at a prime p > 5, and x a
primitive quadratic character of conductor coprime with p- Ng. The constructions of fo and L, (foo, X, k, S)
generalize to this setting and we can consider (cfr. Sec. (2.2)) the generic part LE™(feo,X,k) of the
restriction of L,(fs, X, k, s) to the central critical line s = k/2. This is a p-adic analytic function on Ug,

which is conjecturally not identically zero. Conjecture (6.1) relates the leading term of L& (fw, X, k) to a

p-adic regulator, defined in terms of (—, —)IN{ilfp and the Mazur-Tate-Teitelbaum p-adic cyclotomic height.

We finally mention the work of Delbourgo, related to the subject of this note. In [Del08, Ch. 10], a
‘two-variable’ big Selmer group is attached to the ‘cyclotomic’ and ‘Hida’ deformation of the p-adic Tate
module of E/Q. Assuming that E/Q, does not have split multiplicative reduction, the leading term of its
characteristic power series is expressed in term of a certain p-adic regulator. Moreover, a main conjecture is
formulated, relating this power series to the Mazur-Kitagawa p-adic L-function. It is likely that analogues of
the results (resp., conjectures) of [Del08, Ch. 10] can be proved (resp., formulated) also in the exceptional
case, in terms of the cyclotomic deformation of the big Selmer complex f[?(@,T(’P)) defined in Sec. (3)
and the p-adic regulator of Sec. (5). This ‘Iwasawa theoretic’ point of view may also serve as a motivation
for Conjecture (6.1), in the same way as the main conjecture of Iwasawa theory [Gre94b], together with
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the algebraic p-adic BSD formulas of Schneider et al. (see for example [BD95]) motivate the p-adic Birch
and Swinnerton-Dyer conjectures of [MTT86| and [BD96].

Notations. The following notations will be used throughout this note:

- E/Q is an elliptic curve defined over Q of conductor Ng;

- fB =Y, o1 0n(E) - ¢" € S2(Tg(Ng),Z) is the newform attached to E/Q by the modularity
theorem;

- p > 5 is a rational prime of ordinary (i.e. good ordinary or multiplicative) reduction for E;

- K/Q is a number field of discriminant dx; we write D = |dk|;

- Sy D {vlp- Ng - Dg} is a finite set of finite primes of K;

- K=Q (resp. K, =Qy, S; 2 9|l) is a fixed algebraic closure of Q (resp. of the completion K, of
K at v e Sy);

- Gk.s := Gal(Kg/K) is the Galois group of the maximal algebraic extension Kg C K of K which
is unramified outside Sy U {v|oco};

- pv: K — K, (for v € Sf) is a fixed embedding which extends K — K,;

- priGy = Gal(K,/K,) — Gk (or Gg, — Gg if v|l) is the morphism attached to p,;

- if M is a Z|Gk,s]-module, we write M, for the Z[G,]-module M, on which G, acts via p};

- if L is a field, we write T,,(L*) := lim fupn (L);

- if M is a Zp[Gal(L/L)]-module, M(1) := Mp(1) := M ®z, T,(L*) (with diagonal Gal(L/L)-
action).

1. Kummer theory

In this section we recall some results from Kummer theory. Given a profinite group G and a finite
dimensional Q,-vector space M, endowed with a continuous Q,-linear action of G (for the p-adic topology
on M), H*(L, M) = H* (C?,,.(G, M)) denotes the continuous cohomology group of G with values in M,

cont

as defined in |[Tat76| or [Jan88|. If G, := Gal(L/L) is the absolute Galois group of a field L, we use the
notation H*(L, M) for H*(Gr, M).

1.1. The multiplicative group. In this paragraph L/Q, is a local field and 7y, is a uniformizer in
the maximal order Oy, of L.
By Hilbert Satz 90, the connecting morphism attached to the short exact sequence of discrete G-

modules 0 — pipn — L% IT7 — 0, defines an isomorphism L*/(L*)?" = H(L, ppn ). Taking the inverse
limit n — oo and extending scalars to @, we obtain the Kummer isomorphism

L*®&Q, = H'(L,Qp(1))-

Given x € L* we write v (or simply 7, if L is fixed) for the image of x ® 1 under the Kummer map. By
local Tate duality, we have a (perfect) duality

() =invy (xUy) s HY(L,Qp(1)) x HY(L,Qp) — H*(L,Qp(1)) = Qp,
where U is induced by multiplication Q,(1) x Q, — Q,(1) and invy, is the invariant map of local class
field theory. Note that H'(L,Q,) = Homgs (G$*,Q,) (G® := G/[G : G for the closure [G : G]' of the
commutator subgroup of G). Recall also the reciprocity map [Ser67]:

recy, : L* — G,
normalized in such a way that recy,(7) ! € Fry, is an arithmetic Frobenius in G¢°. We write also rec, :=
I‘GCQP.

PROPOSITION 1.1. a) For every ¢ € L* and x € H'(L,Q,) we have
{(vg: X}, = x (recr(q)) -
b) Let ey - G&I; —» Zy, be the p-adic cyclotomic character. For every q = prde(d) g € Q,

Xey(recy(q)) = u € Zy,
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PROOF. a) Follows by [Ser67, Sec. (2.3)] (see also [Nek06, Sec. (11.3.5)]). b) Recalling our normal-
ization of rec,, this follows by [Ser67, Sec. (3.1)]. O

1.2. Elliptic curves. Let us consider the elliptic curve E/Q fixed above. Denote by Ta,(E) :=
@E(@) [p"] the Tate module of £/Q and by V,(E) := Ta,(F) ®z, Q,. As Sy contains every prime of
bad reduction for E/Q, Ta,(E) is a (continuous) Gg, s-module [Sil86, Ch. VII|. For every v € Sy, the

~

embedding p, induces an isomorphism of G,-modules (again denoted p,) p, : (E(Q)[p"]), = E(K,)[p"].
Taking limits we obtain an isomorphism of Q,[G,]-modules p, : V,(E), = V,(E) := (1&1 E(K,) [p”]) ®Qp.

When the context makes it clear, we write simply V,(E) for the G,-module V,(E),.
Recall the (injective) global Kummer map

B(K) @0, = (Im BK)/p" B(K)) © @, = (Im H' (G, Bp™)) © Gy > H' (G5, Vo(B))

where £, is the usual Kummer map on E(K)/p™ ant the last isomorphism is obtained (extending scalars
to Q,) from H'(Gk s, Ta,(E)) = @Hl(GK,S,Tap(E)/p") (see for example [Nek06, Lemma (4.2.2)] or
[Jan88]). For every P € E(K) we write yp for the image of P ® 1 under this map. Replacing G s by
G, (v € S§) we obtain also a local Kummer map E(K,) ® Q, — H'(K,,V,(E)). Given P, € E(K,), we
write again vp, for the image of P, ® 1 and we consider E(K,) ® Q as a subspace of H'(K,,V,(E)). We
have res,(vp) = py ' (Vp,(p)): here we have written (by abuse of notation) again p, ! for the map induced

in cohomology by the isomorphism p, ! : V,(E) = V,(E), and

res, : HY(Gr 5, Vy(E)) — HY(K,, Vp(E)) := H' (G, V,(E),)
for the ‘restriction’ map induced in cohomology by the morphism of pairs (pf,id). When there is no risk of
confusion, we identify V,(E), with V,(E) and res, with p, o res,. Furthermore, we consider F(K,) ® Q,
also as a submodule of H!(K,,V,(E)) under p, ' : HY(K,,V,(E)) = H'(K,, V,(E)).

Writing Selg, (E; K) € H'(Gk,s, Vp(E)) for the Selmer group defined by the local conditions E(K,)®
Q, (for v € Sy), we have a short exact sequence

(6) 0 — E(K) @ Qp — Selg, (E; K) — Tay(II(E/K)) © @, — 0,

where III(E/K) is the Tate-Shafarevich group of E/K. As shown by R. Greenberg, we can also describe
this Selmer group in terms of the ordinary filtration on the Galois representation Ta,(E), in the following
way.

If £/Q has good ordinary reduction we have a short exact sequence of Q,[Gq,]-modules

it "
7) 0= Vy(B)* 2 Vy(B), 25 Vy(B) — 0,
with dimg, V,(E)* = 1. Here V,(E)~ = Ta,(E,) ® Q, (resp., V,(E)T := Tap(E') ® Qp) is the p-adic

Tate module of the reduction E,/F, of E/Q, (resp., of the formal group E of E/Q, [Sil86, Ch. VII|)
with Q,-coefficients. The map p; is induced by p, and the reduction map E(Q,) — E,(F,). In particular
Vp(E)~ is unramified at p.

If E£/Q, has multiplicative reduction, Tate’s p-adic analytic uniformisation gives us a group isomorphism

(8) (I)Tate : @p*/qE l E(@)’

where qr € pZ, is Tate p-adic period of E/Q, [Sil94, Ch. V]|. We have ®rgic(2?) = x(9) - Prate(x)? for
every g € Gq,, where x : Gg, — {=£1} is the quadratic unramified character (resp., the trivial character)
if £/Q, has non-split (resp., split) multiplicative reduction [Sil94, Ch. V]. As qg € pZ,, we have an exact

sequence of Gg,-modules 0 — fi,n (x) *1ste B(@,) " Prare (7/p"Z) (x) — 0. Taking the inverse limit on
n and extending scalars to Q,, we obtain the fundamental exvact sequence of Q,[Gq,]-modules

/ i Py
(9) 0 — Q) (1) BV, (E), 2% Q) — 0.
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Here Q, := Q,(x) and i; (resp. p, ) is induced by (the limit of) py o ®rare (resp. Prate © py). We will
write V,(E)T := Q},(1) and V,(E)~ := Q,, so that we obtain (7) also in this case.

Define, for every v|p, H} (K., V,(E)) C H' (K, V,(E)) as the image of H' (K, V,(E)") under the map
induced in cohomology by 4, and put H}c (Ky,Vp(E)) = 0 for Sy 3 v {p. These local conditions define
a Selmer group H}(K,V,(E)) C H'(Gk.s,V,(E)) (independent on the choice of Sy O {v|p- Ng}). The
following Lemma is proved in [Gre97, Sec. 2] (see also [Nek06, Lemma (9.6.7.3)]).

LEMMA 1.2. E(K,)®Q, = H} (K., V,(E)) for everyv € Sy. In particular Selg, (E; K) = H{ (K, V,(E)).

REMARK 1.3. Suppose that F/K, has split multiplicative reduction, i.e. Q’p = Q, as G,-modules:

a) if @Tate(]?) =P e E(K,), for a Pe K3, then (®raie)«(vp) = vp (we write again ®rqze : Qp(1) —
Vu(E) for the map induced by ®p4se). This follows from the definitions and proves (the first assertion of)
the preceding Lemma in this case.

b) Let 9, : Q, — H'(K,,Q,(1)) be the connecting morphism attached to (9). A short inspections
reveals that 9,(1) = 74, (:=75»). In other words, under the identifications of elements in H'(K,,Q,(1))

with (continuous) extensions classes in Extbp[Gu}(Qp, Qp(1)), v4p corresponds to the class of (9).

1.3. Products. Let v € Sy be a prime which divide p and let
(, )w : Tay(E) x Ta,(E) — T,(Q")
(resp, () = Tp(E) X T,(E) — T,(Q,) )
be the Weil pairing on Ta,,(E) (resp., on T,(E) := anE((QTp) [p"]). (We use the opposite ‘sign convetion’ to
that of [Sil86], so that our Weil pairing is minus that defined in [Sil86, Ch. III|.) It is a perfect, alternating
and Gk, s-equivariant (resp., G, -equivariant) Z,-bilinear form.
If E/Q, has multiplicative reduction and writing again p, : T,,(Q*), = T},(Q}) for the isomorphism of
Z,[Gy]-modules induced by p,,, we have

(10) po (@, 9)w) = (po(2), po(Y))v;  (Prate(@), B)v = @ X Prase(f)
for every x,y € Tay(FE), a € T,(Q;) and 8 € T,(E) (here x is multiplication, once we identify 7},(Q;) with
Z, as Zy-modules). The first equality follows from the definition of the Weil pairing, while the second can
be proved using the description of principal divisors on E,, := @p* / q% in terms of p-adic theta functions
(see for example [Tat95]).

Write Uy : C8 (Go, Vp(E)y) ® Cni (Go, Vo(E)y) — Cooni(Go, Tp(Q*), ® Qp) for the cup-product
induced on cochains by (, )w. If E/Q, is multiplicative, it follows by (10) that

(11) po (y Uw i () = —py () U € Clop (Ko, Qp(1))
for every x € CL (K., V,(E)") and y € C} . (K,,V,(E)). In (11) U is the cup-product pairing induced

cont cont

by multiplication V,(E)* x V,(E)~ — Q,(1) and we have written again p,, for the isomorphism induced
on cochains by p, ® Q,.
2. Hida theory

In this section we recall some fundamental results of Hida Theory. We use [NP0O|, [Nek06, Sec. 12.7]
and [BD07] as main references.

2.1. Hida families. Let N := NE/pordP(NE) be the tame conductor of E and fix an embedding
pp : Q — Qp. Writing 9 for the trivial character modulo Ng, let

X2 = ay(B)X +9(p)p = (X — ) - (X = 3,),

with o, 3, € Q. Since E is ordinary at p, we have a,, 3, € Z, (under p,) and we can assume «;, € Z,, and
Bp € pZ,. We define the p-stabilization fp € So(To(Np),Z,) of fr by

(12) fE(2) = fE(2) + By - fE(p2).
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(In particular f% = fg if F/Q, has multiplicative reduction.) As follows by [Hid85, Lemma 3.3|, f% is
the unique normalized eigenform on I'g(Np) such that a;(f%) = a;(E) for every prime [ # p. Moreover
ap(f) = ap € Ly,
Consider Hida universal ordinary Hecke algebra of tame conductor N
hee! = 5% (N) := lim b3,
r>1

Here h3"¢ := eora- (H(T'1(Np")) ®z Zy), where h(T'1(Np")) C Endy (S2(T'1(Np"), Z)) is the algebra generated
by the Hecke operators T}, for every prime [ and the diamond operator {(a), for every a € (Z/Np"Z)", and
Cord = lim,_ o T;” is Hida’s ordinary projector. We will write also U, for 7,,. We have a morphism
(), : Zp[(Z/Np"Z)"] — b37e. Putting I' := 1 + pZ, and taking the (inverse) limit » — oo, we obtain the
“diamond” morphism (with the normalization of [NPO0O, §(1.4)])

()2 A= Z[[0)) = Zy[IZ )] — b3

oo

where ZY , == Zj, % (Z/NZ)*. () gives h%d a structure of A-algebra. By [Hid86a], h2? is a free A-module
of finite rank. It follows that hod = [T, ggflmj decomposes as a (finite) direct sum of its completions at

maximal ideals m;. As oy, € Zy, fr (or better [%) gives rise to a morphism of Z,-algebras

(13) npe 5% = Zy
defined sending Z}y , to 1 and T; to ai(fY) for every prime I. 7y, factorizes through hord bgg?m for a
unique maximal ideal m = m;. Write P := Ker(n,) € Spec(h2:d,): by [Hid86a, Cor. (1.4)] (see also

co,m

[Nek06, §(12.7.5)]) the localization of 7% at P is a discrete valuation ring, unramified over Ay, where

p = (v — 1) for a topological generator v of I'. Then bggfim contains a unique minimal prime Ppip s.t. 1y,
factorizes through the local domain

R = Rg :=bZ% [Pumin.
We will write from now on R = Rg and P := P/Ppin € Spec(R). The localization Rz is a discrete
valuation ring, unramified over Ay. Fix a topological generator v of I' (e.g. v = 1 +p € I') and the
corresponding uniformizer of Rz
w:=(y—1) € Rp.
We write again T} and U, for the image of the Hecke operators in R. As ng takes values in Z, (i.e. E is
defined over Q) the residue field Frac(R/P) = Rp/w Rz of Rp is identified with Q,,. With the terminology
of [Hid86a|, # := Frac(R) is the (primitive) local component to which fg belongs. hZ% is the Hida
family attached to fg and R is the branch of the Hida family in which fg lives. This terminology is justified
by the following analytic interpretations of the results above, given in [GS93] (see also the next section).
Let A C @p[[w — 2]] be the ring of formal power series in w — 2 converging for w in some p-adic
neighborhood of 2. The ring A is endowed with a structure of A-algebra, defined as follows: let p — f,(X)
be the isomorphism A = Z,[[X]] determined by f,(X) = X +1. We associate to p € A the analytic function
on Z, given by w — f,(7*~? —1). Since A is Henselian and since the augmentation ideal (y — 1) C A is
unramified in Rz, there exists a unique morphism of A-algebras

(14) Nfw * By — A

such that (ns..(r)),,_o = Nys (1) for every r € R. Define, for every positive integer n, o, (w) := 0y (Th) € A,
where T;, is the n-th Hecke operator, defined in terms of the 7’s by the usual relations ([Shi71, Ch. III]).
As R is finite over A, there exists a p-adic neighborhood 2 € U such that o, (w) € Ay for every n € N,
where Ay C A is the ring of analytic functions on U. Consider the formal g-expansion

fro = Y an(w) - ¢" € Aullqll.

For every even integer k € U NZ=2, the weight k-specialization f, = EnZl an (k) - g™ is the g-expansion of
a normalized eigenform on I'1(Np) and fo = f%. If k =2 mod (p — 1), then fj has trivial character, i.e. it
is a normalized eigenform on I'g(Np). As follows by [Hid86a, Cor. (1.3)], fx is new at the primes dividing



10

the tame level N and is not p-new for k > 2. More precisely, for every k > 2 such that kK =2 mod (p — 1)
there exists a (unique) newform f,f& on I'p(N) such that al(f,fk) = a;(fx) for every prime ! # p. (With the
terminology used above, fi = ( fk# ) is the p-stabilization of f,f and they satisfy a relations analogous to
(12) for k =2.)

Let Z' :={2€7Z2%:2=2mod (p— 1)} and fQ# = fg. We call {f;f}keUmZ' the Hida family attached
to E/Q.

2.2. p-adic L-functions. For more details on the results and constructions recalled in this section,
we refer the reader to [BDO7, Sec. 1].

Let x : (Z/mZ)* — {+£1} be a quadratic Dirichlet character, of conductor m coprime with p, with
X(—1) =: weo, and let 7, = 377, x(7)e?™/™ be the associated Gauss sum. For every k € U N Z/, the

complex L-function L(flf,x, 8) 1= > x(n)an(f,f&) -n~% (defined for Re(s) > (k + 1)/2) extends to an
entire function on C. Recall our convention: fp = f2# .
For every integer 1 < j < k — 1, we define the algebraic part of L(f,fﬁ,x,j) by

(J— 1)!Tx
(—2mi)?
Here we fix, for every k € UNZ', ‘Shimura periods’ Qf# € C* as in [BDO7, Prop. (1.1)], [Shi77a, Sec. 1],

k

(15) L*(ff,x.5) = L(f¥. x.)-

and we write Q = Q;iin(ww). If x(—1) = (=1) lwy, (15) belongs to the field generated by the Fourier
k

coefficient of f,fﬁ , and we consider it as an element of @p C C, under the embedding p,, : Q— @ (fixed in
the preceding section), where C,, is the completion of @p.

REMARK 2.1. In [BDO7], the periods are chosen in such a way that Q}F#Q;# = <f,f,f,f> is the
k k

Petersson scalar product of f,f with itself. We do not impose this ‘normalization’ here, as we will fix 9
later in a ‘convenient way’ (cfr. Sec. (11.8)).

Up to shrinking U if necessary, Sec. 1 of [BDO7] constructs a C,-valued function
Ly(foo, X, k,8): U xZy, — C,
which interpolates the Mazur-Tate-Teitelbaum p-adic L-functions L, ( f,f , X, S) attached in [MTT86] to
the elements of fo, and the periods Q. More precisely L, (fs, X, k, s) satisfies the following properties:

1. Ly(foo, X, k. 8) is (locally) analytic on each variable;
2. for every k € U NZ' and every odd integer 1 < j < k — 1, there exists a scalar A(k) € C; such

that
(16) Ly(foos Xo ks §) = M) (1 = x(P)ay (k) "'~ (1 = x(p)ap (k) ~'pF 771 % - L*(fF, X, ),
where ¢, = 1 if fi # f,f and €, = 0 otherwise;
3. A(2) =1.

REMARK 2.2. Using the terminology of [BDO7|, L,(foc,X,k,s) is determined by the choice of an
ordinary, I'g(IN)-equivariant modular symbol p., with values in the space of measures on (Zf))/ (the set of
primitive vectors in Z, x Z,), interpolating the classical modular symbol attached to fi in weight k (see
[BDO7, Sec. (1.3)]). The existence of such a modular symbol follows from [GS93, Th. 5.13|, and the
scalars {A(k)} come from the interpolation process [BDO07, Th. (1.5)]. Once we have fixed the periods
{Q} as above (depending on x(—1) = W), t+, and then L,(foo, X, k, 5), is unique up to multiplication
by a nowhere vanishing analytic function « on U, satisfying «(2) = 1. Here we fix such a p, and call
Ly(foos X, k, ) the Mazur-Kitagawa p-adic L-function attached to x.

Note that taking j = k/2 in (16) we obtain (for k = 2 mod 2(p — 1))
(17) Lp(foo X: ks /2) = AR) (1 = x(D)ap (k) "' P2 DL (£, x K/2),
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where 8 = 2 if fi, # f,fé and § = 1 otherwise (i.e. if K =2 and E/Q, is multiplicative). This shows that, if
x(p) = ap, Lp(foos X, k, 8) has an exceptional zero at (k,s) = (2,1), i.e. Ly(foo,X,2,1) = 0 independently
on whether L(E/Q, s) vanishes or not at s = 1.

Write wy, for the sign in the functional equation satisfied by the Hecke L-series L( f,f ,8), for ke UNZ'.
It is known [NPOO, Sec. (3.4.4)] that wy =: wye, is constant for every k > 2, and that

Wgen if p * NEa
wy = sign(E,Q) =
—Qp - Wgen, if p|Ng.
Recalling that f,f (k > 2) is a newform on I'g(N), by [Shi71, Th. (3.66)] we see that L(f,f,x,s) has
constant sign

(18) sign(foc, X) == X(=NV) - wgen

in its functional equation, for every k > 2. Note that sign(fe, x) is opposite to the sign (see again loc. cit.)

sign(E, x) = x(=Ng) - wa
of L(fg,x,s) if and only if x(p) = a, i.e. if and only if L,(fo, X, k, s) has an exceptional zero. Moreover
this happens precisely when the twist EX/Q of E/Q has split multiplicative reduction at p [MTT86]|.

As follows by (18) and the interpolation formula (17), L,(fsc, X, k,k/2) = 0 vanishes identically if
sign(foo, X) = —1. We define the generic part of the restriction of L,(feo, X, k, $) to the central critical line
by
o  L(fee k) . -_ 0 if sign(foo,x) = +1;

Lp (fooaX7k) Ea W ’ egcn(X) O

(s — k/2)% s=k/2 1 it sign(foo,x) = —1.
It is a Cp-valued, p-adic analytic function on U. The terminology is justified by Greenberg conjecture,
predicting that L8 (fw,X,k) is not identically zero (see Sec. 7 for results in this direction). When
X = Xtriv 18 the trivial character, we write simply Ly (foo, &, 8), LE™ (foos k) = L5 (foo/Q, k) and egen for
the objects attached to xiriv-

Let K be a quadratic field such that (Dg,p) = 1 and let ex : (Z/DgZ)* — {%} be the associated
quadratic character. Putting egen(K) := €gen + €gen(€x ), we define the Hida p-adic L-function of E/K by

fooa k’,S) ) LP(f(XHGKak)S)
(s — k/2)czen(K)

L (foo/ K B) o= 2t LN (fo k) - LE™ (foes e, ).

s=k/2

2.3. Big Galois representations. Let Qn, C Q be the maximal algebraic extension of Q which
is unramified outside p - N - 00, and let & := Gal(Qy,/Q). In this section we recall briefly how we can
construct a self-dual big Galois representation of ® which interpolates V,(E) in weight two and, more
generally, a suitable self-dual twist of the Deligne representation of f]f& in weight ¥ € U NZ'. For more
details and references, see [Nek06, Sec. (12.7)] or [NPOO].

As explained in [Nek06, Sec. (12.7.8)-(12.7.10)] there exists a continuous Rp[®]-module T'(R5), free
of rank two over Rz, such that: for every prime £ Np

(19) trace (Fr(¢)| T(Rp)) = Ty;  det (Fr(¢)| T(Rp)) =£- (¢),

where Fr(f) € Gg is an arithmetic Frobenius and () : Z,[[Z} ]] — h%? — R is the diamond morphism.
The term continuous means that
T(Rp) € (feMod)
is an admissible R[®]-modulo, as defined in [Nek06, Sec. (3.2)] (see also the next section). The represen-
tation T'(R5) can be constructed as follows [Hid86al|,[NP00].
Let X, := X1(Np") /g be the modular curve over Q (as defined, for example, in [Roh97]) and J, :=
Pic’(X,). The Hecke algebra h(I';(Np")) acts on J, via algebraic correspondences and this action commutes
with that of Gg. Let m : X1 — X, be the morphism defined by the inclusion I'; (Np™*1) C T'y(Np")

and 7 : Jp(Q)pe — Jry1(Q)pee be the map induced by (contravariant) functoriality. Write Joo =
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lim -+ Jr(Q)pe and JL = e, - Joo for its ordinary part. By a fundamental theorem of Hida, JZ'¢ is an
hod[Ggl-module whose Pontrjagin dual is free of finite rank over A. Define (with the notations of Sec.
(2.1))

TaZ® := Homg, (JL%, ppee ) ®pora d Tas(R) = a2 ®pora .
With these notations, T'(Rz) := Tac (R) ®r Rz is the localization of Tas (R) at P. As J2'? is unramified
at every rational place [ { Npoo, the same is true for T(R5) (i.e. it is a R5[®]-module). The identity (19)
is a manifestation of the Eichler-Shimura congruence relation [Roh97, page 72].

To obtain a self-dual representation, we consider a suitable twist of T'(Rz). More precisely define the
character

Wg =*(xey) /* 1 Gg = R
as follows: let xoy : Gg — Gal(Q(pp=)/Q) = Z) be the p-adic cyclotomic character and £ : Z3 — 14 pZ,
the projection on principal units. For every g € Gg we put Ug(g) := < (ko ch(g))_1/2> (as p # 2 every

element of I' = 1+pZ, has a unique square root in I'). Note that, writing X, n : Gg = Gal(Q(unp=)/Q) =
Zy p» Po(9) 7> = (Xey.n(g)). This follows by the fact that fz (or f}) has trivial character, i.c. the character
of R is trivial (with the terminology of [Hid86a]). We can finally define

T(R) :=Tax(R)®r Yo; T(P):=T(R)®r Rp.

As Ugp = 1 mod (w) and V,(E) is irreducible, the Eichler-Shimura relation (19), combined with the
Chebotarev density theorem (and the definition of P as the kernel of (13)) gives us an isomorphism of
Qp[®]-modules

Furthermore, again by (19) (and the discussion above) the determinant of T'(P) is the p-adic cyclotomic
character. In [NPO0O, Sec. (1.6)] it is shown how these properties imply the existence of an Rzp-bilinear,
alternating and ®-equivariant form

(21) m:=7r, : T(P) ®r, T(P) — Rp(1) := Rp @ T,(Q")
which induces an isomorphism of Rz[®]-modules
adj(m) : T(P) = Homp_ (T'(P), Rp(1)) =: T(P)*(1).

(As remarked in [Nek06, Section 12.7.13.6], the geometric construction of (21) given in [NP0O] was done
earlier by Ohta; see the reference given in loc. cit.) Write ‘mod =’ for the compositions T(P) — T(P)g—2 —
Vp(E) and Ry — Rp/w = Qp. Multiplying 7 by a unit in R if necessary, we can assume, as we do from
now on, that

(22) m(z ®y) mod w = (x mod w,y mod w)w

for every z,y € T(P). This follows by the facts that = and (, )y are perfect and alternating.

2.3.1. Ramification at p. Fix a prime v € Sy which divide p. Recall our fixed embedding p, : Q— @p,
and let Ip, C Gg, < Gq be the corresponding inertia and decomposition groups. As described in [Nek06,
Sec. (12.7.5)], [NP0O] or [MT90|, the restriction T'(P), of T(P) to Gq, is reducible. More precisely: write
U = Wq, for the ‘restriction’ of ¥g to Gg,. There exists a short exact sequence of R5[Gg,]-modules
(23) 0 T(P)* 2 T(P), 5 T(P)~ — 0,

with T'(P)* free of rank one over Rz. Furthermore Gg, acts on T(P)T (resp., T(P)~) via the character
bR Xey - U (vesp., ¥ - ¢r), where

¢R : GQp - G@p/I@p — R*
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is the unramified character which sends an arithmetic Frobenius Fr(p) at p to the p-th Hecke operator U,,.
In other words, if we fix a splitting of Rz-modules T(P) = T(P)* @ T(P)~ = R%, the action of Gg, on
T(P), is described by the matrix
Xey * \Ilil : ¢1_{1 *
: Gg, — GLa(Rp).
0 V-or

Putting (T(P)*),_, := T(P)* @ Rp/(w), (20) extends to an isomorphism of short exact sequences of
Q,[Gq,]-modules

(24) 0——=(T(P)")jey — (T(P)i=2), — (T(P)7)jus —>0

| | |

0 —— V() —— Vy(E), —— V,(E)

— 0,

where the bottom row is the exact sequence (7) or (9). Write T(P)*(1)* := Hompg_ (T(P)¥, Rp) (1). As
7 is alternating, adj(7) induces an isomorphism of short exact sequences of R3[Gq,]-modules

(25) 0——T(P)* T(P), T(P)- ——0

F e |

0——=T(P)*(1)r —=T(P):(1) —=T(P)* (1) —=0

(Using the notations of [Nek06, §(6.8)], this means that T(P)" LL, T(P)*, after replacing Ry with its
dualizing complex wr_ := [Frac(R) — Frac(R)/Rz] in (21)).

If w € Sy is another prime dividing p, then there exists 0., € Gg and ay, € Gg, S:t. Py = @y 0 Py 0 Ty
Putting i), := o' 0if 0o ay! and py, := o, 0 p, oy, we obtain an exact sequence of R5[Go,]-modules

it ”
0— T(P)* B T(P)y, 25 T(P)~ -0
and analogues of (24) and (25).

3. Nekovar duality

In this section we introduce Nekovai’s Selmer complexes attached to the big ordinary representation
T(P), and the (abstract) Cassels-Tate pairing in this setting. Every notation or ‘sign convention’ regarding
complexes which is not explicitly defined is as in [Nek06, Ch. 1].

3.1. Selmer complexes. Let T(P) be the big Galois representation considered in the preceding
section. T(P) € %(i[GK s Mod is an admissible R[G g s]-module (as defined in [Nek06, Sec. (3.2)]) and we
can define, for G € {Gk g; Gy, v € Sy}, the complex [Nek06, Def. (3.4.1.1)]

Cc.ont<G7T(P)) = hi>n C(:ont(G7TO£);
T €S(T(P))

here T,, € S(T'(P)) if T, C T(P) is an R[G]-submodule such that a) T, is a finitely generated R-module and
b) the action of G is continuous for the profinite topology on G and the mg-adic topology on T,, (mpg is the
maximal ideal of the local ring R = Rg). For Ty, € S(T'(P)), Cooyi (G, To) = Im CF,, (G, T /mE Ty ) is the

usual complex defined in degree n by the set C? (G, T,) of continuous maps G"® — T. (To be precise: if

v € S, then T(P), € %‘%GU]Mod is an admissible R[G,]-module and C?, (G, T(P)) := Co. i (G, T(P)y))-
We write also C8, (K, T(P)) for C2,.((G,, T(P)). As T(P) = T(R) ® R and T'(R) is finite over R, it
follows from [Nek06, Prop. (3.4.4)] that the natural morphism of complexes

Coont (G, T(R)) ®r R = CZni (G, T(P))

cont

is an isomorphism and C2, (G, T(R)) has the usual meaning.

cont
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We have, for every v € Sy, a natural restriction map
TeSy ! Cc.ont(GK,SaT(P)) - Cgont(KU?T(P))

induced by the morphism of pairs (p,id). By the results of the preceding section, we also have the (admis-
sible) R[Gg,]-module T'(P)* and we define as above the complex Cg, (K, T(P)*) := C2,.(Gy, T(P)*),
for every v|p.

In the same way we can consider the (continuous) Q,[G i, s]-module V,(E) and the Q,[Gg,]-modules
V,(E)*. In this case C% (G, V,(E)) = C2 .. (G, Ta,(E)) ® Q, and C2, (K., V,(E)*) (for v|p) are the
usual complexes of continuous cochains (for the p-adic topology).

Let X € {T(P),V,(E)}. We define, as in [Nek06, 12.7.13|, [NP0O|, local conditions for v € Sy by

Cc.ont(vax+) if Ulp;
0 if vtp

and the corresponding Nekovar Selmer complex

~ Tess —it
O (G5, X) = Cone | Cooi (G5, X) @ €D U L@ oK, X) | 1],
UESf UESf

Here ress; := @,es, reso, ijqrf = @uesf Tand it 1 UF(X) — C2,..(K,, X) (by abuse of notation) is the
map induced by the inclusion of G,-modules i} : X* — X, (i.e. zero if v {p). Write Rx = Rp (resp. Q)
for X = T(P) (resp. X = V,(E)), rR\ff(GK,S,X) for the image of 5}(GK,S,X) in the derived category
D(Rx) := D(r,Mod) of complexes of Rx-modules and

H; (G5, X) := H* (é;(GK,S,X))

for the cohomology of RI' #(GK,5,X). We collect in the following propositions some important facts we
will use below.

PROPOSITION 3.1. a) f{\ff(GKys,X) € DS’ct(RX) (i.e. has ‘bounded’ cohomology of finite type over
Rx ). Furthermore it is independent (up to isomorphism) on the choice of the finite set Sy. We write

RI;(K,X) = RT}(Gk,s,X) and H}(K,X) = Hi(Gx.s, X).
b) there exists an exact triangle in D°(Rz)

RT (K, T(P)) % RI (K, T(P)) — R ; (K, V, (E))
iducing short exact sequences
0 — HI(K,T(P))/(w) — HY(K,V,(E)) % HI"' (K, T(P))[=] - 0.
c) ﬁ}(K,T(P)) is a free Rs-module.

PrROOF. All these statements are special cases of [Nek06, Prop. (12.7.13.4)]. For future reference, we
recall how to prove b). Let G € {Gk 5,G,, v € Sy} and T = ), +. Combining the exact sequences (when
defined) of complexes of Rz-modules [Nek06, Prop. (3.4.2)]

(26) 0— Ccont(G7 T(P) ) - C:ont(G’ T(P) ) - C(:ont(G’ VP(E)T) - 0’
associated to the specialization maps T(P)! — (T(P)"), _, = V,(E)T, we obtain a short exact sequence
(27) 0= C}Gr.s.T(P)) = C}Cr.s, T(P)) = C} (s, V(E)) = 0,

which defines the exact triangle above. ip is then the connecting morphism attached to (27). O
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Write H*(G, —) := H* (C2,.+(G,—)) and C& (K, X ™) := C2,, (K., X) for Sy > v { p. Noting that
Cone (Ccont(KmX ) = Cc'ont(Kv,X)> = 02 (K, X7) in the derived category, we obtain an exact

triangle in D*(Rx)

@ cont KU’Xi)[_l] - ﬁf(va X) - Cc.ont(GK,Sa X)

vESy
We note that H°(K,, X~) = 0 unless v|p, X = V,(E) and E/K, has split multiplicative reduction. (For
X = V,(E) this follows easily by the discussion in Sec. (1.2). The result for X = T'(P) follows easily from
this and Sec. (2.3).) We then obtain in cohomology a short exact sequence of Rx-modules

(28) 0— @ H(K,, X") - H{(K,X) = H}(K,X) — 0,

sp
veSf

where S7” := {v|p : E/K, has split multiplicative reduction} and H}(K, X) C H'(G s, X) is the Selmer
group attached to the local conditions i (H' (U (X))) € H'(K,, X). Specializing (28) to X = V,(E), we
obtain by Lemma (1.2) an exact sequence

(29) 0— P Q =5 H}(K,V,(E)) — Selg, (E; K) — 0.

veS’

3.2. Class field theory. Let M be an R-module, considered as an admissible R[Gk s]-module with
trivial G g-action. Define

ress
’CM := Cone T>chont(GK S, @ T>2 cont KU,M(I)) [—1],
veESy

where M(1) := M ®z, T,(Q*) and 7>2X* is the good filtration of X* in degree two [Nek06, page 33|.
(Note that, for v € Sf, C’C'Om(Kv, M(1)) :=C2 . (Gy, M(1)y)). By class field theory [Nek06, Sec. (5.4.1)]
HY(Kpr) = 0 for every ¢ # 3 and the sum of the invariant maps of local class field theory induces an

isomorphism of M-modules
invg, (M) : H3(Kyr) = M,
which is functorial in M. We can describe invg ; explicitly as follows.

First of all, we have for every v € Sy an isomorphism inv, (M) : H?(K,,M(1)) = M, obtained as
the composition H*(G,, M(1),) = H*(Gy, M @z, T,(K})) — M. Here the first isomorphism is induced
by id ® py, and the second is defined (taking limits) by the invariant map of local class field theory (as in
[Nek06, §(5.2)]).

Let ¢ = (z,(y,)) € K3, be a 3-cocycle, for x € C2 (Gk,s,M (1)) and (y,) € Dcs, C2 (K, M(1))
(to be precise we should write ([y,]) for the second component in x, where [y,] denotes the class of y,
modulo the image of § : CL (K, M(1)) — C2,.(K,, M(1))). Since x is a cocycle we have

cont cont

0 =dgk,, (:13) = (5(%), - (6(211)) + T’GSU(Z'))) )

where § is the differential in C2, . (—,—). As H3(Gk.s,M(1)) = 0 [Mil0o4, Ch. I|, there exists ¥ €
C2 +(Gk s, M (1)) such that 6(9) = z, so [x] = [(0, (yu + resy(9))y)] € H3(Kpr). We have
invg, (M)([2]) = Y inve(M) [y + resu(9)]) -
vESy

The facts that this expression does not depend on the choice of ¥ and that invg ; is an isomorphism is

essentially a restatement of the fundamental exact sequence of global class field theory (for more details,
see [Nek06, Ch. 5], in particular the exact sequence (5.3.1.2)).
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We can consider Q, as an R-module, identifying it with the residue field R5/w of R5 (see Sec. (2.1)).
By [Nek06, Prop. (3.5.10)], C&,,: (G, Q,(1)) is then identified with Cg, (G, R5/@(1)). By the functoriality

cont
of msf we have
(30) (invs, (Rp)(@)) mod @ = invs, (Q,)(x mod =)

for every € K (and ‘mod @’ : Ry — Rp/w = Q).
We write from now on K for Kg_.

3.3. Products. The morphism 7 : T(P)®p_T(P) — Rz(1) induces, for G € {Gk s, Gy}, (truncated)
cup-products

T>2

Upr : Cc.ont(G’ T(P)) ®R$ Cc.ont<G7 T(P)) - Cc.ont<G7 Rf(l)) - TZ2Cc.ont(G’ Rﬁ(l))
The first map is the composition of the cup product C2, (G, T(P)) @ C. (G, T(P)) — Coi (G, T(P) ®

cont cont

T(P)) (defined by the usual formulas on cochains [Nek06, Sec. (3.4.5.1)]) with the map induced by 7.
When the context is clear, we write Uy also for the usual (non-truncated) cup-product.

We will write C$(T'(P)) := C3(Gk,s5,T(P)) and (2,2}, 20-1) € C} (Gk,s,T(P)) for an n-cochain,
Where Tn € C::lont(GK,SaT(,P))? .’b:: = (mrtv)v\P € ®v|p C&nt(KvVT(P)Jr) a‘nd Tp—1 = (xnfl,v)UGSf €
@UGSf O:o;%(KlnT(P)) Given a = (O[U)UESJHB = (BU)UESf € ®’UESf Ogont(KU,T(’P)), we write

aUy f:= @vesfav Uz Bo-
Let r,s € R. A simple direct computation [Nek06, Prop. (1.3.2)] shows that the formula
(In7 ler’ xn—l) Urr (yma y:rrm ym—l) =

(31) (20 Ur s 20 U (- ress, () + (1= 1) -5, ()

+(=1)" (1 =) - ress, (wn) + 718, (7)) Us Y1 )
defines a morphism of complexes of Rz-modules
Urr : CHT(P)) ®p CHT(P)) — K.

Moreover the formula ks ((Zn, 2}, 2n-1) @ (Ym> Y, Ym—1)) = (0,(=1)"(r — ) - Zp—1 Ux Ym—1) defines a
homotopy &y s : Ur p ~ Ur s.

3.4. Generalized Cassels-Tate pairings. Define # := Frac(Rz) and Ry := [R5 — %), concen-
trated in degrees [0,1]. The morphism

—i,—i —id,id —
vy Bp @r, Rp = Ry = 202 ™S 2 - Ry
defined by the identity (resp. the projection on the first factor) in degree zero (resp. one) is a quasi-
isomorphism. Write C$(T'(P)) := C}(Gk,s,T(P)) and let r € R. We define a morphism of complexes

(32) (5} (T(P)) ®r, Rif) ®ry ((7; (T(P)) ®r,, R?) — K ®n, Rp.
by the composition
(G0 P) oy T) s (CHIPY 1y Ti)  (CHT(PY) @iy CHI(PY) Sty (i 01, To) —
id@’_”ﬁa (5} (T(P)) ®r 5} (T(P))) D, po= Un,r@id - s Y=

with U, as in preceding section and sa3 ((a ® b) ® (c®d)) = (=1)%9®4e9() (¢ @ ¢) @ (b®d)). The
cup-product (32) induces in cohomology a morphism of Rz-modules

(83)  Uraa: H? (CHT(P) @y Bp) @y B2 (CH(T(P)) @1y B) — H' (K @y B)

which is independent on the choice of r € R.
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Let Z be a complex of R-modules with cohomology of finite type over Rz. The cohomology sequence
of the exact triangle in D(R5)
Z 5 Z@p, #— (Zr, Rp) 1]
splits into short exact sequences of Rz-modules
(34) 0~ H(2) ®r, #/Rp — H (Z O, F) — HY(Z) ry—r0r — 0,

where Mp_ 7, = Ker (M — M ®r ?Z’) Taking Z = K and ¢ = 4 we obtain from Section (0.4) an
isomorphism
(35) H*(K ®r_ Rp) = H*(K) ®r, #/Rp — %/ R,
where the last map is given by inv s ® id.
Note that every term in (34) is a torsion Rz-module and the first is P-divisible. Taking Z = 5}(T(7’ )

and ¢ = 2, it follows that the cup product in (33) factorizes through the projection H? (Z @ Ry Rz) —

H? (Z)Rﬁ Tor- Composing Uy o o with (35) we then obtain an Rz-bilinear form

(36) Uor : HF (K, T(P)) p—ror X H} (K, T(P))g__r1,, — %/ Rp.
We have the following fundamental:
THEOREM 3.2. Ucr is non-degenerate and alternating.

PROOF. This is a special case of [Nek06, Prop. (12.7.13.4)] or [Nek06, Th. (10.4.4)]. O

3.5. Behaviour under Galois conjugation. We assume in this paragraph that K/Q is a Galois
extension. Let SJQ be the set of rational primes dividing p- Ng- D . Fix for every prime [ € SJQ an embedding
pi : Q — Qy, inducing p; : Gg, — Gg. We also fix elements oj; € Gg (01, := id) which represent the
coset space G \Gq/p;(Gg,), and assume that {p; o a{l}j = {pv}oii (where p, is the embedding fixed at
the beginning of this note).

As described in [Nek06, §(8.8)], Gal(K/Q) acts on fI}‘?(K,X), for X € {T(P),V,(E)} and ¢ > 0.
More precisely: for every g € Gg, we can define a morphism of complexes

Ady(g) = (Ad(g), Ad* (g), F(g)imy) : C}(Gk.s,X) — C3(Gk,s,X)

as follows. First of all, Ad(g) : C% . (Gk,s,X) — C&..(Gk,s, X) denotes the usual action of g by Galois

conjugation, i.e. the map induced by the morphism of pairs x — g(z) (z € X), 0 — g tog (0 € Gg)
between (G, X) and itself. In a similar way, Ad"(g) (resp., F(g) = (F(g)l)lesg) denotes the action of g by

Galois conjugation on the ‘semilocal complex” €, Céont (Kv, X7T) (resp., @les? Do Coont (Kov, Xu)). We
have F(g) o z'gf = iJSrf o Ad*(g) and there exists a homotopy my = my(X) : resg, o Ad(g) ~ F(g) o ress,,

which is functorial in X (see [Nek06, §(8.1.7.3)] for an explicit description of the homotopy my). It follows
that the formula

(37) Adg(9)(@n, 2, 7n—1) = (Ad(0) (20), AdT (9) (a), F(9) (2n—1) + myg(an))

defines a morphism of complexes CN';(GKVS,X) — 6’}(GK75,X). By [Nek06, Lemma (8.6.4.4)] this map
induces in cohomology the action of Gal(K/Q) on H}(K, X) alluded to above. We denote by x9 or g(x)
the action of g € Gal(K/Q) on » € H}(K, X). In [Nek06, Prop. (8.8.9)] (or loc.cit., formula (10.3.2.2)) it
is proved that Ucr is Gal(K/Q)-equivariant, i.e.

(38) g(x) Ver gly) = zUor y

for every x,y € }NI)%(K, T(P))ry—Tor and g € Gal(K/Q). (This follows essentially by the Galois invariance
of the local invariants). For more details on the constructions above, we refer the reader to [Nek06, Ch.
VIII], especially to paragraphs (8.1.7.3), (8.6) and (8.8).
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4. The p-adic weight pairing

In this Section we apply the constructions recalled above to define the p-adic weight pairing (—, —>11\I(e;f

on the extended Mordell-Weil group ET(K) of E/K. For every prime v|p of K at which E has split
multiplicative reduction, we have a ‘Tate period’ ¢, € ET(K) — E(K). Given P € E(K), we can compute
(Gu, P>II\I{61; explicitly in terms of the formal group logarithm on E/Q (cfr. Cor. (4.6)). As explained in
the introduction (see also Sec. (7)), this computation is the key for relating the algebraic constructions of
Nekovar to the analytic results of Bertolini and Darmon.

4.1. The extended Mordell-Weil group. Let S}” # () and let K, := HUES;‘p K,. We write again
(by abuse of notation)
(I)Tate : (KZ/;)* - @ E(KU)
veS;’
for the direct sum of the Tate parametrisations (8). Following [MTT86] and [BD96|, we define the
extended Mordell-Weil group
EN(K) = {(P, P)| PeE(K), Pe (K,)" and ®rqe(P) = (pv(P))DGS;p}.

Given v € S, we write ¢, := (0,(1,...,qE,...,1)) € ET(K) (with ¢ as v-component). We have a short
exact sequence

(39) 0— P z— ENK) — E(K) -0,
veSH?

where the first map sends the v-th generator to ¢, and the second is projection. If S;p = (0, define
EY(K) := E(K).

We have a natural map
(40) iy B(K) — H}(K,V,(E)),
defined in the following manner. Let (P, P) € Ef(K), with P = (ﬁv)vesj}? € (KZ’))*. Since res,(yp) =
iy (vp,) (see Remark (1.3)), for every representatives 7% € CL L (Gr s, V,(E)) and 'y% € CL . (K,,Q,(1))

Y

of yp and 5 respectively, there exists a unique £ € Cg, 4 (Ko, Vp(E)) such that res, (v§) = i (voﬁv)fd(sg
where ¢ is the differential in C2, (K, V,(E)) () is unique since H(K,, V,(E)) = 0, by [Sil86, page 118|
In the same way, for every v ¢ S3”, there exists a unique v, € H' (US(V,(E))) s.t. i () = resy(vp
For v|p (resp. v t p) this follows from H(K,,V,(E)~) = 0 (resp. U, (V,(E)) := 0) and Lemma (1.2
In particular, for every representative 79 € U,5(V,,(E)) of ,, we can find a unique ¢) € C%  (K,,V,(E))
such that res,(y%) = i (7)) — 6(¢%). Recalling the definition of the differential in the Selmer complex

C3(Gk.s,Vy(E)),

)
)
)
)

(P.BY" i= (12, (4% uesr + (g (ues, ) € TG 5. Vo)
is a 1-cocycle. Furthermore it is easily seen that a different choice vh = 4% + §(9p), 7115 = 7105 + ()
and 7} = 70 + 8(d,) of representatives leads to the 1-cocycle (P, P)! = (P, P)° + dé; (9p, (9¥,),0). We can
then define in (40) iE(P, P) as the image in cohomology of (P, P)°.

LEMMA 4.1. Let zTE : EN(K) ®Q, — ]?I}(K,VP(E)) be the map induced by (40). Then ZE is injective
and is an isomorphism provided that II(E/K)pe is finite.

PROOF. This follows easily from the exact sequences (29) and (6). O
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4.2. Definition of (, )IN(e;f Consider the following composition:

o+ EV(K) 5 A} V,(B)) 2 BH(K, T(P))]],
where ip is defined in Proposition (3.1). Given z = [s/w] € #/Rp[w], we write @ - ( mod 1) € Q, for
the image of s mod @w € Rp/w under the isomorphism Rp/w = Q, (cfr. Sec. (2.1)). Define the p-adic
weight pairing

(—)ip  ENE) x BN(K) — @,

by the formula:

log, (1) ™"+ (@,9)xy = @ (65(x) Uor dp(y) mod 1),
for every x,y € ET(K). The multiplicative factor log,(7y) serves the purpose of removing the dependence

of (—, —>1;I<81; on the choice of a topological generator v € I'. We use the same notation for the extension of

(= =)y to BTN (K) @ Q.

PROPOSITION 4.2. a) (x,x)IN(e; =0 for every x € ET(K). b) Suppose that UL(E/K)y is finite. Then
<7,7>1;I<C7; is non-degenerate (on ET(K) ® Qp) if and only if H}(K,T(P)) = 0 and HJ%(K,T(P)) is a
semi-simple Rz-module.

PROOF. a) Follows from the corresponding property of Uor (Theorem (3.2)). b) Write for simplicity
N := H]%(K yT(P))rys—Tor- By the structure theorem for finite modules over discrete valuation rings, we
have an isomorphism of Rz-modules N 5 @;":0 Ry /(w)%, for integers 1 < ey < --- < e,. Since Ucr is
non-degenerate by Theorem (3.2), it follows easily that the right (or left) kernel of the restriction Ug, of
Ucr to N[w] x N[w] is w - N N N[w]. In particular U, is non-degenerate if and only if e; = 0 for every

ej > 1, ie. if and only if N is semi-simple over R5. The claim in b) follows combining this observation,
Lemma (4.1) and Proposition (3.1). O

4.3. Behaviour under Galois conjugation. We assume in this Section that K/Q is Galois. The
notations are those introduced in Sec. (3.5).

Let S‘;»p # 0 and write p := p,, 0 = Tjp, Pj = Pp oaj_l and K; = p;j(K) (= K;). As K/Q is
Galois, this implies that S;p = {v|p} and K, = K ®g Q, = K, under the Q,-linear map which sends
r® 1 to (pj(z));. We consider on K, the Gal(K/Q)-action coming from the diagonal action on Kj,. As
Gx\Gq/p*(Gq,) represents all the prime v|p, we have, for every j, gl oy = uj < 0g(j) - P*(G;), where
u; € Gk and g; € Gg,. This ‘decomposition’ is unique if we require (as we do) that g, belongs to a fixed
set of representatives of Gal(K;/Q,). Then g(y) = (¢(y);), with

9W); =75 (93)
We write a;(g) = oy, (resp., a;(g) = 1) if Xun(g;) = —1 (resp., Xun(g) = +1), where Xun : Gg, — {£1} is
the quadratic unramified character. Then the formula
(P, ()7 := (9(P). (9(u);"""))
defines an action of Gal(K/Q) on ET(K). The twist in the Galois action is forced by the fact that ®raye

is not defined over Q, when a, = —1. If S7” = 0, then E'(K) = E(K) and we consider the natural
Gal(K/Q)-action on Ef(K).

LEMMA 4.3. Z‘E(xg) = ig(aj)g for every x € EY(K) and g € Gal(K/Q).

PrOOF. When S3” = 0, we have an isomorphism of Q,[Gal(K/Q)]-modules ¢ : fI}(K,V;,(E)) =
Selg, (E; K) (cfr. (29)). Then z}; is the composition of ¢:~* with the Kummer map E(K) — Selg, (E; k),
which is Gal(K/Q)-equivariant. Assume now 53" = {v|p}.

In general, given (7;) € @; Coone (K, Vp(E£)T) (and with the notations of Sec. (3.5)), the map Ad*(g)
sends z4(;y (on the g(j)-component) to Ad(gj_l)(xg(j)) € C . (K;,V,(E)T) (on the j-component), for

cont
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any j (see [Nek06, §(8.1.7.3)]). Let z = (P, (y;)) and write = := (v, (7}),€) € 5}(GK)S,VP(E)) for a

representative of ZTE(I‘) (here 7 := ng and we use the notations following (40) in Sec. (4.1)). We recall

that, once we have fixed 7% and (fyjo-)7 € is uniquely determined by the requirement that x( is a cocycle.
Assume first that oy, = +1, so that V,(E)" = Q,(1) as Gg,-modules. By the definition of il, and the

fact that, in cohomology, vy,(+) = Ad(h)(«) for the (local and global) Kummer maps, we see that ig(xg )
is represented by

(41) 2§ = (Ad(9)(vp), Ad™ (9)(vy,), %),
for an €9 = (¢f)ves; € D,es, CO i (Ky, V,(E)). Since z§ is a cocycle, we must have
8(e?) = i%, o Ad" (9)((7})) — ress, o Ad(9)(7p)
= F(g) (iféf (7§) — ress, (7%)) +mg 0 5(7p) + 8 omy(7p)
— 5 (F(g)(e) +my(+)) .

As remarked above, this implies that 9 = F(g)(¢) 4+ my(7%), so ih(29) = [28] = [Ads(g)(x0)] = i} (x)?.
Suppose now that o, = —1. Then V,(E)" = Qp(1) ® Xun € Q,[Go,1Mod, so

)
)

9" (W%m)) = Xun(9;) @5 wew)) T 7(g(y)?j(g)) € HI(K5. Q1)

In other words, we can take again (41) as a representative of i}r;(xg ), and the above argument works. O

As a corollary we obtain the following

PROPOSITION 4.4. <:L‘g,y9>11\?j; = <x,y)IN(e§ for every z,y € EV(K) and g € Gal(K/Q).

PROOF. By the definition of ( , )1;291;, formula (38) and the preceding Lemma, it is sufficient to note
that ip : PNI}(K, Vp(E)) — I:TJ%(K,T(P)) is Galois equivariant. This follows from the definition of ip (in
the proof of Prop. (3.1)) and the functoriality of Ad(g), Ad*(g), F(g) and m, (cfr. formula (37)). O

4.4. Height computations in the exceptional case. We assume in this section that S3” # 0, i.e.
that E/K, has split multiplicative reduction at a prime v dividing p. We also fix such a prime v|p.
We identify as usual Rz/w = Q (cfr. Sec. (2.1)). For every p € Rz, write p(0) = p mod w € Q, and
dp/dw = (@™ - (p — p(0))) mod @ € Q. Let us define the morphism
d
X% = (¢r mod @) - - (¥ - ¢r) € Home, (Gg,,Qp) .

The additivity of x%! follows by: ¢% mod w = 1 (since ¢r(Fr(p)) = U, and U, mod w = o, = £1) and
U(g) mod w = 1. We have the following

THEOREM 4.5. For every (P, P) € EV(K) and v € S%, we have

(a0 (P.P)). " = —log,(3) - B (recy(Nic, g, (P))

where P, is the v-component of P and rec, : Qp — G?Ql; is the reciprocity map.

Before beginning the proof, we give two corollaries. For the first, write log,, : G (Qp) — Ga(Q,) for
the branch of the p-adic logarithm which vanishes at qr € pZ,.

COROLLARY 4.6. For every (P, P) € E1(K) and v € S we have

<qu, (P, 13)>j:: = % - log,,. (NKU/QP(E)) -

In particular (g, qw>1]\l(eg =0 for every v,w € S}’.
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PRrROOF. Let ord, : K — Z be the normalized valuation Eittached to the prime v and let O, be the
ring of integers in K,. Put Q := ord,(qg) - P, @;‘; = qgord“(P”)é?rd“(qE) € OF and éfv = porde(ae) go,
every v # w € S}’ Then ord,(¢r) - (P, P) = (Q,Q") + ord,(P,) - g, € ET(K). As (qv,q,,)IN{‘fl; = 0 (Prop.
(4.2)) we have

~ \ Nek ~. Nek
(42) ordy (q5) - (00 (P.P)) = (4 (@Q")) .

K,p K.p

Writing u, := Nk, jq, (Q%) € Zj, it follows from Prop. (1.1) that rec, (uy) = (1,u,) € Gg, X Ly, where we
identify G&b = G@" X Z,, under the p-adic cyclotomic character x., on the “second component”. In particular
we have ¢r(recy(u,)) =1 and ¥(recy(uy)) = < (ko ch(recp(uv)))71/2> = (k(up) ") (k- Zy — T is the
projection on principal units). We then obtain from the preceding theorem
(43) (00, (@.@) " = 1o, ()~ () 2)) = 5 - o, (w).

K.p dw 2 P

The second equality follows from the fact: dp/dw = log,(p)/log,(7) for every o € I'. (This can be easily
log, (=)
log,,(7)
z — ~*.) Combining (42) with (43) we see that 2 - (g, P)IN(e;f equals

proved noting that £, (—) := gives an isomorphism of I' to the additive group Z,, with inverse

~ dq) ﬁv ~ d N /Qp Pv
IOgP(NKv/Qp(P'U)) - (W : [K'u : QP] ' logp(QE) = 1ng(NKU/Qp(Pv)) — or pE)r;;(/qQ;)( ))

as was to be shown. O

: logp (QE) )

~ \ Nek ~ % ~
It follows that <qv7 (P, P)> does not depend on the choice of P € (KZ’)) such that ®pg.(P) =

K,p

~ \ Nek
(pu(P)). We then write simply (g,, P)I;I{e; for <qv, (P, P)>K from now on.
’ P

As another interesting corollary of Prop. (4.5) we can recognize from (g,, qﬁ%fp = 0 the well-known
formula of Greenberg-Stevens [GS93], relating the derivative of the Hecke operator U, to the L-invariant
of E/Q,, defined by

log,,(qr)
L= —2 L
ord,(qp)

COROLLARY 4.7. =20y, - a,,(2) = Zg.

PRrOOF. Let v € S7". Write n, := [K,, : Q)] and ¢ = p" -u, with u € Z;. We have rec,(Nx, /g, (qr)) =

(Fr(p)™" ", u") € Gy x Zy, where Fr(p) is an arithmetic Frobenius in Gg". As ¢r(Fr(p)) = U, and

Up(0) = o, we obtain (as in the preceding proof)
Nek —n- d —n. _
(44) 0= (g @iy = 0™+ = (U7 (nlw) ™))
Since log, () - ‘Zﬁg’ = a,,(2) (as follows easily looking at the power series expansion of y*=2 —1), a simple
calculation using the ‘product formula’ for the derivative in (44) concludes the proof. O

We now begin the proof of Th. (4.5). Write

d(v-
Xt = Rese, o, (8 = Y000 ¢ omy, (64,0,)
(noting that ¢ mod w =1 on G,, since E/K, is split multiplicative). Recalling the exact sequence (29),
let Q, € H}(K,V,(E)) be the image under ¢ of (0,...,1,...,0) € @vesjp Qp (with 1 as v-component). The
following Lemma reduces the computation to local class field theory. The notations are those introduced
in Sec. (4.2).
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LEMMA 4.8. For every Py = [(P,Pt,ep)] € }NI}(K, Vo(E)) we have

@ - (ip(Qu) Uor ip(Pr) mod 1) = —([P],xy") k. -

where [P,f] € H(K,,Q,(1)) is the cohomology class of the v-component of P* € @, CL (K., V,(E)T).

vlp
PROOF. Write T := ip(Q,) and § := ip(Py). To avoid heavy notations, we fix in this proof a splitting of
Qp-modules (resp. Rp-modules) V,,(E), = V,(E)T @V, (E)”™ = Q; (tesp. T(P), = T(P)*®T(P)~ = RZ)
in (9) (resp., (23)). We then identify V,(E), (resp., T(P),) with Q2 (resp., R%L with G,-action given by
the matrix
Xey *2 Xey * vt ¢]_%1 *

(45) (resp. ).
0 1 0 V- op

Write ‘mod @’ for the compositions T(P)" — (T(P)"),_, = V,(E)' (t € {0,+,—}), defined in (20)
and (24). We assume that the splittings are compatible under ‘mod w’ (this amounts to requiring that

(0,1) € T(P), specializes to (0,1) € V,(E), under ‘mod w’).
By construction

(46) Qy = [(07*27 (07 1))] € ﬁ}(Ka VP(E))v

where x2 : G, — Q,(1) = V,(E)* is as in (45) and (0,1) € V,(E),. Let x¥' € CL,.(K,,T(P)) be the
1-cochain defined by
Xo'(9) = (0,@™" - (1= ¥(g) - dr(g)) € T(P)o.

Note that p; (Y** mod @) = —x¥* for the projection p, : CL (K., V,(E)) — CL (K., Q) in (9). We
easily obtain

(47) T =ip(Q,) = [0,2,X""] € H}(K,T(P)),

(K, T(P)") is a 2-cocycle which will be not involved in the computations below. Indeed
5; (5), where x € C}(G}gs,T(’P)) is

any 1-cochain which lifts a representative of Q, under 5}(GK75, T(P)) — 5‘}(GK7S, Vp(E)) (see (27)). By
(46) we can take T := (0, x, (0,1)), where (0,1) € C% . (K,,T(P)) and * in (45) is considered as a 1-cochain

on G, with values in the ‘first component’ T'(P)* of T'(P),. Then the first component of dgs. () is zero,
7
while (using (45) and the definition of the differential dz.) the third is the 1-cochain
7

where ? € C?

cont

ip(Q,) is represented by a 2-cocycle | € 5’%(GK,5,T(P)) st.w-l=d

Gp 3 g i (%)(g9) —6((0,1)) (9) = (x(9),0) = (x(9), ¥(9) - dr(9)) + (0, 1).

Putting everything together we obtain (47).
Write § = (P, P*,2p) € C}(Gk,s, T(P)) for alift of the 1-cocycle (P, P*,ep) € C}(Gk.s, Vp(E)). To
prove the Lemma it is sufficient to prove the formula

(48) w- (TUery mod 1) Z inv, (Qp) ([(%g’t Uy i) (]Sj')) mod wD

(invy(Qp) is as in Sec. (0.4)). Indeed, using our normalization (22) for m, (%ﬁt Uxr zj‘(}gj‘)) mod w is
equal to (X¥* mod w) Uw i} (P,7). By the definitions of inv,(Q,), ¢, and formula (11), we can then
rewrite (48) as

@ (TUcry mod 1) =invg, ([xs* UPS]) =— <[Pj]7X;“t>K )

The last equality can be proved easily using the ‘transposition operators’ defined in [Nek06, Sec. (3.4.5.3)],
or Kummer theory (see for example formula (11.3.5.2) in [Nek06]). It then remains to prove (48). For this
we simply retrace the constructions of section (3.4).
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~ N2 _ _\2
a) We have to choose 2-cocycles &' € (C’; (T(P)) ®r, Rg) and §' € (C’; (T(P)) ®r, Rg) which
lift (a representative of) & and g respectively in the exact sequence (34). By the definitions we can take
(writing for simplicity again * for a representative of the class %)

/!

7 =@zew '); ¥=(@yow ).

b) Recalling the quasi-isomorphism v J Rif QRrx Rif — R75, we have

(49) ((id@vg,)osn) (@ 0y)=(Zey EFoy) 0w ') e ((5;(T(7>)) Orp 5;(T(7D))) ®R$R75)4.

¢) We have to compute the image of (49) under the morphism U, , ® id. We take r = 0, the represen-
tative in (47) for Z, and y as above. By formula (160) we obtain the 4-cocycle

(50) (0.7 Urin), (0, (R Ui (P)) 2w t)) € (Ken, Bp)',
where !l € C2 (K,,T(P)") is the second component of the representative of ¥ determined by ¥.
d) We have to apply the isomorphism (35), followed by %2/Rz[w| = Q, to the cohomology class of
(50). Write
A= (0 F Ui () Vo= (0.0 e i (B)).
It follows immediately by the definitions (and the fact that U, o (i;f ® i) is the zero map) that X and Y
satisfy the hypothesis of Lemma (4.9) below. We then obtain

@ (T Ucr Y mod 1) = invg, (Qp) ([ mod w]) := inv, (Qp) ({(th Ur iy (P+)) mod wD .
We have proved (48) and with it the Lemma. O
€

LEMMA 4.9. Let X € K* and Y € K3 be cochains such that dic(Y) = w - X, so that [X,Y @ w}]
HY(K @Ry Rp)[w]. Writing Is, : H*(K @Ry R5)[w] = Q, for the composition of the isomorphism (35)
with #/Rz|w] = Q,, we have

Is, ([X,Y @ = Y) = invg, (Qy) ([Y mod =]).

PROOF. Since d(X) = 0 and H*(K) = 0, we have X = di(7) for a 3-cochain 7 € K3. By the
definition of the differential in K ®g_ Rp, it follows that [X,Y ® w '] = [0,(¥ —w-T) ® w ']. By
construction, the image of this element under the isomorphism (35) is given by invg (Rp) (¥ —w 7)) -

@' € Z/Rp|w]. Tt follows that
Is, (1X,9 & w1)) = invg, (Rp) ([Y — @ - T]) mod @ = inug, (@y) ([ mod )
(the last equality from (30)). O

We can now prove Th. (4.5).

~

PROOF OF THEOREM (4.5). By Remark (1.3) v,, = 9,(1) € H(K,,Q,(1)). Identifying V,(E), =
Q,(1) @ Q, (as Qp-modules) as in the proof of Lemma (4.8), and using directly the construction of the
connecting homomorphism 8,, we see that ~,, is represented by the 1-cocycle %o € CL  (K,,Q,(1))
(corresponding to the choice of the lift (0,1) € CO (K, V,(E)) of 1 € HY(K,,V,(E)™)). Recalling the
definitions of 22 and @, we obtain

il (q0) = [(0,%2,(0,1))] = Q, € HHEK, V,(E)).

Lemma (4.8) gives

(51) (1) =w- (qu(qv) Ucr ¢p(P, P) mod 1) = - <7§U,X§f’t>K = - <’Y§v,ReSKU/@,, (X%t)>K ;
where ¢p = ip o i} & (cfr. Sec. (4.2)). Using the compatibility of Tate local duality under restriction and

corestriction in (finite) field extentions and the identity Corg, /g, (75 ) = *yN ) (i.e. the image of
v Ky /Qp
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Nk, /0, (ﬁv) ® 1 under the Kummer isomorphism ~,7 : QZ@QP = HY(Qp,Qp(1))), it follows from (51) and
Prop. (1.1) that

(1) = —x¥' (fecp (NK,U/QP(JBU)» .
We finish the proof multiplying this equation by log, (7). O

5. The regulator term

In this section we introduce the p-adic requlator which appears in the ‘right hand side’ of the p-adic
Birch and Swinnerton-Dyer conjecture of Section (11.8) below. More precisely: given a quadratic character
X, Conj. (6.1) expresses the leading term of Lgen( foos X, k) as the product of arithmetics invariants attached
to EX/Q and the p-adic regulator. We now briefly motivate the definitions below, assuming for simplicity
that x = xtiv is the trivial character.

We consider the two-variable Mazur-Kitagawa p-adic L-function L, (fs, k, s). When egen<XtI‘iV) =0, we
have LE™(foo, k) := Lp(foo, k, k/2). Moreover, assuming the finiteness of III(E/Q), the parity conjecture
proved in [Nek06, Section 12] tells us that ET(Q) ® Q, has even Q,-dimension. In this case we expect
(—, —>gz( to be non-degenerate (cfr. Prop. 4.2). Moreover, the results of [BDO07] (cfr. Sec. (7.1)) and the
analogy with Iwasawa theory (discussed at the end of the introduction) lead us to define the regulator as
the determinant of (—, —%2(.

Assume now egen(Xtriv) = 1. In this case we know that L,(feo,k,k/2) = 0. Assuming again the
finiteness of III(F/Q), the parity conjecture and Prop. 4.2 imply that (—, —%2( is degenerate. We then
consider L& ( foo, k), obtained by differentiating L, (fw, k, s) with respect to the cyclotomic variable s, and
restricting the resulting function to the central critical line s = k/2. In light of the conjectures formulated
in [MTT86|, we expect that both the p-adic weight pairing and the p-adic cyclotomic height play a role in
the computation of the leading term of L&*"(fu,k) at k = 2. This leads us to introduce a sort of ‘derived
regulator’ (cfr. [BD95]), with the p-adic cyclotomic height as ‘derived height’ on the radical of (—, —)N°¥

Qp-
(For more details and further motivation, see Sec. (5.4), Rem. (6.2.2) and Th. (7.3) below.)

5.1. The p-adic cyclotomic height pairing. We now very briefly recall some construction from
[MTTS86], needed in the definition of the regulator below. In Ch. II, Sec. 4 of loc. cit., the analytic
A-height

MTT
(= 7>K,)\ : BE(K) ® Qp x E(K) RQp — Qp
is associated to any continuous morphism A : K*\A% /], tp U, — Qp, where A} is the group of idéles of K,
U, is the group of units of K, if v is finite, and U, = K if v|oo. We fix A := Ag such that its v-component

for v|p is given by A, := log, oNg, /q,, and we write (—, —)%ET = (-, —>%T)\f It is a symmetric bilinear
form.
If E/K, has split multiplicative reduction at some prime v|p, we extend the definition of (—, 7>%TT

to ET(K) ® Q, as follows, following [MTT86]. With the notations of Sec. (4.1), write Eo(K) C E(K) for
the finite index subgroup consisting of points P such that of p,(P) € ®74(Of, ), for every v € S’;p . Let

E}(K) c ET(K) be the inverse image of Eo(K) under the natural projection Ef(K) — E(K). In order to
lift the A-height to a bilinear form

(52) (— iyt ENK)®Q, x BN K)®Q, — Q,

it is sufficient to define (—, —)%riT on Eg (K). Consider the short exact sequence

0— A, —>ES(K) — Ey(K) — 0,

where A, := @uesj” q%. Define Ey(K) — ES(K) sending P to (P, (y})) € ES(K), where y := y*(P) is the
unique lift in O} of p,(P) under @744 (recalling that gg € pZ,). This map defines a splitting of the exact
sequence above, and we obtain Eg (K) = A, & Eo(K). We finally define (52) to be the unique Q,-bilinear,
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symmetric extension of (—, —>1\K/I£T which satisfies the following conditions. Given P = (P, (y})) € E}(K)

and qu, gw € Ap (v # w),
MTT * MTT MTT
(s P)ic,, =10g, (Nk,/0, Wy (P); (v, @)k, =10g,(Nk,/0,(ar)); (¢, quw)i, =0.

If K/Qis Galois, (—, 7>%£T is Gal(K /Q)-equivariant: (z7, y”)%TT = (x, y)%TT for every z,y € ET(K)®@Q,
and o € Gal(K/Q). We refer the reader to [MTT86, Ch. II] for more details.

5.2. The regulator. Let El (K) C ET(K) ® Z, be the (left=right) radical of
(— )iy ENE)® 2, x BN K) ® Z, — Q.

Write 7oo := rankz El (K), 7 :=rankzET(K) and t =7 — Fo. Let (P, ..., Pr_) be a Z,-basis of El (K)
modulo torsion. We note that the quotient ET(K) ® Z,/El (K) is a free Z,-module (since El (K) is
p-adically saturated in ET(K)®Z,). We can then complete (Pj)’;zl to a Zy-basis (P1, ..., Pr_,Q1,...,Q1)
of ET(K) ® Z, modulo torsion. We define ‘partial regulators’

(53) Rz, = det (P PYST) s RS = det ((Qi @)% ) -

These are well defined elements of the multiplicative monoid Q,/Zy. Finally, any Z-basis (T1,...,T5)
of ET(K)/tors gives rise to a Z,-basis of ET(K) ® Z, modulo torsion. Take M € GL#(Z,) which sends
(Th,...,T7) to (Py,...,Q:) and define the p-adic regulator of E/K

Rip(E) = Rip = det(M) % R, - RE .

This definition is independent on the choices made above, and is therefore a well defined element of Q.

5.3. Regulators over quadratic fields. We assume for the rest of this section that K/Q is either
Q or a quadratic field which is unramified at p. Given a Z,[Gal(K/Q)]-module M, let M* be the +-
eigenspace for the action of Gal(K/Q), so that M = MT @& M~ since p # 2. (Clearly M = M* when
K=Q)

Since (—, —)Kfﬁ is Gal(K/Q)-equivariant (Prop. (4.4)), (z™*, x‘ﬁfl; = 0 for every 2% € (ET(K)®Z,)*.
In particular, letting w € {+}, El (K)* C (ET(K) ® Z,)" is the radical of the pairing

(= =) (BN (K) © Z,)" x (BNK) ® Z,)" — Qp

induced by restricting (—, 7>1;I<elg to the w-eigensapce. Writing 7% := rankZpElo(K ), take a Z,-basis
(P{")1<j<ie of EI (K)" /tors, and complete it to a Zj,-basis (P}, Q1); ; of (ET(K)®Z,)" modulo torsion,
with 1 < j <7% — 7% and 7 := rankz Ef(K)®. Then (P}, P ,QF,Qy )ijst is a Zy-basis of EY(K) ®Z,
modulo torsion, which can be used to compute the partial regulators (53). Using again the Gal(K/Q)-

o Nek MTT .
equivariance of (—, —) Kep and ( Vi » » we have the factorization in Q,/Z;,

y
o __ oo+ 00, —, Nek _ pNek,+ Nek,—
K,p _RK,p .RKm ’ 7Q’I{,p _RK,p 'RK,p )
where

Ry, = det (< P, P]w>MTT>

. Nek,w ,_ Nek
il R .-det(( }“7Q§“>K’p>.

As above, take any Z-basis (T}") of ET(K)" modulo torsion, and let M,, € GL(Z,) be a matrix which
sends (I) to (P, Q¥). Defining RY  := det(M,) "2 R - Ry‘w" € Q,, we obtain

~ ot -
Rip=Rip Rip

with = denoting equality (in Q,) up to some power of 2.
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5.4. Non-vanishing conjectures. Let K/Q be as in the preceding section and let w € {£}. Writing
again (—, 7>1[\I(81;’w for the restriction of (—, 7)1;261; to (E1(K) ® Q,)", we have the following more precise

version of Prop (4.2).

PROPOSITION 5.1. Assume that the p-primary part of III(E/K)™ is finite. Then (—, —)IN(?;’W is non-
degenerate if and only if ﬁ}(K,T(’P))“’ =0 and ﬁ?(K,T(P))“’ is semi-simple.

PROOF. Since ip and ‘mod w’ are morphisms of Gal(K/Q)-modules, we obtain from Prop. (3.1) the
exact sequence

0 — HNK,T(P))" /w — H}EK,Vy(E))" — H}(K,T(P))"[w] — 0.

Write for simplicity N := I?J%(K,T(P))Rf_nr. Since Uer is Gal(K/Q)-equivariant (see Section (3.5)),
N" is orthogonal to N~=% under Ucp. By Th. (3.2), the restriction of Uor to N is non-degenerate. The
argument used in the proof of Prop. (4.2) tells us that the restriction of Ugr o (ip X ip) to I;T} (K, V,(E))v
is non-degenerate if and only if Ef}(K,T(P))w = 0 and ﬁ?(K,T(P))w is semi-simple. Now, if the p-

primary part of III(E/K)"™ is finite, z}r; induces an isomorphism (ET(K) ® Qp)w = fl} (K,V,(E))™ and we
conclude. g

As suggested by the low-rank cases discussed in Sec. (5.5) below, we expect that JA'{TJ%(K, T(P))" is al-
ways semi-simple. Assuming this, the behaviour of (—, —>?§;’w is ‘determined’ by the module H } (K, T(P)*
(which represents the analogue in this context of the module of universal norms in Iwasawa theory). We
know that this is a free Rz-module. Its rank is predicted by the following conjecture. With the notations
of Sec. (2.2), write egen(+) 1= €gen. If K is quadratic and e is the associated quadratic character, we
write egen(—) = €gen(€K)-

CONJECTURE 5.2. rankp_ HHK,T(P))" = egen(w) = 7.

REMARK 5.3. Conj. (5.2) is intimately connected with Greenberg conjecture, predicting L& (fs, X, k) #
0. More precisely, in [NPOO] it is proved (for K = Q) that Greenberg conjecture implies the equality
rankafI}(K,T(P))“’ = egen(w). Assuming this and the finiteness of III(E/K), the second equality of
Conj. (5.2) is equivalent to the semi-simplicity of ?I?(K, T(P))* (by Prop. (5.1)).

We note that the parity conjecture predicts egen(w) L 7 mod 2 (7% := rankz ET(K)™). In particular
we expect that R = R}N{?lg’w is the determinant of (—, —>11\I§;’w when ET(K)Y has even rank. When
ET(K)" has odd rank the above conjecture predicts that El (K)"/tors is generated by a vector PV €
(ET(K) ® Z,)™. (We note that, assuming the parity conjecture, 7 is odd and (—, —>?§;’w is degenerate,
since it is alternating.) In this case we have

w - w w\MTT Nek,w
K,p_<P , P >K 'RK,p

P ’

with = denoting equality up to a p-adic unit. Finally, guided by Conj. (5.2), the conjectural non-degeneracy
of (—,—)%;T and the analogy with the Galois case considered in [BD96], [MTT86], we propose the
following non-vanishing conjecture.

CONJECTURE 5.4. R, # 0 for any w € {£}. In particular: Ry p # 0.

5.5. Examples of low-rank. Assume that K is as in the preceding sections. If K is quadratic, let
X € {l,ex} and write Ry, = R}‘é(’;f), where w(l) := + and w(ex) := —. In a similar way, we write
Nek,x . Nek, -~ o o Nek,x . Nek
(—, —>'Kfp == )k wid K._ Q,.we put x = 1, R, == RQp and (—, =) 37 = (=, =)o, We
now give some ‘low-rank’ examples in which we can compute explicitly these regulators.
We say that (E, x) is exceptional if the following conditions are satisfied:

1. E/Q, has multiplicative reduction;
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2. x(p) = ap.

In the exceptional case, we can define a ‘Tate period’ ¢, € ET(K )X as follows. Note that E/K, has
split multiplicative reduction at every prime v|p (since p is unramified in K). First of all: if K = Q, then
x = 1 and we write ¢, = qg := (0,qr) € ET(Q). Assume now K/Q quadratic. If p is inert in K, write again
qr = (0,qp) € ET(K). If psplits in K, let ¢} := (0, (¢m, qr)) € EY(K)* and q5, := (0, (¢m, q5")) € ET(K)~.

Define
af i ex(p)=1, x=1;

=9 qg if ex(@) =1, x=ex;

dE if EK(p) =—1.
LEMMA 5.5. If (E,x) is exceptional, ¢, € ET(K)X and rankz ET(K)X = rankz E(K)X + 1.
PROOF. Follows by the definition of the Galois action on ET(K) in Section (4.3). O

The even case. The computations of Sec. (4.4) allow us to write explicitly the regulator when (E, x)
is exceptional and E(K)X has rank one. This is a significant case, in light of the results of [BDO7]| (see
Sec. (7.1) or the Introduction). Write

_ ':1>*1tc _x log,  __
logp : E(Q,) =4 Q, — Q,
for the formal group logarithm on E/Q,. Identifying E(Q) C E(Q,) under the embedding p, (of Sec.

(4.3)), we can consider the logarithm logy(P) of a global point P € E(Q).
PROPOSITION 5.6. Assume that (E, x) is exceptional and that rankz E(K)X = 1. Then
Ricp=c¢ log(Py)? € Q;,
where Py, is a generator of E(K)X/tors and ¢c:=1/4 if K = Q and 1 otherwise.

PROOF. We consider the case K/Q quadratic. The other case is similar and simpler. By the preced-
ing Lemma {q,, P, } is a basis of ET(K)X modulo torsion. Since {—, —>1I\I<el; is alternating, to prove that
(—, —>?§;’X is non degenerate, we have to prove (g, PX>1;I:;( £ 0.

Suppose first that p splits in K, so that a;, = 1. Take y, € Qj such that ®rac(yy) = pp(Py). I x =1

(resp., X = €x), (Py, (yx: Ux)) (resp., (Py, (Yx, yy ")) is in ET(K)X. It follows by Corollary (4.6) that

o 1
<qxa PX>I[\I(71; = 5 (long (yX) + long (y):i:l)) = long (yX) = logE(PX) 7é 0

(since P, has infinite order).
Assume now that p is inert in K. It follows again by Corollary (4.6) and the properties of the Tate
parametrisation that

Nek 1 o
(54) <(IE>PX>K,p =5 logg (Py + 0 PY),

where o is the non-trivial element in Gal(K/Q). Recalling that P, € E(K)X, our hypothesis x(p) = o,
implies that (54) is again logy(Py) # 0.

Since (—, 7>1;I(61;X is non-degenerate, EI_(K)X = 0. By the definition of R, we thus have
Nek
Nek 0 {ax PX>Ke,p
X _ pNekx _
R p=TRg, " =det o ,
— {0 Pk 0
concluding the proof. O

COROLLARY 5.7. Assume (E,X) exceptional and ords—1 L(fg,x,s) = 1. Then IT[}(KX,T(P))X =0 and
PNI?(KX,T(P))X is semi-simple.
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PRrOOF. Kolyvagin’s theorem [Kol90] (see also [Dar04, Ch. 10]), applied to EX/Q, implies that
rankz E(K)X = 1 and III(E/K)X is finite. Moreover, by the preceding proposition, ’R’I‘(p is non-zero. The
statement follows combining this with Prop. (5.1). O

The odd case. Turning to the odd case, assume that rankzET(K)X = 1. In this case (—,—)IN(eI;’X is

clearly the trivial map, and Ef (K)X = (ET(K)®Z,)X. By definition, R = R\ = (P, PQ%I)T? where
P, is a generator of ET(K)X modulo torsion. It is conjectured in [MTT86] that this is always non-zero.

When (F, x) is exceptional, we can take P, = ¢,. Writing ¢ = 2 (resp., ¢ = 1) if K is quadratic (resp.,

K = Q) we have
R, =c log,(qr) € Q;,
which is known to be non-zero by [BSDGP96].

Applications to Conj. (5.2) and (5.4). The computations above can be used to prove Conj. (5.2) and
(5.4) (at least) in some simple case. To give a quite general example, let us write rmin(x) := 1 (resp.,
rmin(X) = 0) if sign(E, x) = —1 (resp, sign(E, x) = 1). (We recall that sign(E, x) = x(—Ng) - sign(E, Q)
is the sign in the functional equation satisfied by L(fg, x,s).) We put rmin(Q) = rmin(1) and ryi (K) =
Tmin(1) + Tmin(€x ) if K/Q is quadratic.

Consider the following conditions:

I. (E,x) is exceptional and ords—1 L(fg, X, 1) = rmin(X);

IL L(fp,x,1) #0.
Given K/Q quadratic (resp., K = Q), we say that (E, K) is exceptional of low-rank if (E,x) satisfies I
or II for both x € {1,ex} (resp., x = 1). In this case, Kolyvagin theorem implies that III(E/K) is finite
and that ranky E(K)X = rpin(x) < 1. Combining the computations above with Prop. (5.1), we obtain the
following:

LEMMA 5.8. Conjectures (5.2) and (5.4) are true if (E, K) is exceptional of low-rank.
(We note that, if (F, K) is exceptional of low-rank, then
rankz BT (K) = Fin := "min + #S;p <4.)

6. A p-adic Birch and Swinnerton-Dyer conjecture

Guided by the p-adic Birch and Swinnerton-Dyer conjectures formulated in [MTT86] and [BD96|, we
propose a conjecture relating the leading term of Hida p-adic L-functions to the regulator defined above.
Evidence supporting it, coming from the main results of [BD07] and [GS93|, will be given in the next
section.

6.1. Definitions and notations. Given a quadratic Dirichlet character y of conductor coprime with

p, define
(I =x(p)a,M)? i x(p) # ap;
My(x) ==

n(x) -ordp(ge) ™ i x(p) = ap.
where n(x) =1 (resp., n(x) = 2) if egen(x) = 1 (resp., egen(Xx) = 0), and [ is defined in (17).

Let F'/Q be a number field. For every finite prime v of F, ¢, = ¢,(E/F) := [E(F,) : Eo(F,)] is the
local Tamagawa number of E/F, (|Sil86, Ch. VII|). Assuming the finiteness of III(E/F), we write

BSD(E, F) := #1I(E/F) - [ ev - (#E(F)ion) .

We recall that the definition of L, (fx, X, k, s) depends on the choice of complex periods y, := Qjciin(X) €
k
C*, satisfying the following property: the sign(x)-part of the modular symbol I # attached to f,fé [BDO7,
k

Sec. 1] takes values in Q- Q. For k = 2 we can choose 2 ‘explicitly’ as follows. Let QF, := fE(R) |wg| and
Qp = ffE(C) |we Aiwg| be the real and complex periods of E/Q. (We write wg for the Néron differential
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attached to a minimal Weierstrass equation for E/Q.) By the discussion in [MTT86, Ch. II], we can take

Q? such that:
E

+ ._ Ot + -
QfE = QF; QfE-QfE_z-QE.
We fix this choice for the rest of this note.

6.2. The conjecture. Let K/Q be either Q or a quadratic field of discriminant coprime with p- Ng.
We write M,(Q) := M,(1) and M,(K) = M,(1) - My(ex) if K is quadratic. The p-adic Birch and
Swinnerton-Dyer conjecture alluded to in the introduction can be formulated as follows.

CONJECTURE 6.1. Let Tgen(K) := rankz ET(K) — egen(K). Then ordg—o L& (foo /K, k) = Tgen(K) and
the following equality holds in Qj:

L5 (foo /K F)

(5) (kb —2)Teen(F) |, _,

— My(K) - BSD(E, K) - Ric »(E).
REMARKS 6.2. 1. Assume ege, (K) and rankz ET(K) = 0. Recalling our choice of complex periods, the
interpolation formula (17) reduces the conjecture to the classical Birch and Swinnerton-Dyer conjecture.
2. Assuming Tgen(K) = 0 and egen(K) > 0, Conj. (6.1) is a variant of the conjecture in [MTT86].

For example, let K = Q, so that L,(f, k, k/2) = 0 is identically zero. Looking at the Taylor expansion of
Ly(foo,k,k/2) at (k,s) = (2,1) (cfr. Th. (7.3)), we see that

en d
L5 (foo,2) = £Lp(foo,2,s)szl.

Since Ly(fso, 2, s) is the Mazur-Tate-Teitelbaum p-adic L-function attached to E/Q and the complex period
QJEC, we recover the conjecture in Ch. II, §11 of loc. cit..

3. Assume that K/Q is quadratic and x € {1,ex}. We note that, as both L*"(fo/K, k) and Ry
factorize into the product of their y-pats, Conj. (6.1) gives also a conjectural formula relating the leading
term of LE™ (foo, €k, k) to Ry -

4. When K/Q is a generic Galois extension (of discriminant coprime with p - Ng), the regulator R ,
is defined. We can define L£*"(fo /K, k) as the products of the L-functions L§*"(fx, X, k), for x running
through the characters of Gal(K/Q) (the constructions of [BDO07, Sec. 1] work also in this cae). It is
interesting to understand if the conjecture, as stated above, is a ‘good prediction’ in this generality.

5. In [BDO7] a two-variable p-adic L-function .%,(foo/K,k, s) is attached to a quadratic imaginary
field K/Q satisfying a suitable Heegner condition. (See in particular Rem. (3.6) of loc. cit., where
Zp(foo/ K, k,s) is denoted L,(fso/K,k,s).) This is a p-adic analytic function defined on U X Z,. Its
restriction to the central critical line s = k/2 is (essentially) L,(feo,k,k/2) - Lp(foo, €K, k, k/2), while its
restriction to the weight two line k = 2 is the anticyclotomic p-adic L-function attached to E/K in [BD96].

In this case, we can again define a regulator term R?&;, replacing in the constructions above the p-adic

cyclotomic height (—, —>1\I§§)T with its anticyclotomic counterpart [BD96]. By the results in [BD0O7], we

think that an analogue of Conj. (6.1) in term of Ry, and Z,(fo /K, k, s) should be valid.

6. When K is imaginary quadratic, the definition of the p-adic L-function .Z,(fo /K, k, s) alluded to in
the preceding remark relies on the construction, also given in [BDO7], of a ‘square-root’ p-adic L-function
Zy(foo/K, k). Tt is a p-adic analytic function on U, satisfying %, (foo/K, k)> = n(k) - Lp(foo, ks k/2) -
L,(foo, €K, k,k/2), where n(k) is analytic and n(2) € Q* (see Corollary 5.3 of loc. cit.). When K is
real quadratic (and satisfies suitable Heegner conditions), analogues of this construction are given by the
same authors in [BDO09], and by Shahabi in [Sha08]. Assume also that egen(K) = 0, so that Greenberg
conjecture predicts that Z,(fe/K, k) is not identically zero, and Conj. (5.2) predicts Rk, Z RIN(eI;

. Nek . . .
Moreover, since (—, —) % , 1s alternating, we see that Rll\l(ejl; is a square. In these cases, we can ‘refine’ the

above conjecture in terms of Z,(f/K, k) and a ‘square-root’ regulator. (See also Remarks (7.2.2) and

(7.7).)
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7. Results on Conjecture (6.1)

We now recall some result supporting Conj. (6.1). More precisely, thanks to the results of Bertolini
and Darmon [BDO07| and the exceptional zero formula proved by Greenberg and Stevens [GS93], we can
prove Conj. (6.1) in some exceptional case, at least up to a non-zero rational number.

Assume in this Section that E/Q, has multiplicative reduction.

7.1. The main result of [BDO07|. Let x be a primitive quadratic character of conductor coprime with
Ng. If x is non-trivial, we write as usual K = K, for the quadratic field attached to x and Ry, = Ry,
If x is trivial, put K = Q and R>I<(,p = Rq,p. Taking into account Prop. (5.6) (and its proof), we can
rephrase [BDO7, Th. 5.4|, as generalized in [Mok11, Sec. 6], in the following:

THEOREM 7.1. Assume that sign(E, x) = —1 and x(p) = a,,. Then

a) L (foo, Xo k) = Lp(foos X, k, k/2) vanishes to order at least 2 at k = 2;
b) there exists a global point Py, € (E(K)® Q) and a rational number t € Q* such that
P en Nek 2
(56) ST (for oz = £+ ({0 PROXE)
c) P, is of infinite order if and only if L'(E/Q, x,1) # 0. In this case, there is a rational number
€ Q* such that
d2

wl’;g;en(foo7 X k)k:2 = g : R>[((7p S Q;

REMARKS 7.2. 1. As explained in [BD07| and [Mok11], the point P, in the preceding Theorem is a
Heegner point, coming from an appropriate Shimura curve parametrization of F/Q. The first statement in
¢) is then a consequence of the work of Zhang, generalizing the classical Gross-Zagier formula.

2. We assume (for simplicity) in this remark x = 1, and we write P = P,.. We also use the notations of
Rem. (6.2.6). The proof of [BD0O7, Th. 5.4] uses the ‘square-root’ p-adic L-function .%,(f~ /K, k) attached
to an auxiliary complex quadratic field in which p is inert, and chosen in such a way that L,(feo,€x,2,1) €
Q*. Exploiting the ideas introduced in [BD98], the authors prove that the first derivative of .Z,(fs /K, k)
at k = 2 is equal to the formal group logarithm of P. We can then state the following ‘refined version’ of
(56):

d
Lo/ K k2 = (45, P)iy -
Furthermore (17) gives us the formula t=1 = 1(2) - L*(fg,ex, 1) € Q* for the scalar appearing in (56).

3. As conjectured in [Mok11, Sec. 6] (and proved in [BD07, Th. 5.4] under the assumptions considered
there), the scalars ¢ and t should satisfy the congruence:

(57) (=tZ L*(fg,v,1) mod (Q*)2,
where v is any quadratic Dirichlet character of conductor coprime with that of x and satisfying:

a) Y(=1) = x(—1) and 9 (I) = x(I) for every prime [|N = Ng/p;

b) ¥(p) = —x(»);

¢) L(fp,¥,1) #0.

4. Under the hypothesis of the preceding Theorem, assume x = 1 and L'(E/Q,1) # 1. In this case

rankzET(Q) = 2 and point ¢) of the Theorem shows that Conj. (6.1) holds up to a nonzero rational scalar.
Moreover, combining Conj. (6.1) with (57), we should have

L*(fg,1,1) - BSD(E,Q) = ¢, mod(Q")2.

Here v is the quadratic character attached to any real quadratic field K, such that: p is inert in Ky,
every prime !|N splits in Ky and ords—1L(E/Ky,s) = 1. This is consistent with the classical Birch and
Swinnerton-Dyer conjecture (for £/Q and E/K,), predicting

?

L*(fg,%,1) - BSD(E,Q) = BSD(E, Ky) = ¢, mod (Q*)?
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(the second congruence by the finiteness of III(E/K), following by Kolyvagin theorem).

7.2. The exceptional zero formula [GS93]. Assuming again that L,(f, X, k, s) has an exceptional
zero at (2,1), we now consider the case of even order of vanishing for L(fg,x,s) at s = 1. In this case
sign(feo, X) = —1 and we are in the situation considered (for y = 1) by Greenberg and Stevens. The
following is a variant of the main result of [GS93|, thanks to the generalizations of the constructions of
loc. cit. given in [BDOT].

THEOREM 7.3. Assume that sign(E, x) = +1 and x(p) = a,. Then
LE (foos x:2) = ZE - L™ (fE, X, 1)-

PROOF. The assumptions imply that sign(feo, x) = —sign(E, x) = —1, so that L,(foo, X, k, k/2) =0 is
identically zero for k € U (cfr. Sec. 2.2). In particular, the Taylor expansion of L,(fsx, X, k,s) at (2,1) is
of the form .

LP(fOCHXakaS) :C'(S_l)_ 5 ' (k_2)+()7
for ¢ € C, and (---) denoting higher order terms. It follows that
d
(58) L%en(fOO7X72) =c=-2 %Lp(fOO7X7k71)k:2~

By [BDO7, Remark 1.13|, Ly(foo, X, k,1) = (1 — x(p)oyp(k)™") - L¥(foo, X, k). Here the improved p-adic
L-function Ly(fs,X,k) is a p-adic analytic function on U, satisfying [BDO7, Prop. 1.3]

Moreover, as x(p) = ap = ap(2) = %1
_ d _ 1
(60) (1= x(p)op(k) ™ p=z = 0; %(1 — X(P)ap(k) Nr=2 = ap - a}(2) = —5%k,
the second relation by Cor. (4.7). The Theorem follows combining (58), (59) and (60). O

REMARK 7.4. Assume y = 1 and L(E/Q,1) # 0, so that Tgen, = rankzET(Q) — egen = 0. By the
definitions, the preceding Theorem gives

en * L(E/Q’ ]‘) *
L% (f0072):£'RQ7PGQp§ 0= Mp(l)'TEEQ )
which is consistent with Conj. (6.1), via the classical Birch and Swinnerton-Dyer conjecture.

7.3. Other applications to conjecture (6.1). Let K/Q be as in Sec. (6.2). We say that Conj. (6.1)
holds up to Q* if ordy—2 L (foo /K, k) = Tgen(K) and (55) holds up to a non-zero rational number.

We recall that, when K/Q is quadratic, both L& (fw /K, k) and R, admit factorizations into ‘-
parts’. Using this fact, and with the terminology introduced in Sec. (5.5), the results of the preceding
sections give the following:

THEOREM 7.5. Assume that (E, K) is exceptional of low-rank. Then Congjecture (6.1) holds up to Q*.

To give a significant example, let K be a quadratic field and assume that (E,p, K) satisfies:
1. p splits in K;
2. E/Q, has split multiplicative reduction;
3. sign(E,Q) =sign(F, ex) = —1.
In this case both L, (foo, X, k, 5) (x € {1, €x}) have an exceptional zero at (s, k) = (2, 1), so sign(fes, x) = L.
In particular egen(K) = 0 and
(61) L3 (foo/ K k) = Lyp(foor K, k/2) - Lp(foos €k, Ky Kk /2).

Moreover, both 1 and ek satisfy the hypothesis of Th. (7.1). Using the factorizations (61) and L(E/K,s) =
L(E/Q,s) - L(E/Q, ek, s), and noting that ords—1 L(E/Q, x,1) > 1 (by the assumptions above), we thus
obtain:
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A. OrdkszZg,en(foo/Kv k) Z 4’

B. there exist PT € F(Q) @ Q and P~ € (F(K) ® Q)7 and a scalar ¢t € Q* such that
Leen(fo /K, k) Nek Nek 2
p MW —t. T pt Aoz P
(k=2)* [, - (<qE’P >K’P (a5, P >K’P> ’
where ¢ are defined in Sec. (5.5).

C. P* and P~ are simultaneously of infinite order if and only if L”(F/K,1) # 0. In this case
Tgen(K) = rankz ET(K) = 4 and there is a scalar £ € Q* such that

L3 (foo / K k)
£ =(-R -
(k—2)* |, rr € G
(Recalling the factorization for Ry, (cfr. Sec. (5.3)), the last assertion in C. follows combining Th. (7.1)
with the computations of Sec. (5.5).)

REMARK 7.6. By Rem. (7.2), we expect ¢ < L*(fg, 1, 1) - L*(f&, 12, 1) mod (Q*)?, where 11 (resp.
th9) is the quadratic character attached to a real quadratic field K7 (resp., K3) in which p is inert, and every
prime p # [|Ng splits (resp., for every prime p # I|Ng, 2(l) = €x(l)). Assuming the classical Birch and
Swinnerton-Dyer conjecture (for E/Q and E/K;), we obtain (multiplying ¢ by the square of the ‘algebraic
part’ of L'(E/Q,1)):

(=t= BSD(E,K,)-BSD(E,Ky)=  [[ @ mod (Q)*
UN, ex()=—1

(with N = Ng/p). Recalling the definitions, this is in line with the prediction of Conj. (6.1).

REMARK 7.7. Assume that K is real quadratic, satisfying the (classical) Heegner hypothesis: every
prime {|Ng splits in K. Under these assumptions, in [Sha08] a square root p-adic L-function .Z,(foo/ K, k)

E—2
is constructed, satisfying (1) Zp(foo/K,k)?> = D2 - Ly(foo, k,k/2) - Ly(foos €,k k/2) (cfr. Remark
(6.2.6)). Assuming that E/Q has a prime of semistable reduction other than p, we can then rephrase
[Sha08, Th. B] in the following way. There is a scalar ¢ € Q* such that

d? Nek , _ —_\Nek
(63) Tl foo/ Ko k)km2 = a- (ah, PY) 00 (0. P7 ),
obtaining a more precise version of formula (62). (We remark that, once .2, (foo/K, k) satisfying (1) is

constructed, we obtain (63) from (62) taking ¢ := £2 - v/, since [BDO7, Th. 5.4] gives us t € (Q*)%.)
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Organizing modules for Hida families



8. Introduction

Let us fix the data (F, K,p), consisting of a number field K, a rational prime p > 5 and an elliptic
curve defined over Q with good ordinary reduction at p. Let /K be the maximal Z,-power extensions of
K. Given K C L C L C K, we write Z,(L) := Zp[[Gal(L/K)]] and I/, := ker (Z,(L) — Zy(L)). We write
L Zp(L) — Zy(L) for the involution induced by inversion on Gal(L/K), and for every Z,(L)-module {, 1"
denotes the Z,(L)-module obtained composing the original Z,(L)-action with ¢.

8.1. Galois deformations. For every integer n > 1 and every finite subextension L/K of K/K,
Kummer theory associates to (F, K, p) the p™-Selmer group

Selyn (L, E) :=ker |H' (L, Epr) — [[ H' (Lv, E)pr |

where v runs over the (finite) places of L. Let us write
Selpoc (L, E) = th Selpn (L, E’)7 Mp(L, E) = lln Selpn (L, E),
n>1 n>1

where the direct (resp., inverse) limit is taken with respect to the maps induced on Galois cohomology by

the inclusion E,n (Q) C Epnt1(Q) (resp., by multiplication by p: Epn+1(Q) — Epn(Q)). These groups fits
into short exact sequences

0— E(L)®Qp,/Z, — Selys (L, E) — II(E/L)pee — 0;
0 — E(L)®Z, — M,(L,E) — Ta, (II(E/L)) — 0,
where III(E/L) C H(L,E) is the Tate-Shafarevich group of everywhere locally trivial cocycle, and

Tay(x) = lim,>1%,~ is the Tate module of the Z,-module *. For an arbitrary tower of extensions
K C L C K we also write:
Selp (L, E) := lim  Selyee (Lo, E);  Sp(L, E) := Homes (Selp (L, E),Qp/Zy) ,
KCfLaCL
MP(L’E) = m MP(LOME)’
KCyL,CL

where L, /K runs over the finite subextension of L/K, and the direct (resp., inverse) limit is taken with
respect to the restriction (resp., corestriction) maps. Then Galois conjugation induces an action of the
Iwasawa algebra Z,(L) on Selp (L, E) and M,(L, E), and it is known that Selp (L, E) (resp., M,(L, E))
is indeed of cofinite (resp., finite) type over Z,(L), i.e. S,(L, E) is a finite Z,(L)-module. Here we consider
on Sy(L, E) the Z,(L)-modules structure defined by ¢*(x) := ¢(¢(\) - *) for every A € Z,(L) and every
¢ € S,(L,E).

The Cassels-Tate pairing defines, for every finite extension L/K a skew-symmetric bilinear form

(64) Sp(La E)tors ® Sp(La E)tors - Qp/er

Moreover, for every finite extension L/K the canonical p-adic height pairing introduced by Schneider,
Perrin-Riou et. al. defines a symmetric Z,-bilinear form:

(65) M,(L,E)® M,(L,E) — Gal(K/L) ® Q,

whose definition comes from a study of the Selmer group Selp (IC, E), or equivalently (via Shapiro’s lemma,
ctf. [Gre94b]) studying continuous Galois cohomology of the Galois deformation Ta,(E/q)[[Gal(K/L)]] of
the p-adic Tate module of E/q.

When S,(K, E) is (as expected) a torsion Z,(K)-module, we are also interested in the algebraic p-adic
L-function

L, (K, E) := charg, «) (S,(K, E)) € Z,(K)/Z,(K)",

where charz, (x)(f) denotes the characteristic ideal of the finite Z,(K)-module {. Since Z,(K) is regular,
this is a principal (non-zero) ideal which we identify, up to p-adic units with any of its generator. In some
cases we know that Ly (K, E) € I ., where r := rankz E(K) and that (up to p-adic units) its image in
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I K /I ITCJ;;( ® Q is given by the product of arithmetic invariants of E/K (e.g. Tamagawa factors and the
order of the Tate-Shafarevich group) and the discriminant of the pairing (65) for L = K (viewed as an
element of If. /I © Q).

In [MRO04|,[MRO02| the authors proposed that all these structures can be packaged in a single linear-
algebraic object, essentially a skew-Hermitian matrix with entries in Z,,(K). More precisely, let R = (R, mg)
be a commutative local ring equipped with an involution ¢ : R — R. They define a basic skew-Hermitian
R-module @ to be a finite, free R-module, equipped with a skew-Hermitian pairing

(_7 _)h : (I> ®R (I)L - mR7

which is non-degenerate in that the adjoint map h := adj ((—, —)x) : & — ®* := Homg (®*,R) is injective.
For every t-stable ideal I C R, they define the R/I-modules S(®,T) and M (®,I) by the exact sequence

(66) 0— M(@®,1) - daR/T™M & @R/T — S(®,1)— 0,

where hy := h ®g R/I. For every such an ideal, they also construct natural skew-Hermitian pairings
(67) co. 1 S(P, Iiors @ S(P, I)iors — Frac(R/I)/(R/I);

(68) hor: M(®,I)® M(®,1)" — /1%

where Frac(x) denotes the total ring of fractions of *, f.. : ker (f — T ®. Frac(x)) and ‘skew-Hermitian’
refers to the involutions induced on quotient modules by ¢. These pairings can be ‘naively’ described as
follows: let z,y € M(®,I) (resp., a, 5 € S(P, I)tors) be classes modulo I (resp., modulo Im(hy)) represented

by Z,y € ® (resp., @, 8 € * ®g R/I). Then, writing (—, —)p, := (—, —)» mod I we have:
o1 (@@ B) = (sa53) " (v 750, mod R/T; has(z @) i= (7,7), mod I € I/17,

where s, € R/I and v, € ® ® R/ are such that s, - x = hy(7.). See Section ?? for the details.

In loc. cit. the authors proposed that under fairly general conditions on (E, K, p) there exists a skew-
Hermitian Z,(K)-module ® = (®, k) which organizes the arithmetic of (E, K, p) in the following sense: for
every KCLCK

a) there exist natural isomorphisms of Z,(L)-modules
S((I),IK:/L) = SP(L,E), M((I),IK:/L) = Mp(L,E)
b) If L/K is finite the Z,-bilinear form:

L e 2~ id®pr,

M<(I)7I)C/L) ® M(‘I’J/C/L) - IIC/L/I}C/L = Gal(K/L) ®z, Zp(L) — Gal(K/L)
corresponds to the canonical height pairing (65) under the second isomorphisms in a). Here
pry : Zy(L) = Zp[Gal(L/K)] — Zy is defined by > cqair/r) Tg - 9 + @1 and the isomorphism
of Z,(L)-modules above is characterized by the property: 7 — 1 mod II2C/L — T ® 1 for every
7€ Gal(K/L).

¢) If L/K is finite, the Z,-bilinear pairing:

Co, I, id®pr,
S((I),IIC/L)tors ® S(@, IIC/L)tors — Frac(Z,(L))/Zy(L) = Qp/Zy Xz, Zp(L) — Qp/Zy

corresponds to the Cassels-Tate pairing (64) under the first isomorphisms in a).
In particular S, (K, E) is a torsion Z,(K)-module and fixing any Z,(K)-basis of ® we have

LZD(ICv E) = det (H¢) : ZP(’C)a

where Hg is the skew-Hermitian matrix describing h. We can easily deduce from this (cfr. [MRO04]) an
algebraic p-adic BSD formula describing the ‘leading coefficent’ of L, (K, E) in terms of the determinant of
the p-adic height pairing on M,(E, K) (as described above).

Using the work [Nek06], in [MRO05] the same authors proved that, under some additional assumptions
such an organizing module ® exists, and is unique up to (noncanonical) isomorphism. More precisely, the

complex ® := <<I> KR <I>*) concentrated in degrees 1 and 2 turns out to be essentially Nekovai’s Selmer
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complex RI 71w (K/K,T,) attached to the p-adic Tate module T}, := lim Eyn. For example, the existence of
an organizing module can be proved assuming the following Hypothesis on (E, K, p): for every finite prime
v of K, write k, for the residue field of the completion K,,.

H1l. K/Q is an abelian extension;

v

H2. for every prime v|p of K, p{ # (Ey(kv)>, where E,, is the reduction of E/k

H3. for every prime v|cond(E) of K, E(K,) has no non-trivial p-torsion.

We remark that these hypothesis can be weakened. Hypothesis H1 is made to ensure that S,(K, E) is a
torsion Z, (KC)-module, as follows by the work of Kato and Rohlrich. Hypothesis H3 can be relaxed assuming
only that p does not divide any of the Tamagawa numbers of E/K, for v|cond(E). (We assume in this note
the stronger condition H3 since this ‘trivializes’ unramified local conditions at any place v { p, simplifying
somehow the exposition.)

8.2. Adding the weight variable. Write N := cond(E) and let fr € S3(T'0(N),Z) be the newform
attached to E/Q by the modularity theorem. Hida theory attaches to E/Q a formal g-expansion

g= a,(X)-¢" € Rllqll,

n>1

where R = Rpg is a local domain, finite over the ‘diamond algebra’ A := Z,[[1 + pZ,]]. The domain R
parametrizes the Hida family of fr. For the purposes if this introduction we only state the following ‘weak
parametrization property’: for every even integer x in a suitable open disk U C Z, centered at 2, there
exists an arithmetic point v, : R — Z, such that

Ok = an(an) € Sk (Fl(Np)aZP)

n>1

is the g-expansion of a (classical) normalized eigenform of level I';(Np) and nebentype w?~", where w is

the Teichmiiller character. g, is a p-stabilized ordinary newform of tame conductor N, i.e. ap(gx) = ¥x(ay)
is a p-adic unit, and the conductor of g, is N or Np. Moreover, g, is obtained by fg via the process of
p-stabilization (Sec. 9.2 for the details). We call g, or the family {g,}. the Hida family of E/Q. Together
with Hypothesis H1-H3 above, we consider for the rest of the introduction the following Hypothesis on
(E,p):

H4. E(Q), is an irreducible F,[Gg]-module (where Gg := Gal(Q/Q));

H5. R is a regular local ring.

In Section 9.3 we also recall Hida’s construction of a big p-ordinary self-dual Galois R-representation
T interpolating critical twists of the Deligne representations attached to members of the Hida family g.
More precisely, T is a free R-module of rank two, equipped with a continuous, R-linear action of Gy which
is unramified at every place v { N - p - co. For every place v of Q dividing p, there exists a short exact
sequence of R[G,]-modules

0— F(T) =T —F,(T) =0,

with FF(T) = R as R-modules. (Here G, C Gg is the decomposition group at v). The interpolation
property can be stated as follows: let x € U be an even integer, and consider the base change Ty, =
T, := T ®g,y, Zp. Then T\, ® Q, is isomorphic to the Tate twist V,; := V(gx)(1 — k/2) of the Deligne
representation V(gy) of the twisted modular form gy := g, ® w'=*/2. We note that g, has level I'o(Np),
and that det V,, = Q,(1), expressing a weak form of the self-duality of T alluded to above. At weight x = 2

we can be more explicit. Thanks to assumption H4, Ty = T}, := mE(Q)pn is the p-adic Tate module of
E/Q as a Gg-modules. Moreover this induces an isomorphism of G,-modules between F, (T2) and the
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p-adic Tate module of E (m), where E sz, 1s the formal group of E/Q, and m is the maximal ideal of the
ring of integers of Q, (see Section 9.3.4).

8.2.1. Greenberg Selmer groups. Let R be a complete local Noetherian ring with finite residue field of
characteristic p, and let M be an R[®x|-module, where & := Gal(Ky,/K) is the Galois group of the
maximal algebraic extension K,/K which is unramified at every prime v { Npoo of K. Write X for the
set of primes of K lying over a prime factor of Np. Assume that M is quasi-ordinary at p, i.e. assume that
for every prime v|p of K there exists an R[G,]-subsmodule F,f (M) C M, where G,, C Gx — G is a fixed
decomposition group at v. Assume also that M is admissible (or continuous) as an R[®k]-module in the
sense of [Nek06, Chap. 3|. Then the continuous cohomology groups H? (&, *), HI (K., *) are defined for
every R[® | submodule * of M, as well as the cohomology groups H?(K,, F;f (M)) for every place v|p of
K. For every v € X define the ordinary part of H'(K,, M):

Im (H'(K.,, F,7(M)) - H'(K,, M)) if v|p ;
H;rd(va M) =
Im (H (G, /1,, M"*) — H'(K,, M)) if v 1 p,
where I, C G, denotes the inertia subgroup and the maps are the natural ones. The Greenberg Selmer
group attached to the data (M, K,{M}},,) is then defined by:

Selg, (K, M) := {z € H' (&, M) : res,(z) € HL4(K,, M) for every v € £ } .

More generally: let L/K be a finite subextension of Ky,/K, let w be a prime of L dividing p and write
& = Gal(Knp/L). Fixing a decomposition group G,, C G, - &, and letting v be the prime of K lying
below w, the ‘v-ordinary structure’ F," (M) C M naturally give rise to a ‘w-ordinary structure’ F,} (M) C M
on the R[G,]-module M (see the beginning of Appending B for more details). The Greenberg Selmer
group Selg, (L, M) C H (&, M) is then defined as above. Finally: let F//K be an arbitrary subextension
of Knp/K. We then define:
Selay (F, M) :=lim Selg, (Fu, M); Me,(F, M) := lim Selg (Fao, M),
Fo Fo

where F, /K runs over the set of finite subextension of E/K and the direct (resp., inverse) limit is taken
with respect to the restriction (resp., corestriction) maps in Galois cohomology.

Let k € U be an even integer, and let 7 € {T,T.}. Write A7 := Homcs(7, ptpo-) for the Kummer
dual of 7, equipped with the v-ordinary structure F, (A7) := Homes(F, (7), fipe) for every prime v|p of
K. For every K C L C K define the Selmer groups:

Selp(Lag) = SelGr(LvAT); Selp(Lagn) = SelGr(LaATN);

Sp(L,g) := Homg, (Sel, (L, 8), Qp/Zp); Sp(L,gx) := Homg, (Selp(L, gx), Qp/Zp) ,
and the modules of L/K -universal norms

My(L,g) = Ma:(L, T); My(L,gx) := Ma:(L, Ty).

Galois conjugation induces an action of R(L) (resp., Z,(L)) on Sel,(L,g) and M,(L,g) (resp., Sel,(L, g.)
and M,(L, g,)). We consider on S,(L, g) (resp., Sp(L, g«)) the R(L)-action (resp., Z,(L)-action) defined by
A (*) := ¢(L(N) - %) for every A € R(L) (resp., A € Z(L)). We know [Gre94b| that S,(L,g) and M,(L,g)
(resp., Sp(L, gx) and M, (L, g.)) are finite R(L)-modules (resp., Z,(L)-modules). Moreover, thanks to the
work of Kato and Rohrlich, we know that S,(KC,g) (resp., Sp(K,gx)) is a torsion R(K)-module (resp.,
Z,(K)-module).

8.2.2. Height and weight pairings. The Selmer groups introduced above come equipped with the follow-
ing ‘arithmetic-cohomological structures’ (see Section 11.4 for the precise definitions): let K C LC L C K
and let k € U be an evan integer. We write

Tz = ker (R(L) — R(L)); Joyp. = ker (R(c) S R(L) % Zp(L)> ,

where 1), is the map induced on Iwasawa algebras by the arithmetic map .
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e Nekovai’s duality for Selmer complexes [Nek06, Ch. 11] attaches to every tower K C L C L C K
and every even integer xk € U skew-Hermitian canonical p-adic height pairings

hejrg : Mp(L,g) ®r(r) Mp(L,g)" — TE/L/TL2/L5

hL/L,gN : Mp(ngn) ®ZP(L) Mp(ngn)L - Iﬁ/L/ILQ‘,/Lv
defined in terms of Galois cohomology of the (constant) ‘Galois deformations’ T(L) := T®gr R(L)
and T (L) := Ty ®z, Zp(L) of T(L) = T(L)/Iz/r and Ty (L) = Tx(L)/Iz,1, respectively. These
pairings are compatible under specialization at weight k, i.e. we have a commutative diagram

hr/oe

Mp(Lug) X MP(L>g)L %fﬁ/L/fz

e e -

heyr,gp
Mp(Lagn) X Mp(Lagn)L —J>I£/L/Iz/L7
where 9, is the map induced on cohomology groups by the arithmetic map .
o Nekovai’s wide generalization of Cassels-Tate and Flach pairings gives for every K C L C K and
every even integer K € U skew-Hermitian parings:

CLg: Sp(L7 g)R(L)-tors ®R(L) SP(L7 g)j‘%(L)—tors - FraC(R(L))/R(L)7

CL,gR : SP(L’gﬁ)Zp(L)-tOTS ®Zp(L) SP(L’ gN)LZp(L)-tors - FraC(ZP(L))/Z;D(L)v

defining again studying the Galois cohomology of the modules T ®g R(L) and T, ®z, Zy(L)
respectively.

e Making again use of Nekovai’s formalism, we will attach in Section 10.5 to every x € U and every
K cLcLcKaliftof heyp g, toa canonical pairing

h‘,;;v;L,gm : Mp(Lagn) ®ZP(L) Mp(Lagﬂ)L - JL:/L,R/Jz/LJg,

More precisely, the composition of h"Z;Lygm with the projection induced by 4, : Jejnwe = Ioyr
equals hg,r 4. . This pairing is defined studying the Galois cohomology of the ‘two-variable’
deformation T(L) of Tx(L) = T(L)/Jz /1. In particular the pairings hr, . := hr /1, is attached
intrinsically to the Hida deformation T(L) of Ty (L).

The height and the abstract Cassels-Tate pairings just mentioned are indeed strictly related one another,
and are manifestations of Nekovai’s wide generalization of Poitou-Tate duality to Selmer complexes.

At weight kK = 2 we recover the constructions above. More precisely: as proved in [Gre94b| there
exists natural isomorphisms S, (L, E) = S,(L, g2) and M, (L, E) = M,(L, g2). Moreover it follows by the
results in [Nek06, Sec. 11.4] and [Nek06, Sec. 10.] that these isomorphisms identify, for every finite
subextension L/K of K/L the Z,-bilinear forms:

hi/L.go id®pr;

My (L, g2) ® Mp(L, g2) == Ixsn/ I, = Gal(K/L) ® Z,(L) —" Gal(K/L);

CL,go id®pr;

Sp(L, g2)tors @ Sp(L, g2)tors — Frac(Zy(L))/Zy(L) = Qp/Zy @ Ly(L) — " Qp/Zy
with the K/L Height pairing (64) and Cassels-Tate pairing (65) respectively.

8.2.3. Organizing modules. Tt is natural to wonder (cfr. [MRO5, Sec. 1]) if we can lift Mazur-Rubin
organizer of the arithmetic of (E, K, p) to a skew-Hermitian R(K)-module ® which organizes the arithmetic
of the whole Hida family g over K. This means that via the ‘linear-algebraic’ constructions (66), (67) and
(68), @ encodes all the above ‘cohomological structures’ for varying even weight x € U and intermediate
fields K Cc L C L C K.

The following theorem answers positively this question, at least under the running assumptions. Its
proof (whose details will be given in Section 11.4) follows easily combining Nekovai’s duality formalism for
Selmer complexes with the work of Mazur-Rubin.
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THEOREM 8.1. Assume that (E, K,p) satisfies hypothesis H1-H5 above. Then there exists a basic skew-
Hermitian R(K)-module ® = (®, h), free of rank re := rankz E(K)+dimp, HI(E/K), over R(K), satisfying
the following properties. Write

S := coker (@ LA <1>*) — H2(®),

and write He € GLy, (mp(x)) for the skew-Hermitian matriz describing the morphism h with respect to a
(fized) basis u = {u1,...,ury} of ®.
1. There ezists a canonical isomorphism of R(K)-modules
S=S5,(K,g).
For every sub-extension L/K of K/L, there exist canonical isomorphisms of R(L)-modules

(T) S((I)vflC/L) = S;D(L7g>§ MP((I)VTK/L) = MP(L7g>'

2. For every even integer k € U and every intermediate field K C L C K, there exist canonical
isomorphisms of Z,(L)-modules

(i) S(Cb, JIC/L,K,) = Sp(Lagn); Mp(q)v JK:/K,K) = Mp(ngn)~

3. For every sub-extension K C L C IC, the second isomorphisms in (1) identifies the pairing (68) for
I'=1Ic/k: hg T with the canonical p-adic height pairing hi 1, g. Similarly the first isomorphism

in () identifies the pairing (67) for TK/K: Co T with the abstract Cassels-Tate pairing cy, g.
4. For every intermediate field K C L C K, the second isomorphisms in (1) identifies the pairing

(68) for I = Ji/kk? ha iy ., with h%t/K,gK‘ Similarly the first isomorphism in (1) identifies the
pairing (67) for I = Ji k- Co T 5. With cr g, .

5. Write fo := det(Ho) and f% := 1, (fs) for every even integer k € U. Then
fa - R(K) = charpk) (Sp(K,g));  f§-Zp(K) = charg(x) (Sp(K,9x)) -
Writing 7, := rankz, (Sp(K, gx)), fa
(fo) = (1) fo.
6. (p-adic BSD formula) fo € (J,C/K,K)T” and, up to p-adic units
fo=# (Sp(K» Gr)tors) - det (hvlét/K,gn) mod Jl?/?({n

The complex ®, together with its skew-Hermitian structure is isomorphic in the derived category D =
D(R(K)) of complezes of R(K)-modules to Nekovdr’s Selmer complex RT ¢ 1w (KC/K, T), equipped with its
skew-Hermitian global cup-product pairing (see Sec. 11.2 for precise definitions).

satisfies the ‘functional equation’

)
L
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Notations and assumptions. The following notations will remain fixed through this note.

p > 5 is a rational prime,

Eq is an elliptic curve of conductor Ng, with ordinary (i.e. good ordinary or multiplicative)
reduction at p.

N := Ng - p~° 9 (NE) i5 the tame conductor of Eq.

We fix an embedding p, : Q — Q,, under which we consider Q as a subfield of Q,. This also fixes
a decomposition group G, := p;(Gg,) C Go.

K/Q is a number field.

Sy = Sk ¢ := {v|N - p} is the set of primes of K dividing N -p and S := Sy U {v|oo}. We also
write S, := {v € Sy : v|p}, 58°°Y := {v € S, : E/k has good reduction at v} and St := {v €
Sp : B has split multiplicative reduction at v}.

Grs = Gal(Kg/K), where Ks C K = Q is the maximal algebraic extension of K which is
unramified at any prime v € S.

K C K C Kg is the maximal Z,-power extension of K (inside K).

For v € Sf, we fix an embedding p, : K — K,, where K, is the completion of K at v. This
also fixes a decomposition group G, = p}(Gk,) — Gk — Gk s. For every Gk gs-module M, we
consider M as a Gk, -module via p}.

For every field F' s.t. char(F) = 0 we denote by Xy, : Gr — Gal(F(up<)/F) — Zj; the p-adic
cyclotomic character and by k¢y : Gr — 1 + pZ, the composition of x., with projection to
principal units.

w:Fp S lpo1 C Zy, is the Teichmiiller lift.

Given a field F s.t. char(F) = 0 and a Z,[Gal(F/F)]-module M, M(1) := M ®z, lim p,n (F) is
the Tate twist of M (with diagonal Gp-action).

We will always assume the following

HypoTHESIS 1. E(Q), is an irreducible F,[Ggl-module.

Starting from Section 10, we also assume that (E, K, p) satisfies the following assumptions. We write
R(E,p) to denote the branch of Hida’s universal p-ordinary Hecke algebra of tame conductor N attached

to E/Q.

It is the local domain denoted R4 in Sec. 9.2 below.

HyPOTHESIS 2. R(E,p) is a regular local ring.

HypPOTHESIS 3. E(K), =0 and E(K,), =0 for every prime v|N.

Hypothesis 1 and 2 are not too restrictive. For example we have the following proposition, which follows
by the discussion in [NP0O, Sec. 4.3.9].

PROPOSITION 1. Let E/Q be an elliptic curve without complex multiplication. Write Py for the set
of primes p > 5 such that:

i) E/Qp has ordinary reduction;

i) (E,p) satisfies Hypothesis 1 and 2, with R(E,p) isomorphic to the Iwasawa algebra Z,[[X]].
Then P is a set of primes of Dirichlet density one.
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9. Hida theory

Let f = fe =) ,510n q" € S2(I'0(Ng),Z) be the newform attached to £/Q by the modularity
theorem. Since E/Q, has ordinary reduction, a, = a,(FE) € Zy is a p-adic unit and Hensel’s Lemma gives
a factorization:

X? - apX + 1y, (p) - p= (X —ap) - (X = Bp) € Zp[X],
with o, € Z and 8, € pZ, (under p,). Here 1y, is the trivial Dirichlet character modulo Ng. The
p-stabilization g of f is the modular form

g:= D and" =y 3 ang™ € Sr(To(Np), Zy).

n>1 n>1

g is a (normalized) eigenform on I'g(Np), with Hecke eigenvalue ay (resp., a,) for every prime £ # p (resp.,
for £ = p). In particular its conductor is Ng. We note that, if F/Q, has multiplicative reduction then
op = ap, Bp =0and g = f. In any case g is a p-stabilized ordinary newform of tame conductor N, with
the terminology of Hida.

9.1. Jacobians of modular curves. For r > 0 let ®, := I';(p") NT'o(N) and write X, := X(®,.) /g
for the modular curve of level ®, over Spec(Q), as defined in [Roh97]| or [DDT95, Chap. I|. Then X, is
a smooth proper model over Q of the compact Riemann surface ®,\$H* =: X2 (where H* := HU I%) is the
extended upper half-plane), together with a Q-morphism j : X, — Pb. The affine scheme Y, /g := j 71(A6)
(coarsely, if r = 0) represents the functor sending a Q-scheme T to the set Mg (T') of T-isomorphism classes
of elliptic curves,r with a structure of level @,.. In particular: for every subfield & C C, we have a bijection

Y. (k) ~ Mg, (k) := {(A, C, P)/E}/ =, where A is an elliptic curve over k, C C A(k)y is a cyclic subgroup

of order N and P € A(k),r is a point of exact order p". The isomorphism ®,\$ = Y,.(C) ~ Mg (C) is
defined mapping 7 € $ to the class represented by (C/A, <N*1 mod AT> ,p~"mod A,), where A, := Z+Z1
(and (x) denotes the group generated by x).

Let J,/q = Jac(X,) be the Jacobian of X, and Ta,(J.) := @nJT(@)pn its p-adic Tate module.
It is known that the natural Gg-action on Ta,(J,) is unramified at every prime ¢ { Np. We will write
® = Gal(Qn,/Q) for the Galois group of the maximal algebraic extension Q C Qy, C Q unramified at
every prime not dividing Np - oo, so that Ta,(J,.) is a continuous Z,[®]-module.

Let b, := h(r) ®z Z, be the Hecke algebra of level I',. over Z,. Here h(r) is the Z-algebra generated by
the Hecke operators Ty for £ prime and the diamond operators (d) for d € (Z/p"Z)" acting on the space
So(®,-,Z) C Sa(I'1(Np"),Z) of weight-two cuspidal forms with integer Fourier coefficients. We also write
Uy =T, when ¢|Np". Tt is a finite flat Z,-algebra, so by Hensel’s Lemma the natural map b, =[] by m is
an isomorphism of rings, where m runs through the (finite set of) maximal ideals of b,. (and (—), denotes
localization). We consider the T),-decomposition

b = b x 2,
where ho'¢ (resp., h%i1) is the product of the b, n’s with T}, & m (resp, T, € m). We also write €' € b,
for the idempotent corresponding to projection onto the ordinary part ho*d. More generally, for every
hr-module M we define its ordinary part M°'d := ™. M = M ®y, hord.

We can also represent h(r) as a sub-ring of Corrg (X,) C Endg(J;), where Corrg(X,q) denotes the
ring of correspondences on X x X defined over Q [Roh97, pag. 89|. In particular Ta,(J,) is equipped
with a structure of an §,[&]-module. We can characterize Ty, U; and (d) as endomorphisms of J, by their
action on Y,*" := Y, (C) as follows. Identifying ¥;*" ~ Mg (C) as above, T; (resp., Up) is induced by the
map Y*" — Div (Y,*"):

(A,Q,P)— > (A/L,Q mod L, P mod L)
c
where £ C Ay runs over all subgroup of order ¢ (resp., such that LN Q = 0 and £N (P) = 0). Finally
(d) is induced by the automorphism Y,** = Y2* sending (4,Q, P) to (A,Q,d - P). (Using the natural
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identification Sy(T,.,C) = H° (X an Q§d> between weight-two cusp forms and holomorphic differentials
on X2, Abel-Jacobi theorem allows us to identify

(69) St = Jr(C) = Sa(®r, €)Y /Hi (X7, Z),

where (—)* denotes the C-dual. Then the action already defined on the L.H.S. corresponds to the action
of h(r) induced by composition on Sy(®,., C)*, which can be proved to preserve integral homology.)
Let us define
d._ 1 1, d._ 1 d
b2 o= lim b2 Ta%? := lim Ta, (/)"
r>1 r>1

The first limit is taken with respect to ‘restriction of endomorphisms’. The second limit is taken with respect
to the morphisms induced by Albanese functoriality by the Q-maps X,;; — X, attached to ®,;1 C P,.
As we are considering r > 1 in the limits, the transition maps are compatibles with Hecke action, so that
Ta2? is an h24[&]-module. Diamond operators gives morphisms Z,[(Z,/p"Z)"] — h2'¢ inducing on the
limit a “diamond morphism”

[1:Z,[Z3]) — b

(We note that this normalization differ by other ones found in literature, e.g. from that of [Hid86a] and
[EPWO06]|, where [z] — 22 - (z) is used.) Writing I' := 1 + pZ,, [ ] in particular equips h%d with the
structure of an algebra over the Hida algebra A := Z,[[T']]. Thanks to the work of Hida [Hid86b, Th. 3.1],
[Hid86a, Th. 3.1] (see also Section 8 of [Hid86a]) we know that h9 is a finite, flat A-algebra and Ta2" is
a free A-module of finite rank. Since A ia a local complete Noetherian ring, using again Hensel Lemma we
obtain a finite decomposition h&d = T gg}m, where h&d | is the localization of h%¢ at the maximal ideal
m. Let ¢y : h1 — h$™ — Z be the morphism of Z,- algebrab attached to g, i.e.: ¢4(Ty) = ae(g) = ae(E) for
every prime ¢ # p, ¢,(Up) = a,(g9) = o, € Z;, and ¢, ((d)) = 1 for every d € F;. We denote by the same
symbol the morphism of Z,-algebras

b+ bt — b 27,
induced by ¢,, and write m, € Spec(h%d) for the maximal ideal s.t. ¢, factorizes through hod — I;gg?mq.
We then define the hord ,[®]-module

Taord = Tag;d ®hg§d ord

co,m oco,mgy*

Under Hypothesis 2 it is known that Ta"”rd is free of rank two as an ggdm -module. (Indeed a regular ring

is Gorestein, and this implies the freeness of Taord .) Moreover, as a manifestation of the Eichler-Shimura

congruence relation (see also [Roh97] or [DDT95 Ch. 1]) : for every prime ¢{ Np
(70) Trace (FI"Obgl Taord ) =Ty det (Frobg\ Taord ) ={-[4,

where Frob, € & is an arithmetic Frobenius at ¢ and we have written again T for the projection of the
¢-th Hecke operator on h2:d

OO,mg'

REMARK 9.1. For every j € Z/(p — 1)Z let € := zﬁ Za@b‘; w7 (a) - a € Zy[F3] C A, so that every

Zp|F,]-module M decomposes as M = P, e; - M. As (;Sg(so) =1 and ¢4(c;) = 0 for every j # 0 we have

gffmg =gp- gé‘}mg, i.e. Iy acts trivially on hord In particular (70) (combined with the Chebotarev
density theorem) gives us:

(71) dCthggj’,ng (Ta‘;;‘}m> = bgédmg ® Xey * [Key] = hgg,img (Xey * [Key])

as hord [(’5]-modules. (We recall that k., is the composition of the p-adic cyclotomic character x., with
pI‘OJG‘Cthn to principal units on Zj.)
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9.2. The domain R. Let p} := ker (¢y) € Spec( Or‘j‘mg). By [Hid86a, Cor. 1.4] (see also Sec. 12.7.5

oo

of [Nek06]) the localization of r;gg‘}mg at pj, is a discrete valuation ring. In particular pj contains a unique

minimal prime ideal pyin such that ¢, factorizes through

Ry = hg;(,lmg /Pmin.
Then R, is a local domain, finite over [ ] : A — R and whose localization at the prime p, := p/pmin is a
discrete valuation ring. R, is called the branch of h%d attached to g. With the terminology of [Hid86b,
pag. 253] # = Frac(R) is the primitive component of h%¢ @ Frac(A) corresponding to g. We write from
now on

R=Ry; p:=yp,
For every positive integer n we write a,, € R for the projection in R of the n-th Hecke operator T,, € hgé‘}mq.
(Here T, is defined as a polynomial in the Ty’s, U,’s and (d)’s by the usual recipe [Shi71, Ch. 3].) \

We define an arithmetic point of R to be a morphisms of Z,-algebras i) : R — Q, such that the

composition of ¢ with I := (1+ pZ,) C Zj — R is of the form x — x(z) - #*~2, for some integer k > 2 and

some finite order character x : 1+ pZ, — @*. Then k is the weight of 1, and x its wild character. We
denote by xarith = yarith(R) the set of arithmetic points of R. Given ¢ € X we write Oy = ¢ (R),
¢V for the wild character of ¢ and

r(¢) := max {1, ord, (cond (¢v""'9))}

(where cond(x) denotes the conductor of %, viewed as a character of finite order on Zy = F; x I'). We
consider every element of R as a function on X**h letting (1) := v (r) for every » € R and ¢ € X*th An
arithmetic prime q € Spec(R) is defined as the kernel of an arithmetic map. Given ) € X" we also write
Y = 1bq with q := ker (V). In the following we will use the terminology arithmetic prime and arithmetic
point interchangeably, letting the context explains if we are considering a morphism of its kernel. Moreover,
given a local ring O we will also write X (R; ©O) = x#1th(O) to denote the set of arithmetic primes such
that ¢¥(R) = O.

Let us consider the formal g-eqxpansion

g:= > a,-q" € R[[q].
n>1
Hida’s control theorem [Hid86b, Cor. 1.2]| (see also [Hid86a, Th. 3.5]) implies that for every arithmetic
point 1 € X2ith of weight k > 2

gy = Z a, (V) - q" € S (Pr(yy,w® -V, 0y)

n>1

is the g-expansion of a classical normalized eigenform of weight k, level T'g(V, pr(w)), character w?~F . Wil
and Fourier coefficients in O, N Q. (Using the definition of r(3), here we identify w and "4 with the
induced characters:

(Z/NPT““Z)* - (Z/pr(‘”)z)* =Fy xT/Top) — @

where for every r > 1 we write [, := I’pril.) Moreover it is a p-stabilized ordinary newform (of tame
conductor N ). In other words this means: g, is a common eigenform for all Hecke operators T; (¢ { Np)
and Uy (€| Np), the p-th Fourier coefficient a, (1)) € Z, and N|cond(gy) (i.e. the system of Hecke eigenvalues
{a¢(¥) : £ # p} does not arise from any eigenform of level not divided by N).

We note that ¢, =: 1, € X3 (with p = p, := ker(¢,)) is an arithmetic point of weight 2 and trivial
wild character, and g = g¢, with the notations above. Again by [Hid86b, Cor. 1.4] we know that for
every g € X arith " the localization R, is a discrete valuation ring, unramified over the localization of A at
the height-one prime q N A. In particular for every topological generator v € T', pN A = (y — 1) is the
augmentation ideal of A. We can use this result to describe R as a ring of Z,-valued (locally) analytic
functions (cfr. [GS93, Sec. 2]). More precisely: for every open subset V' C Z, denote by A(V) the
ring of Z,-valued analytic functions on V. We endow A(V) with a structure of A algebra via the unique
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ring morphism A — A(Z,) whose restriction to I' C A* is defined mapping = € T' to the power series

k=2 = ZZOZO % - (k—2)". As R is finite over A, R, is unramified over Apna, and the inclusion

of residue fields Q, = Frac(A/(y — 1)) C Frac(R/p) is an equality, we see that there exists an open
neighborhood 2 € U C Z,, and a unique injective morphism of A-algebra
Mg : R— AU).

In particular ¢a(r) := My(r)|,_, = ¢4(r) for every r € R. More generally: for every integer x € U the
map induced by evaluation at k:

(72) e RE AU) 25 Z,

is an arithmetic point ¢, of weight s and trivial wild character (cfr. Introduction).

9.2.1. The ‘twisted Hida family’. Let us consider the critical character

zovE (]

Or:Z,»I —"T— RY 0% =1].

(As p # 2 Hensel Lemma tells us that I' is uniquely 2-divisible, so /z = x'/2 makes sense for every z € T.
The equality Or(x)* = [z] for = w, - 7, € Zj = F; x T follows by the fact (see Rem. 9.1) that F}; acts

trivially on R via the structural morphism [ ], i.e. [z] = [v.].)
For every even integer k we write X2rth C xarith for the subset of arithmetic points of weight x and

xamh o= |J, X2 Given ¢ € X2 the map 9y : I — Q5 7= 7T - (hobr)(y) factorizes

even

through I'/T',.(,), and we can define the character

191/} = ﬂvaild . inTK . IF; X F/Fr(d)) — @* such that gw c SK ((I)T(w),’&i) .

In other words ¥, is a square root of the character of the p-stabilized newform gy, so that
g =gy U, €5, (FO (NpQ”’W’)) 7O¢)

is an eigenform of level Np?7(¥) with trivial character. We refer to the family {94 }pe xanith as the twisted
Hida family attached to E/Q (or better to g).

9.3. The representation T. Let us write T := Tagzdmg ®@pora  R. As recalled above, it is a free
) oo, mg

rank-two R-module, with a continuous R-linear action of &. With the notations above (70) rephrases as:
for every ¢4 Np the characteristic polynomial of Frob, on T is given by
(73) det (1 — X - Frob,| T) =1—a,X — ([(]X* € R[X].
In order to obtain a self-dual representation, we consider the critical twist
T:=T®zO5,
where the critical character O is defined as the composition

Or : & — Gal (Qup=)/Q) X% 77 25 R,

As ©% = [k, we see by Rem. 9.1 that detp T = R(1) := R® X,y is the Tate twist of R.
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9.3.1. Self-duality. As explained in [NPO0O, Sec. 1.6] (and previously proved by Ohta) the Weil pairings
on the Jacobians {.J,},>1 define an R-bilinear, skew-symmetric and &-equivariant map

d d d 1
T, Tagg,mg ®hggf‘mg Tagé7mg — bgé,mg @ Xey - [“cy] = hgé(,mg(l) ® [’icy]’

inducing a ‘skew-symmetric’ isomorphisms of g;qu [&]-modules

adj (ng) : Taord = Homhgé(,imq (Taord 7bord (1) ® [Hcy]) )

co,my oco,my? Joo,my

(This follows in particular by the discussion in Sec. 1.6.10 of loc. cit., using that under Hypothesis 1

~

we know by [MT90, Théoréme 7] that Homp ( ord A) 5 p2d as A-modules.) Taking the quotient

00,mg ) 00,my
Tm, ® R and twisting by 9;%1 we thus obtain an R—bi\linear7 skew—symmetric B-equivariant pairing
R T®RT — R(1) ® [key] ® 0% = R(1),
inducing an isomorphism of R[&]-modules
adj(rr) : T = Hompg (T, R(1)).

9.3.2. Ramification at p. By the work of Mazur-Wiles and Tilouine we know that the restriction of
T to Gg, is reducible: let w be a prime of Q dividing p, defined by an embedding p,, : Q — @p. Write
I, C Gy C Gq for the inertia subgroup of the corrsponding decomposition group G., = p;,(Gq,) at w.
There exists a short exact sequence of R[G,,]-modules

(74) O—)T$—>T—>T;—>O7

with TZ free of rank one over R. I, acts trivially on T, and via the character X, - [xey] on Ty, and
the arithmetic Frobenius Frob,, € G, /I,, acts on T, via multiplication by a, € R*. We refer the reader
to [NP0OO, Prop. 1.5.4] for precise references. Defining T := T ® @El, we find an exact sequence of
R[G,]-modules

+
w

(75) 0—THSpler-
We also write F& (T) := TE. This exact sequence is ‘self-dual’ in the following sense. For the dual

representation T*(1) := Hompg(T, R(1)), let us define F,, (T*(1)) := Hompg (T, R(1)). Since 7 : Tx T —
R(1) is skew-symmetric and T = R, we see that adj(mr) induces an isomorphism of short exact sequences
of R[G,]-modules

(76) 0— FH(T) T F, (T)——0

w

Ni adj(TrR)l Nl

0——F; (T*(1)) — T*(1) — F; (T*(1)) —0.

With the notations and terminology introduced in Section 0.5 we can sum up the discussion of this
Section as follows: let K/Q be a number field and recall that Gk s := Gal(Kn,/K) denotes the Galois
group of the maximal algebraic extension Ky,/K which is unramified for every prime v { Npoo of K. Then
7R is a perfect R[Gk s]-duality between T € gjg, 5-Mod and itself, such that for every prime v|p of K:

(vlp) T} Llr, Ty,

i.e. T is its own mg-orthogonal complement.

More generally: let ¢ : R — A be a surjective morphism of local Z,-algebra. For every R[G g s|-module
M we write My := R®p ¢ A € algx s-Mod. Then, putting FE(Ty) = (Tf)¢ and recalling that T, T
are free finite R-modules we obtain:

Ty = TR, 2:7TR®R7¢A2T¢®AT¢—>A(1)
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is a perfect A[Gk s]-duality between T, and itself, such that
(vlp) Ff(Ty) Llx, FS(Ty)

for every prime v|p of K.

9.3.3. Specialization at arithmetic primes. Let ¢ € X*(O) be an arithmetic prime of even weight
k € 2Z. Let us write F' := Frac(O) and V, := Ty ®o F (with the notations of the preceding Section).
Letting x denotes the eigenform gy, of its twist gy, write p, : Gg — GL2(F) for the Deligne representation
attached to %, and let V(%) be a representation space for py_ . Using the irreducibility of V'(x), the Eichler-
Shimura relations (70) and retracing the definitions, we easily conclude that there exists an isomorphism
of F[Gg]-modules

(77) Vi 2 Vige) ® (0 x52) = (Vigs) @051) @ x5/ = Vigu)(1 - k/2).

In other words we see that T, is an O-stable Galois lattice in the (1 — k/2)-critical twist of the Deligne
representation attached to g,. In particular by the results recalled in the preceding Sections we recover
the well known fats (proved by Wiles et. al.) that V(g.)(1 — k/2) is a (nearly) self-dual and p-ordinary
representation.

We can sum up this discussion saying that T ‘parametrize’ the family of Deligne representations
attached to the elements of the twisted Hida family {gy }yexarin.

9.3.4. Specialization at ¢,. We now describe more precisely the isomorphism (77) for the arithmetic
prime ¢, € X*(R;Z,) of weight 2 attache to the elliptic curve E 10- We begin by recalling how a

p-ordinary structure is explicitly defined on the representation T}, = Ta,(E/q) := lim ,>1 E(Q)pn.

Let M € {Ep~ = E(Q)y=,T,}, and let w be a prime of Q lying over p. We will use the notations of
Section 9.3.2. Since F/Q is ordinary at p, it is well known that we have exact sequences of G,,-modules

(78) O—>F$(M)—>M—>FJ(M)—>O,

with Ff(M) co-free (resp., free) of rank one over Z,. Moreover, the inertia I,, C G,, act trivially on
F,; (M) and via the p-adic cyclotomic character x., on F,} (M), and an arithmetic Frobenius in G, /I,
acts on F, (M) via multiplication by the p-adic unit o, = a,(¢4) = ap(g). The filtration (78) can be
explicitly described as follows.

Assume first that E/Q, has good ordinary reduction, and let E/Fp be the reduction of E modulo
p. (Here F, is the field with p elements.) By [Sil86, Ch. VII], the reduction map E(Q,),» — E(IFT,)W
is surjective for every n > 1. We then obtain surjective maps of Gg,-modules E(Q,)p~ — E (Fp)pe and

T, — T, (E) (where T,(E) is the p-adic Tate module of the E/F,). Since by assumption E(F,),» = Z/p"Z

for every n > 1 (i.e. E/q, has ordinary reduction), Fi; (Ep=) = E‘(Fp)poc (resp., Fy, (Tp) :=T,(E)) is co-
free (resp., free) of rank one over Z,. Identifying E(Q,),» with E(Q),» under the embedding p,, : Q — Q,
inducing the prime w, we obtain (78) defining F” (M) as the kernel of the projection M — F (M).

Assuming that E/Q, has multiplicative reduction, the Tate parametrization gives us an isomorphism

(I)Tate . @;/QZ :) E(@p)?

where ¢ = q(E/Q,) € pZ, is the Tate period of E/Q, [Sil94, Ch. V]. Let xun : Go, - Gq, /Iy, — {1}
be the unramified quadratic character on Gg,. Writing x, = 1 (resp., Xp := Xun) if ap(E£) = 1 (resp.,
ap(E) = —1), i.e. if E/Q, has split (resp., non-split) multiplicative reduction, ®rqs induces short exact
sequences of Gg,-modules (see [Sil94, Ch. V)

0 — fipn (@p) ® Xp — E(@p)pn — Z/an ®xp—0
for every n > 1, where Z/p"Z has trivial Galois action. Taking the direct (resp., inverse) limit for n — oo,
and identifying £(Q,),» with E(Q),» under the embedding p,, : Q — Q, inducing the prime w we obtain
the exact sequence (78) for M = Ep~ (resp., M = T,(E)) with F(Ep~) := Q,/Z,(1) ® x, (resp.,
F3(Ty) = Zp(1) ® xp)-
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Let J; — E%n be the optimal elliptic curve attached by the Eichler-Shimura construction to the
eigenform fp € Sy(®1,Z) [DDT95|. Letting R acts on the p-adic Tate module T := Tap(E;’(gn) via the
morphism ¢4 (so that a, acts via the unit root o, = a,(g)) Eichler-Shimura theory (cfr. [DDT95, Ch. 1],
[Hid86a, Sec. 9], [Gre94al) tells us that the natural projections induce isomorphisms of R[®]-modules:
(79) T¢g =T ®va¢g ZP = Ta’p(‘]l)ord ®hi)rd¢¢g Zp = Tlr;ﬂin'

By the isogeny theorem we also know that there exists an isogeny over Q between E™" and E, and thanks
to our irreducibility assumption Hypothesis 1 this induces an isomorphism of Z,[Gg|-modules on p-adic
Tate modules: T}, = T;‘i”. Combined with (79) this gives us an isomorphism of Z,[®]-modules

(80) Ty, =T).

Moreover, letting w be a prime of Q lying over p and recalling that F; (T),) = Z,, as Z,-modules we easily
see that this isomorphism extends to an isomorphism of short exact sequences of Z,[G,,]-modules:

0——F;(Ty,) —= Ty, —=F, (Ty,) —>0

A

00— F;(Tp) Ty Fy (Ty) ——0.

w

Let W : T, ®z, T, — Zp(1) be the p-adic Weil pairing (defined as in [Sil86, Ch.3|), inducing iso-
morphisms of Z,[®]-modules T, = Homgz, (T},Z,(1)) and Epe = Homg, (Tp, ptp=). Since W is alter-
nating and Ff (T,) is free of rank one as a Z,-module, W induces isomorphisms of Z,[G]-modules
FE(T,) = Homy, (F}(T}),Zy(1)) and F(Ep~) = Homg, (F;f(T}), pipe). Moreover, as mp is also skew-
symmetric and T 2 R as R-modules, multiplying eventually 7z by a unit we can (and will from now on)
assume that
(81) 7l'¢g = 7TR7¢9 = W,

i.e. that the perfect duality mr specializes at ¢4 to the Weil pairing.
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10. Selmer complexes in Hida theory

10.1. Selmer complexes. Let K C L C K be a subextension of /K, and let ¢ € X**h(R) be an
arithmetic prime of R. Using the notations of Section 0.11 and Section 0.16, let X = T(L) (resp., L(AT),
Ty (L), L(At,)), and write R = Rx := R (resp., R, Oy, Oy). Then X is a continuous R(L)[G i, s]-module
equipped with a R(L)[Gk,]-submodule i} =i (X): X, — X for every v € S,. (We recall that for every
Galois extension F/K, and any local complete Z,-algebra A we write A(F) = A(F/K) = A[[Gal(F/K)]] :=
lim ;e A[Gal(F;/K)] for the (complete) F'/K Iwasawa algebra over A, where {F;/K}e; is the set of finite
sub-extensions of F/K.)

Let us consider a subset ¥ C Sy, containing the set S, of primes of K dividing p. Using the notations
of Appendix A, we consider Nekovdi’s Selmer complezes

C3(Gx,s. X; Ax(X)) € Kom(R(L)),
together with the corresponding derived objects
R (K, X) := RT (G5, X3 An(X)) € D'(R(L)),

with local conditions Ax(X) = {A&v(X)}uesf defined by
Clont (Ko, XJ) if vlp ;
Aso(X) = q Coon(Gr, /Ik, X)) if vip, veEX;
0 ifog ¥ .

(As usual I, C Gk, denotes the inertia subgroup at v.) For every ¢ > 0, we write
HI(K, X) := H (ﬁf(K,X)) € r(zyMod
for the corresponding extended Selmer group, a finite (resp., cofinite) R(L)-module for X € {T (L), Ox(L)}
(resp., X € {L(T), L(Ty)}).
LeEMmMA 10.1. Let S, C X C Sy.The natural morphism of complexes
is 1 C%(Gr,s5,X; As, (X)) — C3Gk,s, X; As(X))
s a quasi-isomorphism.

Cont(KU7 Y(L)) is
acyclic for every v € Sy — S, and Y € {T, Ty }. Since L(Ay) is isomorphic to the Kummer dual of Y (L)
(see Section 0.19), Tate local duality tells us that C%, . (K., L(Ay)) is also acyclic for v € Sy — S,. Then
C.

o ont (K, X) is acyclic for every R[Gk, s|-module X we are considering. Using the inflation maps attached

PrOOF. We will prove in Lemma 10.7 of Section 10.4 that, under our assumptions C?

to G, - Gk, /Ik, = Z together with the fact that the group Z, has p-cohomological dimension 1, we
conclude that
C.

cont

(Gk,/Ik,, X"=v) is acyclic for every v € S§ — S,
Then we obtain by construction an isomorphism in D(R(L)):
Cone(1x) = @ Cou(Grk,/Ix,, X)) =0,
vEX; vip

i.e. 1ty is a quasi-isomorphism, as was to be proved. (]

In follows in particular that RT #(GKk,s,X; As(X)) does not depend, up to canonical isomorphism, on
the choice of ¥. This justify our notation RI'y(K, X). We will write from now on

CHK,X) = C}(Gks,X) = C}Gr,s, X; Ag, (X))

and we will identify ﬁff (K, X) with the corresponding derived object ﬁff (Gk,5,X;A5,(X)) € D(R(L)).
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10.2. Shapiro’s Lemma and Iwasawa theory. Let X € {T, Ty} and let R = Rx € {R, Oy} be
the corresponding ‘coefficient ring’. Let K C L C K be a (possibly infinite) subextension of /K. Using
the notations of Section B, we will write

RI ;1 (L/K,X) = RU (K, X(L)) € Dy (R(L));

Hj 1 (L/K, X) = H* (R 1 (L/ K, X)) € (r(z)Mod)

fit
RI(Ks/L,Ax) = RT (K, L(Ax)) € Dete (R(L)) ;
H(Ks/L, Ax) = H* (ﬁff(KS/L,AX)) € (rayMod)., .

For every finite extension K C E C L let Sg s (resp., Sg,p) be the set of finite primes of E di-
viding primes in Sy = Sk (resp, dividing p), and let Gg g = Gal(Kg/FE) be the Galois group of
the maximal algebraic extension of E which is unramified outside Sp = Sg ¢ U {v|oo}. As in the pre-
ceding Section we write C;(E,Jr) = C}(GE,&T;ASE,,,(T)), RI'f(E,t) := RIy(Gg,s,1;Asg,(f)) and
I;T}‘(E,Jr) = ﬁ;(GE,SaT§ASE,p(T))7 for f € {X,X(F),E(X)}. As explained in details in Appendix B,
Nekovai’s generalization of Shapiro’s Lemma gives us a natural isomorphism

Shg s : R (K, X(E)) = RI;(E, X) € D(R)

coming from a quasi-isomorphisms on the underline complexes of R-modules (we recall X(E) := X ®r
R[Gal(E/K)]). This induces in cohomology isomorphisms of R(E) := R[Gal(E/K)]-modules (denoyed by
the same symbol)

(82) Sh} , : Hi(K,X(E)) -~ H}(E, X) € r(ryMod.

Here the R(F)-action on ET}‘(E, X) comes for the (generalized) conjugation action of Gal(E/K) (see again
Appendix B for details). Since X(F) = E(X) := Homg (R(E), X) as R(E)[Gk,s]-modules for every finite
Galois extension E/K, we obtain similar isomorphisms, denoted again Shg s replacing RI (K, X(E)) and
I:T]"S(K,X(E)) with ﬁff(K, E(X)) and PNI}(K, E(X)) respectively. (See again loc. cit. for the details.)

Given finite subextensions K C E C E’ C K, the formalism of [Nek06, Ch. 8| (recalled in Appendix
B) gives us generalized restriction and corestriction morphisms in D(R):

res i=resy /g ﬁff(E,X) — ﬁff(GE/,X); Cor 1= COlf g/ ’R\l:f(E',X) — ﬁ\ff(E,X).
We use the same notation to denote the corresponding maps induced on cohomology. For every (possibly

infinite) subextension K C L C K we can then consider the ‘naive’ L-Iwasawa objects:

er 1w (L/K,X) = lim RT(E,X) € D(R); H}fe™(L/K,X) = lim H}(E,X) € g(z)Mod;

E ,cor FE,cor

RT; " (Ks/L,Ax) = lim RT;(E,Ax) € D(R); H;™*(Kgs/L,Ax) = lim Hj(E,Ax) € g(z)Mod,
Eres Eres
where the limit is taken over the set of finite subextensions K C E' C L. We recall that Gal(E/K) acts by
(generalized) Galois conjugation on H% 7(£,X) and such an action can be defined on the complex ce (B, X)

only up to homotopy (see Appendix B for the details). Then conjugation defines a natural structure of R(L)-
module on H*’nawe(L/K,X) and ff}k’naive(Ks/L,AX), but via such a ‘naive’ definition ﬁ;ilv\;e(L/K,X)

and RT; f o e(K s/L,Ax) lives a priori only in D(R). Following ideas of Greenberg [Gre94b|, Nekovai’s
solved this problem using his version of Shapiro’s Lemma. More precisely: as explained in details in
Appendix B, Shapiro’s isomorphisms (82) induce natural isomorphisms in D(R):

(83) Shy,p, : RLfn(L/K, X) = RL,, (L/K, X);

naive

(84) Shyp : Ry, (Ks/L,Ax) 2RI (Ks/L,Ax).
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More precisely, these isomorphisms are defined by the inverse (resp., inductive) limit of the Shapiro quasi-
isomorphisms (Shg f) 5 /1> combined with natural isomorphisms of complexes of R-modules:

G3(K, X (L)) = lim O2K, X(E)); C3(K, L(Ax)) 2 lim C3(K, B(Ax)).
pr B pri, E
Here E/K runs again over the finite subextensions of L/K. The inverse limit is taken with respect to
the maps pr, = (prE,/E) induced on Selmer complexes by the natural projections pr : X(E’) - X(E)
defined by restriction of automorphisms for every tower of finite subextensions L/E’/E/K. The direct
limit is taken with respect to the maps (pr*), := (pr}‘;, / E>* induced on complexes by the duals pr* :=
Pr i+ Home (1, Ax)(pre p) : E(Ax) < E'(Ax) of the projections pr : R(E’) — R(E). The first (resp.,
second) isomorphism comes again from the maps induced on Selmer complexes by the natural projection
X(L) .= XorR[[Gal(L/K)]] » X®@rR[Gal(E/K)] :== X (FE) (resp., comes from the natural maps induced
on complexes by the natural maps E(X) — lim pHomg (R(F), Ax) =: L(Ax)). (Of course we implicitly
stated that the Shapiro isomorphisms Sh, ¢ ‘transform’ (prg p)« (resp., (prg, p)« ) in cory pr/p (resp.,
ress pr/p). We refer again to Appendix B for the details.) Then (83) and (84) identify the ‘naive’ limits
with complexes naturally living in D(R(L)), and we can use this isomorphisms to give /R\f;ilv‘;e(L/ K, X)

and f{\f;awe(Ks/L, Ax) the required R(L)-structure. Moreover it can be proved (cfr. App. B) that taking
cohomology in (83) and (84) we also obtain natural isomorphisms

(85) Sh, : Hj o (L/K,X) = lim Hj(K, X(E)) > HpteV(L/K, X) € D(R(L));
E,pr,

(86) Ship « Hypa"(L/K,Ax) S lim Hj(K,E(Ax)) = Hj(Ks/L,Ax) € D(R(L)).
E,(pr*).,

We will use (83) and (85) (resp., (84) and (86)) to identify f{\ffylw(L/K,X) and fNI;JW(L/K,X) (resp.,
ﬁff(Ks/L, Ax)and I;T} (Ks/L,Ax)) with the corresponding naive objects EVFI}?II;G(L/K, X) and f[}:xive([//}(, X)

——naive

(resp., RT';  (Ks/L,Ax) and f[;’naive(KS/L,AX)) respectively.

10.3. Control theorems.

10.3.1. Abstract case. Let X € {T, Ty}, K C L C K and R = Rx be as in the preceding Section.
Let ¢ : R(L) - A be a surjective morphism of complete local Noetherian rings such that P := ker(¢) =
(x) € Spec(R) is generated by an R(L)-regular sequence () = (21,...,%,) C Mgy (Where mg () is the
maximal ideal of R(L)), and write Yjp) := X (L) ®z(),¢ A. Then Y}p; is a continuous A[Gk s]-module,
equipped with A[G,]-submodules 4} (Yip)) := i (X (L)) @r(r),6 A : (Y[P}):_ = X(L)§ ®r(r),6 A = Yip
for every v € S, (recall that X is a free R-module of finite type, hence X (L) is finite and free over R(L)).
Let us consider Selmer complexes

CHE,Yip)) = C}(Gk.s, Yip)i As, (V) € K(A); RIf(K,Yip)) := R4 (Gk s, Yp); As, (Yip))) € D(A),

defined exactly an is Section 10.1 (using the G, -filtrations (}/['p])j already defined). As usual we write

B3 (K, Yip)) = H* (er(fg Y[p])) € (4Mod),, ,

Gently abusing notations, for every M € D*(R(L)) we will write M ®%2(L),¢ A to denote both ¢, oL¢*M €
D*(R(L)) and L¢p* M € Db(A). (The derived category under consideration will make the notation clear.)
PROPOSITION 10.2. There exists a canonical isomorphism in D(A):
RI; (K, X) ®F 1) A= R (K, Yp)).

ProoOF. This is a special case of Lemma 0.4. O
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10.3.2. Galois deformations.

PROPOSITION 10.3. Let K C L C L' C K be a tower of subextensions of K/K. Let X = T (resp.,
X =Ty fory € XM (R)), and let R = R (resp, R = Oy).
a) There exists a canonical isomorphism in D(R(L)):

(87) RT 1 (L' /K, X) %, R(L) = RI 1 (L/K, X),

)€Lr/L
where ep/r, : R(L') — R(L) is the projection induced by restriction of automorphisms.

b) Assume that Gal(L'/K) = Zf,“ (k > 0) and Gal(L/K) = Z’;, and fix a topological generator
o € Gal(L'/L). Then (87) induces short exact sequences of R(L)-modules:
(88) 0— Hi (LK, X)/ (o) — 1) — Hi 1 (L/K,X) Ty HiT (L' /K, X)opr — 1] = 0.

PROOF. a) is a special case of Proposition 0.13 (i.e. an easy corollary of the preceding Proposition).

b) Under our assumptions Gal(L/K) is a direct summand of Gal(L'/K); fix topological generators
01,...,0k, 01 of Gal(L'/K), such that o1, ..., 0} is a set of topological generators of Gal(L/K’). We then
obtain (non-canonical) isomorphisms R(L') = (R[lo1 —1,...,04 —1]]) [[or,/r — 1]] = R(L)[[or/ /1 — 1]],
inducing a short exact sequence on Selmer complexes (cfr. Lemma 0.4):

~ orr,r—1 ~ ~
0— C3(Gk,s, X (L)) YA C}(Grs, X(L)) — C3(Gk,s, X (L)) — 0.

(Indeed the control theorem comes exactly from this short exact sequence of complexes; cfr. the proof
Lemma 0.4.) Taking cohomology and recalling the definitions we conclude the proof. O

10.3.3. Weight deformations. We recall that we are assuming R regular, so that every height one prime
of R (in particular every arithmetic prime) is a principal ideal.

PROPOSITION 10.4. Let ¢ € X*W(R), with py = ker(¢)) = (wy) and let K C L C K. Let ¢(L) :
R(L) — Oy(L) be the morphisms induced on Twasawa algebras by . There exists a canonical isomorphism
in D(Oy(L)):

R 1w (L/K,T) ®F1) 1) On(L) = REp 1 (L/ K, Ty).

This induces short exact sequences of Oy (L)-modules:

(89) 0— ﬁJ‘Z’IW(L/K, T)/wy — ﬁ)‘%ylw(L/K, T,) Ty ﬁ;};(L/K, T)[wy] — 0.

PrOOF. The first isomorphism follows directly from Prop. 10.2, noting that the kernel of ¢(L) is the
principal ideal of the domain R(L) generated by wy,

Ty(L) := (Tw ®o, Ow(L)) < —1>= (T @R,y Oy ®o, Ow(L)) <-1>2(T®gy Ow(L)) <-=1>
= (T®r R(L)) < =1 > ®pr1)wr)Op(L) = T(L) @r(r),»r) Ou(L)
as Oy (L)[Gk,s]-modules, and similar isomorphisms of O (L)[G,]-modules are obtained replacing T with

T} for every v € S,. As explained in the proof of Lemma 0.4, the control theorems comes from an exact
sequence of complexes of R(L)-modules:

Ty

0— C3(Gk,s,T(L)) ¢ C}(Gk,s,T(L)) — C3(Gk.s, Ty(L)) — 0.

Taking cohomology we obtain the second statement, with i, the connecting morphism in the associated
long exact cohomology sequence. O



10.4. Duality and perfectness. Let X € {T, Ty}, K C L C K and R = Rx be as in the preceding
Section. Let us write 7x :=7r : T®r T — R(1) (resp., 7x := TR @ry Oy : Ty ®o, Ty — Oy) if X =T
(resp., X = Ty). With the terminology of the Section 0.6 (cfr. Section 0.8) 7x is a (skew-symmetric)
perfect duality between X and itself, such that X 1., X and X L1, X[ for every v € S,. Then the
constructions of Section 0.17 gives us a skew-Hermitian perfect duality

mx (L) : X(L) ®@r(ry X(L)" — R(L)(1),

such that X(L) L, ) X(L)" and X (L) Ll ) (X(L)})" for every v € S,. Thanks to Nekovéi’s
theory and global class-field theory (see Section 0.7 and Section 0.10) we can attach to mx (L) a global
cup-product pairing in D(R(L)):
U ()  RT g1 (L/ K, X) @ 1) RE p1w (/K X)* — R(L)[-3]
and an abstract Cassels-Tate pairing:
EWX(L)72-,2 : ﬁ%,IW(L/K7 X)tor ®R(L) ﬁ?,IW(L/K7 X)éor - %(L)/R(L),

where *¢,, denotes the R(L)-torsion submodule of * and Z(L) := Frac(R(L)) is the total ring of fractions
of R(L).

Let S be a ring. We recall that a complex C' € D?(S) is said perfect (vesp., perfect of perfect amplitude
contained in [a,d]) if there exists a quasi-isomorphism P — C with P a bounded complex of projective,

finitely generated S-modules (resp., such that P/ =0 if j > b or j < a). In this case we write C' € Dpare(S)
(resp., C € DL‘;’ff](S )). We have the following fundamental theorem.

THEOREM 10.5. a) The cup-product U, (ry induces by adjunction an isomorphism in D(R(L)):
ax (L) = adj(Uny (1)) = RT 10 (L/K, X) = RHomyg (RT ;1 (L/K, X)", R(L)) [-3].
Moreover U (1) is skew-Hermitian, i.e. the following diagram commutes in D(R(L)):

Urx (L)

RIf 1 (L/K, X) ®% ;) RT 1w (L/K, X)* R(L)[—3]

R 1 (L/K, X)' @% ) R 1 (L/ K, X) == R(L)[-3]

b) RT f.1w(L/K, X) € DY2(R(L)).

parf
c) The abstract Cassels-Tate pairing ¢ (r)2,2 15 skew-hermitian.

d) There exists for every q € Z a canonical isomorphism of R(L)-modules
H(Ks/L, Ax) = Homes (ﬁﬁgg(L/K, X),Q, /Z,,)
(cts = continuous refers to the discrete topology on Qp/Z, and the mg r)-adic topology on FI}fJW(L/K, X)).

In the proof we will use the following Lemmas.

LEMMA 10.6. Let (A, m) be a Noetherian local ring, C € Dg(A) and © = (x1,...,24) C m an A-regular
sequence. If H1(C ®% A/x) = 0 then H1(C) = 0. In particular: C @% A/x = 0 in Dy (A/x) implies
C 50 in Dy (A).

PROOF. We prove the lemma by induction on d.

If d =1 we have C @% A/z = C ®4 (A = A) = Cone (C = C), where (A 2% A) (concentrated in
degrees —1 and 0) is a free resolution of the A-module A/x. Taking cohomology this induces injections

HY(C)/z1HY(C) — HI (C ®% A/z).
By hypothesis H1(C ®@% A/x) =0, so H? (C) = 0 by Nakayama’s lemma.
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Let now d > 1, and let A" := A/(z1,...,24-1). Then A/x = A’/x4A’ and by assumptions z4 is not a
zero divisor in A’. We have an isomorphism

Ce Az S (Coh A)e% Az,
By assumption and the case already proved we conclude H? (C % A’) = 0, so by induction H4(C) =0. O
LEMMA 10.7. Rlcont(Ky, X(L)) =0 € D(R(L)) for every v € Sy —.5),.
PROOF. Lemma 0.4 (cfr. the proof of Proposition 0.13) gives a canonical isomorphism in D(R(L)):
R cont (Ko, X(K)) @3 1), RIL) = Rl cont (K, X (L)),

where ex /1, is the projection R(K) — R(L) induced by restriction of automorphisms. Then to prove the

Lemma we can assume L = K. Given an arithmetic map ¢ € X% (R;O,) the prime ideal Ji ., =

w(K
ker <R(IC) —(» ) 0y(K) I qu) € Spec(R(K)) is generated by an R(K)-regular sequence, so that loc. cit.

gives us an isomorphism in D(Oy):
(90) RFCOHt(KUa T(]C)) ®%(I€) R(IC)/J/CW = Rl cont (KU) Tw)-

(Indeed, as in the preceding Section we easily obtain T(KC)/Jx.» = Ty as Oy[Gk,s]-modules.) Then the
Lemma will follows once we will prove RI'cons (K, T(K)) = 0 € D(R(K)) for every v € Sy —S,. But
combining the preceding Lemma with (90) for ¢ = ¢, € X*™H(R,Z,) (the arithmetic prime attached to
fr) and the isomorphism of Z,[G i s]-modules Ty, = T), := Ta,(E/q) (proved in Section (9.3.4)) this last
assertion will follows by the claim:

(91) RTcont (Ko, Tp)) =0 € D(Zy,) for every v e Sp — 5.

To prove this we simply use Hypothesis 3 and Tate local duality: in fact H°(K,,T,) = 0 (e.g. by [Sil86,
pag. 184]) and (using the Weil pairing) H?(K,,T,) = 0 since it is the Pontrjagin dual of H°(K,, Ep=~) =
E(K,)p =0 (by of Hyp. 3). Finally, since v t p, Tate’s formula for the local Euler characteristic [Mil04,
pag. 31| shows that (H’(K,,T,) = 0 for every j # 1 and) H'(K,,T},) is finite, so

0= HO(vaEp”) = HO(KmEpm)/div = Hl(Kvan)prtors = Hl(KmTp)~

(Here the second equality is again [Sil86, pag. 184] and the isomorphism is the connecting morphism
attached to the short exact sequence of G,-modules 0 — T, — T, ®z, Q) — Ep~ — 0 [Tat76].) This
proves (91) and the Lemma. O

PROOF OF THEOREM 10.5. a) Recall that, with the notations of Section 10.1 we have
RT 1w (L/ K, X)' = 'O (G5, X (L); As, (X (L),

where Ag (X (L)) is the set of local conditions attached to i : X;F(L) < X (L) (resp., 0 — X(L)) for
v €S, (resp., v € Sy —Sp). It then follows by the exactness of mx (L) and Proposition 0.2 that we have an
isomorphism in D(R(L)):
Cone (ax(L)) 2 @D RTcont(Ky, X (K)).
veESy—Sp

Then the first assertion follows by Lemma 10.7. The second assertion is a special case of Lemma 0.5,
recalling that mx is skew-symmetric, so that mx (L) is skew-Hermitian (see Section 0.17).

b) Let f : S — T be a morphism of rings. Then by construction of left derived functors: — ®§} i T (or

better L f*) maps DI[)(;’ff](S ) to Dg;ff](T) Then using the control theorems proved in the preceding sections,

it is sufficient to prove the statement for ﬁff,lw(lC/K, T) (cfr. also to the proof of point of Lemma 10.7).

Since Gg,s and G, (v € Sy) have p-cohomological dimension two, and T, TF (v € Sy) are free R-
modules (so that T(K) and T(K)} (v € Sy) are finite free R(K)-modules), it follows by [Nek06, Prop.
4.2.9] that:

{RT cont(Gre,55 T(K)); Rl cons (K X[ (K)), RTcomt (Ko, X(K)), v € S5} € DA(R(K))

parf
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(Recall that we are considering X;F =0 if v € Sy — S,). By definition we then obtain
RI 1 (K/L,T) =

ressp lsp
Cone | C

c.ont(GK,Sv @ @ cont KU? T'UJF(IC)) @ cont ) [ ] € Dl[)oargf] (R(L))

vES, vES,
We claim that:
(92) 01, (K/K,T) = 0.
This would conclude the proof. Indeed (92) would imply (see the discussion in [Nek06, Sec. 4.2.8|)
RI; 1 (K/K,T) € DA(R(K)).

parf

parf

Then we would obtain RHompgx) (ﬁfwa(lC/K, T)‘,R(IC)) [-3] € e pltl (R(K)) and using the isomor-

phism a1 (K) from a) we finally would obtain:

RT 1w (K/K,T) € D22(R(K) nDL2(R(K)) = D2 (R(K)).

parf parf parf

(For the last equality see again [Nek06, Sec. 4.2.8].)
Since T, (resp., F,F(T},) for v € S,) is obtained as the quotient of T(K) (resp., T(K);) by the ideal
Ji,¢,, which is generated by an R(K)-regular sequence (cfr. the proof of Lemma 10.7), Lemma 10.6 implies

that to prove (92) it is sufficient to prove that fIJ‘:’(K, T,) = 0. This follows by Hyp. 3 : E(K),~ = 0.
Indeed, since Epe is the Kummer dual of T),, using Nekovai’s generalized Poitou-Tate duality (precisely
Prop. 0.8 and the exact sequence (166)) we see that the Pontrjagin dual of }NI? (K,Tp) is a submodule of
H°(Gk,s,Ep=) = 0.

¢) (resp., d)) is a special case of Lemma 0.7 (resp., Lemma 0.14). O

10.5. p-adic pairings. Fix a Zg—extension L/K. For every subextension K C L C L and every

. P
arithmetic point 1 € X*(R; O,) we write Jy, » = JrjLp = ker (R(ﬂ) 5 R(L) _(”) Oy (L )) C Mp(c);

it is an ideal generated by an R(L)-regular sequence. More precisely: fix topological generators o1, ...,04
of Gal(£/K) = Z% and let wy be a generator of py := ker(¢)). Then, identifying R(L) = R[[X1,..., X4]]
(with X; = 0; — 1), Jrg = (@Wy,71,---,74), With v; = (X; + 1)pnj — 1 for some integer n; > 0. As
T(L)11y.) = T(L)®R(L)w(L)oe ), Ov (L) = Ty (L) as Oy(L)[Gk,s]-modules and similarly (T(L)]);, | =
Ty (L) as Oy(L)[Gk,]-modules for every v € S, (cfr. the preceding Sections) the construction of Section
C gives us a Bockstein map in D(Oy(L)):

BY = Bieyy  RUpne(L/K Ty) — R g1 (L/ K Ty) 1] @0, 1,0/ L -
(Referring to Section C' for the details, we recall that 6 is obtained, via the ‘control theorems’ of
Section 10.3 applying the derived functor RFf w(L/K, T) ®R(£) to the exact triangle in D(R(L)):

R(L )/Jaw — Oy(L) — JLJ/,/J%W[ ].) The associated derived ‘height’ paring is then defined as the
morphism in D(Oy (L)) (cfr. Section C):

~ ot ~ — L — . By, ®id
hL/L,w = hJL/L,w : RFfJW(L/Kv Tw) ®(914,(L) RFfJW(L/Kv Tw) -

RIf 1 (L/K, Ty)[1] @6, 1y RT p1w(L/ K, Ty)" ®0,1) o0/ 74
Unr, (2 [1]®id
S 0u(D)[-2®0, ) TLw/ It e = o/ It (-2,

where Ur, () = Urzp, () RI 1 (L/K, Ty) ®gw(L) R 1 (L/K, Ty)" — Oy(L)[~3] is the global cup-
product pairing in D(Oy (L)) induced by my, := Tr® g, Oy defined in Section 10.4 (and we use the canonical
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isomorphism (*[1]) ®% ¥ = (¥ ®% 1) [1]). This pairing induces in cohomology an Oy, (L)-bilinear form:
P p g gy ¥

hZ;L,w,m : H},IW(L/K’ Tw) X0y, (L) H},IW<L/K’ Tw)L - JL,w/J%,w-
If £ = L we simply write E‘th = EY;L@ and E‘j:v,tw,m = ﬁ‘g;va?lyl. In particular taking £ = L = K (and
writing p,, := ker(t)) we obtain a ‘derived weight pairing’:
ity i RUG(K,Ty) ©, RUf(K,Ty) — py /ph[-2],
and the corresponding weight paring on cohomology:
R g s HP(K Ty) @0, HY (K, Ty) — py /P

In a similar way, replacing in the constructions above T with T, and Jr , with the £/L-augmentation
ideal Iy = Iz g = ker (eg/1 1 Oyp(L) - Oy(L)) C Mo, (c) in Oy (L), the constructions of Section C
gives us a Bockstein map:

Braw = Bi.,..,  RUfiw(L/K, Ty) — RIf 1 (L/K, Ty)[1] @0, Iny/17 4,

(obtained, via Prop. 10.3 applying /R\ff’lw(ﬁ/lﬂ Ty) ®I(5w(ﬁ) — to the the exact triangle in D(Oy(L)):
Oy (L)/17 , = Oy(L) — Ir /17 ,[1]) and the associated ‘derived canonical height pairing’

~ ~ — = , BL,y®id
hespa = hig,,, RU g (D/ K, Ty) ©6, 1) RE fiw (L/ K, Ty)" =5
RT ;1w (L/K, Ty)[1] 96, (1) REf.1w(L/K, Ty)" @0, 1) ILw/17

U (L) [1]®id
S 0u(D)[-2®0, )L/ IE = TLaw/1E 412,

inducing in cohomology the canonical height pairing:

%E/L,w,l,l : ﬁ},IW(L/Kv T¢) ®O¢,(L) Er]l”,lw(L/K7 Tl/J)L - IL,w/I%,w-

Write py, (L) := Jp/y for the kernel of ¢)(L) : R(L) — Oy/(L), which is a principal ideal generated by

wy. We have a canonical decomposition of Oy (L)-modules
Jrw/ Ity = T /114 ® pu(L)/py(L)?,
induced by the natural projections €./, : Jr 4 — Py (L) and (L) : Jpy — I . This induces a decompo-
sition _ _ _
}:Vt/L,w,1,1 =hg/Lyp11® hVLVf¢71,1-

LEMMA 10.8. i’\ig:ﬂw,l,l = EVLV,tw,Ll and HL‘/L,w,l,l = ’ﬁﬁ/Lﬂ/)J,l

PRrOOF. This is a special case of Lemma 0.15. O

It follows in particular by the Lemma that EE JLa,1,1 (Tesp., flevfw’Ll) depends only on the Galois
deformation Ty (L) of Ty (L) = Ty(L) ®o, ) Oy(L) (resp, the Hida deformation T(L) of Ty (L) =
T(L) @r(w)w(r) Op)- N

10.5.1. Another description of hVLVfw,l,l' Fix a generator wy of the principal ideal p, := ker(y). We
recall (cfr. Section 10.4) that the perfect skew-Hermitian pairing 7(L) : T(L) ®z) T(L)" — R(L)(1)
induced by the perfect skew-symmetric duality m = 7g : T®rT — R(1) induces, via Nekovai’s construction
described in Section 0.10 skew-Hermitian pairing (cfr. Theorem 10.5) of R(L)-modules:

EW(L),Q,Q : HJ%,IW(L/Ka T)R(L)—tors ®R(L) H?,IW(L/K’ T)LR(L)—tors - ‘%(L)/R(L)v

where #Z(L) := Frac(R(L)). We have a (non-canonical) isomorphism of Oy (L)-modules:

O, (Z(L)/R(L)) [@y] = py (L) /0y (L)?,
defined by 0, ([r/w@y]) := (wy - 7) mod py(L)? = ¢(L)(r) - wy mod py(L)?. Recall also the morphism of
Oy (L)-modules B B
i, Hj o (L/K,Ty) — Hj 1 (L/K, T)[wy)]
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defined in (89).

PROPOSITION 10.9. The following diagram of Oy (L) modules commutes:

N - AT
Hj 1 (L/K,Ty) @0, 1) Hj 1y (L/K, Ty)" - py(L)/py(L)?
o, Bty wi 0w,
~ ~ Cr(L),2,
H3 1 (L) K, D) [wy] @0, (1) H} 1 (L/ K, T [ey] ——— (#(L)/R) [wy].
ProOF. This is a special case of Proposition 0.17. (]

COROLLARY 10.10. }Nl‘gfw,l,l is skew-Hermitian (with respect to the involution induced on py(L)/py(L)?

by the Iwasawa involution ¢ on R(L)). In particular 5}5%171 15 skew-symmetric.

PRrOOF. This follows directly by the preceding Proposition, recalling that cr(r) 2,2 is skew-Hermitian
(Theorem 10.5) and noting that 6, ‘commutes’ with the involution ¢ (as «(wy) = @y). O

10.5.2. Another description of iNL[;/Lﬂm)l. Let us assume (for simplicity) in this Section that L/K is
a (possibly trivial) Z,-power extension (referring to Section 0.22 for the general situation). Let as fix
an isomorphism: Gal(£/L) = Z’;, and let o; € Gal(£/L) for j = 1,...,k be the topological generators
corresponding to the canonical basis of Z’;. Write £;/L for the Z,-extension corresponding to o, i.e.

L; C L is the subfield fixed by the closed subgroup of Gal(£/L) corresponding to @t;ﬁj;1§t§k Z, C Z’;

under the fixed isomorphism. Then Gal(£;/L) = UJZ" is topologically generated by o;.

The construction of Section 0.10, applied to the Oy (L;)-modules Ty (L;) and the perfect skew-
Hermitian duality my(L;) @ Ty (L)) ®o,c;) Tw(L) — Oy(L;)(1) (where 7y 1= 7T @p,y Oy) gives us
skew-Hermitian pairings:

Eﬂ'w(ﬁj),Q,Q : ﬁ?,lw(’cj/K7 TT/J)OU,(CJ-)—torS ®O¢([,j) ﬁ?,lw(‘cj/K’ Tw)lbw(ﬂj)—tors - ﬁw (ﬁj)/0¢(£J)’
where Oy (L;) := Frac (Oy(L;)). Moreover (88) gives us a morphism of Oy (L)-modules:
io; t Hf 1 (L/K,Ty) — H} 1 (L; /K, Ty)[o; — 1],
and we have an isomorphism of Oy (L)-modules: 0, : (0y(L;)/Oy(L;)) [o;—1] = Il:j/Lv"b/Izj/L,w’ defined

by [a/(o; —1)] — - (0; — 1) mod I%j/L’w =¢er,/p(@) - (07 —1) mod I%j/Lyw. Finally, let us note that we
have a canonical decomposition: '

k
Iesnw/ T e = @D Ie, /12, 1.
j=1
induced on ‘augmentation ideals’ by the natural projections ez /¢, : Oy (L) = Oy (L;) defined by restriction

of automorphisms.

PROPOSITION 10.11. For every j =1,...,k, the following diagram of Oy(L)-modules commutes:

he/opaa

H}_’IW(L/K, T¢) X0, (L) H},IW(L/K’ Tw)L

Iﬁ/Lﬂ/J/IE/L,w

iEg/cj

Iﬁj/L,w/Iij/Lﬂp

Tef,,
J

(Oy(L5)/O0p(Ly)) [oj — 1]

hejrrpan

HJ]EJW(L/K’ Tw) ®01/1(L) H},IW(L/Ka T'L/)>L

1o, X
s ® c,jl

H2, (L5 /K, Ty)|o; — 1] ®0, (1) H2 1, (L /K, Ty) [o; — 1]

Cry (£4),2,2
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ProoF. Writing I(;) C Oy (L) for the ideal generated by {o; — 1}s; we have Oy (L;) = Oy (L) /1),
so that

Tw(ﬁj) = (Tw ®ow Ow(ﬁj)) < —1>= (Tw ®(9w Ow(ﬁ)/[(j)) <-1>
= (Ty ®o, Op(L)) < =1> @0, (£).cr/e, Ou(L;) = Tu(L) ®0,(£).cr/c; OuwlLs)-

Moreover I, /1, C Oy(L;) is the image of I1/r,,, C Oy(L) under the natural projection €./, . Then the
commutativity of the upper square follows for Lemma 0.15, applied with P = I, 4, * = (0; — 1) and
y=(0i—1:i#j, 1<i<k)

The commutativity of the lower square follows directly from Prop. 0.17. O

COROLLARY 10.12. %E/L,w,l,l is skew-Hermitian (for the the involution induced on IL/L,¢/I[2:/L " by
Twasawa main involution on Oy(L).)

PRrROOF. We have ajil ca=amod I, /4 and —i(o; — 1) = crj_l -(0;—1)=(o; —1) mod Izj/L,w
for every a € Oy(L;), so that

a[ o ]:—eoj ["j'““)}:—aaj [(j(“)l]=—[L<a><aj—1>]=[L(awj—l))}=w€a,~[ « ]

o;—1 o;—1 o;—1

J
ie. 0, ‘commutes’ with Iwasawa involution ¢. It then follows by the preceding Proposition and the

properties of Cassels-Tate pairings that each Eﬁj /Lp,1,1 18 skew-Hermitian. Using again the preceding
Proposition we conclude. O

REMARK 10.13. We have a canonical isomorphism of Oy (L)-modules:
Gal(ﬁ/L) ®Zp qu(L) = I[//LJ/J/Iz/L,w?

induced by g®1 + g—1 mod I /1 forevery g € Gal(L/L). This isomorphism ‘transforms’ the involution
¢ on the R.H.S. in the involution —id ® ¢ on the L.H.S. In particular, taking L = K we obtain from the
preceding Corollary a symmetric height pairing:

7”[:/[{,1[)71,1 : ?I}(K, Tw) X ﬁ}(K, Tw) — Gal(ﬁ/K) ®Zp O'/)

10.6. R-adic pairings. Let K C L C £ C K be as in Section 10.5. Write J.,;, := ker (R(£) - R(L))
for the £/ L-augmentation ideal in R(L£). This is a prime ideal generated by an R(L)-sequence (cfr. Section
10.5), and the construction of Sec. 0.20 gives us a Bockstein map:

Bie, t RTpaw(L/K, T) — RT 1w (L/ K, T)1] @ g1y Je/n/ T30
(defined via the the control theorem Prop. 10.3 applying ﬁff,lw(/.:/K, T) ®%(£) — to the exact triangle in
D(R(L)): R(ﬁ)/Jz/L — R(L) — JE/L/Jz/L[l]) with associated R-adic derived pairing:

~ — L — . 5JL/L®id
Hﬁ/L :Rl—‘f’IW(L/K,T) ®R(L) Rl—‘f’IW(L/K,T) —_—

RI 1 (L/ K, T)[1)&% ) R p1w(L/ K, T) @z Jesn/ T2

Urp o) [1]®id
*E T RI=2) @R Jeyn /IR = o) 2L -2),

where Uy, (r) is the global cup-product pairing in D(R(L)) attached to the the perfect skew-symmetric
duality 7 =7g : T®g T — R(1) in Sec. 0.17. As above we write

ﬁﬁ/L,l,l : ﬁ},IW(L/Ky T) ®R(L) f[},lw(L/KaT)L - JE/L/JE/L

for the R-bilinear form induced by H £/ on (1, 1)-cohomology.



10.6.1. Specializations. Let 1) € X**h(R, O,), inducing a morphism ¢ (L) : R(L) - O, (L) & R(L)®r
R/wy, such that I/, 4 = (L) (JL/L). Let us denote again by the same symbol the induced projection
Jesn) Iz = Lejw/Iz ) - Since Ty(t) = T(f) @p,p Op = T(})/wy for every sub-extension /K of
K/L, a direct application of Lemma 0.16 proves the following Lemma.

LEMMA 10.14. Let us write ¢(L) : ﬁ}wlw(L/K, T) — ﬁ},IW(L/K, Ty) for the morphisms induced on
Selmer complexes by W(L). Then the following diagram of R(L)-modules commutes:

~ ~ Heypan
Hj1(L/K,T) @) H 1, (L/ K, T)" Jesnl Iz
¢(L)*®1/’(L)ii lw(L)
~ ~ . heypwn
Hj 1 (L/K,Ty) @y Hip,(L/K,Ty) Ieynwl1Z/p .

10.6.2. Relations with Cassels-Tate pairing. Assume that L/K is a Z,-power extension, and let £;/L be
as in Section 10.5.2. Then the analogue of Proposition 10.11 holds for Hy,y, 1 1, i.e. using similar notations
as in loc. cit.: under the canonical decomposition of R(L)-modules JE/L/J[%/L = @?:1 Jﬁj/L/sz/L we

have
k

_ _ - B _ )
Heppag = @HLJ-/L,LL Heijni0 =106, 0Cr2;),2,2°C0; @G,
=1

Here (, : f[}ylw(L/K, T) — ﬁ?’lw(ﬁj/K, T)[o; — 1] is the morphism coming from (88), the isomorphism
Vo, : Z(L;)/R(L;)[o; —1] = ch/L/J?:j/L is defined by 9o, ([ r D =7 (0; —1) mod J?:J_/L and

O'jfl

Cnie) 22 Hr (L) K, T) riz)tors @r(c,) Hrw (L) K T )y ors — 2(L;)/R(L;)

is the (skew-Herimitian) Cassels-Tate pairing attached to the perfect (skew-Hermitian) duality =(L;) :
T(L;)®pr(c,) T(L;)" — R(L;)(1) induced by the (skew-symmetric) perfect duality 7 = 7z : T&®rT — R(1)

(cfr. Section 0.10 and Section 0.17). In particular we conclude that PNIL/K’Ll is skew-Hermitian.
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11. Organizing modules and p-adic L-functions

In this Section we review the constructions of [MRO5], and we show how the ‘weight variable’ may
be naturally included in their theory of ‘organizing modules’. Following Mazur-Rubin, we then apply the
resulting theory to the the study of algebraic p-adic L-function.

Write R := R(K) and Z, := Z,(K). Let P be an ideal of R which is stable under the action of Iwasawa

involution ¢. Then A := R/P is equipped with an involution compatible with + : R — R, which we denote
again by ¢. Moreover, for every A-module N, we write N* := Hom4(N*, A), where N* denotes the A-
module with the same underline abelian group as N, but with A-action obtained composing the original
action with + : A — A. We will frequently consider the case N = M ®5 A, for a free R-module M of finite
rank. In this case we have canonical identifications

ML(X)EA:NL; M*®§A:N*,
where the first (resp., second) isomorphism is defined by m ® a +— «(a) - m (resp., ¥ — ¥ mod P).
11.1. Skew-Hermitian modules (cfr. [MRO5, Sec. 4]). A skew-Hermitian R-module is a pair

(@Jl), where @ is a free R-module of finite type and h : ® — ®* is an injective, skew-Hermitian morphism
of R-modules. In other words: writing

(——),  ®x® — R

for the R-bilinear form defined by (x,y)s := h(z)(y), we assume that (—,—); is non-degenerate, and
satisfies

(93) (z,9)n = —t(y, ),

for every z,y € ®. We say that (®,h) is a basic skew-Hermitian module if (—, —), : ® x ®* — m takes
values in the maximal ideal m of R.

A morphism of skew-Hermitian modules (®,h) — (¥, p) is a morphism of R-modules 9 : ® — ¥ such
that the following diagram commutes:

& —"s o
wi sz*
p
L

We fix for the rest of this section a skew-Hermitian module ® = (®,h). We also write S := S(®) :=
coker (h), sitting in an exact sequence of R-modules

005" 58— 0,
which also give a free resolution of length 1 of S.
Let P C R and A := R/P be as above, and write ®p := P @7z A, hp :=h@A: dp — * @z A = O,
where ®% is an abbreviation for (®p)*. We define
M(P) := ker (hp) = Torlﬁ (S,A); S(P) :=coker (hp) =S @5 A,
giving rise to an exact sequence of A-modules
(94) 0— M(P) — ®p "5 &5 — S(P) — 0.
By (93) and this exact sequence we obtain a commutative diagram of A-modules:

—h,

(95) M(P)C ®p

(@5)" S(P)

~

—_
2

Hom (hp)

Hom 4 (S(P), A)—— Homy (P}, A) Homy (Pp, A) — Extlﬁ (S, A).
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Here @4, := (Pp)" = @ @5 A, the first vertical map is the canonical isomorphism sending z € ®% in
{Homy (®%, A) 3 ¢ — t(x)}, while the second is given by Hom (®p, A) 2 ¢ — vo1) € Hom (D%, A)".
This gives in particular isomorphisms of A-modules

(96) M(P)" = Homa(S(P), A);  S(P)" = Extg (S, A).

As in [MRO5, Sec. 4] (and with notations which will be explained below), this isomorphisms can be used
to construct a skew-Hermitian ‘height pairing’

71‘1:‘777111 : M(P) XA M(P)L — 7)/7)27
and a skew-Hermitian ‘Cassels-Tate pairing’:
Copp2,2: S(P)tors @4 S(P)iors — A /A,

where &7 := Frac(A) and o5 refers to the A-torsion. (Here skew-Hermitian is with respect to the involution
induces by ¢ : A — A, meaning that an analogue of the relation (93) holds.) These pairings can also be
defined directly as follows. (See Sec. 4 of loc. cit., or the following Section for a more ‘conceptual’
definition.)

Let z € M(P) C ®p and y € M(P)* C %, and let € ® and iy € ®* be liftings of x and y respectively.
By definition, hp(x) = 0 and hp(y) = 0, so that (Z,2), € P and (2/,y), € P for every z € ®* and 2’ € P.
This implies that the projection of (7,7), in P/P? depends only on x and y. We then define

Eép,m(a? ®y) = (7,79), mod P?.

Let now z € S(P)iors and y € S(P)ioss With a -2z = 0 and b -y = 0 respectively, for some a,b € A.
Let also 7* € ®% and y* € (®})" be any lift of 2 and y respectively (under the projection (94)). By
construction, there exist € ®p and y € ®% such that hp(T) = a - z* and h%(y) = b - y*. Writing
(=, —) hp o PP X @p — A for the (skew-Hermitian) A-bilinear form corresponding to hp, it can be easily
checked that the formula

Copoo(r®@y) = (ab) " (Z,9),, mod A€ .o /A

defines a (skew-Hermitian) pairing (i.e. it depends only on x and y).
11.1.1. Associated complexes and duality. Let ® = (®,h), P € Spec(R) and A := R/P be as in the
preceding Section. We consider the associated complex of A-modules

&p = (cbp b, <1>;;) ,

with ®p in degree one. (When P = 0, we write simply ® := (<I> 2, (I>*) for ®3.) By construction:

M(P)=H'(®p); S(P)=H*(®p).

We have
Bp 04 B = (05 90 2 (8:.5.05) 0 (B0 0 (33)) 2 850 (85 ).
concentrated in degrees [2,4], where
0* = (hp ®id, —id ® h%), 0® = (id®@ h%) @ (hp ®id).

It follows by the definition of skew-Hermitian module that the formula:

(" @y © (@ey’) - a'(y) - Ly (@),
for every x € p, y € ®%, z* € D3 and y* € (P})" defines a morphism of complexes of A-modules

Us, : Pp ®4 (I)ép — A[—?)].
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LEMMA 11.1. The cup-product Us,, induces by adjunction an isomorphism
ag, = adj (Usp,) : Pp 2 Homy (P, A) [—3] = Homy (Pp, A)" [-3].

Moreover Ug,, is skew-Hermitian, i.e. the following diagram of complexes of A-modules:

L Vap
PN S N—— | |

e

(I)%; R Pp ——— Ab[*3]
commutes.
PRrOOF. This follows by an easy computations (cfr. the commutative diagram (95)). O

11.1.2. ‘Derived pairings’. The notations are as in the preceding Sections. We recall that by definition
® is a complex of free R-modules (of finite type). In particular the functor ® ®7 — (on the homotopy
category of complexes of R-modules) maps quasi-isomorphisms to quasi-isomorphisms, so that it can be
derived trivially to a functor defined on D°(R). Applying it to the exact triangle in D(R):

P/P? — R/P? — A — P/P?[1],

we obtain (cfr. Sec. 10.5) a ‘Bockstein map’ in D(R):
Bp:®p=8R5A— ®e7P/P ]2 &1 05 P/P*> = &p[l] @4 P/P>.
We define the ‘derived height pairing’ as the morphism in D(A):

~ i a5 [1]®id
hay : ®p @4 B T B[] 04 Bl @4 P/P? U P P2 g,

LEMMA 11.2. The pairing Hlvl(ﬁpp) : M(P)®4 M(P)* — P/P? induced by E@P 18 equal to 71@7,)171.

PROOF. By construction, the morphism (Gp is represented by the diagram:

Bp =P 25 A @y Cone (79/732 LN E/P2) 9OSP @ (P/P[1]) = ®p[1] @4 PP,
where: p is the natural projection, pr is induces by the projection R/P? - A = R/P and the last
isomorphism is defined by z @ y — (—1)/(z ® 1) @ y for z € ®’ (and identifying again ®p = ® @7 A).

Let ustake T =2 ®1 € M(P) = HY(® ® A), so that h(z) @1 =0, i.e. h(x) = > ;- xj for elements
a; € P and zj € ®*. Then — ), 2] @ o] +2®1 € @~ ®@P/P?d ®® R/P? is a 1-cocycle lifting » @ 1
under id ® pr. It follows that

H*' (Bp) (T) is represented by Z(ﬂc; ®1)® [aj] € p @4 P/P2
J
By the definitions of Ug,, and he, 1,1 we thus obtain, for every =y ® 1 € M(P)* C ®* ® A:
HY (hay ) @@ 7) = (@ (1) @ 1) @ o] =" (2,9),, mod P? = hay11(T@7) € P/P?,
J

concluding the proof. O

11.1.3. ‘Cassels-Tate pairings’. With the notations of the preceding Sections, let &2 := (A . ,52/) and

RIN(—) := — ®4 &. The constructions of Section 0.10 gives us a morphism of complexes of A-modules:

U:;),P ®id

cop  RIN (®p) ®4 RIY ('1’;;) — RI (®p ®4 ‘I’%;) — RI' (4) [—3]7
inducing an A-bilinear pairing:
H2’2 (E<DP) : S(P)tOTS XA S(,P)'Eors - "Q{/A

LEMMA 11.3. H?? (Cop) = Cop22-
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PROOF. We use the notations of Section 0.10. Let € S(P)iors and y € S(P)L, .- As in the definition

tors*
of €3, 2,2 we choose a € A, 7" € &}, and T € ®p such that x = [z*] and hp(T) = aZ*, and similarly b € A,
y* € (9%)" and y € ®% such that hiy(y) = by*. Then
X = +7Z0a e RN(®p))?; Y =7 +70b e (R[|(®%))?

are 2-cocycles, whose cohomology classes lift 2 and y respectively under the projection in (164). We then
compute the composition (165) on X ® Y, obtaining the 4-cocycle

PR+ ob e (R (®p 04 D5))".
Applying Ug,, ®id to this element, and identifying H* (RI'|(A)[—3]) < </ /A (using again (164)) we obtain:
H*? (Cp,) (r®y) =b' 7" (y) mod A= (ab)™" - (%,9),, mod A=7Cp,22(x®Y).
U

11.2. Organizing modules. Following [MRO5|, we say that a skew-Hermitian R-module ® = (®, h)
organizes the arithmetic of g over K if there exists an isomorphism 1 : ® = RI'; 1 (K/K,T) in D(R),

such that the following diagram commutes in D(R):

Us

P Rn P

o]

— — Urpg _
RFﬁIW(K/K, T) ®% er,IW(IC/K, T) — R[-3]

where Ug := Ug, and TTr := mr(K) is the perfect duality over R(K) attached to mg (cft. Section 10.4).
Combining the results of [MRO5, Sections 5-6] with the results recalled in Section 10.4 we obtain the
following

THEOREM 11.4. Assume that I?%IW(IC/K, T) is a torsion R-module. Then there exists a basic skew-
Hermitian module (®, h) which organizes the arithmetic of g over K.

Moreover, if (U, p) is another basic skew-Hermitian module organizing the arithmetic of g over KC, there
exists a (noncanonical) isomorphism of skew-Hermitian modules (P, h) — (¥, p).

PROOF. By Theorem 10.5, ﬁff,lw(lC/K, T) can be represented in D(R) by a complex P := <P1 2 Pg)
concentrated in degrees 1 and 2, where P; is a projective, hence free R-module of finite type. More-
over, the isomorphism ’R\ffylw(lC/K,T) = RHomg (I’{\ffylw(IC/K, T)L,R) [-3] (from Theorem 10.5) in-

duces an isomorphism in D(R) between P and Homg(P*, R)[-3] = (PQ* LA Py ) (where we recall M* :=
Homy (M*, R) for an R-module M, and 0* := Hom(8")). From this we obtain isomorphisms

7} 1, (K1, T) 5 eer (9) = Teer (97) = (coker (9))" = (3, (K/K,T))

Since I;TJ%,IW(IC/K, T) is assumed to be a torsion R-module, it follows that ﬁ}’IW(IC/K, T) = 0, i.e. 9 is
injective. -
Let us fix an isomorphism 9 : P = RI'; 1, (K/K, T) in D(R), and define the morphism in D(R):

Up : P oy P 2% RT 1, (K/K, T) @5 RT 1, (K/K, T)* =% R[-3].

(We remark that, since P is a complex of free R-modules, this pairing is actually a morphism in the
homotopy category, i.e. comes from a morphism of complexes of R-modules.) By b) of Theorem 10.5 it is
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skew-Hermitian, i.e. the following diagram commutes in D(R):

(97) P ;P r R[-3]

) prL R'[-3].

The commutativity of this diagram can be reformulated as follows: let

ap = adj (Up) : P = Homg (P, R) [-3] = Homg (P, R)" [-3]

be the isomorphism in D(R) induced by Up (the last map induced by ¢ — ¢ o ¢). Applying Hom(—, R) to
the map a'p[3] : P*[3] — Homg(P, R) we obtain a morphism

7 : Homg (Homg (P, R) , R) — Homg (P*[3], R) = Homg (P*, R) [-3] = Homp (P,E)L [—3].
(We remark that the first isomorphism ‘involves signs’, i.e. is not given by the identity.) Moreover, since

P is a complex of free R-modules, the canonical map ¢ : P = Homp (Homﬁ (P,E) ,E) is an isomorphism
(see [Nek06, Sec. 1.2.8] for the precise definition). We then obtain a morphism

ap:=7yoe: P — Homg(P,R)'[-3]

Then the commutativity of (97) is equivalent to the following identity in D(R):

(98) ap = —ap.

In the terminology of [MRO5, Sec. 6], we can summarize the discussion above as follows. P is a
complex of free R-modules concentrated in degrees 1 and 2, with injective coboundary map 0 : P, — P,
and ap is a ‘skew-Hermitian, degree 3, perfect pairing on P’ in the derived category D(R). (This last
statement meaning precisely that (98) holds (cfr. Def. 6.1 in loc. cit).) Applying Prop. 6.5 of loc. cit., we
obtain the following statement: there exists a basic skew-Hermitian module ® = (®, k), together with an

isomorphism ¢ : ® = P in D(R), such that the following diagram commutes in D(R):

2> Homp (@,R)L [—3]

.

P Homg (P, E)L 3],

where ¢* := Hom (@,R)L [—3] and ag is the isomorphism defined in Lemma 11.1. By construction, this is

equivalent to the commutativity in D(R) of the diagram:

P 0p & — > R[-3|

Lp@ch l

P oy P 2> R3]

Taking ¢ := Yo : ® > /R\fﬂw (K/K,T) we see that ® organizes the arithmetic of g over K.
The last statement is [MRO5, Prop. 6.6], concluding the proof. O

11.2.1. Specializations and comparison of pairings. We assume in this Section that the ideal P C R
is (invariant under the action of ¢ and) generated by an R-regular sequence. As usual A := R/P and we
write Tp := T(K)/P. We write

mp : Tp @4 Tp — A1)
for the perfect duality induced by 7. We write RT 7(K,Tp) for the Selmer Complexes attached to the
Greenberg local conditions: F| (Tp) := T(K) @7 A (resp., F,\ (Tp) := 0) for every prime v € Sy dividing
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(resp., not dividing) p (cfr. Section 10). We recall that under these assumptions on P, the constructions
in Appendix C attaches to the ‘P-deformation’ T(K) of T» a Bockstein map:
Bp : RT ;14 (K/K, T) 2 RT4(K, T(K)) — RI (K, Tp)[1] @4 P/P?,
and the corresponding abstract ‘“P-height-pairing’
hp = (Unp (1] ®id) o (8p @id) : RT (K, Tp) % RT (K, Tp)" — P/P[-2].

As usual FvapJJ := H"(hp) is the map induced on (1, 1)-cohomology. Moreover, the construction of Section
0.10 attaches to P, or better to mp an abstract derived Cassels-Tate pairing:

. : RI (f{vrf(K, Tp)) oL RI (ﬁff(K, TP)L) . RI(A[-3)),
and the corresponding Cassels-Tate pairing:
Crp22 = H?*(Crp) : HHK, Tp) actors @4 H} (K, Tp) Actors — o/ [A.

PROPOSITION 11.5. Assume that there exists a skew-Hermitian module ® = (®, h) which organizes the
arithmetic of g over K, with an isomorphism v : ® = R ;1 (K/K,T). Then 1 induces an isomorphism
p : ®p 5 RIp(K,Tp) in D(A) such that the following diagrams:

Uas

Pp ®a (I);J L A[73]

o]

— — U
RI;(K,Tp) ®% RI (K, Tp) —— A[-3];

he
®p 4 DY i P/P2[-2]

PP ®¢fpl

RT (K, Tp) @Y% RL (K, Tp)' —— 2> P/P[-2];

E@P

RFI(fI"p) XA RF[('I);;.) RF[(A)[—3]
RF!WP)@)RDW%)\L
RI\(RT (K, Tp)) @5 RI (RI (K, Tp)* ) — " RIY(4)[-3]

commute in D(A). Moreover identifying M(P) = ﬁ}(K, Tp) (resp., S(P) = I?]%(K, Tp)) under the
isomorphism induced in cohomology by p, we have 7173,1,1 = 71@7,,171 (resp., Cop 22 = Crp.2.2).

PROOF. Define ¢p as the composition
4 — L
bp: ®p = ® 0y A YE RT 10 (K/K, T) ©% A = RT(K, Tp),
where the second isomorphism comes from the control theorems of Sec. 10.3. The commutativity of the
first diagram follows by the fact that Ug,, (resp., Ur,) is obtained applying — ®% A to Ug (resp., Usg).
This is clear from the definitions (resp., follows by ¢) of Lemma 0.4).
Moreover, by construction we obtain a commutative diagram of Bockstein maps:

&p % &p[l] @4 PP

WJ/ iwp[l]@)id

— 8 —
RI;(K,Tp) — RI (K, Tp)[1] ©4 P/P2.
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Then retracing the definitions of the ‘height’ and ‘Cassels-Tate’ pairings, the commutativity of the second
and third diagram respectively follows formally by the commutativity of the first. The last assertion follows
by Lemmas 11.2 and 11.3. O

11.3. Determinants and p-adic L-functions. Following [MRO04|,[MRO5] in this Section we show
how the existence of organizing modules applies to the study of algebraic p-adic functions. In partic-
ular, we can easily deduce ‘functional equations’ and p-adic Birch and Swinnerton-Dyer formulas (cfr.
[Sch83]|,[PR87],[PR92[,[BD95]) relating the Taylor expansion of p-adic L-functions to the determinant
of the p-adic pairings from Section C.

Let R be a regular local ring. For every finite, torsion R-module M we write

charg (M) := H PlengthRP(MP),
ht(P)=1

where (—)p is the localization of (—) at P, and the product is taken over all height-one primes in Spec(R)
[Bou89, Ch. 7]. Since every height-one prime of R is principal, this is a principal ideal. If M is a finite
R-module of positive rank, we put charg (M) := 0.

We fix in this Section an arithmetic prime 1 € X th(R; Zp) with value in Z, and with associated
p-stabilized modular form g,,.

11.3.1. p-adic L-functions. Let us define an algebraic p-adic L-function L, (K, gy) of g4/K to be any
generator of the characteristic ideal

Charzp(;@ (ﬁ?‘,lw (IC/K, T¢)) .

Let I := ker (g7, : Zy(K) — Z,) be the augmentation ideal in Z,(K). We say that L, (K, g,) vanishes to
order r € N if L,(KC, gy) € I". We then define its r-th derivative

L, (K, gy) " e 17/

to be the projection of Ly, (K, g») modulo I7F1.
In the same way, define an algebraic p-adic L-function L, (K, g) of g/K to be any generator of

char px) (PNIJ%’IW(IC/K, T)) .

Let J = Jy := ker (R(IC) - R e Zp>, where the first map is the augmentation map. As above: L, (K, g)
vanishes to order r € N at the arithmetic prime ¢ if L,(K,g) € J" and we define its r-th derivative at ¢
Ly(K.g)" = L,(K,g)"") € J"/JH

as the projection of L,(K,g) modulo J" 1.

REMARK 11.6. Let us write A := Homgs (T(K), ppe) for the Kummer dual of T(K). By the results
recalled in Section 0.11, H71,,(K/K,T) is the Pontrjagin dual of H}(K,A) := H7(Gk.s,A; A(A)), where

A(A) are the ‘dual local conditions’ to that defining RI'f 1 (K/K, T). Then, as costumary in Iwasawa
theory, we can define L, (/C, g) as the characteristic ideal of the Pontrjagin dual of a suitable discrete big
(extended) Selmer group. A similar remark also applies to L, (IC, gy ).

11.3.2. Functional equations.
PROPOSITION 11.7. There ezists p-adic L-functions Ly,(K,g) and L,(K, gy) such that:
LP(ICa g)b = U)(E/K) ’ Lp(lcvg); Lp(lcvglb)b = U)(E/K) : Lp(lcvgw)v

where - -
IU(E/K) = (_1)rankZPH}(K,T,¢) _ (_l)rankRH}(K,T).
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PROOF. Let us begin by proving the first ‘functional equation’.

The statement is trivial if A 7 1w (KC/ K, T) has positive rank over R, so we can assume that H 71w (K/K,T)
is a torsion R-module. Let us fix a skew-Hermitian R-module ® = (®, h) which organizes the arithmetic of
g/K, whose existence in guaranteed by Th. 11.4. By construction we have an isomorphism of R-modules
S 1‘~I]%71W(IC/K7 T), where we recall that S := S(®) has by definition a free R-resolution

0—@%o"—S—o.
Choosing an R-basis {u1, ..., u,, } of ®, this in turn gives us a free R-presentation:

e th;

0—-R" = R" — H}1,(K/K,T) -0,
where
Hy = ((ui7uj)h)1§i,j§r¢ € GL, (R)
is the matrix of the skew-Hermitian form (—, —), with respect to the fixed basis. Localizing at P for every
height-one prime P € Spec(R), it follows by the structure theorem for finite modules over principal ideal

domains that ordp (det Hg) = ordp (charﬁﬁ?,lw(lC/ K, T)) for every height one prime P of R. Since R

(and hence R) is regular we have R = Mhe(py=1 Rp, so that

(99) L,(K,g) :=det (Hgp)

is a p-adic L-function for g/K. Since (—, —), is a skew-Hermitian pairing, He is a skew-Hermitian matrix,
i.e. *Hey = —H} (where (my;)" = (¢ (my;))). It follows that

(100) t(det (Hgp)) = (—=1)™ - det (Ho) .

As Ty := T(K)/J = Ty as Galois-modules, with the notations of Sec. 11.2.1 we have f{\ff(K, Ty) =
RIf(K,Ts). By Prop. 11.5 we can then identify H}(K,Ty) — M(J) and H}(K,Ty) = S(J) (under
the isomorphism ®; = ﬁff(K, Ty)). Since ¢ acts trivially on Z, = R/J, by definition we have an exact
sequence

0— M(J) — &, %4 Homy, (®,,2,) — S(J) — 0,
and the bilinear form (-, —), =~ induced by h; is skew-symmetric, so that rankz, (h;) := rankz, (Im(hs))
is even. We thus obtain:
rankzpﬁ}(K, Ty) = rankg M(J) = rankz S(J) = ro —rankz, (hy) = re mod 2.

Combining this congruence with (99) and (100) we conclude the proof of the first formula.
To prove the second ‘functional equation’, we can again assume that HJ%’IW(IC/K ,Ty) is a torsion

Z, = Z,(K)-module. It follows by (89) and ¢) of Theorem 10.5 that we have an isomorphism of Z,-modules

H2?, (K/K,T) . ~
M WIET) g i my),
pwa,Iw(K:/K7T)

where py, = @y, -R is the kernel of the map induced by 7 on Iwasawa algebras. In particular H J%}IW(IC /K, T)
is a torsion R-module and there exists an organizing module ® for g/KC. Using the notations above, and
again Prop. 11.5 we can identify H%IW(IC/K, Ty) = S(by) = S/py. Since M(py) = 0 by the torsion
assumption and (96) we then obtain a free Z,-presentation:
— e Y —r ~
07, B 7 H? 1 (K/K,Ty) — 0,
where Hg € GL,, (Z,) is obtained applying 1 to Hg. It follows that
Ly (K, gy) = det (Ha ) =¥ (Ly(K, 8))

is a p-adic L-function for g, /K. Since 1) commutes with ¢, we obtain the second formula from the first.
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Finally, we note that
rankaI}(K, T)=re = rankzpfl}(K, T,) mod 2.
The second equality has already been observed above. For the first, we apply exactly the same argument
replacing J, M(J) and S(J) with the augmentation ideal I := ker (R — R), M(I) = H}(K, T) and
S(I) = H]%(K7 T) respectively. (Indeed T(K)/I = T as Galois modules and ¢ induces the identity on
R=R/I.) O

11.3.3. A p-adic BSD formula. Recall our p-adic pairing
h%t/K,w,m : H}(K7 Ty) @z, H}(K7 Ty) — Jw/Ji-
Let us define the determinant of E%t/ k.11 Py the formula
) c (Jf;w /ng“) |z,

is any Z,-basis of (the free Z,-module) I;'} (K, Ty). (Here we use the natural ‘multiplica-

det (%%t/x,lpgg) = det <(7L%}K7¢7171(ui ® uJ)>

1<4,j<Fy
where ug, ..., uz,
tion’ (J/JZ)Z — J'/J' to consider the determinant as an element of J7™»/J™ ¥ and [a] = [3] € (—)/Zs,

if and only if @ = u - 3 € () for some u € Zy.) In a similar way we define the determinant

det (%K/K,w,l,l) € (IF”’/IFerl) /Z;
of the bilinear form ~ _ _
hii s Hi (K, Ty) @z, Hy(K,Ty) — I/1%,

where I is the augmentation ideal of Z,. By Lemma (10.8) we have:

(101) det (%WM) -9 (det (~“;éfw,1,1)) .

THEOREM 11.8. Assume that ﬁ%lw (K/K,T) is a torsion R(K)-module, and let 7y := rankzpff}(K, Ty).
Then L, (K, g) vanishes to order 7y at ¢ and we have

Ly (C,8) ™) = # (B30, Ty)ions ) - det (e p) € (07 /17710) /23

PrROOF. We write in the proof 7 := 7y and similarly J := Jy. Let us fix an organizing module
® = (D, h) of the ar.ithmetic of g/K. By Prop. 11.5 we have H}(K,Ty) = M(J) and H} (K, Ty) = S(J),
where by construction

0— M(J)— &, 3% 5 S(J) =0
is an exact sequence. Let us fix an R-basis ui,...,u,, of ® such that the projection uy,...,u5 of the first
7 elements in ®; = ®/J® form a Z,-basis of M(J); this is possible since Z, is a principal ideal domain.
As in the proof of Prop. 11.7, and using the same notations, we can take
(102) Ly(K/K.g) = det (Ha) = Y €(0) - (ur,tgw))h (tra Uo(ra) i
0'657‘(1)

where S, is the permutation group on n-elements. By definition 0 = h;(4;)(*) = (4, *)n, = (uj,*)p mod J
for every « € ®* and j < 7, so that the sum in (102) belongs to J". Moreover, assume that o € S,, satisfies
o(t) < 7 for some t > 7 + 1. Then (ug, Uy(t))n = —t ((ug(t),ut)h) € J, so that taking (102) modulo J" 1
we can disregard the contribution of these ¢’s. In other words:
(103) L,(K,g)=A-Bmod J !,
where, putting 7 := re — 7 and v; := u;47 for 1 < j <7 we write

A= Z €(o) - (ur, uoy)n - (Ur Uo) )n; B = Z €(a) - (V1,Ve1))n -+ (V7 Vo) ) -
oc€Sx o€SH
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Using the exact sequence above we find (as in the proof of Prop. 11.7): there exists a p-adic unit u € Z,,
such that

(104) B=u # (I?}%(K, Tw)> mod J.

Finally, as (u;, u;), mod J? = qu,m(az‘ ® uj) by definition, we have:

(105) A = det ((u;, uj)p) = det (E%,l,l(ai ® aj)) — det (k;wm) € (ﬁ/ﬁ“) )z,

where the last equality follows by the last statement of Prop. 11.5. Combining (103), (104) and (105) we
obtain the formula in the statement. t

REMARK 11.9. In the preceding proof we used the fact that Z, is a principal ideal domain. Indeed
all the results above and the following Corollary are valid, mutatis mutandis for an arithmetic prime
Y € X¥(R: O) such that 1(R) = O is a discrete valuation ring.

COROLLARY 11.10. Assume that ﬁ?yIW(IC/K, Ty) is a torsion Z,(K)-module. Then L,(KC, E) vanishes
to order Ty and

L, (K, gy) ™) = # (ff]%(K, T)m) - det (E,C /Kﬂ,,,m) c (ﬁw /ﬁw“) /Z3.

PROOF. As in the proof of Prop. 11.7 we have ¢ (L,(K, g)) = L,(K, gy) under our assumptions. Then
L,(K, gy) vanishes to order 7, and by (101) we obtain the statement applying ¢ to the formula displayed
in in the preceding Theorem. O

11.4. Proof of Theorem 8.1. In this Section the hypothesis and notations are those used in the
Introduction. Recall the family of primes {¢}, defined by (72) and indexed by even integers k. We will
write T, := Ty,.. We claim that for every algebraic extension K C L C K and every even integer x € U
there exists natural isomorphisms of R(L)-modules:

(106) ﬁ},lw(L/K7 T) = MP(L7g>7 ﬁ}(KS/L7AT) = Selp(L?g)7
and natural isomorphisms of Z,(L)-modules:
(107) H}1o(L/K,T,) = My(L,g.); H}(Ks/L,Ar,) 2 Sel,(L, gx),

Before giving the proof, we show how Theorem 8.1 follows from this.
First of all: Theorem 10.5 tells us that taking the Pontrjaging duals of (106) and (107) we obtain
isomorphisms of R(L) and Z,(L)-modules respectively:

(108) H21,(L/K,T) = Sy(L,g); H21,(L/K,Ty) = Sy(L, g)-

The ‘arithmetic pairings’ mentioned in the Introduction are then defined, via the isomorphisms (106),
(107) and (108) as the ‘height’ and ‘Cassels-Tate’ pairings defined on the corresponding Selmer complexs
in Section 10:

heypg = Heypans hejng. = hejppeis
CLg = Eﬂ'R(L),Q,Z; CLg. ‘*— va7w,(L),2,2;
h‘g;L,gK = h‘g;L,wml,la
where 7, := TR Ry, Lp : Tr @z, Tr — Zy(1). Moreover, under our assumption H1 we know by the work
of Kato and Rohrlich (see , e.g. [Gre97, Theorem 1.5]) that I?J%)IW(KCC)%’CI/K, T,) = Sp(L, g2) is a (finite)
torsion Z,(K)-module, where K¥°!/K is the cyclotomic Z,-extension of K. It then follows from the
Control Theorems proved in Section 14.2 that

I?}%(IC/K, T) =2 S,(K,g) is a (finte) torsion R(K)-module.

Theorem 8.1 follows immediately from Theorem 11.4, Proposition 11.5, Prop. 11.7 and Theorem 11.8.
Coming to the proof of (106) and (107): using Iwasawa theory (cfr. Appendix 12) we can assume
that L/K is a finite sub-extension of K/K; in particular G,k = Gal(L/K), G, /k, = Gal(L,/K,)
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and Gy, /i, are finite p-group for every prime wlv of L (where k. is the residue field at *). We note that,
writing 7 for T or T, we have:

(109) RT cont(Law, T) and RT cont(Lqy, A7) are acyclic complexes for every prime w { p of L.

Indeed, using local Tate duality the statement for RI'cont (L, A7) follows from that for RIcont (L, 7).
Moreover, as in the proof of Theorem 10.5, we can assume (using the control Theorems) that 7 = Ty = T),
is the p-adic Tate module of /. In this case we have, for every prime w of L dividing N := cond(E):

H3
0= E(Kv)p‘x’ = HO(GLw/KwE(Lw)p‘”) = E(Lw)p‘” =0,
where v|N is the prime of K lying below w. (The implication above follows easily from the facts that
Gr, /K, is a finite p-groups acting on a finite p-groups [Ser79, Lemma 2 pag. 138]|.) Exactly as in the
proof of Theorem 10.5 we conclude that RT cont(Lw, Tp) is acyclic, proving also (109).
We now prove that, for every prime w|p of L:

(110) HY(Ly, Fy (T)) = 0.

For the proof of this assertion when 7 = T, we refer to [NP0O, Sec. (3.1.5)], recalling that E is assumed
to have good ordinary reduction at p. Then the statement for 7 = T follows applying Nakayama’s Lemma
to the injection H°(L,, F, (T)) ®p,p, Zp — H°(Ly, Ty) = 0.

Analogously: for every prime w|p of L we have

(111) H°(Ly, Fy (A1) = 0.
Indeed, for T = Ty = T}, we have F,; (T},) = Ey[p™] = the p™®-torsion of the reduction of E /L., (see Section

~

9.3.4). Letting v|p be the prime of K lying below w, by assumption H2 we have HO(ka/kv,Ew [p™]) =
E‘v(k‘v)poo =0, so that as above we conclude H°(L,,, F,; (Ar,)) = E‘w(kw)poo = 0. Applying cohomology to

the exact sequence of G, -modules 0 — F (Ap,) — Fy (Ap) 3" F; (Ap) — 0 (where w, is a generator

of ker(¢,.)) we also obtain (%) H®(Ly, Fy (Ar))|ws] = H(Ly, Fy (Ar,)). Combining (x)z with what
already observed we conclude H°(L,,, F, (At))[w2] = 0, so H(L,,, F,,; (At)) = 0 by Nakayama’s Lemma
(as HY(Ly,, F; (AT)) is an R-module of cofinite type). Using again (), we conclude the proof of (111) for
7T e {T, T}

Combining (109), (110) and (111) with the exact sequences (158) and (166) we immediately conclude:
for every finite subextension L/K of /K the natural maps induces isomorphisms

Er}(LvT) = MP(ng); fl}(L>AT) = SelP(Lag);

ITI}(L,T,{) = My(L, gx); ﬁ}(LvATN) = Sel, (L, g)-
As explained above this concludes the proof of (106) and (107).
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12. Cyclotomic Iwasawa theory

In this Section we analyze more closely two-variable cyclotomic Iwasawa theory, i.e. we take K = Q
and K = Qs C Q(pp) the cyclotomic Zy,-extension. One of our principal aims is to formulate a two-
variable main conjecture (see Sec. 12.5) ‘explaining’ and motivating the p-adic Birch and Swinnerton-Dyer
conjecture proposed in [Venl2].

In addition to Hypothesis 1, 2 and 3, we asume that p is not an anomalous prime if E/Q, has good
reduction. In this framework our Hypotheses are the following.

Fix an elliptic curve E/Q of conductor Ng and a rational prime p. Let fr = > o an(E)-¢" €
S5(To(NE),Z) be the newform attached to F/Q by the modularity theorem. We assume that (E,p)
satisfies the following conditions:

(Irr)  E(Q), is an irreducible F),[Gg]-module;
(Fro) Either p||Ng or pt Ng and a,(E) # 0,1 mod p;
(Tam) pt6- [T, x5 E(Qe)tors, where N := Np /p°rdr(Ne);

(Reg) R =R, is a regular local ring, where g € S5(I'¢(Np), Z,) is the p-stabilization of fg.
From Proposition 1 we easily obtain the following statement, showing that our theory is non-vacuous.

PROPOSITION 12.1. Let E/Q be an elliptic curve without complex multiplication. The set of rational
primes p such that (E,p) satisfies the above conditions has Dirichlet density one.

We quote from the beginning the following result, which follows combining deep results of Kato and
Rohrlich with the results of the preceding Section.

THEOREM 12.2. There exists a skew-Hermitian R(Qs)-module which organizes the arithmetic of the
Hida family g/Qs. Moreover H]%,Iw (Qoo, Tyy) is a torsion Oy (Qs)-module for every 1 € X2 (R, O,).

PROOF. The work of Kato and Rohrlich (see, e.g. Theorem 1.5 in Section 1 of [Gre97]) implies that
the p-primary Selmer group Sel(Quo, Ep<) of E/Q is Z,(Q)-cotorsion. Then the comparison results

between Selmer complexes and Greenberg Selmer groups tell us that f[%lw(@oo, T,) is aNtorsion Zp(Qoo)-
Using the Control Theorems proved in Section 10.3 and Theorem 10.5, we conclude that H ?’IW (Qx,T) is a
torsion R(Qs)-module, and that ﬁ%lw (Qoo, Ty) is a torsion Oy (Qoo)-module for every arithmetic prime

P € XMIh(R, Oy). The existence of an organizing module for the arithmetic of g/Q follows by Theorem
11.4. O

12.1. Mellin transforms. In order to compare the computations above with the conjecture proposed
in [Ven12|, we will apply the ‘Mellin transform’ to the constructions of the preceding Sections.

For every open p-adic neighborhood U of 2 € Z,, let A(U) C Z,[[k — 2]] be the ring of those power
series in (k — 2) converging for k € U. We can endow A(U) with a structure of A := Z,[[1 + pZ,]]-algebra,
via the unique embedding A — A(U) sending the group-like element v € 1 + pZ,, to the analytic function
on U: k— v*"2:=exp, ((k—2) - log,(7)). As recalled in Section 9.2 (cf. [GS93]) there exists an open
neighborhood 2 € U = Ug C Z,, together with a unique morphism of A-algebras My = M, : R — A(U)
such that

MQ(T)|]¢=2 = ¢g(r)
for every r € R. (Recall that ¢, = ¢, € X*™(R;Z,) is the Z,-valued arithmetic point defined by
¢g(ar) = ay(g) for every prime £.)

The (p-adic) cyclotomic character induces a canonical isomorphism X, : G := Gal(Qu/Q) = 1 + pZ,.
Writing A for the ring of Z,-valued p-adic analytic functions on Z,,, we consider the morphism of Z,-algebras

M1 :Zy :=7p(Qux) — A
induced by the character G — A sending g € G to the analytic function on Z, : s — Xy (g)° 1.
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Finally, let A(U,Z,) C Z,[[k — 2,s — 1]] be the ring of formal power series in (k — 2,s — 1) which
converges for k € U and s € Z,,. Then there exists a unique morphism of Z,-algebras
Mz Ri= R(Qu) — A(U.Z,)

such that M271‘R = My and M271 Z, — M.

12.2. Algebraic p-adic L-functions. We write
L,(E,s) =M, (charzp((@w) (ﬁ?,lw(Qman)>) €A

for the Mellin transform of any (algebraic) p-adic L-function of F/Q. (With this notation, s is the
‘cyclotomic variable’.) Then L,(E,s) is determined only up to multiplication by units in Z,. We will
also write Ly(Qo, E) fo the characteristic ideal of H%IW(QomTp)- The ‘functional equation’ satisfied by
L,(Qx, E) translates into the following:

PROPOSITION 12.3. (Functional equation) There exists L,(E, s) such that
L,(E,s) =w(E/Q) -Ly(E,2 —s).
PROOF. For g € G we have M ((g)) (s) = Mi1(g7")(s) = Xey(9)'™* = Xey(9) 7971 = Mu(9)(2 - 5).
Since Z;, = Zy[[ocy—1]] for every topological generator o¢,, € Gal(Quo/Q), it follows that ((Mi o ¢) (z)) (s) =

(Mi(x)) (2 —s) for every x € Z,. Then the Proposition is a reformulation of the functional equation for
L,(Qw, E) displayed in Prop. 11.7. O

REMARK 12.4. Let ET(Q) be the extended Mordell-Weil group of E /- Assuming the finiteness of
OI(E/Q)pe, the results of Section 4 of Part 1 give us

r= rankZET (Q) = rankZPE(Q) + §p,

where 0, := 1 (resp, ¢, := 0) if E/Q, has (resp., has not) split multiplicative reduction. In particular,
via the Birch and Swinnerton-Dyer conjecture, the sign w(E/Q) in the functional equation satisfied by
L,(E,s) should be different from the sign in the functional equation of the complex Hasse-Weil L-function
L(E/Q,s) if and only if we are in the ‘exceptional case’, i.e. d, = 1.

In a similar way, we write
Ly(8, k. 5) i= Mo (charpo.) (A (@, T))) € AU, Z,) /R

for the Mellin transform of any algebraic p-adic L-function of g/Q.,. We will also write Lj,(Qs, g) for the
characteristic ideal of H%IW(QOO, T).

PROPOSITION 12.5. Let egen = rankRﬁ}(Q,T). We have:
L Lp(g, 23 S) = LP(Ev S)

2. L,(g,k,s) € (s — 1) - A(U,Zy).

3. (Functional equation) There exists L, (g, k, s) such that:

Lp(gv ka S) = (71)6@‘1 : Lp(ga ka 2-— 8).

Proor. 1. Since I?%IW(QOO, T,) is a torsion Z,-module by Theorem 12.2, we see as in the proof of Prop.
11.7 that ¢, (Ly(Qeo, 8)) = Lp(Qoo, E). As (Mio4,) () = (M2,1(%)]( 4 (2, recalling the definitions
we obtain the statement.

2. Let I be the augmentation ideal of R. By Section 10.3 and Theorem 10.5 we have an isomorphism
of R-modules

H} 14(Qoo, T) /T = HF(Q, T).
Moreover (again as in the proof of Prop. 11.7) H}(Q, T) and HJ%((@7 T) have the same R-rank, so that

rank g (ﬁ?,IW(QOO,T)/T) = €gen-
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Localizing ﬁ?,IW(Qw,T) at the height-one prime I (and using the structure theorem for finite torsion

modules over PID’s) we deduce easily from this: lengthe; (ﬁ?,IW(Qm, T)T) > €gen, SO that

Ly(Quo,g) € T,

Applying the Mellin transform Ms; we conclude L,(g, k,s) € (s — 1)%e=, as claimed. (Indeed, I =
(0ey — 1) - R for every topological generator 0., € Gal(Qo/Q), and (Maz1(0ey — 1)) (k, s) is by definition
the analytic function »°, - WM (s—1)re(s—1)- AU, Zp).)

3. As R = R[[o.y—1]] (with 0., as above), as in the proof of Prop. 12.3 we see that ((Maz 1 0¢) (z)) (k,s) =
(Maz1(x)) (k,2 — s) for every & € R. Then the statement is a reformulation of the functional equation for
L,(Qx,g) proved in Prop. 11.7. O

REMARK 12.6. As a direct consequence of Greenberg Conjecture [Gre94a],[NP00] we expect that
€gen = 1 or 0, depending on the sign of the Hida family g. See Section 12.5 below for more details.

We are also interested in two other algebraic p-adic L;functions. The first one is the Mellin transform
of the characteristic ideal of the R-torsion submodule of HJ% (Q,T),i.e.

L,(g k) := My (charR (ﬁ;(@,T)mrS)) € A(U)/R*
The second one is the ‘generic restriction’ of L,(g, k, s) to the line s = 1, defined by:

Lp(ga kv 8)

L& (g, k) .=
D (g7 ) (S_l)egen -

€ A(U)/R".

(See Theorem 12.16 for the precise relation between these two closely related p-adic L-functions.)

REMARK 12.7. It follows from d) of Theorem 10.5 and standard structure theorems for symplectic
finite modules over principal ideal domains that the characteristic ideal of H ]%(K , T)tors is (represented by)
a square in R. In particular

L,(g.k) = (Li(g.h) € AU)/R
for a suitable ‘square-root (algebraic) p-adic L-function’ Lé (g, k).
12.3. Pairings and regulators. Let J C A(U,Z,) be the ideal generated by (k—2) and (s—1), and
let as usual J := ker (R R Zp>. The Mellin transform induces a morphism My : J/J? — J/J2.

For * = k, s, let us write 9. (f(k,s)) == 2 f(k, s
a morphism of Z,-modules 9, : J/J? — Z,.

The isomorphism Ty, = Ta,(E,g) =: T, of Section 9.3.4 allows us to identify H}(K, Ty,) with
ﬁ}(K, T,), where the latter is defined using the ordinary structure on T, (recalled in Section 9.3.4 too).
We can then consider the p-adic pairing

6?1,1 = h?}Q\?:ﬁqﬁg,l,l : H}(Q, 1,) ®z, H}(vaTp) — p/p’

attached in Section 10.5.1 to the Hida deformation T of T}, := Ta,(E,q) = Ty, at the arithmetic prime
p = ¢4. The p-adic weight pairing attached to E/Q:

(= —lap  HI(QT,) x Hi(QT,) — Z,

)’(k,s):(2,1) (for every f(k,s) € A(U,Z,)). Then 9, induces

is defined by the formula
()5 = (o Mool ) (@@ y),
for every z,y € I?}(K ,Tp). We also have a ‘height pairing’

hgojo11 = how j@.e,11 : HH(Q, 1) ®z, Hp(Qp, T,) — I1/1?
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attached to the Galois deformation T,(Qs) of T, at the augmentation ideal I C Z,(Q). Define the
cyclotomic p-adic height pairing attached to E/Q:

(= o, HHQ,T,) x HHQ,T,) — Z,

by the formula

(@), = (85 oMjo h@oc/@,Ll) (z®y).
(Here Nek and MTT are abbreviations for Nekovar and Mazur-Tate-Teitelbaum respectively.) The following
Proposition follows by the discussion in Sections 10.5.1 and 10.5.2.

PROPOSITION 12.8. (—, —)ge:: (resp., (—, —)g{ET) is a skew-symmetric (resp., symmetric) Q,-bilinear

form.
Let now Z := (s — 1) - A(U,Z,) and I := ker (eg) the augmentation ideal in R, so that we have a
morphism My : T/YZ — Z/I?%. The cyclotomic A(U)-adic height pairing attached to T
(—, =) HNQ,T) x HHQ,T) — A(U)
is defined by the formula
cyc a T
(z,y)7 = %MQJ (HQOC/QJ,I(I'@y))

s=1
Here the 7/72—pairing ﬁ[@w/@,l,l is defined in Section 10.6.

cycl

PROPOSITION 12.9. (—, =) is a symmetric R-bilinear form, satisfying (with the notations of Lemma
10.14)

()| = (Ggn(@) 09- (),
for every x,y € I?}(Q, T).
PRrROOF. This follows by the discussion in Sec. 10.6. O
In order to compute derivatives of the generic p-adic L-function L%"n(g, k), we now also introduce a
‘derived regulator’. Let ff}w C fl} (Q,T,) be the (left=right) radical of (the restriction of) (—, —>gi§{. Let

{P1,..., P} be a Zy-basis of H;  (which is a free Z,-module, as ff}(@,Tp) is free by, e.g. Theorem
10.5), where 74, = rankzpf[}m. Since ﬁ}ﬁo is p-adically saturated in f[} (Q,T,), we can complete {P;}
to a Zy-basis {P1,..., Pr,Q1,...,Q¢} of Hi(Q,T;,) (with 7o +t = 7). Define

Nek
Rop = Rgp Rop:
with ‘partial regulators’ defined by:

0o . . p \MTT . Nek .__ ) \NEK
RQ,p ;= det ((<Pz, PJ>Q7P )1Si7j§roo> ) RQW ;= det (<<Qz; QJ>Q7P )1§i7j§t> .
These are well-defined elements of Q,/Z.

REMARK 12.10. In Section 4 of Part 1 we defined an embedding zg BT Q) ®Q, — ﬁ}(K, T,) ®Q,

and a p-adic weight pairing on ET(Q) ® Q,, denote again by (—, _>ge;< . Indeed retracing the definitions

it follows easily from Prop. 10.9 that the this pairing is precisely the ‘restriction’ of (— _>ge; ® Q, (as

defined above) to the extended Mordell-Weil group ET(Q) ® Q,.

REMARK 12.11. With the notations of the preceding Remark, if follows easily from the results of
[Nek06, sec. 11.4] that the ‘restriction’ of (—, —)&;{T ®Q, to ET(Q) ®Q, is, up to sign, the bilinear form
denoted by the same symbol in Sec. 5 of Part 1. The latter is essentially the p-adic height pairing on ET(Q)
appearing in the formulation of the p-adic Birch and Swinnerton-Dyer conjectures proposed in [MTT86|

(explaining our notation).
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REMARK 12.12. Assume that III(E/Q),~ is finite, so that zTE BT Q) ®Q, & f[}(@,Tp) ® Qyp is an
isomorphism. Moreover, under the assumptions of this Section, it is easily verified that this isomorphism
identifies the Z,-lattices ET(Q) ® Z, and I;T} (Q,T,). Using Zy-basis of H}(Q,T,) coming from Z-basis
of ET(Q)/tors, we can define a regulator Rg,, belonging to @, (and not only to Q,/Z). The preceding
Remarks then imply that this regulator is precisely that appearing in the p-adic Birch and Swinnerton-Dyer
conjecture proposed in Sec. 6 of Part 1. (See Section 5 of loc. cit. for more details.)

12.4. p-adic BSD formulas.

THEOREM 12.13. Let v := rankZPPNI}(Q,Tp), Then Ly(g, k,s) € J" and there exists a p-adic unit
u € Zy, such that:

L, (g k,s) = u- # ((IH(E/Q)pm)/div) . det (<—, N (k= 2) 4 (=, )T (5 — 1)) mod J7H,

where the determinant is computed with respect to any Zy,-basis of fI}(Q,Tp).

ProOOF. Using the notations of Section 10.5, it follows directly by the definitions and the discussion in
Sections 10.5.1 and 10.5.2 that

M2’1 (E&;/Q,l,l(m ® y)) = (x,y)&i‘ . (k — 2) + <x’y>g{'£T . (s — ]_) mod j2,
Then the statement follows immediately by Theorem 11.8, together with the equality
# (H3HQ, Ty)ions ) = ((I(E/Q)pe) 1 ) -
Indeed Nekovar’s generalized Poitou-Tate duality (Sec. 0.11) and the existence of the Weil pairing (Section
9.3.4) imply that H7(Q,T})tors is the Pontrjagin dual of H}(Q, Epec)/aiv, so that these two groups have
the same order. Moreover it follows immediately from [Nek06, Sec. 9.3.7| (or easily from (166) and

Section 9.3.4) that, under our assumptions: PNI} (Q, Ep<) /aiv = Selpe (Q, Epe<) /giv- By construction this
last group is isomorphic to (HI(E/Q),) Jdiv: (More precisely: using global duality it can be easily proved

that actually we have an isomorphism: I;TJ% (Q,T))tors — (HI(E/(@)poo)/div.) O
COROLLARY 12.14. With the notations of the preceding Theorem, ords—1L,(E, s) > 7, and we have
L (E, S) M *
T = # (E/@)) ) et (- 5,") € Qu/2;,
s=1

where the determinant is computed with respect to any Zy-basis of ﬁ}(Q,Tp).

PRrROOF. By Prop. 12.5 we know that L,(E, s) is obtained evaluating L, (g, k, s) at kK = 2. Evaluating
the R.H.S. of the p-adic BSD formula of the preceding Theorem we obtain the statement. O

COROLLARY 12.15. With the notations above, let Tgen := T — €gen. Then:
L. ordg=—o L& (g, k) > 78
2. if oo = €gen, then we have an equality

Lgen(g, k) .
G, = # (E/Q) 4,) Rap € Q/Z;,

PRrOOF. Combining the preceding Theorem with b) of Prop. 12.5, we know that L,(g, k, s) lies in
the intersection J" N (s — 1)%e» - A(U,Z,). Recalling the definition of Lg" (g, k), 1. follows immediately.
Under the assumption egen = 7'o0, and using Proposition 12.8, the formula in the statement follows by the
Theorem and a simple computation. O

It is interesting to know the relation between the derivative L& (g, k) of L, (g, &, s) along the cyclotomic
direction and Ly (g, k). This relation is made explicit in the following Theorem, which is also ‘included’ in
[Nek06, Th. 11.7.11] . We note the analogy with [PR87, Théorém 1], in which the anticyclotomic variable
plays the role of the weight variable, and the module of universal norms plays the role of ﬁ}(@, T). (See
also [MRO5, Th. 10.2].)
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THEOREM 12.16. We have

L7 (g, k) = Ly(g, k) - det (<_’ _>CTyd) <AL

where the determinant is computed on any R-basis of the free R-module ﬁ}(@, T).

PROOF. We can prove the Theorem with a similar argument to that used in the proof of Theorem
11.8 (with some complication coming from the fact the R is not a principal ideal domain). Alternatively,
we can use the following argument, which is essentially the one used in [PR87], [Pla97| and [Nek06, Th.
11.7.11] to prove similar statements.

First of all, we note that E[}(Q,T) is a free R-module (of rank egen). In fact we know (e.g. by
¢) of Theorem 10.5) that PNI}(Q,T) has no R-torsion. By the structure theorem for finite modules over
2-dimensional normal local rings [Bou89, Ch. 7], there exists a short exact sequence of R-modules

OAI}}(Q,T)ﬁR”ﬁAHO; #A <oo, n>0.
Using the exact sequence (89), the associated exact sequence of p = @ - R ‘torsion and cotorsion’ gives us
an injection:
Alw] ¢ H}{Q,T,) > 7))
so that A[w] = 0. The tautological exact sequence Afw] C A = A — A/w gives also A/w = 0, so finally
A = 0 by Nakayama’s lemma, as claimed.
Let us fix an organizing R-module ® = (®,h) for g/Q, and a topological generator of o., €

Gal(Qxo/Q), so that we can identify R = R[[X]] and I = (X) with X := 0., — 1. Let us consider
the following composition:

(112) 9 M(X) S S[X] D S/X S S(X) S Homp (M(X), R),

where (with the notations introduced in Section 11.1) S(X) := S(I), M(X) := M(I) and S[X] denotes the
X-torsion in §. The morphisms are defined as follows: the first isomorphism comes from the connecting
morphism attached to the following snake diagram:

X

0 ) i Oy =0/ X ——0
h[ h{ hxl
0 >* —> @ Homp (x, R) — 0,

where hx := h ®5 R/X = h ®5 R. The morphism v is the natural map S[X] < & - S/X. The second
isomorphism comes from the definitions. Finally

§:S(X) 2% Homp (Hompg (S(X), R),R) = Homp (M(X), R),
where the isomorphism is the R-dual of the first isomorphism in (96). Let us write
[= =l : M(X) @r M(X) — R
for the bilinear form attached to (112). It follows immediately from the definitions that
%¢X71,1(m ®@mn) = [m,n]y - X mod I IS 7/72

for every m,n € M(X). Using Proposition 11.5 to identify M (X) with ﬁ}(Q,T) and correspondingly

?chx,m with I?[Qm,lyl, we conclude:
(113) det (ﬁQoo,l,l) = det ([—, —]y) - X% = charg (coker (9)) - X € (Tege“/fege“ﬂ) /R*,

where the determinants are computed on any R-basis of ﬁ[} (Q,T) > M(X).
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Before concluding the proof we recall some standard facts from the theory of finitely generated R[[X]]-
modules. Let f : M — N be a morphism of finite R-modules, such that ker(f) and coker(f) are torsion
R-modules. We write

. charp (coker(f)) .

H(f) = char s (ker(f)) € Frac(R)/R".

If f: M — N and g: N — O are morphisms of the above type, we have
(114) H(go f) =H(f) H(g)

Moreover, for every finite torsion R = R[[X]]-module T with characteristic ideal f7(X) := charg(T), write
~vr : T[X] — T — T/X. Then we have:
1. ordx—ofr(X) > rx := rankg (T/X);
2. The following properties are equivalent: i) rx = ordx—ofr(X); i) ker(yr) and coker (yr) are
torsion R-modules; i7i) the localization T ®% ET is a semi-simple Ej module;
3. if the conditions in 2. are satisfied, then we have
fr(X)
Xrx
All this properties (which can be proved exactly as in the ‘classical’ case of finite torsion modules over
Z,[[X]]) are proved in details in [Pla97, Sec. 4].
We can now easily conclude the proof. Assume first that S is semi-simple at the augmentation ideal I,
so that the kernel and cokernel of v are finite, torsion R-modules. Since (by definition) ker(d) is pseudo-
isomorphic to S(X)iors — ﬁ?(@,T)tors, using 3. above, (113), (114) and the freeness of I}}(Q7T) we

obtain: the characteristic ideal L, (Qoc, g) of I?]%,IW(QOO, T) = S has the form:

= H(vyr) mod R*.
X=0

Lp(Qoo; g) = L‘%en . X®en mod T@gexx+1; ng)en cR— {0},
and we have the equality:
(115) det (ﬁQmJ;l) . Cha.rR (ﬁ?(@7 T)tors) = L%en . Xegen c (Tegcn/jegcn+1> /R*

Retracing the definitions: My (L%en)- log,, (Xey (0ey)) 5" = L& (g, k) and, up to multiplications by elements
in R*
logp(ch(Ucy))egen Mo’ (det (Hro,l,l)) = det ( (-, 7>¥Cl) € Tesen [Tosentl,
It follows that applying Mo ; to the equality (115) we conclude the proof (when S is semi-simple at T).
Finally, let us assume that S is not semi-simple at 1. Then L,(Qx,8) € (Xeganrl), so that Ly (g, k, s)
belongs to (s —1)%er*!. A(U,Z,) and L& (g, k) = 0 vanishes identically. On the other hand the non-semi-

simplicity of S at I implies that ker(y) = S[X] N X - S has positive rank over R (i.e. is non-zero in our
case), so that [—, —]y has a non-trivial left (and right) radical. It follows by (113) that det (IA{/@W,M), and

so det ((—, —)CT}.'CI) also vanishes. O

COROLLARY 12.17. The following properties are equivalent:
1. Lg" (g, k) #0;
2. (=, =) is non-degenerate;

3. ff%lw(@om T) is semi-simple at the augmentation ideal I.

ProoF. This follows immediately by the preceding proof. O

COROLLARY 12.18. Let U™ := Im (ﬁ}(@, T) - ff}(@,Tp)) c H!

f.o00r and assume that the following

conditions are satisfied:
Z) Too = €geny
g . MTT
ii) the restriction (—, —)g

s non-degenerate.
uwt qut



12. CYCLOTOMIC IWASAWA THEORY 7

Then Ly(g, k) has order of vanishing Tgen := T — €gen at k = 2 and we have an equality:

Lp<g7k)

G| = (e ) (B Q) ) - RES € Q).

k=2
PROOF. Since ff}c (Q,T) is a free R-module, by (89) the assumptions ro, = €gen means that 4™ has

finite index in the radical ﬁ}oo of (—, *>gj

(T L (1) Recalling the definitions, Prop. 12.9 and our
AP x f\p

assumptions give
2
7l L7 wt o cycl % I
(116) |} oo U™ RE, = det (-, 23| e @z,
In particular R, # 0 and combining Cor. 12.15 and Th. 12.16 we see that
ordksz%e“(g, k) = Tgen = ordi=2L, (g, k).

Finally, the formula in the statement follows taking the 7gen-th derivative of the equality in Th. 12.16,
using Cor. 12.15 and (116). O

REMARK 12.19. Combining Prop. 10.9, the exact sequence (89) and the non-degenerancy of the
localization at p of the Cassels-Tate pairing we see easily that the following conditions are equivalent:
1. roo = €gen;

2. fNIJ% (Q,T) ®r R, is a semi-simple Ry,-module.
By the discussion in [Venl2|, we expect that this conditions should always be satisfied, i.e. that ngu

is ‘as non-degenerate as possible’. If fIJ%(Q, T) turns out to be non-semisimple at p, we have to consider

derived regulators attached to higher ‘p-graded quotients’ of ﬁ}(Q,Tp) [Nek06, Sec. 12.7] in order to
obtain generalizations of Cor. 12.15 and Cor. 12.18 (cfr. [BD95]).

REMARK 12.20. The preceding Remark and Rem. 12.6 lead us to expect that roc = egen € {0, 1}.
Moreover Schneider conjecture on the non-degenerancy of the cyclotomic p-adic height [Sch82|,[MTT86|
suggests that Rg,, and so Rqp should be non-zero. By the preceding proof, this would imply that

det ((—, —>fryd) does not vanish at k = 2, so in particular, by Theorem 12.16: L& (g, k) # 0 has order of
vanishing 78" at k = 2. (For a discussion of this topic and some examples, we refer the reader to [Ven12,
Sec. 5] and Section 12.6 below.)

12.5. Relations with the Mazur-Kitagawa p-adic L-function. We now consider the analytic
side of the matter, i.e. the Mazur-Kitagawa p-adic L-function of R.

12.5.1. Analytic p-adic L-functions. Under our Hypothesis (Irr), Sec. 3.4 of [EPWO06| (working on
ideas of Mazur and Kitagawa [Kit94]) attaches to R an element

LMK (g) € B/R"

interpolating the Mazur-Tate-Teitelbaum p-adic L-functions attached to the elements of g. Here we write
LY (g) to denote the projection in R of any L-function denoted L(m, N, 1) € h%% [[G]] in loc. cit. (where
m is as in Section 9.2 and 1 in the argument of the p-adic L-function stands for the trivial character).

More precisely, L;\,/IK (g) satisfies the following interpolation property. Given an arithmetic map ¢ =
g € XMR(R) let us write Oq := 1q (R) and ¢, : R — Og[[Gal(Quo /Q)]] =: Oy for the morphism induced
by the arithmetic map 4. Then there exists a € R* such that

(117) Vg (L (8)) = va(@) - Ly, (8q) € Of

for every arithmetic map ¢, € X**™(R). Here Q, = Q;q € C is a certain (fixed) ‘canonical’ Shimura
period for gq (see [EPWO06, Sec. 3.1]) and Lf)/g? (8q) is the Mazur-Tate-Teitelbaum p-adic L-function

attached in [MTT86| to g, (and the unique ‘allowable p-root’ a,(q) = a,(gq)), normalized with respect
to £1g.
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LMTT(

The power series gq) is characterized by the following interpolation property. For every even

Dirichlet character 1 of conductor ¢y, and every 0 < so < weight(q), define

sp—1
al ) cy “(so =D 7(¥)
L g(gqﬂjjaSO) (27-”')50—1 'Qq :

L(gq, ¥, 50) € Frac (Oy)

where 7(¢) denotes the Gauss sum and L(gq,ﬂ, s) is the Hecke complex L-function of g, twisted by .
Let us identify Gal(Quo/Q) = 1 + pZ, under the p-adic cyclotomic character x.,. Let u € 1+ pZ, be
a topological generator, so that Oy = O4[[X]] with X := u — 1, and write Lg/fg;f(gq,X) = LMTT(gq)
Then: for every Dirichlet character n : Zy — 1+ pZ; — @; of conductor p™ (m > 0) and every integer
0 < so < weight(q):

sy~ (EMET (8a)) = LY (g () - u™ ™t — 1)

—m w50 p 'psf)il a —s
(113 =y (1= P ),
4

where w is the Teichmiiller character. (The Weierstrass preparation theorem immediately implies that
LMTT(gq) is determined by these values.) From now on we write simply

Ly(gq) == LMTT(gq)

As follows by the results in [GV00, Sec. 3] (again under Hyp. 1) we can choose 2, = Qg as the
real Neron period of E/Q, i.e. the complex period appearing in the classical Birch and Swinnerton-Dyer
conjecture. (We recall that g = g, is the p-stabilization of fg.) Here we insist to make this choice for §,,
and to normalize Li\f[K(g) in such a way that

(119) ¥y (Lp(8)) = Lyp(B) == Ly, (8)-

Then Lg/IK( ) is a well-defined element of R up to multiplication by a unit o = 1 mod p of R.
12.5.2. Two-variable main conjecture. Let us write

Ly(g,k,s) = Mz (LY (g)) € AU, Zy)

as the Mellin transform of any L} (g). By the discussion above, this is a well-defined element of A(U, Zy,)
up to multiplication by a unit a € R* such that o(2) = ¢p(a) =1

CONJECTURE 12.21. Ly(g, k,s +k/2 — 1) = Ly(g, k,s) € A(U,Z,)/R".

In the preceding Conjecture, the ‘twist’ s — s+ % — 1 in the cyclotomic variable takes care of the twist
T+ T :=T®gO%" in the Hida deformation, since (as discussed in Sec. 9.3.3) this produces a twist by
Z,(1 — k/2) in the specialization of T at an arithmetic point of weight k. We can also reformulate the
conjecture as follows. Let us write again O : R — R for the morphism of R-algebras induced by ©g. We
can lift ©y to a morphism O : R — R such that ez 0 ©p = Op, defining

oo

J
E i (Ocy — E i (ORr(0cy) - 0cy — 1)
=0

(where as usual 0., € Gal(Qo/Q) is a topological generator). We can reformulate the preceding conjecture
as follows.

CONJECTURE 12.22. O (L)™(g)) generates the characteristic ideal of I;T%IW(QOO, T).
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12.5.3. Functional equations. As shown in [HowO07, Prop. 2.3.6], given q € X**"(R), the functional
equation studied in [MTT86] reads in our case:

(120) X (Lp(gq)) = w(g) - X 'Oq((N)) - x '3 (Ly(gq))

for every continuous character x : Gal(Qn/Q) — @;, where (N) € 1+ pZ, is the projection of N to

principal units and

0,:Go P R* 1T
(Recall that © factorizes through Gal(Q./Q), since A = (Z/NpZ)* acts trivially on R via the diamond
morphism.) Here w(g) € 4, which is independent on the arithmetic point q, is the sign of the Hida family
alluded to in Rem. 12.6. It equals minus the eigenvalue of the Atkin-Lehner operator wy acting on fg.
Writing sign(E/Q) to be the sign in the functional equation satisfied by the Hecke L-series L(fg,s) =

L(E/Q,s) at s =1, we also have:
1 if a,(E)=1;
w(g) = (=1)"™) - sign(B/Q);  my(B) =
0 otherwise.

In other words, w(g) differs by sign(E/Q) if and only if £/Q has split multiplicative reduction.
Let k € U NZZ? be an even integer, and define the arithmetic point of weight x and trivial character

4, := ker (1/15 SR A(U) f'_i(ﬁ) Zp) e Xarith(R); i = 8q.-

It follows by (117) that L,(g, k,s) = a(k) - Xﬁ;l (Lp(gx)). As O4,.(9) = ch(g)”/zfl, taking q = g, and
X = X&' (s € Zy) in equation (120) we then obtain

Ly(g,15,5) = w(g) - (N)"/*7" - Ly(g, 1,0 = 5).
It follows that, writing A, (g, k, s) := <N)S/2 - L,(g,k,s), we have a functional equation
(121) Ap(g,k,s) = w(g) - Ap(g, ki k — 5).

By the description of w(g) given above, we see that the classical Birch and Swinnerton-Dyer conjecture

ranky,, ET(Q) )

predicts: w(g) L (-1) In any case, recalling that rankaI}(Q,T) has the same parity as

rankzpf[}(@, T,) (by Prop. 11.7), the parity conjecture proved by Nekovar in Section 12 of [Nek06] gives:

w(g) = (=1)%.
Then (121) is consistent, via Conjecture 12.21 with the functional equation (Prop. 12.5) satisfied by
Lp(ga k? S) .
12.5.4. Weight-variable main conjecture. By (121) we see that w(g) = —1 implies that L,(g,k,s)
vanishes on the central critical line s = k/2, so that it is divisible by (s — k/2). We define the generic
restriction of L,(g, k,s) to the central critical line as the analytic function on U:

1 if w(g) =-1;
L&k | Awy e(g) -

L5 (g, k) 1=
p e
(5 = k/2)X® | o 0 if w(g)=+1.

Then Greenberg Conjecture [Gre94a| and the conjectural equality of the order of vanishing of L(g,, k) and
L,(gx, k) at s = k/2 for k > 2 (with the notations introduced above) coming from Bloch-Kato conjectures
predict that L£(g,k) is not identically zero. Moreover, since fNI}(Q,T) ‘interpolates’ the Bloch-Kato
Selmer groups attached to lattices in the Deligne representations {Vj}qcyarim gy of Sec. 9.3.3, again by
Bloch-Kato conjecture we expect the equality:
)
e(g) = €gen-

(We refer the reader to [NPO0O] for more details.) As a direct consequence of Conjecture 12.21 we are then
lead to the following
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CONJECTURE 12.23. LE™(g, k) = L& (g, k) € A(U)/R*.

12.5.5. Relations with p-adic BSD conjectures. Combining Cor. 12.15, Rem. 12.19, and the Tate-
Shafarevich conjecture, the preceding Conjecture leads us to expect the following equality:

L (g, k)
(k= 2)Teen |y
where Tgep 1= rankz ET(Q) — e(g).

We note that, under our normalization (119), the leading coefficient of L& (g, k) at k = 2 is a well-

[~

(122) # (I(E/Q)) - Ro,p mod Z;,,

defined element of Q, (i.e. does not depend on the choice of L)*(g) € R/R*). Moreover, assuming the
finiteness of III(E/Q), we can as well define Rg,, as an element of Q, (see Rem. 12.12). In [Ven12| the
following more precise conjecture is proposed (cfr. Rem. 12.12 and Rem. 12.20):
1. Ordk:Qng,en(g, k) ; FgenQ
2. the leading coefficient of L£*"(g, k) at k = 2 is given by:

L5 (g, )

(k —2)een |,y
Here BSD(E/Q) is the p-part of the algebraic factor appearing in the R.H.S. of the classical Birch and
Swinnerton-Dyer conjecture, i.e.

(123) £ &,-BSD(E/Q) - Rg, € Q.

# ((E/Q)) - Tpso0 ce(E/Q)
# (E(Q)tors)2

where ¢(E/Q) = [E(Qy) : Ep(Qy)] is the Tamagawa factor of E/Qy (see [Sil86, Ch. VII|). Moreover the
‘Euler factor’ &, satisfies (see [Ven12, Sec. 6.1])

& = (1- O‘p)Q (resp., 1, Ordp(QErl = Cp(E/Qp)il)

if £/Q, has good (resp., non-split multiplicative, split multiplicative) reduction, where = denotes equality
up to some power of 2 (and oy, = a,(p) is the p-adic unit defined in Sec. 1). Using Hyp. (Irr) (resp.,
Hyp. (Fro), Hyp. (Tam)) we see that E(Q)or (resp., (1 — ayp), ce(E/Qp) for £ # p) is a p-adic unit. As
cp(E/Q) < 4 if E/Q, has not split multiplicative reduction [Sil86, pag. 359 (and p > 5 by assumption),
it follows

BSD(E/Q) :=

)

#(I11(E/Q)) = &, - BSD(E/Q) mod Z,
so that (122) and (123) are consistent with each others.

12.6. Exceptional-zero formulas. We assume in this section that E/Q is exceptional at p, i.e. that
E/Q, has split multiplicative reduction. Let ¢ € pZ, be the Tate period of E/Q,, and let

q:";ite * 1quE
logp : E(Qy) =" Q, =" @
be the formal group logarithm on E/Q,. In light of the main conjectures of the preceding Sections, the
following theorem is an algebraic manifestation of the ‘exceptional-zero formulas’ proved by Greenberg and
Stevens in [GS93] and by Bertolini and Darmon in [BD07].

THEOREM 12.24. Assume that E/Q, has split multiplicative reduction and that III(E/Q),~ is finite.
L. If E(Q) is finite, ords=1Ly(E, s) = 1 and we have equalities in Qy/Z:

L5 (g,2) = # (II(B/Q)p~) - g, (0) = 4 Ly(B,5)omr.

2. If rankzE(Q) = 1, then L™ (g, k) = Ly(g, k) has order of vanishing 2 at k = 2, and we have an
equality in Qy /7y :

2
A Ly( iz = 2 # (I(E/Q)~) - log (P)°,

where P is any generator of E(Q) modulo torsion.
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PrROOF. As III(E/Q),~ is finite, we have an isomorphism ZE CETQ®Z, > f[}((@ T,), under which
we identify these Z,-modules (see Remarks 12.10, 12.11 and 12.12). Let g5 € pZ, be the p-adic Tate period
attached to E/q, (see Section 9.3.4).

If E(Q) is ﬁnit(i then fI}(Q,Tp) = ¢% ® Z,. Moreover, as rankaI}(Q, T) = rankzpf[}(Q,Tp) mod 2
by Prop. 11.7 and H} (Q,T) is a free R-module, Corollary 10.4 gives us:
Hy(QT) =R H{(QTp) =Hjo; U™ @z,Q = H{(QV,)
(with ™" is as in Cor. 12.18). In particular we have 7 = 1o, = €gen = 1 and Tgen = 0 with the notations

above. By [Nek06, Theorem 11.3.9| (or Lemma 10.7 in Part 2) we we obtain:

MTT MTT
RE, = Rap = det (=, )3 ") = (am an)lyy " = 10g,(ar)-

Finally, thanks to the proof of Manin conjecture given in [BSDGP96|, we know that log,(¢m) # 0.
Combined with Cor. 12.14 and Cor. 12.15, this proves 1.
Let us now assume that rankzE(Q) = 1, and let us fix a generator P of E(Q)/tor. Then, writing

P = (P,yp) € ET(Q) for a lift of P, PNI}(Q,TP) =Zp-qe DLy - P (recall that by assumption E(K),=0).
Combining Remark 12.10 with the computations carried out in Section 4.4 of Part 1 we have:

—\ Nek 1 1 .
(4. B) =3 log,,(ve) = 5 - losy(P) € ;.

In particular PNI}OC =0=U", so that oo = €gen = 0, and 7 = 2 = Tge,. Moreover the skew-symmetricity

of (—, —)ge:; gives:
0 % - log(P)
Rop = Ry = det =logy(P)* € Q}/Z:.
f% - logg(P) 0
Together with Cor. 12.18 this proves 2., and with it the proposition. O

12.6.1. Example : Xo(11) at p = 11. We close this section giving the simplest ‘exceptional example’.
Let p = 11 and let us consider the elliptic curve
Xo(11) : y* +y = 2 — 2% — 102 — 20,

which is the curve denoted 1141 in Cremona’s tables. X((11) has split multiplicative reduction at p = 11
and E(Q) = Z/57Z, so it satisfies Hypothesis 3. Moreover there exists no Q-rational 11-isogeny defined on
Xo(11), so that Hypothesys 1 is satisfied. Finally, Hypothesis 2 is satisfied with R = Z11[[1 + pZ11]], since
we know that So(I';(11), C) is one-dimensional, generated by fx,11) = g (see [Hid86a, Cor. 1.3]).

Write ¢ for the 11-adic Tate period of X(11)/q,, and g for the Hida family attached to Xo(11) at
p = 11, such that g, = fx,11). The computations in [MTT86, Sec. 13, Ch. II| tell us: ¢ = 11% - u and
Z11(E) :=logy1(q)/ord11(q) = 11 - v, with u,v € Z3;. Moreover by the work of Kolyvagin it is known that
Sel(Q, Xp(11)112) = 0, so that the preceding theorem gives:

(124) L7 (g,2) =logy1(q) = 11-u; w e Z];.

Fix a topological generator v of 1 4 11Z;;, and a topological generator o., € Gal(Qs/Q) such that
Xey(0ey) = 7. Then we have R = Zq1[[X, Y]], where X := [y] — 1 € R is a generator of p and YV := 0., — 1
generates the augmentation ideal I of R. Let us write

Li1(Que,g) =Y - LE" mod T°; LE™ € R.
Then (recalling the definitions) (124) gives us log, () - ¥ (L5]") = 11 - u, i.e.
L™ € R*.
It follows L11(Qu, &) = Y € R/R’, so that
Lii(g. k,s) = (v*~' —1) mod R Lyi(Xo(11),s) = (v*7' = 1) mod Zyy .
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Moreover, using Th. 12.16 (and the proof of Cor. 12.18): L{"(g, k) = 11 = L11(g, k) mod R*.
On the analytic side of the matter, the Mazur-Kitagawa 11-adic L-function attached to Xy(11) is
computed in [EPWO06, Sec. 5.3|, where it is shown that

Lll\/{K(g) = Ucy - GR(UCy) mOd E*

(Note that [EPWO06] uses a different normalization for the diamond morphism, so that their <7>117/ 241
is our O(0ey)* = [7]1/?".) We immediately deduce:

Lll(ga k? S) = (,ys—k/Q - 1) mod E*y Lll(ga k7 s+ k/2 - 1) = Lll(ga kv 5) mod R*a
i.e. Conjecture 12.21 holds for (E,q,p) = (Xo(11) /g, 11).



Part 3

A note on Kato zeta elements and exceptional
zero formulas



Introduction

We fix in this note an elliptic curve A /g having an odd prime p of split multiplicative reduction. For
every integer n we write Q, C Q(pt,n+1) for the sub-field of degree p" over Q and Q. = U,y Qn
for the cyclotomic Z,-extension of Q. Let ®o, = |,y ®n be the cyclotomic Z,-extension of @Q,, so
that ®,, is the completion of Q,, at (the unique prime above) p. We will identify the Iwasawa algebra
A = Z,[[Gal(Qw/Q)]] with Z,[[Gal(®s/Q,)]]. Let T be a finite Zy-module equipped with a continuous
linear action of G = Ggq (resp., Gg, ), and write I, = Q,, (resp., ®,,) for every 0 < n < co. Then we write
H} (Fe,T®Q) := (@neNHl(Fn, T)) ®Q, the inverse limit being taken with respect to the corestriction
maps.

Tate’s theory [Tat95]| gives a p-adic analytic isomorphism: @y : (Gm/qﬁ)/(@ = Ajq,, where g4 €

P
pZy is the Tate period of Aq,. Since ga has positive valuation, identifying A(Q),n = (@; /qﬁ)pn as

Go,-modules via ®rate, we obtain a surjective morphism of Gg,-modules 74, : A(Q)pn — Z/p"Z, defined
igrim mod p™. This induces on p-adic Tate modules a surjective morphism of
P

Zp|Gq,]-modules: Ta,(A) — Z,. Composed with restriction from Gq to Gq, this induces residue maps:
Op,n Hl(Qna Vu(A)) — Hl(q)na Qp); Opoo i= RILHéO Opn : Hllw(Qom Vp(A)) — Hllw((I)om Qp),

where V,(A) := Tay(A) ®z, Qp. Writing I, for the augmentation ideal of A, the work of Coleman gives
a morphism of A-modules €. : Hf, (Poo,Qp) — Ix ® Q, ‘interpolating’ the Bloch-Kato dual exponential
maps attached to the trivial representations Q, of G, . (See Section 13 for the details.) Composed with
Op,o this gives the Coleman map:

Hiy, (Qoos Vp(A) = Ia @ Qs ur L,

Following Rubin [Rub94],[Rub98| we write L,(u,s) for the p-adic Mellin transform of the measure %,
for every s € Z,

by 74, (z mod ¢%) :=

Lp(u’ 3) = Xi;cll ("?u) )
where Xeyal @ Gal(Qoo/Q) = 1+ pZ, is the p-adic cyclotomic character. It is an (locally) analytic p-adic
function. We think of L,(u,s) as a p-adic L-function: this is possible thanks to the work of Kato (recalled
below), allowing us to construct the Mazur-Tate-Teitelbaum p-adic L-function of A g by this recipe.

12.7. Exceptional zero formulas I: abstract case. Let us fix for the rest of this Section a non-zero
‘universal norm’ u = limy, 00 Uy, € H, (Qoo, Vp(A)), for elements u, € H (Q,, V,(A)).

By construction L,(u,1) = 0, so that we are interested in the value of its first derivative at s = 1.
The following Proposition, whose proof is postponed to Section 17, gives an explicit description of this
derivative. We recall that the L-invariant of A g [MTT86] is defined by

 log,(qa)
Z, (A) = 70rdp(q,4)’

where log,, is Iwasawa’s p-adic logarithm. We decompose 9, := ;0 as

8p = a;)og S 6grd : Hl(@7 Vp(A)) — Homeontinuous (G(%l;a Qp) = @;Og @ @grd'
Here G&‘Z = Gal(Qp(1p=)/Qp) x GF, is the Galois group of the maximal abelian extension of Q,, and
Q] is a copy of Q,. The isomorphism is defined by ¥ — (log,(1 + p)~" - ¥(70), ¥ (Frob,)), where 7o €
Gal(Qp(ptp)/Qp) is such that xeyel(70) = 1+ p and Frob, € GF, is the Frobenius element.

-1

PROPOSITION 12.25. L L, (u,s)s=1 = (1 —p') - L, (A) - 8 (up).

Let H(Q, V,(A)) D A(Q)®Q, be the compact Selmer group with Q,-coefficients, defined by the exact
sequence:
H(Qe, V,(4))

0~ H}(@.V;(4)) — H!(@. Vi) 1 [T Spon)

¢ prime
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(Here we identify A(Q/) ® Q, with a submodule of H'(Qy,V,(A)) via the Kummer map.) It is easily
seen that ker (9,) = ker (8}005') (see Section 17.1), so that combining the preceding Proposition with the
description of H}(Q, Vp(A)) given in [Gre97| (cfr. the proof of Lemma 14.6) we obtain the following:

COROLLARY 12.26. <L L, (u,s).=1 = 0 if and only if ug € H}(Q, V,(A)).
12.7.1. We assume for the rest of this Section the following:
Hypothesis: 0# ug € H;(Q,V,(A4)).
REMARK 12.27. The Hypothesis ug # 0 is made only to avoid trivial cases. Indeed H{, (Qoo, Vp(A))

has no non-trivial Iy ® Q-torsion, and H{, (Qo, V,(A))/Ia injects into H*(Q,V,(A)) under u +— ug, so
that we can eventually divide u by a power of a generator of I to get ug # 0.

By the Corollary %Lp(u, s)s=1 = 0. In this case we can express the second derivative of L,(u,s) at
s = 1 in terms of the canonical p-adic cyclotomic height of ug. We begin by recalling some constructions
from (among others) [MTT86|, [Nek93|, [Nek06], referring to Section 14 for the details.

Write H}(Q,V;(A)) for Nekovdi’s extended Selmer group attached to the p-ordinary representation
V,(A) [Nek06, Ch. 6], sitting in a short exact sequence

(125) 0= qa-Qp — H}(Q Vp(4)) = H}(Q, V,(4) = 0
and admitting a natural splitting & : H(Q,V,(4)) — I?}((Q), Vp(A4)). (Like (non-strict) Greenberg

Selmer groups [Gre91], Nekovar’s extended Selmer modules ‘capture algebraically’ trivial-zeros of p-adic
L-functions in the sense of [MTT86].) To clarify its structure further: let AT(Q) be the extended Mordell-
Weil group of A,p [MTT86],[BD96|, giving rise to an exact sequence
(126) 0—ga-Q— AT Q) ®Q, - A(Q) ©Q, =0
admitting a canonical section o : A(Q) ® Q, — AT(Q) ® Q,. Then there exists a natural injective
morphism of short exact sequences ii‘ : (126) — (125) respecting the natural sections o and o. Combined
with Kummer theory this gives: H}(Q, V,(A)) is isomorphic to AT(Q) ® Q, provided that the p-part of the
Tate-Shafarevich group III(A/Q) is finite. We will identify H} (Q,V,(A)) and AT(Q) ® Q, as submodules
of ﬁ} (Q, V,,(A)) via & and il respectively.
Section 11 of [Nek06] constructs a canonical extended (cyclotomic) p-adic height
Nek | 77 =
<_7 _>Q,p : H}(Q, VP(A)) X H}(vip(A)) - Qp'
It is a symmetric Qp-bilinear pairing, satisfying
Nek Nek

(94,94)q, =log,(ga); (ga,P)q, =loga(P)

for every P € H}(Q,V,(A)). Here (with an abuse of notation) we write

resp log 4

log, : H}(Q, Vp(4)) — A(Qp) ® Qp — Qp,

where log, : A(Q,) ® Q, — @, is the formal group logarithm on A /g, defined via Tate’s uniformization
as the Q,-linear extension of

log,, O(I)%;te P A(Qy) = Q;/qﬁ — Qp,
with log,, := log, —%,(A) - ord,, is the branch of the p-adic logarithm vanishing at ga € pZ,. The p-adic
(cyclotomic) regulator of A q is then defined by

Nek ,__ ) \Nek
RYEK = det <(<PH PJ>Q7P)1<i7j<?) € Q,,
where {P; }§=1 is any basis of AT(Q)/Torsion. We also consider the Schneider log,,-height

(= —orm s HHQ, Vp(A)) x HHQ, Vp(A)) — Qp,
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defined by the formula

Sch 1 THAQp Qe Nek  loga(P) - log,(Q)
) P = 1w (P |
P og,(qa) Nek Nek Qp log,(q4)
(@ aalg, (PQqy

(We recall that log,(ga) is known to be non-zero by [BSDGP96|.) As suggested by the notation, it is

proved in [Nek06, Sec. 11] (see also [Nek93, Sec. 7-8]) that the restriction of (—, 7%62 to A(Q) x A(Q) is
the ‘canonical p-adic height pairing’ constructed in [Sch82] (see also [PR92]). (We note that the definition
of the Schneider log,-height given here differs from that given in [MTT86, pag. 34|, as the latter contains
the extra factor ord,(g4) in the denominator appearing on the R.H.S. of (127). See also [Nek93, Sec. 7.14]
for a discussion of this point.) With this notations we have:

PROPOSITION 12.28. log 4 (ug) - %Lp(u7 §)s=1=-2- (1— p_l)_l - Zp(A) - (uo,u0>(SQf];.

The proof of this Proposition will be given in Section 17. Retracing the definitions above we easily
obtain the following:

COROLLARY 12.29. Assume that dim (A(Q) ® Q) =1 and that up € A(Q) ® Q,. Then

(
1 &2 -1 log 4 (U0) . Nek
—.—L s=1 = ' R
2 @ S T Cord (g) Toga (B0

where P is any generator of A(Q) modulo its torsion subgroup.

We note that Gross-Zagier-Kolyvagin’s theorem implies that the assumptions of the preceding Corollary
are satisfied if the complex Hasse-Weil L-function of A /g has order of vanishing 1 at s = 1.

12.8. Exceptional zero formulas II: Kato’s zeta elements. As explained more precisely in Sec-
tion 16 below: Kato has constructed an Euler system for the Tate module of A g, giving in particular an
element ¢5*° € HE (Qoo, Vip(A)) st Lexaro € Iy @ Q is essentially the Mazur-Tate-Teitelbaum (cyclo-

tomic) p-adic measure £,(A), ‘interpolating’ the algebraic part L(g%ff’l) of the special values of the complex

Hasse-Weil L-functions of A g twisted by finite-order characters x : Gal(Qs/Q) — @* Moreover, thanks
to work of Rohrlich we know that £,(A) # 0, so that ¢5**° £ 0. Then we can define the order of vanishing

PKato > 0 of Cffoam by: Cffoato € IRKee (X)(Q)\IXK"“”Jrl ®Q. Let us fix a topological generator vy € Gal(Qs/Q)
and let us write @ := vy — 1 for the corresponding generator of Iy. We define (cfr. Remark 12.27)

Kato __ 7 Kato .__ —PKat Kato, Kato ,__ PKato Kato
z = lim 2,97 = e (7% 2™ i=log,(70)** - 2g.0° # 0.

Let us write L, (A, s) = Xiy_j (£,(A)) for the (cyclotomic) p-adic L-function of A . Thanks to the work
of Kato we can then ‘specialize’ the results of the preceding Section to L,(A, s), obtaining the following
‘p-adic Gross-Zagier formulas’, whose proofs are explained in details in Section 17. We refer the reader
to the articles of Bertolini and Darmon, e.g. [BDO07], [BD98| for analogues and deeper results in the
anticyclotomic setting.

The following Theorem is the well-known Mazur-Tate-Teitelbaum exceptional zero formula, proved by
Greenberg and Stevens in [GS93].

THEOREM 12.30. (Kato's work + Prop. 12.25) £ L, (A, 5)s—1 = Z,(A) - 2L

For every prime ¢ dividing the conductor N of A,g we write E¢(X) := 1 — ay(A) - X € Z[X], where
ag(A) € {0,£1} is the usual ‘solution-count number’ attached to A g, [Sil86, Appendix C16]. Let us write

En = Tlyn Be (079

THEOREM 12.31. (Kato’s work + Prop. 12.28) Assume that zi*° € H}(Q,V,(A)). Then
1. L,(A,s) vanishes to order at least pkato +2 at s =1;
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Ly(A,s) = —Ev-Z(A)- <Z§at07 zg(ato>g’3];.

2. IOgA (z(%(ato) . (5—1)>FPKato a1

As in the preceding Section, the following Corollary follows easily from the preceding Theorem.

COROLLARY 12.32. (Kato’s work + Cor. 12.29) Assume dim (A(Q) ® Q) = 1 and z{*° € A(Q) ® Q,
(e.g. ords—1L(A,s) =1). Then

L,(A,s)

(S — 1)2+PKato =1

I\ .IOgA(zl(;atO).rRNek
ordy(qa) logy(B)2 9P

where P is any generator of A(Q) modulo its torsion subgroup.

13. The Coleman map

Fix a generator ((pm)men of Zp(1) = lim p,m (Q,). For every n € N, @, is the unique subfield of
Qp(Cpnt1) of degree p™ over Q, and @, := |,y Pn is the cyclotomic Zy-extension of Q,. For every
n < oo we write G, = Gal(®,/Q,), A, = Zy[[G,]] for the completed (if n = co0) group ring of G,
over Z, and L, := ker (&, : A, - Z,,) for its augmentation ideal. We also write O,, := Og,, for the ring of
integers of ®,, and m,, := max (O,,) for its maximal ideal.

Given a finite Z,-module T', equipped with a continuous Z,-linear action of G, , we write H\ (®o,T) :=
lim ,enH? (®,,,T), the limit being taken with respect to the corestriction maps.

For every finite extension L/Q,, we write exp} : H(L,Q,) — L for the Bloch-Kato dual exponential
map of the trivial G -representation Q,. Writing Oy, for the ring integers of L and

Kummer

expy i L7 050 Q,— (lmL7/17" ) 0@, = H(L,Qy(1)),

the dual exponential is characterized by the ‘commutativity’ of the following diagram:

(128) L x L . L q,
cxpzT leXPL
HY(L,Q,) x HY(L,Q,(1)) %> H*(L,Q,(1)) % Q,

We will write (—,—), = invpoU: HY(L,Q,) x H(L,Q,(1)) — Q, for the (perfect) local Tate pairing
and we will identify from now on the p-adic completion L*®Z, of L* with H'(L,Z,(1)) via the Kummer
isomorphism. Moreover, for every n € N we abbreviate exp;, := expy, .

REMARK 13.1. As proved by Kato [Kat93, Chapter II] we have HO(L,BH'R) ~ HY(L,Bjg), the
isomorphism being defined by “cupping” with log, oXcye1 € H L, Qp), and

expj : H'(L,Q,) — H'(L,Bjy) = H°(L,Bf) = L.
Here BQJ{R is the valuation ring of Fontaine’s field of periods Bgr and the first map is induced by inclusion.

13.1. Statements. The following result, based on work of Coleman [Col79], will be the key for
relating Kato’s zeta elements ¢ lggto to the p-adic L-function. Its statement is essentially [Rub98, Proposition
A 2] and its proof will be recalled in the following Section.

PROPOSITION 13.2. (Cfr. [Rub98, Appendix]) There exists a unique morphism of A.-modules
G Hiyy (P, Zp) — 1o
such that for every ¥ = lim,,_, o ¥n € Hi, (Poo,Zy) and every non-trivial character x of G,
X (Gos()) =7(0) - D X' (7) - expj (¥]).
yeG,

Here 1(x) = moy X (@) - (% is the Gaussian sum of x, where p™ < p"T1 is the conductor of x.
a€(Z/p™Z) P
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Since € takes values in I, its special value oo © Coo : Hiy(Poo, Qp) 9, Z,, is the zero map. This
leads us to consider its derivative at Io:
G L (P, Zy) 2 T 225 1, /12,

The following description of €. (whose proof will be given in Section 13.3) is fundamental for the proof
of the results of the introduction. Let us fix a topological generator vy € Gal(®o/Q,). We write w :=
70 — 1 € I, and log, (@) := log, (Xeyel(70))-

PROPOSITION 13.3. Let f3, & :=log,(w) - (1 — pt) € Zx. For every ¢ = lim1, € HY, (Poc,Zyp)

., (1) = o (Frob,) - { =

p,@w

} € Io/I2,
where Frob, = recg (p) € Gy, C G2 is the arithmetic Frobenius (and {*} := * mod I ).
p Qp p Qp 0o

13.2. Rubin’s description. Since fundamental for the methods of this note, in this section we recall
Rubin’s explicit description of ¥~ [Rub98],[Rub94]. As in loc. cit. we define for every n € N:

n
Cont1-rx — 1
Tp =P+ Trace@p(”pnﬂ)/@" (Z e o € d,.
k=0

LEMMA 13.4. 1. 2o = 0 and Traces,, . /¢, (Tniym) = Tn for every m,n € N.
2. For every non-trivial character x of Gy :

x( > -v) = 7(x)-
7€Gn
PrOOF. 1. follows by a simple computation, while 2. is easily proved using standard properties of
Gaussian sum [Lan90, Ch. 3, Th. 1.1]. O

The following key Lemma is due to Coleman:

LEMMA 13.5. (Coleman) There exists a (unique) principal unit g(X) € 1+ (p, X) - Zp[[X]] s.t.:
L. log, (9(0)) = p;
2. coly, := g((pntr — 1) € 1 +m,, and log, (col,) =z, for every n € N;
3. Normg, . /e, (colyym) = col, for every n,m € N.

PROOF. (Cfr. [Rub00, Appendix D]) Let us consider the power series

oo o k
o =x-—L MY e g 5002 3 VP g )
p /LG}LP,ICZ;; K k=0 p
where [a](X) = (1+ X)" — 1 € X - Z,[[X]] for every a € Z,. (We refer to [Col79, Sec. 5| for the proof
of the convergence of Zy.) Since f € X? - Z,[[X]], applying Theorem 24 of [Col79] (with § = G,z
a= p”j, b =0 and f as above with the notations of loc. cit.) we conclude that there exists a unique power
series ¢°(X) € 1+ (p, T) - Zp[[X]] such that

k k
P p (X+1)P -1 1 (X + 1P —1
(120) log(g"(X)) = — 2= + Z,(X) = -+ 3 ( A Y )
p—1 p—1 P p—1 it W p
I (X)

Let us write T for the operator h(X) — > 5., (ho[d]) (X). We note that

PP T O(X)) =D Y ([0 p (X)) = T (PHIX)) - D ou=0.

1)
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Then taking g(X) :=[] o [u]) (X) we obtain:

HEH, <g ©

(1+X)n?" —1
p* '

log(g(X)) = T (log (¢°(X)) =p+ >, >

k=0 pep, ;
Since by construction coly, := g({pn+1 — 1) = Normg, (1 ,11)/®. (9°(¢pn+r — 1)) and ¢°(X) is a principal
unit, we conclude that col,, € 1 + m,. Evaluating at X = (,» — 1 and recalling the definition of z, we
deduce 1. and 2. Finally: since Qp(pt,n+1) (resp, Q,(p,) for a prime £ # p) is totally ramified (resp.,
unramified), the torsion submodule of Q, (upn+1)* equals fr, | X fr,n+1, and since @, NQ, (1) = Q, we
have (@), = #,_1- This implies that log, is injective on 1+ m,, (recalling: p # 2). As {log,(col,)}nen
is a trace-compatible system by Lemma 13.4 and 2., this proves 3. O

PROOF OF PROPOSITION 13.2. Let n € N. For every v, € H(®,,,Z,) define

(130) Gn (Yn) = Z AR Z exp,, (V;)) e Qy[G)]

7€Gn vE€EGH

Combining Lemma 13.5 and equation (128) we can rewrite

Cn (Yn) = Z Traces, /g, (x;fL . exp;(qpn)) oy

vE€G,
(131) = Z Trace%/QpOogp(co[g) . epo(dm)) -y
v7€G,
= Z <wn7CO[;Yz><I>n -
YE€EGR

Since the local Tate pairing (—, —)g maps ¢ RZ, x H (®,,,Z,) to Z,, we conclude that &, in fact defines
a map

Gt H (9, Zy) — Ay, = Zp[G)].

As (—,—) s, 18 Gp-equivariant (with respect to the conjugation action on cohomology and the trivial action
on Q) it follows immediately from (131) that %, is a morphism of A,-modules. Moreover, using the
‘projection formulas’ (Normg, ., /¢, (1), i>q> T (t,1)p, [Ser67], (131) easily implies that the following
diagram commutes for every m >n € N: '

H (@, Zy) —™ = Ay
Nm/i GGy
HY(®,,2Z,) — 2> A,
We then obtain on the limit the desired Coleman map of A.,-module:

The fact that % maps to the augmentation ideal I, and has the characterizing interpolation property
follows by (130) and Lemma 13.4. O

13.3. Derivative of the Coleman map. In this Section we prove Proposition 13.3, giving a simple
explicit formula for the derivative of €.
The local Tate pairings (—, —)g for n € N combine to give a A-bilinear pairing

<*7 *>¢>oc : Hllw((pOOvZ;D) X Hllw ((ﬁOOaZ;D(l))L - Aooa
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defined by the following formula:
(W, upy = lim > (n,ul)g,
Y€Gn

for every ¥ = lim, o0 ¥pn € @Hl(Qn,Zp) and every w4 = lim,_oo Uy € @Hl(én,ZP(l)). Here ¢ :

Ao — A denotes Iwasawa involution induced by g — ¢g~! on group-like elements; for every A..-module

M we write M* for the Z,-module M, with A-action obtained twisting the original action by .
Identifying as usual H'(®,,Z,(1)) = ®®Z, by Kummer theory, Lemma 13.5 allows us to define:

col := lim (col,®1) € Hf, (Pus, Zp(1)).

Then the proof of Prop. 13.2 (specifically equation (131)) gives us the following:
LEMMA 13.6. Go = (—,c0l) g : H{ (Poo, Zp) — Iuc.
Recall the fixed topological generator vy € G and the corresponding generator w := v — 1 € I

LEMMA 13.7. There exists a unique 9 € H} (Poo, Zp(1)) such that col = @ - 0.

PRrROOF. The exact sequence of Galois modules 0 — Ao (1) = Ay (1) =3 Z,(1) — 0, together with
Shapiro’s Lemma gives us a long cohomology exact sequence of A,,-modules:

4 w Eoox 5 w
T quw(q)oo’Zp(l)) - wa(q)oovzp(l)) - Hq(vaZp(l)) - quvjl(q)omzp(l)) —

(see Remark 14.4 below). We deduce that H}, (®oo,Z,) has no w-torsion and that we have an injective
morphism of Z,-modules

(132) Hllw(q)omzp(l))/w : Hllw(q)omzp(l)) — Hl(Qp’Zp(l)) = Q;®ZP'
The unicity of @ is then clear. Moreover we know by Lemma 13.5 that coly = 1, so col is in the kernel of
(132) i.e.: col belongs to w - H (®u, Zy(1)) as claimed. O

Let us write p% for the p-adic completion of p? C Qy so that we identify H HQp, Z,(1)) = pPr @
(14 pZy). By local class field theory [Ser67| the reciprocity map gives an isomorphism recg, : Q;@(@p =
G@k; @Qp, inducing an isomorphism

Ing (chcl)
Goo = 7,

I

H (@, Zy(1)) / () Norma, g, (H' (@, Zy(1)))
neN
In particular we have p” =, .y Normg /g, (H'(®n,Zy(1))).
The preceding two lemmas reduce the computation of €7, to the computation of the ‘universal norm’
€o0x(0) € pP». This can be done using again the work of Coleman [Col79], and precisely the so called
Coleman isomorphism which we now briefly recall. Let Zy,, 1= Zp[(pn+1] and let Voo 1= lim ,en (Zpn)*

(limit with respect to the norm maps). The Coleman isomorphism gives an isomorphism of G, =
Gal(Qp(p=)/Qp)-modules [CS06, Cor. 2.3.7|:

Voo Z{h € Z,y[[X]] : N(h) =h}; v = lim v, — Fy,
where N is Coleman norm operator [Col79, Sec. Theorem 11]. (We will need only the existence of the mor-
phism Voo — Z,[[X]].) The action of g € Guo on h € Z,[[X]] is given by h9(X) 1= h ((X + 1)Xeal(9) —1)

and the power series Fy is characterized (via Weierstrass preparation) by: Fy((yn+1 — 1) = v, for every
n € N. Let us consider the composition

(133) Voo = lim nen@}; " HE (@00, Z,(1)),

where the first map is defined by (v, )nen — (Norm(@p(“ i)/ ®n (vn)> o Since Normg_ (,, )0, (v0) = 1
b ne p

for every v € V,, by the discussion above, the argument of the preceding proof implies that the image of
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the above map is contained in I, - Hf (Poo, Zp(1)) = Hi (Peo, Zp(1)) @A, Iso. Then composing (133)
with the projection I, — Io./I% induces a morphism of A..-modules

N : Voo — Hiy (90, Zy(1)) ®a, Too /T2 =5 P @ T /T2, = pPr,
where the last map (dependent on the choice of w) is defined by * ® {zw} — *. This morphism is easily
described by the following:
log (Fy (0))
LEMMA 13.8. Ny, (v) =p ©=@ € ple.
PROOF. For every n € N write v, = Noerp(CPHH)/% (¢pn+r —1). Then v, is a local parameter in O,
and we can identify by Kummer theory:

(134) HY (9, Z,(1)) = 05 RZp = vp» & (1 +my,),
where v, & Z, is the p-adic completion on vZ C ®}. Letting v = limv,, we can thus write
(135) Tim_ (Norm@p(cpnﬂ) o, (Un)) =@ lim (1" © &) € Hi(Poc, Zy(1)),

for some z,, € Z, and &,, € 14+m,,. We note that Noerp(CPnH)/QP(CM)(CPVLH —1)=(pn —1foreveryn e N
(since XP — (pn is the minimal polynomial of (,n+1 over Q,((p») by total ramification). Then corestriction
respects the decompositions (176), so that z, := z, is independent on n and {&, }nen is norm compatible.
Define 8 := lim&, € H{, (Pos,Zp(1)). As & = 1 and 1 := Normg,(¢,)/0,(Cp — 1) = p, we have by the
preceding proof (135) = @ - lim, o (¥2=) mod (w?), so that by definition:

n

(136) Ne (V) =p*=.

To compute z, we first note:

Zw

Ko 1
W o_ . z ” . . P"+1
P =w- lim (¥27)”:= lim I | S € Voo,
n—0o0 n—oo C n+1 1
HEM, 4 P

and its associated Coleman power series is given by:

- (X + 1) Xeva(h0) — 1\
Fo (X) = H ( (X +1)1 -1 '
HEM, 1

In a similar way, writing v° := lim (Noerp(Cl,nﬂ)/@n (Un)), we have:

Fo(X)= ] (Folu)(X); Fop(X)=(Fso [Xeya(h0)]) (X)/Fa(X).

HEM,
Since (f o [a]) (0) = f(0) for every a € Z, and f € Z,[[X]], we finally obtain from (135):

R0) ™ = Fo(X)| = Fp_(X) - Fap(X)| _ = xeyaal30) ">

Applying log, to this equation we obtain: log, (Fy(0)) = log, () 24, which combined with (136) concludes
the proof. O
1
COROLLARY 13.9. o0y (D) = p? 1 2™ ¢ plo,

PROOF. Let g € 1+ (p, X)Z,[[X]] be the power series defined in Lemma 13.5, so that g = F,(. Since
col,, € @7 for every n € N, looking at the definitions we have

PPl enes Vm) = N (col).
As log, (9(0)) = p by 1. of Lemma 13.5, applying the preceding Lemma we obtain the statement. O

We can now finish the proof of Proposition 13.3.
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PROOF OF PROPOSITION 13.3. Combining Lemma 13.6, Lemma 13.7 and Corollary 13.9 we have:
Co() = {{th,c0l)y_} = (¥, 05)0. - {@} = coc (¥, 02)5_) - {w}

= (Y0, €00x (0 ), - {@} = (Y0, P)q, - {@Tw } -

We conclude the proof using again local class field theory [Ser67]: <X7P>Qp = x (recg, (p)) = x(Frob,) for

every x € Homeont (G, , Zp)-
O

14. Nekovar’s extended height

In this section we briefly sketch Nekovai’s construction of the extended p-adic cyclotomic height on the
Nekovar-Selmer complex attached to the ordinary representation Ta,(A). The reference for the material in
this section is [NekO06], in particular Chapter 11.

14.1. Selmer complexes. Fix a positive integer N divisible by p. Let L/Q be a number field un-
ramified at every finite place v { N. We write &1, := Gal(Qx/L), where Qx C Q is the maximal algebraic
extension of Q which is unramified at every finite prime ¢ t+ N. We fix for every prime v|[¢|N of L an
embedding p, : Q — Qy, which also fix a morphism p : G, — G, — &, where L, := p,(L) - Q¢ is the
completion of L at v and pjj(0) = (p;' 000 py) | 0y Every Gr-module will be considered as a G, -module
via p¥, for every v|¢|N. Let R = (R,mg,Fr) be a complete local Noetherian ring with finite residue field
Fg of characteristic p. Let .# C R be a multiplicative system (containing the identity) and let R := .~ R.
By an R-adic representation of &1, we mean a localization X := X ® g R of a finite R-module X, equipped
with a continuous R-linear action of &, for the mg-adic topology on X. For G € {&,G,} we write

Coont (G, X) :=C2 (G, X)@r R (resp., Rlcont (G, X), HY(G, X))

cont cont

for the complex of continuous X -valued cochains on G (resp., its image in the derived category D(R) on
complexes of R-modules, its cohomology) [Nek06, Chapter 3]. (More precisely: C2, (G, X) is the complex
of continuous non-homogeneous cochains of G with values on X. This is defined exactly as in the classical
(discrete) case, e.g. [NSWO0O0], but with the term continuous referring to the mpz-adic topology on X and the
profinite topology on G.) We also write C2(Ly, —) := Coi(GL,, =) Rlcont(Lyv, —) := Rl cont (G, , —)
and HY(L,,—) = HY(GL,,—).

Let X be an R-adic representation of & . We fix for every prime v|N an R[G,]-submodule X C X.
Letting X, := X,f ®g R, the (Greenberg) local conditions at v is the morphism of complexes of R-modules:

+ C.(LTH X—‘r) - Ccont(L’U’ X)

induced by the inclusion X C X. The Nekovdi-Selmer complex of X = (X, {XJ}U‘N) over L is then
defined as the complex:

~ resn —ij;
Cf(®L7 X) := Cone C(cont G, X @ cont va X =L @ cont LU7 X [_1]
v|N v|N

We write i 1= @, ni; and resy = @, nres,, where res, : C%, (61, X) — C2 . (Ly, X) is the ‘restriction’
morphism of complexes induced by the morphism of pairs: (p},id) : (&, X) — (G, X). Let

RI;(®,,X) € D(R); HY(®L,X) € rMod

be the image of é} (61, X) in the derived category and its cohomology respectively. Under our assumptions

the usual finiteness theorems for Galois cohomology of discrete modules imply that ﬁ;(@ L,X) is a finite
R-module [Nek06, Sec. 4.2].
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LEMMA 14.1. There exists an exact sequence of finite R-modules:
(137) o > @PHITN Ly, X)) = HH G, X) — HY (S, X) — @D HI(Ly, X)) — -,
v|N v|N

where X, == X /X, € R[GL,]-Mod.

PROOF. Writing U, (X) := Cone(C‘(Lv,X) X C'

cont

(Ly, X)) we have an exact triangle in D(R):

(138) P U; (X)[-1] = RT (B, X) — Rl eont (B, X).
v|N
Since C&,. (Ly, —) maps short exact sequences of R-adic representations in short exact sequences of com-

plexes [Nek06, Prop. 3.4.2|, for every place v|N the natural projection induces an isomorphism in the
derived category:
U, (X) = RTcont (L, X, ) € D(R).

v

Taking the long cohomology exact sequence attached to (185) we obtain (137). O

14.1.1. Galois deformations. Let /L be a Galois extension contained in Qp /L. Write I't, := Gal(L/L)
and Ry, := R[[I'L]] = R[[I'L]] ®r R for the completed group algebra of 'y, over R. For every M €
Rr[®L]-Mod and every n € Z, M < n >€ Rp[6]-Mod denotes the Ry-module M, with &-action
obtained multiplying the original action by x*, where

X, 6L > I, C Ry
denotes the tautological &y -representation. For every R[®]-module T' we denote by
T = (T ROR R]L) < —1>€ R]L[QfL]-MOd

its L-deformation. Writing ey, : Ry, — R for the augmentation map, we have ef (11,) = T as R[& 1]-modules,
where ¢} (=) :== — Qr, . R : RL-Mod — R-Mod.

Let X = (X,{X},~) be an R-adic representation of &. Then Xy, = (XL, {(X,") }on) is an Ry-
adic representation. In the following proposition Lef : D(Ry) — D(R) denotes the left derived functor of
the functor ¢ : C* — C*® ®g, -, R on complexes of Ry-modules.

PROPOSITION 14.2. (Control Theorem) Assume that I', & 7§ for some g > 1. There exists a canonical
isomorphism in D(R):

Lt (ﬁff(esL,XL)) ~ R (61, X).
PROOF. The proof proceeds by induction on the dimension g > 1 of I',. We sketch the proof for g =1

(the only case needed for the results of this note), referring to [Nek06, Prop. 8.10.1] for the general case.

Fix a topological generator 7, € I', = Z,, and write wy, := 4, — 1 for the corresponding generator
of ker (e), so that we have an isomorphisms Ry, = R[[wr]] and Ry/(wL) = R. Let M € {X, X} and
G e {®.,G,}. Tensoring R = Ry /(wL) with M we obtain short exact sequences of Ry [G]-modules:

0— My, =5 My, — M — 0.
Applying C? . (G, —) we obtain a short exact sequences of complexes of Ry -modules [Nek06, Prop. 3.4.2|
0— Cc.ont(Gv M]L) Cc.ont(Gv M]L) - Cc.ont(Gv M) - 07
qf)mpatibles under res, and i,;". Combining these exact sequences gives a similar short exact sequence for
C’;(@ L,—), i.e. a quasi isomorphism of complexes of Ry -modules:

(139) O3B, 20) @r, [Re T Re] 25 O3(&1, X),

where [T\’,]L = RL] 9 R is concentrated in degrees —1 and 0, i.e. is an Rp-projective resolution of R. This
in turns defines the the canonical isomorphism in the statement [Har66, Ch. II, Cor. 5.11]. (]
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14.1.2. Shapiro’s lemma and Iwasawa modules. Let . = |J, ., Lo be an abelian extension of L con-
tained in Qp, for finite abelian extensions L, /L. For every o € o/ we write &, := &_. For o, 3 € & s.t.
L, C Lg Section 8 of [Nek06] constructs canonical corestriction morphisms:

corl : Hi(®p,X) — Hi(®q, X),
together with a homotopy action of T, = Gal(L,/L) on ﬁ?(@a, X) and a canonical Shapiro’s isomorphism
of Ry := R[['w]-modules

Sha : Hi(BL, Xa) = Hi(Ba, X).
Here X, := Xp_. All these constructions commute with the usual ones under the natural morphism
H]?(Qja,é’() — H9(&,,X). Moreover cor? corresponds, via the Shapiro’s isomorphisms Sh,, to the map

pr, : I;'}](QﬁL, Xg) — PNI?(Qﬁb X,) induced by the natural projection I'g — T',. This allows us to define the
Ri-module:

HYp, (LX) = ( hﬁdﬁg(@mx)> QrR.
cor; ac

We recall that R := . 'R and (X, {XJL}UW) is obtained as the .#-localization of the R-adic representation
(X, {X{}‘"}U‘N) of ;. Since X, := (X XRr R[[F]L]]) < —=1>= mxu as RL[®L]—modules and A, = XL®RrR,
the isomorphisms Sh, combines to give an isomorphism of Ry-modules [Nek06, Prop. 8.8.6]

(140) Sh: Hi(®., X)) = lim HH(6,,X,)=HI (LX),
pr,; o€

where the first isomorphism is induced by the natural projections A, — &,. In what follows, we will
identify H}(@L, AL) = H}{IW(L7 X) under Sh.

COROLLARY 14.3. Assume that I'n = Z,, and let w := vy, — 1 for a topological generator v, € I'L.
There exist short exact sequences of R-modules

0— HY (L,X)/w — HYS,,X) 5 L, X)[w] — 0
PROOF. Apply cohomology to the control theorem Prop. 14.2. (See in particular (139) in its proof.) O

REMARK 14.4. Let E be a finite extension of Q or Q,, let E/E by a ZJ-extension (i.e. I'g = Z9) and
let T be a continuous R[G g|-module, finite over R. Then the analogues of Prop. 14.2, (140) (and Lemma
14.3 if g = 1) obviously hold for the continuous cohomology of T and Tg. (In particular this justifies the
argument used in the proof of Lemma 13.7.) As above we will identify

H(E, Tg) = lim HY(E,, T) =: HE, (E,T)
via the Shapiro’s isomorphism. If E C Qp is a global field and T is an R[® g]-module, a similar canonical
isomorphism holds for the cohomology module H*(® g, Ti) with restricted ramification.
14.1.3. Class field theory. Let R(1) := R ®z, Zyp(1). We consider Xy, = (R(1),{0},n) and we write

Ceeont (61, R(1)) 1= CH(® 1, Xrn); HI(GL,R(1)) := H{(S 1, Xra).

¢,cont
PROPOSITION 14.5. The invariant maps of local class field theory induce an isomorphism of R-modules:
inv, v : H}(GL,R) = R.
PROOF. Lemma 14.1 gives an exact sequence of R-modules:
H* (6, R(1)) "N P H? (L, R(1)) — HZ (&, R(1)) — 0,
o|N
where the zero on the right follows by cd,(&1) = 2. On the other hand, the fundament exact sequence

of global class field theory tells us that (resy is injective and that) Zm N inv, gives an isomorphism
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coker(resy) — R. (Here inv, : H?*(L,,R(1)) = R is obtained (taking limit) from the invariant maps
of local class field theory.) O

14.1.4. Global cup-product pairings. Let X = (X, {X,},n) and ¥ = (¥, {V }s/n) be R-adic repre-
sentations of ;. We assume that there exists a & -equivariant morphism of R-modules
FX@RJ)—>R(1),

such X, is w-orthogonal to Y& for every v|N. This means that m (z] ® y;7) = 0 for every x} € XfF,
v € YV and every place v|N of L. For G € {&,GL,} let Ur(G) denotes the G-cup-product pairing
attached to m [Nek06, Sec. 3.4.5]:

UW(G) : Cc.ont(G7 X) KR C(:ont(Gﬂ y) i) C(:ont(Gv X ®R y) B Cc.ont(G7 R(l))
We will denote simply by Ur both Ur(&.) and @,y Ux(GL,). We write 2y = (z,27,a) to denote an
n~-cochain of CN’}((’jL, X), where € Cly (&1, X), 27 € @, Clont (Lo, X)) and a € D,y Cr ULy, X).

Similarly we denote by y; = (y,y", ) a generic m-cochain of 5;(6 r,Y). Then a simple computation
[Nek06, Prop. 1.3.2] proves that the formula

UL yp = (2 Ur g, a Up i (y 1) + (—1)"resn (z) U B)
defines a morphism of complexes of R-modules:
BT L G361, X) @ O3 (61, 9) — Ceon (61, R(1)).
Taking the pairing induced by UPT in (2, 1)-cohomology and using Prop. 0.4 we define
(— )i H} (&1, X) @r Hj(G1,Y) — H (6, R(1)) = R.
(Here PT stands for Poitou-Tate. In fact [Nek06] uses the cup-product pairing UPT to give a wide

generalization of classical Poitou-Tate duality. Se especially Sections 5 and 6 of loc. cit.)

14.2. The extended p-Selmer group of A/q. In this section we recall the relation between the
Selmer complex attached to Ta,(A) and usual Kummer theory for A,g. First of all, we have to define a
p-ordinary structure on Ta,(A).

Tate’s p-adic analytic uniformization [Tat95], [Sil94, Chapter V] gives an isomorphism of Gg,-modules

Drate : @;/q% = A(@p)

We identify A(Q),n = A(@p)pn under the isomorphism induced by the fixed embedding p,. As the Tate

period ga € pZ,, we obtain short exact sequences of Gg,-modules 0 — 1, (@p) Prage A(Q)pn T 7 /p" — 0,
where G), acts trivially on Z/p" and m,, = 74, n is defined in Section 1. Taking the inverse limit for n — co
and extending scalars to Q, we obtain a short exact sequence of Q,[Gq,]-modules:

(141) 0 — Qy(1) "I V,(4) 4 Q, — 0,

defining a p-ordinary structure on V,(A) := Ta,(A) ®z, Q.

With the notations of the preceding Section let N = N4 be the conductor of A g, so that by assumption
p divides N exactly. Given L C Qu, let @rape : Vu(A)F = Qu(1) — V,(A4) (resp., V,(A)F := 0) for
every place v of L dividing p (resp., dividing N/p). Then V,(A) = (V,(A),{V,(A)},n) is a Q,-adic
representation of &, [Sil86, Ch. VII] and we write

RT (L, Vp(A)) == RUp(®1, V,(A)); - HI(L, Vi (A)) = Hf (61, V(A)).

(Since we are working with Q,-coefficient, and as suggested by the notations, ﬁff (L, V,(A)) does not de-
pend on any choice. In other words, replacing N4 by an integer N’ divisible by every prime of bad reduction
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of A)g, and V,,(A)} by any Q,[G,]-submodule of V,,(A) for v { p, the new f{\ff(Gal(QN//L), Vp(A4)) is
canonically isomorphism to RI';(L, V,(A)) in the derived category.) Let

HY(L,,Ta,(A))

HY(L, Vp(A)) = ker <H1<L,Tap<z4>> el A(Lo)oZ

) ®z, Qp 2 A(L) @ Qp

be the classical compact Selmer group with Q,-coefficients arising from Kummer theory for A,

LEMMA 14.6. We have a natural short exact sequence of Qp-modules

(142) 0—Pa, — H}(L,Vy(A)) — H}(L,Vp(A)) — 0
vlp

Proor. It follows by a theorem of Lutz [Sil86, Ch. VII, Prop. 6.3] and local Tate duality that
RTcont (Ge, Vp(A)) is acyclic for every prime £ # p. (In particular A(Q,) ® Q, = 0 for ¢ # p.) Together
with: V,(A4),; 2 Q, as Q,[GL,]-modules for every v|p and H°(Q, V,,(A)) = 0 this allows us to extract from
(137) the exact sequence
H(Ly, Vp(4))
tex (Hl(va Qp(l)))
Using the Tate parimetrization (and Kummer theory) it is easy to show that the image of the local Kummer

map A(L,) ® Q, — H'(L,,V,(A)) equals the image of the map ®rates : H'(Ly, Qy(1)) — H(L,, V,(A)).
Then the image of 7 in (143) is precisely H}(L,V,(A)), as was to be shown. O

(143) 0— P H(L,, Q) — HH(L,V,(A)) = H (&1, V,(4) — P .
v|p &

vlp

14.2.1. Self-duality. The Weil pairing [Sil86, Ch. III] defines a perfect, alternating and Gg-equivariant
morphism of Q,-modules
W Vp(A) @g Vp(A) — Qp(1).
Since W is alternating Wo (@Tate ® <I>Tate) is the zero map, so that by construction V]D(A)UJr is W-orthogonal
to itself for every place v|N of L. Then the constructions of Section 14.1.4 give in particular a Qp-bilinear
form:

(144) (= =)o : HH(L,Vp(A) ® HF (L, V(4)) — Q.

We note that two different normalizations are usually used to define W, and the resulting pairings
differ by the sign. Here we take the normalization such that [Tat95, pag. 328]

(145) W(Pate (1) ® y) = 2 X g, ()
for every z € Q,(1) and y € V,(A) (see (141) for the notations).

14.2.2. The extended Mordell-Weil group. We now explain how to generalize Kummer theory for 4,
giving an embedding of the extended Mordell-Weil group of A7, in H } (L,V,(A)). For simplicity of notations
we limit ourself to the case L = Q. We recall [MTT86| that the extended Mordell-Weil group of Aq is
defined by

ANQ) ={(P,y) € AQ) x @ : Prace(y) = P}
In other words an element of AT(Q) consists of a Q-rational point on A /0 together with a distinguished
lift under the p-adic Tate parametrization. By construction we have a short exact sequence

075 AN(Q) — A(Q) — 0,

where i(1) := (0,¢g4) (and the right map is the natural projection). After extending scalars to Q, this
sequence has a natural splitting:

o AQ)2Q — ATQ)®Q; o(P):= (ord,,(qA) Pyordn(aa) q;‘“dp(yP))

Ordp(QA)

where yp is any lift of P under ®1... (Note that yoprd”(qA) . qzord’)(yp)

lying in Zy.) We write

is the unique lift of ord,(ga) - P

ANQ©Q,ZQ, e (AQ Q)
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for the decomposition induced by o. We also have a natural splitting of (142):

F: HHQ,Vp(A) — HHQ,Vp(A));  &([]) = [6.6F, (€0)ew],

where we impose that the 1-cocycle & € Cly (Gp, Qp(1)) and (£7)n € @Dy Vi (A) satisfy the following
two conditions:

1. 6(£7) = —resy(§) for every £ # p, and 6(&7) = ‘I’Tate*(f;) —res,(&);

2. the cohomology class represented by §p+ lies in Z;@Qp C H'(Qp, Q,(1)).

Since V,(A)%¢ = 0 condition 1. implies that £ is uniquely determined for ¢ # p. As the kernel of the
‘cohomological Tate map’ ®rates : H'(Qp, Qp(1)) — HY(Qy, V,(A)) is generated by ga®1 € Q;@Qp and
ga € pZy, conditions 2. and 1. imply that (§+ £5) is uniquely determined up to elements of the form
(6(m; ), Prate(n;))), for nf € Qp(1). Since by definition dc' (0,m,5,0) = (0,6(n, ), Prate(n,+)) this shows
that the cohomology class [€, E; ,(£2)¢] is uniquely determmed by 1. and 2. The same argument also shows
that o respects coboundaries: “o ([0¢]) = {dé; (%,0, 0)} 7. Then o is ‘well defined’ and clearly defines a

section of (142). We write as above

Q, © HHQ,V,(A) Z HHQ, V,(A))

for the decomposition attached to o. We can thus define a natural embedding:

i : AHQ©Q 2 Q@ (AQ) ®Qy) "B Q, @ HHQ, Vi(4) £ HHQ Vp(4)),
which is an isomorphism provided that the p-part of the Tate-Shafarevich group III(A/Q) of A q is finite.

In what follows we will identify AT(Q) ® Q, and H}(Q,V,(A)) as sub-modules of f[}((@, V,(A)) under i,
and o respectively.

14.3. The extended p-adic height pairing. Recall that Q. = |J,,cyy Qn denotes the cyclotomic
Zy-extension of Q. Let us fix a topological generator vy € I'q,, and let @ := 79 — 1 be the corresponding
generator of In. (Recall that A := Z,[[I'q_]] and I := ker (eq_.) is its augmentation ideal.) We write
e = 10g,(Xcyc1(70)), Where Xeyel denotes as usual the p-adic cyclotomic character.

Define the Bockstein map for A/Qs by the following composition:

Lo HNQV(A) 22 2 (Quo, Vi (4)) 250 FR(Q,V(4)) 25 T2(Q, V(A)).

Here B}ﬂ is defined in Corollary 14.3 and pr,, denotes the natural projection. Multiplication by ¢ serves the
purpose of removing the dependence on the choice of vy, so that ﬂl <1 is a canonical morphism. Combining
this morphism with (149) we can define Nekovd#’s extended p- adzc hetght paring:

(= =)o : HHQ,Vy(A)) x HH(Q,V,(4)) — Q,
by the formula:
PT

(P,Q)g5 == (Bha(P),Q)g -

It is a symmetric Q,-bilinear form [Nek06, Cor. 11.2.2|. In particular (7,7%2{ gives a Qp-bilinear
symmetric form on both the extended Mordell-Weil group AT(Q) ® Q, and on the classical Selmer group
H(Q,V,(A)).

The following Lemma follows (as a special case) by the computation in [Nek06, Sec. 11.4]. We give a
proof for the convenience of the reader.

LEMMA 14.7. For every yr = [(y,y,, 0)] € fl}(@, Vp(E)):

<QA7 yf>@ p logp([yp ])
where [y}] € H(Qp, Qy(1)) = Q;@Qp is the cohomology class represented by y,t.
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PROOF. Recall that B}ﬂ([zf]), for a I-cocycle zy = (2,2 ,a) € CN'}(QﬁN,Vp(A)), is obtained by the

following recipe (see the proof of Prop. 14.2): write &y = Gal(Qn/Q) and let zy = (z,z;',a) €
6}(®N,VP(A)QOO) be any 1-cochain which lifts z; under the morphism eq_« : 6’;(@51\[, Vp(A)q.) —

CN';(QiN, Vp(A)) induced by the ‘augmentation map’ V,(4)q.. — Vp(A). Then the differentials dé; (zp) =
w - 3¢ for a (unique) 2-cocycle 3¢ € éfc(QSN, Vp(A)q.. ). Writing 35 :=eq_«( 3¢):

Br(lze) = (35 Blyallzs]) = b - [a5]-

Let us fix a basis {¢,q} of the Q,-module V,,(A), where ¢ = ({n)nen is a generator of Z,(1) and

q = (qz/p Jnen is a compatible system of p™-th roots of ¢4 in Q,. (Here we identify A(Q),» with the

Gg,-module {Cp 77 (6,5) € (Z/p”Z)2} /4% under ®rae.) Then the action of Gg, on V,(A) with

respect to this basis can be written:

chcl(g) Ya (9)
Go, 29+ € GLz(Zp).
0 1

Here v4 € CL 1 (Q,,Q,(1)) is a 1-cocycle such that ®rates (74) = 6(q), so that by definition g4 = (0,q4) €
AY(Q) is identified under z'TA with the [g¢] := [(0,7q,q)] € H}(Q, Vp(A)). Recalling that V,(A)q. =
(Vp(A) @z, A) ® Xéio and taking

Z]vf = (O,’Yq® X;;’G ,q®1> EC}(@N,VP(A)QOO)
Qp
as a l-cochain lifting ¢y under eq,_«, we easily compute (by the discussion above):

Beyer (las]) = l= - [(0,7,q - 9)].-

Here ? is a 2-cocycle in C2_(Q,, Q,) (whose explicit description is not relevant here) and ¥, € H'(Q,,Q,)
is the ‘derivative’ of x_ with respect to @: x,_(9) —1 =9 (g) @ mod w?- A for every g € Gq, (viewed
inside Gg under the fixed embedding p). Combining (145) and the explicit definition of U}yl (resp., inv )
given in Section 14.1.4 (resp., Section 0.4) we compute:

_ PT .
(16) 2 {aanio = = (Bhallar) r)g sy = vy ([0.2.9-02) U (0,5 0)] )
= invy ([0, (V) U Prae(y;)] ) = iy [0 U] ) = s (recg, ([ ))-
Here recq, : Q, ®Qp = G ®Qp is the local reciprocity map, normalized so that recq, (p) = Frob,. (For the

last equality in (146) see [Ser67] ) Since Gab = Gy, x Gal (Qp(up~/Qp)), Frob, € Gr, and ¥5(7) = 1
for every 7o € Gg, s.t- p; (Yo ’Q =y, We ﬁnd:

1ng (chcl) c

Ve = =

Hl(@pv @p)

Then writing
] = 0" Bu) @p™" € QRQ, = (p @ (1 +Zy)) ®Q,
we obtain by (146)
(04, y5)q = —10g, (Xeye o Tecg, (u@p™™)) = p~" - log,(u) = log, ([5,]]),

the second equality by Lubin-Tate theory [Ser67]. O
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15. An exceptional Rubin’s style formula

Let w := vy — 1 € I, for a fixed topological generator vo € I'q_ . We identify 'q_ =T, A=A
under the (fixed) embedding pj, : G, C Gg. Let

(147) Hllw(Qoovvp(A))o = {‘B € Hllw(Qoo,Vp(A)) : 8;0,00(33) cw- Hllw(q)mv(@p)}
= {@ € Hy,(Quo, Vp(A4)) : pro(z) € HE(Q, V,(A))},

where pr, denotes the natural projection Hi, (®oo, Qp) — H'(Qp, Q,) = Homeont (G&‘;,Qp). The equality

above follows by Remark 14.4 (telling us that the induced map pry : Hi, (Poo,Qp)/m — HY(Qp,Q,) is
injective) and the proof of Lemma 14.6 (showing that H}(Q, Vp(A)) =ker (0p0))-

Given z € H}, (Qoo, Vp(A)) such that 9 o (x) = @ - y for some y € H], (Poo, Q,), we write
(148) Der,(x) := 1ogp(w) - pro(y)(Frob,) € Q,,

where as usual Frob, € Gf, C G%& is the arithmetic Frobenius. As suggested by the notation Der, () does
not depend on the choice of y, i.e. we have the following:

LEMMA 15.1. Formula (148) defines a morphism Dery, : Hf, (Qoo, Vp(A))° — Q,.

PROOF. The cohomology class y is unique up to the addiction of an element of the w-torsion submodule
H} (P00, Qp)[w]. Remark 14.4 gives an isomorphism

Be : Qp = H"(Qyp, Qp) = Hy (Poo, Qp)[w],

and a similar (and simpler) argument to that used in the proof of Lemma 14.7 easily proves that

Im (HO(va@p) ﬁ’ Hyy (Po0, Q) =4 Hl(vaQp)) =Qp - log, (Xeyel) C Homcont(G&Z’Qp)-

As Xcyel vanishes on the Frobenius Frob, the Lemma, follows. O
The following proposition is an ‘exceptional-case’ analogue of the main result (i.e. Th. 3.2) of [Rub94].

PROPOSITION 15.2. Let € Hi, (Qoo, Vp(A))° and write xo := pry(z). Then

(a4, 04005 (g4, o)y r
-1 ’ Qp ) Qp
log 4 (x0) - Derp(x) = A (el ) - det .

4 e

Nek N
<-’/U07CIA>@3; <$07-’B0>@?p

PROOF. Let rg € C . (Q,V,(A4)) be a 1-cocycle representing o, and recall (cfr. Section 14.2.2) that

we identify o € H}(Q,V,(A4)) with 5(x0) =: [(r0,x5,,,7(x0))] € H}(Q, V,(A)). Write Vio (4) := Vj(A)q..
for the cyclotomic deformation of V,,(A), and &,, := Gal(Qn/Q,,) for every n € N (with N := cond(A4/Q)).
As HY(Qu 0, V,(A)) = 0 for every place v|[¢ # p of Q,, and every n € N (see the proof of Proposition 14.6),
we can use Shapiro’s Lemma to indetify:

Hi, (Qoo, Vp(A)) = lim HY (8, V,(A)) = H' (8, Vio (4)).

cor

as A-modules, with & := & (see Remark 14.4). Let us choose a 1-cocycle
€ Coont (6, Ve (4)); - [f] = € Hy, (Qoc, Vp(4))

representing x. We also choose cochains
EE)"_,p € Cont(Qp’ ( )+)7 ;7(;0) ’75 IO (‘N S @ cont Q[7 ))

N

lifting xop € Clont(Qp, Vp(A)f) and ~(xo) € Dn CY .t(Qq, V,,(A)) respectively under the ‘augmentation

map’ £q..»- (Here Voo (A), = (VP(A);)QOO is the cyclotomic deformation of V,,(A)} = Q,(1) Page Vp(A).)



100

Then by construction we have:

Aoy (855, 7(0)) = (0.0 () (—vese (o) = 3 (7e(x0)) ey & (Pt (&) = vesy B =0 (5 (x0)) ) )
(149) = (0,55, (e5)) ) = = -5
for a 2-cocycle hy := (0,5;, (W(Hf))ew) € 5]%(6, Voo (A)), where ®rate is the map induced on cochains

by ®rate @A : Qp(1) @A — V,(A) @ A = Voo (A). Writing yy :=eq.«(f) =: (O, ., (W(Uf))ew)’ we have
again by construction (cfr. the proof of Proposition 14.7): ﬁclyd (o) = € - ys. Retracing the definitions of

Sections 0.4, 14.1.4 and 14.3 we obtain: for every zy = [(2, 2.}, (2¢)¢n)] € ﬁ[}(@, Vp(A4))

- K .
05" - (o, Zf)&, = —{([vs], zf><g:l;/v = —mvy (['Yp(Uf) Uw cI)Tate*(Z;_ﬂ)

(150) == (0 05): [55 ])g, = = () (recq, ([2/]))

where we have written v, () := 7« (vp(vs)) (cfr. equation (141)) and we have used equation (145) (resp.,

local class field theory [Ser67]) for the third (resp., last) equality. (As above recq, : Q;@Qp & G%& ®Q,

normalized as in [Ser67].)
Let us write

ly '7;)_ (Uf) = A;D : Loqu + By - w(&z € Homcont(G(al;7Qp); Ap7 B, € Qpa

where

U O — Qi Logy, == (log, (xevt) + % (4) - 085
Frob, — 1

(so that Log,, and 1/)(‘@2 form a Q,-basis of Homcont(Ga';7 Qyp)). Recall that [;g,p] € Z;@Qp C Hl((@p7 Qp(1))
by construction, so that log 4 (zg) = log,, ([;&p]). Combining Lubin-Tate theory [Ser67]|, Lemma 14.7 and
equation (150) we obtain:

(@0, @)y = —Llw -y (0) ([15,]) = —Ap - Log,, (recq, ([rf,])) = —A4, - loga(@o);

Nek Nek _
log 4(0) = (g4, T0)g, = (®0,94)q, = —l= 7, (0f) (recq,(ga)) = =B, - ordy(ga).
These equations, combined with Lemma 14.7 allows us to rewrite the determinant:

Nek Nek
(qa, QA>Q7p <QA75BO>Q,[,

(151) det Nek Nek =P Ordp(fJA)2 ) (BP — 4 "gp(A))
<a30, qA)Q?p <Il30, xo)@?p

= (loga(@0) - ord, (q4)) - (¢ - 75 (ny) (Froby) ).

On the other hand: identify as usual H* (Qp, (QP)QOO) =H! (Qp, (Qp)%@) ~ Hl (®oo,Q,) via Shapiro’s

Lemma, and write 7, (0f) := Tg,+(7p(05)) € Clon ((@p, ((@p)ro) for the image of 7, (9s) under the map

induced by 7y, @ A : Voo (4) = V,(A) ® A - Q, ® A. Then equation (149) (together with the naturality of
the Shapiro’s isomorphism) gives: v, (by) is a 1-cocycle and

(152) Opoe (@) = (Fyan 0108, () ) =~ - [3, ()]

Since by definition 7, (n7) = eq..« (7 (9y)), we have 7, (n7) = pry ([, (8f)]) and combining (152) with
Lemma 15.1 we obtain:

Dery(z) = —Lw -7, (vy) (Frob,).
Together with (151) this proves the formula in the statement. ]
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REMARK 15.3. It seems to the author that ‘Nekovaf’s Rubin-style formula’ [Nek06, Prop. 11.5.11]
is incorrect as stated, and then can not be applied in order to obtain (more quickly) Prop. 15.2. As
an example: let gy be as in the proof of Lemma 14.7 and take “x1y, s := ¢;” (using again the notations

of [Nek06, Prop. 11.5.11]). Then loc. cit. would give ‘<qA,zf>gil: = 0 for every zy € ﬁ}(@,%(A)),
which is clearly not the case by Lemm 14.7. (We think that the failure of loc. cit. is caused by the
presence of w-torsion in Hi, (P, Q). In the example above we have indeed dg. (¢f) = (0,7,¢,) and

Tgax (Cp) = w - 1;17, where the 1-cocyle Ve 1= {GQp SS9 (Xél (9) — 1) /w} represents a cohomology
class lying in H, (@p, (QP)QW) [@@].)
16. Kato’s Euler zeta elements

In this Section we recall some of the main properties of the Euler system for Ta,(A) constructed by
Kato in [Kat04]. We refer the reader to [Rub00, Section 3.5] for more references, details and applications.

16.1. Dual exponentials. Let Bggr be Fontain’s (topological) field of periods, and write BIR =
Fil’ (Bj) for its ring of integers. Let us write R := {(x(”)) € [Len Oc, ¢ (a+D)? = 2, Vn} for the

‘perfection of Oc, /pOc,’, where C,, is the completion of an algebraic closure of Q,. Then we have a natural
*

Gq,-equivariant injective map Z,(1) < R* and a (continuous) morphism of groups Log : Frac(R)* — B(]LR

which makes commutative the following diagram:

Frac(R)* bog Bix

L

c,—=  .C,

The left (resp., right) vertical arrow is (x(”)) — 2(0) (resp., projection to the residue field), and log,, is

neN
the branch of the p-adic logarithm vanishing on p. Fix a sequence g4 = (qA, qi_l7 . ,qi_n7 .. ) € R of

p™-th root of the Tate period and a generator ¢ of Z,(1), so that we can identify {q,,{} with a Q,-basis
of V,,(A) via Tate’s theory (141). It is not difficult to show that g, — Log(q,) and ¢ — Log({) ‘realizes’
Vp(A) inside B(;FR, i.e. gives an injective Q,-linear and Gq,-equivariant morphism V,,(A4) — B:{R. Then we
easily obtain: for every finite extension L/Q,
H° (L, Vy(A) ®q, Big) = L - &4

where

£4=qa01-(® [Log(c’)’1 - (Log(g) — logp(q/x))]
(As Log(¢) is a uniformizer in BJ;, €, indeed lies in V,(A) ® Bj; by the diagram above.) As proved in
[Kat93, Ch. II], the cup-product with log, oxcye1 € H'(L,Q,) gives an isomorphism H%(L, V,(A)® Bjy) =
HY(L,V,(A) ® BJR). The Bloch-Kato dual exponential map can then be defined by the composition:

T ~ G -
exviy s HU(LV(4) = BNLV,(A) @ Bl = (V(A) @ BR) =L &=L,

where the last map sends &€, to 1. Since 7,, ®id : V,(4) ® Big — Q, ® B;R = Bji maps £, to 1, by
construction the following diagram:

(153) HY (L, Vy(A)) — 22
1 expj,
HY(L,Q,) L

commutes for every finite extension L/Q,. For every n € N we will write exp¥ ,, := expy ¢, -
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16.2. Kato’s zeta elements. Let L(A,s) = L(A/Q, s) be the Hasse-Weil complex L-function of A q,
which is defined for R(s) > 3 by the Euler product:

L(A,s) =[] (1 - acA)e> + 72 T (1 - a(A)e—) " =] Be(e®
0

UN (N

Here N := cond(A/Q). For every prime ¢ t N the Euler factor E,(X) € Z[X] is the characteristic polynomial
of an arithmetic Frobenius Frob, € Gq, acting on V,,(A), for every prime ¢t N{. For a prime ¢|N we have
Ey(X) =1— X (resp., E¢(X) = 1+ X) if A/, has split (resp., non-split) multiplicative reduction, and
Ey(X) = 1if A, has additive reduction [Sil86, Ch. V|. Given a finite order character x : Gg — C* of
conductor f, and an integer M we write

L{M} A y Xy S) ! H Eg Frobg) 0~ )71,
Hfx-M
where Frob, € Gg, — G is an arithmetic Frobenius at £. Thanks to the modularity theorem proved by
Wiles et al. and the work of Hecke we know that Lyary(A,x,s) can be analytically continued to the whole
complex plane. If M = 1 we simply write L(4, x, s) := L{11(4, X, 5).
The following deep results is due to Kato. Its statement is taken from [Rub00, Th. 3.5.3|, to which
we refer for precise references. We will write Q4 = Q7 € R* for the real (or twice the real) period attached
to a global minimal Weierstrass model A,z of A g [Sil86, Appendix C.16].

THEOREM 16.1. (Kato) There exist 5™ = lim,, o, ¢5*° € H] (Qoo, V,(A)) satisfying the following
interpolation property: for every n € N and every character x of Gal(Q,/Q)

* ato L A x, 1
> x() - exph, (resp(y( Kat ))) - %,
YEGal(Qn/Q) A

where N is the conductor of Aq.

REMARK 16.2. As(—1) = 1 for every Dirichlet character 1) mod p"** factoring throught Gal(Q,,/Q),
a theorem of Shimura [Shi77b] gives

T € Qv)

for every such character and every integer M, where Q(%)/Q is the algebraic extension obtained by adding
to Q the values of 1. The equalities of the preceding Theorem take place in @p (identifying Q as a subfield
of Q, under our fixed embedding).

16.3. Zeta elements and the p-adic L-function. The (cyclotomic) p-adic L-function of Aq is
defined to be a ‘measure onI'q, " £,(A4) € A®Q satisfying the following interpolation property: for every

non-trivial character x : I'q.. — @ of finite order

(154) (&) = (- KA,

Under our assumptions the existence of £,(A) is proved (in greater generality) in [MTT86, Ch. I], while
its uniqueness follows by the Weierstrass preparation theorem. Given an integer M we write

LAM) = [] E (z—l. Frob, ', ).gp(A)
(M, tp -

We denote by L,(A, M, s) the p-adic Mellin transform of £, (A, M), defined for every s € Z,, by
Ly(A, M, 5) := x5 (Lp(A, M)).
We will simply write L,(A4,s) for L,(4,1,s).
THEOREM 16.3. With the notations of Theorem 16.1: L,(¢K*°,s) = L,(A, N, s).
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PROOF. Let us write for simplicity X% = 4 (81,’00 (Ciam)), and let us identify Gal(Q,/Q) =
G, = Gal(®,,/Q,) under a fixed embedding p, : Q — @, (for every 0 < n < o0). For every character
x:T'q., — G, — @; of conductor p* > 1:

ato Prop. 13.2 - * ato
X (€)= x (‘500 © D o0 (Cffot )) =000 > X)) - exp;, (7 © Dpn (CE ‘ ))
7EGn

eorem L A, _1,1
(153) Kato)) Theorem 16.1 () - Livy (A X, 1)

T(x) - S X'  exphy, (resp 0y (Cn Q
YEGal(Qn /Q) A

) L{N/p}(A,X_l,l) (1i4)

= Ly,(A,N)).
7—( ) O X( P( ) ))
By the Weierstrass preparation theorem: ¢Xa% = £ (A, N). Applying the Mellin transform to this equality
of measures we obtain the statement. O

Thanks to the work of Rohrlich (see again [Rub00, Sec. 3.5] for references) we know that £,(A)
is non-zero, i.e. the special value L(A,,1) is non-zero for all but finitely many cyclotomic finite-order
characters 1. As a corollary of the preceding Theorem we then obtain:

COROLLARY 16.4. (Rohrlich) ¢X* =£ 0.

17. Proofs

In this section we conclude the proofs of the results stated in Section 3.
Let us fix w = limy,—00 un € H{,,(Qoo, Vp(A)). We recall that the p-adic L-function attached to u is
defined by

Ly(u,s):= ngcll (%OO o 8p,oo(u)),

where €o @ Hi\ (Po, Vp(A)) = Ino ® Q 2 Iy ® Q is the (Q-linear extension of the) Coleman map defined
in Section 13.

17.1. Proposition 12.25 and Theorem 12.30. By Proposition 13.3 we have
d d 19) Frob
pr(’U,,S)Szl _ 2 |:X51 ( P(UO)( ro p) X w+w2 *):|

s=1

ds as Y\t (15 D)
(155) = % ((éw(sl) - (éw(sfl))Q/QJr...) . W+...) B

1y -1
=(1—=p") " 0p(uo) (Frob,).
Looking at the long G, -exact cohomology sequence attached to (141) we have
g * Kummer Theor *UJ
T (' (@, Vp(4)) ™ H (@, Q) S ker (H1(Qy, Q) ™4 H(Qy,Qy(1)))

Class Field Theor p
2 {4 € Homeons (G2, Qp) + ¥ (recq, (44)) = 0} = @, - Log,.

where Log,, := log,(Xcya) +Zp(A) - ¥ is as in the proof of Prop. 15.2. Then 9, (uo) = p(uo) - Log,, for
some p(ug) € Qp, so that we rewrite (155) as:

d _1y-1 _
£Lp(u,s)5:1 =(1-p7")  -p(u)-Log,, (Frob,) = (L—p™") - Z,(A) - p(u).

On the other, as exp, (Qp) = Z,, ® Q, the defining property of the dual exponential map exp(ap (128) gives

(156) -
expg, (¥g,) = 0 and expg) (logp (Xeyel)) = 1. We then finally obtain

expgy, (uo) = p(uo) - expgy, (Loga,) = p(uo) = 9% (uo),
which combined with (156) concludes the proof of Proposition 12.25.
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Let us now take u = (X8t°: then

d 1 d
%LP(Avs)szl = H E, (ffl) . %Lp(AaNa 8)s=1
(N I#p
(Th. 16.3) = [[ E (e—l)*1 : din(gf;am,s)s:l
0N Ip §
(Prop. 12.25) = [ B (e) 7" 2(4) - (expg, 0,) (¢h)
2N
- Liny(A,1 1
(Th. 16.1+ (153)) = [[E. () 1-$p(A)-%:$p(A)~L(§A ),
N

concluding the proof of Theorem 12.30.

17.2. Proposition 12.28 and Theorem 12.31. Let u = limu,, € H}, (Qoo, Vp(4)) s.t. 0 # ug €
H}((@7 Vp(A)). Corollary 12.26 implies: L,(u, s) vanishes to order at least 2 at s = 1. More precisely (cfr.
equation (147))

Opo(U) = w - u

p7
for some ), = limy, o0 ), ,, € Hiy, (P, Q). As x5y (@) = (s = 1) by — 3(s —1)2 - £ + - and G is a
morphism of A 2 A,,-modules, applying Proposition 13.3 (and Lemma 15.1) we obtain:
1 d? d .4

5 : @Lp(ua 8)821 = Ew . %xcycl (<goo (ulp) ) a1
=4 - (1 - p‘l)fl -y, o (Froby,) = (1 — p‘1)71 - Dery (u).

(Note that € (uy,), and then L, (u,s) depends only on u, even if u;, is well defined only up to w-torsion
elements.) Combined with proposition (15.2) this formula concludes the proof of Proposition 12.28.
Taking u = 251 (with the notations of Section 3), using the results of Section 16 and retracing the
definitions we easily see that Proposition 12.28 ‘specializes’ to Theorem 12.31.



APPENDIX A

A short course in Nekovar’s theory

Notations. Let R = (R, m) be a complete local Noetherian ring with finite residue field R/m of
characteristic p > 3. We write D(R) for the derived category of complexes of R-modules [Har66, Ch. 1].

Let K/Q be a number field, and let Sy be a finite set of finite primes of K, containing every prime
dividing p. We denote by Kg¢ C K the maximal algebraic extension of K which is unramified outside
S == Sy U {v|oc}. We fix, for every v € Sy, an embedding p, : K — K,, and we write p} : Gk, =
Gal(K,/K,) — G for the induced map and G, := p}(Gx,) for the corresponding decomposition group.
(Here K, is the completion of K at the prime v.) We write S, := {v € Sy : v|p}.

Let G € {Gk,s,Gv, Gk, }. For every admissible R[G]-module M (in the sense of [Nek06, Ch. 3]), we
can consider the complex C?2, . (G, M) of (non-homogeneous) continuous cochains. We write

cont
Rlcont(G, M) € D(R);  H*(G, M) := H" (Cop (G, M))
for the image of C (G, M) in the derived category and its cohomology. We also use the notations:
Ce (K, M) :=C2 (Gg,, M), Rleont (Ky, M) := Rleons(Gk,, M) and H*(K,, M) := H*(Gk,, M).
When M is an R[G]-module of finite (resp, co-finite) type over R, then M is admissible precisely when
G acts continuously with respect to the m-adic (resp., discrete) topology on M, and C?2 (G, M) is the

cont
usual continuous cochain complex. (For example, if M is of finite type over R we have

Coont (G, M) = lim ,CS, (G, M/m" M),

cont cont

v

considering of course on each M/m™M the discrete topology.)
We consider any admissible R[G g s]-module M as an admissible R[G g, ]-module (v € Sy) via p}. We
have natural isomorphism of complexes

L ]
Ccont

(Gy,,M) = C?

cont

(Ko, M),

i.e. that induced by the ‘morphisms of pairs’ (p%,idy) : (Gy, M) — (Gk,, M), under which we will always
identify these complexes. ‘Restricting cocycles’ from Gi s to G, via the natural map G, C Gxg — Gk,s
then induces a restriction map

TeSy - Ogont(GK,Sa ) - Cc.ont(KU7 M)
We also write res, : H9(Gk s, M) — HI(K,, M) for the induced map and ress; := @yes,7es,-
0.3. Generalities. Let X be an admissible R[G k,s]-module. A local condition A,(X) for X at v € Sy
is a complex of R-modules U, (X), together with a morphism of complexes of R-modules
it =i (X)) UFH(X) — O (Ky, X).

cont
(We usually write A, (X) = U, (X) when the morphism 4} is clear.)
Given local conditions A(X) = {A,(X)}ves, the associated Nekovdi’s Selmer complex is defined by
[Nek06, Ch. 6]:

. ress it
C}(Gr,5, X;A(X)) := Cone | Cgi(Gr o5, X @ Uf(x L @ oot (Ko, X) | [-1].
vESy vESy
Here iJSrf = @ues, i, - We denote by (2, (2} ,), (Tn_1,)) (or more simply by (2, z,},2,—1)) an element of

é}l(GK,&X; A(X)).
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For * = ,ft,cf, let D, (R) be the derived category of complexes of R-modules with cohomology of
type * over R. Here ft and cf means of finite and co-finite type respectively. Let

RT;(Gr.s, X: A(X)) € D(R)
be the image of 5’;(GK75, X,A(X)) in D(R), and

H} (G5, X3 A(X)) i= H* (RT (G5, X3 A(X)))

When X is of #-type over R and U,/ (X) € D.(R), we have ’R\ff(GK,S,X; A(X)) € D.(R).

0.4. Class field theory. Let M be an R-module. With trivial G g-action, it is an admissible
R[Gk,s]-module, and so is its Tate twist M(1) := M ®z, Z,(1) (with Z,(1) := llnnzlup”(F))- We
consider the complex

C(K, M) i=7s5Cone | Coy (Gres, M(1) =" @) Cooe (Ko, M(D) | [=1],
veESy

where 7>3[--- X» 2 Xy — <] :=[0 = X3/Im(§) — X4 — ---] denotes the ‘good truncation’ in degree
three. We note that C(K, M) = 7>3C%(Gk,s, M(1); Ac), where Acy 1 0 — O (K, M(1)) is the ‘full
local condition’ for every v € S;.

Let us denote by RC(K, M) the image of C(K, M) in the derived category D(R). It follows by global

class field theory that there is an isomorphism in D(R)
invg, (M) : RC(K, M) = M([-3)],
which is functorial in M. We can describe this isomorphism as follows.

For every v € Sy let inv, = inv,(M) : H?>(K,,M(1)) = M be the isomorphism defined (taking
limits) by the invariant maps H?(K,,Z/p"Z(1)) = Z/p"Z of local class field theory. Let m € M =
(M[—3])*: by the fundamental exact sequence of global classfield theory, there exists 2-cocycles (Vo) pe s, €
Ceont (v, M (1)) such that m = >’ ¢ invy([y,]). Moreover if (y,)ves, is another sequence with this
property, then ([y, — yi])o = ress; ([2]) € D,es, H*(Ky, M(1)) for a 2-cocycle z € Cg,(Gr,s, M(1)).
This implies that [(0, (y»)ves;)] = [(0, (¥})ves, )] € C(K, M). We then obtain a morphism of complexes

ra: M[=3] — C(K, M),

defined in degree three by m — [(0, (yv)ves,;)]. Since Gk s and Gk, have cohomological dimension
2, it follows easily by the definition that rj; is a quasi-isomorphism, so that it induces an isomorphism
M[-3] = RC(K, M) in D(R). invg (M) is defined as the inverse of this isomorphism. For more details
see [Nek06, Ch. 5].

We will write again invg (M) : H 3(C(K,M)) = M to denote the isomorphism induced in cohomology.

0.5. Greenberg local conditions. We will consider from now on modules and local conditions of
the following (elementary) type.

Let X a free R-module of finite type, with a continuous, R-linear action of Gx g. We assume that
there exists for every v € Sy a short exact sequence of R[G,]-modules

it .
0— X2 X% X, —o,

with XF free as R-modules. We then define A, (X) = C®, (K., X;\), with it (X) : C2 (K., X;7) —
Coonit(Ky, X) defined as the morphism induced by 4. for every v € Sy and A(X) := {A,(X)}ves,. We will
write from now on simply X‘ = "{X;i} : X;t — X, v € Sf} to denote the R[Gk,s]-module X, together
with the choice of R|G,]-submodules i) : X,/ < X. We will also write

C3(Gr,s. X) == OG5, X; A(X)) € K(R);
RT (G5, X) = RT4(Gis, X; A(X)) € DL (R);
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H;(Gr,s. X) == H}(Gx,3,X; A(X)) € (rMod)y, .
It follows by the definitions [Nek06, §(6.1.3)] that we have an exact triangle in D(R):
(157) P Rlcon (K., X;)[-1] — RT(Gk.s. X) = Rlcon(Gr.5. X).
vESy
Taking cohomology we obtain a long exact sequence of R-modules
(158) o= P HTNKL X)) - HYGrs, X) — HY(Gr,s,X) — @ HU(Ku, X)) — -,
vESy vESy

where the last map is obtained composing ress, with the (sum of) the maps induced by p; .

0.6. Orthogonal local conditions. Let us fix X and Y as in the preceding Section. Let
T: X®rY — R(1)
be a morphism of R-modules, inducing a perfect duality between X and Y, i.e. such that
adj(m) : X = Homg (Y, R(1))

is an isomorphism of R[G g s]-modules (where adj(7)(z) : y — 7(x ® y)). We say that X, is m-orthogonal
to Y, ', and write X;F 1, Y.t if the following composition is the zero map:

X+ Ox Y+ iy ®Z1)

We write X L. Y if X;F 1, Yt for every v € Sy.
If X;F 1, Y, then adj (7) induces morphisms of short exact sequences of R[G,]|-modules:

XorY 5 R(1).

(159) 0 Xr X X 0

Q\L\ adj(ﬂ')lN ﬁi

0 —— Homg (Y, ,R(1)) — Homg (Y, R(1)) —— Homg (Y,F, R(1)) —— 0,

for every v € Sy. We write W, = W, () := ker (), sitting in an exact sequence of R[G,]-modules
0 — Wy(r) — X, — Homg (Y,7,R(1)) — 0.
Moreover we say that X is the (7-)orthogonal complement of Y, written
XF L, vl
if W, (m) =0 (or equivalently, if (159) is an isomorphism of short exact sequences of R[G,]-modules).

0.7. Global cup-products. Let X, Y and 7 be as above. For G € {Gg s,G,}, the morphism 7
induces a cup-product pairing
C:ont(G’ X) ®R Cgont (G’ R(l))
For z = (z,) € Des, C’C(mt(Kv, X) and y = (yo) € Des, Coont (Ko, Y), we write again z Uy y :=
SvZy Un Yo

LEMMA 0.1. Assume that X 1, Y andletr,s € R.
a) The formula

(G,Y) = C®

cont

(@, T, Tn1) Uneyr (Y Yoy Ym—1) 7=
(160) T>3 (a:n Ur Ym, Tn_1Ux (r ress; (Ym) + (1 —1)- igf (y:,rl))
+(—=1)" ((1 —r)-ress,(xn) + 7 i;ff (x:)) Un ym,l)
defines a morphism of complexes of R-modules

Uﬂ',r : 6;0(GK,57X) ®R 5].”(GK,37 Y) - C(K7 R)
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b) The formula
(@n, Ty s Tn1) ® (Yoms Y Ym—1) = 723 (0, (=1)"(r = 8) * Tn—1 Uz Ym—1)
defines a homotopy between Uy , and Uy 5.
PROOF. A simple computation [Nek06, Prop. 1.3.2]. O
Under the condition of the preceding Lemma, Uy, and invg (R) induce a morphism in D(R)
U : RI (G5, X1) € RT;(Gres. Y) — RC(K, R) = R[=3],
which is independent on the choice of » € R. By adjunction we obtain a morphism
Y = adj (Un) : RT (G5, X) — RHomg (RT(Gics,Y), R ) [-3].

(Here — @% — and RHomg (—, —) are the derived functors attached to the total tensor product — ®x —
and Homy, (—, —) on the (homotopy) category of complexes of R modules [Nek06, Ch. 2], [Har66, Ch.
2], and adj refers to the isomorphism in [Har66, Ch. 2, Prop. 5.15].)

PROPOSITION 0.2. Assume that R is a Gorenstein ring (i.e. it is isomorphic in D(R) to a bounded
complez of injective R-modules). We have an ezxact triangle in D(R):

RT (G5, X) 2= RHomg (ﬁff(GK,S,Y),R) [-3] — @D Rl cont (K., Wi (r)).
UESf

PRrOOF. Under our assumptions, this is a special case of [Nek06, Prop. 6.7.7]. O

0.8. Specializations. Let us take X, Y and 7 as in the preceding Section. We also assume X 1, Y.
Let f: R —» R be a surjective morphism of rings, and let I := ker(f). For every R-module M we write
M := Mg jR= M/I-M.

For Z € {X,Y}, Z is a free ﬁ—module, with a continuos R-linear action of G k,5. Moreover, for every
v € Sy we have short exact sequences of ﬁ[Gv]—moduleS

0—>Zj—>2—>2;—>0,
where ZF 1= é} are free R-modules. The morphism 7 induces a morphism of R[G K,s)-modules

%Z:T{'®R,f7€2)ﬁz®ﬁ}7—>7€(l),

which is a perfect duality between X and Y over ﬁ, such that X 1% Y. In other words: )Z', )?3[7 Y, }N/vi
and 7 are again data of the type discussed in the preceding Sections. B

We will write Lf* : D’(R) — D?(R) for the left derived functor of the base change functor — @z s R
on the category of complexes of R-modules. (Here D?(x) denoted the full triangulated subcategory of D(x)
whose object are those complexes of *-module which are isomorphic in D(x) to a bounded complex of
x-modules.)

REMARK 0.3. Write f, for the exact forgetful functor from R-modules to R-modules, so that we
have a natural isomorphism f, o Lf* = — ®$‘37 7 R. Since f* o fi is isomorphic to the identity functor and
Rf. = f. : D’(R) — D’(R) and Lf* : D’(R) — D’(R) are adjoint functors [Har66, pag. 111], we easily
obtain natural isomorphisms for M € D?(R) and N € Db(R):

Homy, 7, (Lf*(M), N) = Homp g, (M % R, f*(N)) :

Homp ) (N, Lf*(M)) = Hompr) (f.(N), M &% ; R).

In other words: a morphism (resp., isomorphism) in D(R) between Lf*M and N ‘is the same’ as a

morphism (resp., isomorphism) in D(R) between M ®%7f R and f.N.
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LEMMA 0.4. Assume that I = @ := (21,...,24) is generated by an R-reqular sequence x.
a) For T € {Z,ZF} and G = Gk.s or G, there exists canonical isomorphisms in D(R):

Lf* (chont(G7 T)) = RFcont(Ga f)

b) There exists canonical isomorphisms in D(R)

Lf* <fR\ff(GK’5,Z;A(Z))) ~ RT (G5, Z; AZ)).

¢) The isomorphisms in b) induce a commutative diagram in D(R):

Lf*(Ux)

Lf* (RT(X) &k RT((Y)) — "> Lf* (R[-3))

| |

RT;(X) @% RI(Y) R[-3

(where ﬁff(—) = ﬁff(GK,S7 = A(=)))

PROOF. a) We prove the statement by induction on d.
Let d = 1 and write z = x1, which by assumption is a non-zerodivisor in R. By [Nek06, Prop. 3.4.2]

(and [Nek06, Prop. 3.5.10]), the tautological exact sequence of R[G]-modules 0 — T % T — T — 0 gives
rise to a short exact sequence of complexes of R-modules

(161) 0— C(c.ont(c;’v T) L C;ont(Gv T) - Cc.ont(G7 T) - 07

so that we have isomorphisms in the derived category D(R):

RTcont (G, T) @5 R Clnt (G, T) @ P = Cone (Cooua(G.T) 5 Clop(G,T)) = Coona(G. T),
where &5 1= (R L R, concentrated in degrees —1 and 0 is a free resolution of the R-module R. (The

first isomorphism follows by the definition of the derived functor — ®% 75,)

Assume now that d > 2, and write: x := x4, ' = (z1,...,24-1), R := R/a’ and T =T QR R’
Then z is a non-zero-divisor in R’, R = R’/x and we have a short exact sequence of R’-modules:

0T 5T —T—0.
Using induction and what already proved we obtain isomorphisms:
RFcont (G7 T) ®’I]_‘3 R :’ (chont (G, T) ®%3 Rl) ®%, R :’ RFcont (G; T/) ®%/ R :’ RFcont (Ga T)a

which is easily seen to depend only on the prime I (i.e. not on the choice of the R-regular sequence
generating it). Using the discussion in Remark 0.3, this in turn defines the isomorphism in the statement.

b) The same argument used in the proof of a) applies. In fact, assume d = 1. The exact sequences
(161) are ‘compatible’ with respect to ress, : Cooni(Gr,s,) = Coont(Kv, —) and i} = O (Ko, (—)F) —
C?. .+ (Ky, —), so that they induce a short exact sequence of complexes of R-modules:

cont
0— CHGrs,Z;A(2)) 5 C3Gr,s, Z; A(Z)) — C¥Gr.,5. Z; A(Z)) — 0,
which can be rewritten as an isomorphism:

RT;(Gk.s, Z; A(Z)) ®% R 5 RT 1 (Gr.s, Z; A(Z)).

For d > 2, the induction argument proceeds exactly as in the proof of a).
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¢) This follows from the definitions and the commutativity of the following diagram of complexes of
R-modules, where r € R, 7 =7 mod I, C}(—) := C}(Gk,s, —; A(-)), C(—) := C(K, —) (and the morphism
r_ is defined in Sec. 0.4) :

C3(X) @ C3(Y) = C(R) <= R[-3]

I

P

C3(X) @5 C3(Y) "= C(R) =< R[-3).

Here the vertical maps are those induces by ‘reduction modulo I’. The commutativity of the left-hand (resp.,
right-hand) square follows by the definitions of the cup-product in Lemma 0.1 (resp., by the functoriality
of the invariant maps of local classfield theory). O

0.9. Hermitian case. In this section we assume that R is equiped with an involution ¢, i.e. with a
ring isomorphism ¢ : R — R such that ¢ = id. For every R-module M, we denote by M* the R-module
with the same underline abelian group of M, but with R-action obtained composing the original action
with ¢. This defines a functor M +— M?* on the category of R-modules (with f* := f for a morphism
M — N). For a complex of R-modules X, X* is defined by (X*)" = (X")". Again this define a functor on
the category of complexes of R-module, which derive trivially to a functor on D(R). For every admissible
R[G]-module M (G € {Gk,s,Gy}), we have C2 . (G, M") = C8,.. (G, M)" as complexes of R-modules.

cont cont

Let X be as in Sec. 0.5. We write Y := X* and Y;* := (XF)" (v € S}), which are again data of the
type considered in Sec. 0.5. We assume that there exists a perfect duality 7 : X @z ¥ — R(1) between X
and Y, such that X 1, Y. We also assume that there exists ¢ = &1 such that

(162) 7i=qmospp=c-rom: Y r X — R(1).

We note that 7’ is a perfect duality between Y and X, such that ¥ L. X. N B
Let us write C}(—) := C}(Gk,s, —;A(—)) and C := C(K,R). As above, we have C}(Y) = C}(X)", so
that Lemma 0.1 gives us a cup product pairing (r € R)

Un,r : CHX) @ CHX)' — C,
and a corresponding product in the derived category:
Ux : R[(X) ©% RT(X)" — R[-3].
In the same way 7" induces:
Unrr : CHX)' @ C3HX) — C; Up : RI;(X)' @% R 4(X) — R[-3].
It follows immediately from (162) and Lemma 0.1 that we have
Urrr =+ (Lo (Urr)).
By the functoriality of the isomorphism inv S; (—) we also obtain the formula:
(163) Unrr =c- (1o (Ug)").

Moreover, as in [Nek06, Sec. 6.5], the existence of ‘transposition operators’ for Greenberg local conditions
(see also Sec. 6.7 of loc. cit.) implies that the following diagram of complexes of R-modules:

~ ~ U,
CHX) @r CH(X) — "

Sl2i

CH(X)" @r CH(X)
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commutes up to homotopy (with s12(z ®y) = (—=1)Yy @z for = € é} (X) and y € é;(X)J) In particular
(using b) of Lemma 0.1) we obtain the identity in D(R):

Ugns 0519 = Ug.
Combined with (163), this proves the following;:

LEMMA 0.5. We have a commutative diagram in D(R):

RI;(X) @k RI;(X) — > R[-3]

c(Ur)*

RI;(X)' ®% RI(X) — = R'[-3].

In other words: Uy is symmetric-Hermitian (resp., skew-Hermitian) if c = +1 (resp., ¢ = —1).
In particular: assume that v = id. Then Ug is symmetric (resp., skew-symmetric) if ¢ = +1 (resp.,
c=-1).

0.10. Cassels-Tate parings. The notations and hypothesis are as in the preceding Section, and we
write Z := Frac(R) for its total ring of fraction. For every complex of R-modules M, let RI'\(M) :=

M ®r (R = %) and Hf (M) := H* (RI(M)), where (R = %) =: & is concentrated in degrees 0 and
1. (The functor M ~ RI'\(M) derives trivially to a functor D(R) — D(R).) We note that RI\(M) =

Cone (M ZMor %’) [—1] as complexes of R-modules. In particular, if M € Dy (R) we obtain for every
q € 7Z a short exact sequence of R-modules:

(164) 0—>Hq_1(M) ®R=@/R—>H!q(M)HHq(M)tors_)()a

where o, refers to the R-torsion.
We have a quasi-isomorphism

v:RI (2) = <7z 279 2 @ g 19951 gz) ~ 2,

defined by the identity in degree 0 and by the projection to the first component in degree 1. For every
complexes of R-modules M, N we can consider the composition

(165) (M or Z)r (N @r 32)8&;’ (M ®r N)@r (¥ @r &) 148y (M ®r N)®r 2.

For complexes M, N which are cohomologically bounded above, this construction induces a functorial cup-
product pairing in D(R):

Ur = Uy - RO(M) ®% RTY(N) — RTY(M ®@% N).
(Here so3((z @ y) ® (2’ @) = (-1)Y(z®@2") @ (y®@y') for 2’ (reps., y) of degree j (resp., i).)

LEMMA 0.6. Assume that M, N € D~ (R) are cohomologically bounded above. Then we have a com-
mutative diagram in D(R):

Ui, M, N

RF!(M) ®%‘3 RF!(N) RF!(M ®% N)

Slzl J{RI‘!(SH)

RI\(N) @% RIY(M) —" = RI\(N @k M).
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PROOF. Multiplication h : (Z @x @)3 =ZAQR — % =P, u®v — p-v defines a homotopy:
h :v ~» vosya. Then, for every complexes P, Q of R-modules the following diagram:

(Por P) 9k (Q @ P) —2> (P o Q) ®r (P 0r P) 2 (P or Q) 9 P

512\L 812®812\L \Lﬁz@id

(Q 9% P) 9r (P o P) —2> (Qor P) or (P 9r P) 22 (Q 9r P) 9r P

commutes up to homotopy (i.e. in the homotopy category). Recalling the definition of U . ; this implies
the statement of the Lemma. O

Let us abbreviate /R\l:f(f) = ,R\ff(ngs, —) and ﬁ;(,) = I?}‘(GKS, —). Taking M := ﬁff(X) and
N = ﬁff (X)* above, we obtain a morphism in D(R):

& : RI (ﬁff(X)) oL RI (ﬁff(xy) YR (ﬁff(X) oL iiff(X)L) ROG By (R) [-3].

This morphism induces a pairing in cohomology:
gﬂ',2,2 : H|2 (ﬁf(X)) ROR HIZ (ﬁf(X)L) N H!l (R) ~ :@/R,

the last isomorphism coming from (164) for M = R. Moreover, every term in (164) is a torsion R-module,
and the first term is R-divisible. We then see that ¢, , , factorizes through an R-bilinear form:

Eﬁ,2,2 . ﬁ?(X)tors ®R ﬁ?(X)éors - %/Ra

called the (abstract) Cassels-Tate pairing on X attached to 7.

PRrOPOSITION 0.7. We have a commutative diagram of R-modules

Cr,2,2

H)%(X)tors ®r H;(X)éors ‘%/R

Slzl L

ﬁ?(X)tL:ors ®'R ﬁ?(X)tors C.(CW,QQ)‘ (%/R)L .

We have:

PROOF. Let us write as above U := U, BRI, (X),RT (X)°

¢losig i =RIN(Uz") o U" o819
(by Lemma 0.6) = RI'j(Ux" 0 s12) o U
(by Lemma 0.5) =c¢-RI(toUg) o U
=c-RI(t) o R (Ug) o Uy =: ¢- R (1) 0 ¢
Retracing the definitions this easily implies the commutativity of the diagram in the statement. O
0.11. Poitou-Tate duality. Let X be as in Sec. 0.5. For every (continuous) R[Gg s|-module M of
finite type over R, we write
Ang = Homegns (M, fipe)

for the Kummer dual of M. (Here ppe := pp=(K) (as Gk s-module) and cont refers to the m-adic (resp.,
discrete) topology on M (resp., pipe=).) Then Ay, with the discrete topology has a continuous, R-linear
action of Gk g; in particular it is admissible.

Defining A;v = (Ax)f i= Ays (for v € Sy) as the Kummer dual of X;f, Pontrjagin duality gives us
short exact sequences of R[G,]-modules

0— (Ax)! — Ax — (Ax), — 0.
Defining A, (Ax) := C2 . (Ko, (A X)j) we can consider the complexes
éf(GK,S,AX) = 5}(GK,S,A)(;A(AX)) €K(R); RIj(Gr.s Ax):=RIf(Gx.s,Ax; A(Ax)) € Det(R),



A. A SHORT COURSE IN Nekovar’S THEORY 113

and the corresponding extended Selmer groups fNI)*c (Gk,s,Ax) = ﬁ;(GK}S,AX;A(AX)). The represen-
tation with ‘Greenberg local conditions’ Ax = {AX, {A} U} B } is the Kummer dual representation of
’ vESy

X = {X, {X}oes; } As in Sec. 0.5, we have a long exact cohomology sequence:

(166) -+ — @ HT'(Ky, (Ax),) = Hi(Gk.s,Ax) = H'(Gk s, Ax) = @ HU(K,, (Ax),) — -+ .
vESy vESy

PROPOSITION 0.8. For every q € 7 we have isomorphisms of R-modules:
HY(Gr,5,X) = Homg, (Hi(Gr5,0x),Qp/2,)
PRrROOF. This is a special case of [Nek06, Prop. 6.7.7] (see also loc. cit., Sec. 2.9.1 and Sec. 6.3.5). O

REMARK 0.9. The isomorphisms of the preceding proposition come from cup-product pairings
Uev : C4(Gr.5, X; A(X)) x CF (G5, Ax; A(Ax)) = CHGK 5, ppoe Aclpip=))

satisfying (the usual relation d (x Uy) = dez Uy + (—1)? -2 Udy and) and (r-z) Uy = 2 U (r - y), together
with the isomorphism H} (G s, pipee; Ac(tip=)) = Qp/Z, coming from Section 0.4. (Here A.(jyp) is the
full local condition 0 — Cg,..(Gk.s, ttp=) at every v € Sy). The cup-product Uey is defined by the same
formula displayed in Lemma 0.1, once we replace the cup-products induced on complexes by 7 by those

induced using Kummer duality ev : X x Ax — fipeo.

REMARK 0.10. Let X be a finite G g-modules of p-power order, equipped with the “empty local
conditions” Ay(X), : Co (Ky, X) at every v € Sy. Using the preceding proposition, (166) becomes the

well-known Poitou-Tate 9-terms exact sequence [Mil04, Ch. I]. In fact the proofs of Prop. 0.8 and Prop.
0.2 use this ‘special case’ in an essential way.






APPENDIX B

Iwasawa theory

Let K£/K be a Zg—extension for some d > 1 (i.e. a Galois extension with Galois group isomorphic
to the additive group Zg). We are interested in the variation of Selmer complexes with respect to finite
subextensions K C L C K. In particular, given a discrete (resp., compact) R[Gk,s]-module A (resp., M),
we are interested in the Selmer complex of A/KC

R (Ks/K, A; A(A)) = lim RT ;(Gal(Ks/L), 4; A(A))

res,L

(resp., in the Complex of ‘K/K-universal norms’

RT 1 (K/K, M; A(M)) = lim RTj(Gal(Ks, L), M; AL(M))),

cores,L

where {Ar (%)} are ‘compatible’ Greenberg local conditions (and the restriction and corestriction mor-
phisms will be defined below). The key fact is that Shapiro’s lemma allows us to describe these ‘Iwasawa
complexes’ over K in terms of complexes over K of the Galois deformations Homp s (R[[Gal(KC/K)]], A)
and M ®x R[[Gal(K/K)]] respectively. In other words, working with cohomology over general coefficient
rings allows us to include Iwasawa theory in the theory of Galois deformations. This point of view is well
explained in Greenberg [Gre94b| (see especially Prop. 3) and [Nek06, Sec. 0.11-0.13]. This Section is a
summary of some of the results in [Nek06, Ch. 8] (which of course works in much greater generality).

Notations. We use the notations of Section A. Let L/K be a finite Galois subextension of Kg/K.
Write S, ; for the set of finite primes of L dividing primes in Sy = Sk f, and Sp := S,y U {v|oo}. Then
Gr.s, = Gal(Kg/L) = Gal(Lg, /L) is the Galois group of the maximal algebraic extension Lg, /L which
is unramified outside Sy. For every v € Sy we write w|v for the prime of L defined by p, : K — K, and
Grw, = G, NGy, for the corresponding decomposition group. For every other prime w|v we fix o, € Gg
such that o,(wp) = w, i.e. w is induced by the embedding p,, := p, o o,;*. (This amounts to fixing
representatives of the double coset space G \Gk /Gy, i.e.

Gk = [[GLowGh.)
wlv

-1
w

We also write G := 0y - Gy - 03" and G = 0y - GL o, - 0", Which are decomposition groups at w
for K and L respectively.

We consider an R-module X, which is assumed to be either of finite type or of co-finite type. We
assume that X is equipped with a continuous R-linear action of Gg g (with respect to the m-adic or the
discrete topology respectively), and with Greenberg local conditions for every v € S, i.e. with fixed R[G,]-
submodules i} : X;} < X. For every w|v € Sy, we define the R[G x ,,]-modules X} := o, (X,) (viewing
X, C X under i), so that we obtain an inclusion of R[G g ,,]-modules

it =y 0if ooyt XF e X

For every finite sub-extension K C L C K, we will consider local conditions A(X) = Az (X) := {Aw(X)}wes, ;
defined as usual by i} : C% 0 (L, X)) = Coni(GLow, X)) — Coonit(GLow, X) = Ot (Luy, X). (As in the
preceding Section, we identify C2 (L., *) and C (G ., *) under the isomorphism induced by pZ.) We

cont

115
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will also omit A(X) from the notations, i.e. we write
RI (G5, X) = R (Grs,, X3 AL(X));

we also use similar notations CN’}(GL,SL,X) and ﬁ}‘(GLSL,X).

0.12. Shapiro’s lemma. Let K C L C Kg be a finite Galois extension and let R(L) := R[Gal(L/K)].
We consider the R[Gg,s]-modules

(167) L(X) := Homg (R(L), X) = X ®r R(L) =: X(L),

where the isomorphism is defined by f — }_ cc.i1/x) f(0) ® 0. The Galois action on L(X) (resp., X (L))

is given by f9(0) :=g- f(g~'o) (resp., (3, 2o ®0)? =3 g(z,) ® go) for every g € Gk s. The functors
X — L(X) and X — X (L) commute with direct and inverse limits; in particular if X is of finite type over
R we have X (L) = lim [(X/m"X) (L)].

We note that if A is a discrete R[Gk,s]-module, then A(L) is isomorphic as a Gk g-module to the
induced module

G loc. const.
Indgis (A) == {f: Grs """ A: f(v-9)=7-[(g), V7 €GCLs,}
with G s-action given by f7(g) := f(g-7), and the isomorphism defined sending a G, 5, -equivariant map
[ Gr,s — Ato the element }: q.i1/K) (- f(67")) ® o, where 6|, = 0. Moreover Shapiro’s lemma

asserts the morphism of pairs (GL,SL C Gk.s, Indgf’; (A) — A; [ f(l)) gives a quasi-isomorphism

sh: Cloue(Gre,s, IndGES (A)) — Coue(Grys, s A).
The preceding isomorphism (167) then induces quasi-isomorphisms of complexes of R-modules

sh: C3 4
induced by (C ,pry) : (Gr.5,X(L)) — (Grs,, X) and (C ,f = f(idz)) : (Crs. L(X)) — (GL.s,, X)
respectively, where pr; (3}, 2o ® 0) = xjq,. This follows immediately if X is of co-finite type (hence
discrete), while follows by a limit argument if X is of finite type over R. ( More precisely we apply Shapiro’s
lemma to any of the discrete modules (X/m™X) (L) and use the fact recalled above that X — X (L)
commutes with inverse limits.)

Let v € Sy and let us consider for every w|v the Gk ,,-module

X(Ly) = X @R R|Gkuw/GLw)-

(GK,SaX(L)) - Oc.ont(GL,SL’X); sh : Cc.ont(GK,SvL(X)) - Cc.ont(GL7SL7X)

(If X is discrete then X(L,) = Indgf’: (X).) We consider also X(L,,) as a Gk, = G,-module via
the morphism Ad(cy) : Gy — Grw; 7 — owYyo,t.

isomorphism of G,-modules:

(168) w, = @ww : X(L) = @X(Lw); Z To @0 Z Ow (xm:lw) ®

wlv wlv oc€Gal(L/K) YEG K, w/GL,w

We can easily check that the following defines an

wlv

1. Then o' - v is by definition the element

Y -0yt € Gal(L/K) = o (Go/Grow,) - o,l.) As above Shapiro’s Lemma induces a quasi isomorphism
of complexes of R-modules

(We have v = 0y Yoy € Gruw/GrLw = 0w Go/GLuw, - T

$ho : Coone(Kuy X (L)) = Coont (Gt X (L)) %5 C2e (L, X),

cont
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where the first isomorphism is induces by the isomorphism of pairs (Ad(o,!),id) : (Gy, X(Ly)) —
(GK,ws X(Ly)) (recalling the definition of the action of G, on X(L,,)). In particular we obtain a quasi-
isomorphism of complexes

Sth @ cont Kva "”v)* @ @ Cont vaX e @ cont Lw7X)

vESy vESy wlv weSL, f

It follows by the definitions that for every w|v the following digram of complexes of R-modules commutes:

(o)«

C(c.ont (GK,Sa X(L)) - Oc.ont(GK,Sv X(L)) L Cc.ont (GL7SL ) X)

resy i lresu,
(ww shy,

(Ky, X (L)) —% 0 (Ky, X (Lo)) 2= O (L, X).

Cc.ont cont cont
Here o0, for 0 € G, g denotes Galois conjugation, i.e. the isomorphism of complexes induces on cochains
by (Ad(c™1),0) : (Gk.s,X) — (Gk.s,X). (We recall that for a profinite group G and a continuous G-
module M, there exist homotopies h, = ho(G, X) between the the identity morphism on C? (G, M) and
o, which are functorial in both G and M.) Fixing (functorial) homotopies h, : id ~ o, the preceding

diagram tells us that the diagram:

ressf

Ccoont(GK,SvX(L)) vESy Cc.ont<K’U’X(L)>
shl lShsf
ress
Cc.ont(GL,SL7X) —L wESL, ¢ 00011t(Lw7X)

is commutative up to the homotopy sx := @Uesf @wlv resy oshoh -1 :resg,  osh~»shg, oresg,.
Let us define for every v € Sy the sub-R(L)[G,]-modules i}t (L) := i ®id : X (L)} := X;F (L) — X(L).
We also define for every w|v € Sy the Gk ,-module

X (Ly) =X} @r RIGKw/GLw),

(which is isomorphic to IndGKw(X+) if X;f is a discrete Gg -module). X' (L) is also a Gx ., = G-
module via Ad(oy) : Gy — Gk . Formula (168) again defines an isomorphism of G,-modules

Wi XxXm)H s @Xg(L
wlv

such that the following diagram

wt
X(L)§ —> @ujo Xy (Luw)
ij(L)l iEBwv 5 (Lw)
X(L) —"—~ X(Luw)

wlv

is commutative. (We have written i;f (L, ) := i, ®id.) Shapiro’s Lemma gives as above a quasi-isomorphism

shif : C2 L (Ky, X (Ly)) & a3 O i (Luw, X) (for w|v € Sy) such that i, o sh = shy, oif(L,). We then
obtain a quasi-isomorphism

+ + qls
Sth T (Shw O( w|v€Sf @ cont KU?X @ cont LUHX )
vESy weSyL, s
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sitting in a commutative diagram of complexes of R-modules

sh'g
@’UESf Cc.ont(KWX(L)j) *f> EBweSL’f Cc.ont(Lw’X;;)

+ +
Zsfi lZSL,f
shgf

®U€Sf Cc.ont(Kv’ X(L)) —— @vESL,f Cc.ont(Lwa X),

where is, ;= @,eg, , in- Define X; = X/XF and X (L); = X(L)/X (L) for every w|v € Sy; we then
have completely analogous results replacing + with —.
Let us define again local conditions A(X (L)) = {A(X(L))v}ves,; using the submodules X (L) (i.e.

define A(X (L)), as the morphism of complexes i, (L) : C& (K, X (L)) — C2,+(K,, X(L))) and let us

write
CHGr.s, X (L)) := CHGr,s. X(L); A(X(L)); RIT;(Gr,s X(L)) := R ;(Gx,s, X (L); A(X(L)))

for the corresponding Selmer complex. Via ‘functoriality of cones’ [Nek06, Sec. 1.1.6] the constructions
above allow us to define a quasi isomorphism of complexes of R-modules

(169) shy :=shy g/ : C}(Gr,s, X(L)) *> C}Grs,,X)
(T, Ty q) (sh(xn),sh:gf (z}) ,shs; (Tn—1) + sX(:En)>.

Moreover, as proved in [Nek06, Sec. 8.1.7.2] the image of sh; in the homotopy category of complexes of
R-modules is canonical (i.e. the homotopy class of shy does not depend on the choice of the homotopies
he for o € Gk ). In particular we obtain a canonical isomorphism in D(R):

(170) shy : R[4(Gx.s, X (L)) = RL4(GL,s,, X).
Moreover we see easily that this induces an isomorphism of exact triangles in D(R) (see (157)):
(171) @UGS,« RT cont (Km X(L);)[_l] I /ﬁff(GK)s, X(L)) I chont(GK,Sa X(L))

shgf \L shy l sh

@wesf RFCOHt(vaXUT)[il] ﬁff(GL,SL;X) chont(GL,SL7X)-

Using the isomorphism (167), and defining L(X);} := Homg (R(L), X,") = X (L)} we can replace
X (L) with L(X) in (169), (170) and (171).

0.13. Conjugation. With the notations introduced above, let v € Gal(L/K) and z =)z, ® 0 €
R(L). The formula y*z := Y. 2, ® 0y~ defines an action of Gal(L/K) on X (L) commuting with the
Gk s-action. This equips X (L) with the structure of an R(L)-module, such that X (L)} is an R(L)-sub-

module for every v € Sy. Then 5} (Gk.s,X(L)) is a complex of R(L)-modules.

The isomorphism (170) induces an isomorphism =, ¢ : /R\ff(GL’SL,X) = /I_{\ff(GL’SL,X)7 for every
~v € Gal(L/K). More precisely: given g € Gk we can define a morphism of complexes

(172) G f - éf(GL,SL»X) — C~'}(GL,SL,X)

(20 () s @ner)) = (9600, (950 (50)) s (Goo(En1,0)), + 9 () )

whose homotopy class is canonical and such that the following diagram of complexes:

~ sh ~
(173) C3(Gr.5, X (L)) —= C3(GL,s,, X)

(gIL)*l ly*‘f

sh ~
C3(Gr,s,X(L)) — = C3(Grs,, X)
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commutes up to homotopy. We now explain the notations used above. First of all, for every g € Gi
gx = (Ad(gil)v g)* : Cc.ont(GLSL ’ X) - Cc.ont(GLSL ) X)

is the morphism of complexes induced by the morphism of pairs (Ad(¢~!),9) : (GL.s,,X) — (GL.5,,X).
For every w € Sp s, , let us write g- 0y = Q- 0g(w) - Yw, With o, € G, and v, € Gy = G o ( Here v is the
prime of K lying below w, and g(w) refers to the action of Gx — Gal(L/K) on the set G \Gk /G, ~ {w|v}
of primes of L dividing v.) Then g, ,, denotes the composition

Ad(oy),05" Ad(v, ")
(Lo x) P e xy P

-1
(Ad(gg<w>)x0'g(1u))
—
cont

CVc.ont (me X) ’ O(:ont (Lg(w)7 X)u

and similarly g: w 18 defined by the composition

Ad(oy),05 Ad(v ") e
(X)) G x) )

w wo
—1
(Ad("g(w))v”g(w) .
—

Cf.

cont

°
Ocont

— C(:ont(Lwoﬂtho) (Lg(w)’X;(w))

Then igL,f o (g5) o i;CL‘f and it follows directly that:

weSL.s, (g*’w)wesL,f

L -1 .
G, O T€Syy = (aw )* O s O T€Sy(w)-

Recalling that the conjugation morphism on C¢,

oont (GL,s., X) attached to every element of G, is homotopic
to the identity, we obtain a homotopy

gx = @ (resg(w) o ha,, og*) FIeSsy p O Gx (g*’w)wESL_f oresgs;
weSyL,f

(where as above h, is a (bi-functorial) homotopy between the identity and (*). for every * € Gk ). Again
by functoriality of cones [Nek06, Sec. 1.1.6] we see that (172) induces a quasi-isomorphism of complexes.
For a proof of the commutativity of (173) in the homotopy category see [Nek06, Sec. 8.1.7.3].

We then obtain for every g € Gx a commutative diagram of isomorphisms in D(R)

— sh —
(174) RT;(Gx.s, X(L)) ——RT(GL.s,, X)

(gL)*i \Lg*af

— shy —
RI't(Gk,s, X (L)) — RI'#(GL,s,,X).

In particular we see that G, acts trivially on RI #(Gr,s,,X), so that we have a natural R-linear action of
Gal(L/K) on cohomology, i.e.

(175) Hj(Grs,, X) € (r(yMod), ,
where T = ft (resp., { = cf) if X is of finite (resp., co-finite) type over R.

Using the isomorphism (167) we can replace X (L) with L(X) in the preceding discussion (where the
action of v € Gal(L/K) on f € L(X) is given by (yx f) (o) = f(o - 7) for every o € Gal(L/K).)

0.14. Restriction. Let F/L/K be a tower of finite Galois sub-extensions of K'g. We have a restriction
morphism of complexes of R-modules

(176) resp/r.;: CHGr,s,,X) — CHGE,sp, X)

(0@, n1) > (vespyn(an),1d, (0F) rs, (2n1) + 7x(e0)),
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canonical up to homotopy, and such that the following diagram is commutative in the homotopy category:
o~ shy ~ shy ~
(177) C}(Gr,s, L(X)) —= C}(Grs,, X) =— C}(Gk,s, X(L))

(iE/L)*J/ reSL/KJi \L(jE/L)*
~ sh ~ sh ~
C3(Gr,s,E(X)) — = C3(Gp,s,. X) = C3(Gr.s, X(E)),

where g/, (resp., jg,1) is defined sending f : Gal(L/K) — X to the function {0 € Gal(E/K) — f(o|r)}
(resp, sending z ® v € X ® Gal(L/K) to }_,,_, *® 0 € X ® Gal(E/K)). In particular we obtain a
canonical morphism resg,, 5 : RI(GLs,,X) — R (Gg.sp, X).

In (176) resg,p, : C:ont(GL,SLa ) — C2.:(Gg sy, X) is the restriction morphism attached to the
inclusion Gg s, C Gr.g,. Given v’ € Sg ;y with w'|w € St f, we have 0, = By - Oy - A, With B, € G,
and a,y € Gk . Then

T.SL = 7nw'\w . @ cont LUHX @ cont Ew ’X)
weSyL, s w' €Sk, f

where 7|, denotes the composition

(Ad(aw),r;; ) .
(LUHX) - Ccont(GLﬂUO?X)

1 (J /)va-w
(S o (G ) ) (G x) =

cont

Ada/,a,

cont

i Oc.ont(GL,wov X)
(Ew’7 X)

(where wy) is the prime of E induced by p,). The morphism

Tg'—L = ( ’|w) @ cont LUHX @ cont Ew 7X )

wESL, ¢ w' €SE,f
. . . . .+ + _ .+
is defined in a similar way. We have igy, OTg, =TS 0lg, ; and a homotopy
rx = @ (resw/ oresg/r © hgw,) I TeSsy, ; OTeSp/[ ~ T's, OTeSs, .,
w' €SE, 5

where as usual we have fixed bi-functorial homotopies hy : idcs (a, s,x) ~ g« for g € G. For a proof
of the independence of resg,z, ¢ (up to homotopy) on this choice and the commutativity of (177) in the
homotopy category see again [Nek06, Sec. 8.1].

0.15. Norm. Let H be an open normal subgroup of a profinite group G, and let us fix a section
H\G — G; v — 7 of the natural projection. Then for every discrete G-module M the formula

cord () (g1, sgn) = > ¥ 0 (T-91-7G1 e VI Gt Gn TG )
YEH\G
defines a morphism of complexes corZ : C2 (H,M) — C2 ..(G, M), whose homotopy class does not

depend on the choice of the section v +— 7. (The cohomological functor {HY(H,*) — HY(G,*)}q4>0
induced by corZ is that defined via universality of the ‘fixed module functor’ on the category of discrete
G-modules by the natural transformation H°(H,*) = H°(G, %) defined by the norm map M* — M;
m o= Y eme y~1(m) [NSWO00, Ch. I-II].) Since corf is functorial in M, this definition extends to
admissible G-modules.

Let E/L/K be finite Galois extensions contained in Kg. Given a section i : Gg s, \Gr.s, — Gr.5, We
obtain a morphism

corp/r, : Coont(GE 55, X) — Coone(GL s, X).



B. IWASAWA THEORY 121

Fixing a section 4y, : Gpuw \GLw, — GLw, (Where as usual wj|wp|v are the primes induced by p,), a
construction completely analogous to that of the preceding section gives us morphisms

@ cont Ew 7X @ cont LUHX)

w' €SE, 5 weSy, ¢
CSE : @ cont Ew 7X @ cont L’WVX )
w ESE f weSL, . f

+
SL,f
on the sections ¢, i,, and on the choice of the usual homotopies h, for ¢ € Gr.) As in the preceding

Sections, we obtain a corestriction (or norm) morphism

such that cg, o igE,f =4 o c}'E and cx :resg, ; 0corg/r, ~ sy oress, . (The homotophy cx depends

COTf i= COTf g/, 5’;(GEVSE,X) — 5’;(GL,3L,X),

whose homotophy class can be shown to be independent on any choices. The relation with Shapiro’s Lemma
is given by the following diagram, commutative up to homotopy:

~ sh ~ sh ~
(178) C3(Gr,s,X(E)) — = C3(Gp.s,, X) < C3(Gx,s, B(X))

pr*l CorE/L’f\L i(jE/l‘)*

shy

~ sh ~ ~

C3(Cr.s. X (L) — = C}(GLs,. X) = C}(Cr.s, L(X)).
(Here pr is the natural projection and Jpr is the map induced by jg,p, : Gal(L/K) > 0 — ZE|L:0 o€
R[Gal(E/K)].) For the details we refer the reader once again to [Nek06, Ch. §].

0.16. Z,-power extensions. Let /K be the maximal Z,-power extension of K, i.e. the composition
of all Z,-extensions of K inside K. Since every Z,-extension is unramified at every finite prime not dividing
p, we have L C Kg. For every (possibly infinite) subfield K C L C K we write

R(L) := R[[Cal(L/K)]] = lim R[Gal(E/K)]

for the completed group algebra of Gal(L/K) over R, where E/L runs over all finite sub-extensions of
L/K. Inversion g — g~! on group-like elements induces an involution ¢ : R(L) — R(L) (i.e. an R-linear
ring isomorphism such that :* = ¢). Given an R(L)[Gk s]-module M we write M* for the R[G i s]-module
M, with R(L)-action defined by r|ps - m := ¢(r) - m for every r € R(L) and m € M. For every n € Z we
also write M < n > for the R(L)-module M with Gk s-action defined by g|ar<n> - m = xr(g9)" - g(z) for
every g € Gk s and m € M, where x, denotes the tautological representation:

XL : Grs - Gal(L/K) — R(L)*.

For every subfield K C L C K let us define the R(L)[Gk,s]-modules
(179) X(L) :=lm X (E); L(X):=limE(X),
where E/K runs over all finite sub-extensions of L/K and the inverse (resp., direct) limit is taken with
respect to projection R[Gal(E'/K)] - R[Gal(E/K)] (resp., the morphisms ig /g : E(X) — E'(X) (177))
for K C ECE' CL.

0.16.1. Let us consider in this Section an R[G g s]-module T' = X, free of finite type over R. Since the
natural map § ®g R(L) := { ® lim (R[Gal(E£/K)]) — lim (} ®r R[Gal(E/K)]) (where K C E C L runs
over the finite Galois subextensions of L/K) is an isomorphism for every R-module of finite type, and since

by definition z € R(E) (resp., g € Gk s) acts on T'(E) := T @ R[Gal(£/K)] via multiplication by id®¢(z)
(resp., via ¢ ® g|g) (recall L/K is abelian), we obtain a canonical isomorphism of R(L)[Gk,s]-modules:

(180) T(L) = (T @r R(L)) < -1 >9% (T ogr R(L)) < —1 >,
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(where we consider on R(L) the trivial Gk g-action). In a similar way we obtain canonical isomorphisms
of R(L)[Gy]-modules, for v € Sy:

T(L)Ef :=TFHL) = (Tf er R(L)) < -1 >.

We will from now on identify T'(L)! with (T T or R(L)) < —1 > under these isomorphisms. We can then
define the Selmer complex of R(L)-modules:
Ol (L/K.T) == C}(Grs, T(L): A(T(L)))
using the local conditions A(T'(L)) = {A,(T(L))} induced on complexes by the embeddings 77 ® R(L) :
T(L)} < T(L) for every v € Sy. We also write
RT 1w (L/K,T) € DR(D)w: Hi 1o (L/K.T) € (rqr)Mod),,

for the image of 6}7IW(L/ K,T) in the derived category and its cohomology respectively. The following is
the main result of this appendix. For the (not difficult) details of its proof we refer to [Nek06, Prop. 8.8.6].

ProrosiTiON 0.11. 1. The canonical morphism of complexes of R-modules:
Clu(L/K.T) = lim  C}Grs,T(E))
E/K; pr,
is an isomorphism. As usual E/K runs over the finite sub-extensions of L/K and the limit is taken with
respect to the maps induced on Selmer complexes by the projections pr : T} (E') — TJ(E) for EC FE'.

2. The isomorphism in 1. and the Shapiro’s morphisms of complexes (169) induce on cohomology
isomorphisms of R(L)-modules:

shy /i : Hip (L/K,T) == lim  Hj(Gks,T(E) — lim Hj(Gps,,T).
E/K; pr, E/K; corg
Here the second isomorphism is defined by lim g (shﬁE/K)* (see diagram (178)) and the structure of
R(L)-module on the R.H.S. is induced on the limit by Galois conjugation (see (174) and (175)).

0.16.2. Let us fix in this Section an R[Gk,s]-module X = A, of cofinite type over R. Let us consider

the Selmer complex of R(L)-modules:
C}(Ks/L, A) i= C} (Gis, L(X); A(L(X)))
where A(L(X)) := {A,(L(X))}ves, is defined by the morphisms induced on complexes by the embedding
of R(L)|Gy]-modules:
lim (iy), - LX)y = lim Homg (R(E), A}) — lim Homg (R(E), A),
E/K E/K

where as usual E/K runs over the finite sub-extensions of L/K. We write

RI;(Ks/L,A) € (D(R(L)))e; Hj(Ks/L,A)€ (r(z)Mod)

cft

for the image of C~']3(KS /L, A) in the derived category and its cohomology respectively. We have the
following ‘discrete’ analogous of Prop. 0.11, whose proof is also much easier (as, contrary to }iLn, the
functor lim is exact).

ProproOSITION 0.12. The natural morphism of complezes of R-modules:
lim C}(Gk,s, E(A)) — C}(Ks/L,A)
E/K
is an isomorphism. This isomorphisms, together with the Shapiro morphisms of complexes (169) induces
isomorphisms of R(L)-modules (cfr. diagram (177)):
shpro/n:  lim  Hj(Gpsg, A) = lim T} (Gx.s, B(A) = Hj(Ks/L,A),
E/K; resy E/K
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where the structure of R(L)-module on the L.H.S. is induced on the limit by the conjugation action of
Gal(E/K) on H(GEp,sp, A) defined in (174) and (175).

0.17. Global cup-products. We consider in this section X = {X,{X},es, }, Y = {Y, {¥, }oes; }
and m: X ®r Y — R(1) as in Section 0.6. We also assume that 7 is a perfect duality and that X,7 L, Y, "
for every v € Sy. Let us also consider a (possibly infinite) sub-extension L/K of /K.

It is easily seen that under our assumptions the morphism of R(L)[G g, s]-modules:

(L) : X(L) ®r@) Y (L) = (X ®r R(L)) < =1 > @zr) (Y @r R(L)) < —1 >)*
MEEEAE (X @r R(L)) < =1 > @r) (Y ©r R(L)) < 1>
~ (X ©Y) @r R(L) "5 R(1) @ R(L) = R(L)(1)

defines a perfect duality between the R(L)-modules X (L) and Y (L)*, such that X (L)} L) (Y(L)])"
for every v € Sy. In particular the constructions of Section 0.7 give us a global cup-product in D(R(L)):

Un(zy : RT 1w (L/K, X) @) RTf1w(L/K,Y)" — R(L)[-3].

We note that, if X =Y and 7o s12 = £, then n(L)* 0 510 = £t o w(L), where ¢ : R(L) = R(L)
is the R-linear involution induced by inversion on Gal(L/K). In other words: if 7 is symmetric (resp.,
skew-symmetric) then (L) is symmetric-Hermitian (resp., skew-Hermitian).

0.18. Control Theorems. Let X be as in the preceding section. Let us consider a tower of extensions
K c L C L' CK and let us write €1/, : R(L') - R(L) be the augmentation map induced by restriction
of automorphisms Gal(L'/K) — Gal(L/K).

PROPOSITION 0.13. There exists a canonical isomorphism in D(R(L)):

RT 1 (L' /K, X) @, R(L) = RI 1 (L/K, X).

)7€L’/L

PROOF. Fix an isomorphism G := Gal(K/K) = Zg (d > 1) and corresponding topological generators

01,...,04 € G, so that R(K) = R[[X1, ..., X4]] with variables X; := o; — 1. For every subextension E/K

. " d

of K/K the closed subgroup Gal(K/E) is topologically generated by g := {Jf = (X;+1)F g 1} ,

j=1

for positive integers n; > 0, so that the kernel of ex /g is identified with the ideal generated by xp C mp (k).
This is clearly an R(K)-regular sequence, so that Lemma (0.4) gives us a canonical isomorphism:

R /1w (K/K, X) @ x) e, RIE) = REp1w(B/K, X) € D(R(E)).
Then using twice what already proved we obtain canonical isomorphisms:
R(L) = (RFfJW(’C/KvX) ®%2(IC),5,C/L/ R(L/)) ®7L€(L’),EL//L R(L)
R(L) = RT 1y (L, X).

Ry 1 (L' /K, X) @% 1

)75L’/L

2RI 1w (K/ KL X) % )

EK/L
O

0.19. Pontrjagin duality. Let T = {T,{T} },cs, } be an R[Gk, s]-modules, free of finite type over

R, and let L/K be an arbitrary subextension of /K. Let us write Ay = {AT, {A;U}Uesf} for the

Kummer dual Ay := Homeont (T, Qp/Z,(1)) of T, with ‘local condition’ A;w = Homeont (T, Qp/Zp(1)) —
Arp.

PROPOSITION 0.14. There exists canonical isomorphisms of R(L)-modules

Hj 1, (L/ K, T) = Homg, (H;*(Ks/L,Ar)", Qy/Z, ).
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The rest of this Section will be devoted to the proof of this proposition. We begin by recalling some
facts from Matlis duality referring again to [Nek06] for the details: let S = (S,ms) be a complete
Noetherian local ring, with finite residue field ks := S/mgs of characteristic p. For every compact or
discrete S-module V' we write & (V') := Homcs (M, Qp/Z,) (considering the discrete topology on Q,/Zj)
and As(V) := Homg(V, £(S)). Then the following two fact are known:

M1 For every S-module V' which is either of finite or co-finite type, the canonical map:
V — s (Ms(V))

of V into its bi-#(S)-dual is an isomorphism of S-modules.
M2 For every S-module V' which is either of finite or co-finite type, the canonical map:

Ms(V) — Z(V)
induced by evaluation at the identity of S is an isomorphism of S-modules.

In other words M1 tells us that £2(S) is a dualizing functor on the category of S-modules of finite (resp.,
co-finite) type, so by Matlis duality the Pontrjagin dual &(S) of S is an injective hull of ks. Indeed M1
follows by M2 and Prontrjagin duality. See Sections 2.2, 2.3 and 2.9 of [Nek06]| for details and precise
references.

We now show how the Proposition will follows from M1, M2 and the following claim:

C Let G € {Gk.s,G,}. For every discrete R(L)[G]-module A of co-finite type over R, there exists
a canonical isomorphism of R(L)[G]-modules:

Mrr) (L(A) = {[Ar(A)] (L)}
This induces an isomorphisms of functors:
%’R(L) o L(*) —— L0 {*(L)} o Mp : (R[G]MOd)Rfcft —R(L)[G] Mod
(where T — ft stands for: of finite type over t).
Indeed we then obtain canonical isomorphisms of R(L)[G g, s]-modules:
Apary = Z2(L(2(T)(1)))(1) = (£ o L(x) o Z) (T)
(using M2) = (Mr Ly o L(*) o Mr) (T)
(using ©) = (o + (L) o.M o.4r) (T)
(using M1) & (o « (1)) (T) = T(L),
expressing a perfect Kummer duality of R(L)[G g, s]-modules:

(181) T(L)" @r(w) L(AT) — Qp/Zp(1).

In a similar way, recalling that A;v is defined as the Kummer dual A= of T}f and L(Ap)E =1L (A;J,

we obtain canonical isomorphism of R(L)[G,]-modules, for every v € S;:
= = ~ F\*
Apans = AL(A;v) = AL(ATf) = (T(L)f)",
expressing a perfect Kummer dualities of R(L)[G,]-modules:

(182) (T(L)f)b ®’R(L) L(AT);F - Qp/Zp(l)'

Moreover, again by C, (181) and (182) are compatibles (in a suitable sense) under the natural maps ‘i’
and ‘p;’ induced by i} : T,f < T and p; : T — T, for v € Sy. In other worlds, with the terminology of
Section 0.11: L(Az) = {L(AT), (L(AT)j)Uesf} is the Kummer dual of T(L)" = {T(L)L, (T(L)j)vesf}.
Then Proposition 0.14 turns out to be a special case of Proposition 0.8, working now with R(L)-coeflicients
instead of R-coefficients.
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PROOF OF C. Let us fix an R[G]-module A, of cofinite type over R. Let us write T := #r(A)
be the ‘Matlis dual’ of A, which by assumption (cfr. M2) is a finite R-module, and let I := £(R),
Iriy = Z(R(L)). We will consider on I, the trivial G s-action. Letting £/K runs over the finite
subextensions of L/K, we have canonical isomorphisms of R(L)-modules:

L(Ir) := lim Homp (R[Gal(E/K)], lim Homz, (R /m, @p/zp>>
(R[Gal(E/K)] is finite, free over R) = h_riHomR (R[Gal(E/K)], Homg, (R/m}%, Qp/Z,))

- 1E_n,1 Homp (R[Cal(E/K)] ©r R/, Qy/Z,)

= ;ﬂHmR (R /i [Gal(E/K)], Qp/2,)

n

= Homg <1£1 R/m%[Gal(E/K)], QP/ZP>
E.n
= Homp (R(L),Q,/Zy) =: Ir(L).-

Moreover, recalling the definitions: g € Gg.g acts on f = (fg)r € L(Izr) by f9(1) = f(g~ (1)) =
fixe(9)7t-1) = xz(9)~t - f(1). In other words we have proved that there exist a canonical isomorphism
of R(L)[Gk,s]-modules:
(183) L(IR) = I’R(L) <—=1>.
Using this isomorphism we obtain a canonical isomorphism of R[G]-modules:
L(A) = lim Homg (R[Gal(E/K)], A)
E
(by M].) = h_I)nHOHlR (7?,[(}3‘1(Ej/[()}7 %R ] .///R(AD
E
:= lim Homp (R[Gal(E/K)],Homg (T, Ir))
E
= lim Homg (R[Gal(E/K)] ®r T' Ir)
E
= lim Homg (7', Homg (R[Gal(E/K)], Ir))
E

(since T is finite over R) = Homg (T, lim Homg (R[Gal(E/ K], IR)>
E

=: Homg (T, L(Ir))
(by (183)) = Homg (T, Ir(r)) < —1 >
= Homg (1) (T ®r R(L), Ir()) < —1>
= Homgr) (T @r R(L)) <1 >,Ig))
(via the adjoint of id ® ¢, cfr. (180)) = Homg(r) (T(L)", Ir(L)) =: Ar) (T(L)").

Applying .41y to this isomorphism and recalling M1 we finally obtain a canonical (and functorial)
isomorphism of R(L)[Gk s]:

(Arry o L(x)) (A) 2 T(L)" = {[Ar(A)] (L)} = (to {x(L)} o Mr) (A).
This concludes the proof of Claim C, and with it the proof of Proposition 0.14. O






APPENDIX C

Abstract height pairings

The notations and hypothesis are as in Section A.
Let R = (R,mpg;t: R — R) and X* = {X; X, v € S} be as in Section 0.9. Fix an ideal P C R
generated by an R-regular sequence, and invariant under the involution ¢ : R — R. Let A = App := R/P,

Y =Yp := X@rAand Y} = (Y[p]): = XF®rA (v e Sf). Wedenote again by ¢ : A — A the involution
on A induced by ¢ : R — R. Then the perfect duality of R[Gg s|]-module 7 := 7x : X @ X' — R(1)
induces a perfect duality of A[G g, g]-modules:

Tpi=TRA: Y ®4Y" — A(1); st. Y L., YY"
Then the construction of Section 0.7 and Section 0.9 defines a skew-Hermitian pairing in D(.A):

Up i=Unp : RT;(Gk 5, Y) @4 RT4 (G5, V)" — A[-3].

0.20. Bockstein maps. As P = (x1,...,24) is generated by an R-regular sequence, we can prove
easily that P/P? is a free A-module (of rank d), generated by the residue classes of the generators x;. The
projection R/P? —» A induces an exact triangle in D(R)

(184) P/P? — R/P? — AL PP
Lemma 0.4 gives canonical isomorphisms in D(R) (cfr. Remark 0.3):

RI(Gk.s, X) @k A~ RI;(Gk.5,Y);

RT(Gx.s, X) ®% P/P1] = (ﬁff(GK,s, X) ®% A) ®4 P/P?[1]
(Lemma 0.4) 2RI (Gg,s,Y) @4 P/P?[1]
~ RI;(Gk.5,Y) @4 P/P?[1]
~ RT(Gk.5,Y)[1] @4 P/P?,

where the third isonmorphism follows by the flatness of P/P? over A. It follows that applying the derived
functor RT¢(Gr 5, X) ®% — to the exact triangle (184) induces an exact triangle in D(R):

RT;(Gr.s, X) ®% R/P2 — RT(Gr.s,Y) 25 RT (G5, Y)[1] ®4 P/P2

We call Bp° = RIf(Gk.5, X) ®% 8p the Bockstein map attached to P (cfr. [Nek06, Sec. 11.1.4]). If we
want to emphasize the Galois module we are considering we will write Sx p for fp.

0.21. Associated height pairings. We define the height pairing attached to P as the morphism in
D(App) = A) (emphasizing the dependence on P in the notations):

-~ _— e . id = ey .
hip : RU (G s, Yip) ©4 RT; (G, Yip)' 25 RT (G, Yip))[L] @5 RT (G s, Yip))' ©4 P/P?
= (RT(Grs, Yip) @4 R (G, Vip))') [1] @4 P/P? T2 2] 0 P/P2 2 P/P2[-2).
Given integers i,j € Z s.t. i + j = 2 we will write

7?,7371‘)]' = Hi,j(ﬁp) : ﬁ]ic(GK)s,}/[p]) XA Er}(GK7S>}/[7D])L N P/'P2

127
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for the pairing induced by 7173 in (4, j)-cohomology. As above we will also write h x,p and h X,P,i,;j in order
to emphasize which Galois module we are considering.

0.22. Decomposition of pairings. Assume that P = (x,y) is generated by « = (z1,...,2,) and
Yy = (y1,...,¥Ys). Let us write Ay, := R/y, Y}y :=Y ®r Ay and P, C A, for the ideal generated by the
projections of x1,...,z, modulo y. Since we are assuming R (local and) Noetherian, P, is generated by

an Ay-regular sequence. As A := Ajp) = Ay /Py, we have Y}y ®4, A = Y[p] and using again the ‘control
Theorem’ (Lemma 0.4) the general construction explained above produces an exact triangle in D(Ay):

— — B y T
RT(Gk,s,Yyy) ®%, Ay/Py — RI(GK. s, Yip)) i RI;(Gk,s,Yip))[1] ©4 Py /Py

‘We have abbreviated ﬂpy = ﬁy[y] 773y‘ = ’ﬁf (GK,Sa ﬂm)@h[y] 87>y, where 873y is the ‘connecting morphism’
in the exact triangle Ay, /Py — A — Py /P.[1]. Exactly as above we can define associated height pairings:

hp, : RL;(Gr.s, Yip) ®% RTf(Gr.s,Yip)' — Py/P2[~2];

(i +7= 2) h'py,i’j = Hivj(h'py) : H}(GKﬁ,Y[fp]) XA HJJC(GK,S,YU;])L N y/'P;
(We note that we are now considering A, as our coefficient ring instead of R, so the notations could be
a little confusing. Anyway we still continue to use the more compact notations hp, and hp, ;; instead of

the more precise ones Ey[y],py and Ey[y]773y7i7j). Let us write pr, : P/P — P, /P for the map induced by
the projection R — A,,.

LEMMA 0.15. Epy = pry[—Q] O}~l'p S MOI‘D(A) (ﬁf(GKﬁ, Y[p]) ®a ﬁff(G}qs, }/[p]),Py/P;[—Q]>. In
particular, for every i+ j = 2: N N
hp,.ij = Pry 0 hp ;.

PROOF. Recall A = Aip) :=R/P and Y = Yjp := X®r A. Applying the functor i{\ff (Gr 5, X)@% —
to the morphism of exact triangles in D(R):

P/P? —=R/P? —> A—>P/P?[1]

pryi i ipry[l]

7)y/PZ - Ay/PZ —A— Py/PS[l]a

using the canonical isomorphism:
Lemma 0.4

f{\ff(GK,S,X)@)%i%(f{\ff(GKys,X)@)IéAy)@ﬁyi =~ " RI(Gi.s: V) @4, 1

valid for every cohomologically bounded above complex of Ay-modules §, and recalling the constructions
above we easily find a commutative diagram of Bockstein maps:

— Jé; —
RI;(Gks,Y) ————RI;(Gk.s,Y)[l] @4 P/P?

id®pr
Bry i Y

’R\ff(GK’Ag, Y)[l] XA ’Py/'PfI
Recalling the definition of E*, we conclude the proof. O

We note that the preceding lemma implies that the ‘height pairing’ iNpr (and then Epw-,j fori+j=2)
depends only on the quotient Y, := X/y - X as a Gk s-module. Moreover, letting {z;}; be an R-regular

sequence generating P, we see that to compute hp ; ; it is sufficient to compute for every principal

EDEN/
ideal (2;) C R. In Section 0.24 we will give a useful description of the pairings h(.) ; ; attached to a non-zero
divisor z € R using the formalism of abstract Cassels-Tate pairings.
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0.23. Behaviour under specializations. Using again the notations of the preceding sections, let
us consider a second ideal I C R generated by an R-regular sequence, and invariant under the involution
. on R. As in Section 0.8 we will write M := M ®r R/I, for every M € gMod. We also assume that the
ideal P C R is generated by an ﬁ—regular sequence. We will denote again by ¢ the involution induced by
t: R 5 R on any quotient module.

Since Y := Yjp| := (X ®@r R/P) ®r R/I is canonically isomprphic to (X ®r R/I) @5 R @ R/P =:
X ®% ﬁ/ P, and similarly A = ﬁ/ﬁ, the constructions of the preceding sections (applied this time to the
data R, P and X) give a Bockstein map in D(A):

B = Bsp: RI;(Gks,Y) — RT(Gr s, Y)[1] @ P/P?,

with associated derived pairing in D(A):

hﬁ = h)? 5 RFf(GKVS,?) (X)% ﬁ\ff(GK,S,?)L — 73/732[—2].

)

As usual we write Eﬁzy =g (ﬁﬁ) for the morphism induced in (i, j)-cohomology.

LEMMA 0.16. Let 7y : /R\ff(GK,S,Y) — /R\ff(GK,SJN/) be the morphism of complexes induced by the
natural projection mr : R — R, and let 7wy . = H*(7y) be the morphism induced on cohomology. For every
integers i + j = 2 the following diagram commutes:

~. . i
H}(GK’S,Y) QA H}(GK,&Y)‘ s 7)/732
7T1,i®7T1,j\L -

h

P.iyj

ﬁ}(GK,S,?) ®z ﬁ}(GK,S,?)L

P/P2.

PROOF. Let us consider the natural morphism of exact triangles in D(R):

R/P? —= A2 P /P21

WIJ/ ﬂll wI[l]l
1)

R/P? —= 1 —"=P/P[1].
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Applying f{\ff (Gk,s,X) ®% — to this morphism, using Lemma 0.4 (and its proof) and recalling the defi-
nitions we obtain a commutative diagram in D(R):

— B —
RFf(GKVS,Y) z RFf(G[gs, ®A P/PQ

—— T L id@dp — 2

RI'y(Gk,s,X) @5 A Rl (G5, X) @% P/P?[1]

id®n1l id®mr[1]
— ~ id®dzs —
RI;(Gg s, X)®% A RI (G, X) @% P/P2[1]
1d®id®ds

(ﬁvrf(GK,s,X) ®L ﬁ) ok A (ﬁva(GK,s,X) oL 75) ok P/PY1]

Nl lw

— ~ ~ id®os

RFf(GK,&X)@%A T RFf(GKSa )®L P/P2[ ]
__ l _ B __ NL -
RI;(Gk.s,Y) z RT;(Grs,Y)[1] 1 P/P?,

where every isomorphism denoted by a tilde comes from Lemma 0.4 (or better its proof). Retracing the
proof of Lemma 0.4 we see easily that this commutative diagram induces in cohomology a commutative
diagram of .A-modules:

~. H? ~.
(185) Hi(Grs,Y) — L2 {4 (G, Y) @4 P/P?

WI,i\L \Lﬂ'z,i®ﬂ1
i

~. ~ H'(B5)
Hi(Gks,Y) H““l(GKS, Y)®;P/P.

Let us write Uy st := H*'(U,) for the map induced in (s,t)-cohomology by the cup product pairing U,

associated to the ideal % = P (reps., * = P) of R (resp., R). Then, for s+t = 3 we know again by ¢) of
Lemma 0.4 that the following diagram commutes:

Up,s,t

H3(Ggs,Y)®4 Hi(Gr,5,Y)" A

ﬂI,s@”I,t\L lm

Hf(GK& V) ®z Hf(GKSa Y) !

Combined with diagram (185) and the definitions we easily conclude the proof of the Lemma. O

0.24. Relation with Cassels-Tate pairings. We assume in this section that P is a principal ideal,
generated by a non-zero divisor R 3 w 1 0.
We recall by Section 0.10 that Nekovai’s abstract Cassels-Tate pairing defines a skew-Hermitian pairing:

571'72»2 : ﬁ)%(GK,SvX)'R—tors Rr H;(GK,SyX)fR_tors — «%/R,

where #Z = Frac(R) is the total ring of fractions of R. Moreover we have seen in the proof of Lemma 0.4
that the natural projection induces an exact triangle in D(R):

RI;(Gx.s,X) 5 RTf(Gx,s5,X) — R (G5, Vi)
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The long exact cohomology sequence attached to this triangle gives us in particular an exact sequence of
A = Ajpj-modules:

0— ﬁ}(GK,S,X) RQr A — ﬁ}(GK,S;)/EP]) ZE? ﬁ?(GK,S,X)[’W} — 0,

where x[cw] denotes the w-torsion submodule of x. We can then define an ‘height pairing’:

~ ~ ~ L i @ik,
Wpi1:H}Grs,Yip) ®4 Hi(Gr.s,Yip)" "

(G5 X)) @4 H(Gres, X)) T2 (2)R) [ = PP,

The non-canonical isomorphism & is defined sending £ mod R € Z/R to (a-w) mod P? € P/P?. It is

easily seen that ?L%)J,l depends only on P and not on the choice of the generator w. It comes as no surprise
that we have defined nothing new.

PROPOSITION 0.17. hp 1 = hp 1.

ProOF. Write #(A) := (R = R), concentrated in degrees —1 and 0. The projection pp (resp., the
map p defined by R 3 a — (a-w) mod P € P/ P?) induces quasi isomorphism of complexes of R-modules
(again denoted by the same symbol) pp : 2(A) 25 A and plp : 2(A) L5 P/P?. Let Op: P(A) — 2(A)1]
be the morphism of complexes defined in degree —1 by the identity. Let us consider the following diagram
in D(R):

Z(A) rr A PP Cone <P/P2 N R/PQ)

é;i —op lpr

2(A)1) 2L p/p2(1) ——— p /P[],

where p is defined in degree —1 (resp., 0) by R > r + [ww-r] € P/P? (resp., the natural projection), and pp
is defined in degree 0 by the projection pp. By definition, the right-hand square is commutative. Moreover
we have prop = pp[1] oap and ppop = pp. It follows that the left-hand square also commutes, i.e. —873 is

a lift of Op to R-free resolutions of A and P/P?[1]. Applying RFf(GK,S, ) ®% — and using Prop. 10.2,
we obtain by construction a commutative diagram in D(R):

— d®op ——
(186) RT; (G5, X) @k A ——=RD (G5, X)[1] &% P/P?

NT i TN

O} (G5, X) ©r P(A) C3(Gr.s, X)[1] @r P(A)

g ) |-

RT;(Gk.s, Yip)) R (Gr.s, Yip))[1] @4 P/ P2,

~

where (p is defined as the composition of —id ® dp with the natural isomorphism t ® ({[1]) — (f[1]) ® i.
For the vertical arrows: the first isomorphism (as the commutativity of the upper square) arises from the
definition of the derived tensor product, and the second is the natural projection. Indeed the composition
of the vertical arrows are precisely the isomorphisms used to prove the control Theorems: RI'(X) ®%A =

ﬁvf‘f(Y[p]) and i{\ff(Y) @R P/P? = (f{\ff(X) Q% A) @A P/P? ﬁf()ﬁp]) ®4 P/P? (see the proof of
Lemma 0.4).
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Given [z] € ﬁ} (Gk,s,Yp)) we write z(P) € é]% (Gk,s,Ypp)) for any 2-cocycle representing the image
of [z] under the composition

H}(Gk,s,Yip) = H}(Gk.s,X) mod, @ H}(Gk.s,Yp)-
As iy is the connecting morphism attached to the short exact sequence of complexes 6’; (X) < 5;(X ) —

5} (Yip)), writing 7 € 5} (Gk,s,X) for any lift of  under ‘reduction modulo w’, we have z(P) = T mod w,
where T € 5]% (Gk,s,X) is the 2-cocycle s.t. w - T = dé; Z. In other words referring to diagram (186):

i-7€ 2" (C3(Grs, X) @r 2(A))

is a 1-cocycle ‘lifting’ . Applying H 1(@;) to the cohomology class represented by T — T and using again
the commutative diagram (186) we thus obtain:

H'(Bp) : H}(Gk.s,Yp) — H3(Gk.s,Yip)) ®a4 P/P?
[2] = [2(P)] @ [w].

Recalling the definitions, this formula gives us: for every [z] € ff} (Gk,s,Yp)) and [y] € ff} (Gk,s,Yip))"

(187) e, (2] @ [y]) = lnvg, (A) ([2(P) Up,o 9]) - [] € P/P>.
Here, recalling the fixed perfect duality 7 : X ® X* — R(1) (resp., mp := m @ A) such that X 1, X*
(resp., Yip] Lrp Y[;;]) we have written Up g := Urp 0 ¢ 5’;(GK7S,Y[7>]) A 5}(GK7S,Y[7>]) — C(K,A) for
the cup-product pairing attached to mp (and defined in Lemma 0.1), and invg ; (A) is the isomorphism
H3(C(K,A)) = A defined in Section 0.4 using local class field theory.

We now compute E%ll([x] ® [y]), for [z] @ [y] € Ef}(Y[p]) ®a ﬁ}(Y[p])L. We will use the notations
of Section 0.10. Let = € C}(GK’S,X) and T € C’]%(GK,S,X) be as above, and define similarly y and 7.
Recall by the discussion above that T (resp., ) is a 2-cocycle in C$(Gk,s, X) (vesp., C$(Gk,s,X)") whose
cohomology class represents i ([z]) (resp., i ([y])). Then

T=(T,70w ') € (RF! (5;(GK757X)))2

(tesp., ¥ =@ jowl)e (RF; (o;(GK,S,X)L))2 )

is a 2-cocycle whose image in H} (CN";(GK,S,X)> (resp., H? (6’;((;1(’5, X)”)) lifts i ([z]) (vesp., it ([y]))

under the projection in (164). We compute the composition (165) (for M := é} (X), N := 6}(X)‘) on the
4-cocycle T ® 7', obtaing the 4-cocycle:

~ ~ 4
@y, (X)) o ') eRI (c;(GK,S, X) @r C¥G.s, X)L) .
Let us now apply RI'1(Ux,0) = Ur,o ® id, obtaining the 4-cocycle:
4
(1) = (TUr0 7 T UnoP) @ @ 1) € (Rr, (C(K, R))) .
As H*(C(K,R)) = 0, there exists 7 € C(K,R)? s.t. de(x,R)T = T Ug,07, so that the cohomology class of
(1) is equal to that of the 4-cocycle
4
(1) = (0,(@ Uno § —wT) ®w ') € (RF! (C(K,R)) ) :

We have an isomorphism v : H{ (C(K,R)) = H{ (R) = %£/R, where the first isomorphism is induced by
the isomorphism in D(R): RI' (in7V5f (R)) : R (C(K,R)) = RI' (R[-3]), and the second comes from
(164) (with M = R[-3]). It follows immediately by the definitions that the image of i ([z]) ® % ([y])
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under ¢ 2 2 is obtained applying v to the cohomology class of the cocycle (f). In other words we have the
formula:

(Cr2zo (i ®iy)) (2] ® [y)) =7 ((D)]) := invg, (R) ([T Uno 5 — =wT]) - [w™'] € Z/R.

Since T mod w = x(P) (by the discussion above), ¥ mod w = y (by construction), and 7 @z A =: wp, by
the functoriality of inv S; (—) and the definition of the global cup-products in Lemma 0.1, we have

(mJSf (R) ([T Un.o § — wT])) mod P = invg (A) ([z(P) Up,o 1))
so that we finally obtain: (¢r 2,20 (im ® %)) ([2] ® [y]) = invg, (A) ([2(P) Up,o y) - [@1], ie.:
Wy 1.1([2] @ [y]) = (invs, (A) ([2(P) Up,o 4]) - &) mod P? € P/P2,
Together with (187) this concludes the proof. O

0.25. More general height pairings. Though we have considered in this Appendix a representation
X equipped with a perfect duality 7 : X @z X* — R(1) (with our main applications in mind) the
constructions and results of Sections 0.20-0.23 naturally generalize in the following setting.

Let R = (R, mg) be as in Section A, and let P be a an ideal of R generated by an R-regular sequence.
Let X = {X; X, v € Sy} be as in Section 0.5. As above we write A= Ap =R/P,Y :=Yjp=X@r A

and Y,© = (}/[7)]):_ =X, @r A for every v € Sy. These data is all that is needed to define the Bockstein
map: - -

Bp = Bxp:RI;(Gks,Y) — RI;(Grs,Y)[l] @4 P/P2.
Let Z ={Z;Z}, v € Sy} be a representation ‘with Greenberg local condition’ as in Section 0.5, but this
time considering A as our Noetherian ‘coefficient ring’. Assuming that that there exists a perfect duality
m:Y ®4Z — A(l) such that Y 1, Z we can define ‘height pairings’

hxx:RU;(Grs,Y) @4 RT (G5, Z) — P/P?[~2];

(i+j=2) hx i Hi(Gr,s,Y) @% H(Gk.s, Z) — P/P?
exactly as in Section 0.21, replacing Up with the global cup-product pairing
Un : RT(Gr.s.Y) @4 RTf(Grc.s, Z) — A[-3]

induced by the duality 7 and defined in Section 0.7.
We leave to the interested reader to formulate analogues/generalizations of the results of Sections
0.20-0.23 to this more general setting.
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