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Abstract

The theme of this Thesis is Iwasawa theory of Hida p-adic analytic families of modular forms. Our
main goal is to describe special values of Hida’s p-adic L-functions in the context of a p-adic Birch and
Swinnerton-Dyer conjecture for the weight variable.

Let E/Q be an elliptic curve with ordinary reduction at a prime p, corresponding to a weight two new-
form f . The exceptional zero formulas of Bertolini-Darmon [BD07] and Greenberg-Stevens [GS93] estab-
lish deep relations between the arithmetic of E and the behaviour at (k, s) = (2, 1) of the Mazur-Kitagawa
two-variable p-adic L-function Lp(f∞, k, s) attached to the Hida family f∞ containing f . The goal of Part
1 is to give an interpretation of these formulas in the framework of a p-adic Birch and Swinnerton-Dyer
conjecture for Lp(f∞, k, s). The main problem consists in the construction of p-adic regulators encoding
the arithmetic of the special L-values of the classical specializations of f∞. We address this problem by
appealing to Nekovář’s theory of Selmer complexes [Nek06]. More precisely, the key ingredient in the
definition of the p-adic regulator is the p-adic weight pairing, defined on the extended Mordell-Weil group
of E/Q. This pairing comes from Nekovář duality for a suitable big Selmer complex attached to Hida’s
universal ordinary deformation Λ(f∞) of the p-adic Tate module of E.

In Part 2 we consider the algebraic side of the matter, i.e. we study the special values of algebraic
Hida’s p-adic L-functions. These are defined as characteristic ideals of ‘big’ Selmer groups (or complexes)
attached to Λ(f∞) and Zp-power extensions of number fields. Making use of Mazur-Rubin theory of
organizing modules and of a general theory of abstract height pairings that we develop in Appendix C,
we deduce various several-variable algebraic p-adic Birch and Swinnerton-Dyer formulas, generalizing well
known results of Schneider, Perrin-Riou, Jones, Nekovář et. al. Via the Main Conjectures of Iwasawa
theory for GL2, recently proved thanks to the work of Kato-Rohrlich, Bertolini-Darmon, Vatsal, Ochiai,
Skinner-Urban et. al., these formulas provide strong evidence in support of the conjectures proposed in
Part 1.

In Part 3 we study the Mazur-Tate-Teitelbaum conjecture for elliptic curves E/Q with split multi-
plicative reduction at p (i.e. in the presence of an exceptional zero for the cyclotomic p-adic L-function in
the sense of [MTT86]). Making use of Nekovář’s theory we prove exceptional zero formulas for the p-adic
L-functions arising from norm-compatible systems of cohomology classes via Perrin-Riou-Coleman ‘big’
logarithm. Applying this formulas to Kato’s Euler system for the p-adic Tate module of E, we are able to
reprove the main result of [GS93], and to relate the second derivative of the cyclotomic p-adic L-function of
E to the cyclotomic p-adic regulator. Besides providing evidence in support of the Mazur-Tate-Teitelbaum
conjecture, our result suggests an analogue in the multiplicative setting of a conjecture of Perrin-Riou,
relating Beilinson-Kato elements to Heegner points.

More detailed descriptions of the results are given in the introduction to each part of the Thesis.
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Part 1

p-adic regulators and Hida p-adic L-functions



Introduction

Hida theory of p-adic analytic families of modular forms has proved to be a powerful tool in the study
of the arithmetic of (p-ordinary) elliptic curves. The proof by Greenberg and Stevens of the Mazur-Tate-
Teitelbaum exceptional zero conjecture is a well-known example. As another remarkable example, recently
Bertolini and Darmon [BD07] proved a p-adic Gross-Zagier formula allowing us to produce (in some cases)
rational points on elliptic curves from derivatives of certain Hida p-adic L-functions. In this note we relate
the ‘analytic’ results of [BD07] to Nekovář ‘algebraic’ theory of Selmer complexes [Nek06]. This leads us
to propose a p-adic Birch and Swinnerton-Dyer conjecture for the ‘weight variable’, placing the results of
[BD07] in a more general and natural setting (cfr. [BD07, pag. 375, Rem. 8]).

Let E be an elliptic curve defined over Q of conductor NE = pM , having a prime p ≥ 5 of multiplicative
reduction, and let fE be the newform of weight 2 on Γ0(NE) attached to E/Q. Hida theory allows us to
consider fE = f2 as the weight 2 element in a p-adic analytic family of modular forms f∞ = {fk}k∈UE∩Z≥2 .
Here k runs through the even integers in a p-adic disc UE ⊂ Zp centered at 2, and fk is the p-stabilisation of
a normalized eigenform of weight k and level Γ1(M). For every k ∈ UE∩Z≥2, we denote by αp(k) := ap(fk)
the p-th Fourier coefficient of fk.

Fix a quadratic character χ, of conductor coprime with NE . We denote by Lp(f∞, χ, k, s) the Mazur-
Kitagawa two-variable p-adic L-function, attached to fE , χ and the choice of ‘Shimura periods’ Ωk ∈ C
(k ∈ UE ∩ Z≥2). It is a Cp-valued p-adic analytic function defined on UE × Zp, interpolating the critical
values of the Hecke L-series L(fk, χ, s) of fk twisted by χ (see [BD07] or Section (2.2)). We consider the
restriction

Lp(f∞, χ, k, k/2) : UE −→ Cp
of Lp(f∞, χ, k, s) to the central critical line s = k/2. It satisfies the following interpolation properties: for
every k ∈ UE
(1) Lp(f∞, χ, k, k/2) ·= (1− χ(p)αp(k)−1pk/2−1) · L(fk, χ, k/2),

where ·= denotes equality up to a non-zero scalar. The ‘Euler factor’ (1 − χ(p)αp(k)−1pk/2−1) appearing
in (1) is zero precisely when k = 2 and

(2) χ(p) = αp(2).

In this case Lp(f∞, χ, k, s) has an exceptional zero at (k, s) = (2, 1), meaning that Lp(f∞, χ, 2, 1) = 0
independently on whether L(E/Q, s) vanishes or not at s = 1. In this note we are especially interested in
this exceptional zero situation, and we assume for the rest of this introduction that (2) is satisfied.

The arithmetic of ‘the data’ (f∞, p, χ) strongly depends on the sign sign(E,χ) ∈ {±1} appearing in the
functional equation satisfied by L(E,χ, s) := L(fE , χ, s). If sign(E,χ) = +1, then Lp(f∞, χ, k, k/2) ≡ 0
vanishes identically (see Section (2.2)). This is the situation considered (for χ = 1) by Greenberg and
Stevens in [GS93]. If

(3) sign(E,χ) = −1,

a conjecture of Greenberg predicts that Lp(f∞, χ, k, k/2) is not identically zero, i.e. that L(fk, χ, k/2) 6= 0
for almost all k ∈ UE . Assume for the rest of the introduction that (3) is satisfied.

The assumptions (2) and (3) imply that Lp(f∞, χ, k, k/2) vanishes to order at least 2 at k = 2. For the
second derivative, we have the following result. Write Kχ/Q for the quadratic field attached to χ (resp.,
Kχ := Q), if χ 6= 1 (resp., χ = 1). There is a global point Pχ ∈ E(Kχ)χ and a rational number ` ∈ Q∗
such that

(4)
d2

dk2
Lp(f∞, χ, k, k/2)k=2 = ` · logE(Pχ)2,

where logE : E(Qp)→ Ga(Qp) is the formal group logarithm on E/Qp. The point Pχ is a Heegner point,
coming from an appropriate Shimura curve parametrisation of E/Q, and it is of infinite order if and only
if L′(E,χ, 1) 6= 0. This result has been proved by Bertolini and Darmon in [BD07] (assuming an extra
hypothesis subsequently removed by Mok in [Mok11]).
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As remarked by the authors in [BD07], it would be worthwhile to understand (4) in the framework
of a Birch and Swinnerton-Dyer conjecture for the Hida p-adic L-function Lp(f∞, χ, k, k/2). This faces us
with the problem of constructing a regulator term ‘compatible’ with (4). The aim of this note is to show
that we can indeed construct such a regulator via Nekovář duality for the Selmer complex attached to a
suitable Hida big Galois representation, interpolating the Deligne representations of the elements of f∞
(see Sec. (2.3)).

More precisely, Nekovář’s construction of abstract Cassels-Tate pairings (recalled in Sec. 3) produces
a cohomologically-defined p-adic weight pairing

〈−,−〉Nek
Kχ,p

: E†(Kχ)⊗Qp × E†(Kχ)⊗Qp −→ Qp,

where E†(Kχ) is the extended Mordell-Weil group of E/Kχ. We can think of 〈−,−〉Nek
Kχ,p

as an analogue in
this context of the canonical p-adic height considered in [MTT86], [BD96] and [PR92], and as a p-adic
variant of the classical Neron-Tate height, with the essential difference that 〈−,−〉Nek

Kχ,p
is alternating.

Write E(Kχ)χ and E†(Kχ)χ for the subgroups of E(Kχ) and E†(Kχ) on which Gal(Kχ/Q) acts via
χ. Under our assumptions (2) and (3)

rankZE
†(Kχ)χ = rankZE(Kχ)χ + 1.

More precisely, E†(Kχ)χ modulo torsion is generated by a basis of E(Kχ)χ modulo torsion and a suitable
‘Tate period’ qχ ∈ E†(Kχ)χ (see Sec. (5.5)). This is the ‘algebraic manifestation’ of the presence of an
exceptional zero for the p-adic L-function. In Section (4.4) (see also the proof of Prop. (5.6)) we prove the
following ‘explicit formula’:

Theorem 0.1. For every P ∈ E(Kχ)χ we have

(5) 〈qχ, P 〉Nek
Kχ,p

= c · logE(P ),

where c = 1 if χ 6= 1 and c = 1/2 if χ = 1.

Using (5), we can rephrase (4) in the following way, emphasizing the analogy with the classical Gross-
Zagier formula: there is a scalar ` ∈ Q∗ such that

d2

dk2
Lp(f∞, χ, k, k/2)k=2 = ` ·

(
〈qχ,Pχ〉Nek

Kχ,p

)2

.

This result, combined with Nekovář theory, suggests a close relation between the dominant term in the
Taylor expansion of Lp(f∞, χ, k, k/2) at k = 2 and the determinant of 〈−,−〉Nek

Kχ,p
. This leads us to propose

in Sec. 11.8 a p-adic Birch and Swinnerton-Dyer conjecture for the weight variable, in the spirit of the
conjectures formulated in [MTT86] and [BD96].

More generally: let E/Q be an elliptic curve of conductor NE ordinary at a prime p ≥ 5, and χ a
primitive quadratic character of conductor coprime with p·NE . The constructions of f∞ and Lp(f∞, χ, k, s)
generalize to this setting and we can consider (cfr. Sec. (2.2)) the generic part Lgen

p (f∞, χ, k) of the
restriction of Lp(f∞, χ, k, s) to the central critical line s = k/2. This is a p-adic analytic function on UE ,
which is conjecturally not identically zero. Conjecture (6.1) relates the leading term of Lgen

p (f∞, χ, k) to a
p-adic regulator, defined in terms of 〈−,−〉Nek

Kχ,p
and the Mazur-Tate-Teitelbaum p-adic cyclotomic height.

We finally mention the work of Delbourgo, related to the subject of this note. In [Del08, Ch. 10], a
‘two-variable’ big Selmer group is attached to the ‘cyclotomic’ and ‘Hida’ deformation of the p-adic Tate
module of E/Q. Assuming that E/Qp does not have split multiplicative reduction, the leading term of its
characteristic power series is expressed in term of a certain p-adic regulator. Moreover, a main conjecture is
formulated, relating this power series to the Mazur-Kitagawa p-adic L-function. It is likely that analogues of
the results (resp., conjectures) of [Del08, Ch. 10] can be proved (resp., formulated) also in the exceptional
case, in terms of the cyclotomic deformation of the big Selmer complex H̃2

f (Q, T (P)) defined in Sec. (3)
and the p-adic regulator of Sec. (5). This ‘Iwasawa theoretic’ point of view may also serve as a motivation
for Conjecture (6.1), in the same way as the main conjecture of Iwasawa theory [Gre94b], together with
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the algebraic p-adic BSD formulas of Schneider et al. (see for example [BD95]) motivate the p-adic Birch
and Swinnerton-Dyer conjectures of [MTT86] and [BD96].

Notations. The following notations will be used throughout this note:
- E/Q is an elliptic curve defined over Q of conductor NE ;
- fE =

∑
n≥1 an(E) · qn ∈ S2(Γ0(NE),Z) is the newform attached to E/Q by the modularity

theorem;
- p ≥ 5 is a rational prime of ordinary (i.e. good ordinary or multiplicative) reduction for E;
- K/Q is a number field of discriminant dK ; we write DK = |dK |;
- Sf ⊃ {v|p ·NE ·DK} is a finite set of finite primes of K;
- K = Q (resp. Kv = Ql, Sf 3 v|l) is a fixed algebraic closure of Q (resp. of the completion Kv of
K at v ∈ Sf );

- GK,S := Gal(KS/K) is the Galois group of the maximal algebraic extension KS ⊂ K of K which
is unramified outside Sf ∪ {v|∞};

- ρv : K ↪→ Kv (for v ∈ Sf ) is a fixed embedding which extends K ↪→ Kv;
- ρ∗v : Gv := Gal(Kv/Kv) ↪→ GK (or GQl ↪→ GQ if v|l) is the morphism attached to ρv;
- if M is a Z[GK,S ]-module, we write Mv for the Z[Gv]-module M , on which Gv acts via ρ∗v;
- if L is a field, we write Tp(L∗) := lim←−µpn(L);
- if M is a Zp[Gal(L/L)]-module, M(1) := ML(1) := M ⊗Zp Tp(L

∗) (with diagonal Gal(L/L)-
action).

1. Kummer theory

In this section we recall some results from Kummer theory. Given a profinite group G and a finite
dimensional Qp-vector space M , endowed with a continuous Qp-linear action of G (for the p-adic topology
on M), H∗(L,M) = H∗ (C•cont(G,M)) denotes the continuous cohomology group of GL with values in M ,
as defined in [Tat76] or [Jan88]. If GL := Gal(L/L) is the absolute Galois group of a field L, we use the
notation H∗(L,M) for H∗(GL,M).

1.1. The multiplicative group. In this paragraph L/Qp is a local field and πL is a uniformizer in
the maximal order OL of L.

By Hilbert Satz 90, the connecting morphism attached to the short exact sequence of discrete GL-
modules 0 → µpn → L

∗ pn→ L
∗ → 0, defines an isomorphism L∗/(L∗)p

n ∼→ H1(L, µpn). Taking the inverse
limit n→∞ and extending scalars to Qp, we obtain the Kummer isomorphism

L∗⊗̂Qp
∼→ H1(L,Qp(1)).

Given x ∈ L∗ we write γLx (or simply γx if L is fixed) for the image of x⊗ 1 under the Kummer map. By
local Tate duality, we have a (perfect) duality

〈 , 〉L := invL (x ∪ y) : H1(L,Qp(1))×H1(L,Qp)→ H2(L,Qp(1)) ∼→ Qp,

where ∪ is induced by multiplication Qp(1) × Qp → Qp(1) and invL is the invariant map of local class
field theory. Note that H1(L,Qp) = Homcts

(
GabL ,Qp

)
(Gab := G/[G : G]′ for the closure [G : G]′ of the

commutator subgroup of G). Recall also the reciprocity map [Ser67]:

recL : L∗ → GabL ,

normalized in such a way that recL(πL)−1 ∈ FrL is an arithmetic Frobenius in GabL . We write also recp :=
recQp .

Proposition 1.1. a) For every q ∈ L× and χ ∈ H1(L,Qp) we have

〈γq, χ〉L = χ (recL(q)) .

b) Let χcy : GabQp � Z∗p be the p-adic cyclotomic character. For every q = pordp(q) · u ∈ Q∗p
χcy(recp(q)) = u ∈ Z∗p.
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Proof. a) Follows by [Ser67, Sec. (2.3)] (see also [Nek06, Sec. (11.3.5)]). b) Recalling our normal-
ization of recp, this follows by [Ser67, Sec. (3.1)]. �

1.2. Elliptic curves. Let us consider the elliptic curve E/Q fixed above. Denote by Tap(E) :=
lim←−E(Q)[pn] the Tate module of E/Q and by Vp(E) := Tap(E) ⊗Zp Qp. As Sf contains every prime of
bad reduction for E/Q, Tap(E) is a (continuous) GK,S-module [Sil86, Ch. VII]. For every v ∈ Sf , the
embedding ρv induces an isomorphism of Gv-modules (again denoted ρv) ρv :

(
E(Q)[pn]

)
v

∼→ E(Kv)[pn].

Taking limits we obtain an isomorphism of Qp[Gv]-modules ρv : Vp(E)v
∼→ Vv(E) :=

(
lim←−E(Kv)[pn]

)
⊗Qp.

When the context makes it clear, we write simply Vp(E) for the Gv-module Vp(E)v.
Recall the (injective) global Kummer map

E(K)⊗Qp =
(

lim←−E(K)/pnE(K)
)
⊗Qp

lim←−κn
−→

(
lim←−H

1(GK,S , E[pn])
)
⊗Qp

∼→ H1(GK,S , Vp(E)),

where κn is the usual Kummer map on E(K)/pn ant the last isomorphism is obtained (extending scalars
to Qp) from H1(GK,S ,Tap(E)) ∼→ lim←−H

1(GK,S ,Tap(E)/pn) (see for example [Nek06, Lemma (4.2.2)] or
[Jan88]). For every P ∈ E(K) we write γP for the image of P ⊗ 1 under this map. Replacing GK,S by
Gv (v ∈ Sf ) we obtain also a local Kummer map E(Kv) ⊗ Qp ↪→ H1(Kv, Vv(E)). Given Pv ∈ E(Kv), we
write again γPv for the image of Pv ⊗ 1 and we consider E(Kv)⊗Q as a subspace of H1(Kv, Vv(E)). We
have resv(γP ) = ρ−1

v

(
γρv(P )

)
: here we have written (by abuse of notation) again ρ−1

v for the map induced
in cohomology by the isomorphism ρ−1

v : Vv(E) ∼→ Vp(E)v and

resv : H1(GK,S , Vp(E))→ H1(Kv, Vp(E)) := H1(Gv, Vp(E)v)

for the ‘restriction’ map induced in cohomology by the morphism of pairs (ρ∗v, id). When there is no risk of
confusion, we identify Vp(E)v with Vv(E) and resv with ρv ◦ resv. Furthermore, we consider E(Kv)⊗Qp

also as a submodule of H1(Kv, Vp(E)) under ρ−1
v : H1(Kv, Vv(E)) ∼→ H1(Kv, Vp(E)).

Writing SelQp(E;K) ⊂ H1(GK,S , Vp(E)) for the Selmer group defined by the local conditions E(Kv)⊗
Qv (for v ∈ Sf ), we have a short exact sequence

(6) 0→ E(K)⊗Qp → SelQp(E;K)→ Tap(X(E/K))⊗Qp → 0,

where X(E/K) is the Tate-Shafarevich group of E/K. As shown by R. Greenberg, we can also describe
this Selmer group in terms of the ordinary filtration on the Galois representation Tap(E), in the following
way.

If E/Q has good ordinary reduction we have a short exact sequence of Qp[GQp ]-modules

(7) 0→ Vp(E)+ i+v→ Vp(E)v
p−v→ Vp(E)− → 0,

with dimQpVp(E)± = 1. Here Vp(E)− := Tap(Ep) ⊗ Qp (resp., Vp(E)+ := Tap(Ê) ⊗ Qp) is the p-adic
Tate module of the reduction Ep/Fp of E/Qp (resp., of the formal group Ê of E/Qp [Sil86, Ch. VII])
with Qp-coefficients. The map p−v is induced by ρv and the reduction map E(Qp)→ Ep(Fp). In particular
Vp(E)− is unramified at p.

If E/Qp has multiplicative reduction, Tate’s p-adic analytic uniformisation gives us a group isomorphism

(8) ΦTate : Qp
∗
/qZ
E
∼→ E(Qp),

where qE ∈ pZp is Tate p-adic period of E/Qp [Sil94, Ch. V]. We have ΦTate(xg) = χ(g) · ΦTate(x)g for
every g ∈ GQp , where χ : GQp → {±1} is the quadratic unramified character (resp., the trivial character)
if E/Qp has non-split (resp., split) multiplicative reduction [Sil94, Ch. V]. As qE ∈ pZp, we have an exact
sequence of GQp -modules 0 → µpn(χ) ΦTate→ E(Qp)[pn] PTate→ (Z/pnZ) (χ) → 0. Taking the inverse limit on
n and extending scalars to Qp, we obtain the fundamental exact sequence of Qp[GQp ]-modules

0→ Q′p(1)
i+v→Vp(E)v

p−v→ Q′p → 0.(9)
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Here Q′p := Qp(χ) and i+v (resp. p−v ) is induced by (the limit of) ρ−1
v ◦ ΦTate (resp. PTate ◦ ρv). We will

write Vp(E)+ := Q′p(1) and Vp(E)− := Q′p, so that we obtain (7) also in this case.
Define, for every v|p, H1

f (Kv, Vp(E)) ⊂ H1(Kv, Vp(E)) as the image of H1(Kv, Vp(E)+) under the map
induced in cohomology by i+v , and put H1

f (Kv, Vp(E)) = 0 for Sf 3 v - p. These local conditions define
a Selmer group H1

f (K,Vp(E)) ⊂ H1(GK,S , Vp(E)) (independent on the choice of Sf ⊃ {v|p · NE}). The
following Lemma is proved in [Gre97, Sec. 2] (see also [Nek06, Lemma (9.6.7.3)]).

Lemma 1.2. E(Kv)⊗Qp = H1
f (Kv, Vp(E)) for every v ∈ Sf . In particular SelQp(E;K) = H1

f (K,Vp(E)).

Remark 1.3. Suppose that E/Kv has split multiplicative reduction, i.e. Q′p = Qp as Gv-modules:
a) if ΦTate(P̃ ) = P ∈ E(Kv), for a P̃ ∈ K∗v , then (ΦTate)∗(γ eP ) = γP (we write again ΦTate : Qp(1)→

Vv(E) for the map induced by ΦTate). This follows from the definitions and proves (the first assertion of)
the preceding Lemma in this case.

b) Let ∂v : Qp → H1(Kv,Qp(1)) be the connecting morphism attached to (9). A short inspections
reveals that ∂v(1) = γqE (:= γKvqE ). In other words, under the identifications of elements in H1(Kv,Qp(1))
with (continuous) extensions classes in Ext1

Qp[Gv ](Qp,Qp(1)), γqE corresponds to the class of (9).

1.3. Products. Let v ∈ Sf be a prime which divide p and let

( , )W : Tap(E)× Tap(E) −→ Tp(Q∗)
(resp., ( , )v : Tp(E)× Tp(E) −→ Tp(Q∗p) )

be the Weil pairing on Tap(E) (resp., on Tp(E) := lim←−E(Qp)[pn]). (We use the opposite ‘sign convetion’ to
that of [Sil86], so that our Weil pairing is minus that defined in [Sil86, Ch. III].) It is a perfect, alternating
and GK,S-equivariant (resp., GQp -equivariant) Zp-bilinear form.

If E/Qp has multiplicative reduction and writing again ρv : Tp(Q∗)v
∼→ Tp(Q∗p) for the isomorphism of

Zp[Gv]-modules induced by ρv, we have

(10) ρv ((x, y)W ) = (ρv(x), ρv(y))v; (ΦTate(α), β)v = α× PTate(β)

for every x, y ∈ Tap(E), α ∈ Tp(Q∗p) and β ∈ Tp(E) (here × is multiplication, once we identify Tp(Q∗p) with
Zp as Zp-modules). The first equality follows from the definition of the Weil pairing, while the second can
be proved using the description of principal divisors on EqE := Qp

∗
/qZ
E in terms of p-adic theta functions

(see for example [Tat95]).
Write ∪W : C•cont(Gv, Vp(E)v) ⊗ C•cont(Gv, Vp(E)v) → C•cont(Gv, Tp(Q∗)v ⊗ Qp) for the cup-product

induced on cochains by ( , )W . If E/Qp is multiplicative, it follows by (10) that

(11) ρv
(
y ∪W i+v (x)

)
= −p−v (y) ∪ x ∈ C2

cont(Kv,Qp(1))

for every x ∈ C1
cont(Kv, Vp(E)+) and y ∈ C1

cont(Kv, Vp(E)). In (11) ∪ is the cup-product pairing induced
by multiplication Vp(E)+ × Vp(E)− → Qp(1) and we have written again ρv for the isomorphism induced
on cochains by ρv ⊗Qp.

2. Hida theory

In this section we recall some fundamental results of Hida Theory. We use [NP00], [Nek06, Sec. 12.7]
and [BD07] as main references.

2.1. Hida families. Let N := NE/p
ordp(NE) be the tame conductor of E and fix an embedding

ρp : Q ↪→ Qp. Writing ψ for the trivial character modulo NE , let

X2 − ap(E)X + ψ(p)p = (X − αp) · (X − βp),

with αp, βp ∈ Q. Since E is ordinary at p, we have αp, βp ∈ Zp (under ρp) and we can assume αp ∈ Z∗p and
βp ∈ pZp. We define the p-stabilization f0

E ∈ S2(Γ0(Np),Zp) of fE by

(12) f0
E(z) := fE(z) + βp · fE(pz).
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(In particular f0
E = fE if E/Qp has multiplicative reduction.) As follows by [Hid85, Lemma 3.3], f0

E is
the unique normalized eigenform on Γ0(Np) such that al(f0

E) = al(E) for every prime l 6= p. Moreover
ap(f0

E) = αp ∈ Z∗p.
Consider Hida universal ordinary Hecke algebra of tame conductor N

hord
∞ = hord

∞ (N) := lim←−
r≥1

hord2,r .

Here hord2,r := eord· (h(Γ1(Npr))⊗Z Zp), where h(Γ1(Npr)) ⊂ EndZ (S2(Γ1(Npr),Z)) is the algebra generated
by the Hecke operators Tl, for every prime l and the diamond operator 〈a〉, for every a ∈ (Z/NprZ)∗, and
eord := limn→∞ Tn!

p is Hida’s ordinary projector. We will write also Up for Tp. We have a morphism
〈 〉r : Zp[(Z/NprZ)∗] → hord2,r . Putting Γ := 1 + pZp and taking the (inverse) limit r → ∞, we obtain the
“diamond” morphism (with the normalization of [NP00, §(1.4)])

〈 〉 : Λ := Zp[[Γ]]→ Zp[[Z∗N,p]] −→ hord
∞ ,

where Z∗N,p := Z∗p× (Z/NZ)∗. 〈 〉 gives hord
∞ a structure of Λ-algebra. By [Hid86a], hord

∞ is a free Λ-module
of finite rank. It follows that hord

∞ =
∏

mj
hord∞,mj decomposes as a (finite) direct sum of its completions at

maximal ideals mj . As αp ∈ Z∗p, fE (or better f0
E) gives rise to a morphism of Zp-algebras

(13) ηfE : hord
∞ → Zp

defined sending Z∗N,p to 1 and Tl to al(f0
E) for every prime l. ηfE factorizes through hord

∞ � hord∞,m for a
unique maximal ideal m = mj . Write P := Ker(ηfE ) ∈ Spec(hord∞,m): by [Hid86a, Cor. (1.4)] (see also
[Nek06, §(12.7.5)]) the localization of hord∞,m at P is a discrete valuation ring, unramified over Λp, where
p = (γ − 1) for a topological generator γ of Γ. Then hord∞,m contains a unique minimal prime Pmin s.t. ηfE
factorizes through the local domain

R = RE := hord∞,m/Pmin.
We will write from now on R = RE and P := P/Pmin ∈ Spec(R). The localization RP is a discrete
valuation ring, unramified over Λp. Fix a topological generator γ of Γ (e.g. γ = 1 + p ∈ Γ) and the
corresponding uniformizer of RP

$ := (γ − 1) ∈ RP .
We write again Tl and Up for the image of the Hecke operators in R. As ηE takes values in Zp (i.e. E is
defined over Q) the residue field Frac(R/P) = RP/$RP of RP is identified with Qp. With the terminology
of [Hid86a], R := Frac(R) is the (primitive) local component to which fE belongs. hord∞,m is the Hida
family attached to fE and R is the branch of the Hida family in which fE lives. This terminology is justified
by the following analytic interpretations of the results above, given in [GS93] (see also the next section).

Let A ⊂ Qp[[w − 2]] be the ring of formal power series in w − 2 converging for w in some p-adic
neighborhood of 2. The ring A is endowed with a structure of Λ-algebra, defined as follows: let ℘ 7→ f℘(X)
be the isomorphism Λ ∼→ Zp[[X]] determined by fγ(X) = X+1. We associate to ℘ ∈ Λ the analytic function
on Zp given by w 7→ f℘(γw−2 − 1). Since A is Henselian and since the augmentation ideal (γ − 1) ⊂ Λ is
unramified in RP , there exists a unique morphism of Λ-algebras

(14) ηf∞ : RP → A
such that (ηf∞(r))w=2 = ηfE (r) for every r ∈ R. Define, for every positive integer n, αn(w) := ηf∞(Tn) ∈ A,
where Tn is the n-th Hecke operator, defined in terms of the Tl’s by the usual relations ([Shi71, Ch. III]).
As R is finite over Λ, there exists a p-adic neighborhood 2 ∈ U such that αn(w) ∈ AU for every n ∈ N,
where AU ⊂ A is the ring of analytic functions on U . Consider the formal q-expansion

f∞ :=
∑
n≥1

αn(w) · qn ∈ AU [[q]].

For every even integer k ∈ U ∩Z≥2, the weight k-specialization fk :=
∑
n≥1 αn(k) · qn is the q-expansion of

a normalized eigenform on Γ1(Np) and f2 = f0
E . If k ≡ 2 mod (p− 1), then fk has trivial character, i.e. it

is a normalized eigenform on Γ0(Np). As follows by [Hid86a, Cor. (1.3)], fk is new at the primes dividing
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the tame level N and is not p-new for k > 2. More precisely, for every k > 2 such that k ≡ 2 mod (p− 1)
there exists a (unique) newform f#

k on Γ0(N) such that al(f
#
k ) = al(fk) for every prime l 6= p. (With the

terminology used above, fk = (f#
k )0 is the p-stabilization of f#

k and they satisfy a relations analogous to
(12) for k = 2.)

Let Z′ := {z ∈ Z≥2 : z ≡ 2 mod (p− 1)} and f#
2 := fE . We call {f#

k }k∈U∩Z′ the Hida family attached
to E/Q.

2.2. p-adic L-functions. For more details on the results and constructions recalled in this section,
we refer the reader to [BD07, Sec. 1].

Let χ : (Z/mZ)∗ → {±1} be a quadratic Dirichlet character, of conductor m coprime with p, with
χ(−1) =: w∞, and let τχ =

∑m
j=1 χ(j)e2πij/m be the associated Gauss sum. For every k ∈ U ∩ Z′, the

complex L-function L(f#
k , χ, s) :=

∑
n≥1 χ(n)an(f#

k ) · n−s (defined for Re(s) > (k + 1)/2) extends to an
entire function on C. Recall our convention: fE = f#

2 .
For every integer 1 ≤ j ≤ k − 1, we define the algebraic part of L(f#

k , χ, j) by

(15) L∗(f#
k , χ, j) :=

(j − 1)!τχ
(−2πi)j−1 Ωk

L(f#
k , χ, j).

Here we fix, for every k ∈ U ∩Z′, ‘Shimura periods’ Ω±
f#
k

∈ C∗ as in [BD07, Prop. (1.1)], [Shi77a, Sec. 1],

and we write Ωk := Ωsign(w∞)

f#
k

. If χ(−1) = (−1)j−1w∞, (15) belongs to the field generated by the Fourier

coefficient of f#
k , and we consider it as an element of Qp ⊂ Cp under the embedding ρp : Q ↪→ Qp (fixed in

the preceding section), where Cp is the completion of Qp.

Remark 2.1. In [BD07], the periods are chosen in such a way that Ω+

f#
k

Ω−
f#
k

= 〈f#
k , f

#
k 〉 is the

Petersson scalar product of f#
k with itself. We do not impose this ‘normalization’ here, as we will fix Ω2

later in a ‘convenient way’ (cfr. Sec. (11.8)).

Up to shrinking U if necessary, Sec. 1 of [BD07] constructs a Cp-valued function

Lp(f∞, χ, k, s) : U × Zp −→ Cp

which interpolates the Mazur-Tate-Teitelbaum p-adic L-functions Lp(f
#
k , χ, s) attached in [MTT86] to

the elements of f∞ and the periods Ωk. More precisely Lp(f∞, χ, k, s) satisfies the following properties:
1. Lp(f∞, χ, k, s) is (locally) analytic on each variable;
2. for every k ∈ U ∩ Z′ and every odd integer 1 ≤ j ≤ k − 1, there exists a scalar λ(k) ∈ C∗p such

that

(16) Lp(f∞, χ, k, j) = λ(k)(1− χ(p)αp(k)−1pj−1)(1− χ(p)αp(k)−1pk−j−1)εk · L∗(f#
k , χ, j),

where εk = 1 if fk 6= f#
k and εk = 0 otherwise;

3. λ(2) = 1.

Remark 2.2. Using the terminology of [BD07], Lp(f∞, χ, k, s) is determined by the choice of an
ordinary, Γ0(N)-equivariant modular symbol µ∗ with values in the space of measures on

(
Z2
p

)′ (the set of
primitive vectors in Zp × Zp), interpolating the classical modular symbol attached to fk in weight k (see
[BD07, Sec. (1.3)]). The existence of such a modular symbol follows from [GS93, Th. 5.13], and the
scalars {λ(k)} come from the interpolation process [BD07, Th. (1.5)]. Once we have fixed the periods
{Ωk} as above (depending on χ(−1) = w∞), µ∗, and then Lp(f∞, χ, k, s), is unique up to multiplication
by a nowhere vanishing analytic function α on U , satisfying α(2) = 1. Here we fix such a µ∗ and call
Lp(f∞, χ, k, s) the Mazur-Kitagawa p-adic L-function attached to χ.

Note that taking j = k/2 in (16) we obtain (for k ≡ 2 mod 2(p− 1))

(17) Lp(f∞, χ, k, k/2) = λ(k)(1− χ(p)αp(k)−1pk/2−1)βL∗(f#
k , χ, k/2),
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where β = 2 if fk 6= f#
k and β = 1 otherwise (i.e. if k = 2 and E/Qp is multiplicative). This shows that, if

χ(p) = αp, Lp(f∞, χ, k, s) has an exceptional zero at (k, s) = (2, 1), i.e. Lp(f∞, χ, 2, 1) = 0 independently
on whether L(E/Q, s) vanishes or not at s = 1.

Write wk for the sign in the functional equation satisfied by the Hecke L-series L(f#
k , s), for k ∈ U ∩Z′.

It is known [NP00, Sec. (3.4.4)] that wk =: wgen is constant for every k > 2, and that

w2 = sign(E,Q) =

 wgen if p - NE ;

−αp · wgen if p|NE .

Recalling that f#
k (k > 2) is a newform on Γ0(N), by [Shi71, Th. (3.66)] we see that L(f#

k , χ, s) has
constant sign

(18) sign(f∞, χ) := χ(−N) · wgen
in its functional equation, for every k > 2. Note that sign(f∞, χ) is opposite to the sign (see again loc. cit.)

sign(E,χ) = χ(−NE) · w2

of L(fE , χ, s) if and only if χ(p) = αp, i.e. if and only if Lp(f∞, χ, k, s) has an exceptional zero. Moreover
this happens precisely when the twist Eχ/Q of E/Q has split multiplicative reduction at p [MTT86].

As follows by (18) and the interpolation formula (17), Lp(f∞, χ, k, k/2) ≡ 0 vanishes identically if
sign(f∞, χ) = −1. We define the generic part of the restriction of Lp(f∞, χ, k, s) to the central critical line
by

Lgen
p (f∞, χ, k) :=

Lp(f∞, χ, k, s)
(s− k/2)egen(χ)

∣∣∣∣
s=k/2

; egen(χ) :=

 0 if sign(f∞, χ) = +1;

1 if sign(f∞, χ) = −1.
It is a Cp-valued, p-adic analytic function on U . The terminology is justified by Greenberg conjecture,
predicting that Lgen

p (f∞, χ, k) is not identically zero (see Sec. 7 for results in this direction). When
χ = χtriv is the trivial character, we write simply Lp(f∞, k, s), Lgen

p (f∞, k) = Lgen
p (f∞/Q, k) and egen for

the objects attached to χtriv.
Let K be a quadratic field such that (DK , p) = 1 and let εK : (Z/DKZ)∗ → {±} be the associated

quadratic character. Putting egen(K) := egen + egen(εK), we define the Hida p-adic L-function of E/K by

Lgen
p (f∞/K, k) :=

Lp(f∞, k, s) · Lp(f∞, εK , k, s)
(s− k/2)egen(K)

∣∣∣∣
s=k/2

= Lgen
p (f∞, k) · Lgen

p (f∞, εK , k).

2.3. Big Galois representations. Let QNp ⊂ Q be the maximal algebraic extension of Q which
is unramified outside p · N · ∞, and let G := Gal(QNp/Q). In this section we recall briefly how we can
construct a self-dual big Galois representation of G which interpolates Vp(E) in weight two and, more
generally, a suitable self-dual twist of the Deligne representation of f#

k in weight k ∈ U ∩ Z′. For more
details and references, see [Nek06, Sec. (12.7)] or [NP00].

As explained in [Nek06, Sec. (12.7.8)-(12.7.10)] there exists a continuous RP [G]-module T (RP), free
of rank two over RP , such that: for every prime ` - Np
(19) trace (Fr(`)|T (RP)) = T`; det (Fr(`)|T (RP)) = ` · 〈`〉 ,
where Fr(`) ∈ GQ is an arithmetic Frobenius and 〈 〉 : Zp[[Z∗N,p]] → hord

∞ � R is the diamond morphism.
The term continuous means that

T (RP) ∈
(
ad
R[G]Mod

)
is an admissible R[G]-modulo, as defined in [Nek06, Sec. (3.2)] (see also the next section). The represen-
tation T (RP) can be constructed as follows [Hid86a],[NP00].

Let Xr := X1(Npr)/Q be the modular curve over Q (as defined, for example, in [Roh97]) and Jr :=
Pic0(Xr). The Hecke algebra h(Γ1(Npr)) acts on Jr via algebraic correspondences and this action commutes
with that of GQ. Let π1 : Xr+1 → Xr be the morphism defined by the inclusion Γ1(Npr+1) ⊂ Γ1(Npr)
and π∗1 : Jr(Q)p∞ → Jr+1(Q)p∞ be the map induced by (contravariant) functoriality. Write J∞ :=
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lim−→ π∗1
Jr(Q)p∞ and Jord∞ = eord · J∞ for its ordinary part. By a fundamental theorem of Hida, Jord∞ is an

hord
∞ [GQ]-module whose Pontrjagin dual is free of finite rank over Λ. Define (with the notations of Sec.

(2.1))

Taord∞ := HomZp
(
Jord∞ , µp∞

)
⊗hord
∞

hord∞,m; Ta∞(R) := Taord∞ ⊗hord∞,m
R.

With these notations, T (RP) := Ta∞(R)⊗R RP is the localization of Ta∞(R) at P. As Jord∞ is unramified
at every rational place l - Np∞, the same is true for T (RP) (i.e. it is a RP [G]-module). The identity (19)
is a manifestation of the Eichler-Shimura congruence relation [Roh97, page 72].

To obtain a self-dual representation, we consider a suitable twist of T (RP). More precisely define the
character

ΨQ =“〈χcy〉−1/2” : GQ → R∗

as follows: let χcy : GQ � Gal(Q(µp∞)/Q) ∼→ Z×p be the p-adic cyclotomic character and κ : Z∗p → 1 + pZp
the projection on principal units. For every g ∈ GQ we put ΨQ(g) :=

〈
(κ ◦ χcy(g))−1/2

〉
(as p 6= 2 every

element of Γ = 1+pZp has a unique square root in Γ). Note that, writing χcy,N : GQ � Gal(Q(µNp∞)/Q) ∼→
Z∗N,p, ΨQ(g)−2 = 〈χcy,N (g)〉. This follows by the fact that fE (or f0

E) has trivial character, i.e. the character
of R is trivial (with the terminology of [Hid86a]). We can finally define

T (R) := Ta∞(R)⊗R ΨQ; T (P) := T (R)⊗R RP .

As ΨQ ≡ 1 mod ($) and Vp(E) is irreducible, the Eichler-Shimura relation (19), combined with the
Chebotarev density theorem (and the definition of P as the kernel of (13)) gives us an isomorphism of
Qp[G]-modules

(20) T (P)k=2 := T (P)⊗RP/($) ∼→ Vp(E).

Furthermore, again by (19) (and the discussion above) the determinant of T (P) is the p-adic cyclotomic
character. In [NP00, Sec. (1.6)] it is shown how these properties imply the existence of an RP -bilinear,
alternating and G-equivariant form

(21) π := πRP : T (P)⊗RP T (P)→ RP(1) := RP ⊗ Tp(Q
∗)

which induces an isomorphism of RP [G]-modules

adj(π) : T (P) ∼→ HomRP
(T (P), RP(1)) =: T (P)∗(1).

(As remarked in [Nek06, Section 12.7.13.6], the geometric construction of (21) given in [NP00] was done
earlier by Ohta; see the reference given in loc. cit.) Write ‘mod $’ for the compositions T (P)� T (P)k=2

∼→
Vp(E) and RP � RP/$

∼→ Qp. Multiplying π by a unit in R∗P if necessary, we can assume, as we do from
now on, that

(22) π(x⊗ y) mod $ = (x mod $, y mod $)W

for every x, y ∈ T (P). This follows by the facts that π and ( , )W are perfect and alternating.
2.3.1. Ramification at p. Fix a prime v ∈ Sf which divide p. Recall our fixed embedding ρv : Q ↪→ Qp,

and let IQp ⊂ GQp ↪→ GQ be the corresponding inertia and decomposition groups. As described in [Nek06,
Sec. (12.7.5)], [NP00] or [MT90], the restriction T (P)v of T (P) to GQp is reducible. More precisely: write
Ψ = ΨQp for the ‘restriction’ of ΨQ to GQp . There exists a short exact sequence of RP [GQp ]-modules

(23) 0→ T (P)+ i+v→ T (P)v
p−v→ T (P)− → 0,

with T (P)± free of rank one over RP . Furthermore GQp acts on T (P)+ (resp., T (P)−) via the character
φ−1
R · χcy ·Ψ−1 (resp., Ψ · φR), where

φR : GQp � GQp/IQp → R∗
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is the unramified character which sends an arithmetic Frobenius Fr(p) at p to the p-th Hecke operator Up.
In other words, if we fix a splitting of RP -modules T (P) ∼→ T (P)+ ⊕ T (P)− ∼→ R2

P , the action of GQp on
T (P)v is described by the matrixχcy ·Ψ−1 · φ−1

R ?

0 Ψ · φR

 : GQp −→ GL2(RP).

Putting (T (P)±)k=2 := T (P)± ⊗ RP/($), (20) extends to an isomorphism of short exact sequences of
Qp[GQp ]-modules

(24) 0 // (T (P)+)k=2

∼
��

// (T (P)k=2)v

∼
��

// (T (P)−)k=2
//

∼
��

0

0 // Vp(E)+ // Vp(E)v // Vp(E)− // 0,

where the bottom row is the exact sequence (7) or (9). Write T (P)∗(1)± := HomRP
(T (P)∓, RP) (1). As

π is alternating, adj(π) induces an isomorphism of short exact sequences of RP [GQp ]-modules

(25) 0 // T (P)+

∼
��

// T (P)v //

adj(π)

��

T (P)− //

∼
��

0

0 // T (P)∗(1)+ // T (P)∗v(1) // T (P)∗(1)− // 0 .

(Using the notations of [Nek06, §(6.8)], this means that T (P)+ ⊥⊥π T (P)+, after replacing RP with its
dualizing complex ωRP := [Frac(R)→ Frac(R)/RP ] in (21)).

If w ∈ Sf is another prime dividing p, then there exists σw ∈ GQ and αw ∈ GQp s.t. ρw = αw ◦ ρv ◦σw.
Putting i+w := σ−1

w ◦ i+v ◦ α−1
w and p−w := αw ◦ p−v ◦ σw, we obtain an exact sequence of RP [GQp ]-modules

0→ T (P)+ i+w→ T (P)w
p−w→ T (P)− → 0

and analogues of (24) and (25).

3. Nekovář duality

In this section we introduce Nekovář’s Selmer complexes attached to the big ordinary representation
T (P), and the (abstract) Cassels-Tate pairing in this setting. Every notation or ‘sign convention’ regarding
complexes which is not explicitly defined is as in [Nek06, Ch. 1].

3.1. Selmer complexes. Let T (P) be the big Galois representation considered in the preceding
section. T (P) ∈ ad

R[GK,S ]Mod is an admissible R[GK,S ]-module (as defined in [Nek06, Sec. (3.2)]) and we
can define, for G ∈ {GK,S ;Gv, v ∈ Sf}, the complex [Nek06, Def. (3.4.1.1)]

C•cont(G,T (P)) := lim−→
Tα∈S(T (P))

C•cont(G,Tα);

here Tα ∈ S(T (P)) if Tα ⊂ T (P) is an R[G]-submodule such that a) Tα is a finitely generated R-module and
b) the action of G is continuous for the profinite topology on G and the mR-adic topology on Tα (mR is the
maximal ideal of the local ring R = RE). For Tα ∈ S(T (P)), C•cont(G,Tα) = lim←−C

•
cont(G,Tα/m

n
RTα) is the

usual complex defined in degree n by the set Cncont(G,Tα) of continuous maps Gn → Tα. (To be precise: if
v ∈ Sf , then T (P)v ∈ ad

R[Gv]Mod is an admissible R[Gv]-module and C•cont(Gv, T (P)) := C•cont(Gv, T (P)v)).
We write also C•cont(Kv, T (P)) for C•cont(Gv, T (P)). As T (P) = T (R) ⊗ RP and T (R) is finite over R, it
follows from [Nek06, Prop. (3.4.4)] that the natural morphism of complexes

C•cont(G,T (R))⊗R RP
∼→ C•cont(G,T (P))

is an isomorphism and C•cont(G,T (R)) has the usual meaning.
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We have, for every v ∈ Sf , a natural restriction map

resv : C•cont(GK,S , T (P))→ C•cont(Kv, T (P))

induced by the morphism of pairs (ρ∗v, id). By the results of the preceding section, we also have the (admis-
sible) R[GQp ]-module T (P)± and we define as above the complex C•cont(Kv, T (P)±) := C•cont(Gv, T (P)±),
for every v|p.

In the same way we can consider the (continuous) Qp[GK,S ]-module Vp(E) and the Qp[GQp ]-modules
Vp(E)±. In this case C•cont(G,Vp(E)) ∼→ C•cont(G,Tap(E)) ⊗ Qp and C•cont(Kv, Vp(E)±) (for v|p) are the
usual complexes of continuous cochains (for the p-adic topology).

Let X ∈ {T (P), Vp(E)}. We define, as in [Nek06, 12.7.13], [NP00], local conditions for v ∈ Sf by

U+
v (X) :=

 C•cont(Kv, X
+) if v|p;

0 if v - p

and the corresponding Nekovář Selmer complex

C̃•f (GK,S , X) := Cone

C•cont(GK,S , X)⊕
⊕
v∈Sf

U+
v (X)

resSf−i
+
Sf→
⊕
v∈Sf

C•cont(Kv, X)

 [−1].

Here resSf :=
⊕

v∈Sf resv, i
+
Sf

:=
⊕

v∈Sf i
+
v and i+v : U+

v (X)→ C•cont(Kv, X) (by abuse of notation) is the
map induced by the inclusion of Gv-modules i+v : X+ ↪→ Xv (i.e. zero if v - p). Write RX = RP (resp. Qp)
for X = T (P) (resp. X = Vp(E)), R̃Γf (GK,S , X) for the image of C̃•f (GK,S , X) in the derived category
D(RX) := D(RXMod) of complexes of RX -modules and

H̃∗f (GK,S , X) := H∗
(
C̃•f (GK,S , X)

)
for the cohomology of R̃Γf (GK,S , X). We collect in the following propositions some important facts we
will use below.

Proposition 3.1. a) R̃Γf (GK,S , X) ∈ Dbft(RX) (i.e. has ‘bounded’ cohomology of finite type over
RX). Furthermore it is independent (up to isomorphism) on the choice of the finite set Sf . We write
R̃Γf (K,X) = R̃Γf (GK,S , X) and H̃∗f (K,X) := H̃∗f (GK,S , X).

b) there exists an exact triangle in Db(RP)

R̃Γf (K,T (P)) $→ R̃Γf (K,T (P))→ R̃Γf (K,Vp(E))

inducing short exact sequences

0→ H̃q
f (K,T (P))/($)→ H̃q

f (K,Vp(E)) iP→ H̃q+1
f (K,T (P))[$]→ 0.

c) H̃1
f (K,T (P)) is a free RP -module.

Proof. All these statements are special cases of [Nek06, Prop. (12.7.13.4)]. For future reference, we
recall how to prove b). Let G ∈ {GK,S , Gv, v ∈ Sf} and † = ∅,+. Combining the exact sequences (when
defined) of complexes of RP -modules [Nek06, Prop. (3.4.2)]

(26) 0→ C•cont(G,T (P)†) $→ C•cont(G,T (P)†)→ C•cont(G,Vp(E)†)→ 0,

associated to the specialization maps T (P)† �
(
T (P)†

)
w=2

∼→ Vp(E)†, we obtain a short exact sequence

(27) 0→ C̃•f (GK,S , T (P)) $→ C̃•f (GK,S , T (P))→ C̃•f (GK,S , Vp(E))→ 0,

which defines the exact triangle above. iP is then the connecting morphism attached to (27). �
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Write H∗(G,−) := H∗ (C•cont(G,−)) and C•cont(Kv, X
−) := C•cont(Kv, X) for Sf 3 v - p. Noting that

Cone
(
C•cont(Kv, X

+)
−i+v→ C•cont(Kv, X)

)
∼→ C•cont(Kv, X

−) in the derived category, we obtain an exact

triangle in Db(RX) ⊕
v∈Sf

C•cont(Kv, X
−)[−1]→ R̃Γf (K,X)→ C•cont(GK,S , X).

We note that H0(Kv, X
−) = 0 unless v|p, X = Vp(E) and E/Kv has split multiplicative reduction. (For

X = Vp(E) this follows easily by the discussion in Sec. (1.2). The result for X = T (P) follows easily from
this and Sec. (2.3).) We then obtain in cohomology a short exact sequence of RX -modules

(28) 0→
⊕
v∈Sspf

H0(Kv, X
−)→ H̃1

f (K,X)→ H1
f (K,X)→ 0,

where Sspf := {v|p : E/Kv has split multiplicative reduction} and H1
f (K,X) ⊂ H1(GK,S , X) is the Selmer

group attached to the local conditions i+v
(
H1(U+

v (X))
)
⊂ H1(Kv, X). Specializing (28) to X = Vp(E), we

obtain by Lemma (1.2) an exact sequence

(29) 0→
⊕
v∈Sspf

Qp
ι→ H̃1

f (K,Vp(E))→ SelQp(E;K)→ 0.

3.2. Class field theory. Let M be an R-module, considered as an admissible R[GK,S ]-module with
trivial GK,S-action. Define

KM := Cone

τ≥2C
•
cont(GK,S ,M(1))

resSf→
⊕
v∈Sf

τ≥2C
•
cont(Kv,M(1))

 [−1],

where M(1) := M ⊗Zp Tp(Q∗) and τ≥2X
• is the good filtration of X• in degree two [Nek06, page 33].

(Note that, for v ∈ Sf , C•cont(Kv,M(1)) := C•cont(Gv,M(1)v)). By class field theory [Nek06, Sec. (5.4.1)]
Hq(KM ) = 0 for every q 6= 3 and the sum of the invariant maps of local class field theory induces an
isomorphism of M -modules

invSf (M) : H3(KM ) ∼→M,

which is functorial in M . We can describe invSf explicitly as follows.
First of all, we have for every v ∈ Sf an isomorphism invv(M) : H2(Kv,M(1)) ∼→ M , obtained as

the composition H2(Gv,M(1)v)
∼→ H2(Gv,M ⊗Zp Tp(K

∗
v )) ∼→ M . Here the first isomorphism is induced

by id⊗ ρv, and the second is defined (taking limits) by the invariant map of local class field theory (as in
[Nek06, §(5.2)]).

Let x = (x, (yv)) ∈ K3
M be a 3-cocycle, for x ∈ C3

cont(GK,S ,M(1)) and (yv) ∈
⊕

v∈Sf C
2
cont(Kv,M(1))

(to be precise we should write ([yv]) for the second component in x, where [yv] denotes the class of yv
modulo the image of δ : C1

cont(Kv,M(1))→ C2
cont(Kv,M(1))). Since x is a cocycle we have

0 = dKM (x) = (δ(x),− (δ(yv) + resv(x))) ,

where δ is the differential in C•cont(−,−). As H3(GK,S ,M(1)) = 0 [Mil04, Ch. I], there exists ϑ ∈
C2

cont(GK,S ,M(1)) such that δ(ϑ) = x, so [x] = [(0, (yv + resv(ϑ))v)] ∈ H3(KM ). We have

invSf (M)([x]) =
∑
v∈Sf

invv(M) ([yv + resv(ϑ)]) .

The facts that this expression does not depend on the choice of ϑ and that invSf is an isomorphism is
essentially a restatement of the fundamental exact sequence of global class field theory (for more details,
see [Nek06, Ch. 5], in particular the exact sequence (5.3.1.2)).
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We can consider Qp as an R-module, identifying it with the residue field RP/$ of RP (see Sec. (2.1)).
By [Nek06, Prop. (3.5.10)], C•cont(G,Qp(1)) is then identified with C•cont(G,RP/$(1)). By the functoriality
of invSf we have

(30)
(
invSf (RP)(x)

)
mod $ = invSf (Qp)(x mod $)

for every x ∈ KRP ( and ‘mod $’ : RP � RP/$
∼→ Qp).

We write from now on K for KRP .

3.3. Products. The morphism π : T (P)⊗RPT (P)→ RP(1) induces, for G ∈ {GK,S , Gv}, (truncated)
cup-products

∪π : C•cont(G,T (P))⊗RP C
•
cont(G,T (P))→ C•cont(G,RP(1))

τ≥2→ τ≥2C
•
cont(G,RP(1)).

The first map is the composition of the cup product C•cont(G,T (P))⊗ C•cont(G,T (P)) → C•cont(G,T (P)⊗
T (P)) (defined by the usual formulas on cochains [Nek06, Sec. (3.4.5.1)]) with the map induced by π.
When the context is clear, we write ∪π also for the usual (non-truncated) cup-product.

We will write C̃•f (T (P)) := C̃•f (GK,S , T (P)) and (xn, x+
n , xn−1) ∈ C̃nf (GK,S , T (P)) for an n-cochain,

where xn ∈ Cncont(GK,S , T (P)), x+
n = (x+

n,v)v|p ∈
⊕

v|p C
n
cont(Kv, T (P)+) and xn−1 = (xn−1,v)v∈Sf ∈⊕

v∈Sf C
n−1
cont (Kv, T (P)). Given α = (αv)v∈Sf , β = (βv)v∈Sf ∈

⊕
v∈Sf C

•
cont(Kv, T (P)), we write

α ∪π β := ⊕v∈Sfαv ∪π βv.
Let r, s ∈ R. A simple direct computation [Nek06, Prop. (1.3.2)] shows that the formula

(xn, x+
n , xn−1) ∪π,r (ym, y+

m, ym−1) :=(
xn ∪π ym, xn−1 ∪π

(
r · resSf (ym) + (1− r) · i+Sf (y+

m)
)

(31)

+(−1)n
(

(1− r) · resSf (xn) + r · i+Sf
(
x+
n

))
∪π ym−1

)
defines a morphism of complexes of RP -modules

∪π,r : C̃•f (T (P))⊗RP C̃
•
f (T (P))→ K.

Moreover the formula kr,s ((xn, x+
n , xn−1)⊗ (ym, y+

m, ym−1)) = (0, (−1)n(r − s) · xn−1 ∪π ym−1) defines a
homotopy kr,s : ∪π,r  ∪π,s.

3.4. Generalized Cassels-Tate pairings. Define R := Frac(RP) and RP := [RP
−i→ R], concen-

trated in degrees [0, 1]. The morphism

vRP : RP ⊗RP RP = [RP
(−i,−i)→ R ⊕R

(−id,id)→ R]→ RP

defined by the identity (resp. the projection on the first factor) in degree zero (resp. one) is a quasi-
isomorphism. Write C̃•f (T (P)) := C̃•f (GK,S , T (P)) and let r ∈ R. We define a morphism of complexes(

C̃•f (T (P))⊗RP RP
)
⊗RP

(
C̃•f (T (P))⊗RP RP

)
−→ K⊗RP RP .(32)

by the composition(
C̃•f (T (P))⊗RP RP

)
⊗RP

(
C̃•f (T (P))⊗RP RP

)
s23→
(
C̃•f (T (P))⊗RP C̃

•
f (T (P))

)
⊗RP

(
RP ⊗RP RP

)
→

id⊗vRP→
(
C̃•f (T (P))⊗RP C̃

•
f (T (P))

)
⊗RP RP

∪π,r⊗id→ K⊗RP RP ,

with ∪π,r as in preceding section and s23 ((a⊗ b)⊗ (c⊗ d)) := (−1)deg(b)deg(c) ((a⊗ c)⊗ (b⊗ d)). The
cup-product (32) induces in cohomology a morphism of RP -modules

(33) ∪π,2,2 : H2
(
C̃•f (T (P))⊗RP RP

)
⊗RP H

2
(
C̃•f (T (P))⊗RP RP

)
−→ H4

(
K ⊗RP RP

)
,

which is independent on the choice of r ∈ R.
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Let Z be a complex of RP -modules with cohomology of finite type over RP . The cohomology sequence
of the exact triangle in D(RP)

Z
i→ Z ⊗RP R →

(
Z ⊗RP RP

)
[1]

splits into short exact sequences of RP -modules

0→ Hq−1 (Z)⊗RP R/RP → Hq
(
Z ⊗RP RP

)
→ Hq(Z)RP−Tor → 0,(34)

where MRP−Tor := Ker
(
M →M ⊗RP R

)
. Taking Z = K and q = 4 we obtain from Section (0.4) an

isomorphism

(35) H4(K ⊗RP RP) ∼→ H3(K)⊗RP R/RP
∼→ R/RP ,

where the last map is given by invSf ⊗ id.
Note that every term in (34) is a torsion RP -module and the first is P-divisible. Taking Z = C̃•f (T (P))

and q = 2, it follows that the cup product in (33) factorizes through the projection H2
(
Z ⊗RP RP

)
→

H2 (Z)RP−Tor. Composing ∪π,2,2 with (35) we then obtain an RP -bilinear form

(36) ∪CT : H̃2
f (K,T (P))RP−Tor × H̃

2
f (K,T (P))RP−Tor −→ R/RP .

We have the following fundamental:

Theorem 3.2. ∪CT is non-degenerate and alternating.

Proof. This is a special case of [Nek06, Prop. (12.7.13.4)] or [Nek06, Th. (10.4.4)]. �

3.5. Behaviour under Galois conjugation. We assume in this paragraph that K/Q is a Galois
extension. Let S0

f be the set of rational primes dividing p·NE ·DK . Fix for every prime l ∈ S0
f an embedding

ρl : Q ↪→ Ql, inducing ρ∗l : GQl ↪→ GQ. We also fix elements σj,l ∈ GQ (σ1,l := id) which represent the
coset space GK\GQ/ρ

∗
l (GQl), and assume that {ρl ◦ σ−1

j }j = {ρv}v|l (where ρv is the embedding fixed at
the beginning of this note).

As described in [Nek06, §(8.8)], Gal(K/Q) acts on H̃q
f (K,X), for X ∈ {T (P), Vp(E)} and q ≥ 0.

More precisely: for every g ∈ GQ, we can define a morphism of complexes

Adf (g) := (Ad(g),Ad+(g), F (g);mg) : C̃•f (GK,S , X)→ C̃•f (GK,S , X)

as follows. First of all, Ad(g) : C•cont(GK,S , X) → C•cont(GK,S , X) denotes the usual action of g by Galois
conjugation, i.e. the map induced by the morphism of pairs x 7→ g(x) (x ∈ X), σ 7→ g−1σg (σ ∈ GK)
between (GK , X) and itself. In a similar way, Ad+(g) (resp., F (g) = (F (g)l)l∈S0

f
) denotes the action of g by

Galois conjugation on the ‘semilocal complex’
⊕

v|p C
•
cont(Kv, X

+) (resp.,
⊕

l∈S0
f

⊕
v|l C

•
cont(Kv, Xv)). We

have F (g) ◦ i+Sf = i+Sf ◦Ad+(g) and there exists a homotopy mg = mg(X) : resSf ◦Ad(g) F (g) ◦ resSf ,
which is functorial in X (see [Nek06, §(8.1.7.3)] for an explicit description of the homotopy mg). It follows
that the formula

(37) Adf (g)(xn, x+
n , xn−1) := (Ad(σ)(xn),Ad+(g)(x+

n ), F (g)(xn−1) +mg(xn))

defines a morphism of complexes C̃•f (GK,S , X) → C̃•f (GK,S , X). By [Nek06, Lemma (8.6.4.4)] this map
induces in cohomology the action of Gal(K/Q) on H̃q

f (K,X) alluded to above. We denote by xg or g(x)
the action of g ∈ Gal(K/Q) on x ∈ H̃q

f (K,X). In [Nek06, Prop. (8.8.9)] (or loc.cit., formula (10.3.2.2)) it
is proved that ∪CT is Gal(K/Q)-equivariant, i.e.

(38) g(x) ∪CT g(y) = x ∪CT y

for every x, y ∈ H̃2
f (K,T (P))RP−Tor and g ∈ Gal(K/Q). (This follows essentially by the Galois invariance

of the local invariants). For more details on the constructions above, we refer the reader to [Nek06, Ch.
VIII], especially to paragraphs (8.1.7.3), (8.6) and (8.8).
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4. The p-adic weight pairing

In this Section we apply the constructions recalled above to define the p-adic weight pairing 〈−,−〉Nek
K,p

on the extended Mordell-Weil group E†(K) of E/K. For every prime v|p of K at which E has split
multiplicative reduction, we have a ‘Tate period’ qv ∈ E†(K)− E(K). Given P ∈ E(K), we can compute
〈qv, P 〉Nek

K,p explicitly in terms of the formal group logarithm on E/Q (cfr. Cor. (4.6)). As explained in
the introduction (see also Sec. (7)), this computation is the key for relating the algebraic constructions of
Nekovář to the analytic results of Bertolini and Darmon.

4.1. The extended Mordell-Weil group. Let Sspf 6= ∅ and let K ′p :=
∏
v∈Sspf

Kv. We write again
(by abuse of notation)

ΦTate :
(
K ′p
)∗ → ⊕

v∈Sspf

E(Kv)

for the direct sum of the Tate parametrisations (8). Following [MTT86] and [BD96], we define the
extended Mordell-Weil group

E†(K) :=
{

(P, P̃ ) | P ∈ E(K), P̃ ∈
(
K ′p
)∗

and ΦTate(P̃ ) = (ρv(P ))v∈Sspf

}
.

Given v ∈ Sspf , we write qv := (0, (1, . . . , qE , . . . , 1)) ∈ E†(K) (with qE as v-component). We have a short
exact sequence

(39) 0→
⊕
v∈Sspf

Z→ E†(K)→ E(K)→ 0,

where the first map sends the v-th generator to qv and the second is projection. If Sspf = ∅, define
E†(K) := E(K).

We have a natural map

(40) i†E : E†(K)→ H̃1
f (K,Vp(E)),

defined in the following manner. Let (P, P̃ ) ∈ E†(K), with P̃ = (P̃v)v∈Sspf ∈
(
K ′p
)∗. Since resv(γP ) =

i+v (γ ePv ) (see Remark (1.3)), for every representatives γ0
P ∈ C1

cont(GK,S , Vp(E)) and γ0ePv ∈ C1
cont(Kv,Qp(1))

of γP and γ ePv respectively, there exists a unique ε0
v ∈ C0

cont(Kv, Vp(E)) such that resv(γ0
P ) = i+v (γ0ePv )−δ(ε0

v),
where δ is the differential in C•cont(Kv, Vp(E)) (ε0

v is unique since H0(Kv, Vp(E)) = 0, by [Sil86, page 118]).
In the same way, for every v /∈ Sspf , there exists a unique γv ∈ H1(U+

v (Vp(E))) s.t. i+v (γv) = resv(γP ).
For v|p (resp. v - p) this follows from H0(Kv, Vp(E)−) = 0 (resp. U+

v (Vp(E)) := 0) and Lemma (1.2).
In particular, for every representative γ0

v ∈ U+
v (Vp(E)) of γv, we can find a unique ε0

v ∈ C0
cont(Kv, Vp(E))

such that resv(γ0
P ) = i+v (γ0

v) − δ(ε0
v). Recalling the definition of the differential in the Selmer complex

C̃•f (GK,S , Vp(E)),

(P, P̃ )0 :=
(
γ0
P , (γ

0ePv )v∈Sspf + (γ0
v)v/∈Sspf , (ε

0
v)v∈Sf

)
∈ C̃1

f (GK,S , Vp(E))

is a 1-cocycle. Furthermore it is easily seen that a different choice γ1
P = γ0

P + δ(ϑP ), γ1ePv = γ0ePv + δ(ϑv)

and γ1
v = γ0

v + δ(ϑv) of representatives leads to the 1-cocycle (P, P̃ )1 = (P, P̃ )0 + d eC•f (ϑP , (ϑv), 0). We can

then define in (40) i†E(P, P̃ ) as the image in cohomology of (P, P̃ )0.

Lemma 4.1. Let i†E : E†(K) ⊗ Qp → H̃1
f (K,Vp(E)) be the map induced by (40). Then i†E is injective

and is an isomorphism provided that X(E/K)p∞ is finite.

Proof. This follows easily from the exact sequences (29) and (6). �
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4.2. Definition of 〈 , 〉Nek
K,p. Consider the following composition:

φE : E†(K)
i†E−→ H̃1

f (K,Vp(E)) iP−→ H̃2
f (K,T (P))[$],

where iP is defined in Proposition (3.1). Given x = [s/$] ∈ R/RP [$], we write $ · (x mod 1) ∈ Qp for
the image of s mod $ ∈ RP/$ under the isomorphism RP/$

∼→ Qp (cfr. Sec. (2.1)). Define the p-adic
weight pairing

〈−,−〉Nek
K,p : E†(K)× E†(K) −→ Qp

by the formula:
logp(γ)−1 · 〈x, y〉Nek

K,p := $ · (φE(x) ∪CT φE(y) mod 1) ,

for every x, y ∈ E†(K). The multiplicative factor logp(γ) serves the purpose of removing the dependence
of 〈−,−〉Nek

K,p on the choice of a topological generator γ ∈ Γ. We use the same notation for the extension of
〈−,−〉Nek

K,p to E†(K)⊗Qp.

Proposition 4.2. a) 〈x, x〉Nek
K,p = 0 for every x ∈ E†(K). b) Suppose that X(E/K)p∞ is finite. Then

〈−,−〉Nek
K,p is non-degenerate (on E†(K) ⊗ Qp) if and only if H̃1

f (K,T (P)) = 0 and H̃2
f (K,T (P)) is a

semi-simple RP -module.

Proof. a) Follows from the corresponding property of ∪CT (Theorem (3.2)). b) Write for simplicity
N := H̃2

f (K,T (P))RP−Tor. By the structure theorem for finite modules over discrete valuation rings, we
have an isomorphism of RP -modules N ∼→

⊕n
j=0RP/($)ej , for integers 1 ≤ e1 ≤ · · · ≤ en. Since ∪CT is

non-degenerate by Theorem (3.2), it follows easily that the right (or left) kernel of the restriction ∪′CT of
∪CT to N [$]×N [$] is $ ·N ∩N [$]. In particular ∪′CT is non-degenerate if and only if ej = 0 for every
ej > 1, i.e. if and only if N is semi-simple over RP . The claim in b) follows combining this observation,
Lemma (4.1) and Proposition (3.1). �

4.3. Behaviour under Galois conjugation. We assume in this Section that K/Q is Galois. The
notations are those introduced in Sec. (3.5).

Let Sspf 6= ∅ and write ρ := ρp, σj := σj,p, ρj := ρp ◦ σ−1
j and Kj := ρj(K) (= Ki). As K/Q is

Galois, this implies that Sspf = {v|p} and Kp := K ⊗Q Qp
∼→ K ′p, under the Qp-linear map which sends

x ⊗ 1 to (ρj(x))j . We consider on K ′p the Gal(K/Q)-action coming from the diagonal action on Kp. As
GK\GQ/ρ

∗(GQp) represents all the prime v|p, we have, for every j, g−1 · σj = uj · σg(j) · ρ∗(gj), where
uj ∈ GK and gj ∈ GQp . This ‘decomposition’ is unique if we require (as we do) that gj belongs to a fixed
set of representatives of Gal(Kj/Qp). Then g(y) = (g(y)j), with

g(y)j = g−1
j

(
yg(j)

)
.

We write αj(g) = αp (resp., αj(g) = 1) if χun(gj) = −1 (resp., χun(g) = +1), where χun : GQp → {±1} is
the quadratic unramified character. Then the formula

(P, (yj))g := (g(P ), (g(y)αj(g)j ))

defines an action of Gal(K/Q) on E†(K). The twist in the Galois action is forced by the fact that ΦTate
is not defined over Qp when αp = −1. If Sspf = ∅, then E†(K) = E(K) and we consider the natural
Gal(K/Q)-action on E†(K).

Lemma 4.3. i†E(xg) = i†E(x)
g
for every x ∈ E†(K) and g ∈ Gal(K/Q).

Proof. When Sspf = ∅, we have an isomorphism of Qp[Gal(K/Q)]-modules ι : H̃1
f (K,Vp(E)) ∼→

SelQp(E;K) (cfr. (29)). Then i†E is the composition of ι−1 with the Kummer map E(K) → SelQp(E; k),
which is Gal(K/Q)-equivariant. Assume now Sspf = {v|p}.

In general, given (xj) ∈
⊕

j C
•
cont(Kj , Vp(E)+) (and with the notations of Sec. (3.5)), the map Ad+(g)

sends xg(j) (on the g(j)-component) to Ad(g−1
j )(xg(j)) ∈ C•cont(Kj , Vp(E)+) (on the j-component), for
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any j (see [Nek06, §(8.1.7.3)]). Let x = (P, (yj)) and write x0 := (γ0
P , (γ

0
j ), ε) ∈ C̃1

f (GK,S , Vp(E)) for a
representative of i†E(x) (here γ0

j := γ0
yj and we use the notations following (40) in Sec. (4.1)). We recall

that, once we have fixed γ0
P and (γ0

j ), ε is uniquely determined by the requirement that x0 is a cocycle.
Assume first that αp = +1, so that Vp(E)+ = Qp(1) as GQp -modules. By the definition of i†E and the

fact that, in cohomology, γh(∗) = Ad(h)(γ∗) for the (local and global) Kummer maps, we see that i†E(xg)
is represented by

(41) xg0 = (Ad(g)(γ0
P ),Ad+(g)(γ0

yj ), ε
g),

for an εg = (εgv)v∈Sf ∈
⊕

v∈Sf C
0
cont(Kv, Vp(E)). Since xg0 is a cocycle, we must have

δ(εg) = i+Sf ◦Ad+(g)((γ0
j ))− resSf ◦Ad(g)(γ0

P )

= F (g)
(
i+Sf (γ0

j )− resSf (γ0
P )
)

+mg ◦ δ(γ0
P ) + δ ◦mg(γ0

P )

= δ
(
F (g)(ε) +mg(γ0

P )
)
.

As remarked above, this implies that εg = F (g)(ε) +mg(γ0
P ), so i†E(xg) = [xg0] = [Adf (g)(x0)] = i†E(x)g.

Suppose now that αp = −1. Then Vp(E)+ = Qp(1)⊗ χun ∈ Qp[GQp ]Mod, so

g−1
j

(
γ(yg(j))

)
= χun(gj) · γ(g−1

j (yg(j))) = γ“
g(y)

αj(g)
j

” ∈ H1(Kj ,Qp(1)).

In other words, we can take again (41) as a representative of i†E(xg), and the above argument works. �

As a corollary we obtain the following

Proposition 4.4. 〈xg, yg〉Nek
K,p = 〈x, y〉Nek

K,p for every x, y ∈ E†(K) and g ∈ Gal(K/Q).

Proof. By the definition of 〈 , 〉Nek
K,p , formula (38) and the preceding Lemma, it is sufficient to note

that iP : H̃1
f (K,Vp(E)) → H̃2

f (K,T (P)) is Galois equivariant. This follows from the definition of iP (in
the proof of Prop. (3.1)) and the functoriality of Ad(g), Ad+(g), F (g) and mg (cfr. formula (37)). �

4.4. Height computations in the exceptional case. We assume in this section that Sspf 6= ∅, i.e.
that E/Kv has split multiplicative reduction at a prime v dividing p. We also fix such a prime v|p.

We identify as usual RP/$
∼→ Q (cfr. Sec. (2.1)). For every ℘ ∈ RP , write ℘(0) = ℘ mod $ ∈ Qp and

d℘/d$ :=
(
$−1 · (℘− ℘(0))

)
mod $ ∈ Qp. Let us define the morphism

χwtE := (φR mod $) · d
d$

(Ψ · φR) ∈ Homcts

(
GQp ,Qp

)
.

The additivity of χwtE follows by: φ2
R mod $ = 1 (since φR(Fr(p)) = Up and Up mod $ = αp = ±1) and

Ψ(g) mod $ = 1. We have the following

Theorem 4.5. For every (P, P̃ ) ∈ E†(K) and v ∈ Sspf , we have〈
qv, (P, P̃ )

〉Nek

K,p
= − logp(γ) · χwtE

(
recp(NKv/Qp(P̃v))

)
,

where P̃v is the v-component of P̃ and recp : Q∗p → GabQp is the reciprocity map.

Before beginning the proof, we give two corollaries. For the first, write logqE : Gm(Qp)→ Ga(Qp) for
the branch of the p-adic logarithm which vanishes at qE ∈ pZp.

Corollary 4.6. For every (P, P̃ ) ∈ E†(K) and v ∈ Sspf we have〈
qv, (P, P̃ )

〉Nek

K,p
=

1
2
· logqE

(
NKv/Qp(P̃v)

)
.

In particular 〈qv, qw〉Nek
K,p = 0 for every v, w ∈ Sspf .
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Proof. Let ordv : K∗v � Z be the normalized valuation attached to the prime v and let Ov be the
ring of integers in Kv. Put Q := ordv(qE) · P , Q̃∗v := q

−ordv( ePv)
E P̃

ordv(qE)
v ∈ O∗v and Q̃∗w := P̃

ordv(qE)
w for

every v 6= w ∈ Sspf . Then ordv(qE) · (P, P̃ ) = (Q, Q̃∗) + ordv(P̃v) · qv ∈ E†(K). As 〈qv, qv〉Nek
K,p = 0 (Prop.

(4.2)) we have

(42) ordv(qE) ·
〈
qv, (P, P̃ )

〉Nek

K,p
=
〈
qv, (Q, Q̃∗)

〉Nek

K,p
.

Writing uv := NKv/Qp(Q̃∗v) ∈ Z∗p, it follows from Prop. (1.1) that recp(uv)
∼7→ (1, uv) ∈ GunQp ×Z∗p, where we

identifyGabQ
∼→ GunQ ×Z∗p under the p-adic cyclotomic character χcy on the “second component”. In particular

we have φR(recp(uv)) = 1 and Ψ(recp(uv)) :=
〈

(κ ◦ χcy(recp(uv)))
−1/2

〉
=
〈
κ(uv)−1/2

〉
(κ : Z∗p � Γ is the

projection on principal units). We then obtain from the preceding theorem

(43)
〈
qv, (Q, Q̃∗)

〉Nek

K,p
= − logp(γ) · d

d$

(〈
κ(uv)−1/2

〉)
=

1
2
· logp(uv).

The second equality follows from the fact: d℘/d$ = logp(℘)/ logp(γ) for every ℘ ∈ Γ. (This can be easily

proved noting that `γ(−) := logp(−)

logp(γ) gives an isomorphism of Γ to the additive group Zp, with inverse

z 7→ γz.) Combining (42) with (43) we see that 2 · 〈qv, P 〉Nek
K,p equals

logp(NKv/Qp(P̃v))−
ordv(P̃v)
ordv(qE)

· [Kv : Qp] · logp(qE) = logp(NKv/Qp(P̃v))−
ordp(NKv/Qp(P̃v))

ordp(qE)
· logp(qE),

as was to be shown. �

It follows that
〈
qv, (P, P̃ )

〉Nek

K,p
does not depend on the choice of P̃ ∈

(
K ′p
)∗ such that ΦTate(P̃ ) =

(ρv(P )). We then write simply 〈qv, P 〉Nek
K,p for

〈
qv, (P, P̃ )

〉Nek

K,p
from now on.

As another interesting corollary of Prop. (4.5) we can recognize from 〈qv, qv〉wtK,p = 0 the well-known
formula of Greenberg-Stevens [GS93], relating the derivative of the Hecke operator Up to the L-invariant
of E/Qp, defined by

LE :=
logp(qE)
ordp(qE)

.

Corollary 4.7. −2αp · α′p(2) = LE .

Proof. Let v ∈ Sspf . Write nv := [Kv : Qp] and qE = pn ·u, with u ∈ Z∗p. We have recp(NKv/Qp(qE)) =
(Fr(p)−n·nv , unv ) ∈ GunQp × Z∗p, where Fr(p) is an arithmetic Frobenius in GunQp . As φR(Fr(p)) = Up and
Up(0) = αp, we obtain (as in the preceding proof)

0 = 〈qv, qv〉Nek
K,p = α−n·nvp · d

d$

(
U−n·nvp ·

〈
κ(u)−nv/2

〉)
.(44)

Since logp(γ) · dUpd$ = α′p(2) (as follows easily looking at the power series expansion of γw−2 − 1), a simple
calculation using the ‘product formula’ for the derivative in (44) concludes the proof. �

We now begin the proof of Th. (4.5). Write

χwtv := ResKv/Qp(χwtE ) =
d (Ψ · φR)

d$
∈ Homcts (Gv,Qp)

(noting that φR mod $ = 1 on Gv, since E/Kv is split multiplicative). Recalling the exact sequence (29),
let Qv ∈ H̃1

f (K,Vp(E)) be the image under ι of (0, . . . , 1, . . . , 0) ∈
⊕

v∈Sspf
Qp (with 1 as v-component). The

following Lemma reduces the computation to local class field theory. The notations are those introduced
in Sec. (4.2).
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Lemma 4.8. For every Pf = [(P, P+, εP )] ∈ H̃1
f (K,Vp(E)) we have

$ · (iP(Qv) ∪CT iP(Pf ) mod 1) = −〈[P+
v ], χwtv 〉Kv ,

where [P+
v ] ∈ H1(Kv,Qp(1)) is the cohomology class of the v-component of P+ ∈

⊕
v|p C

1
cont(Kv, Vp(E)+).

Proof. Write x := iP(Qv) and y := iP(Pf ). To avoid heavy notations, we fix in this proof a splitting of
Qp-modules (resp. RP -modules) Vp(E)v

∼→ Vp(E)+⊕Vp(E)− = Q2
p (resp. T (P)v

∼→ T (P)+⊕T (P)− ∼→ R2
P)

in (9) (resp., (23)). We then identify Vp(E)v (resp., T (P)v) with Q2
p (resp., R2

P), with Gv-action given by
the matrix

(45)

χcy ?2

0 1

 (resp.

χcy ·Ψ−1 · φ−1
R ?

0 Ψ · φR

).

Write ‘mod $’ for the compositions T (P)† �
(
T (P)†

)
k=2

∼→ Vp(E)† († ∈ {∅,+,−}), defined in (20)
and (24). We assume that the splittings are compatible under ‘mod $’ (this amounts to requiring that
(0, 1) ∈ T (P)v specializes to (0, 1) ∈ Vp(E)v under ‘mod $’).

By construction

(46) Qv = [(0, ?2, (0, 1))] ∈ H̃1
f (K,Vp(E)),

where ?2 : Gv → Qp(1) = Vp(E)+ is as in (45) and (0, 1) ∈ Vp(E)v. Let χ̃wtv ∈ C1
cont(Kv, T (P)) be the

1-cochain defined by
χ̃wtv (g) :=

(
0, $−1 · (1−Ψ(g) · φR(g))

)
∈ T (P)v.

Note that p−v (χ̃wtv mod $) = −χwtv for the projection p−v : C1
cont(Kv, Vp(E)) → C1

cont(Kv,Qp) in (9). We
easily obtain

(47) x := iP (Qv) = [0, ?, χ̃wtv ] ∈ H̃2
f (K,T (P)),

where ? ∈ C2
cont(Kv, T (P)+) is a 2-cocycle which will be not involved in the computations below. Indeed

iP(Qv) is represented by a 2-cocycle ! ∈ C̃2
f (GK,S , T (P)) s.t. $ · ! = d eC•f (x̃), where x̃ ∈ C̃1

f (GK,S , T (P)) is

any 1-cochain which lifts a representative of Qv under C̃1
f (GK,S , T (P))→ C̃1

f (GK,S , Vp(E)) (see (27)). By
(46) we can take x̃ := (0, ?, (0, 1)), where (0, 1) ∈ C0

cont(Kv, T (P)) and ? in (45) is considered as a 1-cochain
on Gv with values in the ‘first component’ T (P)+ of T (P)v. Then the first component of d eC•f (x̃) is zero,
while (using (45) and the definition of the differential d eC•f ) the third is the 1-cochain

Gp 3 g 7→ i+v (?)(g)− δ ((0, 1)) (g) = (?(g), 0)− (?(g),Ψ(g) · φR(g)) + (0, 1).

Putting everything together we obtain (47).
Write ỹ = (P̃ , P̃+, ε̃P ) ∈ C̃1

f (GK,S , T (P)) for a lift of the 1-cocycle (P, P+, εP ) ∈ C̃1
f (GK,S , Vp(E)). To

prove the Lemma it is sufficient to prove the formula

(48) $ · (x ∪CT y mod 1) ?= invv(Qp)
([(

χ̃wtv ∪π i+v (P̃+
v )
)

mod $
])

(invv(Qp) is as in Sec. (0.4)). Indeed, using our normalization (22) for π,
(
χ̃wtv ∪π i+v (P̃+

v )
)

mod $ is
equal to (χ̃wtv mod $) ∪W i+v (P+

v ). By the definitions of invv(Qp), χ̃wtv , and formula (11), we can then
rewrite (48) as

$ · (x ∪CT y mod 1) = invKv
([
χwtv ∪ P+

v

])
= −

〈
[P+
v ], χwtv

〉
Kv

.

The last equality can be proved easily using the ‘transposition operators’ defined in [Nek06, Sec. (3.4.5.3)],
or Kummer theory (see for example formula (11.3.5.2) in [Nek06]). It then remains to prove (48). For this
we simply retrace the constructions of section (3.4).
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a) We have to choose 2-cocycles x′ ∈
(
C̃•f (T (P))⊗RP RP

)2

and y′ ∈
(
C̃•f (T (P))⊗RP RP

)2

which
lift (a representative of) x and y respectively in the exact sequence (34). By the definitions we can take
(writing for simplicity again ∗ for a representative of the class ∗)

x′ :=
(
x, x̃⊗$−1

)
; y′ :=

(
y, ỹ ⊗$−1

)
.

b) Recalling the quasi-isomorphism vRP : RP ⊗RP RP → RP , we have

(49)
((
id⊗ vRP

)
◦ s23

)
(x′ ⊗ y′) =

(
x⊗ y, (x⊗ ỹ)⊗$−1

)
∈
((
C̃•f (T (P))⊗RP C̃

•
f (T (P))

)
⊗RP RP

)4

.

c) We have to compute the image of (49) under the morphism ∪π,r ⊗ id. We take r = 0, the represen-
tative in (47) for x, and ỹ as above. By formula (160) we obtain the 4-cocycle

(50)
((

0, χ̃wtv ∪π i+v (!!)
)
,
(

0,
(
χ̃wtv ∪π i+v (P̃+

v )
)
⊗$−1

))
∈
(
K ⊗RP RP

)4
,

where !! ∈ C2
cont(Kv, T (P)+) is the second component of the representative of y determined by ỹ.

d) We have to apply the isomorphism (35), followed by R/RP [$] ∼→ Qp to the cohomology class of
(50). Write

X :=
(
0, χ̃wtv ∪π i+v (!!)

)
; Y :=

(
0, χ̃wtv ∪π i+v (P̃+

v )
)
.

It follows immediately by the definitions (and the fact that ∪π ◦ (i+v ⊗ i+v ) is the zero map) that X and Y
satisfy the hypothesis of Lemma (4.9) below. We then obtain

$ · (x ∪CT y mod 1) = invSf (Qp) ([Y mod $]) := invv(Qp)
([(

χ̃wtv ∪π i+v (P̃+
v )
)

mod $
])
.

We have proved (48) and with it the Lemma. �

Lemma 4.9. Let X ∈ K4 and Y ∈ K3 be cochains such that dK(Y) = $ · X , so that [X ,Y ⊗ $−1] ∈
H4(K ⊗RP RP)[$]. Writing ISf : H4(K ⊗RP RP)[$] ∼→ Qp for the composition of the isomorphism (35)
with R/RP [$] ∼→ Qp, we have

ISf
(
[X ,Y ⊗$−1]

)
= invSf (Qp) ([Y mod $]) .

Proof. Since dK(X ) = 0 and H4(K) = 0, we have X = dK(T ) for a 3-cochain T ∈ K3. By the
definition of the differential in K ⊗RP RP , it follows that [X ,Y ⊗ $−1] = [0, (Y −$ · T ) ⊗ $−1]. By
construction, the image of this element under the isomorphism (35) is given by invSf (RP) ([Y −$ · T ]) ·
[$−1] ∈ R/RP [$]. It follows that

ISf ([X ,Y ⊗$−1]) = invSf (RP) ([Y −$ · T ]) mod $ = invSf (Qp) ([Y mod $])

(the last equality from (30)). �

We can now prove Th. (4.5).

Proof of Theorem (4.5). By Remark (1.3) γqE = ∂v(1) ∈ H1(Kv,Qp(1)). Identifying Vp(E)v
∼→

Qp(1) ⊕ Qp (as Qp-modules) as in the proof of Lemma (4.8), and using directly the construction of the
connecting homomorphism ∂v, we see that γqE is represented by the 1-cocycle ?2 ∈ C1

cont(Kv,Qp(1))
(corresponding to the choice of the lift (0, 1) ∈ C0

cont(Kv, Vp(E)) of 1 ∈ H0(Kv, Vp(E)−)). Recalling the
definitions of i†E and Qv we obtain

i†E(qv) = [(0, ?2, (0, 1))] = Qv ∈ H̃1
f (K,Vp(E)).

Lemma (4.8) gives

(51) (‡) := $ ·
(
φE(qv) ∪CT φE(P, P̃ ) mod 1

)
= −

〈
γ ePv , χwtv

〉
Kv

= −
〈
γ ePv ,ResKv/Qp(χwtE )

〉
Kv

,

where φE := iP ◦ i†E (cfr. Sec. (4.2)). Using the compatibility of Tate local duality under restriction and
corestriction in (finite) field extentions and the identity CorKv/Qp(γ ePv ) = γ

Qp
NKv/Qp ( ePv)

(i.e. the image of
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NKv/Qp(P̃v)⊗ 1 under the Kummer isomorphism γ
Qp
∗ : Q∗p⊗̂Qp

∼→ H1(Qp,Qp(1))), it follows from (51) and
Prop. (1.1) that

(‡) = −χwtE
(

recp
(
NKv/Qp(P̃v)

))
.

We finish the proof multiplying this equation by logp(γ). �

5. The regulator term

In this section we introduce the p-adic regulator which appears in the ‘right hand side’ of the p-adic
Birch and Swinnerton-Dyer conjecture of Section (11.8) below. More precisely: given a quadratic character
χ, Conj. (6.1) expresses the leading term of Lgen

p (f∞, χ, k) as the product of arithmetics invariants attached
to Eχ/Q and the p-adic regulator. We now briefly motivate the definitions below, assuming for simplicity
that χ = χtiv is the trivial character.

We consider the two-variable Mazur-Kitagawa p-adic L-function Lp(f∞, k, s). When egen(χtriv) = 0, we
have Lgen

p (f∞, k) := Lp(f∞, k, k/2). Moreover, assuming the finiteness of X(E/Q), the parity conjecture
proved in [Nek06, Section 12] tells us that E†(Q) ⊗ Qp has even Qp-dimension. In this case we expect
〈−,−〉Nek

Q,p to be non-degenerate (cfr. Prop. 4.2). Moreover, the results of [BD07] (cfr. Sec. (7.1)) and the
analogy with Iwasawa theory (discussed at the end of the introduction) lead us to define the regulator as
the determinant of 〈−,−〉Nek

Q,p .
Assume now egen(χtriv) = 1. In this case we know that Lp(f∞, k, k/2) ≡ 0. Assuming again the

finiteness of X(E/Q), the parity conjecture and Prop. 4.2 imply that 〈−,−〉Nek
Q,p is degenerate. We then

consider Lgen
p (f∞, k), obtained by differentiating Lp(f∞, k, s) with respect to the cyclotomic variable s, and

restricting the resulting function to the central critical line s = k/2. In light of the conjectures formulated
in [MTT86], we expect that both the p-adic weight pairing and the p-adic cyclotomic height play a role in
the computation of the leading term of Lgen

p (f∞, k) at k = 2. This leads us to introduce a sort of ‘derived
regulator’ (cfr. [BD95]), with the p-adic cyclotomic height as ‘derived height’ on the radical of 〈−,−〉Nek

Q,p .
(For more details and further motivation, see Sec. (5.4), Rem. (6.2.2) and Th. (7.3) below.)

5.1. The p-adic cyclotomic height pairing. We now very briefly recall some construction from
[MTT86], needed in the definition of the regulator below. In Ch. II, Sec. 4 of loc. cit., the analytic
λ-height

〈−,−〉MTT
K,λ : E(K)⊗Qp × E(K)⊗Qp −→ Qp

is associated to any continuous morphism λ : K∗\A∗K/
∏
v-p Uv → Qp, where A∗K is the group of idèles of K,

Uv is the group of units of Kv if v is finite, and Uv = K∗v if v|∞. We fix λ := λ0 such that its v-component
for v|p is given by λv := logp ◦NKv/Qp , and we write 〈−,−〉MTT

K,p := 〈−,−〉MTT
K,λ0

. It is a symmetric bilinear
form.

If E/Kv has split multiplicative reduction at some prime v|p, we extend the definition of 〈−,−〉MTT
K

to E†(K)⊗Qp as follows, following [MTT86]. With the notations of Sec. (4.1), write E0(K) ⊂ E(K) for
the finite index subgroup consisting of points P such that of ρv(P ) ∈ ΦTate(O∗Kv ), for every v ∈ Sspf . Let
E†0(K) ⊂ E†(K) be the inverse image of E0(K) under the natural projection E†(K)→ E(K). In order to
lift the λ-height to a bilinear form

(52) 〈−,−〉MTT
K,p : E†(K)⊗Qp × E†(K)⊗Qp −→ Qp

it is sufficient to define 〈−,−〉MTT
K,p on E†0(K). Consider the short exact sequence

0→ Λp → E†0(K)→ E0(K)→ 0,

where Λp :=
⊕

v∈Sspf
qZ
v . Define E0(K)→ E†0(K) sending P to (P, (y∗v)) ∈ E†0(K), where y∗v := y∗v(P ) is the

unique lift in O∗v of ρv(P ) under ΦTate (recalling that qE ∈ pZp). This map defines a splitting of the exact
sequence above, and we obtain E†0(K) ∼→ Λp ⊕E0(K). We finally define (52) to be the unique Qp-bilinear,
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symmetric extension of 〈−,−〉MTT
K,p which satisfies the following conditions. Given P = (P, (y∗v)) ∈ E†0(K)

and qv, qw ∈ Λp (v 6= w),

〈qv, P 〉MTT
K,p := logp

(
NKv/Qp (y∗v(P ))

)
; 〈qv, qv〉MTT

K,p := logp(NKv/Qp(qE)); 〈qv, qw〉MTT
K,p := 0.

IfK/Q is Galois, 〈−,−〉MTT
K,p isGal(K/Q)-equivariant: 〈xσ, yσ〉MTT

K = 〈x, y〉MTT
K for every x, y ∈ E†(K)⊗Qp

and σ ∈ Gal(K/Q). We refer the reader to [MTT86, Ch. II] for more details.

5.2. The regulator. Let E†∞(K) ⊂ E†(K)⊗ Zp be the (left=right) radical of

〈−,−〉Nek
K,p : E†(K)⊗ Zp × E†(K)⊗ Zp −→ Qp.

Write r̃∞ := rankZpE
†
∞(K), r̃ := rankZE

†(K) and t = r̃ − r̃∞. Let (P1, . . . , Per∞) be a Zp-basis of E†∞(K)
modulo torsion. We note that the quotient E†(K) ⊗ Zp/E†∞(K) is a free Zp-module (since E†∞(K) is
p-adically saturated in E†(K)⊗Zp). We can then complete (Pj)er∞j=1 to a Zp-basis (P1, . . . , Per∞ , Q1, . . . , Qt)
of E†(K)⊗ Zp modulo torsion. We define ‘partial regulators’

(53) R∞K,p := det
(
〈Pi, Pj〉MTT

K,p

)
; RNek

K,p := det
(
〈Qi, Qj〉Nek

K,p

)
.

These are well defined elements of the multiplicative monoid Qp/Z∗p. Finally, any Z-basis (T1, . . . , Ter)
of E†(K)/tors gives rise to a Zp-basis of E†(K) ⊗ Zp modulo torsion. Take M ∈ GLer(Zp) which sends
(T1, . . . , Ter) to (P1, . . . , Qt) and define the p-adic regulator of E/K

RK,p(E) = RK,p := det(M)−2 · R∞K,p · RNek
K,p .

This definition is independent on the choices made above, and is therefore a well defined element of Qp.

5.3. Regulators over quadratic fields. We assume for the rest of this section that K/Q is either
Q or a quadratic field which is unramified at p. Given a Zp[Gal(K/Q)]-module M , let M± be the ±-
eigenspace for the action of Gal(K/Q), so that M = M+ ⊕M−, since p 6= 2. (Clearly M = M+ when
K = Q.)

Since 〈−,−〉Nek
K,p is Gal(K/Q)-equivariant (Prop. (4.4)), 〈x+, x−〉Nek

K,p = 0 for every x± ∈ (E†(K)⊗Zp)±.
In particular, letting w ∈ {±}, E†∞(K)w ⊂ (E†(K)⊗ Zp)w is the radical of the pairing

〈−,−〉Nek,w
K,p : (E†(K)⊗ Zp)w × (E†(K)⊗ Zp)w −→ Qp

induced by restricting 〈−,−〉Nek
K,p to the w-eigensapce. Writing r̃w∞ := rankZpE

†
∞(K)w, take a Zp-basis

(Pwj )1≤j≤erw∞ of E†∞(K)w/tors, and complete it to a Zp-basis (Pwj , Q
w
i )i,j of (E†(K)⊗Zp)w modulo torsion,

with 1 ≤ j ≤ r̃w − r̃w∞ and r̃w := rankZE
†(K)w. Then (P+

i , P
−
j , Q

+
s , Q

−
t )i,j,s,t is a Zp-basis of E†(K)⊗ Zp

modulo torsion, which can be used to compute the partial regulators (53). Using again the Gal(K/Q)-
equivariance of 〈−,−〉Nek

K,p and 〈−,−〉MTT
K,p , we have the factorization in Qp/Z∗p

R∞K,p = R∞,+K,p · R
∞,−
K,p ; RNek

K,p = RNek,+
K,p · RNek,−

K,p ,

where
R∞,wK,p := det

(〈
Pwi , P

w
j

〉MTT

K,p

)
; RNek,w

K,p := det
(〈
Qwi , Q

w
j

〉Nek

K,p

)
.

As above, take any Z-basis (Twj ) of E†(K)w modulo torsion, and let Mw ∈ GLerw(Zp) be a matrix which
sends (Twj ) to (Pwj , Q

w
i ). Defining RwK,p := det(Mw)−2 · R∞,wK,p · R

Nek,w
K,p ∈ Qp, we obtain

RK,p
·= R+

K,p · R
−
K,p,

with ·= denoting equality (in Qp) up to some power of 2.
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5.4. Non-vanishing conjectures. Let K/Q be as in the preceding section and let w ∈ {±}. Writing
again 〈−,−〉Nek,w

K,p for the restriction of 〈−,−〉Nek
K,p to (E†(K) ⊗ Qp)w, we have the following more precise

version of Prop (4.2).

Proposition 5.1. Assume that the p-primary part of X(E/K)w is finite. Then 〈−,−〉Nek,w
K,p is non-

degenerate if and only if H̃1
f (K,T (P))w = 0 and H̃2

f (K,T (P))w is semi-simple.

Proof. Since iP and ‘mod $’ are morphisms of Gal(K/Q)-modules, we obtain from Prop. (3.1) the
exact sequence

0→ H̃1
f (K,T (P))w/$ → H̃1

f (K,Vp(E))w → H̃2
f (K,T (P))w[$]→ 0.

Write for simplicity N := H̃2
f (K,T (P))RP−Tor. Since ∪CT is Gal(K/Q)-equivariant (see Section (3.5)),

Nw is orthogonal to N−w under ∪CT . By Th. (3.2), the restriction of ∪CT to Nw is non-degenerate. The
argument used in the proof of Prop. (4.2) tells us that the restriction of ∪CT ◦ (iP × iP) to H̃1

f (K,Vp(E))w

is non-degenerate if and only if H̃1
f (K,T (P))w = 0 and H̃2

f (K,T (P))w is semi-simple. Now, if the p-
primary part of X(E/K)w is finite, i†E induces an isomorphism

(
E†(K)⊗Qp

)w ∼→ H̃1
f (K,Vp(E))w and we

conclude. �

As suggested by the low-rank cases discussed in Sec. (5.5) below, we expect that H̃2
f (K,T (P))w is al-

ways semi-simple. Assuming this, the behaviour of 〈−,−〉Nek,w
K,p is ‘determined’ by the module H̃1

f (K,T (P))w

(which represents the analogue in this context of the module of universal norms in Iwasawa theory). We
know that this is a free RP -module. Its rank is predicted by the following conjecture. With the notations
of Sec. (2.2), write egen(+) := egen. If K is quadratic and εK is the associated quadratic character, we
write egen(−) := egen(εK).

Conjecture 5.2. rankRP H̃
1
f (K,T (P))w = egen(w) = r̃w∞.

Remark 5.3. Conj. (5.2) is intimately connected with Greenberg conjecture, predicting Lgen
p (f∞, χ, k) 6≡

0. More precisely, in [NP00] it is proved (for K = Q) that Greenberg conjecture implies the equality
rankRP H̃

1
f (K,T (P))w = egen(w). Assuming this and the finiteness of X(E/K), the second equality of

Conj. (5.2) is equivalent to the semi-simplicity of H̃2
f (K,T (P))w (by Prop. (5.1)).

We note that the parity conjecture predicts egen(w)
?≡ r̃w mod 2 (r̃w := rankZE

†(K)w). In particular
we expect that RwK,p = RNek,w

K,p is the determinant of 〈−,−〉Nek,w
K,p when E†(K)w has even rank. When

E†(K)w has odd rank the above conjecture predicts that E†∞(K)w/tors is generated by a vector Pw ∈
(E†(K) ⊗ Zp)w. (We note that, assuming the parity conjecture, r̃w is odd and 〈−,−〉Nek,w

K,p is degenerate,
since it is alternating.) In this case we have

RwK,p
·= 〈Pw, Pw〉MTT

K,p · R
Nek,w
K,p ,

with ·= denoting equality up to a p-adic unit. Finally, guided by Conj. (5.2), the conjectural non-degeneracy
of 〈−,−〉MTT

K,p and the analogy with the Galois case considered in [BD96], [MTT86], we propose the
following non-vanishing conjecture.

Conjecture 5.4. RwK,p 6= 0 for any w ∈ {±}. In particular: RK,p 6= 0.

5.5. Examples of low-rank . Assume that K is as in the preceding sections. If K is quadratic, let
χ ∈ {1, εK} and write RχK,p := Rw(χ)

K,p , where w(1) := + and w(εK) := −. In a similar way, we write

〈−,−〉Nek,χ
K,p := 〈−,−〉Nek,w(χ)

K,p . If K = Q, we put χ = 1, RχK,p := RQ,p and 〈−,−〉Nek,χ
K,p := 〈−,−〉Nek

Q,p . We
now give some ‘low-rank’ examples in which we can compute explicitly these regulators.

We say that (E,χ) is exceptional if the following conditions are satisfied:
1. E/Qp has multiplicative reduction;



5. THE REGULATOR TERM 27

2. χ(p) = αp.
In the exceptional case, we can define a ‘Tate period’ qχ ∈ E†(K)χ as follows. Note that E/Kv has

split multiplicative reduction at every prime v|p (since p is unramified in K). First of all: if K = Q, then
χ = 1 and we write qχ = qE := (0, qE) ∈ E†(Q). Assume now K/Q quadratic. If p is inert in K, write again
qE = (0, qE) ∈ E†(K). If p splits inK, let q+

E := (0, (qE , qE)) ∈ E†(K)+ and q−E := (0, (qE , q−1
E )) ∈ E†(K)−.

Define

qχ :=


q+
E if εK(p) = 1, χ = 1;

q−E if εK(p) = 1, χ = εK ;

qE if εK(p) = −1.

Lemma 5.5. If (E,χ) is exceptional, qχ ∈ E†(K)χ and rankZE
†(K)χ = rankZE(K)χ + 1.

Proof. Follows by the definition of the Galois action on E†(K) in Section (4.3). �

The even case. The computations of Sec. (4.4) allow us to write explicitly the regulator when (E,χ)
is exceptional and E(K)χ has rank one. This is a significant case, in light of the results of [BD07] (see
Sec. (7.1) or the Introduction). Write

logE : E(Qp)
Φ−1
Tate−→ Q∗p

logqE−→ Qp

for the formal group logarithm on E/Qp. Identifying E(Q) ⊂ E(Qp) under the embedding ρp (of Sec.
(4.3)), we can consider the logarithm logE(P ) of a global point P ∈ E(Q).

Proposition 5.6. Assume that (E,χ) is exceptional and that rankZE(K)χ = 1. Then

RχK,p = c · logE(Pχ)2 ∈ Q∗p,

where Pχ is a generator of E(K)χ/tors and c := 1/4 if K = Q and 1 otherwise.

Proof. We consider the case K/Q quadratic. The other case is similar and simpler. By the preced-
ing Lemma {qχ, Pχ} is a basis of E†(K)χ modulo torsion. Since 〈−,−〉Nek

K,p is alternating, to prove that
〈−,−〉Nek,χ

K,p is non degenerate, we have to prove 〈qχ, Pχ〉Nek
K,p 6= 0.

Suppose first that p splits in K, so that αp = 1. Take yχ ∈ Q∗p such that ΦTate(yχ) = ρp(Pχ). If χ = 1
(resp., χ = εK), (Pχ, (yχ, yχ)) (resp., (Pχ, (yχ, y−1

χ ))) is in E†(K)χ. It follows by Corollary (4.6) that

〈qχ, Pχ〉Nek
K,p =

1
2
(
logqE (yχ)± logqE (y±1

χ )
)

= logqE (yχ) =: logE(Pχ) 6= 0

(since Pχ has infinite order).
Assume now that p is inert in K. It follows again by Corollary (4.6) and the properties of the Tate

parametrisation that

(54) 〈qE , Pχ〉Nek
K,p =

1
2
· logE(Pχ + αpP

σ
χ ),

where σ is the non-trivial element in Gal(K/Q). Recalling that Pχ ∈ E(K)χ, our hypothesis χ(p) = αp
implies that (54) is again logE(Pχ) 6= 0.

Since 〈−,−〉Nek,χ
K,p is non-degenerate, E†∞(K)χ = 0. By the definition of RχK,p we thus have

RχK,p = RNek,χ
K,p = det

 0 〈qχ, Pχ〉Nek
K,p

−〈qχ, Pχ〉Nek
K,p 0

 ,

concluding the proof. �

Corollary 5.7. Assume (E,χ) exceptional and ords=1L(fE , χ, s) = 1. Then H̃1
f (Kχ, T (P))χ = 0 and

H̃2
f (Kχ, T (P))χ is semi-simple.
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Proof. Kolyvagin’s theorem [Kol90] (see also [Dar04, Ch. 10]), applied to Eχ/Q, implies that
rankZE(K)χ = 1 and X(E/K)χ is finite. Moreover, by the preceding proposition, RχK,p is non-zero. The
statement follows combining this with Prop. (5.1). �

The odd case. Turning to the odd case, assume that rankZE
†(K)χ = 1. In this case 〈−,−〉Nek,χ

K,p is
clearly the trivial map, and E†∞(K)χ = (E†(K)⊗Zp)χ. By definition, RχK,p = R∞,χK,p = 〈Pχ, Pχ〉MTT

K,p , where
Pχ is a generator of E†(K)χ modulo torsion. It is conjectured in [MTT86] that this is always non-zero.

When (E,χ) is exceptional, we can take Pχ = qχ. Writing c = 2 (resp., c = 1) if K is quadratic (resp.,
K = Q) we have

RχK,p = c · logp(qE) ∈ Q∗p,
which is known to be non-zero by [BSDGP96].

Applications to Conj. (5.2) and (5.4). The computations above can be used to prove Conj. (5.2) and
(5.4) (at least) in some simple case. To give a quite general example, let us write rmin(χ) := 1 (resp.,
rmin(χ) = 0) if sign(E,χ) = −1 (resp, sign(E,χ) = 1). (We recall that sign(E,χ) = χ(−NE) · sign(E,Q)
is the sign in the functional equation satisfied by L(fE , χ, s).) We put rmin(Q) = rmin(1) and rmin(K) =
rmin(1) + rmin(εK) if K/Q is quadratic.

Consider the following conditions:
I. (E,χ) is exceptional and ords=1L(fE , χ, 1) = rmin(χ);
II. L(fE , χ, 1) 6= 0.

Given K/Q quadratic (resp., K = Q), we say that (E,K) is exceptional of low-rank if (E,χ) satisfies I
or II for both χ ∈ {1, εK} (resp., χ = 1). In this case, Kolyvagin theorem implies that X(E/K) is finite
and that rankZE(K)χ = rmin(χ) ≤ 1. Combining the computations above with Prop. (5.1), we obtain the
following:

Lemma 5.8. Conjectures (5.2) and (5.4) are true if (E,K) is exceptional of low-rank.

(We note that, if (E,K) is exceptional of low-rank, then

rankZE
†(K) = r̃min := rmin + #Sspf ≤ 4.)

6. A p-adic Birch and Swinnerton-Dyer conjecture

Guided by the p-adic Birch and Swinnerton-Dyer conjectures formulated in [MTT86] and [BD96], we
propose a conjecture relating the leading term of Hida p-adic L-functions to the regulator defined above.
Evidence supporting it, coming from the main results of [BD07] and [GS93], will be given in the next
section.

6.1. Definitions and notations. Given a quadratic Dirichlet character χ of conductor coprime with
p, define

Mp(χ) :=


(1− χ(p)α−1

p )β if χ(p) 6= αp;

η(χ) · ordp(qE)−1 if χ(p) = αp.

where η(χ) = 1 (resp., η(χ) = 2) if egen(χ) = 1 (resp., egen(χ) = 0), and β is defined in (17).
Let F/Q be a number field. For every finite prime v of F , cv = cv(E/F ) := [E(Fv) : E0(Fv)] is the

local Tamagawa number of E/Fv ([Sil86, Ch. VII]). Assuming the finiteness of X(E/F ), we write

BSD(E,F ) := #X(E/F ) ·
∏
v

cv · (#E(F )tors)
−2
.

We recall that the definition of Lp(f∞, χ, k, s) depends on the choice of complex periods Ωk := Ωsign(χ)

f#
k

∈

C∗, satisfying the following property: the sign(χ)-part of the modular symbol Ĩf#
k

attached to f#
k [BD07,

Sec. 1] takes values in Ωk ·Q. For k = 2 we can choose Ω2 ‘explicitly’ as follows. Let Ω+
E :=

∫
E(R)
|ωE | and

ΩE :=
∫∫
E(C)
|ωE ∧ iωE | be the real and complex periods of E/Q. (We write ωE for the Néron differential
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attached to a minimal Weierstrass equation for E/Q.) By the discussion in [MTT86, Ch. II], we can take
Ω±fE such that:

Ω+
fE

:= Ω+
E ; Ω+

fE
· Ω−fE = i · ΩE .

We fix this choice for the rest of this note.

6.2. The conjecture. Let K/Q be either Q or a quadratic field of discriminant coprime with p ·NE .
We write Mp(Q) := Mp(1) and Mp(K) = Mp(1) · Mp(εK) if K is quadratic. The p-adic Birch and
Swinnerton-Dyer conjecture alluded to in the introduction can be formulated as follows.

Conjecture 6.1. Let r̃gen(K) := rankZE
†(K)− egen(K). Then ordk=2L

gen
p (f∞/K, k) = r̃gen(K) and

the following equality holds in Q∗p:

(55)
Lgen
p (f∞/K, k)

(k − 2)ergen(K)

∣∣∣∣
k=2

= Mp(K) ·BSD(E,K) · RK,p(E).

Remarks 6.2. 1. Assume egen(K) and rankZE
†(K) = 0. Recalling our choice of complex periods, the

interpolation formula (17) reduces the conjecture to the classical Birch and Swinnerton-Dyer conjecture.
2. Assuming r̃gen(K) = 0 and egen(K) > 0, Conj. (6.1) is a variant of the conjecture in [MTT86].

For example, let K = Q, so that Lp(f∞, k, k/2) ≡ 0 is identically zero. Looking at the Taylor expansion of
Lp(f∞, k, k/2) at (k, s) = (2, 1) (cfr. Th. (7.3)), we see that

Lgen
p (f∞, 2) =

d

ds
Lp(f∞, 2, s)s=1.

Since Lp(f∞, 2, s) is the Mazur-Tate-Teitelbaum p-adic L-function attached to E/Q and the complex period
Ω+
E , we recover the conjecture in Ch. II, §11 of loc. cit..

3. Assume that K/Q is quadratic and χ ∈ {1, εK}. We note that, as both Lgen
p (f∞/K, k) and RK,p

factorize into the product of their χ-pats, Conj. (6.1) gives also a conjectural formula relating the leading
term of Lgen

p (f∞, εK , k) to R−K,p.
4. When K/Q is a generic Galois extension (of discriminant coprime with p ·NE), the regulator RK,p

is defined. We can define Lgen
p (f∞/K, k) as the products of the L-functions Lgen

p (f∞, χ, k), for χ running
through the characters of Gal(K/Q) (the constructions of [BD07, Sec. 1] work also in this cae). It is
interesting to understand if the conjecture, as stated above, is a ‘good prediction’ in this generality.

5. In [BD07] a two-variable p-adic L-function Lp(f∞/K, k, s) is attached to a quadratic imaginary
field K/Q satisfying a suitable Heegner condition. (See in particular Rem. (3.6) of loc. cit., where
Lp(f∞/K, k, s) is denoted Lp(f∞/K, k, s).) This is a p-adic analytic function defined on U × Zp. Its
restriction to the central critical line s = k/2 is (essentially) Lp(f∞, k, k/2) · Lp(f∞, εK , k, k/2), while its
restriction to the weight two line k = 2 is the anticyclotomic p-adic L-function attached to E/K in [BD96].
In this case, we can again define a regulator term Racy

K,p, replacing in the constructions above the p-adic
cyclotomic height 〈−,−〉MTT

K,p with its anticyclotomic counterpart [BD96]. By the results in [BD07], we
think that an analogue of Conj. (6.1) in term of Racy

K,p and Lp(f∞/K, k, s) should be valid.
6. When K is imaginary quadratic, the definition of the p-adic L-function Lp(f∞/K, k, s) alluded to in

the preceding remark relies on the construction, also given in [BD07], of a ‘square-root’ p-adic L-function
Lp(f∞/K, k). It is a p-adic analytic function on U , satisfying Lp(f∞/K, k)2 = η(k) · Lp(f∞, k, k/2) ·
Lp(f∞, εK , k, k/2), where η(k) is analytic and η(2) ∈ Q∗ (see Corollary 5.3 of loc. cit.). When K is
real quadratic (and satisfies suitable Heegner conditions), analogues of this construction are given by the
same authors in [BD09], and by Shahabi in [Sha08]. Assume also that egen(K) = 0, so that Greenberg
conjecture predicts that Lp(f∞/K, k) is not identically zero, and Conj. (5.2) predicts RK,p

?= RNek
K,p .

Moreover, since 〈−,−〉Nek
K,p is alternating, we see that RNek

K,p is a square. In these cases, we can ‘refine’ the
above conjecture in terms of Lp(f∞/K, k) and a ‘square-root’ regulator. (See also Remarks (7.2.2) and
(7.7).)
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7. Results on Conjecture (6.1)

We now recall some result supporting Conj. (6.1). More precisely, thanks to the results of Bertolini
and Darmon [BD07] and the exceptional zero formula proved by Greenberg and Stevens [GS93], we can
prove Conj. (6.1) in some exceptional case, at least up to a non-zero rational number.

Assume in this Section that E/Qp has multiplicative reduction.

7.1. The main result of [BD07]. Let χ be a primitive quadratic character of conductor coprime with
NE . If χ is non-trivial, we write as usual K = Kχ for the quadratic field attached to χ and RχK,p = R−K,p.
If χ is trivial, put K = Q and RχK,p = RQ,p. Taking into account Prop. (5.6) (and its proof), we can
rephrase [BD07, Th. 5.4], as generalized in [Mok11, Sec. 6], in the following:

Theorem 7.1. Assume that sign(E,χ) = −1 and χ(p) = αp. Then
a) Lgen

p (f∞, χ, k) = Lp(f∞, χ, k, k/2) vanishes to order at least 2 at k = 2;
b) there exists a global point Pχ ∈ (E(K)⊗Q)χ and a rational number t ∈ Q∗ such that

(56)
d2

dk2
Lgen
p (f∞, χ, k)k=2 = t ·

(
〈qχ,Pχ〉Nek

K,p

)2

;

c) Pχ is of infinite order if and only if L′(E/Q, χ, 1) 6= 0. In this case, there is a rational number
` ∈ Q∗ such that

d2

dk2
Lgen
p (f∞, χ, k)k=2 = ` · RχK,p ∈ Q∗p.

Remarks 7.2. 1. As explained in [BD07] and [Mok11], the point Pχ in the preceding Theorem is a
Heegner point, coming from an appropriate Shimura curve parametrization of E/Q. The first statement in
c) is then a consequence of the work of Zhang, generalizing the classical Gross-Zagier formula.

2.We assume (for simplicity) in this remark χ = 1, and we write P = Pχ. We also use the notations of
Rem. (6.2.6). The proof of [BD07, Th. 5.4] uses the ‘square-root’ p-adic L-function Lp(f∞/K, k) attached
to an auxiliary complex quadratic field in which p is inert, and chosen in such a way that Lp(f∞, εK , 2, 1) ∈
Q∗. Exploiting the ideas introduced in [BD98], the authors prove that the first derivative of Lp(f∞/K, k)
at k = 2 is equal to the formal group logarithm of P. We can then state the following ‘refined version’ of
(56):

d

dk
Lp(f∞/K, k)k=2 = 〈qE ,P〉Nek

K,p .

Furthermore (17) gives us the formula t−1 = η(2) · L∗(fE , εK , 1) ∈ Q∗ for the scalar appearing in (56).
3. As conjectured in [Mok11, Sec. 6] (and proved in [BD07, Th. 5.4] under the assumptions considered

there), the scalars ` and t should satisfy the congruence:

(57) ` ≡ t ?≡ L∗(fE , ψ, 1) mod (Q∗)2,

where ψ is any quadratic Dirichlet character of conductor coprime with that of χ and satisfying:
a) ψ(−1) = χ(−1) and ψ(l) = χ(l) for every prime l|N = NE/p;
b) ψ(p) = −χ(p);
c) L(fE , ψ, 1) 6= 0.

4. Under the hypothesis of the preceding Theorem, assume χ = 1 and L′(E/Q, 1) 6= 1. In this case
rankZE

†(Q) = 2 and point c) of the Theorem shows that Conj. (6.1) holds up to a nonzero rational scalar.
Moreover, combining Conj. (6.1) with (57), we should have

L∗(fE , ψ, 1) ·BSD(E,Q)
?≡ cp mod(Q∗)2.

Here ψ is the quadratic character attached to any real quadratic field Kψ such that: p is inert in Kψ,
every prime l|N splits in Kψ and ords=1L(E/Kψ, s) = 1. This is consistent with the classical Birch and
Swinnerton-Dyer conjecture (for E/Q and E/Kψ), predicting

L∗(fE , ψ, 1) ·BSD(E,Q)
?≡ BSD(E,Kψ) ≡ cp mod (Q∗)2
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(the second congruence by the finiteness of X(E/K), following by Kolyvagin theorem).

7.2. The exceptional zero formula [GS93]. Assuming again that Lp(f∞, χ, k, s) has an exceptional
zero at (2, 1), we now consider the case of even order of vanishing for L(fE , χ, s) at s = 1. In this case
sign(f∞, χ) = −1 and we are in the situation considered (for χ = 1) by Greenberg and Stevens. The
following is a variant of the main result of [GS93], thanks to the generalizations of the constructions of
loc. cit. given in [BD07].

Theorem 7.3. Assume that sign(E,χ) = +1 and χ(p) = αp. Then

Lgen
p (f∞, χ, 2) = LE · L∗(fE , χ, 1).

Proof. The assumptions imply that sign(f∞, χ) = −sign(E,χ) = −1, so that Lp(f∞, χ, k, k/2) ≡ 0 is
identically zero for k ∈ U (cfr. Sec. 2.2). In particular, the Taylor expansion of Lp(f∞, χ, k, s) at (2, 1) is
of the form

Lp(f∞, χ, k, s) = c · (s− 1)− c

2
· (k − 2) + (· · · ),

for c ∈ Cp and (· · · ) denoting higher order terms. It follows that

(58) Lgen
p (f∞, χ, 2) = c = −2 · d

dk
Lp(f∞, χ, k, 1)k=2.

By [BD07, Remark 1.13], Lp(f∞, χ, k, 1) = (1 − χ(p)αp(k)−1) · L∗p(f∞, χ, k). Here the improved p-adic
L-function L∗p(f∞, χ, k) is a p-adic analytic function on U , satisfying [BD07, Prop. 1.3]

(59) L∗p(f∞, χ, 2) = L∗(fE , χ, 1).

Moreover, as χ(p) = αp = αp(2) = ±1

(60) (1− χ(p)αp(k)−1)k=2 = 0;
d

dk
(1− χ(p)αp(k)−1)k=2 = αp · α′p(2) = −1

2
LE ,

the second relation by Cor. (4.7). The Theorem follows combining (58), (59) and (60). �

Remark 7.4. Assume χ = 1 and L(E/Q, 1) 6= 0, so that r̃gen = rankZE
†(Q) − egen = 0. By the

definitions, the preceding Theorem gives

Lgen
p (f∞, 2) = ` · RQ,p ∈ Q∗p; ` := Mp(1) · L(E/Q, 1)

Ω+
E

∈ Q∗,

which is consistent with Conj. (6.1), via the classical Birch and Swinnerton-Dyer conjecture.

7.3. Other applications to conjecture (6.1). Let K/Q be as in Sec. (6.2). We say that Conj. (6.1)
holds up to Q∗ if ordk=2L

gen
p (f∞/K, k) = r̃gen(K) and (55) holds up to a non-zero rational number.

We recall that, when K/Q is quadratic, both Lgen
p (f∞/K, k) and RK,p admit factorizations into ‘±-

parts’. Using this fact, and with the terminology introduced in Sec. (5.5), the results of the preceding
sections give the following:

Theorem 7.5. Assume that (E,K) is exceptional of low-rank. Then Conjecture (6.1) holds up to Q∗.

To give a significant example, let K be a quadratic field and assume that (E, p,K) satisfies:
1. p splits in K;
2. E/Qp has split multiplicative reduction;
3. sign(E,Q) = sign(E, εK) = −1.

In this case both Lp(f∞, χ, k, s) (χ ∈ {1, εK}) have an exceptional zero at (s, k) = (2, 1), so sign(f∞, χ) = 1.
In particular egen(K) = 0 and

(61) Lgen
p (f∞/K, k) = Lp(f∞, k, k/2) · Lp(f∞, εK , k, k/2).

Moreover, both 1 and εK satisfy the hypothesis of Th. (7.1). Using the factorizations (61) and L(E/K, s) =
L(E/Q, s) · L(E/Q, εK , s), and noting that ords=1L(E/Q, χ, 1) ≥ 1 (by the assumptions above), we thus
obtain:
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A. ordk=2L
gen
p (f∞/K, k) ≥ 4;

B. there exist P+ ∈ E(Q)⊗Q and P− ∈ (E(K)⊗Q)−, and a scalar t ∈ Q∗ such that

(62)
Lgen
p (f∞/K, k)

(k − 2)4

∣∣∣∣
k=2

= t ·
(〈
q+
E ,P

+
〉Nek

K,p
·
〈
q−E ,P

−〉Nek

K,p

)2

,

where q±E are defined in Sec. (5.5).

C. P+ and P− are simultaneously of infinite order if and only if L′′(E/K, 1) 6= 0. In this case
r̃gen(K) = rankZE

†(K) = 4 and there is a scalar ` ∈ Q∗ such that
Lgen
p (f∞/K, k)

(k − 2)4

∣∣∣∣
k=2

= ` · RK,p ∈ Q∗p.

(Recalling the factorization for RK,p (cfr. Sec. (5.3)), the last assertion in C. follows combining Th. (7.1)
with the computations of Sec. (5.5).)

Remark 7.6. By Rem. (7.2), we expect t
?≡ L∗(fE , ψ1, 1) ·L∗(fE , ψ2, 1) mod (Q∗)2, where ψ1 (resp.

ψ2) is the quadratic character attached to a real quadratic field K1 (resp., K2) in which p is inert, and every
prime p 6= l|NE splits (resp., for every prime p 6= l|NE , ψ2(l) = εK(l)). Assuming the classical Birch and
Swinnerton-Dyer conjecture (for E/Q and E/Kj), we obtain (multiplying t by the square of the ‘algebraic
part’ of L′(E/Q, 1)):

` ≡ t ?≡ BSD(E,K1) ·BSD(E,K2) ≡
∏

l|N, εK(l)=−1

cl mod (Q∗)2

(with N = NE/p). Recalling the definitions, this is in line with the prediction of Conj. (6.1).

Remark 7.7. Assume that K is real quadratic, satisfying the (classical) Heegner hypothesis: every
prime l|NE splits in K. Under these assumptions, in [Sha08] a square root p-adic L-function Lp(f∞/K, k)

is constructed, satisfying (‡) Lp(f∞/K, k)2 = D
k−2

2
K · Lp(f∞, k, k/2) · Lp(f∞, εK , k, k/2) (cfr. Remark

(6.2.6)). Assuming that E/Q has a prime of semistable reduction other than p, we can then rephrase
[Sha08, Th. B] in the following way. There is a scalar q ∈ Q∗ such that

(63)
d2

dk2
Lp(f∞/K, k)k=2 = q ·

〈
q+
E ,P

+
〉Nek

K,p
·
〈
q−E ,P

−〉Nek

K,p
,

obtaining a more precise version of formula (62). (We remark that, once Lp(f∞/K, k) satisfying (‡) is
constructed, we obtain (63) from (62) taking q := ±2 ·

√
t, since [BD07, Th. 5.4] gives us t ∈ (Q∗)2.)



Part 2

Organizing modules for Hida families



8. Introduction

Let us fix the data (E,K, p), consisting of a number field K, a rational prime p ≥ 5 and an elliptic
curve defined over Q with good ordinary reduction at p. Let K/K be the maximal Zp-power extensions of
K. Given K ⊂ L ⊂ L ⊂ K, we write Zp(L) := Zp[[Gal(L/K)]] and IL/L := ker (Zp(L)� Zp(L)). We write
ι : Zp(L)→ Zp(L) for the involution induced by inversion on Gal(L/K), and for every Zp(L)-module ‡, ‡ι
denotes the Zp(L)-module obtained composing the original Zp(L)-action with ι.

8.1. Galois deformations. For every integer n ≥ 1 and every finite subextension L/K of K/K,
Kummer theory associates to (E,K, p) the pn-Selmer group

Selpn(L,E) := ker

[
H1(L,Epn)→

∏
v

H1(Lv, E)pn

]
,

where v runs over the (finite) places of L. Let us write

Selp∞(L,E) := lim−→
n≥1

Selpn(L,E); Mp(L,E) := lim←−
n≥1

Selpn(L,E),

where the direct (resp., inverse) limit is taken with respect to the maps induced on Galois cohomology by
the inclusion Epn(Q) ⊂ Epn+1(Q) (resp., by multiplication by p: Epn+1(Q) � Epn(Q)). These groups fits
into short exact sequences

0→ E(L)⊗Qp/Zp → Selp∞(L,E)→X(E/L)p∞ → 0;

0→ E(L)⊗̂Zp →Mp(L,E)→ Tap (X(E/L))→ 0,
where X(E/L) ⊂ H1(L,E) is the Tate-Shafarevich group of everywhere locally trivial cocycle, and
Tap(∗) := lim←− n≥1∗pn is the Tate module of the Zp-module ∗. For an arbitrary tower of extensions
K ⊂ L ⊂ K we also write:

Selp∞(L,E) := lim−→
K⊂fLα⊂L

Selp∞(Lα, E); Sp(L,E) := Homcts (Selp∞(L,E),Qp/Zp) ,

Mp(L,E) := lim←−
K⊂fLα⊂L

Mp(Lα, E),

where Lα/K runs over the finite subextension of L/K, and the direct (resp., inverse) limit is taken with
respect to the restriction (resp., corestriction) maps. Then Galois conjugation induces an action of the
Iwasawa algebra Zp(L) on Selp∞(L,E) and Mp(L,E), and it is known that Selp∞(L,E) (resp., Mp(L,E))
is indeed of cofinite (resp., finite) type over Zp(L), i.e. Sp(L,E) is a finite Zp(L)-module. Here we consider
on Sp(L,E) the Zp(L)-modules structure defined by φλ(∗) := φ(ι(λ) · ∗) for every λ ∈ Zp(L) and every
φ ∈ Sp(L,E).

The Cassels-Tate pairing defines, for every finite extension L/K a skew-symmetric bilinear form

(64) Sp(L,E)tors ⊗ Sp(L,E)tors → Qp/Zp.
Moreover, for every finite extension L/K the canonical p-adic height pairing introduced by Schneider,
Perrin-Riou et. al. defines a symmetric Zp-bilinear form:

(65) Mp(L,E)⊗Mp(L,E) −→ Gal(K/L)⊗Q,
whose definition comes from a study of the Selmer group Selp∞(K, E), or equivalently (via Shapiro’s lemma,
ctf. [Gre94b]) studying continuous Galois cohomology of the Galois deformation Tap(E/Q)[[Gal(K/L)]] of
the p-adic Tate module of E/Q.

When Sp(K, E) is (as expected) a torsion Zp(K)-module, we are also interested in the algebraic p-adic
L-function

Lp(K, E) := charZp(K) (Sp(K, E)) ∈ Zp(K)/Zp(K)∗,
where charZp(K)(‡) denotes the characteristic ideal of the finite Zp(K)-module ‡. Since Zp(K) is regular,
this is a principal (non-zero) ideal which we identify, up to p-adic units with any of its generator. In some
cases we know that Lp(K, E) ∈ IrK/K , where r := rankZE(K) and that (up to p-adic units) its image in
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IrK/K/I
r+1
K/K ⊗ Q is given by the product of arithmetic invariants of E/K (e.g. Tamagawa factors and the

order of the Tate-Shafarevich group) and the discriminant of the pairing (65) for L = K (viewed as an
element of IrK/K/I

r+1
K/K ⊗Q).

In [MR04],[MR02] the authors proposed that all these structures can be packaged in a single linear-
algebraic object, essentially a skew-Hermitian matrix with entries in Zp(K). More precisely, letR = (R,mR)
be a commutative local ring equipped with an involution ι : R → R. They define a basic skew-Hermitian
R-module Φ to be a finite, free R-module, equipped with a skew-Hermitian pairing

(−,−)h : Φ⊗R Φι → mR,

which is non-degenerate in that the adjoint map h := adj ((−,−)h) : Φ→ Φ∗ := HomR (Φι,R) is injective.
For every ι-stable ideal I ⊂ R, they define the R/I-modules S(Φ, I) and M(Φ, I) by the exact sequence

(66) 0→M(Φ, I)→ Φ⊗R/I hI→ Φ∗ ⊗R/I → S(Φ, I)→ 0,

where hI := h⊗R R/I. For every such an ideal, they also construct natural skew-Hermitian pairings

(67) cΦ,I : S(Φ, I)tors ⊗ S(Φ, I)ιtors −→ Frac(R/I)/(R/I);

(68) hΦ,I : M(Φ, I)⊗M(Φ, I)ι −→ I/I2,

where Frac(∗) denotes the total ring of fractions of ∗, †tors : ker († → † ⊗∗ Frac(∗)) and ‘skew-Hermitian’
refers to the involutions induced on quotient modules by ι. These pairings can be ‘naively’ described as
follows: let x, y ∈M(Φ, I) (resp., α, β ∈ S(Φ, I)tors) be classes modulo I (resp., modulo Im(hI)) represented
by x̃, ỹ ∈ Φ (resp., α̃, β̃ ∈ Φ∗ ⊗R R/I). Then, writing (−,−)hI := (−,−)h mod I we have:

cΦ,I (α⊗ β) := (seαseβ)−1 · (γeα, γeβ)hI mod R/I; hΦ,I(x⊗ y) := (x̃, ỹ)h mod I2 ∈ I/I2,

where s∗ ∈ R/I and γ∗ ∈ Φ⊗R/I are such that s∗ · ∗ = hI(γ∗). See Section ?? for the details.
In loc. cit. the authors proposed that under fairly general conditions on (E,K, p) there exists a skew-

Hermitian Zp(K)-module Φ = (Φ, h) which organizes the arithmetic of (E,K, p) in the following sense: for
every K ⊂ L ⊂ K

a) there exist natural isomorphisms of Zp(L)-modules

S(Φ, IK/L) ∼= Sp(L,E); M(Φ, IK/L) ∼= Mp(L,E).

b) If L/K is finite the Zp-bilinear form:

M(Φ, IK/L)⊗M(Φ, IK/L)ι
hΦ,IK/L−→ IK/L/I

2
K/L
∼= Gal(K/L)⊗Zp Zp(L)

id⊗pr1−→ Gal(K/L)

corresponds to the canonical height pairing (65) under the second isomorphisms in a). Here
pr1 : Zp(L) := Zp[Gal(L/K)] → Zp is defined by

∑
g∈Gal(K/L) xg · g 7→ x1 and the isomorphism

of Zp(L)-modules above is characterized by the property: τ − 1 mod I2
K/L 7→ τ ⊗ 1 for every

τ ∈ Gal(K/L).
c) If L/K is finite, the Zp-bilinear pairing:

S(Φ, IK/L)tors ⊗ S(Φ, IK/L)tors

cΦ,IK/L−→ Frac(Zp(L))/Zp(L) ∼= Qp/Zp ⊗Zp Zp(L)
id⊗pr1−→ Qp/Zp

corresponds to the Cassels-Tate pairing (64) under the first isomorphisms in a).
In particular Sp(K, E) is a torsion Zp(K)-module and fixing any Zp(K)-basis of Φ we have

Lp(K, E) = det (HΦ) · Zp(K),

where HΦ is the skew-Hermitian matrix describing h. We can easily deduce from this (cfr. [MR04]) an
algebraic p-adic BSD formula describing the ‘leading coefficent’ of Lp(K, E) in terms of the determinant of
the p-adic height pairing on Mp(E,K) (as described above).

Using the work [Nek06], in [MR05] the same authors proved that, under some additional assumptions
such an organizing module Φ exists, and is unique up to (noncanonical) isomorphism. More precisely, the
complex Φ :=

(
Φ h→ Φ∗

)
concentrated in degrees 1 and 2 turns out to be essentially Nekovář’s Selmer
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complex R̃Γf,Iw(K/K, Tp) attached to the p-adic Tate module Tp := lim←−Epn . For example, the existence of
an organizing module can be proved assuming the following Hypothesis on (E,K, p): for every finite prime
v of K, write kv for the residue field of the completion Kv.

H1. K/Q is an abelian extension;

H2. for every prime v|p of K, p - #
(
Ẽv(kv)

)
, where Ẽv is the reduction of E/Kv ;

H3. for every prime v|cond(E) of K, E(Kv) has no non-trivial p-torsion.
We remark that these hypothesis can be weakened. Hypothesis H1 is made to ensure that Sp(K, E) is a
torsion Zp(K)-module, as follows by the work of Kato and Rohlrich. Hypothesis H3 can be relaxed assuming
only that p does not divide any of the Tamagawa numbers of E/Kv for v|cond(E). (We assume in this note
the stronger condition H3 since this ‘trivializes’ unramified local conditions at any place v - p, simplifying
somehow the exposition.)

8.2. Adding the weight variable. Write N := cond(E) and let fE ∈ S2(Γ0(N),Z) be the newform
attached to E/Q by the modularity theorem. Hida theory attaches to E/Q a formal q-expansion

g =
∑
n≥1

an(X) · qn ∈ R[[q]],

where R = RE is a local domain, finite over the ‘diamond algebra’ Λ := Zp[[1 + pZp]]. The domain R
parametrizes the Hida family of fE . For the purposes if this introduction we only state the following ‘weak
parametrization property’: for every even integer κ in a suitable open disk U ⊂ Zp centered at 2, there
exists an arithmetic point ψκ : R→ Zp such that

gκ :=
∑
n≥1

ψκ(an) ∈ Sκ (Γ1(Np),Zp)

is the q-expansion of a (classical) normalized eigenform of level Γ1(Np) and nebentype ω2−κ, where ω is
the Teichmüller character. gκ is a p-stabilized ordinary newform of tame conductor N , i.e. ap(gκ) = ψκ(ap)
is a p-adic unit, and the conductor of gκ is N or Np. Moreover, g2 is obtained by fE via the process of
p-stabilization (Sec. 9.2 for the details). We call g, or the family {gκ}κ the Hida family of E/Q. Together
with Hypothesis H1-H3 above, we consider for the rest of the introduction the following Hypothesis on
(E, p):

H4. E(Q)p is an irreducible Fp[GQ]-module (where GQ := Gal(Q/Q));

H5. R is a regular local ring.

In Section 9.3 we also recall Hida’s construction of a big p-ordinary self-dual Galois R-representation
T interpolating critical twists of the Deligne representations attached to members of the Hida family g.
More precisely, T is a free R-module of rank two, equipped with a continuous, R-linear action of GQ which
is unramified at every place v - N · p · ∞. For every place v of Q dividing p, there exists a short exact
sequence of R[Gv]-modules

0→ F+
v (T)→ T→ F−v (T)→ 0,

with F±v (T) ∼→ R as R-modules. (Here Gv ⊂ GQ is the decomposition group at v). The interpolation
property can be stated as follows: let κ ∈ U be an even integer, and consider the base change Tψκ =
Tκ := T ⊗R,ψκ Zp. Then Tκ ⊗ Qp is isomorphic to the Tate twist Vκ := V (g̃κ)(1 − κ/2) of the Deligne
representation V (g̃κ) of the twisted modular form g̃κ := gκ ⊗ ω1−κ/2. We note that g̃κ has level Γ0(Np),
and that detVκ = Qp(1), expressing a weak form of the self-duality of T alluded to above. At weight κ = 2
we can be more explicit. Thanks to assumption H4, T2

∼= Tp := lim←−E(Q)pn is the p-adic Tate module of
E/Q as a GQ-modules. Moreover this induces an isomorphism of Gv-modules between F+

v (T2) and the
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p-adic Tate module of Ê(m), where Ê/Zp is the formal group of E/Qp and m is the maximal ideal of the
ring of integers of Qp (see Section 9.3.4).

8.2.1. Greenberg Selmer groups. Let R be a complete local Noetherian ring with finite residue field of
characteristic p, and let M be an R[GK ]-module, where GK := Gal(KNp/K) is the Galois group of the
maximal algebraic extension KNp/K which is unramified at every prime v - Np∞ of K. Write ΣK for the
set of primes of K lying over a prime factor of Np. Assume that M is quasi-ordinary at p, i.e. assume that
for every prime v|p of K there exists an R[Gv]-subsmodule F+

v (M) ⊂M , where Gv ⊂ GK � GK is a fixed
decomposition group at v. Assume also that M is admissible (or continuous) as an R[GK ]-module in the
sense of [Nek06, Chap. 3]. Then the continuous cohomology groups Hj(GK , ∗), Hj(Kw, ∗) are defined for
every R[GK ] submodule ∗ of M , as well as the cohomology groups Hj(Kv, F

+
v (M)) for every place v|p of

K. For every v ∈ ΣK define the ordinary part of H1(Kv,M):

H1
ord(Kv,M) :=

 Im
(
H1(Kv, F

+
v (M))→ H1(Kv,M)

)
if v|p ;

Im
(
H1(Gv/Iv,M Iv )→ H1(Kv,M)

)
if v - p,

where Iv ⊂ Gv denotes the inertia subgroup and the maps are the natural ones. The Greenberg Selmer
group attached to the data (M,K, {M+

v }v|p) is then defined by:

SelGr(K,M) :=
{
x ∈ H1(GK ,M) : resv(x) ∈ H1

ord(Kv,M) for every v ∈ ΣK
}
.

More generally: let L/K be a finite subextension of KNp/K, let w be a prime of L dividing p and write
GL := Gal(KNp/L). Fixing a decomposition group Gw ⊂ GL � GL and letting v be the prime of K lying
below w, the ‘v-ordinary structure’ F+

v (M) ⊂M naturally give rise to a ‘w-ordinary structure’ F+
w (M) ⊂M

on the R[Gw]-module M (see the beginning of Appending B for more details). The Greenberg Selmer
group SelGr(L,M) ⊂ H1(GL,M) is then defined as above. Finally: let F/K be an arbitrary subextension
of KNp/K. We then define:

SelGr(F,M) := lim−→
Fα

SelGr(Fα,M); MGr(F,M) := lim←−
Fα

SelGr(Fα,M),

where Fα/K runs over the set of finite subextension of E/K and the direct (resp., inverse) limit is taken
with respect to the restriction (resp., corestriction) maps in Galois cohomology.

Let κ ∈ U be an even integer, and let T ∈ {T,Tκ}. Write AT := Homcts(T , µp∞) for the Kummer
dual of T , equipped with the v-ordinary structure F+

v (AT ) := Homcts(F−v (T ), µp∞) for every prime v|p of
K. For every K ⊂ L ⊂ K define the Selmer groups:

Selp(L,g) := SelGr(L,AT); Selp(L, gκ) := SelGr(L,ATκ);

Sp(L,g) := HomZp (Selp(L,g),Qp/Zp) ; Sp(L, gκ) := HomZp (Selp(L, gκ),Qp/Zp) ,
and the modules of L/K-universal norms

Mp(L,g) := MGr(L,T); Mp(L, gκ) := MGr(L,Tκ).

Galois conjugation induces an action of R(L) (resp., Zp(L)) on Selp(L,g) and Mp(L,g) (resp., Selp(L, gκ)
andMp(L, gκ)). We consider on Sp(L,g) (resp., Sp(L, gκ)) the R(L)-action (resp., Zp(L)-action) defined by
φλ(∗) := φ(ι(λ) · ∗) for every λ ∈ R(L) (resp., λ ∈ Z(L)). We know [Gre94b] that Sp(L,g) and Mp(L,g)
(resp., Sp(L, gκ) and Mp(L, gκ)) are finite R(L)-modules (resp., Zp(L)-modules). Moreover, thanks to the
work of Kato and Rohrlich, we know that Sp(K,g) (resp., Sp(K, gκ)) is a torsion R(K)-module (resp.,
Zp(K)-module).

8.2.2. Height and weight pairings. The Selmer groups introduced above come equipped with the follow-
ing ‘arithmetic-cohomological structures’ (see Section 11.4 for the precise definitions): let K ⊂ L ⊂ L ⊂ K
and let κ ∈ U be an evan integer. We write

ĨL/L := ker (R(L)� R(L)) ; JL/L,κ := ker
(
R(L)� R(L)

ψκ
� Zp(L)

)
,

where ψκ is the map induced on Iwasawa algebras by the arithmetic map ψκ.
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• Nekovář’s duality for Selmer complexes [Nek06, Ch. 11] attaches to every tower K ⊂ L ⊂ L ⊂ K
and every even integer κ ∈ U skew-Hermitian canonical p-adic height pairings

hL/L,g : Mp(L,g)⊗R(L) Mp(L,g)ι → ĨL/L/Ĩ
2
L/L;

hL/L,gκ : Mp(L, gκ)⊗Zp(L) Mp(L, gκ)ι → IL/L/I
2
L/L,

defined in terms of Galois cohomology of the (constant) ‘Galois deformations’ T(L) := T⊗RR(L)
and Tκ(L) := Tκ⊗Zp Zp(L) of T(L) = T(L)/ĨL/L and Tκ(L) = Tκ(L)/IL/L respectively. These
pairings are compatible under specialization at weight κ, i.e. we have a commutative diagram

Mp(L,g)

ψκ∗

��

× Mp(L,g)ι

ψκ∗

��

hL/L,g // ĨL/L/Ĩ
2
L

ψκ
��

Mp(L, gκ) × Mp(L, gκ)ι
hL/L,gκ// IL/L/I

2
L/L,

where ψκ∗ is the map induced on cohomology groups by the arithmetic map ψκ.
• Nekovář’s wide generalization of Cassels-Tate and Flach pairings gives for every K ⊂ L ⊂ K and

every even integer κ ∈ U skew-Hermitian parings:

cL,g : Sp(L,g)R(L)-tors ⊗R(L) Sp(L,g)ιR(L)-tors → Frac(R(L))/R(L);

cL,gκ : Sp(L, gκ)Zp(L)-tors ⊗Zp(L) Sp(L, gκ)ιZp(L)-tors → Frac(Zp(L))/Zp(L),

defining again studying the Galois cohomology of the modules T ⊗R R(L) and Tκ ⊗Zp Zp(L)
respectively.
• Making again use of Nekovář’s formalism, we will attach in Section 10.5 to every κ ∈ U and every
K ⊂ L ⊂ L ⊂ K a lift of hL/L,gκ to a canonical pairing

hwt
L/L,gκ : Mp(L, gκ)⊗Zp(L) Mp(L, gκ)ι −→ JL/L,κ/J

2
L/L,κ,

More precisely, the composition of hwt
L/L,gκ with the projection induced by ψκ : JL/L,κ � IL/L

equals hL/L,gκ . This pairing is defined studying the Galois cohomology of the ‘two-variable’
deformation T(L) of Tκ(L) = T(L)/JL/L,κ. In particular the pairings hL,κ := hL/L,κ is attached
intrinsically to the Hida deformation T(L) of Tκ(L).

The height and the abstract Cassels-Tate pairings just mentioned are indeed strictly related one another,
and are manifestations of Nekovář’s wide generalization of Poitou-Tate duality to Selmer complexes.

At weight κ = 2 we recover the constructions above. More precisely: as proved in [Gre94b] there
exists natural isomorphisms Sp(L,E) ∼= Sp(L, g2) and Mp(L,E) ∼= Mp(L, g2). Moreover it follows by the
results in [Nek06, Sec. 11.4] and [Nek06, Sec. 10.] that these isomorphisms identify, for every finite
subextension L/K of K/L the Zp-bilinear forms:

Mp(L, g2)⊗Mp(L, g2)
hK/L,g2−→ IK/L/I

2
K/L
∼= Gal(K/L)⊗ Zp(L)

id⊗pr1−→ Gal(K/L);

Sp(L, g2)tors ⊗ Sp(L, g2)tors

cL,g2−→ Frac(Zp(L))/Zp(L) ∼= Qp/Zp ⊗ Zp(L)
id⊗pr1−→ Qp/Zp

with the K/L Height pairing (64) and Cassels-Tate pairing (65) respectively.
8.2.3. Organizing modules. It is natural to wonder (cfr. [MR05, Sec. 1]) if we can lift Mazur-Rubin

organizer of the arithmetic of (E,K, p) to a skew-Hermitian R(K)-module Φ which organizes the arithmetic
of the whole Hida family g over K. This means that via the ‘linear-algebraic’ constructions (66), (67) and
(68), Φ encodes all the above ‘cohomological structures’ for varying even weight κ ∈ U and intermediate
fields K ⊂ L ⊂ L ⊂ K.

The following theorem answers positively this question, at least under the running assumptions. Its
proof (whose details will be given in Section 11.4) follows easily combining Nekovář’s duality formalism for
Selmer complexes with the work of Mazur-Rubin.
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Theorem 8.1. Assume that (E,K, p) satisfies hypothesis H1-H5 above. Then there exists a basic skew-
Hermitian R(K)-module Φ = (Φ, h), free of rank rΦ := rankZE(K)+dimFp X(E/K)p over R(K), satisfying
the following properties. Write

S := coker
(

Φ h→ Φ∗
)

= H2(Φ),

and write HΦ ∈ GLrΦ(mR(K)) for the skew-Hermitian matrix describing the morphism h with respect to a
(fixed) basis u = {u1, . . . , urΦ} of Φ.

1. There exists a canonical isomorphism of R(K)-modules

S ∼= Sp(K,g).

For every sub-extension L/K of K/L, there exist canonical isomorphisms of R(L)-modules

(†) S(Φ, ĨK/L) ∼= Sp(L,g); Mp(Φ, ĨK/L) ∼= Mp(L,g).

2. For every even integer κ ∈ U and every intermediate field K ⊂ L ⊂ K, there exist canonical
isomorphisms of Zp(L)-modules

(‡) S(Φ, JK/L,κ) ∼= Sp(L, gκ); Mp(Φ, JK/K,κ) ∼= Mp(L, gκ).

3. For every sub-extension K ⊂ L ⊂ K, the second isomorphisms in (†) identifies the pairing (68) for
I = ĨK/K : hΦ,eIK/K with the canonical p-adic height pairing hK/L,g. Similarly the first isomorphism

in (†) identifies the pairing (67) for ĨK/K : cΦ,eIK/L with the abstract Cassels-Tate pairing cL,g.

4. For every intermediate field K ⊂ L ⊂ K, the second isomorphisms in (‡) identifies the pairing
(68) for I = JK/K,κ: hΦ,JK/K,κ with hwt

K/K,gκ . Similarly the first isomorphism in (‡) identifies the
pairing (67) for I = JK/K,κ: cΦ,JK/K,κ with cL,gκ .

5. Write fΦ := det(HΦ) and fκΦ := ψκ(fΦ) for every even integer κ ∈ U . Then

fΦ ·R(K) = charR(K) (Sp(K,g)) ; fκΦ · Zp(K) = charZp(K) (Sp(K, gκ)) .

Writing rκ := rankZp (Sp(K, gκ)), fΦ satisfies the ‘functional equation’

ι(fΦ) = (−1)rκ · fΦ.

6. (p-adic BSD formula) fΦ ∈
(
JK/K,κ

)rκ and, up to p-adic units

fΦ ≡ # (Sp(K, gκ)tors) · det
(
hwt
K/K,gκ

)
mod Jrκ+1

K/K,κ.

The complex Φ, together with its skew-Hermitian structure is isomorphic in the derived category D =
D(R(K)) of complexes of R(K)-modules to Nekovář’s Selmer complex R̃Γf,Iw(K/K,T), equipped with its
skew-Hermitian global cup-product pairing (see Sec. 11.2 for precise definitions).
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Notations and assumptions. The following notations will remain fixed through this note.
- p ≥ 5 is a rational prime,
- E/Q is an elliptic curve of conductor NE , with ordinary (i.e. good ordinary or multiplicative)
reduction at p.

- N := NE · p−ordp(NE) is the tame conductor of E/Q.
- We fix an embedding ρp : Q ↪→ Qp, under which we consider Q as a subfield of Qp. This also fixes
a decomposition group Gp := ρ∗p(GQp) ⊂ GQ.

- K/Q is a number field.
- Sf = SK,f := {v|N · p} is the set of primes of K dividing N · p and S := Sf ∪ {v|∞}. We also
write Sp := {v ∈ Sf : v|p}, Sgood

p := {v ∈ Sp : E/K has good reduction at v} and Ssplit
p := {v ∈

Sp : E/K has split multiplicative reduction at v}.
- GK,S := Gal(KS/K), where KS ⊂ K = Q is the maximal algebraic extension of K which is
unramified at any prime v 6∈ S.

- K ⊂ K ⊂ KS is the maximal Zp-power extension of K (inside K).
- For v ∈ Sf , we fix an embedding ρv : K ↪→ Kv, where Kv is the completion of K at v. This
also fixes a decomposition group Gv := ρ∗v(GKv ) ↪→ GK � GK,S . For every GK,S-module M , we
consider M as a GKv -module via ρ∗v.

- For every field F s.t. char(F ) = 0 we denote by χcy : GF � Gal(F (µp∞)/F ) ↪→ Z∗p the p-adic
cyclotomic character and by κcy : GF � 1 + pZp the composition of χcy with projection to
principal units.

- ω : F∗p
∼→ µp−1 ⊂ Z∗p is the Teichmüller lift.

- Given a field F s.t. char(F ) = 0 and a Zp[Gal(F/F )]-module M , M(1) := M ⊗Zp lim←−µpn(F ) is
the Tate twist of M (with diagonal GF -action).

We will always assume the following

Hypothesis 1. E(Q)p is an irreducible Fp[GQ]-module.

Starting from Section 10, we also assume that (E,K, p) satisfies the following assumptions. We write
R(E, p) to denote the branch of Hida’s universal p-ordinary Hecke algebra of tame conductor N attached
to E/Q. It is the local domain denoted Rg in Sec. 9.2 below.

Hypothesis 2. R(E, p) is a regular local ring.

Hypothesis 3. E(K)p = 0 and E(Kv)p = 0 for every prime v|N .

Hypothesis 1 and 2 are not too restrictive. For example we have the following proposition, which follows
by the discussion in [NP00, Sec. 4.3.9].

Proposition 1. Let E/Q be an elliptic curve without complex multiplication. Write PE for the set
of primes p ≥ 5 such that:

i) E/Qp has ordinary reduction;
ii) (E, p) satisfies Hypothesis 1 and 2, with R(E, p) isomorphic to the Iwasawa algebra Zp[[X]].

Then PE is a set of primes of Dirichlet density one.
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9. Hida theory

Let f = fE =
∑
n≥1 an · qn ∈ S2(Γ0(NE),Z) be the newform attached to E/Q by the modularity

theorem. Since E/Qp has ordinary reduction, ap = ap(E) ∈ Z∗p is a p-adic unit and Hensel’s Lemma gives
a factorization:

X2 − apX + 1NE (p) · p = (X − αp) · (X − βp) ∈ Zp[X],

with αp ∈ Z∗p and βp ∈ pZp (under ρp). Here 1NE is the trivial Dirichlet character modulo NE . The
p-stabilization g of f is the modular form

g :=
∑
n≥1

anq
n − βp ·

∑
n≥1

anq
np ∈ S2(Γ0(Np),Zp).

g is a (normalized) eigenform on Γ0(Np), with Hecke eigenvalue a` (resp., αp) for every prime ` 6= p (resp.,
for ` = p). In particular its conductor is NE . We note that, if E/Qp has multiplicative reduction then
αp = ap, βp = 0 and g = f . In any case g is a p-stabilized ordinary newform of tame conductor N , with
the terminology of Hida.

9.1. Jacobians of modular curves. For r ≥ 0 let Φr := Γ1(pr) ∩ Γ0(N) and write Xr := X(Φr)/Q
for the modular curve of level Φr over Spec(Q), as defined in [Roh97] or [DDT95, Chap. I]. Then Xr is
a smooth proper model over Q of the compact Riemann surface Φr\H∗ =: Xan

r (where H∗ := H∪ P1
Q is the

extended upper half-plane), together with a Q-morphism j : Xr → P1
Q. The affine scheme Yr/Q := j−1(A1

Q)
(coarsely, if r = 0) represents the functor sending a Q-scheme T to the setMΦr (T ) of T -isomorphism classes
of elliptic curves/T with a structure of level Φr. In particular: for every subfield k ⊂ C, we have a bijection

Yr(k) 'MΦr (k) :=
{

(A,C, P )/k
}/

∼=, where A is an elliptic curve over k, C ⊂ A(k)N is a cyclic subgroup

of order N and P ∈ A(k)pr is a point of exact order pr. The isomorphism Φr\H
∼→ Yr(C) ' MΦr (C) is

defined mapping τ ∈ H to the class represented by (C/Λτ ,
〈
N−1 mod Λτ

〉
, p−r mod Λτ ), where Λτ := Z+Zτ

(and 〈?〉 denotes the group generated by ?).
Let Jr/Q := Jac(Xr) be the Jacobian of Xr and Tap(Jr) := lim←− nJr(Q)pn its p-adic Tate module.

It is known that the natural GQ-action on Tap(Jr) is unramified at every prime ` - Np. We will write
G = Gal(QNp/Q) for the Galois group of the maximal algebraic extension Q ⊂ QNp ⊂ Q unramified at
every prime not dividing Np · ∞, so that Tap(Jr) is a continuous Zp[G]-module.

Let hr := h(r)⊗Z Zp be the Hecke algebra of level Γr over Zp. Here h(r) is the Z-algebra generated by
the Hecke operators T` for ` prime and the diamond operators 〈d〉 for d ∈ (Z/prZ)∗ acting on the space
S2(Φr,Z) ⊂ S2(Γ1(Npr),Z) of weight-two cuspidal forms with integer Fourier coefficients. We also write
U` = T` when `|Npr. It is a finite flat Zp-algebra, so by Hensel’s Lemma the natural map hr ∼=

∏
m hr,m is

an isomorphism of rings, where m runs through the (finite set of) maximal ideals of hr (and (−)m denotes
localization). We consider the Tp-decomposition

hr = hnil
r × hord

r ,

where hord
r (resp., hnil

r ) is the product of the hr,m’s with Tp 6∈ m (resp, Tp ∈ m). We also write eord
r ∈ hr

for the idempotent corresponding to projection onto the ordinary part hord
r . More generally, for every

hr-module M we define its ordinary part Mord := eord
r ·M = M ⊗hr hord

r .
We can also represent h(r) as a sub-ring of CorrQ (Xr) ⊂ EndQ(Jr), where CorrQ(X/Q) denotes the

ring of correspondences on X × X defined over Q [Roh97, pag. 89]. In particular Tap(Jr) is equipped
with a structure of an hr[G]-module. We can characterize T`, U` and 〈d〉 as endomorphisms of Jr by their
action on Y an

r := Yr(C) as follows. Identifying Y an
r ' MΦr (C) as above, T` (resp., U`) is induced by the

map Y an
r → Div (Y an

r ):

(A,Q,P ) 7→
∑
L

(A/L, Q mod L, P mod L)

where L ⊂ A` runs over all subgroup of order ` (resp., such that L ∩ Q = 0 and L ∩ 〈P 〉 = 0). Finally
〈d〉 is induced by the automorphism Y an

r
∼→ Y an

r sending (A,Q,P ) to (A,Q, d · P ). (Using the natural
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identification S2(Γr,C) = H0
(
Xan
r ,Ω1

Xan
r

)
between weight-two cusp forms and holomorphic differentials

on Xan
r , Abel-Jacobi theorem allows us to identify

(69) Jan
r := Jr(C) = S2(Φr,C)∗/H1(Xan

r ,Z),

where (−)∗ denotes the C-dual. Then the action already defined on the L.H.S. corresponds to the action
of h(r) induced by composition on S2(Φr,C)∗, which can be proved to preserve integral homology.)

Let us define
hord
∞ := lim←−

r≥1

hord
r ; Taord

∞ := lim←−
r≥1

Tap(Jr)ord.

The first limit is taken with respect to ‘restriction of endomorphisms’. The second limit is taken with respect
to the morphisms induced by Albanese functoriality by the Q-maps Xr+1 → Xr attached to Φr+1 ⊂ Φr.
As we are considering r ≥ 1 in the limits, the transition maps are compatibles with Hecke action, so that
Taord
∞ is an hord

∞ [G]-module. Diamond operators gives morphisms Zp[(Zp/prZ)∗] → hord
r inducing on the

limit a “diamond morphism”
[ ] : Zp[[Z∗p]] −→ hord

∞ .

(We note that this normalization differ by other ones found in literature, e.g. from that of [Hid86a] and
[EPW06], where [z] 7→ z2 · 〈z〉 is used.) Writing Γ := 1 + pZp, [ ] in particular equips hord

∞ with the
structure of an algebra over the Hida algebra Λ := Zp[[Γ]]. Thanks to the work of Hida [Hid86b, Th. 3.1],
[Hid86a, Th. 3.1] (see also Section 8 of [Hid86a]) we know that hord

∞ is a finite, flat Λ-algebra and Taord
∞ is

a free Λ-module of finite rank. Since Λ ia a local complete Noetherian ring, using again Hensel Lemma we
obtain a finite decomposition hord

∞ =
∏

m hord
∞,m, where hord

∞,m is the localization of hord
∞ at the maximal ideal

m. Let φg : h1 � hord
1 → Z be the morphism of Zp-algebras attached to g, i.e.: φg(T`) = a`(g) = a`(E) for

every prime ` 6= p, φg(Up) = ap(g) = αp ∈ Z∗p and φg (〈d〉) = 1 for every d ∈ F∗p. We denote by the same
symbol the morphism of Zp-algebras

φg : hord
∞ � hord

1

φg→ Zp
induced by φg, and write mg ∈ Spec(hord

∞ ) for the maximal ideal s.t. φg factorizes through hord
∞ � hord

∞,mg .
We then define the hord

∞,mg [G]-module

Taord
∞,m := Taord

∞ ⊗hord
∞

hord
∞,mg .

Under Hypothesis 2 it is known that Taord
∞,m is free of rank two as an hord

∞,mg -module. (Indeed a regular ring
is Gorestein, and this implies the freeness of Taord

∞,m.) Moreover, as a manifestation of the Eichler-Shimura
congruence relation (see also [Roh97] or [DDT95, Ch. I]) : for every prime ` - Np

(70) Trace
(

Frob`|Taord
∞,m

)
= T`; det

(
Frob`|Taord

∞,m

)
= ` · [`],

where Frob` ∈ G is an arithmetic Frobenius at ` and we have written again T` for the projection of the
`-th Hecke operator on hord

∞,mg .

Remark 9.1. For every j ∈ Z/(p − 1)Z let εj := 1
p−1

∑
a∈F∗p

ω−j(a) · a ∈ Zp[F∗p] ⊂ Λ, so that every
Zp[F∗p]-module M decomposes as M =

⊕
j εj ·M . As φg(ε0) = 1 and φg(εj) = 0 for every j 6= 0 we have

hord
∞,mg = ε0 · hord

∞,mg , i.e. F∗p acts trivially on hord
∞,mg . In particular (70) (combined with the Chebotarev

density theorem) gives us:

(71) dethord∞,mg

(
Taord
∞,m

)
∼→ hord

∞,mg ⊗ χcy · [κcy] = hord
∞,mg (χcy · [κcy])

as hord
∞,mg [G]-modules. (We recall that κcy is the composition of the p-adic cyclotomic character χcy with

projection to principal units on Z∗p.)
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9.2. The domain R. Let p′g := ker (φg) ∈ Spec(hord
∞,mg ). By [Hid86a, Cor. 1.4] (see also Sec. 12.7.5

of [Nek06]) the localization of hord
∞,mg at p′g is a discrete valuation ring. In particular p′g contains a unique

minimal prime ideal pmin such that φg factorizes through

Rg := hord
∞,mg/pmin.

Then Rg is a local domain, finite over [ ] : Λ → R and whose localization at the prime pg := p′g/pmin is a
discrete valuation ring. Rg is called the branch of hord

∞ attached to g. With the terminology of [Hid86b,
pag. 253] R := Frac(R) is the primitive component of hord

∞ ⊗ Frac(Λ) corresponding to g. We write from
now on

R = Rg; p := pg.

For every positive integer n we write an ∈ R for the projection in R of the n-th Hecke operator Tn ∈ hord
∞,mg .

(Here Tn is defined as a polynomial in the T`’s, U`’s and 〈d〉’s by the usual recipe [Shi71, Ch. 3].)
We define an arithmetic point of R to be a morphisms of Zp-algebras ψ : R → Qp such that the

composition of ψ with Γ := (1 + pZp) ⊂ Z∗p → R is of the form x 7→ χ(x) ·xk−2, for some integer k ≥ 2 and
some finite order character χ : 1 + pZp → Qp

∗
. Then k is the weight of ψ, and χ its wild character. We

denote by X arith = X arith(R) the set of arithmetic points of R. Given ψ ∈ X arith we write Oψ := ψ (R),
ψwild for the wild character of ψ and

r(ψ) := max
{

1, ordp
(
cond

(
ψwild

))}
(where cond(?) denotes the conductor of ?, viewed as a character of finite order on Z∗p = F∗p × Γ). We
consider every element of R as a function on X arith letting r(ψ) := ψ(r) for every r ∈ R and ψ ∈ X arith. An
arithmetic prime q ∈ Spec(R) is defined as the kernel of an arithmetic map. Given ψ ∈ X arith we also write
ψ = ψq with q := ker (ψ). In the following we will use the terminology arithmetic prime and arithmetic
point interchangeably, letting the context explains if we are considering a morphism of its kernel. Moreover,
given a local ring O we will also write X arith(R;O) = X arith(O) to denote the set of arithmetic primes such
that ψ(R) = O.

Let us consider the formal q-eqxpansion

g :=
∑
n≥1

an · qn ∈ R[[q]].

Hida’s control theorem [Hid86b, Cor. 1.2] (see also [Hid86a, Th. 3.5]) implies that for every arithmetic
point ψ ∈ X arith of weight k ≥ 2

gψ :=
∑
n≥1

an(ψ) · qn ∈ Sk
(
Φr(ψ), ω

2−k · ψwild,Oψ
)

is the q-expansion of a classical normalized eigenform of weight k, level Γ0(Npr(ψ)), character ω2−k · ψwild

and Fourier coefficients in Oψ ∩ Q. (Using the definition of r(ψ), here we identify ω and ψwild with the
induced characters: (

Z/Npr(ψ)Z
)∗
�
(
Z/pr(ψ)Z

)∗
= F∗p × Γ/Γr(ψ) −→ Qp

∗
,

where for every r ≥ 1 we write Γr := Γp
r−1

.) Moreover it is a p-stabilized ordinary newform (of tame
conductor N). In other words this means: gψ is a common eigenform for all Hecke operators T` (` - Np)
and U` (`|Np), the p-th Fourier coefficient ap(ψ) ∈ Zp

∗
andN |cond(gψ) (i.e. the system of Hecke eigenvalues

{a`(ψ) : ` 6= p} does not arise from any eigenform of level not divided by N).
We note that φg =: ψp ∈ X arith (with p = pg := ker(φg)) is an arithmetic point of weight 2 and trivial

wild character, and g = gφg with the notations above. Again by [Hid86b, Cor. 1.4] we know that for
every ψq ∈ X arith, the localization Rq is a discrete valuation ring, unramified over the localization of Λ at
the height-one prime q ∩ Λ. In particular for every topological generator γ ∈ Γ, p ∩ Λ = (γ − 1) is the
augmentation ideal of Λ. We can use this result to describe R as a ring of Zp-valued (locally) analytic
functions (cfr. [GS93, Sec. 2]). More precisely: for every open subset V ⊂ Zp denote by A(V ) the
ring of Zp-valued analytic functions on V . We endow A(V ) with a structure of Λ algebra via the unique
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ring morphism Λ → A(Zp) whose restriction to Γ ⊂ Λ∗ is defined mapping x ∈ Γ to the power series
xk−2 =

∑∞
n=0

logp(x)n

n! · (k − 2)n. As R is finite over Λ, Rp is unramified over Λp∩Λ, and the inclusion
of residue fields Qp = Frac(Λ/(γ − 1)) ⊂ Frac (R/p) is an equality, we see that there exists an open
neighborhood 2 ∈ U ⊂ Zp and a unique injective morphism of Λ-algebra

Mg : R ↪→ A(U).

In particular ψ2(r) := Mg(r)|k=2 = φg(r) for every r ∈ R. More generally: for every integer κ ∈ U the
map induced by evaluation at κ:

(72) ψκ : R
Mg−→ A(U) evκ−→ Zp

is an arithmetic point ψκ of weight κ and trivial wild character (cfr. Introduction).

9.2.1. The ‘twisted Hida family’. Let us consider the critical character

θR : Z∗p � Γ
x 7→
√
x−→ Γ

[ ]−→ R∗; θ2
R = [ ].

(As p 6= 2 Hensel Lemma tells us that Γ is uniquely 2-divisible, so
√
x = x1/2 makes sense for every x ∈ Γ.

The equality θR(x)2 = [x] for x = ωx · γx ∈ Z∗p = F∗p × Γ follows by the fact (see Rem. 9.1) that F∗p acts
trivially on R via the structural morphism [ ], i.e. [x] = [γx].)

For every even integer κ we write X arith
κ ⊂ X arith for the subset of arithmetic points of weight κ and

X arith
even :=

⋃
κ X arith

κ . Given ψ ∈ X arith
κ , the map ϑwild

ψ : Γ → Qp
∗
; γ 7→ γ

2−κ
2 · (ψ ◦ θR) (γ) factorizes

through Γ/Γr(ψ), and we can define the character

ϑψ := ϑwild
ψ · ω

2−κ
2 : F∗p × Γ/Γr(ψ) −→ Qp

∗
such that gψ ∈ Sκ

(
Φr(ψ), ϑ

2
ψ

)
.

In other words ϑψ is a square root of the character of the p-stabilized newform gψ, so that

gψ := gψ ⊗ ϑ−1
ψ ∈ Sκ

(
Γ0

(
Np2·r(ψ)

)
,Oψ

)
is an eigenform of level Np2·r(ψ) with trivial character. We refer to the family {gψ}ψ∈X arith

even
as the twisted

Hida family attached to E/Q (or better to g).

9.3. The representation T. Let us write T := Taord
∞,mg ⊗hord

∞,mg
R. As recalled above, it is a free

rank-two R-module, with a continuous R-linear action of G. With the notations above (70) rephrases as:
for every ` - Np the characteristic polynomial of Frob` on T is given by

(73) det (1−X · Frob`|T) = 1− apX − `[`]X2 ∈ R[X].

In order to obtain a self-dual representation, we consider the critical twist

T := T⊗R Θ−1
R ,

where the critical character ΘR is defined as the composition

ΘR : G� Gal (Q(µp∞)/Q)
χcy−→ Z∗p

θR−→ R∗.

As Θ2
R = [κcy], we see by Rem. 9.1 that detR T ∼→ R(1) := R⊗ χcy is the Tate twist of R.
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9.3.1. Self-duality. As explained in [NP00, Sec. 1.6] (and previously proved by Ohta) the Weil pairings
on the Jacobians {Jr}r≥1 define an R-bilinear, skew-symmetric and G-equivariant map

πmg : Taord
∞,mg ⊗hord

∞,mg
Taord
∞,mg −→ hord

∞,mg ⊗ χcy · [κcy] = hord
∞,mg (1)⊗ [κcy],

inducing a ‘skew-symmetric’ isomorphisms of hord
∞,mg [G]-modules

adj
(
πmg

)
: Taord

∞,mg
∼→ Homhord

∞,mg

(
Taord
∞,mg , h

ord
∞,mg (1)⊗ [κcy]

)
.

(This follows in particular by the discussion in Sec. 1.6.10 of loc. cit., using that under Hypothesis 1
we know by [MT90, Théorème 7] that HomΛ

(
hord
∞,mg ,Λ

)
∼→ hord

∞,mg as Λ-modules.) Taking the quotient

πmg ⊗R and twisting by Θ−1
R we thus obtain an R-bilinear, skew-symmetric G-equivariant pairing

πR : T⊗R T −→ R(1)⊗ [κcy]⊗Θ−2
R = R(1),

inducing an isomorphism of R[G]-modules

adj(πR) : T ∼→ HomR (T, R(1)) .

9.3.2. Ramification at p. By the work of Mazur-Wiles and Tilouine we know that the restriction of
T to GQp is reducible: let w be a prime of Q dividing p, defined by an embedding ρw : Q ↪→ Qp. Write
Iw ⊂ Gw ⊂ GQ for the inertia subgroup of the corrsponding decomposition group Gw = ρ∗w(GQp) at w.
There exists a short exact sequence of R[Gw]-modules

(74) 0→ T+
w → T→ T−w → 0,

with T±w free of rank one over R. Iw acts trivially on T−w and via the character χcy · [χcy] on T+
w , and

the arithmetic Frobenius Frobw ∈ Gw/Iw acts on T−w via multiplication by ap ∈ R∗. We refer the reader
to [NP00, Prop. 1.5.4] for precise references. Defining T±w := T±w ⊗ Θ−1

R , we find an exact sequence of
R[Gw]-modules

(75) 0→ T+
w

i+w→ T
p−w→ T−w → 0.

We also write F±w (T) := T±w . This exact sequence is ‘self-dual’ in the following sense. For the dual
representation T∗(1) := HomR(T, R(1)), let us define Fw (T∗(1)) := HomR(T∓w , R(1)). Since πR : T×T→
R(1) is skew-symmetric and T±w

∼→ R, we see that adj(πR) induces an isomorphism of short exact sequences
of R[Gw]-modules

(76) 0 // F+
w (T) //

∼
��

T //

adj(πR)

��

F−w (T) //

∼
��

0

0 // F+
w (T∗(1)) // T∗(1) // F−w (T∗(1)) // 0.

With the notations and terminology introduced in Section 0.5 we can sum up the discussion of this
Section as follows: let K/Q be a number field and recall that GK,S := Gal(KNp/K) denotes the Galois
group of the maximal algebraic extension KNp/K which is unramified for every prime v - Np∞ of K. Then
πR is a perfect R[GK,S ]-duality between T ∈ R[GK,S ]-Mod and itself, such that for every prime v|p of K:

(v|p) T+
v ⊥⊥πR T+

v ,

i.e. T+
v is its own πR-orthogonal complement.

More generally: let φ : R� A be a surjective morphism of local Zp-algebra. For every R[GK,S ]-module
M we write Mφ := R ⊗R,φ A ∈ A[GK,S ]-Mod. Then, putting F±v (Tφ) := (T±v )φ and recalling that T, T±v
are free finite R-modules we obtain:

πφ = πR,φ := πR ⊗R,φ A : Tφ ⊗A Tφ −→ A(1)
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is a perfect A[GK,S ]-duality between Tψ and itself, such that

(v|p) F+
v (Tφ) ⊥⊥πφ F+

v (Tφ)

for every prime v|p of K.
9.3.3. Specialization at arithmetic primes. Let ψ ∈ X arith(O) be an arithmetic prime of even weight

k ∈ 2Z. Let us write F := Frac(O) and Vψ := Tψ ⊗O F (with the notations of the preceding Section).
Letting ? denotes the eigenform gψ of its twist gψ, write ρ? : GQ → GL2(F ) for the Deligne representation
attached to ?, and let V (?) be a representation space for ρgq . Using the irreducibility of V (?), the Eichler-
Shimura relations (70) and retracing the definitions, we easily conclude that there exists an isomorphism
of F [GQ]-modules

(77) Vψ
∼= V (gψ)⊗

(
θ−1
ψ · χ

1−k/2
cy

)
=
(
V (gψ)⊗ θ−1

ψ

)
⊗ χ1−k/2

cy = V (gψ)(1− k/2).

In other words we see that Tψ is an O-stable Galois lattice in the (1 − k/2)-critical twist of the Deligne
representation attached to gψ. In particular by the results recalled in the preceding Sections we recover
the well known fats (proved by Wiles et. al.) that V (gκ)(1 − k/2) is a (nearly) self-dual and p-ordinary
representation.

We can sum up this discussion saying that T ‘parametrize’ the family of Deligne representations
attached to the elements of the twisted Hida family {gψ}ψ∈X arith

even
.

9.3.4. Specialization at φg. We now describe more precisely the isomorphism (77) for the arithmetic
prime φg ∈ X arith(R; Zp) of weight 2 attache to the elliptic curve E/Q. We begin by recalling how a
p-ordinary structure is explicitly defined on the representation Tp = Tap(E/Q) := lim←− n≥1E(Q)pn .

Let M ∈ {Ep∞ = E(Q)p∞ , Tp}, and let w be a prime of Q lying over p. We will use the notations of
Section 9.3.2. Since E/Q is ordinary at p, it is well known that we have exact sequences of Gw-modules

(78) 0→ F+
w (M)→M → F−w (M)→ 0,

with F±w (M) co-free (resp., free) of rank one over Zp. Moreover, the inertia Iw ⊂ Gw act trivially on
F−w (M) and via the p-adic cyclotomic character χcy on F+

w (M), and an arithmetic Frobenius in Gw/Iw
acts on F−w (M) via multiplication by the p-adic unit αp = ap(φg) = ap(g). The filtration (78) can be
explicitly described as follows.

Assume first that E/Qp has good ordinary reduction, and let Ẽ/Fp be the reduction of E modulo
p. (Here Fp is the field with p elements.) By [Sil86, Ch. VII], the reduction map E(Qp)pn → Ẽ(Fp)pn
is surjective for every n ≥ 1. We then obtain surjective maps of GQp -modules E(Qp)p∞ � Ẽ(Fp)p∞ and
Tp � Tp(Ẽ) (where Tp(Ẽ) is the p-adic Tate module of the Ẽ/Fp). Since by assumption Ẽ(Fp)pn

∼→ Z/pnZ
for every n ≥ 1 (i.e. E/Qp has ordinary reduction), F−w (Ep∞) := Ẽ(Fp)p∞ (resp., F−w (Tp) := Tp(Ẽ)) is co-
free (resp., free) of rank one over Zp. Identifying E(Qp)pn with E(Q)pn under the embedding ρw : Q ↪→ Qp

inducing the prime w, we obtain (78) defining F+
w (M) as the kernel of the projection M � F−w (M).

Assuming that E/Qp has multiplicative reduction, the Tate parametrization gives us an isomorphism

ΦTate : Q∗p/qZ ∼→ E(Qp),

where q = q(E/Qp) ∈ pZp is the Tate period of E/Qp [Sil94, Ch. V]. Let χun : GQp � GQp/IQp → {±1}
be the unramified quadratic character on GQp . Writing χp = 1 (resp., χp := χun) if ap(E) = 1 (resp.,
ap(E) = −1), i.e. if E/Qp has split (resp., non-split) multiplicative reduction, ΦTate induces short exact
sequences of GQp -modules (see [Sil94, Ch. V])

0→ µpn(Qp)⊗ χp → E(Qp)pn → Z/pnZ⊗ χp → 0

for every n ≥ 1, where Z/pnZ has trivial Galois action. Taking the direct (resp., inverse) limit for n→∞,
and identifying E(Qp)pn with E(Q)pn under the embedding ρw : Q ↪→ Qp inducing the prime w we obtain
the exact sequence (78) for M = Ep∞ (resp., M = Tp(E)) with F+

w (Ep∞) := Qp/Zp(1) ⊗ χp (resp.,
F+
w (Tp) := Zp(1)⊗ χp).
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Let J1 � Emin
/Q be the optimal elliptic curve attached by the Eichler-Shimura construction to the

eigenform fE ∈ S2(Φ1,Z) [DDT95]. Letting R acts on the p-adic Tate module Tmin
p := Tap(Emin

/Q ) via the
morphism φg (so that ap acts via the unit root αp = ap(g)) Eichler-Shimura theory (cfr. [DDT95, Ch. 1],
[Hid86a, Sec. 9], [Gre94a]) tells us that the natural projections induce isomorphisms of R[G]-modules:

(79) Tφg := T⊗Zp,φg Zp ∼= Tap(J1)ord ⊗hord
1 ,φg Zp ∼= Tmin

p .

By the isogeny theorem we also know that there exists an isogeny over Q between Emin and E, and thanks
to our irreducibility assumption Hypothesis 1 this induces an isomorphism of Zp[GQ]-modules on p-adic
Tate modules: Tp ∼= Tmin

p . Combined with (79) this gives us an isomorphism of Zp[G]-modules

(80) Tφg
∼= Tp.

Moreover, letting w be a prime of Q lying over p and recalling that F−w (Tp) ∼= Zp as Zp-modules we easily
see that this isomorphism extends to an isomorphism of short exact sequences of Zp[Gw]-modules:

0 // F+
w (Tφg )

∼
��

// Tφg

∼
��

// F−w (Tφg ) //

∼
��

0

0 // F+
w (Tp) // Tp // F−w (Tp) // 0.

Let W : Tp ⊗Zp Tp → Zp(1) be the p-adic Weil pairing (defined as in [Sil86, Ch.3]), inducing iso-
morphisms of Zp[G]-modules Tp ∼= HomZp(Tp,Zp(1)) and Ep∞ ∼= HomZp (Tp, µp∞). Since W is alter-
nating and F±w (Tp) is free of rank one as a Zp-module, W induces isomorphisms of Zp[Gw]-modules
F±w (Tp) ∼= HomZp (F∓w (Tp),Zp(1)) and F±w (Ep∞) ∼→ HomZp (F∓w (Tp), µp∞). Moreover, as πR is also skew-
symmetric and T±w ∼= R as R-modules, multiplying eventually πR by a unit we can (and will from now on)
assume that

(81) πφg = πR,φg = W,

i.e. that the perfect duality πR specializes at φg to the Weil pairing.
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10. Selmer complexes in Hida theory

10.1. Selmer complexes. Let K ⊆ L ⊆ K be a subextension of K/K, and let ψ ∈ X arith(R) be an
arithmetic prime of R. Using the notations of Section 0.11 and Section 0.16, let X = T(L) (resp., L(AT),
Tψ(L), L(ATψ )), and write R = RX := R (resp., R, Oψ, Oψ). Then X is a continuous R(L)[GK,S ]-module
equipped with a R(L)[GKv ]-submodule i+v = i+v (X) : X+

v ↪→ X for every v ∈ Sp. (We recall that for every
Galois extension F/K, and any local complete Zp-algebra A we write A(F ) = A(F/K) = A[[Gal(F/K)]] :=
lim←− i∈IA[Gal(Fi/K)] for the (complete) F/K Iwasawa algebra over A, where {Fi/K}i∈I is the set of finite
sub-extensions of F/K.)

Let us consider a subset Σ ⊂ Sf , containing the set Sp of primes of K dividing p. Using the notations
of Appendix A, we consider Nekovář’s Selmer complexes

C̃•f (GK,S , X; ∆Σ(X)) ∈ Kom(R(L)),

together with the corresponding derived objects

R̃Γf (K,X) := R̃Γf (GK,S , X; ∆Σ(X)) ∈ Db(R(L)),

with local conditions ∆Σ(X) = {∆Σ,v(X)}v∈Sf defined by

∆Σ,v(X) :=


C•cont(Kv, X

+
v ) if v|p ;

C•cont(GKv/IKv , X
IKv ) if v - p, v ∈ Σ ;

0 if v /∈ Σ .

(As usual IKv ⊂ GKv denotes the inertia subgroup at v.) For every q ≥ 0, we write

H̃q
f (K,X) := Hq

(
R̃Γf (K,X)

)
∈ R(L)Mod

for the corresponding extended Selmer group, a finite (resp., cofinite) R(L)-module for X ∈ {T(L),Oψ(L)}
(resp., X ∈ {L(T), L(Tψ)}).

Lemma 10.1. Let Sp ⊂ Σ ⊂ Sf .The natural morphism of complexes

ιΣ : C̃•f (GK,S , X; ∆Sp(X)) −→ C̃•f (GK,S , X; ∆Σ(X))

is a quasi-isomorphism.

Proof. We will prove in Lemma 10.7 of Section 10.4 that, under our assumptions C•cont(Kv, Y (L)) is
acyclic for every v ∈ Sf − Sp and Y ∈ {T,Tψ}. Since L(AY ) is isomorphic to the Kummer dual of Y (L)ι

(see Section 0.19), Tate local duality tells us that C•cont(Kv, L(AY )) is also acyclic for v ∈ Sf − Sp. Then
C•cont(Kv, X) is acyclic for every R[GK,S ]-module X we are considering. Using the inflation maps attached
to GKv � GKv/IKv

∼= Ẑ together with the fact that the group Zp has p-cohomological dimension 1, we
conclude that

C•cont(GKv/IKv , X
IKv ) is acyclic for every v ∈ Sf − Sp.

Then we obtain by construction an isomorphism in D(R(L)):

Cone (ιΣ) ∼=
⊕

v∈Σ; v-p

C•cont(GKv/IKv , X
IKv ) ∼= 0,

i.e. ιΣ is a quasi-isomorphism, as was to be proved. �

In follows in particular that R̃Γf (GK,S , X; ∆Σ(X)) does not depend, up to canonical isomorphism, on
the choice of Σ. This justify our notation R̃Γf (K,X). We will write from now on

C̃•f (K,X) = C̃•f (GK,S , X) := C̃•f (GK,S , X; ∆Sp(X))

and we will identify R̃Γf (K,X) with the corresponding derived object R̃Γf (GK,S , X; ∆Sp(X)) ∈ D(R(L)).
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10.2. Shapiro’s Lemma and Iwasawa theory. Let X ∈ {T,Tψ} and let R = RX ∈ {R,Oψ} be
the corresponding ‘coefficient ring’. Let K ⊂ L ⊂ K be a (possibly infinite) subextension of K/K. Using
the notations of Section B, we will write

R̃Γf,Iw(L/K,X) := R̃Γf (K,X(L)) ∈ Dft (R(L)) ;

H̃∗f,Iw(L/K,X) := H∗
(
R̃Γf,Iw(L/K,X)

)
∈
(
R(L)Mod

)
ft

;

R̃Γf (KS/L,AX) := R̃Γf (K,L(AX)) ∈ Dcft (R(L)) ;

H̃∗f (KS/L,AX) := H∗
(
R̃Γf (KS/L,AX)

)
∈
(
R(L)Mod

)
cft
.

For every finite extension K ⊂ E ⊂ L let SE,f (resp., SE,p) be the set of finite primes of E di-
viding primes in Sf = SK,f (resp, dividing p), and let GE,S := Gal(KS/E) be the Galois group of
the maximal algebraic extension of E which is unramified outside SE = SE,f ∪ {v|∞}. As in the pre-
ceding Section we write C̃•f (E, †) := C̃•f (GE,S , †; ∆SE,p(†)), R̃Γf (E, †) := R̃Γf (GE,S , †; ∆SE,p(†)) and
H̃∗f (E, †) := H̃∗f (GE,S , †; ∆SE,p(†)), for † ∈ {X,X(E), E(X)}. As explained in details in Appendix B,
Nekovář’s generalization of Shapiro’s Lemma gives us a natural isomorphism

ShE,f : R̃Γf (K,X(E)) ∼−→ R̃Γf (E,X) ∈ D(R)

coming from a quasi-isomorphisms on the underline complexes of R-modules (we recall X(E) := X ⊗R
R[Gal(E/K)]). This induces in cohomology isomorphisms of R(E) := R[Gal(E/K)]-modules (denoyed by
the same symbol)

(82) Sh∗E,f : H̃∗f (K,X(E)) ∼−→ H̃∗f (E,X) ∈ R(L)Mod.

Here the R(E)-action on H̃∗f (E,X) comes for the (generalized) conjugation action of Gal(E/K) (see again
Appendix B for details). Since X(E) ∼= E(X) := HomR (R(E), X) as R(E)[GK,S ]-modules for every finite
Galois extension E/K, we obtain similar isomorphisms, denoted again ShE,f replacing R̃Γf (K,X(E)) and
H̃∗f (K,X(E)) with R̃Γf (K,E(X)) and H̃∗f (K,E(X)) respectively. (See again loc. cit. for the details.)

Given finite subextensions K ⊂ E ⊂ E′ ⊂ K, the formalism of [Nek06, Ch. 8] (recalled in Appendix
B) gives us generalized restriction and corestriction morphisms in D(R):

res := resf,E′/E : R̃Γf (E,X)→ R̃Γf (GE′ , X); cor := corf,E′/E : R̃Γf (E′, X)→ R̃Γf (E,X).

We use the same notation to denote the corresponding maps induced on cohomology. For every (possibly
infinite) subextension K ⊂ L ⊂ K we can then consider the ‘naive’ L-Iwasawa objects:

R̃Γ
naive

f,Iw (L/K,X) := lim←−
E,cor

R̃Γf (E,X) ∈ D(R); H̃∗,naive
f,Iw (L/K,X) := lim←−

E,cor

H̃∗f (E,X) ∈ R(L)Mod;

R̃Γ
naive

f (KS/L,AX) := lim−→
E,res

R̃Γf (E,AX) ∈ D(R); H̃∗,naive
f (KS/L,AX) := lim−→

E,res

H̃∗f (E,AX) ∈ R(L)Mod,

where the limit is taken over the set of finite subextensions K ⊂ E ⊂ L. We recall that Gal(E/K) acts by
(generalized) Galois conjugation on H̃∗f (E,X) and such an action can be defined on the complex C̃•f (E,X)
only up to homotopy (see Appendix B for the details). Then conjugation defines a natural structure ofR(L)-

module on H̃∗,naive
f,Iw (L/K,X) and H̃∗,naive

f (KS/L,AX), but via such a ‘naive’ definition R̃Γ
naive

f,Iw (L/K,X)

and R̃Γ
naive

f (KS/L,AX) lives a priori only in D(R). Following ideas of Greenberg [Gre94b], Nekovář’s
solved this problem using his version of Shapiro’s Lemma. More precisely: as explained in details in
Appendix B, Shapiro’s isomorphisms (82) induce natural isomorphisms in D(R):

(83) Shf,L : R̃Γf,Iw(L/K,X) ∼= R̃Γ
naive

f,Iw (L/K,X);

(84) Shf,L : R̃Γ
naive

f,Iw (KS/L,AX) ∼= R̃Γf (KS/L,AX).
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More precisely, these isomorphisms are defined by the inverse (resp., inductive) limit of the Shapiro quasi-
isomorphisms (ShE,f )E/K , combined with natural isomorphisms of complexes of R-modules:

C̃•f (K,X(L)) ∼= lim←−
pr∗,E

C̃•f (K,X(E)); C̃•f (K,L(AX)) ∼= lim−→
pr?∗,E

C̃•f (K,E(AX)).

Here E/K runs again over the finite subextensions of L/K. The inverse limit is taken with respect to
the maps pr∗ =

(
prE′/E

)
∗
induced on Selmer complexes by the natural projections pr : X(E′) � X(E)

defined by restriction of automorphisms for every tower of finite subextensions L/E′/E/K. The direct
limit is taken with respect to the maps (pr?)∗ :=

(
pr?E′/E

)
∗
induced on complexes by the duals pr? :=

pr?E′/K : HomR(†,AX)(prE′/E) : E(AX) ↪→ E′(AX) of the projections pr : R(E′)� R(E). The first (resp.,
second) isomorphism comes again from the maps induced on Selmer complexes by the natural projection
X(L) := X⊗RR[[Gal(L/K)]]� X⊗RR[Gal(E/K)] := X(E) (resp., comes from the natural maps induced
on complexes by the natural maps E(X) → lim−→ FHomR(R(F ),AX) =: L(AX)). (Of course we implicitly
stated that the Shapiro isomorphisms Sh∗,f ‘transform’ (prE′/E)∗ (resp., (pr?E′/E)∗ ) in corf,E′/E (resp.,
resf,E′/E). We refer again to Appendix B for the details.) Then (83) and (84) identify the ‘naive’ limits

with complexes naturally living in D(R(L)), and we can use this isomorphisms to give R̃Γ
naive

f,Iw (L/K,X)

and R̃Γ
naive

f (KS/L,AX) the required R(L)-structure. Moreover it can be proved (cfr. App. B) that taking
cohomology in (83) and (84) we also obtain natural isomorphisms

(85) Sh∗f,L : H̃∗f,Iw(L/K,X) ∼→ lim←−
E,pr∗

H̃∗f (K,X(E)) ∼→ H̃∗,naive
f,Iw (L/K,X) ∈ D(R(L));

(86) Sh∗f,L : H̃∗,naive
f,Iw (L/K,AX) ∼→ lim−→

E,(pr?)∗

H̃∗f (K,E(AX)) ∼→ H̃∗f (KS/L,AX) ∈ D(R(L)).

We will use (83) and (85) (resp., (84) and (86)) to identify R̃Γf,Iw(L/K,X) and H̃∗f,Iw(L/K,X) (resp.,

R̃Γf (KS/L,AX) and H̃∗f (KS/L,AX)) with the corresponding naive objects R̃Γ
naive

f,Iw (L/K,X) and H̃∗,naive
f,Iw (L/K,X)

(resp., R̃Γ
naive

f (KS/L,AX) and H̃∗,naive
f (KS/L,AX)) respectively.

10.3. Control theorems.
10.3.1. Abstract case. Let X ∈ {T,Tψ}, K ⊆ L ⊆ K and R = RX be as in the preceding Section.

Let φ : R(L) � A be a surjective morphism of complete local Noetherian rings such that P := ker(φ) =
(x) ∈ Spec(R) is generated by an R(L)-regular sequence (x) = (x1, . . . , xn) ⊂ mR(L) (where mR(L) is the
maximal ideal of R(L)), and write Y[P] := X(L) ⊗R(L),φ A. Then Y[P] is a continuous A[GK,S ]-module,
equipped with A[Gv]-submodules i+v (Y[P]) := i+v (X(L)) ⊗R(L),φ A :

(
Y[P]

)+
v

:= X(L)+
v ⊗R(L),φ A ↪→ Y[P]

for every v ∈ Sp (recall that X is a free R-module of finite type, hence X(L) is finite and free over R(L)).
Let us consider Selmer complexes

C̃•f (K,Y[P]) := C̃•f (GK,S , Y[P]; ∆Sp(Y[P])) ∈ K(A); R̃Γf (K,Y[P]) := R̃Γf (GK,S , Y[P]; ∆Sp(Y[P])) ∈ D(A),

defined exactly an is Section 10.1 (using the Gv-filtrations
(
Y[P]

)+
v
already defined). As usual we write

H̃∗f (K,Y[P]) := H∗
(
R̃Γf (K,Y[P])

)
∈ (AMod)ft ,

Gently abusing notations, for every M ∈ Db(R(L)) we will write M ⊗L
R(L),φA to denote both φ∗ ◦Lφ∗M ∈

Db(R(L)) and Lφ∗M ∈ Db(A). (The derived category under consideration will make the notation clear.)

Proposition 10.2. There exists a canonical isomorphism in D(A):

R̃Γf (K,X)⊗L
R(L),φ A

∼= R̃Γf (K,Y[P]).

Proof. This is a special case of Lemma 0.4. �
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10.3.2. Galois deformations.

Proposition 10.3. Let K ⊂ L ⊂ L′ ⊂ K be a tower of subextensions of K/K. Let X = T (resp.,
X = Tψ for ψ ∈ X arith(R)), and let R = R (resp, R = Oψ).

a)There exists a canonical isomorphism in D(R(L)):

(87) R̃Γf,Iw(L′/K,X)⊗L
R(L′),εL′/L

R(L) ∼= R̃Γf,Iw(L/K,X),

where εL′/L : R(L′)� R(L) is the projection induced by restriction of automorphisms.
b) Assume that Gal(L′/K) ∼→ Zk+1

p (k ≥ 0) and Gal(L/K) ∼→ Zkp, and fix a topological generator
σL′/L ∈ Gal(L′/L). Then (87) induces short exact sequences of R(L)-modules:

(88) 0→ H̃q
f,Iw(L′/K,X)/

(
σL′/L − 1

)
→ H̃q

f,Iw(L/K,X)
iσ
L′/L→ H̃q+1

f,Iw(L′/K,X)[σL′/L − 1]→ 0.

Proof. a) is a special case of Proposition 0.13 (i.e. an easy corollary of the preceding Proposition).
b) Under our assumptions Gal(L/K) is a direct summand of Gal(L′/K); fix topological generators

σ1, . . . , σk, σL′/L of Gal(L′/K), such that σ1, . . . , σk is a set of topological generators of Gal(L/K). We then
obtain (non-canonical) isomorphisms R(L′) ∼→ (R[[σ1 − 1, . . . , σk − 1]]) [[σL′/L − 1]] ∼→ R(L)[[σL′/L − 1]],
inducing a short exact sequence on Selmer complexes (cfr. Lemma 0.4):

0→ C̃•f (GK,S , X(L′))
σL′/L−1
→ C̃•f (GK,S , X(L′))→ C̃•f (GK,S , X(L))→ 0.

(Indeed the control theorem comes exactly from this short exact sequence of complexes; cfr. the proof
Lemma 0.4.) Taking cohomology and recalling the definitions we conclude the proof. �

10.3.3. Weight deformations. We recall that we are assuming R regular, so that every height one prime
of R (in particular every arithmetic prime) is a principal ideal.

Proposition 10.4. Let ψ ∈ X arith(R), with pψ := ker(ψ) = ($ψ) and let K ⊂ L ⊂ K. Let ψ(L) :
R(L)� Oψ(L) be the morphisms induced on Iwasawa algebras by ψ. There exists a canonical isomorphism
in D(Oψ(L)):

R̃Γf,Iw(L/K,T)⊗L
R(L),ψ(L) Oψ(L) ∼= R̃Γf,Iw(L/K,Tψ).

This induces short exact sequences of Oψ(L)-modules:

(89) 0→ H̃q
f,Iw(L/K,T)/$ψ → H̃q

f,Iw(L/K,Tψ)
i$ψ→ H̃q+1

f,Iw(L/K,T)[$ψ]→ 0.

Proof. The first isomorphism follows directly from Prop. 10.2, noting that the kernel of ψ(L) is the
principal ideal of the domain R(L) generated by $ψ,

Tψ(L) :=
(
Tψ ⊗Oψ Oψ(L)

)
< −1 >∼=

(
T⊗R,ψ Oψ ⊗Oψ Oψ(L)

)
< −1 > ∼= (T⊗R,ψ Oψ(L)) < −1 >

∼= (T⊗R R(L)) < −1 > ⊗R(L),ψ(L)Oψ(L) =: T(L)⊗R(L),ψ(L) Oψ(L)

as Oψ(L)[GK,S ]-modules, and similar isomorphisms of Oψ(L)[Gv]-modules are obtained replacing T with
T+
v for every v ∈ Sp. As explained in the proof of Lemma 0.4, the control theorems comes from an exact

sequence of complexes of R(L)-modules:

0→ C̃•f (GK,S ,T(L))
$ψ→ C̃•f (GK,S ,T(L))→ C̃•f (GK,S ,Tψ(L))→ 0.

Taking cohomology we obtain the second statement, with i$ψ the connecting morphism in the associated
long exact cohomology sequence. �
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10.4. Duality and perfectness. Let X ∈ {T,Tψ}, K ⊆ L ⊆ K and R = RX be as in the preceding
Section. Let us write πX := πR : T⊗R T→ R(1) (resp., πX := πR⊗R,ψOψ : Tψ ⊗Oψ Tψ → Oψ) if X = T
(resp., X = Tψ). With the terminology of the Section 0.6 (cfr. Section 0.8) πX is a (skew-symmetric)
perfect duality between X and itself, such that X ⊥πX X and X+

v ⊥⊥πX X+
v for every v ∈ Sp. Then the

constructions of Section 0.17 gives us a skew-Hermitian perfect duality

πX(L) : X(L)⊗R(L) X(L)ι −→ R(L)(1),

such that X(L) ⊥πX(L) X(L)ι and X(L)+
v ⊥⊥πX(L) (X(L)+

v )ι for every v ∈ Sp. Thanks to Nekovář’s
theory and global class-field theory (see Section 0.7 and Section 0.10) we can attach to πX(L) a global
cup-product pairing in D(R(L)):

∪πX(L) : R̃Γf,Iw(L/K,X)⊗L
R(L) R̃Γf,Iw(L/K,X)ι −→ R(L)[−3]

and an abstract Cassels-Tate pairing:

c̃πX(L),2,2 : H̃2
f,Iw(L/K,X)tor ⊗R(L) H̃

2
f,Iw(L/K,X)ιtor −→ R(L)/R(L),

where ∗tor denotes the R(L)-torsion submodule of ∗ and R(L) := Frac(R(L)) is the total ring of fractions
of R(L).

Let S be a ring. We recall that a complex C ∈ Db(S) is said perfect (resp., perfect of perfect amplitude
contained in [a, b]) if there exists a quasi-isomorphism P → C with P a bounded complex of projective,
finitely generated S-modules (resp., such that P j = 0 if j > b or j < a). In this case we write C ∈ Dparf(S)
(resp., C ∈ D[a,b]

parf (S)). We have the following fundamental theorem.

Theorem 10.5. a) The cup-product ∪πX(L) induces by adjunction an isomorphism in D(R(L)):

αX(L) := adj(∪πX(L)) := R̃Γf,Iw(L/K,X) ∼→ RHomR
(
R̃Γf,Iw(L/K,X)ι,R(L)

)
[−3].

Moreover ∪πX(L) is skew-Hermitian, i.e. the following diagram commutes in D(R(L)):

R̃Γf,Iw(L/K,X)⊗L
R(L) R̃Γf,Iw(L/K,X)ι

∪πX(L) //

s12

��

R(L)[−3]

R̃Γf,Iw(L/K,X)ι ⊗L
R(L) R̃Γf,Iw(L/K,X)

−(∪πX(L))ι // R(L)ι[−3] .

ι

OO

b) R̃Γf,Iw(L/K,X) ∈ D[1,2]
parf (R(L)).

c) The abstract Cassels-Tate pairing c̃πX(L),2,2 is skew-hermitian.
d) There exists for every q ∈ Z a canonical isomorphism of R(L)-modules

H̃q
f (KS/L,AX) ∼= Homcts

(
H̃3−q
f,Iw(L/K,X),Qp/Zp

)
(cts = continuous refers to the discrete topology on Qp/Zp and the mR(L)-adic topology on H̃∗f,Iw(L/K,X)).

In the proof we will use the following Lemmas.

Lemma 10.6. Let (A,m) be a Noetherian local ring, C ∈ Dft(A) and x = (x1, . . . , xd) ⊂ m an A-regular
sequence. If Hq

(
C ⊗L

A A/x
)

= 0 then Hq(C) = 0. In particular: C ⊗L
A A/x

∼→ 0 in Dft(A/x) implies
C
∼→ 0 in Dft(A).

Proof. We prove the lemma by induction on d.
If d = 1 we have C ⊗L

A A/x
∼→ C ⊗A

(
A

x1→ A
)
∼→ Cone

(
C

x1→ C
)
, where (A x1→ A) (concentrated in

degrees −1 and 0) is a free resolution of the A-module A/x. Taking cohomology this induces injections

Hq(C)/x1H
q(C) ↪→ Hq

(
C ⊗L

A A/x
)
.

By hypothesis Hq(C ⊗L
A A/x) = 0, so Hq (C) = 0 by Nakayama’s lemma.
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Let now d > 1, and let A′ := A/(x1, . . . , xd−1). Then A/x = A′/xdA
′ and by assumptions xd is not a

zero divisor in A′. We have an isomorphism

C ⊗L
A A/x

∼→
(
C ⊗L

A A
′)⊗L

A′ A
′/xd.

By assumption and the case already proved we conclude Hq
(
C ⊗L

A A
′) = 0, so by induction Hq(C) = 0. �

Lemma 10.7. RΓcont(Kv, X(L)) ∼= 0 ∈ D(R(L)) for every v ∈ Sf − Sp.

Proof. Lemma 0.4 (cfr. the proof of Proposition 0.13) gives a canonical isomorphism in D(R(L)):

RΓcont(Kv, X(K))⊗L
R(K),εK/L

R(L) ∼= RΓcont(Kv, X(L)),

where εK/L is the projection R(K) � R(L) induced by restriction of automorphisms. Then to prove the
Lemma we can assume L = K. Given an arithmetic map ψ ∈ X arith(R;Oψ) the prime ideal JK,ψ :=

ker
(
R(K)

ψ(K)
� Oψ(K)

εK/K
� Oψ

)
∈ Spec(R(K)) is generated by an R(K)-regular sequence, so that loc. cit.

gives us an isomorphism in D(Oψ):

(90) RΓcont(Kv,T(K))⊗L
R(K) R(K)/JK,ψ ∼= RΓcont(Kv,Tψ).

(Indeed, as in the preceding Section we easily obtain T(K)/JK,φ ∼= Tψ as Oφ[GK,S ]-modules.) Then the
Lemma will follows once we will prove RΓcont(Kv,T(K)) ∼= 0 ∈ D(R(K)) for every v ∈ Sf − Sp. But
combining the preceding Lemma with (90) for ψ = φg ∈ X arith(R,Zp) (the arithmetic prime attached to
fE) and the isomorphism of Zp[GK,S ]-modules Tφg

∼= Tp := Tap(E/Q) (proved in Section (9.3.4)) this last
assertion will follows by the claim:

(91) RΓcont(Kv, Tp)) ∼= 0 ∈ D(Zp) for every v ∈ Sf − Sp.
To prove this we simply use Hypothesis 3 and Tate local duality: in fact H0(Kv, Tp) = 0 (e.g. by [Sil86,
pag. 184]) and (using the Weil pairing) H2(Kv, Tp) = 0 since it is the Pontrjagin dual of H0(Kv, Ep∞) =
E(Kv)p∞ = 0 (by of Hyp. 3). Finally, since v - p, Tate’s formula for the local Euler characteristic [Mil04,
pag. 31] shows that (Hj(Kv, Tp) = 0 for every j 6= 1 and) H1(Kv, Tp) is finite, so

0 = H0(Kv, Ep∞) = H0(Kv, Ep∞)/div
∼→ H1(Kv, Tp)Zp−tors = H1(Kv, Tp).

(Here the second equality is again [Sil86, pag. 184] and the isomorphism is the connecting morphism
attached to the short exact sequence of Gv-modules 0 → Tp → Tp ⊗Zp Qp → Ep∞ → 0 [Tat76].) This
proves (91) and the Lemma. �

Proof of Theorem 10.5. a) Recall that, with the notations of Section 10.1 we have

R̃Γf,Iw(L/K,X)‘ = ’C̃•f (GK,S , X(L); ∆Sp(X(L))),

where ∆Sp (X(L)) is the set of local conditions attached to i+v : X+
v (L) ↪→ X(L) (resp., 0 → X(L)) for

v ∈ Sp (resp., v ∈ Sf −Sp). It then follows by the exactness of πX(L) and Proposition 0.2 that we have an
isomorphism in D(R(L)):

Cone (αX(L)) ∼=
⊕

v∈Sf−Sp

RΓcont(Kv, X(K)).

Then the first assertion follows by Lemma 10.7. The second assertion is a special case of Lemma 0.5,
recalling that πX is skew-symmetric, so that πX(L) is skew-Hermitian (see Section 0.17).

b) Let f : S → T be a morphism of rings. Then by construction of left derived functors: −⊗L
S,f T (or

better Lf∗) maps D[a,b]
parf (S) to D[a,b]

parf (T ). Then using the control theorems proved in the preceding sections,
it is sufficient to prove the statement for R̃Γf,Iw(K/K,T) (cfr. also to the proof of point of Lemma 10.7).

Since GK,S and Gv (v ∈ Sf ) have p-cohomological dimension two, and T, T±v (v ∈ Sf ) are free R-
modules (so that T(K) and T(K)+

v (v ∈ Sf ) are finite free R(K)-modules), it follows by [Nek06, Prop.
4.2.9] that:{

RΓcont(GK,S ,T(K)); RΓcont(Kv, X
+
v (K)), RΓcont(Kv, X(K)), v ∈ Sf

}
⊂ D[0,2]

parf (R(K))
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(Recall that we are considering X+
v = 0 if v ∈ Sf − Sp). By definition we then obtain

R̃Γf,Iw(K/L,T)‘ = ’

Cone

C•cont(GK,S ,T(K))⊕
⊕
v∈Sp

C•cont(Kv,T+
v (K))

resSp−i
+
Sp

→
⊕
v∈Sp

C•cont(Kv,T(K)

 [−1] ∈ D[0,3]
parf (R(L)).

We claim that:

(92) H̃3
f,Iw(K/K,T) = 0.

This would conclude the proof. Indeed (92) would imply (see the discussion in [Nek06, Sec. 4.2.8])

R̃Γf,Iw(K/K,T) ∈ D[0,2]
parf (R(K)).

Then we would obtain RHomR(K)

(
R̃Γf,Iw(K/K,T)ι, R(K)

)
[−3] ∈ D[1,3]

parf (R(K)) and using the isomor-
phism αT(K) from a) we finally would obtain:

R̃Γf,Iw(K/K,T) ∈ D[0,2]
parf (R(K)) ∩ D[1,3]

parf (R(K)) = D[1,2]
parf (R(K)).

(For the last equality see again [Nek06, Sec. 4.2.8].)
Since Tp (resp., F+

v (Tp) for v ∈ Sp) is obtained as the quotient of T(K) (resp., T(K)+
v ) by the ideal

JK,φg , which is generated by an R(K)-regular sequence (cfr. the proof of Lemma 10.7), Lemma 10.6 implies
that to prove (92) it is sufficient to prove that H̃3

f (K,Tp) = 0. This follows by Hyp. 3 : E(K)p∞ = 0.
Indeed, since Ep∞ is the Kummer dual of Tp, using Nekovář’s generalized Poitou-Tate duality (precisely
Prop. 0.8 and the exact sequence (166)) we see that the Pontrjagin dual of H̃3

f (K,Tp) is a submodule of
H0(GK,S , Ep∞) = 0.

c) (resp., d)) is a special case of Lemma 0.7 (resp., Lemma 0.14). �

10.5. p-adic pairings. Fix a Zdp-extension L/K. For every subextension K ⊆ L ⊆ L and every

arithmetic point ψ ∈ X arith(R;Oψ) we write JL,ψ = JL/L,ψ := ker
(
R(L)

εL/L
� R(L)

ψ(L)
� Oψ(L)

)
⊂ mR(L);

it is an ideal generated by an R(L)-regular sequence. More precisely: fix topological generators σ1, . . . , σd
of Gal(L/K) ∼→ Zdp and let $ψ be a generator of pψ := ker(ψ). Then, identifying R(L) ∼→ R[[X1, . . . , Xd]]
(with Xj := σj − 1), JL,ψ = ($ψ, γ1, . . . , γd), with γj = (Xj + 1)p

nj − 1 for some integer nj ≥ 0. As
T(L)[JL,ψ] := T(L)⊗R(L),ψ(L)◦εL/LOψ(L) ∼→ Tψ(L) asOψ(L)[GK,S ]-modules and similarly (T(L)+

v )[JL,ψ ]
∼=

Tψ(L) as Oψ(L)[GKv ]-modules for every v ∈ Sp (cfr. the preceding Sections) the construction of Section
C gives us a Bockstein map in D(Oψ(L)):

βwt
L,ψ := βJL/L,ψ : R̃Γf,Iw(L/K,Tψ) −→ R̃Γf,Iw(L/K,Tψ)[1]⊗Oψ JL,ψ/J2

L,ψ.

(Referring to Section C for the details, we recall that βwt
L,ψ is obtained, via the ‘control theorems’ of

Section 10.3 applying the derived functor R̃Γf,Iw(L/K,T) ⊗L
R(L) − to the exact triangle in D(R(L)):

R(L)/J2
L,ψ → Oψ(L) → JL,ψ/J

2
L,ψ[1].) The associated derived ‘height’ paring is then defined as the

morphism in D(Oψ(L)) (cfr. Section C):

h̃wt
L/L,ψ := h̃JL/L,ψ : R̃Γf,Iw(L/K,Tψ)⊗L

Oψ(L) R̃Γf,Iw(L/K,Tψ)ι
βwt
L,ψ⊗id
−→

R̃Γf,Iw(L/K,Tψ)[1]⊗L
Oψ(L) R̃Γf,Iw(L/K,Tψ)ι ⊗Oψ(L) JL,ψ/J

2
L,ψ

∪πψ(L)[1]⊗id
−→ Oψ(L)[−2]⊗Oψ(L)JL,ψ/J

2
L,ψ = JL,ψ/J

2
L,ψ[−2],

where ∪πψ(L) = ∪πTψ
(L) : R̃Γf,Iw(L/K,Tψ) ⊗L

Oψ(L) R̃Γf,Iw(L/K,Tψ)ι → Oψ(L)[−3] is the global cup-
product pairing in D(Oψ(L)) induced by πψ := πR⊗R,ψOψ defined in Section 10.4 (and we use the canonical
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isomorphism (∗[1])⊗L † ∼→
(
∗ ⊗L †

)
[1]). This pairing induces in cohomology an Oψ(L)-bilinear form:

h̃wt
L/L,ψ,1,1 : H̃1

f,Iw(L/K,Tψ)⊗Oψ(L) H̃
1
f,Iw(L/K,Tψ)ι −→ JL,ψ/J

2
L,ψ.

If L = L we simply write h̃wt
L,ψ := h̃wt

L/L,ψ and h̃wt
L,ψ,1,1 := h̃wt

L/L,ψ,1,1. In particular taking L = L = K (and
writing pψ := ker(ψ)) we obtain a ‘derived weight pairing’ :

h̃wt
K,ψ : R̃Γf (K,Tψ)⊗L

Oψ R̃Γf (K,Tψ) −→ pψ/p
2
ψ[−2],

and the corresponding weight paring on cohomology:

h̃wt
K,ψ,1,1 : H̃1

f (K,Tψ)⊗Oψ H̃1
f (K,Tψ) −→ pψ/p

2
ψ.

In a similar way, replacing in the constructions above T with Tψ and JL,ψ with the L/L-augmentation
ideal IL,ψ = IL/L,ψ := ker

(
εL/L : Oψ(L)� Oψ(L)

)
⊂ mOψ(L) in Oψ(L), the constructions of Section C

gives us a Bockstein map:

βL,ψ := βIL/L,ψ : R̃Γf,Iw(L/K,Tψ) −→ R̃Γf,Iw(L/K,Tψ)[1]⊗Oψ IL,ψ/I2
L,ψ,

(obtained, via Prop. 10.3 applying R̃Γf,Iw(L/K,Tψ) ⊗L
Oψ(L) − to the the exact triangle in D(Oψ(L)):

Oψ(L)/I2
L,ψ → Oψ(L)→ IL,ψ/I

2
L,ψ[1]) and the associated ‘derived canonical height pairing’

h̃L/L,ψ := h̃IL/L,ψ : R̃Γf,Iw(L/K,Tψ)⊗L
Oψ(L) R̃Γf,Iw(L/K,Tψ)ι

βL,ψ⊗id−→

R̃Γf,Iw(L/K,Tψ)[1]⊗L
Oψ(L) R̃Γf,Iw(L/K,Tψ)ι ⊗Oψ(L) IL,ψ/I

2
L,ψ

∪πψ(L)[1]⊗id
−→ Oψ(L)[−2]⊗Oψ(L)IL,ψ/I

2
L,ψ = IL,ψ/I

2
L,ψ[−2],

inducing in cohomology the canonical height pairing :

h̃L/L,ψ,1,1 : H̃1
f,Iw(L/K,Tψ)⊗Oψ(L) H̃

1
f,Iw(L/K,Tψ)ι −→ IL,ψ/I

2
L,ψ.

Write pψ(L) := JL/L,ψ for the kernel of ψ(L) : R(L)� Oψ(L), which is a principal ideal generated by
$ψ. We have a canonical decomposition of Oψ(L)-modules

JL,ψ/J
2
L,ψ = IL,ψ/I

2
L,ψ ⊕ pψ(L)/pψ(L)2,

induced by the natural projections εL/L : JL,ψ � pψ(L) and ψ(L) : JL,ψ � IL,ψ. This induces a decompo-
sition

h̃wt
L/L,ψ,1,1 = h̃L/L,ψ,1,1 ⊕ h̃wt

L,ψ,1,1.

Lemma 10.8. h̃wt
L,ψ,1,1 = h̃wt

L,ψ,1,1 and h̃L/L,ψ,1,1 = h̃L/L,ψ,1,1

Proof. This is a special case of Lemma 0.15. �

It follows in particular by the Lemma that h̃L/L,ψ,1,1 (resp., h̃wt
L,ψ,1,1) depends only on the Galois

deformation Tψ(L) of Tψ(L) = Tψ(L) ⊗Oψ(L) Oψ(L) (resp, the Hida deformation T(L) of Tψ(L) =
T(L)⊗R(L),ψ(L) Oψ).

10.5.1. Another description of h̃wt
L,ψ,1,1. Fix a generator $ψ of the principal ideal pψ := ker(ψ). We

recall (cfr. Section 10.4) that the perfect skew-Hermitian pairing π(L) : T(L) ⊗R(L) T(L)ι → R(L)(1)
induced by the perfect skew-symmetric duality π = πR : T⊗RT→ R(1) induces, via Nekovář’s construction
described in Section 0.10 skew-Hermitian pairing (cfr. Theorem 10.5) of R(L)-modules:

c̃π(L),2,2 : H̃2
f,Iw(L/K,T)R(L)−tors ⊗R(L) H̃

2
f,Iw(L/K,T)ιR(L)−tors −→ R(L)/R(L),

where R(L) := Frac(R(L)). We have a (non-canonical) isomorphism of Oψ(L)-modules:

θ$ψ : (R(L)/R(L)) [$ψ] ∼→ pψ(L)/pψ(L)2,

defined by θ$ψ ([r/$ψ]) := ($ψ · r) mod pψ(L)2 = ψ(L)(r) ·$ψ mod pψ(L)2. Recall also the morphism of
Oψ(L)-modules

i$ψ : H̃1
f,Iw(L/K,Tψ)→ H̃2

f,Iw(L/K,T)[$ψ]



56

defined in (89).

Proposition 10.9. The following diagram of Oψ(L) modules commutes:

H̃1
f,Iw(L/K,Tψ)⊗Oψ(L) H̃

1
f,Iw(L/K,Tψ)ι

i$ψ⊗i
ι
$ψ

��

ehwt
L,ψ,1,1 // pψ(L)/pψ(L)2

H̃2
f,Iw(L/K,T)[$ψ]⊗Oψ(L) H̃

2
f,Iw(L/K,T)ι[$ψ]

ecπ(L),2,2 // (R(L)/R) [$ψ].

θ$ψ

OO

Proof. This is a special case of Proposition 0.17. �

Corollary 10.10. h̃wt
L,ψ,1,1 is skew-Hermitian (with respect to the involution induced on pψ(L)/pψ(L)2

by the Iwasawa involution ι on R(L)). In particular h̃wt
K,ψ,1,1 is skew-symmetric.

Proof. This follows directly by the preceding Proposition, recalling that c̃π(L),2,2 is skew-Hermitian
(Theorem 10.5) and noting that θ$ψ ‘commutes’ with the involution ι (as ι($ψ) = $ψ). �

10.5.2. Another description of h̃L/L,ψ,1,1. Let us assume (for simplicity) in this Section that L/K is
a (possibly trivial) Zp-power extension (referring to Section 0.22 for the general situation). Let as fix
an isomorphism: Gal(L/L) ∼→ Zkp, and let σj ∈ Gal(L/L) for j = 1, . . . , k be the topological generators
corresponding to the canonical basis of Zkp. Write Lj/L for the Zp-extension corresponding to σj , i.e.
Lj ⊂ L is the subfield fixed by the closed subgroup of Gal(L/L) corresponding to

⊕
t 6=j;1≤t≤k Zp ⊂ Zkp

under the fixed isomorphism. Then Gal(Lj/L) = σ
Zp
j is topologically generated by σj .

The construction of Section 0.10, applied to the Oψ(Lj)-modules Tψ(Lj) and the perfect skew-
Hermitian duality πψ(Lj) : Tψ(Lj) ⊗Oψ(Lj) Tψ(Lj)ι → Oψ(Lj)(1) (where πψ := π ⊗R,ψ Oψ) gives us
skew-Hermitian pairings:

c̃πψ(Lj),2,2 : H̃2
f,Iw(Lj/K,Tψ)Oψ(Lj)-tors ⊗Oψ(Lj) H̃

2
f,Iw(Lj/K,Tψ)ιOψ(Lj)-tors −→ Oψ(Lj)/Oψ(Lj),

where Oψ(Lj) := Frac (Oψ(Lj)). Moreover (88) gives us a morphism of Oψ(L)-modules:

iσj : H̃1
f,Iw(L/K,Tψ) −→ H̃2

f,Iw(Lj/K,Tψ)[σj − 1],

and we have an isomorphism of Oψ(L)-modules: θσj : (Oψ(Lj)/Oψ(Lj)) [σj−1] ∼→ ILj/L,ψ/I
2
Lj/L,ψ, defined

by [α/(σj − 1)] 7→ α · (σj − 1) mod I2
Lj/L,ψ = εLj/L(α) · (σj − 1) mod I2

Lj/L,ψ. Finally, let us note that we
have a canonical decomposition:

IL/L,ψ/I
2
L/L,ψ

∼=
k⊕
j=1

ILj/L,ψ/I
2
Lj/L,ψ,

induced on ‘augmentation ideals’ by the natural projections εL/Lj : Oψ(L)� Oψ(Lj) defined by restriction
of automorphisms.

Proposition 10.11. For every j = 1, . . . , k, the following diagram of Oψ(L)-modules commutes:

H̃1
f,Iw(L/K,Tψ)⊗Oψ(L) H̃

1
f,Iw(L/K,Tψ)ι

ehL/L,ψ,1,1 // IL/L,ψ/I
2
L/L,ψ

εL/Lj
����

H̃1
f,Iw(L/K,Tψ)⊗Oψ(L) H̃

1
f,Iw(L/K,Tψ)ι

ehLj/K,ψ,1,1 //

iσj⊗i
ι
σj

��

ILj/L,ψ/I
2
Lj/L,ψ

H̃2
f,Iw(Lj/K,Tψ)[σj − 1]⊗Oψ(L) H̃

2
f,Iw(Lj/K,Tψ)ι[σj − 1]

ecπψ(Lj),2,2
// (Oψ(Lj)/Oψ(Lj)) [σj − 1].

θσj

OO



10. SELMER COMPLEXES IN HIDA THEORY 57

Proof. Writing I(j) ⊂ Oψ(L) for the ideal generated by {σi − 1}i6=j we have Oψ(Lj) = Oψ(L)/I(j),
so that

Tψ(Lj) :=
(
Tψ ⊗Oψ Oψ(Lj)

)
< −1 >∼=

(
Tψ ⊗Oψ Oψ(L)/I(j)

)
< −1 >

∼=
(
Tψ ⊗Oψ Oψ(L)

)
< −1 > ⊗Oψ(L),εL/Lj

Oψ(Lj) =: Tψ(L)⊗Oψ(L),εL/Lj
Oψ(Lj).

Moreover ILj/L,ψ ⊂ Oψ(Lj) is the image of IL/L,ψ ⊂ Oψ(L) under the natural projection εL/Lj . Then the
commutativity of the upper square follows for Lemma 0.15, applied with P = IL/L,ψ, x = (σj − 1) and
y = (σi − 1 : i 6= j, 1 ≤ i ≤ k).

The commutativity of the lower square follows directly from Prop. 0.17. �

Corollary 10.12. h̃L/L,ψ,1,1 is skew-Hermitian (for the the involution induced on IL/L,ψ/I
2
L/L,ψ by

Iwasawa main involution on Oψ(L).)

Proof. We have σ±1
j · α ≡ α mod ILj/L,ψ and −ι(σj − 1) = σ−1

j · (σj − 1) ≡ (σj − 1) mod I2
Lj/L,ψ

for every α ∈ Oψ(Lj), so that

θσj ◦ι
[

α

σj − 1

]
= −θσj

[
σj · ι(α)
σj − 1

]
= −θσj

[
ι(α)
σj − 1

]
= − [ι(α)(σj − 1)] =

[
ι
(
α(σj − 1)

)]
= ι◦θσj

[
α

σj − 1

]
,

i.e. θσj ‘commutes’ with Iwasawa involution ι. It then follows by the preceding Proposition and the
properties of Cassels-Tate pairings that each h̃Lj/L,ψ,1,1 is skew-Hermitian. Using again the preceding
Proposition we conclude. �

Remark 10.13. We have a canonical isomorphism of Oψ(L)-modules:

Gal(L/L)⊗Zp Oψ(L) ∼= IL/L,ψ/I
2
L/L,ψ,

induced by g⊗1 7→ g−1 mod I2
L/L,ψ for every g ∈ Gal(L/L). This isomorphism ‘transforms’ the involution

ι on the R.H.S. in the involution −id ⊗ ι on the L.H.S. In particular, taking L = K we obtain from the
preceding Corollary a symmetric height pairing:

h̃L/K,ψ,1,1 : H̃1
f (K,Tψ)× H̃1

f (K,Tψ) −→ Gal(L/K)⊗Zp Oψ.

10.6. R-adic pairings. Let K ⊂ L ⊂ L ⊂ K be as in Section 10.5. Write JL/L := ker (R(L)� R(L))
for the L/L-augmentation ideal in R(L). This is a prime ideal generated by an R(L)-sequence (cfr. Section
10.5), and the construction of Sec. 0.20 gives us a Bockstein map:

βJL/L : R̃Γf,Iw(L/K,T) −→ R̃Γf,Iw(L/K,T)[1]⊗R(L) JL/L/J
2
L/L,

(defined via the the control theorem Prop. 10.3 applying R̃Γf,Iw(L/K,T)⊗L
R(L) − to the exact triangle in

D(R(L)): R(L)/J2
L/L → R(L)→ JL/L/J

2
L/L[1]) with associated R-adic derived pairing :

H̃L/L : R̃Γf,Iw(L/K,T)⊗L
R(L) R̃Γf,Iw(L/K,T)ι

βJL/L⊗id

−→

R̃Γf,Iw(L/K,T)[1]⊗L
R(L)R̃Γf,Iw(L/K,T)ι ⊗R(L) JL/L/J

2
L/L

∪πR(L)[1]⊗id
−→ R[−2]⊗R JL/L/J2

L/L = JL/L/J
2
L/L[−2],

where ∪πR(L) is the global cup-product pairing in D(R(L)) attached to the the perfect skew-symmetric
duality π = πR : T⊗R T→ R(1) in Sec. 0.17. As above we write

H̃L/L,1,1 : H̃1
f,Iw(L/K,T)⊗R(L) H̃

1
f,Iw(L/K,T)ι −→ JL/L/J

2
L/L

for the R-bilinear form induced by H̃L/L on (1, 1)-cohomology.
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10.6.1. Specializations. Let ψ ∈ X arith(R,Oψ), inducing a morphism ψ(L) : R(L)� Oψ(L) ∼= R(L)⊗R
R/$ψ, such that IL/L,ψ = ψ(L)

(
JL/L

)
. Let us denote again by the same symbol the induced projection

JL/L/J
2
L/L � IL/L,ψ/I

2
L/L,ψ. Since Tψ(‡) = T(‡) ⊗R,ψ Oψ = T(‡)/$ψ for every sub-extension ‡/K of

K/L, a direct application of Lemma 0.16 proves the following Lemma.

Lemma 10.14. Let us write ψ(L)∗ : H̃1
f,Iw(L/K,T) → H̃1

f,Iw(L/K,Tψ) for the morphisms induced on
Selmer complexes by ψ(L). Then the following diagram of R(L)-modules commutes:

H̃1
f,Iw(L/K,T)⊗R(L) H̃

1
f,Iw(L/K,T)ι

eHL/L,1,1 //

ψ(L)∗⊗ψ(L)ι∗
��

JL/L/J
2
L/L

ψ(L)

��
H̃1
f,Iw(L/K,Tψ)⊗R(L) H̃

1
f,Iw(L/K,Tψ)ι

ehL/L,ψ,1,1 // IL/L,ψ/I
2
L/L,ψ.

10.6.2. Relations with Cassels-Tate pairing. Assume that L/K is a Zp-power extension, and let Lj/L be
as in Section 10.5.2. Then the analogue of Proposition 10.11 holds for H̃L/L,1,1, i.e. using similar notations
as in loc. cit.: under the canonical decomposition of R(L)-modules JL/L/J2

L/L
∼=
⊕k

j=1 JLj/L/J
2
Lj/L we

have

H̃L/L,1,1 =
k⊕
j=1

H̃Lj/L,1,1; H̃Lj/L,1,1 = ϑσj ◦ c̃π(Lj),2,2 ◦ ζσj ⊗ ζ
ι
σj .

Here ζσj : H̃1
f,Iw(L/K,T) → H̃2

f,Iw(Lj/K,T)[σj − 1] is the morphism coming from (88), the isomorphism

ϑσj : R(Lj)/R(Lj)[σj − 1] ∼→ JLj/L/J
2
Lj/L is defined by ϑσj

([
r

σj−1

])
= r · (σj − 1) mod J2

Lj/L and

c̃π(Lj),2,2 : H̃2
f,Iw(Lj/K,T)R(Lj)-tors ⊗R(Lj) H̃

2
f,Iw(Lj/K,T)ιR(Lj)-tors −→ R(Lj)/R(Lj)

is the (skew-Herimitian) Cassels-Tate pairing attached to the perfect (skew-Hermitian) duality π(Lj) :
T(Lj)⊗R(Lj)T(Lj)ι → R(Lj)(1) induced by the (skew-symmetric) perfect duality π = πR : T⊗RT→ R(1)
(cfr. Section 0.10 and Section 0.17). In particular we conclude that H̃L/K,1,1 is skew-Hermitian.
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11. Organizing modules and p-adic L-functions

In this Section we review the constructions of [MR05], and we show how the ‘weight variable’ may
be naturally included in their theory of ‘organizing modules’. Following Mazur-Rubin, we then apply the
resulting theory to the the study of algebraic p-adic L-function.

Write R := R(K) and Zp := Zp(K). Let P be an ideal of R which is stable under the action of Iwasawa
involution ι. Then A := R/P is equipped with an involution compatible with ι : R→ R, which we denote
again by ι. Moreover, for every A-module N , we write N∗ := HomA(N ι, A), where N ι denotes the A-
module with the same underline abelian group as N , but with A-action obtained composing the original
action with ι : A→ A. We will frequently consider the case N = M ⊗R A, for a free R-module M of finite
rank. In this case we have canonical identifications

M ι ⊗R A = N ι; M∗ ⊗R A = N∗,

where the first (resp., second) isomorphism is defined by m⊗ a 7→ ι(a) ·m (resp., ψ 7→ ψ mod P).

11.1. Skew-Hermitian modules (cfr. [MR05, Sec. 4]). A skew-Hermitian R-module is a pair
(Φ, h), where Φ is a free R-module of finite type and h : Φ ↪→ Φ∗ is an injective, skew-Hermitian morphism
of R-modules. In other words: writing

(−,−)h : Φ× Φι −→ R

for the R-bilinear form defined by (x, y)h := h(x)(y), we assume that (−,−)h is non-degenerate, and
satisfies

(93) (x, y)h = −ι (y, x)h
for every x, y ∈ Φ. We say that (Φ, h) is a basic skew-Hermitian module if (−,−)h : Φ × Φι → m takes
values in the maximal ideal m of R.

A morphism of skew-Hermitian modules (Φ, h)→ (Ψ, ρ) is a morphism of R-modules ψ : Φ→ Ψ such
that the following diagram commutes:

Φ

ψ

��

h // Φ∗

Ψ
ρ // Ψ∗.

ψ∗

OO

We fix for the rest of this section a skew-Hermitian module Φ = (Φ, h). We also write S := S(Φ) :=
coker (h), sitting in an exact sequence of R-modules

0→ Φ h→ Φ∗ → S → 0,

which also give a free resolution of length 1 of S.
Let P ⊂ R and A := R/P be as above, and write ΦP := Φ⊗R A, hP := h⊗A : ΦP → Φ∗ ⊗R A = Φ∗P ,

where Φ∗P is an abbreviation for (ΦP)∗. We define

M(P) := ker (hP) ∼= TorR1 (S, A) ; S(P) := coker (hP) ∼= S ⊗R A,

giving rise to an exact sequence of A-modules

(94) 0→M(P)→ ΦP
hP→ Φ∗P → S(P)→ 0.

By (93) and this exact sequence we obtain a commutative diagram of A-modules:

(95) M(P)ι �
� // ΦιP

−hιP //

∼
��

(Φ∗P)ι // // S(P)ι

HomA(S(P), A) � � // HomA (Φ∗P , A)
Hom(hP) // HomA(ΦP , A)

∼

OO

// // Ext1
R

(S, A) .
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Here ΦιP := (ΦP)ι = Φι ⊗R A, the first vertical map is the canonical isomorphism sending x ∈ ΦιP in
{HomA (ΦιP , A) 3 ψ 7→ ψ(x)}, while the second is given by Hom (ΦP , A) 3 ψ 7→ ι ◦ ψ ∈ Hom (ΦιP , A)ι.
This gives in particular isomorphisms of A-modules

(96) M(P)ι ∼→ HomA(S(P), A); S(P)ι ∼→ Ext1
R

(S, A) .

As in [MR05, Sec. 4] (and with notations which will be explained below), this isomorphisms can be used
to construct a skew-Hermitian ‘height pairing’

h̃ΦP ,1,1 : M(P)⊗AM(P)ι −→ P/P2,

and a skew-Hermitian ‘Cassels-Tate pairing’:

c̃ΦP ,2,2 : S(P)tors ⊗A S(P)ιtors −→ A /A,

where A := Frac(A) and tors refers to the A-torsion. (Here skew-Hermitian is with respect to the involution
induces by ι : A → A, meaning that an analogue of the relation (93) holds.) These pairings can also be
defined directly as follows. (See Sec. 4 of loc. cit., or the following Section for a more ‘conceptual’
definition.)

Let x ∈M(P) ⊂ ΦP and y ∈M(P)ι ⊂ ΦιP , and let x̃ ∈ Φ and ỹ ∈ Φι be liftings of x and y respectively.
By definition, hP(x) = 0 and hP(y) = 0, so that (x̃, z)h ∈ P and (x′, y)h ∈ P for every z ∈ Φι and z′ ∈ Φ.
This implies that the projection of (x̃, ỹ)h in P/P2 depends only on x and y. We then define

h̃ΦP ,1,1(x⊗ y) := (x̃, ỹ)h mod P2.

Let now x ∈ S(P)tors and y ∈ S(P)ιtors, with a · x = 0 and b · y = 0 respectively, for some a, b ∈ A.
Let also x̃∗ ∈ Φ∗P and ỹ∗ ∈ (Φ∗P)ι be any lift of x and y respectively (under the projection (94)). By
construction, there exist x̃ ∈ ΦP and ỹ ∈ ΦιP such that hP(x̃) = a · x̃∗ and hιP(ỹ) = b · ỹ∗. Writing
(−,−)hP : ΦP × ΦιP → A for the (skew-Hermitian) A-bilinear form corresponding to hP , it can be easily
checked that the formula

c̃ΦP ,2,2(x⊗ y) := (ab)−1 · (x̃, ỹ)hP mod A ∈ A /A

defines a (skew-Hermitian) pairing (i.e. it depends only on x and y).
11.1.1. Associated complexes and duality. Let Φ = (Φ, h), P ∈ Spec(R) and A := R/P be as in the

preceding Section. We consider the associated complex of A-modules

ΦP :=
(

ΦP
hP−→ Φ∗P

)
,

with ΦP in degree one. (When P = 0, we write simply Φ :=
(

Φ h→ Φ∗
)
for Φ0.) By construction:

M(P) = H1 (ΦP) ; S(P) = H2 (ΦP) .

We have

ΦP ⊗A Φι
P =

(
ΦP ⊗ ΦιP

∂2

→ (Φ∗P ⊗ ΦιP)⊕ (ΦP ⊗ (Φ∗P)ι) ∂3

→ Φ∗P ⊗ (Φ∗P)ι
)
,

concentrated in degrees [2, 4], where

∂2 = (hP ⊗ id,−id⊗ hιP), ∂3 = (id⊗ hιP)⊕ (hP ⊗ id) .

It follows by the definition of skew-Hermitian module that the formula:

(x∗ ⊗ y)⊕ (x⊗ y∗) 7→ x∗(y)− ι (y∗(x)) ,

for every x ∈ ΦP , y ∈ ΦιP , x
∗ ∈ Φ∗P and y∗ ∈ (Φ∗P)ι defines a morphism of complexes of A-modules

∪ΦP : ΦP ⊗A Φι
P −→ A[−3].



11. ORGANIZING MODULES AND p-ADIC L-FUNCTIONS 61

Lemma 11.1. The cup-product ∪ΦP induces by adjunction an isomorphism

αΦP := adj (∪ΦP ) : ΦP ∼= HomA (Φι
P , A) [−3] = HomA (ΦP , A)ι [−3].

Moreover ∪ΦP is skew-Hermitian, i.e. the following diagram of complexes of A-modules:

ΦP ⊗A Φι
P

∪ΦP //

s12

��

A[−3]

Φι
P ⊗A ΦP

−(∪ΦP )ι
// Aι[−3]

ι

OO

commutes.

Proof. This follows by an easy computations (cfr. the commutative diagram (95)). �

11.1.2. ‘Derived pairings’. The notations are as in the preceding Sections. We recall that by definition
Φ is a complex of free R-modules (of finite type). In particular the functor Φ ⊗R − (on the homotopy
category of complexes of R-modules) maps quasi-isomorphisms to quasi-isomorphisms, so that it can be
derived trivially to a functor defined on Db(R). Applying it to the exact triangle in D(R):

P/P2 → R/P2 → A→ P/P2[1],

we obtain (cfr. Sec. 10.5) a ‘Bockstein map’ in D(R):

βP : ΦP = Φ⊗R A −→ Φ⊗R P/P
2[1] ∼= Φ[1]⊗R P/P

2 ∼= ΦP [1]⊗A P/P2.

We define the ‘derived height pairing’ as the morphism in D(A):

h̃ΦP : ΦP ⊗A Φι
P
βP⊗id−→ ΦP [1]⊗A Φι

P ⊗A P/P2 ∪ΦP [1]⊗id
−→ P/P2[−2].

Lemma 11.2. The pairing H1,1(h̃ΦP ) : M(P)⊗AM(P)ι → P/P2 induced by h̃ΦP is equal to h̃ΦP ,1,1.

Proof. By construction, the morphism βP is represented by the diagram:

ΦP = Φ⊗R A
id⊗pr←− Φ⊗R Cone

(
P/P2 i→ R/P2

)
id⊗−p−→ Φ⊗R

(
P/P2[1]

) ∼→ ΦP [1]⊗A P/P2,

where: p is the natural projection, pr is induces by the projection R/P2 � A = R/P and the last
isomorphism is defined by x⊗ y 7→ (−1)j(x⊗ 1)⊗ y for x ∈ Φj (and identifying again ΦP = Φ⊗R A).

Let us take x = x⊗ 1 ∈M(P) = H1(Φ⊗A), so that h(x)⊗ 1 = 0, i.e. h(x) =
∑
j αj · x∗j for elements

αj ∈ P and x∗j ∈ Φ∗. Then −
∑
j x
∗
j ⊗ [αj ] + x ⊗ 1 ∈ Φ∗ ⊗ P/P2 ⊕ Φ ⊗ R/P2 is a 1-cocycle lifting x ⊗ 1

under id⊗ pr. It follows that

H1 (βP) (x) is represented by
∑
j

(x∗j ⊗ 1)⊗ [αj ] ∈ Φ∗P ⊗A P/P2.

By the definitions of ∪ΦP and h̃ΦP ,1,1 we thus obtain, for every y = y ⊗ 1 ∈M(P)ι ⊂ Φι ⊗A:

H1,1
(
h̃ΦP

)
(x⊗ y) =

∑
j

(x∗j (y)⊗ 1)⊗ [αj ]‘ = ’ (x, y)h mod P2 = h̃ΦP ,1,1(x⊗ y) ∈ P/P2,

concluding the proof. �

11.1.3. ‘Cassels-Tate pairings’. With the notations of the preceding Sections, let P :=
(
A
−i→ A

)
and

RΓ!(−) := −⊗A P. The constructions of Section 0.10 gives us a morphism of complexes of A-modules:

c̃ΦP : RΓ! (ΦP)⊗A RΓ! (Φι
P)→ RΓ! (ΦP ⊗A Φι

P)
∪ΦP⊗id
−→ RΓ! (A) [−3],

inducing an A-bilinear pairing:

H2,2 (c̃ΦP ) : S(P)tors ⊗A S(P)ιtors −→ A /A.

Lemma 11.3. H2,2 (c̃ΦP ) = c̃ΦP ,2,2.
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Proof. We use the notations of Section 0.10. Let x ∈ S(P)tors and y ∈ S(P)ιtors. As in the definition
of c̃ΦP ,2,2 we choose a ∈ A, x̃∗ ∈ Φ∗P and x̃ ∈ ΦP such that x = [x̃∗] and hP(x̃) = ax̃∗, and similarly b ∈ A,
ỹ∗ ∈ (Φ∗P)ι and ỹ ∈ ΦιP such that hιP(ỹ) = bỹ∗. Then

X := x̃∗ + x̃⊗ a−1 ∈ (RΓ!(ΦP))2 ; Y := ỹ∗ + ỹ ⊗ b−1 ∈ (RΓ!(Φι
P))2

are 2-cocycles, whose cohomology classes lift x and y respectively under the projection in (164). We then
compute the composition (165) on X ⊗ Y , obtaining the 4-cocycle

x̃∗ ⊗ ỹ∗ + x̃∗ ⊗ ỹ ⊗ b−1 ∈ (RΓ! (ΦP ⊗A Φι
P))4

.

Applying ∪ΦP ⊗ id to this element, and identifying H4 (RΓ!(A)[−3]) ∼← A /A (using again (164)) we obtain:

H2,2 (c̃ΦP ) (x⊗ y) = b−1 · x̃∗(y) mod A = (ab)−1 · (x̃, ỹ)hP mod A = c̃ΦP ,2,2 (x⊗ y) .

�

11.2. Organizing modules. Following [MR05], we say that a skew-Hermitian R-module Φ = (Φ, h)
organizes the arithmetic of g over K if there exists an isomorphism ψ : Φ ∼→ R̃Γf,Iw(K/K,T) in D(R),
such that the following diagram commutes in D(R):

Φ⊗R Φι ∪Φ //

ψ⊗ψι

��

R[−3]

R̃Γf,Iw(K/K,T)⊗L
R

R̃Γf,Iw(K/K,T)ι
∪πR // R[−3]

where ∪Φ := ∪Φ0 and πR := πR(K) is the perfect duality over R(K) attached to πR (cft. Section 10.4).
Combining the results of [MR05, Sections 5-6] with the results recalled in Section 10.4 we obtain the
following

Theorem 11.4. Assume that H̃2
f,Iw(K/K,T) is a torsion R-module. Then there exists a basic skew-

Hermitian module (Φ, h) which organizes the arithmetic of g over K.
Moreover, if (Ψ, ρ) is another basic skew-Hermitian module organizing the arithmetic of g over K, there

exists a (noncanonical) isomorphism of skew-Hermitian modules (Φ, h)→ (Ψ, ρ).

Proof. By Theorem 10.5, R̃Γf,Iw(K/K,T) can be represented in D(R) by a complex P :=
(
P1

∂→ P2

)
concentrated in degrees 1 and 2, where Pj is a projective, hence free R-module of finite type. More-
over, the isomorphism R̃Γf,Iw(K/K,T) ∼→ RHomR

(
R̃Γf,Iw(K/K,T)ι, R

)
[−3] (from Theorem 10.5) in-

duces an isomorphism in D(R) between P and HomR(P ι, R)[−3] =
(
P ∗2

∂∗→ P ∗1

)
(where we recall M∗ :=

HomR

(
M ι, R

)
for an R-module M , and ∂∗ := Hom(∂ι)). From this we obtain isomorphisms

H̃1
f,Iw(K/K,T) ∼→ ker (∂) ∼→ ker (∂∗) ∼→ (coker (∂))∗ ∼→

(
H̃2
f,Iw(K/K,T)

)∗
.

Since H̃2
f,Iw(K/K,T) is assumed to be a torsion R-module, it follows that H̃1

f,Iw(K/K,T) = 0, i.e. ∂ is
injective.

Let us fix an isomorphism ϑ : P ∼→ R̃Γf,Iw(K/K,T) in D(R), and define the morphism in D(R):

∪P : P ⊗R P
ι ϑ⊗ϑι−→ R̃Γf,Iw(K/K,T)⊗L

R
R̃Γf,Iw(K/K,T)ι

∪πR−→ R[−3].

(We remark that, since P is a complex of free R-modules, this pairing is actually a morphism in the
homotopy category, i.e. comes from a morphism of complexes of R-modules.) By b) of Theorem 10.5 it is
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skew-Hermitian, i.e. the following diagram commutes in D(R):

(97) P ⊗R P
ι ∪P //

s12

��

R[−3]

P ι ⊗R P
−(∪P )ι // R

ι
[−3].

ι

OO

The commutativity of this diagram can be reformulated as follows: let

αP := adj (∪P ) : P ∼→ HomR

(
P ι, R

)
[−3] ∼→ HomR

(
P , R

)ι
[−3]

be the isomorphism in D(R) induced by ∪P (the last map induced by φ 7→ ι ◦ φ). Applying Hom(−, R) to
the map αιP [3] : P ι[3]→ HomR(P , R) we obtain a morphism

γ : HomR

(
HomR

(
P , R

)
, R
)
→ HomR

(
P ι[3], R

) ∼→ HomR

(
P ι, R

)
[−3] ∼→ HomR

(
P , R

)ι
[−3].

(We remark that the first isomorphism ‘involves signs’, i.e. is not given by the identity.) Moreover, since
P is a complex of free R-modules, the canonical map ε : P ∼→ HomR

(
HomR

(
P , R

)
, R
)
is an isomorphism

(see [Nek06, Sec. 1.2.8] for the precise definition). We then obtain a morphism

α̃P := γ ◦ ε : P −→ HomR(P , R)ι[−3].

Then the commutativity of (97) is equivalent to the following identity in D(R):

(98) α̃P = −αP .

In the terminology of [MR05, Sec. 6], we can summarize the discussion above as follows. P is a
complex of free R-modules concentrated in degrees 1 and 2, with injective coboundary map ∂ : P1 → P2,
and αP is a ‘skew-Hermitian, degree 3, perfect pairing on P ’ in the derived category D(R). (This last
statement meaning precisely that (98) holds (cfr. Def. 6.1 in loc. cit).) Applying Prop. 6.5 of loc. cit., we
obtain the following statement: there exists a basic skew-Hermitian module Φ = (Φ, h), together with an
isomorphism ϕ : Φ ∼→ P in D(R), such that the following diagram commutes in D(R):

Φ

ϕ

��

αΦ // HomR

(
Φ, R

)ι
[−3]

P
αP // HomR

(
P , R

)ι
[−3],

ϕ∗

OO

where ϕ∗ := Hom
(
ϕ,R

)ι
[−3] and αΦ is the isomorphism defined in Lemma 11.1. By construction, this is

equivalent to the commutativity in D(R) of the diagram:

Φ⊗R Φι

ϕ⊗ϕι

��

∪Φ // R[−3]

P ⊗R P
ι ∪P // R[−3].

Taking ψ := ϑ ◦ ϕ : Φ ∼→ R̃Γf,Iw(K/K,T) we see that Φ organizes the arithmetic of g over K.
The last statement is [MR05, Prop. 6.6], concluding the proof. �

11.2.1. Specializations and comparison of pairings. We assume in this Section that the ideal P ⊂ R
is (invariant under the action of ι and) generated by an R-regular sequence. As usual A := R/P and we
write TP := T(K)/P. We write

πP : TP ⊗A T ιP → A(1)

for the perfect duality induced by πR. We write R̃Γf (K,TP) for the Selmer Complexes attached to the
Greenberg local conditions: F+

v (TP) := T(K)+
v ⊗RA (resp., F+

v (TP) := 0) for every prime v ∈ Sf dividing
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(resp., not dividing) p (cfr. Section 10). We recall that under these assumptions on P, the constructions
in Appendix C attaches to the ‘P-deformation’ T(K) of TP a Bockstein map:

βP : R̃Γf,Iw(K/K,T) ∼= R̃Γf (K,T(K)) −→ R̃Γf (K,TP)[1]⊗A P/P2,

and the corresponding abstract ‘P-height-pairing’

h̃P := (∪πP [1]⊗ id) ◦ (βP ⊗ id) : R̃Γf (K,TP)⊗L
A R̃Γf (K,TP)ι −→ P/P[−2].

As usual h̃P,1,1 := H1,1(h̃P) is the map induced on (1, 1)-cohomology. Moreover, the construction of Section
0.10 attaches to P, or better to πP an abstract derived Cassels-Tate pairing:

c̃πP : RΓ!

(
R̃Γf (K,TP)

)
⊗L
A RΓ!

(
R̃Γf (K,TP)ι

)
−→ RΓ!(A[−3]),

and the corresponding Cassels-Tate pairing:

c̃πP ,2,2 = H2,2(c̃πP ) : H̃2
f (K,TP)A-tors ⊗A H̃2

f (K,TP)A-tors −→ A /A.

Proposition 11.5. Assume that there exists a skew-Hermitian module Φ = (Φ, h) which organizes the
arithmetic of g over K, with an isomorphism ψ : Φ ∼→ R̃Γf,Iw(K/K,T). Then ψ induces an isomorphism
ψP : ΦP

∼→ R̃Γf (K,TP) in D(A) such that the following diagrams:

ΦP ⊗A Φι
P

∪ΦP //

ψP⊗ψιP
��

A[−3]

R̃Γf (K,TP)⊗L
A R̃Γf (K,TP)ι

∪πP // A[−3];

ΦP ⊗A Φι
P

ψP⊗ψιP
��

ehΦP // P/P2[−2]

R̃Γf (K,TP)⊗L
A R̃Γf (K,TP)ι

ehP // P/P2[−2];

RΓ!(ΦP)⊗A RΓ!(Φι
P)

ecΦP //

RΓ!(ψP)⊗RΓ!(ψ
ι
P)

��

RΓ!(A)[−3]

RΓ!(R̃Γf (K,TP))⊗L
A RΓ!

(
R̃Γf (K,TP)ι

) ecπP // RΓ!(A)[−3]

commute in D(A). Moreover identifying M(P) ∼→ H̃1
f (K,TP) (resp., S(P) ∼→ H̃2

f (K,TP)) under the
isomorphism induced in cohomology by ψP , we have h̃P,1,1 = h̃ΦP ,1,1 (resp., c̃ΦP ,2,2 = c̃πP ,2,2).

Proof. Define ψP as the composition

ψP : ΦP = Φ⊗R A
ψ⊗id−→ R̃Γf,Iw(K/K,T)⊗L

R
A
∼→ R̃Γf (K,TP),

where the second isomorphism comes from the control theorems of Sec. 10.3. The commutativity of the
first diagram follows by the fact that ∪ΦP (resp., ∪πP ) is obtained applying − ⊗L

R
A to ∪Φ (resp., ∪πR).

This is clear from the definitions (resp., follows by c) of Lemma 0.4).
Moreover, by construction we obtain a commutative diagram of Bockstein maps:

ΦP
βP //

ψP
��

ΦP [1]⊗A P/P2

ψP [1]⊗id

��
R̃Γf (K,TP)

βP // R̃Γf (K,TP)[1]⊗A P/P2.
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Then retracing the definitions of the ‘height’ and ‘Cassels-Tate’ pairings, the commutativity of the second
and third diagram respectively follows formally by the commutativity of the first. The last assertion follows
by Lemmas 11.2 and 11.3. �

11.3. Determinants and p-adic L-functions. Following [MR04],[MR05] in this Section we show
how the existence of organizing modules applies to the study of algebraic p-adic functions. In partic-
ular, we can easily deduce ‘functional equations’ and p-adic Birch and Swinnerton-Dyer formulas (cfr.
[Sch83],[PR87],[PR92],[BD95]) relating the Taylor expansion of p-adic L-functions to the determinant
of the p-adic pairings from Section C.

Let R be a regular local ring. For every finite, torsion R-module M we write

charR(M) :=
∏

ht(P)=1

P lengthRP
(MP),

where (−)P is the localization of (−) at P, and the product is taken over all height-one primes in Spec(R)
[Bou89, Ch. 7]. Since every height-one prime of R is principal, this is a principal ideal. If M is a finite
R-module of positive rank, we put charR(M) := 0.

We fix in this Section an arithmetic prime ψ ∈ X arith(R; Zp) with value in Zp and with associated
p-stabilized modular form gψ.

11.3.1. p-adic L-functions. Let us define an algebraic p-adic L-function Lp(K, gψ) of gψ/K to be any
generator of the characteristic ideal

charZp(K)

(
H̃2
f,Iw(K/K,Tψ)

)
.

Let I := ker
(
εZp : Zp(K)� Zp

)
be the augmentation ideal in Zp(K). We say that Lp(K, gψ) vanishes to

order r ∈ N if Lp(K, gψ) ∈ Ir. We then define its r-th derivative

Lp(K, gψ)(r) ∈ Ir/Ir+1

to be the projection of Lp(K, gψ) modulo Ir+1.
In the same way, define an algebraic p-adic L-function Lp(K,g) of g/K to be any generator of

charR(K)

(
H̃2
f,Iw(K/K,T)

)
.

Let J = Jψ := ker
(
R(K)� R

ψ
� Zp

)
, where the first map is the augmentation map. As above: Lp(K,g)

vanishes to order r ∈ N at the arithmetic prime ψ if Lp(K,g) ∈ Jr and we define its r-th derivative at ψ

Lp(K,g)(r) = Lp(K,g)(r,ψ) ∈ Jr/Jr+1

as the projection of Lp(K,g) modulo Jr+1.

Remark 11.6. Let us write A := Homcts (T(K), µp∞) for the Kummer dual of T(K). By the results
recalled in Section 0.11, H̃2

f,Iw(K/K,T) is the Pontrjagin dual of H̃1
f (K,A) := H̃2

f (GK,S ,A; ∆(A)), where
∆(A) are the ‘dual local conditions’ to that defining R̃Γf,Iw(K/K,T). Then, as costumary in Iwasawa
theory, we can define Lp(K,g) as the characteristic ideal of the Pontrjagin dual of a suitable discrete big
(extended) Selmer group. A similar remark also applies to Lp(K, gψ).

11.3.2. Functional equations.

Proposition 11.7. There exists p-adic L-functions Lp(K,g) and Lp(K, gψ) such that:

Lp(K,g)ι = w(E/K) · Lp(K,g); Lp(K, gψ)ι = w(E/K) · Lp(K, gψ),

where
w(E/K) := (−1)rankZp

eH1
f (K,Tψ) = (−1)rankR eH1

f (K,T).



66

Proof. Let us begin by proving the first ‘functional equation’.
The statement is trivial if H̃2

f,Iw(K/K,T) has positive rank overR, so we can assume that H̃2
f,Iw(K/K,T)

is a torsion R-module. Let us fix a skew-Hermitian R-module Φ = (Φ, h) which organizes the arithmetic of
g/K, whose existence in guaranteed by Th. 11.4. By construction we have an isomorphism of R-modules
S ∼→ H̃2

f,Iw(K/K,T), where we recall that S := S(Φ) has by definition a free R-resolution

0→ Φ h→ Φ∗ → S → 0.

Choosing an R-basis {u1, . . . , urΦ} of Φ, this in turn gives us a free R-presentation:

0→ R
rΦ tHΦ→ R

rΦ → H̃2
f,Iw(K/K,T)→ 0,

where
HΦ :=

(
(ui, uj)h

)
1≤i,j≤rΦ

∈ GLrΦ(R)

is the matrix of the skew-Hermitian form (−,−)h with respect to the fixed basis. Localizing at P for every
height-one prime P ∈ Spec(R), it follows by the structure theorem for finite modules over principal ideal
domains that ordP (detHΦ) = ordP

(
charRH̃

2
f,Iw(K/K,T)

)
for every height one prime P of R. Since R

(and hence R) is regular we have R =
⋂

ht(P)=1RP , so that

(99) Lp(K,g) := det (HΦ)

is a p-adic L-function for g/K. Since (−,−)h is a skew-Hermitian pairing, HΦ is a skew-Hermitian matrix,
i.e. tHΦ = −Hι

Φ (where (mij)ι = (ι (mij))). It follows that

(100) ι (det (HΦ)) = (−1)rΦ · det (HΦ) .

As TJ := T(K)/J ∼→ Tψ as Galois-modules, with the notations of Sec. 11.2.1 we have R̃Γf (K,Tψ) ∼→
R̃Γf (K,TJ). By Prop. 11.5 we can then identify H̃1

f (K,Tψ) ∼→ M(J) and H̃2
f (K,Tψ) ∼→ S(J) (under

the isomorphism ΦJ
∼→ R̃Γf (K,TJ)). Since ι acts trivially on Zp = R/J , by definition we have an exact

sequence
0→M(J)→ ΦJ

hJ→ HomZp (ΦJ ,Zp)→ S(J)→ 0,
and the bilinear form (−,−)hJ induced by hJ is skew-symmetric, so that rankZp (hJ) := rankZp (Im(hJ))
is even. We thus obtain:

rankZpH̃
1
f (K,Tψ) = rankZpM(J) = rankZpS(J) = rΦ − rankZp (hJ) ≡ rΦ mod 2.

Combining this congruence with (99) and (100) we conclude the proof of the first formula.
To prove the second ‘functional equation’, we can again assume that H̃2

f,Iw(K/K,Tψ) is a torsion
Zp = Zp(K)-module. It follows by (89) and c) of Theorem 10.5 that we have an isomorphism of Zp-modules

H̃2
f,Iw(K/K,T)

pψ · H̃2
f,Iw(K/K,T)

∼→ H̃2
f,Iw(K/K,Tψ),

where pψ = $ψ ·R is the kernel of the map induced by ψ on Iwasawa algebras. In particular H̃2
f,Iw(K/K,T)

is a torsion R-module and there exists an organizing module Φ for g/K. Using the notations above, and
again Prop. 11.5 we can identify H̃2

f,Iw(K/K,Tψ) ∼→ S(pψ) ∼→ S/pψ. Since M(pψ) = 0 by the torsion
assumption and (96) we then obtain a free Zp-presentation:

0→ Zp
rΦ t eHΦ→ Zp

rΦ → H̃2
f,Iw(K/K,Tψ)→ 0,

where H̃Φ ∈ GLrΦ(Zp) is obtained applying ψ to HΦ. It follows that

Lp(K, gψ) := det
(
H̃Φ

)
= ψ (Lp(K,g))

is a p-adic L-function for gψ/K. Since ψ commutes with ι, we obtain the second formula from the first.
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Finally, we note that

rankRH̃1
f (K,T) ≡ rΦ ≡ rankZpH̃

1
f (K,Tψ) mod 2.

The second equality has already been observed above. For the first, we apply exactly the same argument
replacing J , M(J) and S(J) with the augmentation ideal I := ker

(
R� R

)
, M(I) ∼→ H̃1

f (K,T) and
S(I) ∼→ H̃2

f (K,T) respectively. (Indeed T(K)/I ∼→ T as Galois modules and ι induces the identity on
R = R/I.) �

11.3.3. A p-adic BSD formula. Recall our p-adic pairing

h̃wt
K/K,ψ,1,1 : H̃1

f (K,Tψ)⊗Zp H̃
1
f (K,Tψ) −→ Jψ/J

2
ψ.

Let us define the determinant of h̃wt
K/K,ψ,1,1 by the formula

det
(
h̃wt
K/K,ψ,1,1

)
:= det

((
h̃wt
K/K,ψ,1,1(ui ⊗ uj)

)
1≤i,j≤erψ

)
∈
(
J
erψ
ψ /J

erψ+1
ψ

)
/Z∗p,

where u1, . . . , uerψ is any Zp-basis of (the free Zp-module) H̃1
f (K,Tψ). (Here we use the natural ‘multiplica-

tion’
(
J/J2

)l → J l/J l+1 to consider the determinant as an element of Jerψ/Jerψ+1, and [α] = [β] ∈ (−)/Z∗p
if and only if α = u · β ∈ (−) for some u ∈ Z∗p.) In a similar way we define the determinant

det
(
h̃K/K,ψ,1,1

)
∈
(
Ierψ/Ierψ+1

)
/Z∗p

of the bilinear form
h̃K/K,ψ,1,1 : H̃1

f (K,Tψ)⊗Zp H̃
1
f (K,Tψ)→ I/I2,

where I is the augmentation ideal of Zp. By Lemma (10.8) we have:

(101) det
(
h̃K,ψ,1,1

)
= ψ

(
det
(
h̃wt
K,ψ,1,1

))
.

Theorem 11.8. Assume that H̃2
f,Iw (K/K,T) is a torsion R(K)-module, and let r̃ψ := rankZpH̃

1
f (K,Tψ).

Then Lp(K,g) vanishes to order r̃ψ at ψ and we have

Lp(K,g)(er,ψ) = #
(
H̃2
f (K,Tψ)tors

)
· det

(
h̃wt
K/K,ψ,1,1

)
∈
(
J
erψ
ψ /Jerψ+1

)
/Z∗p.

Proof. We write in the proof r̃ := r̃ψ and similarly J := Jψ. Let us fix an organizing module
Φ = (Φ, h) of the arithmetic of g/K. By Prop. 11.5 we have H̃1

f (K,Tψ) ∼→M(J) and H̃2
f (K,Tψ) ∼→ S(J),

where by construction
0→M(J)→ ΦJ

hJ→ Φ∗J → S(J)→ 0
is an exact sequence. Let us fix an R-basis u1, . . . , urΦ of Φ such that the projection ũ1, . . . , ũer of the first
r̃ elements in ΦJ = Φ/JΦ form a Zp-basis of M(J); this is possible since Zp is a principal ideal domain.
As in the proof of Prop. 11.7, and using the same notations, we can take

(102) Lp(K/K,g) := det (HΦ) =
∑
σ∈SrΦ

ε(σ) · (u1, uσ(1))h · · · (urΦ , uσ(rΦ))h,

where Sn is the permutation group on n-elements. By definition 0 = hJ(ũj)(?̃) = (ũj , ?̃)hJ := (uj , ?)h mod J
for every ? ∈ Φ∗ and j ≤ r̃, so that the sum in (102) belongs to Jer. Moreover, assume that σ ∈ Sn satisfies
σ(t) ≤ r̃ for some t ≥ r̃ + 1. Then (ut, uσ(t))h = −ι

((
uσ(t), ut

)
h

)
∈ J , so that taking (102) modulo Jer+1

we can disregard the contribution of these σ’s. In other words:

(103) Lp(K,g) ≡ A ·B mod Jer+1,

where, putting r̂ := rΦ − r̃ and vj := uj+er for 1 ≤ j ≤ r̂ we write

A :=
∑
σ∈Ser

ε(σ) · (u1, uσ(1))h · · · (uer, uσ(er))h; B :=
∑
σ∈Sr̂

ε(σ) · (v1, vσ(1))h · · · (vr̂, vσ(r̂))h.
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Using the exact sequence above we find (as in the proof of Prop. 11.7): there exists a p-adic unit u ∈ Z∗p
such that

(104) B ≡ u ·#
(
H̃2
f (K,Tψ)

)
mod J.

Finally, as (ui, uj)h mod J2 = h̃ΦJ ,1,1(ũi ⊗ ũj) by definition, we have:

A = det ((ui, uj)h) = det
(
h̃ΦJ ,1,1(ũi ⊗ ũj)

)
= det

(
h̃wt
K/K,ψ,1,1

)
∈
(
Jer/Jer+1

)
/Z∗p,(105)

where the last equality follows by the last statement of Prop. 11.5. Combining (103), (104) and (105) we
obtain the formula in the statement. �

Remark 11.9. In the preceding proof we used the fact that Zp is a principal ideal domain. Indeed
all the results above and the following Corollary are valid, mutatis mutandis for an arithmetic prime
ψ ∈ X arith(R;O) such that ψ(R) = O is a discrete valuation ring.

Corollary 11.10. Assume that H̃2
f,Iw(K/K,Tψ) is a torsion Zp(K)-module. Then Lp(K, E) vanishes

to order r̃ψ and

Lp(K, gψ)(erψ) = #
(
H̃2
f (K,T)tors

)
· det

(
h̃K/K,ψ,1,1

)
∈
(
Ierψ/Ierψ+1

)
/Z∗p.

Proof. As in the proof of Prop. 11.7 we have ψ (Lp(K,g)) = Lp(K, gψ) under our assumptions. Then
Lp(K, gψ) vanishes to order r̃ψ and by (101) we obtain the statement applying ψ to the formula displayed
in in the preceding Theorem. �

11.4. Proof of Theorem 8.1. In this Section the hypothesis and notations are those used in the
Introduction. Recall the family of primes {ψκ}κ defined by (72) and indexed by even integers κ. We will
write Tκ := Tψκ . We claim that for every algebraic extension K ⊂ L ⊂ K and every even integer κ ∈ U
there exists natural isomorphisms of R(L)-modules:

(106) H̃1
f,Iw(L/K,T) ∼= Mp(L,g); H̃1

f (KS/L,AT) ∼= Selp(L,g),

and natural isomorphisms of Zp(L)-modules:

(107) H̃1
f,Iw(L/K,Tκ) ∼= Mp(L, gκ); H̃1

f (KS/L,ATκ) ∼= Selp(L, gκ),

Before giving the proof, we show how Theorem 8.1 follows from this.
First of all: Theorem 10.5 tells us that taking the Pontrjaging duals of (106) and (107) we obtain

isomorphisms of R(L) and Zp(L)-modules respectively:

(108) H̃2
f,Iw(L/K,T) ∼= Sp(L,g); H̃2

f,Iw(L/K,Tκ) ∼= Sp(L, gκ).

The ‘arithmetic pairings’ mentioned in the Introduction are then defined, via the isomorphisms (106),
(107) and (108) as the ‘height’ and ‘Cassels-Tate’ pairings defined on the corresponding Selmer complexs
in Section 10:

hL/L,g := H̃L/L,1,1; hL/L,gκ := h̃L/L,ψκ,1,1;
cL,g := c̃πR(L),2,2; cL,gκ := c̃πψ(L),2,2;

hwt
L/L,gκ := h̃wt

L/L,ψκ,1,1,

where πκ := πR⊗R,ψκ Zp : Tκ⊗Zp Tκ → Zp(1). Moreover, under our assumption H1 we know by the work
of Kato and Rohrlich (see , e.g. [Gre97, Theorem 1.5]) that H̃2

f,Iw(Kcycl
∞ /K, Tp) ∼= Sp(L, g2) is a (finite)

torsion Zp(Kcycl
∞ )-module, where Kcycl

∞ /K is the cyclotomic Zp-extension of K. It then follows from the
Control Theorems proved in Section 14.2 that

H̃2
f (K/K,T) ∼= Sp(K,g) is a (finte) torsion R(K)-module.

Theorem 8.1 follows immediately from Theorem 11.4, Proposition 11.5, Prop. 11.7 and Theorem 11.8.
Coming to the proof of (106) and (107): using Iwasawa theory (cfr. Appendix 12) we can assume

that L/K is a finite sub-extension of K/K; in particular GL/K := Gal(L/K), GLw/Kv := Gal(Lw/Kv)
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and Gkw/kv are finite p-group for every prime w|v of L (where k∗ is the residue field at ∗). We note that,
writing T for T or Tκ we have:

(109) RΓcont(Lw, T ) and RΓcont(Lw,AT ) are acyclic complexes for every prime w - p of L.

Indeed, using local Tate duality the statement for RΓcont(Lw,AT ) follows from that for RΓcont(Lw, T ).
Moreover, as in the proof of Theorem 10.5, we can assume (using the control Theorems) that T = T2

∼= Tp
is the p-adic Tate module of E/Q. In this case we have, for every prime w of L dividing N := cond(E):

0 H3= E(Kv)p∞ = H0(GLw/Kv , E(Lw)p∞) =⇒ E(Lw)p∞ = 0,

where v|N is the prime of K lying below w. (The implication above follows easily from the facts that
GLw/Kv is a finite p-groups acting on a finite p-groups [Ser79, Lemma 2 pag. 138].) Exactly as in the
proof of Theorem 10.5 we conclude that RΓcont(Lw, Tp) is acyclic, proving also (109).

We now prove that, for every prime w|p of L:

(110) H0(Lw, F−w (T )) = 0.

For the proof of this assertion when T = Tκ we refer to [NP00, Sec. (3.1.5)], recalling that E is assumed
to have good ordinary reduction at p. Then the statement for T = T follows applying Nakayama’s Lemma
to the injection H0(Lv, F−v (T))⊗R,ψκ Zp ↪→ H0(Lw,Tκ) = 0.

Analogously: for every prime w|p of L we have

(111) H0(Lw, F−w (AT )) = 0.

Indeed, for T = T2 = Tp we have F−w (Tp) ∼= Ẽw[p∞] = the p∞-torsion of the reduction of E/Lw (see Section
9.3.4). Letting v|p be the prime of K lying below w, by assumption H2 we have H0(Gkw/kv , Ẽw[p∞]) ∼=
Ẽv(kv)p∞ = 0, so that as above we conclude H0(Lw, F−v (ATp)) = Ẽw(kw)p∞ = 0. Applying cohomology to
the exact sequence of GLw -modules 0→ F−w (ATκ)→ F−w (AT) ×$κ→ F−w (AT)→ 0 (where $κ is a generator
of ker(ψκ)) we also obtain (?κ) H0(Lw, F−w (AT))[$κ] ∼= H0(Lw, F−w (ATp)). Combining (?)2 with what
already observed we conclude H0(Lw, F−w (AT))[$2] = 0, so H0(Lw, F−w (AT)) = 0 by Nakayama’s Lemma
(as H0(Lw, F−w (AT)) is an R-module of cofinite type). Using again (?)κ we conclude the proof of (111) for
T ∈ {T,Tκ}.

Combining (109), (110) and (111) with the exact sequences (158) and (166) we immediately conclude:
for every finite subextension L/K of K/K the natural maps induces isomorphisms

H̃1
f (L,T) ∼= Mp(L,g); H̃1

f (L,AT) ∼= Selp(L,g);

H̃1
f (L,Tκ) ∼= Mp(L, gκ); H̃1

f (L,ATκ) ∼= Selp(L, gκ).
As explained above this concludes the proof of (106) and (107).
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12. Cyclotomic Iwasawa theory

In this Section we analyze more closely two-variable cyclotomic Iwasawa theory, i.e. we take K = Q
and K := Q∞ ⊂ Q (µp∞) the cyclotomic Zp-extension. One of our principal aims is to formulate a two-
variable main conjecture (see Sec. 12.5) ‘explaining’ and motivating the p-adic Birch and Swinnerton-Dyer
conjecture proposed in [Ven12].

In addition to Hypothesis 1, 2 and 3, we asume that p is not an anomalous prime if E/Qp has good
reduction. In this framework our Hypotheses are the following.

Fix an elliptic curve E/Q of conductor NE and a rational prime p. Let fE =
∑
n≥1 an(E) · qn ∈

S2(Γ0(NE),Z) be the newform attached to E/Q by the modularity theorem. We assume that (E, p)
satisfies the following conditions:
(Irr) E(Q)p is an irreducible Fp[GQ]-module;

(Fro) Either p‖NE or p - NE and ap(E) 6≡ 0, 1 mod p;

(Tam) p - 6 ·
∏
`|N E(Q`)tors, where N := NE/p

ordp(NE);

(Reg) R = Rg is a regular local ring, where g ∈ S2(Γ0(Np),Zp) is the p-stabilization of fE .
From Proposition 1 we easily obtain the following statement, showing that our theory is non-vacuous.

Proposition 12.1. Let E/Q be an elliptic curve without complex multiplication. The set of rational
primes p such that (E, p) satisfies the above conditions has Dirichlet density one.

We quote from the beginning the following result, which follows combining deep results of Kato and
Rohrlich with the results of the preceding Section.

Theorem 12.2. There exists a skew-Hermitian R(Q∞)-module which organizes the arithmetic of the
Hida family g/Q∞. Moreover H̃2

f,Iw (Q∞,Tψ) is a torsion Oψ(Q∞)-module for every ψ ∈ X arith(R,Oψ).

Proof. The work of Kato and Rohrlich (see, e.g. Theorem 1.5 in Section 1 of [Gre97]) implies that
the p-primary Selmer group Sel(Q∞, Ep∞) of E/Q∞ is Zp(Q∞)-cotorsion. Then the comparison results
between Selmer complexes and Greenberg Selmer groups tell us that H̃2

f,Iw(Q∞, Tp) is a torsion Zp(Q∞).
Using the Control Theorems proved in Section 10.3 and Theorem 10.5, we conclude that H̃2

f,Iw(Q∞,T) is a
torsion R(Q∞)-module, and that H̃2

f,Iw(Q∞,Tψ) is a torsion Oψ(Q∞)-module for every arithmetic prime
ψ ∈ X arith(R,Oψ). The existence of an organizing module for the arithmetic of g/Q∞ follows by Theorem
11.4. �

12.1. Mellin transforms. In order to compare the computations above with the conjecture proposed
in [Ven12], we will apply the ‘Mellin transform’ to the constructions of the preceding Sections.

For every open p-adic neighborhood U of 2 ∈ Zp, let A(U) ⊂ Zp[[k − 2]] be the ring of those power
series in (k − 2) converging for k ∈ U . We can endow A(U) with a structure of Λ := Zp[[1 + pZp]]-algebra,
via the unique embedding Λ ↪→ A(U) sending the group-like element γ ∈ 1 + pZp to the analytic function
on U : k 7→ γk−2 := expp

(
(k − 2) · logp(γ)

)
. As recalled in Section 9.2 (cf. [GS93]) there exists an open

neighborhood 2 ∈ U = UE ⊂ Zp, together with a unique morphism of Λ-algebrasM2 =Mg : R ↪→ A(U)
such that

M2(r)|k=2 = φg(r)
for every r ∈ R. (Recall that φg = ψp ∈ X arith(R; Zp) is the Zp-valued arithmetic point defined by
φg(a`) = a`(g) for every prime `.)

The (p-adic) cyclotomic character induces a canonical isomorphism χcy : G := Gal(Q∞/Q) ∼→ 1 + pZp.
WritingA for the ring of Zp-valued p-adic analytic functions on Zp, we consider the morphism of Zp-algebras

M1 : Zp := Zp(Q∞) ↪→ A
induced by the character G ↪→ A sending g ∈ G to the analytic function on Zp : s 7→ χcy(g)s−1.
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Finally, let A(U,Zp) ⊂ Zp[[k − 2, s − 1]] be the ring of formal power series in (k − 2, s − 1) which
converges for k ∈ U and s ∈ Zp. Then there exists a unique morphism of Zp-algebras

M2,1 : R := R(Q∞) −→ A(U,Zp)

such thatM2,1|R =M2 andM2,1|Zp =M1.

12.2. Algebraic p-adic L-functions. We write

Lp(E, s) :=M1

(
charZp(Q∞)

(
H̃2
f,Iw(Q∞, Tp)

))
∈ A

for the Mellin transform of any (algebraic) p-adic L-function of E/Q∞. (With this notation, s is the
‘cyclotomic variable’.) Then Lp(E, s) is determined only up to multiplication by units in Zp. We will
also write Lp(Q∞, E) fo the characteristic ideal of H̃2

f,Iw(Q∞, Tp). The ‘functional equation’ satisfied by
Lp(Q∞, E) translates into the following:

Proposition 12.3. (Functional equation) There exists Lp(E, s) such that

Lp(E, s) = w(E/Q) · Lp(E, 2− s).

Proof. For g ∈ G we haveM1 (ι(g)) (s) =M1(g−1)(s) = χcy(g)1−s = χcy(g)(2−s)−1 =M1(g)(2− s).
Since Zp = Zp[[σcy−1]] for every topological generator σcy ∈ Gal(Q∞/Q), it follows that ((M1 ◦ ι) (x)) (s) =
(M1(x)) (2 − s) for every x ∈ Zp. Then the Proposition is a reformulation of the functional equation for
Lp(Q∞, E) displayed in Prop. 11.7. �

Remark 12.4. Let E†(Q) be the extended Mordell-Weil group of E/Q. Assuming the finiteness of
X(E/Q)p∞ , the results of Section 4 of Part 1 give us

r̃ := rankZE
†(Q) = rankZpE(Q) + δp,

where δp := 1 (resp, δp := 0) if E/Qp has (resp., has not) split multiplicative reduction. In particular,
via the Birch and Swinnerton-Dyer conjecture, the sign w(E/Q) in the functional equation satisfied by
Lp(E, s) should be different from the sign in the functional equation of the complex Hasse-Weil L-function
L(E/Q, s) if and only if we are in the ‘exceptional case’, i.e. δp = 1.

In a similar way, we write

Lp(g, k, s) :=M2,1

(
charR(Q∞)

(
H̃2
f,Iw(Q∞,T)

))
∈ A(U,Zp)/R

∗

for the Mellin transform of any algebraic p-adic L-function of g/Q∞. We will also write Lp(Q∞,g) for the
characteristic ideal of H̃2

f,Iw(Q∞,T).

Proposition 12.5. Let egen := rankRH̃1
f (Q,T). We have:

1. Lp(g, 2, s) = Lp(E, s).
2. Lp(g, k, s) ∈ (s− 1)egen · A(U,Zp).
3. (Functional equation) There exists Lp(g, k, s) such that:

Lp(g, k, s) = (−1)egen · Lp(g, k, 2− s).

Proof. 1. Since H̃2
f,Iw(Q∞, Tp) is a torsion Zp-module by Theorem 12.2, we see as in the proof of Prop.

11.7 that ψp (Lp(Q∞,g)) = Lp(Q∞, E). As
(
M1 ◦ ψp

)
(∗) = (M2,1(∗))|(k,s)=(2,s), recalling the definitions

we obtain the statement.
2. Let I be the augmentation ideal of R. By Section 10.3 and Theorem 10.5 we have an isomorphism

of R-modules
H̃2
f,Iw(Q∞,T)

/
I
∼→ H̃2

f (Q,T).

Moreover (again as in the proof of Prop. 11.7) H̃1
f (Q,T) and H̃2

f (Q,T) have the same R-rank, so that

rankR
(
H̃2
f,Iw(Q∞,T)

/
I
)

= egen.



72

Localizing H̃2
f,Iw(Q∞,T) at the height-one prime I (and using the structure theorem for finite torsion

modules over PID’s) we deduce easily from this: lengthRI

(
H̃2
f,Iw(Q∞,T)I

)
≥ egen, so that

Lp(Q∞,g) ∈ Iegen
.

Applying the Mellin transform M2,1 we conclude Lp(g, k, s) ∈ (s − 1)egen , as claimed. (Indeed, I =
(σcy − 1) · R for every topological generator σcy ∈ Gal(Q∞/Q), and (M2,1(σcy − 1)) (k, s) is by definition
the analytic function

∑
n≥1

logp(χcy(σcy))n

n! · (s− 1)n ∈ (s− 1) · A(U,Zp).)
3.AsR = R[[σcy−1]] (with σcy as above), as in the proof of Prop. 12.3 we see that ((M2,1 ◦ ι) (x)) (k, s) =

(M2,1(x)) (k, 2− s) for every x ∈ R. Then the statement is a reformulation of the functional equation for
Lp(Q∞,g) proved in Prop. 11.7. �

Remark 12.6. As a direct consequence of Greenberg Conjecture [Gre94a],[NP00] we expect that
egen = 1 or 0, depending on the sign of the Hida family g. See Section 12.5 below for more details.

We are also interested in two other algebraic p-adic L-functions. The first one is the Mellin transform
of the characteristic ideal of the R-torsion submodule of H̃2

f (Q,T), i.e.

Lp(g, k) :=M2

(
charR

(
H̃2
f (Q,T)tors

))
∈ A(U)/R∗

The second one is the ‘generic restriction’ of Lp(g, k, s) to the line s = 1, defined by:

Lgen
p (g, k) :=

Lp(g, k, s)
(s− 1)egen

∣∣∣∣
s=1

∈ A(U)/R∗.

(See Theorem 12.16 for the precise relation between these two closely related p-adic L-functions.)

Remark 12.7. It follows from d) of Theorem 10.5 and standard structure theorems for symplectic
finite modules over principal ideal domains that the characteristic ideal of H̃2

f (K,T)tors is (represented by)
a square in R. In particular

Lp(g, k) =
(
L

1
2
p (g, k)

)2

∈ A(U)/R∗

for a suitable ‘square-root (algebraic) p-adic L-function’ L
1
2
p (g, k).

12.3. Pairings and regulators. Let J ⊂ A(U,Zp) be the ideal generated by (k−2) and (s−1), and

let as usual J := ker
(
R

εR→ R
φg→ Zp

)
. The Mellin transform induces a morphism M2,1 : J/J2 → J /J 2.

For ∗ = k, s, let us write ∂∗(f(k, s)) := ∂
∂∗f(k, s)

∣∣
(k,s)=(2,1)

(for every f(k, s) ∈ A(U,Zp)). Then ∂∗ induces
a morphism of Zp-modules ∂∗ : J /J 2 → Zp.

The isomorphism Tφg
∼= Tap(E/Q) =: Tp of Section 9.3.4 allows us to identify H̃1

f (K,Tφg ) with
H̃1
f (K,Tp), where the latter is defined using the ordinary structure on Tp (recalled in Section 9.3.4 too).

We can then consider the p-adic pairing

h̃wt
Q,1,1 = h̃wt

Q,φg,1,1 : H̃1
f (Q, Tp)⊗Zp H̃

1
f (Qp, Tp) −→ p/p2

attached in Section 10.5.1 to the Hida deformation T of Tp := Tap(E/Q) ∼= Tφg at the arithmetic prime
p := φg. The p-adic weight pairing attached to E/Q:

〈−,−〉Nek
Q,p : H̃1

f (Q, Tp)× H̃1
f (Q, Tp) −→ Zp

is defined by the formula
〈x, y〉Nek

Q,p :=
(
∂k ◦M2 ◦ h̃wt

Q,1,1

)
(x⊗ y),

for every x, y ∈ H̃1
f (K,Tp). We also have a ‘height pairing’

h̃Q∞/Q,1,1 = h̃Q∞/Q,φg,1,1 : H̃1
f (Q, Tp)⊗Zp H̃

1
f (Qp, Tp) −→ I/I2
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attached to the Galois deformation Tp(Q∞) of Tp at the augmentation ideal I ⊂ Zp(Q∞). Define the
cyclotomic p-adic height pairing attached to E/Q:

〈−,−〉MTT
Q,p : H̃1

f (Q, Tp)× H̃1
f (Q, Tp) −→ Zp

by the formula
〈x, y〉MTT

Q,p :=
(
∂s ◦M1 ◦ h̃Q∞/Q,1,1

)
(x⊗ y).

(Here Nek and MTT are abbreviations for Nekovář and Mazur-Tate-Teitelbaum respectively.) The following
Proposition follows by the discussion in Sections 10.5.1 and 10.5.2.

Proposition 12.8. 〈−,−〉Nek
Q,p (resp., 〈−,−〉MTT

Q,p ) is a skew-symmetric (resp., symmetric) Qp-bilinear
form.

Let now I := (s − 1) · A(U,Zp) and I := ker (εR) the augmentation ideal in R, so that we have a
morphismM2,1 : I/I

2 → I/I2. The cyclotomic A(U)-adic height pairing attached to T:

〈−,−〉cycl
T : H̃1

f (Q,T)× H̃1
f (Q,T) −→ A(U)

is defined by the formula

〈x, y〉cycl
T :=

∂

∂s
M2,1

(
H̃Q∞/Q,1,1(x⊗ y)

)∣∣∣∣
s=1

.

Here the I/I
2
-pairing H̃Q∞/Q,1,1 is defined in Section 10.6.

Proposition 12.9. 〈−,−〉cycl
T is a symmetric R-bilinear form, satisfying (with the notations of Lemma

10.14)
〈x, y〉cycl

T

∣∣∣
k=2

= 〈φg∗(x), φg∗(y)〉MTT
Q,p

for every x, y ∈ H̃1
f (Q,T).

Proof. This follows by the discussion in Sec. 10.6. �

In order to compute derivatives of the generic p-adic L-function Lgen
p (g, k), we now also introduce a

‘derived regulator’. Let H̃1
f,∞ ⊂ H̃1

f (Q, Tp) be the (left=right) radical of (the restriction of) 〈−,−〉Nek
Q,p . Let

{P1, . . . , Pr∞} be a Zp-basis of H̃1
f,∞ (which is a free Zp-module, as H̃1

f (Q, Tp) is free by, e.g. Theorem
10.5), where r∞ := rankZpH̃

1
f,∞. Since H̃1

f,∞ is p-adically saturated in H̃1
f (Q, Tp), we can complete {Pj}

to a Zp-basis {P1, . . . , Pr∞ , Q1, . . . , Qt} of H̃1
f (Q, Tp) (with r∞ + t = r̃). Define

RQ,p := R∞Q,p · RNek
Q,p ,

with ‘partial regulators’ defined by:

R∞Q,p := det
((
〈Pi, Pj〉MTT

Q,p

)
1≤i,j≤r∞

)
; RNek

Q,p := det
((
〈Qi, Qj〉NEK

Q,p

)
1≤i,j≤t

)
.

These are well-defined elements of Qp/Z∗p.

Remark 12.10. In Section 4 of Part 1 we defined an embedding i†E : E†(Q)⊗Qp ↪→ H̃1
f (K,Tp)⊗Qp

and a p-adic weight pairing on E†(Q) ⊗ Qp, denote again by 〈−,−〉Nek
Q,p . Indeed retracing the definitions

it follows easily from Prop. 10.9 that the this pairing is precisely the ‘restriction’ of 〈−,−〉Nek
Q,p ⊗ Qp (as

defined above) to the extended Mordell-Weil group E†(Q)⊗Qp.

Remark 12.11. With the notations of the preceding Remark, if follows easily from the results of
[Nek06, sec. 11.4] that the ‘restriction’ of 〈−,−〉MTT

Q,p ⊗Qp to E†(Q)⊗Qp is, up to sign, the bilinear form
denoted by the same symbol in Sec. 5 of Part 1. The latter is essentially the p-adic height pairing on E†(Q)
appearing in the formulation of the p-adic Birch and Swinnerton-Dyer conjectures proposed in [MTT86]
(explaining our notation).
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Remark 12.12. Assume that X(E/Q)p∞ is finite, so that i†E : E†(Q) ⊗ Qp
∼= H̃1

f (Q, Tp) ⊗ Qp is an
isomorphism. Moreover, under the assumptions of this Section, it is easily verified that this isomorphism
identifies the Zp-lattices E†(Q) ⊗ Zp and H̃1

f (Q, Tp). Using Zp-basis of H̃1
f (Q, Tp) coming from Z-basis

of E†(Q)/tors, we can define a regulator RQ,p belonging to Qp (and not only to Qp/Z∗p). The preceding
Remarks then imply that this regulator is precisely that appearing in the p-adic Birch and Swinnerton-Dyer
conjecture proposed in Sec. 6 of Part 1. (See Section 5 of loc. cit. for more details.)

12.4. p-adic BSD formulas.

Theorem 12.13. Let r̃ := rankZpH̃
1
f (Q, Tp). Then Lp(g, k, s) ∈ J er and there exists a p-adic unit

u ∈ Z∗p such that:

Lp(g, k, s) ≡ u ·#
(

(X(E/Q)p∞)/div

)
· det

(
〈−,−〉Nek

Q,p · (k − 2) + 〈−,−〉MTT
Q,p · (s− 1)

)
mod J er+1,

where the determinant is computed with respect to any Zp-basis of H̃1
f (Q, Tp).

Proof. Using the notations of Section 10.5, it follows directly by the definitions and the discussion in
Sections 10.5.1 and 10.5.2 that

M2,1

(
h̃wt

Q∞/Q,1,1(x⊗ y)
)
≡ 〈x, y〉Nek

Q,p · (k − 2) + 〈x, y〉MTT
Q,p · (s− 1) mod J 2.

Then the statement follows immediately by Theorem 11.8, together with the equality

#
(
H̃2
f (Q, Tp)tors

)
=
(

(X(E/Q)p∞)/div

)
.

Indeed Nekovář’s generalized Poitou-Tate duality (Sec. 0.11) and the existence of the Weil pairing (Section
9.3.4) imply that H̃2

f (Q, Tp)tors is the Pontrjagin dual of H̃1
f (Q, Ep∞)/div, so that these two groups have

the same order. Moreover it follows immediately from [Nek06, Sec. 9.3.7] (or easily from (166) and
Section 9.3.4) that, under our assumptions: H̃1

f (Q, Ep∞)/div
∼→ Selp∞(Q, Ep∞)/div. By construction this

last group is isomorphic to (X(E/Q)p∞)/div. (More precisely: using global duality it can be easily proved

that actually we have an isomorphism: H̃2
f (Q, Tp)tors

∼→ (X(E/Q)p∞)/div.) �

Corollary 12.14. With the notations of the preceding Theorem, ords=1Lp(E, s) ≥ r̃, and we have

Lp(E, s)
(s− 1)er

∣∣∣∣
s=1

= #
(

(X(E/Q)p∞)/div

)
· det

(
〈−,−〉MTT

Q,p

)
∈ Qp/Z∗p,

where the determinant is computed with respect to any Zp-basis of H̃1
f (Q, Tp).

Proof. By Prop. 12.5 we know that Lp(E, s) is obtained evaluating Lp(g, k, s) at k = 2. Evaluating
the R.H.S. of the p-adic BSD formula of the preceding Theorem we obtain the statement. �

Corollary 12.15. With the notations above, let r̃gen := r̃ − egen. Then:
1. ordk=2Lgen

p (g, k) ≥ r̃gen;
2. if r∞ = egen, then we have an equality

Lgen
p (g, k)

(k − 2)ergen

∣∣∣∣
k=2

= #
(

(X(E/Q)p∞)/div

)
· RQ,p ∈ Qp/Z∗p.

Proof. Combining the preceding Theorem with b) of Prop. 12.5, we know that Lp(g, k, s) lies in
the intersection J er ∩ (s − 1)egen · A(U,Zp). Recalling the definition of Lgen

p (g, k), 1. follows immediately.
Under the assumption egen = r∞, and using Proposition 12.8, the formula in the statement follows by the
Theorem and a simple computation. �

It is interesting to know the relation between the derivative Lgen
p (g, k) of Lp(g, k, s) along the cyclotomic

direction and Lp(g, k). This relation is made explicit in the following Theorem, which is also ‘included’ in
[Nek06, Th. 11.7.11] . We note the analogy with [PR87, Théorèm 1], in which the anticyclotomic variable
plays the role of the weight variable, and the module of universal norms plays the role of H̃1

f (Q,T). (See
also [MR05, Th. 10.2].)
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Theorem 12.16. We have

Lgen
p (g, k) = Lp(g, k) · det

(
〈−,−〉cycl

T

)
∈ A(U)/R∗,

where the determinant is computed on any R-basis of the free R-module H̃1
f (Q,T).

Proof. We can prove the Theorem with a similar argument to that used in the proof of Theorem
11.8 (with some complication coming from the fact the R is not a principal ideal domain). Alternatively,
we can use the following argument, which is essentially the one used in [PR87], [Pla97] and [Nek06, Th.
11.7.11] to prove similar statements.

First of all, we note that H̃1
f (Q,T) is a free R-module (of rank egen). In fact we know (e.g. by

c) of Theorem 10.5) that H̃1
f (Q,T) has no R-torsion. By the structure theorem for finite modules over

2-dimensional normal local rings [Bou89, Ch. 7], there exists a short exact sequence of R-modules

0→ H̃1
f (Q,T)→ Rn → A→ 0; #A <∞, n ≥ 0.

Using the exact sequence (89), the associated exact sequence of p = $ · R ‘torsion and cotorsion’ gives us
an injection:

A[$] ⊂ H̃1
f (Q, Tp)

∼→ Zerp
so that A[$] = 0. The tautological exact sequence A[$] ⊂ A

$→ A � A/$ gives also A/$ = 0, so finally
A = 0 by Nakayama’s lemma, as claimed.

Let us fix an organizing R-module Φ = (Φ, h) for g/Q∞, and a topological generator of σcy ∈
Gal(Q∞/Q), so that we can identify R

∼→ R[[X]] and I = (X) with X := σcy − 1. Let us consider
the following composition:

(112) ϑ : M(X) ∼→ S[X]
γ→ S/X ∼→ S(X) δ→ HomR (M(X), R) ,

where (with the notations introduced in Section 11.1) S(X) := S(I), M(X) := M(I) and S[X] denotes the
X-torsion in S. The morphisms are defined as follows: the first isomorphism comes from the connecting
morphism attached to the following snake diagram:

0 // Φ
X //

� _

h

��

Φ //
� _

h

��

ΦX := Φ/X

hX

��

// 0

0 // Φ∗
X // Φ∗ // HomR (ΦX , R) // 0,

where hX := h ⊗R R/X = h ⊗R R. The morphism γ is the natural map S[X] ↪→ S � S/X. The second
isomorphism comes from the definitions. Finally

δ : S(X) can−→ HomR (HomR (S(X), R) , R) ∼→ HomR (M(X), R) ,

where the isomorphism is the R-dual of the first isomorphism in (96). Let us write

[−,−]ϑ : M(X)⊗RM(X) −→ R

for the bilinear form attached to (112). It follows immediately from the definitions that

h̃ΦX ,1,1(m⊗ n) = [m,n]ϑ ·X mod I
2 ∈ I/I2

for every m,n ∈ M(X). Using Proposition 11.5 to identify M(X) with H̃1
f (Q,T) and correspondingly

h̃ΦX ,1,1 with H̃Q∞,1,1, we conclude:

(113) det
(
H̃Q∞,1,1

)
= det ([−,−]ϑ) ·Xegen = charR (coker (ϑ)) ·Xegen ∈

(
I
egen

/I
egen+1

)
/R∗,

where the determinants are computed on any R-basis of H̃1
f (Q,T) ∼→M(X).
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Before concluding the proof we recall some standard facts from the theory of finitely generated R[[X]]-
modules. Let f : M → N be a morphism of finite R-modules, such that ker(f) and coker(f) are torsion
R-modules. We write

H(f) :=
charR (coker(f))

charR(ker(f))
∈ Frac(R)/R∗.

If f : M → N and g : N → O are morphisms of the above type, we have

(114) H(g ◦ f) = H(f) · H(g).

Moreover, for every finite torsion R = R[[X]]-module T with characteristic ideal fT (X) := charR(T ), write
γT : T [X] ↪→ T � T/X. Then we have:

1. ordX=0fT (X) ≥ rX := rankR (T/X);
2. The following properties are equivalent: i) rX = ordX=0fT (X); ii) ker(γT ) and coker (γT ) are

torsion R-modules; iii) the localization T ⊗R RI is a semi-simple RI module;
3. if the conditions in 2. are satisfied, then we have

fT (X)
XrX

∣∣∣∣
X=0

≡ H(γT ) mod R∗.

All this properties (which can be proved exactly as in the ‘classical’ case of finite torsion modules over
Zp[[X]]) are proved in details in [Pla97, Sec. 4].

We can now easily conclude the proof. Assume first that S is semi-simple at the augmentation ideal I,
so that the kernel and cokernel of γ are finite, torsion R-modules. Since (by definition) ker(δ) is pseudo-
isomorphic to S(X)tors

∼→ H̃2
f (Q,T)tors, using 3. above, (113), (114) and the freeness of H̃1

f (Q,T) we
obtain: the characteristic ideal Lp(Q∞,g) of H̃2

f,Iw(Q∞,T) ∼→ S has the form:

Lp(Q∞,g) ≡ Lgen
p ·Xegen mod I

egen+1
; Lgen

p ∈ R− {0},
and we have the equality:

(115) det
(
H̃Q∞,1,1

)
· charR

(
H̃2
f (Q,T)tors

)
= Lgen

p ·Xegen ∈
(
I
egen

/I
egen+1

)
/R∗.

Retracing the definitions: M2

(
Lgen
p

)
· logp (χcy(σcy))egen = Lgen

p (g, k) and, up to multiplications by elements
in R∗

logp(χcy(σcy))e
gen
· ‘M2,1’

(
det
(
H̃Q∞,1,1

))
= det

(
〈−,−〉cycl

T

)
∈ Iegen/Iegen+1.

It follows that applyingM2,1 to the equality (115) we conclude the proof (when S is semi-simple at I).
Finally, let us assume that S is not semi-simple at I. Then Lp(Q∞,g) ∈

(
Xegen+1

)
, so that Lp(g, k, s)

belongs to (s−1)egen+1 ·A(U,Zp) and Lgen
p (g, k) ≡ 0 vanishes identically. On the other hand the non-semi-

simplicity of S at I implies that ker(γ) = S[X] ∩ X · S has positive rank over R (i.e. is non-zero in our
case), so that [−,−]ϑ has a non-trivial left (and right) radical. It follows by (113) that det

(
H̃Q∞,1,1

)
, and

so det
(
〈−,−〉cycl

T

)
also vanishes. �

Corollary 12.17. The following properties are equivalent:
1. Lgen

p (g, k) 6≡ 0;
2. 〈−,−〉cycl

T is non-degenerate;
3. H̃2

f,Iw(Q∞,T) is semi-simple at the augmentation ideal I.

Proof. This follows immediately by the preceding proof. �

Corollary 12.18. Let Uwt := Im
(
H̃1
f (Q,T)→ H̃1

f (Q, Tp)
)
⊂ H̃1

f,∞, and assume that the following
conditions are satisfied:

i) r∞ = egen;
ii) the restriction 〈−,−〉MTT

Q,p

∣∣∣
Uwt×Uwt

is non-degenerate.
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Then Lp(g, k) has order of vanishing r̃gen := r̃ − egen at k = 2 and we have an equality:

Lp(g, k)
(k − 2)ergen

∣∣∣∣
k=2

=
([
H̃1
f,∞ : Uwt

])−2

·#
(

(X(E/Q)p∞)/div

)
· RNek

Q,p ∈ Q∗p/Z∗p.

Proof. Since H̃1
f (Q,T) is a free R-module, by (89) the assumptions r∞ = egen means that Uwt has

finite index in the radical H̃1
f,∞ of 〈−,−〉Nek

Q,p

∣∣∣ eH1
f (Tp)× eH1

f (Tp)
. Recalling the definitions, Prop. 12.9 and our

assumptions give

(116)
[
H̃1
f,∞ : Uwt

]2
· R∞Q,p = det

(
〈−,−〉cycl

T

)∣∣∣
k=2
∈ Q∗p/Z∗p.

In particular RQ,p 6= 0 and combining Cor. 12.15 and Th. 12.16 we see that

ordk=2Lgen
p (g, k) = r̃gen = ordk=2Lp(g, k).

Finally, the formula in the statement follows taking the r̃gen-th derivative of the equality in Th. 12.16,
using Cor. 12.15 and (116). �

Remark 12.19. Combining Prop. 10.9, the exact sequence (89) and the non-degenerancy of the
localization at p of the Cassels-Tate pairing we see easily that the following conditions are equivalent:

1. r∞ = egen;
2. H̃2

f (Q,T)⊗R Rp is a semi-simple Rp-module.

By the discussion in [Ven12], we expect that this conditions should always be satisfied, i.e. that h̃wt
Q,1,1

is ‘as non-degenerate as possible’. If H̃2
f (Q,T) turns out to be non-semisimple at p, we have to consider

derived regulators attached to higher ‘p-graded quotients’ of H̃1
f (Q, Tp) [Nek06, Sec. 12.7] in order to

obtain generalizations of Cor. 12.15 and Cor. 12.18 (cfr. [BD95]).

Remark 12.20. The preceding Remark and Rem. 12.6 lead us to expect that r∞ = egen ∈ {0, 1}.
Moreover Schneider conjecture on the non-degenerancy of the cyclotomic p-adic height [Sch82],[MTT86]
suggests that R∞Q,p, and so RQ,p should be non-zero. By the preceding proof, this would imply that
det
(
〈−,−〉cycl

T

)
does not vanish at k = 2, so in particular, by Theorem 12.16: Lgen

p (g, k) 6≡ 0 has order of
vanishing r̃gen at k = 2. (For a discussion of this topic and some examples, we refer the reader to [Ven12,
Sec. 5] and Section 12.6 below.)

12.5. Relations with the Mazur-Kitagawa p-adic L-function. We now consider the analytic
side of the matter, i.e. the Mazur-Kitagawa p-adic L-function of R.

12.5.1. Analytic p-adic L-functions. Under our Hypothesis (Irr), Sec. 3.4 of [EPW06] (working on
ideas of Mazur and Kitagawa [Kit94]) attaches to R an element

LMK
p (g) ∈ R/R∗

interpolating the Mazur-Tate-Teitelbaum p-adic L-functions attached to the elements of g. Here we write
LMK
p (g) to denote the projection in R of any L-function denoted L(m, N, 1) ∈ hord

∞,m[[G]] in loc. cit. (where
m is as in Section 9.2 and 1 in the argument of the p-adic L-function stands for the trivial character).

More precisely, LMK
p (g) satisfies the following interpolation property. Given an arithmetic map ψ =

ψq ∈ X arith(R) let us write Oq := ψq (R) and ψq : R→ Oq[[Gal(Q∞/Q)]] =: Oq for the morphism induced
by the arithmetic map ψq. Then there exists α ∈ R∗ such that

(117) ψq

(
LMK
p (g)

)
= ψq(α) · LMTT

p,Ωq
(gq) ∈ Oq

for every arithmetic map ψq ∈ X arith(R). Here Ωq = Ω+
gq
∈ C is a certain (fixed) ‘canonical’ Shimura

period for gq (see [EPW06, Sec. 3.1]) and LMTT
p,Ωq

(gq) is the Mazur-Tate-Teitelbaum p-adic L-function
attached in [MTT86] to gq (and the unique ‘allowable p-root’ ap(q) = ap(gq)), normalized with respect
to Ωq.
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The power series LMTT
p,Ωq

(gq) is characterized by the following interpolation property. For every even
Dirichlet character ψ of conductor cψ, and every 0 < s0 < weight(q), define

Lalg
Ωq

(gq, ψ, s0) :=
cs0−1
ψ · (s0 − 1)! · τ(ψ)

(2πi)s0−1 · Ωq
· L(gq, ψ, s0) ∈ Frac (Oq) ,

where τ(ψ) denotes the Gauss sum and L(gq, ψ, s) is the Hecke complex L-function of gq twisted by ψ.
Let us identify Gal(Q∞/Q) ∼→ 1 + pZp under the p-adic cyclotomic character χcy. Let u ∈ 1 + pZp be
a topological generator, so that Oq = Oq[[X]] with X := u − 1, and write LMTT

p,Ωq
(gq, X) := LMTT

p,Ωq
(gq).

Then: for every Dirichlet character η : Z∗p � 1 + pZ∗p → Q∗p of conductor pm (m ≥ 0) and every integer
0 < s0 < weight(q):

ηχs0−1
cy

(
LMTT
p,Ωq

(gq)
)

:= LMTT
p,Ωq

(gq, η(u) · us0−1 − 1)

= ap(q)−m ·
(

1− ηω1−s0(p) · ps0−1

ap(q)

)
· Lalg

Ωq
(gq, ηω

1−s0 , s0),(118)

where ω is the Teichmüller character. (The Weierstrass preparation theorem immediately implies that
LMTT
p,Ωq

(gq) is determined by these values.) From now on we write simply

Lp(gq) := LMTT
p,Ωq

(gq).

As follows by the results in [GV00, Sec. 3] (again under Hyp. 1) we can choose Ωp = ΩE as the
real Nerón period of E/Q, i.e. the complex period appearing in the classical Birch and Swinnerton-Dyer
conjecture. (We recall that g = gp is the p-stabilization of fE .) Here we insist to make this choice for Ωp,
and to normalize LMK

p (g) in such a way that

(119) ψp

(
LMK
p (g)

)
= Lp(E) := LMTT

p,ΩE (gp).

Then LMK
p (g) is a well-defined element of R up to multiplication by a unit α ≡ 1 mod p of R.

12.5.2. Two-variable main conjecture. Let us write

Lp(g, k, s) :=M2,1

(
LMK
p (g)

)
∈ A(U,Zp)

as the Mellin transform of any LMK
p (g). By the discussion above, this is a well-defined element of A(U,Zp)

up to multiplication by a unit α ∈ R∗ such that α(2) = ψp(α) = 1.

Conjecture 12.21. Lp(g, k, s+ k/2− 1) = Lp(g, k, s) ∈ A(U,Zp)/R
∗
.

In the preceding Conjecture, the ‘twist’ s 7→ s+ k
2 − 1 in the cyclotomic variable takes care of the twist

T 7→ T := T ⊗R Θ−1
R in the Hida deformation, since (as discussed in Sec. 9.3.3) this produces a twist by

Zp(1 − k/2) in the specialization of T at an arithmetic point of weight k. We can also reformulate the
conjecture as follows. Let us write again ΘR : R→ R for the morphism of R-algebras induced by ΘR. We
can lift ΘR to a morphism ΘR : R→ R such that εR ◦ΘR = ΘR, defining

ΘR

 ∞∑
j=0

rj · (σcy − 1)j
 :=

∞∑
j=0

rj · (ΘR(σcy) · σcy − 1)j

(where as usual σcy ∈ Gal(Q∞/Q) is a topological generator). We can reformulate the preceding conjecture
as follows.

Conjecture 12.22. ΘR

(
LMK
p (g)

)
generates the characteristic ideal of H̃2

f,Iw(Q∞,T).
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12.5.3. Functional equations. As shown in [How07, Prop. 2.3.6], given q ∈ X arith(R), the functional
equation studied in [MTT86] reads in our case:

(120) χ (Lp(gq)) = w(g) · χ−1Θq(〈N〉) · χ−1Θ2
q (Lp(gq))

for every continuous character χ : Gal(Q∞/Q) → Q∗p, where 〈N〉 ∈ 1 + pZp is the projection of N to
principal units and

Θq : GQ
ΘR→ R∗

ψq→ Q∗p.
(Recall that ΘR factorizes through Gal(Q∞/Q), since ∆ = (Z/NpZ)∗ acts trivially on R via the diamond
morphism.) Here w(g) ∈ ±, which is independent on the arithmetic point q, is the sign of the Hida family
alluded to in Rem. 12.6. It equals minus the eigenvalue of the Atkin-Lehner operator wN acting on fE .
Writing sign(E/Q) to be the sign in the functional equation satisfied by the Hecke L-series L(fE , s) =
L(E/Q, s) at s = 1, we also have:

w(g) = (−1)mp(E) · sign(E/Q); mp(E) :=

 1 if ap(E) = 1;

0 otherwise.

In other words, w(g) differs by sign(E/Q) if and only if E/Q has split multiplicative reduction.
Let κ ∈ U ∩ Z≥2 be an even integer, and define the arithmetic point of weight κ and trivial character

qκ := ker
(
ψκ : R M2→ A(U)

f 7→f(κ)→ Zp
)
∈ X arith(R); gκ := gqκ .

It follows by (117) that Lp(g, κ, s) = α(κ) · χs−1
cy (Lp(gκ)). As Θqκ(g) = χcy(g)κ/2−1, taking q = qκ and

χ = χs−1
cy (s ∈ Zp) in equation (120) we then obtain

Lp(g, κ, s) = w(g) · 〈N〉κ/2−s · Lp(g, κ, κ− s).

It follows that, writing Λp(g, k, s) := 〈N〉s/2 · Lp(g, k, s), we have a functional equation

(121) Λp(g, k, s) ≡ w(g) · Λp(g, k, k − s).
By the description of w(g) given above, we see that the classical Birch and Swinnerton-Dyer conjecture
predicts: w(g) ?= (−1)rankZpE

†(Q). In any case, recalling that rankRH̃1
f (Q,T) has the same parity as

rankZpH̃
1
f (Q, Tp) (by Prop. 11.7), the parity conjecture proved by Nekovář in Section 12 of [Nek06] gives:

w(g) = (−1)egen .

Then (121) is consistent, via Conjecture 12.21 with the functional equation (Prop. 12.5) satisfied by
Lp(g, k, s).

12.5.4. Weight-variable main conjecture. By (121) we see that w(g) = −1 implies that Lp(g, k, s)
vanishes on the central critical line s = k/2, so that it is divisible by (s − k/2). We define the generic
restriction of Lp(g, k, s) to the central critical line as the analytic function on U :

Lgen
p (g, k) :=

Lp(g, k, s)
(s− k/2)e(g)

∣∣∣∣
s=k/2

∈ A(U); e(g) :=

 1 if w(g) = −1;

0 if w(g) = +1.

Then Greenberg Conjecture [Gre94a] and the conjectural equality of the order of vanishing of L(gκ, k) and
Lp(gκ, k) at s = κ/2 for κ > 2 (with the notations introduced above) coming from Bloch-Kato conjectures
predict that Lgen

p (g, k) is not identically zero. Moreover, since H̃1
f (Q,T) ‘interpolates’ the Bloch-Kato

Selmer groups attached to lattices in the Deligne representations {Vq}q∈X arith(R) of Sec. 9.3.3, again by
Bloch-Kato conjecture we expect the equality:

e(g) ?= egen.

(We refer the reader to [NP00] for more details.) As a direct consequence of Conjecture 12.21 we are then
lead to the following
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Conjecture 12.23. Lgen
p (g, k) = Lgen

p (g, k) ∈ A(U)/R∗.

12.5.5. Relations with p-adic BSD conjectures. Combining Cor. 12.15, Rem. 12.19, and the Tate-
Shafarevich conjecture, the preceding Conjecture leads us to expect the following equality:

(122)
Lgen
p (g, k)

(k − 2)ergen

∣∣∣∣
k=2

?≡ # (X(E/Q)) · RQ,p mod Z∗p,

where r̃gen := rankZE
†(Q)− e(g).

We note that, under our normalization (119), the leading coefficient of Lgen
p (g, k) at k = 2 is a well-

defined element of Qp (i.e. does not depend on the choice of LMK
p (g) ∈ R/R∗). Moreover, assuming the

finiteness of X(E/Q), we can as well define RQ,p as an element of Qp (see Rem. 12.12). In [Ven12] the
following more precise conjecture is proposed (cfr. Rem. 12.12 and Rem. 12.20):

1. ordk=2L
gen
p (g, k) ?= r̃gen;

2. the leading coefficient of Lgen
p (g, k) at k = 2 is given by:

(123)
Lgen
p (g, k)

(k − 2)ergen

∣∣∣∣
k=2

?= Ep ·BSD(E/Q) · RQ,p ∈ Q∗p.

Here BSD(E/Q) is the p-part of the algebraic factor appearing in the R.H.S. of the classical Birch and
Swinnerton-Dyer conjecture, i.e.

BSD(E/Q) :=
# (X(E/Q)) ·

∏
6̀=∞ c`(E/Q)

# (E(Q)tors)
2 ,

where c`(E/Q) = [E(Q`) : E0(Q`)] is the Tamagawa factor of E/Q` (see [Sil86, Ch. VII]). Moreover the
‘Euler factor’ Ep satisfies (see [Ven12, Sec. 6.1])

Ep
·= (1− αp)2

(
resp., 1, ordp(qE)−1 = cp(E/Qp)−1

)
if E/Qp has good (resp., non-split multiplicative, split multiplicative) reduction, where ·= denotes equality
up to some power of 2 (and αp = ap(p) is the p-adic unit defined in Sec. 1). Using Hyp. (Irr) (resp.,
Hyp. (Fro), Hyp. (Tam)) we see that E(Q)tor (resp., (1 − αp), c`(E/Q`) for ` 6= p) is a p-adic unit. As
cp(E/Q) ≤ 4 if E/Qp has not split multiplicative reduction [Sil86, pag. 359] (and p ≥ 5 by assumption),
it follows

# (X(E/Q)) ≡ Ep ·BSD(E/Q) mod Z∗p,
so that (122) and (123) are consistent with each others.

12.6. Exceptional-zero formulas. We assume in this section that E/Q is exceptional at p, i.e. that
E/Qp has split multiplicative reduction. Let qE ∈ pZp be the Tate period of E/Qp, and let

logE : E(Qp)
Φ−1
Tate→ Q∗p

logqE→ Qp

be the formal group logarithm on E/Qp. In light of the main conjectures of the preceding Sections, the
following theorem is an algebraic manifestation of the ‘exceptional-zero formulas’ proved by Greenberg and
Stevens in [GS93] and by Bertolini and Darmon in [BD07].

Theorem 12.24. Assume that E/Qp has split multiplicative reduction and that X(E/Q)p∞ is finite.
1. If E(Q) is finite, ords=1Lp(E, s) = 1 and we have equalities in Q∗p/Z∗p:

Lgen
p (g, 2) = # (X(E/Q)p∞) · logp(qE) =

d

ds
Lp(E, s)s=1.

2. If rankZE(Q) = 1, then Lgen
p (g, k) ≡ Lp(g, k) has order of vanishing 2 at k = 2, and we have an

equality in Q∗p/Z∗p:

d2

dk2
Lp(g, k)k=2 = 2 ·# (X(E/Q)p∞) · logE (P)2

,

where P is any generator of E(Q) modulo torsion.
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Proof. As X(E/Q)p∞ is finite, we have an isomorphism i†E : E†(Q)⊗ Zp
∼→ H̃1

f (Q, Tp), under which
we identify these Zp-modules (see Remarks 12.10, 12.11 and 12.12). Let qE ∈ pZp be the p-adic Tate period
attached to E/Qp (see Section 9.3.4).

If E(Q) is finite, then H̃1
f (Q, Tp) = qZ

E ⊗ Zp. Moreover, as rankRH̃1
f (Q,T) ≡ rankZpH̃

1
f (Q, Tp) mod 2

by Prop. 11.7 and H̃1
f (Q,T) is a free R-module, Corollary 10.4 gives us:

H̃1
f (Q,T) ∼→ R; H̃1

f (Q, Tp) = H̃1
f,∞; Uwt ⊗Zp Qp

∼→ H̃1
f (Q, Vp)

(with Uwt is as in Cor. 12.18). In particular we have r̃ = r∞ = egen = 1 and r̃gen = 0 with the notations
above. By [Nek06, Theorem 11.3.9] (or Lemma 10.7 in Part 2) we we obtain:

R∞Q,p = RQ,p = det
(
〈−,−〉MTT

Q,p

)
= 〈qE , qE〉MTT

Q,p = logp(qE).

Finally, thanks to the proof of Manin conjecture given in [BSDGP96], we know that logp(qE) 6= 0.
Combined with Cor. 12.14 and Cor. 12.15, this proves 1.

Let us now assume that rankZE(Q) = 1, and let us fix a generator P of E(Q)/tor. Then, writing
P̃ = (P, yP) ∈ E†(Q) for a lift of P, H̃1

f (Q, Tp) = Zp · qE ⊕ Zp · P̃ (recall that by assumption E(K)p = 0).
Combining Remark 12.10 with the computations carried out in Section 4.4 of Part 1 we have:〈

qE , P̃
〉Nek

Q,p
=

1
2
· logqE (yP) =

1
2
· logE(P) ∈ Q∗p.

In particular H̃1
f,∞ = 0 = Uwt, so that r∞ = egen = 0, and r̃ = 2 = r̃gen. Moreover the skew-symmetricity

of 〈−,−〉Nek
Q,p gives:

RQ,p = RNek
Q,p = det

 0 1
2 · logE(P)

− 1
2 · logE(P) 0

 = logE(P)2 ∈ Q∗p/Z∗p.

Together with Cor. 12.18 this proves 2., and with it the proposition. �

12.6.1. Example : X0(11) at p = 11. We close this section giving the simplest ‘exceptional example’.
Let p = 11 and let us consider the elliptic curve

X0(11) : y2 + y = x3 − x2 − 10x− 20,

which is the curve denoted 11A1 in Cremona’s tables. X0(11) has split multiplicative reduction at p = 11
and E(Q) ∼→ Z/5Z, so it satisfies Hypothesis 3. Moreover there exists no Q-rational 11-isogeny defined on
X0(11), so that Hypothesys 1 is satisfied. Finally, Hypothesis 2 is satisfied with R = Z11[[1 + pZ11]], since
we know that S2(Γ1(11),C) is one-dimensional, generated by fX0(11) = g (see [Hid86a, Cor. 1.3]).

Write q for the 11-adic Tate period of X0(11)/Q11 and g for the Hida family attached to X0(11) at
p = 11, such that gp = fX0(11). The computations in [MTT86, Sec. 13, Ch. II] tell us: q = 115 · u and
L11(E) := log11(q)/ord11(q) = 11 · v, with u, v ∈ Z∗11. Moreover by the work of Kolyvagin it is known that
Sel(Q, X0(11)11∞) = 0, so that the preceding theorem gives:

(124) Lgen
11 (g, 2) = log11(q) = 11 · u; u ∈ Z∗11.

Fix a topological generator γ of 1 + 11Z11, and a topological generator σcy ∈ Gal(Q∞/Q) such that
χcy(σcy) = γ. Then we have R = Z11[[X,Y ]], where X := [γ]− 1 ∈ R is a generator of p and Y := σcy − 1
generates the augmentation ideal I of R. Let us write

L11(Q∞,g) ≡ Y · Lgen
11 mod I

2
; Lgen

11 ∈ R.
Then (recalling the definitions) (124) gives us logp(γ) · ψp (Lgen

11 ) = 11 · u, i.e.

Lgen
11 ∈ R∗.

It follows L11(Q∞,g) = Y ∈ R/R∗, so that

L11(g, k, s) ≡
(
γs−1 − 1

)
mod R

∗
; L11(X0(11), s) ≡

(
γs−1 − 1

)
mod Z11

∗
.



82

Moreover, using Th. 12.16 (and the proof of Cor. 12.18): Lgen
11 (g, k) ≡ 11 ≡ L11(g, k) mod R∗.

On the analytic side of the matter, the Mazur-Kitagawa 11-adic L-function attached to X0(11) is
computed in [EPW06, Sec. 5.3], where it is shown that

LMK
11 (g) ≡ σcy −ΘR(σcy) mod R

∗
.

(Note that [EPW06] uses a different normalization for the diamond morphism, so that their 〈γ〉1/2p · γ−1

is our Θ(σcy)‘ = [γ]1/2’.) We immediately deduce:

L11(g, k, s) ≡
(
γs−k/2 − 1

)
mod R

∗
; L11(g, k, s+ k/2− 1) ≡ L11(g, k, s) mod R

∗
,

i.e. Conjecture 12.21 holds for (E/Q, p) = (X0(11)/Q, 11).



Part 3

A note on Kato zeta elements and exceptional
zero formulas



Introduction

We fix in this note an elliptic curve A/Q having an odd prime p of split multiplicative reduction. For
every integer n we write Qn ⊂ Q(µpn+1) for the sub-field of degree pn over Q and Q∞ :=

⋃
n∈N Qn

for the cyclotomic Zp-extension of Q. Let Φ∞ =
⋃
n∈N Φn be the cyclotomic Zp-extension of Qp, so

that Φn is the completion of Qn at (the unique prime above) p. We will identify the Iwasawa algebra
Λ := Zp[[Gal(Q∞/Q)]] with Zp[[Gal(Φ∞/Qp)]]. Let T be a finite Zp-module equipped with a continuous
linear action of G = GQ (resp., GQp), and write Fn = Qn (resp., Φn) for every 0 ≤ n ≤ ∞. Then we write

H1
Iw(F∞, T ⊗Q) :=

(
lim←− n∈NH

1(Fn, T )
)
⊗Q, the inverse limit being taken with respect to the corestriction

maps.
Tate’s theory [Tat95] gives a p-adic analytic isomorphism: ΦTate :

(
Gm/q

Z
A

)
/Qp
∼= A/Qp , where qA ∈

pZp is the Tate period of A/Qp . Since qA has positive valuation, identifying A(Q)pn ∼=
(
Q∗p/qZ

A

)
pn

as
GQp -modules via ΦTate, we obtain a surjective morphism of GQp -modules πqA : A(Q)pn � Z/pnZ, defined
by πqA(x mod qZ

A) := pn·ordp(x)
ordp(qA) mod pn. This induces on p-adic Tate modules a surjective morphism of

Zp[GQp ]-modules: Tap(A)� Zp. Composed with restriction from GQ to GQp this induces residue maps:

∂p,n : H1(Qn, Vp(A))→ H1(Φn,Qp); ∂p,∞ := lim
n→∞

∂p,n : H1
Iw(Q∞, Vp(A))→ H1

Iw(Φ∞,Qp),

where Vp(A) := Tap(A) ⊗Zp Qp. Writing IΛ for the augmentation ideal of Λ, the work of Coleman gives
a morphism of Λ-modules C∞ : H1

Iw (Φ∞,Qp) → IΛ ⊗ Q, ‘interpolating’ the Bloch-Kato dual exponential
maps attached to the trivial representations Qp of GΦn . (See Section 13 for the details.) Composed with
∂p,∞ this gives the Coleman map:

H1
Iw (Q∞, Vp(A))→ IΛ ⊗Q; u 7→ Lu,

Following Rubin [Rub94],[Rub98] we write Lp(u, s) for the p-adic Mellin transform of the measure Lu:
for every s ∈ Zp

Lp(u, s) := χs−1
cycl (Lu) ,

where χcycl : Gal(Q∞/Q) ∼= 1 + pZp is the p-adic cyclotomic character. It is an (locally) analytic p-adic
function. We think of Lp(u, s) as a p-adic L-function: this is possible thanks to the work of Kato (recalled
below), allowing us to construct the Mazur-Tate-Teitelbaum p-adic L-function of A/Q by this recipe.

12.7. Exceptional zero formulas I: abstract case. Let us fix for the rest of this Section a non-zero
‘universal norm’ u = limn→∞ un ∈ H1

Iw (Q∞, Vp(A)), for elements un ∈ H1(Qn, Vp(A)).
By construction Lp(u, 1) = 0, so that we are interested in the value of its first derivative at s = 1.

The following Proposition, whose proof is postponed to Section 17, gives an explicit description of this
derivative. We recall that the L-invariant of A/Qp [MTT86] is defined by

Lp (A) :=
logp(qA)
ordp(qA)

,

where logp is Iwasawa’s p-adic logarithm. We decompose ∂p := ∂p,0 as

∂p = ∂log
p ⊕ ∂ord

p : H1(Q, Vp(A))→ Homcontinuous

(
Gab

Qp ,Qp

) ∼= Qlog
p ⊕Qord

p .

Here Gab
Qp = Gal(Qp(µp∞)/Qp) × GFp is the Galois group of the maximal abelian extension of Qp, and

Q†p is a copy of Qp. The isomorphism is defined by ψ 7→ (logp(1 + p)−1 · ψ(γ0), ψ(Frobp)), where γ0 ∈
Gal(Qp(µp∞)/Qp) is such that χcycl(γ0) = 1 + p and Frobp ∈ GFp is the Frobenius element.

Proposition 12.25. d
dsLp(u, s)s=1 =

(
1− p−1

)−1 ·Lp(A) · ∂log
p (u0).

Let H1
f (Q, Vp(A)) ⊃ A(Q)⊗Qp be the compact Selmer group with Qp-coefficients, defined by the exact

sequence:

0→ H1
f (Q, Vp(A))→ H1(Q, Vp(A))

Q
` res`−→

∏
` prime

H1(Q`, Vp(A))
A(Q`)⊗Qp

.
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(Here we identify A(Q`) ⊗ Qp with a submodule of H1(Q`, Vp(A)) via the Kummer map.) It is easily
seen that ker (∂p) = ker

(
∂log
p

)
(see Section 17.1), so that combining the preceding Proposition with the

description of H1
f (Q, Vp(A)) given in [Gre97] (cfr. the proof of Lemma 14.6) we obtain the following:

Corollary 12.26. d
dsLp(u, s)s=1 = 0 if and only if u0 ∈ H1

f (Q, Vp(A)).

12.7.1. We assume for the rest of this Section the following:
Hypothesis: 0 6= u0 ∈ H1

f (Q, Vp(A)).

Remark 12.27. The Hypothesis u0 6= 0 is made only to avoid trivial cases. Indeed H1
Iw(Q∞, Vp(A))

has no non-trivial IΛ ⊗ Q-torsion, and H1
Iw(Q∞, Vp(A))

/
IΛ injects into H1(Q, Vp(A)) under u 7→ u0, so

that we can eventually divide u by a power of a generator of IΛ to get u0 6= 0.

By the Corollary d
dsLp(u, s)s=1 = 0. In this case we can express the second derivative of Lp(u, s) at

s = 1 in terms of the canonical p-adic cyclotomic height of u0. We begin by recalling some constructions
from (among others) [MTT86], [Nek93], [Nek06], referring to Section 14 for the details.

Write H̃1
f (Q, Vp(A)) for Nekovář’s extended Selmer group attached to the p-ordinary representation

Vp(A) [Nek06, Ch. 6], sitting in a short exact sequence

(125) 0→ qA ·Qp → H̃1
f (Q, Vp(A))→ H1

f (Q, Vp(A))→ 0

and admitting a natural splitting σ̃ : H1
f (Q, Vp(A)) ↪→ H̃1

f (Q, Vp(A)). (Like (non-strict) Greenberg
Selmer groups [Gre91], Nekovář’s extended Selmer modules ‘capture algebraically’ trivial-zeros of p-adic
L-functions in the sense of [MTT86].) To clarify its structure further: let A†(Q) be the extended Mordell-
Weil group of A/Q [MTT86],[BD96], giving rise to an exact sequence

(126) 0→ qA ·Qp → A†(Q)⊗Qp → A(Q)⊗Qp → 0

admitting a canonical section σ : A(Q) ⊗ Qp ↪→ A†(Q) ⊗ Qp. Then there exists a natural injective
morphism of short exact sequences i†A : (126) ↪→ (125) respecting the natural sections σ and σ̃. Combined
with Kummer theory this gives: H̃1

f (Q, Vp(A)) is isomorphic to A†(Q)⊗Qp provided that the p-part of the
Tate-Shafarevich group X(A/Q) is finite. We will identify H1

f (Q, Vp(A)) and A†(Q) ⊗ Qp as submodules
of H̃1

f (Q, Vp(A)) via σ̃ and i†A respectively.
Section 11 of [Nek06] constructs a canonical extended (cyclotomic) p-adic height

〈−,−〉Nek
Q,p : H̃1

f (Q, Vp(A))× H̃1
f (Q, Vp(A)) −→ Qp.

It is a symmetric Qp-bilinear pairing, satisfying

〈qA, qA〉Nek
Q,p = logp(qA); 〈qA, P 〉Nek

Q,p = logA(P )

for every P ∈ H1
f (Q, Vp(A)). Here (with an abuse of notation) we write

logA : H1
f (Q, Vp(A))

resp−→ A(Qp)⊗Qp
logA−→ Qp,

where logA : A(Qp) ⊗ Qp → Qp is the formal group logarithm on A/Qp , defined via Tate’s uniformization
as the Qp-linear extension of

logqA ◦Φ
−1
Tate : A(Qp) ∼= Q∗p/qZ

A → Qp,

with logqA := logp−Lp(A) · ordp is the branch of the p-adic logarithm vanishing at qA ∈ pZp. The p-adic
(cyclotomic) regulator of A/Q is then defined by

RNek
Q,p := det

((
〈Pi, Pj〉Nek

Q,p

)
1≤i,j≤er

)
∈ Qp,

where {Pj}erj=1 is any basis of A†(Q)
/

Torsion. We also consider the Schneider logp-height

〈−,−〉Sch
Q,p : H1

f (Q, Vp(A))×H1
f (Q, Vp(A)) −→ Qp,
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defined by the formula

(127) 〈P,Q〉Sch
Q,p :=

1
logp(qA)

· det

〈qA, qA〉
Nek
Q,p 〈qA, P 〉Nek

Q,p

〈Q, qA〉Nek
Q,p 〈P,Q〉Nek

Q,p

 = 〈P,Q〉Nek
Q,p −

logA(P ) · logA(Q)
logp(qA)

.

(We recall that logp(qA) is known to be non-zero by [BSDGP96].) As suggested by the notation, it is
proved in [Nek06, Sec. 11] (see also [Nek93, Sec. 7-8]) that the restriction of 〈−,−〉Sch

Q,p to A(Q)×A(Q) is
the ‘canonical p-adic height pairing’ constructed in [Sch82] (see also [PR92]). (We note that the definition
of the Schneider logp-height given here differs from that given in [MTT86, pag. 34], as the latter contains
the extra factor ordp(qA) in the denominator appearing on the R.H.S. of (127). See also [Nek93, Sec. 7.14]
for a discussion of this point.) With this notations we have:

Proposition 12.28. logA(u0) · d
2

ds2Lp(u, s)s=1 = −2 ·
(
1− p−1

)−1 ·Lp(A) · 〈u0, u0〉Sch
Q,p .

The proof of this Proposition will be given in Section 17. Retracing the definitions above we easily
obtain the following:

Corollary 12.29. Assume that dim (A(Q)⊗Q) = 1 and that u0 ∈ A(Q)⊗Qp. Then

1
2
· d

2

ds2
Lp(u, s)s=1 =

−1
(1− p−1) · ordp(qA)

· logA(u0)
logA(P)2

· RNek
Q,p ,

where P is any generator of A(Q) modulo its torsion subgroup.

We note that Gross-Zagier-Kolyvagin’s theorem implies that the assumptions of the preceding Corollary
are satisfied if the complex Hasse-Weil L-function of A/Q has order of vanishing 1 at s = 1.

12.8. Exceptional zero formulas II: Kato’s zeta elements. As explained more precisely in Sec-
tion 16 below: Kato has constructed an Euler system for the Tate module of A/Q, giving in particular an
element ζKato

∞ ∈ H1
Iw(Q∞, Vp(A)) s.t. LζKato

∞
∈ IΛ ⊗ Q is essentially the Mazur-Tate-Teitelbaum (cyclo-

tomic) p-adic measure Lp(A), ‘interpolating’ the algebraic part L(A,χ,1)
ΩA

of the special values of the complex
Hasse-Weil L-functions of A/Q twisted by finite-order characters χ : Gal(Q∞/Q)→ Q∗. Moreover, thanks
to work of Rohrlich we know that Lp(A) 6= 0, so that ζKato

∞ 6= 0. Then we can define the order of vanishing
ρKato ≥ 0 of ζKato

∞ by: ζKato
∞ ∈ IρKato

Λ ⊗Q
∖
IρKato+1
Λ ⊗Q. Let us fix a topological generator γ0 ∈ Gal(Q∞/Q)

and let us write $ := γ0 − 1 for the corresponding generator of IΛ. We define (cfr. Remark 12.27)

zKato
∞,$ = lim

n→∞
zKato
n,$ := $−ρKato · ζKato

∞ ; zKato
0 := logp(γ0)ρKato · zKato

0,$ 6= 0.

Let us write Lp(A, s) = χs−1
cycl (Lp(A)) for the (cyclotomic) p-adic L-function of A/Q. Thanks to the work

of Kato we can then ‘specialize’ the results of the preceding Section to Lp(A, s), obtaining the following
‘p-adic Gross-Zagier formulas’, whose proofs are explained in details in Section 17. We refer the reader
to the articles of Bertolini and Darmon, e.g. [BD07], [BD98] for analogues and deeper results in the
anticyclotomic setting.

The following Theorem is the well-known Mazur-Tate-Teitelbaum exceptional zero formula, proved by
Greenberg and Stevens in [GS93].

Theorem 12.30. (Kato′s work + Prop. 12.25) d
dsLp(A, s)s=1 = Lp(A) · L(A/Q,1)

ΩA
.

For every prime ` dividing the conductor N of A/Q we write E`(X) := 1 − a`(A) · X ∈ Z[X], where
a`(A) ∈ {0,±1} is the usual ‘solution-count number’ attached to A/Q` [Sil86, Appendix C16]. Let us write
EN :=

∏
`|N E`

(
`−1
)−1.

Theorem 12.31. (Kato′s work + Prop. 12.28) Assume that zKato
0 ∈ H1

f (Q, Vp(A)). Then
1. Lp(A, s) vanishes to order at least ρKato + 2 at s = 1;
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2. logA
(
zKato

0

)
· Lp(A,s)

(s−1)2+ρKato

∣∣∣
s=1

= −EN ·Lp(A) ·
〈
zKato

0 , zKato
0

〉Sch

Q,p .

As in the preceding Section, the following Corollary follows easily from the preceding Theorem.

Corollary 12.32. (Kato′s work + Cor. 12.29) Assume dim (A(Q)⊗Q) = 1 and zKato
0 ∈ A(Q) ⊗ Qp

(e.g. ords=1L(A, s) = 1). Then

Lp(A, s)
(s− 1)2+ρKato

∣∣∣∣
s=1

=
−EN

ordp(qA)
· logA(zkato

0 )
logA(P)2

· RNek
Q,p ,

where P is any generator of A(Q) modulo its torsion subgroup.

13. The Coleman map

Fix a generator (ζpm)m∈N of Zp(1) := lim←−µpm(Qp). For every n ∈ N, Φn is the unique subfield of
Qp(ζpn+1) of degree pn over Qp and Φ∞ :=

⋃
n∈N Φn is the cyclotomic Zp-extension of Qp. For every

n ≤ ∞ we write Gn := Gal(Φn/Qp), Λn := Zp[[Gn]] for the completed (if n = ∞) group ring of Gn

over Zp and In := ker (εn : Λn � Zp) for its augmentation ideal. We also write On := OΦn for the ring of
integers of Φn and mn := max (On) for its maximal ideal.

Given a finite Zp-module T , equipped with a continuous Zp-linear action ofGQp , we writeH
q
Iw (Φ∞, T ) :=

lim←− n∈NH
q(Φn, T ), the limit being taken with respect to the corestriction maps.

For every finite extension L/Qp, we write exp∗L : H1(L,Qp) → L for the Bloch-Kato dual exponential
map of the trivial GL-representation Qp. Writing OL for the ring integers of L and

expL : L
expp−→ O∗L ⊗Qp →

(
lim←−L

∗/L∗pn)⊗Qp

Kummer∼= H1(L,Qp(1)),

the dual exponential is characterized by the ‘commutativity’ of the following diagram:

(128) L × L
× //

expL

��

L
TraceL/Qp // Qp

H1(L,Qp)

exp∗L

OO

× H1(L,Qp(1)) ∪ // H2(L,Qp(1))
invL // Qp

We will write 〈−,−〉L := invL ◦ ∪ : H1(L,Qp) × H1(L,Qp(1)) → Qp for the (perfect) local Tate pairing
and we will identify from now on the p-adic completion L∗⊗̂Zp of L∗ with H1(L,Zp(1)) via the Kummer
isomorphism. Moreover, for every n ∈ N we abbreviate exp∗n := exp∗Φn .

Remark 13.1. As proved by Kato [Kat93, Chapter II] we have H0(L,B+
dR) ∼= H1(L,B+

dR), the
isomorphism being defined by “cupping” with logp ◦χcycl ∈ H1(L,Qp), and

exp∗L : H1(L,Qp)→ H1(L,B+
dR) ∼= H0(L,B+

dR) = L.

Here B+
dR is the valuation ring of Fontaine’s field of periods BdR and the first map is induced by inclusion.

13.1. Statements. The following result, based on work of Coleman [Col79], will be the key for
relating Kato’s zeta elements ζkato

∞ to the p-adic L-function. Its statement is essentially [Rub98, Proposition
A.2] and its proof will be recalled in the following Section.

Proposition 13.2. (Cfr. [Rub98, Appendix]) There exists a unique morphism of Λ∞-modules

C∞ : H1
Iw (Φ∞,Zp) −→ I∞

such that for every ψ = limn→∞ ψn ∈ H1
Iw (Φ∞,Zp) and every non-trivial character χ of Gn

χ (C∞(ψ)) = τ(χ) ·
∑
γ∈Gn

χ−1(γ) · exp∗n(ψγn).

(Here τ(χ) :=
∑
α∈(Z/pmZ)∗ χ(α) · ζαpm is the Gaussian sum of χ, where pm ≤ pn+1 is the conductor of χ.)
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Since C∞ takes values in I∞, its special value ε∞ ◦ C∞ : H1
Iw(Φ∞,Qp)

0−→ Zp is the zero map. This
leads us to consider its derivative at I∞:

C ′∞ : H1
Iw(Φ∞,Zp)

C∞−→ I∞
proj.−→ I∞/I2

∞.

The following description of C ′∞ (whose proof will be given in Section 13.3) is fundamental for the proof
of the results of the introduction. Let us fix a topological generator γ0 ∈ Gal(Φ∞/Qp). We write $ :=
γ0 − 1 ∈ I∞ and logp($) := logp (χcycl(γ0)).

Proposition 13.3. Let βp,$ := logp($) ·
(
1− p−1

)
∈ Z∗p. For every ψ = limψn ∈ H1

Iw(Φ∞,Zp)

C ′∞ (ψ) = ψ0 (Frobp) ·
{

$

βp,$

}
∈ I∞/I2

∞,

where Frobp = recQp(p) ∈ GFp ⊂ Gab
Qp is the arithmetic Frobenius (and {∗} := ∗ mod I2

∞).

13.2. Rubin’s description. Since fundamental for the methods of this note, in this section we recall
Rubin’s explicit description of C∞ [Rub98],[Rub94]. As in loc. cit. we define for every n ∈ N:

xn := p+ TraceQp(µpn+1 )/Φn

(
n∑
k=0

ζpn+1−k − 1
pk

)
∈ Φn.

Lemma 13.4. 1. x0 = 0 and TraceΦn+m/Φn (xn+m) = xn for every m,n ∈ N.
2. For every non-trivial character χ of Gn:

χ
( ∑
γ∈Gn

xγn · γ
)

= τ(χ).

Proof. 1. follows by a simple computation, while 2. is easily proved using standard properties of
Gaussian sum [Lan90, Ch. 3, Th. 1.1]. �

The following key Lemma is due to Coleman:

Lemma 13.5. (Coleman) There exists a (unique) principal unit g(X) ∈ 1 + (p,X) · Zp[[X]] s.t.:
1. logp(g(0)) = p;
2. coln := g(ζpn+1 − 1) ∈ 1 + mn and logp (coln) = xn for every n ∈ N;
3. NormΦn+m/Φn(coln+m) = coln for every n,m ∈ N.

Proof. (Cfr. [Rub00, Appendix D]) Let us consider the power series

f(X) := X − 1
p− 1

∑
µ∈µp−1⊂Z∗p

[µ](X)
µ

∈ X2 · Zp[[X]]; Ξf (X) :=
∞∑
k=0

(
f ◦ [pk]

)
(X)

pk
∈ Qp[[X]],

where [a](X) := (1 +X)a − 1 ∈ X · Zp[[X]] for every a ∈ Zp. (We refer to [Col79, Sec. 5] for the proof
of the convergence of Ξf .) Since f ∈ X2 · Zp[[X]], applying Theorem 24 of [Col79] (with F = Gm/Zp ,
a = p

p−1 , b = 0 and f as above with the notations of loc. cit.) we conclude that there exists a unique power
series go(X) ∈ 1 + (p, T ) · Zp[[X]] such that

(129) log(go(X)) =
p

p− 1
+ Ξf (X) =

p

p− 1
+
∞∑
k=0

( (X + 1)p
k − 1

pk
− 1
p− 1

·
∑

µ∈µp−1

(X + 1)µ·p
k − 1

µ · pk︸ ︷︷ ︸
ϑk(X)

)
.

Let us write T for the operator h(X) 7→
∑
δ∈µp−1

(h ◦ [δ]) (X). We note that

pk · T (ϑk(X)) =
∑
µ

µ−1
∑
δ

(
[δ · µ · pk](X)

)
= T

(
[pk](X)

)
·
∑
µ

µ = 0.
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Then taking g(X) :=
∏
µ∈µp−1

(go ◦ [µ]) (X) we obtain:

log(g(X)) = T (log (go(X))) = p+
∞∑
k=0

∑
µ∈µp−1

(1 +X)µ·p
k − 1

pk
.

Since by construction coln := g(ζpn+1 − 1) = NormQp(µpn+1 )/Φn

(
go(ζpn+1 − 1)

)
and go(X) is a principal

unit, we conclude that coln ∈ 1 + mn. Evaluating at X = ζpn − 1 and recalling the definition of xn we
deduce 1. and 2. Finally: since Qp(µpn+1) (resp, Qp(µ`) for a prime ` 6= p) is totally ramified (resp.,
unramified), the torsion submodule of Qp

(
µpn+1

)∗ equals µp−1 × µpn+1 , and since Φn ∩Qp

(
µp
)

= Qp we
have (Φ∗n)tors = µp−1. This implies that logp is injective on 1 + mn (recalling: p 6= 2). As {logp(coln)}n∈N
is a trace-compatible system by Lemma 13.4 and 2., this proves 3. �

Proof of Proposition 13.2. Let n ∈ N. For every ψn ∈ H1(Φn,Zp) define

(130) Cn (ψn) :=

 ∑
γ∈Gn

xγn · γ

 ·
 ∑
γ∈Gn

exp∗n(ψγn) · γ−1

 ∈ Qp[Gn]

Combining Lemma 13.5 and equation (128) we can rewrite

Cn (ψn) :=
∑
γ∈Gn

TraceΦn/Qp

(
xγn · exp∗n(ψn)

)
· γ

=
∑
γ∈Gn

TraceΦn/Qp

(
logp(col

γ
n) · exp∗n(ψn)

)
· γ(131)

=
∑
γ∈Gn

〈ψn, colγn〉Φn · γ.

Since the local Tate pairing 〈−,−〉Φn maps Φ∗n⊗̂Zp×H1(Φn,Zp) to Zp, we conclude that Cn in fact defines
a map

Cn : H1(Φn,Zp) −→ Λn := Zp[Gn].

As 〈−,−〉Φn is Gn-equivariant (with respect to the conjugation action on cohomology and the trivial action
on Qp) it follows immediately from (131) that Cn is a morphism of Λn-modules. Moreover, using the
‘projection formulas’

〈
NormΦn+k/Φn (†) , ‡

〉
Φn+k

= 〈†, ‡〉Φn [Ser67], (131) easily implies that the following
diagram commutes for every m ≥ n ∈ N:

H1(Φm,Zp)

NormΦm/Φn

��

Cm // Λm

Gm�Gn

��
H1(Φn,Zp)

Cn // Λn.

We then obtain on the limit the desired Coleman map of Λ∞-module:

C∞ = lim
n→∞

Cn : H1
Iw (Φ∞,Zp) −→ Λ∞.

The fact that C∞ maps to the augmentation ideal I∞ and has the characterizing interpolation property
follows by (130) and Lemma 13.4. �

13.3. Derivative of the Coleman map. In this Section we prove Proposition 13.3, giving a simple
explicit formula for the derivative of C∞.

The local Tate pairings 〈−,−〉Φn for n ∈ N combine to give a Λ∞-bilinear pairing

〈−,−〉Φ∞ : H1
Iw(Φ∞,Zp)×H1

Iw (Φ∞,Zp(1))ι −→ Λ∞,
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defined by the following formula:

〈ψ,u〉Φ∞ = lim
n→∞

∑
γ∈Gn

〈ψn, uγn〉Φn · γ

for every ψ = limn→∞ ψn ∈ lim←−H
1(Φn,Zp) and every u = limn→∞ un ∈ lim←−H

1(Φn,Zp(1)). Here ι :
Λ∞ → Λ∞ denotes Iwasawa involution induced by g 7→ g−1 on group-like elements; for every Λ∞-module
M we write M ι for the Zp-module M , with Λ∞-action obtained twisting the original action by ι.

Identifying as usual H1(Φn,Zp(1)) = Φ∗n⊗̂Zp by Kummer theory, Lemma 13.5 allows us to define:

col := lim
n→∞

(
coln⊗̂1

)
∈ H1

Iw(Φ∞,Zp(1)).

Then the proof of Prop. 13.2 (specifically equation (131)) gives us the following:

Lemma 13.6. C∞ = 〈−, col〉Φ∞ : H1
Iw(Φ∞,Zp) −→ I∞.

Recall the fixed topological generator γ0 ∈ G∞ and the corresponding generator $ := γ0 − 1 ∈ I∞

Lemma 13.7. There exists a unique d$ ∈ H1
Iw(Φ∞,Zp(1)) such that col = $ · d$.

Proof. The exact sequence of Galois modules 0 → Λ∞(1) $→ Λ∞(1) ε∞→ Zp(1) → 0, together with
Shapiro’s Lemma gives us a long cohomology exact sequence of Λ∞-modules:

· · · δ→ Hq
Iw(Φ∞,Zp(1)) $→ Hq

Iw(Φ∞,Zp(1)) ε∞∗→ Hq(Qp,Zp(1)) δ→ Hq+1
Iw (Φ∞,Zp(1)) $→ · · ·

(see Remark 14.4 below). We deduce that H1
Iw(Φ∞,Zp) has no $-torsion and that we have an injective

morphism of Zp-modules

(132) H1
Iw(Φ∞,Zp(1))

/
$ ·H1

Iw(Φ∞,Zp(1)) ↪→ H1(Qp,Zp(1)) = Q∗p⊗̂Zp.

The unicity of d is then clear. Moreover we know by Lemma 13.5 that col0 = 1, so col is in the kernel of
(132) i.e.: col belongs to $ ·H1(Φ∞,Zp(1)) as claimed. �

Let us write pZp for the p-adic completion of pZ ⊂ Q∗p, so that we identify H1(Qp,Zp(1)) ∼= pZp ⊕
(1 + pZp). By local class field theory [Ser67] the reciprocity map gives an isomorphism recQp : Q∗p⊗̂Qp

∼→
Gab

Qp⊗̂Qp, inducing an isomorphism

H1(Qp,Zp(1))
/ ⋂
n∈N

NormΦn/Qp
(
H1(Φn,Zp(1))

) ∼= G∞
logp(χcycl)∼= Zp.

In particular we have pZp =
⋂
n∈N NormΦn/Qp

(
H1(Φn,Zp(1))

)
.

The preceding two lemmas reduce the computation of C ′∞ to the computation of the ‘universal norm’
ε∞∗(d$) ∈ pZp . This can be done using again the work of Coleman [Col79], and precisely the so called
Coleman isomorphism which we now briefly recall. Let Zp,n := Zp[ζpn+1 ] and let V∞ := lim←− n∈N (Zp,n)∗

(limit with respect to the norm maps). The Coleman isomorphism gives an isomorphism of G̃∞ :=
Gal(Qp(µp∞)/Qp)-modules [CS06, Cor. 2.3.7]:

V∞ ∼= {h ∈ Zp[[X]] : N (h) = h} ; v = lim
n→∞

vn 7→ Fv,

where N is Coleman norm operator [Col79, Sec. Theorem 11]. (We will need only the existence of the mor-
phism V∞ → Zp[[X]].) The action of g ∈ G̃∞ on h ∈ Zp[[X]] is given by hg(X) := h

(
(X + 1)χcycl(g) − 1

)
and the power series Fv is characterized (via Weierstrass preparation) by: Fv(ζpn+1 − 1) = vn for every
n ∈ N. Let us consider the composition

(133) V∞ → lim←− n∈NO∗n
Kummer→ H1

Iw(Φ∞,Zp(1)),

where the first map is defined by (vn)n∈N 7→
(

NormQp(µpn+1 )/Φn(vn)
)
n∈N

. Since NormQp(µp)/Qp(v0) = 1

for every v ∈ V∞ by the discussion above, the argument of the preceding proof implies that the image of
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the above map is contained in I∞ · H1
Iw(Φ∞,Zp(1)) ∼= H1

Iw(Φ∞,Zp(1)) ⊗Λ∞ I∞. Then composing (133)
with the projection I∞ → I∞/I2

∞ induces a morphism of Λ∞-modules

N$ : V∞ −→ H1
Iw(Φ∞,Zp(1))⊗Λ∞ I∞/I2

∞
ε∞∗⊗id−→ pZp ⊗Zp I∞/I2

∞
∼= pZp ,

where the last map (dependent on the choice of $) is defined by ∗ ⊗ {$} 7→ ∗. This morphism is easily
described by the following:

Lemma 13.8. N$(v) = p
logp(Fv(0))

logp($) ∈ pZp .

Proof. For every n ∈ N write νn = NormQp(ζpn+1 )/Φn(ζpn+1 − 1). Then νn is a local parameter in On
and we can identify by Kummer theory:

(134) H1(Φn,Zp(1)) ∼= Φ∗n⊗̂Zp = νZp
n ⊕ (1 + mn) ,

where νZp
n
∼= Zp is the p-adic completion on νZ

n ⊂ Φ∗n. Letting v = lim vn we can thus write

(135) lim
n→∞

(
NormQp(ζpn+1 )/Φn(vn)

)
= $ · lim

n→∞
(νznn ⊕ ξn) ∈ H1

Iw(Φ∞,Zp(1)),

for some zn ∈ Zp and ξn ∈ 1+mn. We note that NormQp(ζpn+1 )/Qp(ζpn )(ζpn+1−1) = ζpn−1 for every n ∈ N
(since Xp − ζpn is the minimal polynomial of ζpn+1 over Qp(ζpn) by total ramification). Then corestriction
respects the decompositions (176), so that z$ := zn is independent on n and {ξn}n∈N is norm compatible.
Define β := lim ξn ∈ H1

Iw(Φ∞,Zp(1)). As ξ0 = 1 and ν0 := NormQp(ζp)/Qp(ζp − 1) = p, we have by the
preceding proof (135) ≡ $ · limn→∞ (νz$n ) mod

(
$2
)
, so that by definition:

(136) N$ (v) = pz$ .

To compute z$ we first note:

℘$“ = $ · lim
n→∞

(νz$n ) ” := lim
n→∞

 ∏
µ∈µp−1

ζµ·γ0
pn+1 − 1

ζµpn+1 − 1

z$

∈ V∞,

and its associated Coleman power series is given by:

F℘$ (X) =
∏

µ∈µp−1

(
(X + 1)µ·χcycl(γ0) − 1

(X + 1)µ − 1

)z$
.

In a similar way, writing v0 := lim
(

NormQp(ζpn+1 )/Φn(vn)
)
, we have:

Fv0(X) =
∏

µ∈µp−1

(Fv ◦ [µ]) (X); F$·β(X) = (Fβ ◦ [χcycl(γ0)]) (X)
/
Fβ(X).

Since (f ◦ [a]) (0) = f(0) for every a ∈ Zp and f ∈ Zp[[X]], we finally obtain from (135):

Fv(0)p−1 = Fv0(X)
∣∣∣
X=0

= F℘$ (X) · F$·β(X)
∣∣∣
X=0

= χcycl(γ0)(p−1)·z$ .

Applying logp to this equation we obtain: logp (Fv(0)) = logp($)·z$, which combined with (136) concludes
the proof. �

Corollary 13.9. ε∞∗ (d$) = p
p
p−1 ·

1
logp($) ∈ pZp .

Proof. Let g ∈ 1 + (p,X)Zp[[X]] be the power series defined in Lemma 13.5, so that g = Fcol. Since
coln ∈ Φ∗n for every n ∈ N, looking at the definitions we have

pp−1 · ε∞∗ (d$) = N$ (col) .

As logp (g(0)) = p by 1. of Lemma 13.5, applying the preceding Lemma we obtain the statement. �

We can now finish the proof of Proposition 13.3.
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Proof of Proposition 13.3. Combining Lemma 13.6, Lemma 13.7 and Corollary 13.9 we have:

C ′∞(ψ) =
{
〈ψ, col〉Φ∞

}
= 〈ψ,d$〉Φ∞ · {$} = ε∞

(
〈ψ,d$〉Φ∞

)
· {$}

= 〈ψ0, ε∞∗(d$)〉Qp · {$} = 〈ψ0, p〉Qp ·
{

$

βp,$

}
.

We conclude the proof using again local class field theory [Ser67]: 〈χ, p〉Qp = χ
(
recQp(p)

)
= χ(Frobp) for

every χ ∈ Homcont(GQp ,Zp).
�

14. Nekovář’s extended height

In this section we briefly sketch Nekovář’s construction of the extended p-adic cyclotomic height on the
Nekovář-Selmer complex attached to the ordinary representation Tap(A). The reference for the material in
this section is [Nek06], in particular Chapter 11.

14.1. Selmer complexes. Fix a positive integer N divisible by p. Let L/Q be a number field un-
ramified at every finite place v - N . We write GL := Gal(QN/L), where QN ⊂ Q is the maximal algebraic
extension of Q which is unramified at every finite prime ` - N . We fix for every prime v|`|N of L an
embedding ρv : Q ↪→ Q`, which also fix a morphism ρ∗v : GLv ↪→ GL � GL, where Lv := ρv(L) ·Q` is the
completion of L at v and ρ∗v(σ) =

(
ρ−1
v ◦ σ ◦ ρv

) ∣∣
QN

. Every GL-module will be considered as a GLv -module
via ρ∗v, for every v|`|N . Let R = (R,mR,FR) be a complete local Noetherian ring with finite residue field
FR of characteristic p. Let S ⊂ R be a multiplicative system (containing the identity) and let R := S −1R.
By an R-adic representation of GL we mean a localization X := X⊗RR of a finite R-module X, equipped
with a continuous R-linear action of GL for the mR-adic topology on X. For G ∈ {GL, GLv} we write

C•cont(G,X ) := C•cont(G,X)⊗R R
(
resp., RΓcont(G,X ), Hq(G,X )

)
for the complex of continuous X -valued cochains on G (resp., its image in the derived category D(R) on
complexes of R-modules, its cohomology) [Nek06, Chapter 3]. (More precisely: C•cont(G,X) is the complex
of continuous non-homogeneous cochains of G with values on X. This is defined exactly as in the classical
(discrete) case, e.g. [NSW00], but with the term continuous referring to the mR-adic topology onX and the
profinite topology on G.) We also write C•cont(Lv,−) := C•cont(GLv ,−), RΓcont(Lv,−) := RΓcont(GLv ,−)
and Hq(Lv,−) := Hq(GLv ,−).

Let X be an R-adic representation of GL. We fix for every prime v|N an R[GLv ]-submodule X+
v ⊂ X.

Letting X+
v := X+

v ⊗RR, the (Greenberg) local conditions at v is the morphism of complexes of R-modules:

i+v : C•(Lv,X+
v ) −→ C•cont(Lv,X )

induced by the inclusion X+
v ⊂ X. The Nekovář-Selmer complex of X =

(
X , {X+

v }v|N
)
over L is then

defined as the complex:

C̃•f (GL,X ) := Cone

C•cont(GL,X )⊕
⊕
v|N

C•cont(Lv,X+
v )

resN−i+N−→
⊕
v|N

C•cont(Lv,X )

 [−1].

We write i+N := ⊕n|N i+v and resN = ⊕v|N resv, where resv : C•cont(GL,X )→ C•cont(Lv,X ) is the ‘restriction’
morphism of complexes induced by the morphism of pairs: (ρ∗v, id) : (GL,X )→ (GLv ,X ). Let

R̃Γf (GL,X ) ∈ D(R); H̃q
f (GL,X ) ∈ RMod

be the image of C̃•f (GL,X ) in the derived category and its cohomology respectively. Under our assumptions
the usual finiteness theorems for Galois cohomology of discrete modules imply that H̃q

f (GL,X ) is a finite
R-module [Nek06, Sec. 4.2].
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Lemma 14.1. There exists an exact sequence of finite R-modules:

(137) · · · →
⊕
v|N

Hq−1(Lv,X−v )→ H̃q
f (GL,X )→ Hq(GL,X )→

⊕
v|N

Hq(Lv,X−v )→ · · · ,

where X−v := X/X+
v ∈ R[GLv ]-Mod.

Proof. Writing U−v (X ) := Cone
(
C•f (Lv,X )

−i+v→ C•cont(Lv,X )
)
we have an exact triangle in D(R):

(138)
⊕
v|N

U−v (X )[−1]→ R̃Γf (GL,X )→ RΓcont(GL,X ).

Since C•cont(Lv,−) maps short exact sequences of R-adic representations in short exact sequences of com-
plexes [Nek06, Prop. 3.4.2], for every place v|N the natural projection induces an isomorphism in the
derived category:

U−v (X ) ∼= RΓcont(Lv,X−v ) ∈ D(R).
Taking the long cohomology exact sequence attached to (185) we obtain (137). �

14.1.1. Galois deformations. Let L/L be a Galois extension contained in QN/L. Write ΓL := Gal(L/L)
and RL := R[[ΓL]] = R[[ΓL]] ⊗R R for the completed group algebra of ΓL over R. For every M ∈
RL[GL]-Mod and every n ∈ Z, M < n >∈ RL[GL]-Mod denotes the RL-module M , with GL-action
obtained multiplying the original action by χn

L
, where

χL : GL � ΓL ⊂ R∗L
denotes the tautological GL-representation. For every R[GL]-module T we denote by

TL := (T ⊗R RL) < −1 >∈ RL[GL]-Mod

its L-deformation. Writing εL : RL � R for the augmentation map, we have ε∗L (TL) ∼= T asR[GL]-modules,
where ε∗L(−) := −⊗RL,εL R : RL-Mod→ R-Mod.

Let X =
(
X , {X+

v }v|N
)
be an R-adic representation of GL. Then XL =

(
XL, {(X+

v )L}v|N
)
is an RL-

adic representation. In the following proposition Lε∗L : D(RL)→ D(R) denotes the left derived functor of
the functor ε∗L : C• 7→ C• ⊗RL,εL R on complexes of RL-modules.

Proposition 14.2. (Control Theorem) Assume that ΓL ∼= Zgp for some g ≥ 1. There exists a canonical
isomorphism in D(R):

Lε∗L
(
R̃Γf (GL,XL)

)
∼= R̃Γf (GL,X ).

Proof. The proof proceeds by induction on the dimension g ≥ 1 of ΓL. We sketch the proof for g = 1
(the only case needed for the results of this note), referring to [Nek06, Prop. 8.10.1] for the general case.

Fix a topological generator γL ∈ ΓL
∼→ Zp and write $L := γL − 1 for the corresponding generator

of ker (εL), so that we have an isomorphisms RL ∼= R[[$L]] and RL/($L) ∼= R. Let M ∈ {X ,X+
v } and

G ∈ {GL, GLv}. Tensoring R = RL/($L) with M we obtain short exact sequences of RL[G]-modules:

0→ML
$L→ ML →M → 0.

Applying C•cont(G,−) we obtain a short exact sequences of complexes of RL-modules [Nek06, Prop. 3.4.2]

0→ C•cont(G,ML) $L→ C•cont(G,ML)→ C•cont(G,M)→ 0,

compatibles under resv and i+v . Combining these exact sequences gives a similar short exact sequence for
C̃•f (GL,−), i.e. a quasi isomorphism of complexes of RL-modules:

(139) C̃•f (GL,XL)⊗RL

[
RL

$L→ RL
] qis−→ C̃•f (GL,X ),

where
[
RL

$L→ RL
] qis→ R is concentrated in degrees −1 and 0, i.e. is an RL-projective resolution of R. This

in turns defines the the canonical isomorphism in the statement [Har66, Ch. II, Cor. 5.11]. �
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14.1.2. Shapiro’s lemma and Iwasawa modules. Let L =
⋃
α∈A Lα be an abelian extension of L con-

tained in QN , for finite abelian extensions Lα/L. For every α ∈ A we write Gα := GLα . For α, β ∈ A s.t.
Lα ⊂ Lβ Section 8 of [Nek06] constructs canonical corestriction morphisms:

corβα : H̃q
f (Gβ ,X )→ H̃q

f (Gα,X ),

together with a homotopy action of Γα = Gal(Lα/L) on H̃q
f (Gα,X ) and a canonical Shapiro’s isomorphism

of Rα := R[Γα]-modules
Shα : H̃q

f (GL,Xα) ∼→ H̃q
f (Gα,X ).

Here Xα := XLα . All these constructions commute with the usual ones under the natural morphism
H̃q
f (Gα,X ) → Hq(Gα,X ). Moreover corβα corresponds, via the Shapiro’s isomorphisms Sh?, to the map

pr∗ : H̃q
f (GL,Xβ)→ H̃q

f (GL,Xα) induced by the natural projection Γβ � Γα. This allows us to define the
RL-module:

H̃q
f,Iw(L,X ) :=

(
lim←−

cor; α∈A

H̃q
f (Gα, X)

)
⊗R R.

We recall thatR := S −1R and
(
X , {X+

v }v|N
)
is obtained as the S -localization of the R-adic representation(

X, {X+
v }v|N

)
of GL. SinceXL := (X ⊗R R[[ΓL]]) < −1 >= lim←−Xα as RL[GL]-modules and XL = XL⊗RR,

the isomorphisms Shα combines to give an isomorphism of RL-modules [Nek06, Prop. 8.8.6]

(140) Sh : H̃q
f (GL,XL) ∼= lim←−

pr∗; α∈A

H̃q
f (GL,Xα) ∼= H̃q

f,Iw(L,X ),

where the first isomorphism is induced by the natural projections XL � Xα. In what follows, we will
identify H̃1

f (GL,XL) = H̃q
f,Iw(L,X ) under Sh.

Corollary 14.3. Assume that ΓL ∼= Zp, and let $ := γL − 1 for a topological generator γL ∈ ΓL.
There exist short exact sequences of R-modules

0→ H̃q
f,Iw(L,X )

/
$ → H̃q

f (GL,X )
eβq$→ H̃q+1

f,Iw(L,X )[$]→ 0

Proof. Apply cohomology to the control theorem Prop. 14.2. (See in particular (139) in its proof.) �

Remark 14.4. Let E be a finite extension of Q or Qp, let E/E by a Zgp-extension (i.e. ΓE
∼→ Zgp) and

let T be a continuous R[GE ]-module, finite over R. Then the analogues of Prop. 14.2, (140) (and Lemma
14.3 if g = 1) obviously hold for the continuous cohomology of T and TE. (In particular this justifies the
argument used in the proof of Lemma 13.7.) As above we will identify

Hq(E, TE) ∼= lim←−
cor

Hq(Eα, T ) =: Hq
Iw(E, T )

via the Shapiro’s isomorphism. If E ⊂ QN is a global field and T is an R[GE ]-module, a similar canonical
isomorphism holds for the cohomology module H1(GE , TE) with restricted ramification.

14.1.3. Class field theory. Let R(1) := R⊗Zp Zp(1). We consider Xfull = (R(1), {0}v|N ) and we write

C•c,cont(GL,R(1)) := C̃•f (GL,Xfull); Hq
c (GL,R(1)) := H̃q

f (GL,Xfull).

Proposition 14.5. The invariant maps of local class field theory induce an isomorphism of R-modules:

invL,N : H3
c (GL,R) ∼= R.

Proof. Lemma 14.1 gives an exact sequence of R-modules:

H2(GL,R(1)) resN→
⊕
v|N

H2(Lv,R(1))→ H3
c (GL,R(1))→ 0,

where the zero on the right follows by cdp(GL) = 2. On the other hand, the fundament exact sequence
of global class field theory tells us that (resN is injective and that)

∑
v|N invv gives an isomorphism
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coker(resN ) ∼→ R. (Here invv : H2(Lv,R(1)) ∼= R is obtained (taking limit) from the invariant maps
of local class field theory.) �

14.1.4. Global cup-product pairings. Let X =
(
X , {X+

v }v|N
)
and Y =

(
Y, {Y+

v }v|N
)
be R-adic repre-

sentations of GL. We assume that there exists a GL-equivariant morphism of R-modules

π : X ⊗R Y −→ R(1),

such X+
v is π-orthogonal to Y+

v for every v|N . This means that π (x+
v ⊗ y+

v ) = 0 for every x+
v ∈ X+

v ,
y+
v ∈ Y+

v and every place v|N of L. For G ∈ {GL, GLv} let ∪π(G) denotes the G-cup-product pairing
attached to π [Nek06, Sec. 3.4.5]:

∪π(G) : C•cont(G,X )⊗R C•cont(G,Y) ∪→ C•cont(G,X ⊗R Y) π∗→ C•cont(G,R(1)).

We will denote simply by ∪π both ∪π(GL) and
⊕

v|N ∪π(GLv ). We write xf = (x, x+, α) to denote an
n-cochain of C̃•f (GL,X ), where x ∈ Cncont(GL,X ), x+ ∈

⊕
v|N C

n
cont(Lv,X+

v ) and α ∈
⊕

v|N C
n−1
cont (Lv,X ).

Similarly we denote by yf = (y, y+, β) a generic m-cochain of C̃•f (GL,Y). Then a simple computation
[Nek06, Prop. 1.3.2] proves that the formula

xf ∪PT
π yf :=

(
x ∪π y, α ∪π i+N (y+) + (−1)nresN (x) ∪π β

)
defines a morphism of complexes of R-modules:

∪PT
π : C̃•f (GL,X )⊗R C̃•f (GL,Y) −→ C•c,cont(GL,R(1)).

Taking the pairing induced by ∪PT
π in (2, 1)-cohomology and using Prop. 0.4 we define

〈−,−〉PT
L,π : H̃2

f (GL,X )⊗R H̃1
f (GL,Y) −→ H3

c (GL,R(1)) ∼= R.

(Here PT stands for Poitou-Tate. In fact [Nek06] uses the cup-product pairing ∪PT
π to give a wide

generalization of classical Poitou-Tate duality. Se especially Sections 5 and 6 of loc. cit.)

14.2. The extended p-Selmer group of A/Q. In this section we recall the relation between the
Selmer complex attached to Tap(A) and usual Kummer theory for A/Q. First of all, we have to define a
p-ordinary structure on Tap(A).

Tate’s p-adic analytic uniformization [Tat95], [Sil94, Chapter V] gives an isomorphism of GQp -modules

ΦTate : Q∗p/qZ
A
∼→ A(Qp).

We identify A(Q)pn ∼= A(Qp)pn under the isomorphism induced by the fixed embedding ρp. As the Tate

period qA ∈ pZp, we obtain short exact sequences of GQp -modules 0→ µpn(Qp)
ΦTate→ A(Q)pn

πqA→ Z/pn → 0,
where Gp acts trivially on Z/pn and πqA = πqA,n is defined in Section 1. Taking the inverse limit for n→∞
and extending scalars to Qp we obtain a short exact sequence of Qp[GQp ]-modules:

(141) 0→ Qp(1) ΦTate→ Vp(A)
πqA→ Qp → 0,

defining a p-ordinary structure on Vp(A) := Tap(A)⊗Zp Qp.
With the notations of the preceding Section let N = NA be the conductor of A/Q, so that by assumption

p divides N exactly. Given L ⊂ QN , let ΦTate : Vp(A)+
v := Qp(1) ↪→ Vp(A) (resp., Vp(A)+

v := 0) for
every place v of L dividing p (resp., dividing N/p). Then Vp(A) =

(
Vp(A), {Vp(A)+

v }v|N
)
is a Qp-adic

representation of GL [Sil86, Ch. VII] and we write

R̃Γf (L, Vp(A)) := R̃Γf (GL, Vp(A)); H̃q
f (L, Vp(A)) := H̃q

f (GL, Vp(A)).

(Since we are working with Qp-coefficient, and as suggested by the notations, R̃Γf (L, Vp(A)) does not de-
pend on any choice. In other words, replacing NA by an integer N ′ divisible by every prime of bad reduction
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of A/Q, and Vp(A)+
v by any Qp[GLv ]-submodule of Vp(A) for v - p, the new R̃Γf (Gal(QN ′/L), Vp(A)) is

canonically isomorphism to R̃Γf (L, Vp(A)) in the derived category.) Let

H1
f (L, Vp(A)) := ker

(
H1(L,Tap(A))

Q
v resv−→

∏
v

H1(Lv,Tap(A))
A(Lv)⊗̂Zp

)
⊗Zp Qp ⊃ A(L)⊗Qp

be the classical compact Selmer group with Qp-coefficients arising from Kummer theory for A/L.

Lemma 14.6. We have a natural short exact sequence of Qp-modules

(142) 0→
⊕
v|p

Qp → H̃1
f (L, Vp(A))→ H1

f (L, Vp(A))→ 0

Proof. It follows by a theorem of Lutz [Sil86, Ch. VII, Prop. 6.3] and local Tate duality that
RΓcont(G`, Vp(A)) is acyclic for every prime ` 6= p. (In particular A(Q`) ⊗ Qp = 0 for ` 6= p.) Together
with: Vp(A)−v ∼= Qp as Qp[GLv ]-modules for every v|p and H0(Q, Vp(A)) = 0 this allows us to extract from
(137) the exact sequence

(143) 0→
⊕
v|p

H0(Lv,Qp)→ H̃1
f (L, Vp(A)) π→ H1(GL, Vp(A))→

⊕
v|p

H1(Lv, Vp(A))
ΦTate∗ (H1(Lv,Qp(1)))

.

Using the Tate parimetrization (and Kummer theory) it is easy to show that the image of the local Kummer
map A(Lv)⊗Qp ↪→ H1(Lv, Vp(A)) equals the image of the map ΦTate∗ : H1(Lv,Qp(1))→ H1(Lv, Vp(A)).
Then the image of π in (143) is precisely H1

f (L, Vp(A)), as was to be shown. �

14.2.1. Self-duality. The Weil pairing [Sil86, Ch. III] defines a perfect, alternating and GQ-equivariant
morphism of Qp-modules

W : Vp(A)⊗Q Vp(A) −→ Qp(1).
SinceW is alternatingW◦

(
ΦTate⊗ΦTate

)
is the zero map, so that by construction Vp(A)+

v isW-orthogonal
to itself for every place v|N of L. Then the constructions of Section 14.1.4 give in particular a Qp-bilinear
form:

(144) 〈−,−〉PT
L,W : H̃1

f (L, Vp(A))⊗ H̃2
f (L, Vp(A)) −→ Qp.

We note that two different normalizations are usually used to define W, and the resulting pairings
differ by the sign. Here we take the normalization such that [Tat95, pag. 328]

(145) W(ΦTate(x)⊗ y) = x× πqA(y)

for every x ∈ Qp(1) and y ∈ Vp(A) (see (141) for the notations).
14.2.2. The extended Mordell-Weil group. We now explain how to generalize Kummer theory for A/L,

giving an embedding of the extended Mordell-Weil group of A/L in H̃1
f (L, Vp(A)). For simplicity of notations

we limit ourself to the case L = Q. We recall [MTT86] that the extended Mordell-Weil group of A/Q is
defined by

A†(Q) := {(P, y) ∈ A(Q)×Q∗p : ΦTate(y) = P}.
In other words an element of A†(Q) consists of a Q-rational point on A/Q, together with a distinguished
lift under the p-adic Tate parametrization. By construction we have a short exact sequence

0→ Z i→ A†(Q)→ A(Q)→ 0,

where i(1) := (0, qA) (and the right map is the natural projection). After extending scalars to Q, this
sequence has a natural splitting:

σ : A(Q)⊗Q→ A†(Q)⊗Q; σ(P ) :=
1

ordp(qA)

(
ordp(qA) · P, yordp(qA)

P · q−ordp(yP )
A

)
where yP is any lift of P under ΦTate. (Note that yordp(qA)

P · q−ordp(yP )
A is the unique lift of ordp(qA) · P

lying in Z∗p.) We write
A†(Q)⊗Qp

σ= Qp ⊕ (A(Q)⊗Qp)
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for the decomposition induced by σ. We also have a natural splitting of (142):

σ̃ : H1
f (Q, Vp(A))→ H̃1

f (Q, Vp(A)); σ̃([ξ]) = [ξ, ξ+
p , (ξ

o
` )`|N ],

where we impose that the 1-cocycle ξ+
p ∈ C1

cont(Gp,Qp(1)) and (ξo` )`|N ∈
⊕

`|N Vp(A) satisfy the following
two conditions:

1. δ(ξo` ) = −res`(ξ) for every ` 6= p, and δ(ξop) = ΦTate∗(ξ+
p )− resp(ξ);

2. the cohomology class represented by ξ+
p lies in Z∗p⊗̂Qp ⊂ H1(Qp,Qp(1)).

Since Vp(A)G` = 0 condition 1. implies that ξo` is uniquely determined for ` 6= p. As the kernel of the
‘cohomological Tate map’ ΦTate∗ : H1(Qp,Qp(1)) → H1(Qp, Vp(A)) is generated by qA⊗̂1 ∈ Q∗p⊗̂Qp and
qA ∈ pZp, conditions 2. and 1. imply that (ξ+

p , ξ
o
p) is uniquely determined up to elements of the form

(δ(η+
p ),ΦTate(η+

p )), for η+
p ∈ Qp(1). Since by definition d eC•f (0, η+

p , 0) = (0, δ(η+
p ),ΦTate(ηp+)) this shows

that the cohomology class [ξ, ξ+
p , (ξ

o
` )`] is uniquely determined by 1. and 2. The same argument also shows

that σ̃ respects coboundaries: “σ̃ ([δψ]) =
[
d eC•f (ψ, 0, 0)

]
”. Then σ̃ is ‘well defined’ and clearly defines a

section of (142). We write as above

Qp ⊕H1
f (Q, Vp(A)) eσ= H̃1

f (Q, Vp(A))

for the decomposition attached to σ̃. We can thus define a natural embedding:

i†A : A†(Q)⊗Qp
σ= Qp ⊕ (A(Q)⊗Qp)

id⊕Kummer−→ Qp ⊕H1
f (Q, Vp(A)) eσ= H̃1

f (Q, Vp(A)),

which is an isomorphism provided that the p-part of the Tate-Shafarevich group X(A/Q) of A/Q is finite.
In what follows we will identify A†(Q) ⊗ Qp and H1

f (Q, Vp(A)) as sub-modules of H̃1
f (Q, Vp(A)) under i†A

and σ̃ respectively.

14.3. The extended p-adic height pairing. Recall that Q∞ =
⋃
n∈N Qn denotes the cyclotomic

Zp-extension of Q. Let us fix a topological generator γ0 ∈ ΓQ∞ and let $ := γ0 − 1 be the corresponding
generator of IΛ. (Recall that Λ := Zp[[ΓQ∞ ]] and IΛ := ker (εQ∞) is its augmentation ideal.) We write
`$ := logp(χcycl(γ0)), where χcycl denotes as usual the p-adic cyclotomic character.

Define the Bockstein map for A/Q∞ by the following composition:

β1
cycl : H̃1

f (Q, Vp(A))
eβ1
$−→ H̃2

f,Iw(Q∞, Vp(A))
pr0−→ H̃2

f (Q, Vp(A)) ×`$−→ H̃2
f (Q, Vp(A)).

Here β̃1
$ is defined in Corollary 14.3 and pr0 denotes the natural projection. Multiplication by `$ serves the

purpose of removing the dependence on the choice of γ0, so that β1
cycl is a canonical morphism. Combining

this morphism with (149) we can define Nekovář’s extended p-adic height paring :

〈−,−〉Nek
Q,p : H̃1

f (Q, Vp(A))× H̃1
f (Q, Vp(A)) −→ Qp

by the formula:
〈P,Q〉Nek

Q,p := −
〈
β1

cycl(P ), Q
〉PT

Q,W .

It is a symmetric Qp-bilinear form [Nek06, Cor. 11.2.2]. In particular 〈−,−〉Nek
Q,p gives a Qp-bilinear

symmetric form on both the extended Mordell-Weil group A†(Q) ⊗ Qp and on the classical Selmer group
H1
f (Q, Vp(A)).
The following Lemma follows (as a special case) by the computation in [Nek06, Sec. 11.4]. We give a

proof for the convenience of the reader.

Lemma 14.7. For every yf = [(y, y+
p , β)] ∈ H̃1

f (Q, Vp(E)):

〈qA, yf 〉Nek
Q,p = logp([y

+
p ]),

where [y+
p ] ∈ H1(Qp,Qp(1)) ∼= Q∗p⊗̂Qp is the cohomology class represented by y+

p .
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Proof. Recall that β̃1
$([zf ]), for a 1-cocycle zf = (z, z+

p , α) ∈ C̃1
f (GN , Vp(A)), is obtained by the

following recipe (see the proof of Prop. 14.2): write GN := Gal(QN/Q) and let z̃f =
(
z̃, z̃+

p , α̃
)
∈

C̃1
f (GN , Vp(A)Q∞) be any 1-cochain which lifts zf under the morphism εQ∞∗ : C̃•f (GN , Vp(A)Q∞) →

C̃•f (GN , Vp(A)) induced by the ‘augmentation map’ Vp(A)Q∞ � Vp(A). Then the differentials d eC•f (z̃f ) =

$ · z̃f for a (unique) 2-cocycle z̃f ∈ C̃2
f (GN , Vp(A)Q∞). Writing zf := εQ∞∗( z̃f ):

β̃1
$([zf ]) = [ z̃f ]; β1

cycl([zf ]) = `$ · [zf ].

Let us fix a basis {ζ, q} of the Qp-module Vp(A), where ζ = (ζpn)n∈N is a generator of Zp(1) and
q = (q1/pn

A )n∈N is a compatible system of pn-th roots of qA in Qp. (Here we identify A(Q)pn with the

GQp -module
{
ζipn · q

j/pn

A : (i, j) ∈ (Z/pnZ)2
}
/qZ
A under ΦTate.) Then the action of GQp on Vp(A) with

respect to this basis can be written:

GQp 3 g 7→

χcycl(g) γq(g)

0 1

 ∈ GL2(Zp).

Here γq ∈ C1
cont(Qp,Qp(1)) is a 1-cocycle such that ΦTate∗ (γq) = δ(q), so that by definition qA = (0, qA) ∈

A†(Q) is identified under i†A with the [qf ] := [(0, γq, q)] ∈ H̃1
f (Q, Vp(A)). Recalling that Vp(A)Q∞ :=(

Vp(A)⊗Zp Λ
)
⊗ χ−1

Q∞
and taking

q̃f :=
(

0, γq ⊗ χ−1
Q∞

∣∣∣
GQp

, q ⊗ 1
)
∈ C̃1

f (GN , Vp(A)Q∞)

as a 1-cochain lifting qf under εQ∞∗, we easily compute (by the discussion above):

β1
cycl ([qf ]) = `$ · [(0, ?, q · ϑ$)] .

Here ? is a 2-cocycle in C2
cont(Qp,Qp) (whose explicit description is not relevant here) and ϑ$ ∈ H1(Qp,Qp)

is the ‘derivative’ of χ
Q∞

with respect to $: χ
Q∞

(g)−1 ≡ ϑ$(g) ·$ mod $2 ·Λ for every g ∈ GQp (viewed
inside GQ under the fixed embedding ρ∗p). Combining (145) and the explicit definition of ∪PT

W (resp., invN )
given in Section 14.1.4 (resp., Section 0.4) we compute:

−`−1
$ · 〈qA, yf 〉

Nek
Q,p = `−1

$ ·
〈
β1

cycl([qf ]), yf
〉PT

Q,W = invN
( [

(0, ?, q · ϑ$) ∪PT
W (y, y+

p , β)
] )

(146)

= invN
( [

0, (q · ϑ$) ∪W ΦTate(y+
p )
] )

= invp
( [
ϑ$ ∪ y+

p

] )
= ϑ$

(
recQp([y+

p ])
)
.

Here recQp : Q∗p⊗̂Qp
∼= Gab

Qp⊗̂Qp is the local reciprocity map, normalized so that recQp(p) = Frobp. (For the
last equality in (146) see [Ser67].) Since Gab

Qp
∼= GFp × Gal (Qp(µp∞/Qp)), Frobp ∈ GFp and ϑ$(γ̃0) = 1

for every γ̃0 ∈ GQp s.t. ρ∗p (γ̃0)
∣∣
Q∞

= γ0, we find:

ϑ$ =
logp(χcycl)

`$
∈ H1(Qp,Qp).

Then writing

[y+
p ] = (pz ⊕ u)⊗ p−n ∈ Q∗p⊗̂Qp =

(
pZp ⊕ (1 + pZp)

)
⊗Qp

we obtain by (146)

〈qA, yf 〉Nek
Q,p = − logp

(
χcycl ◦ recQp(u⊗ p−n)

)
= p−n · logp(u) = logp

(
[y+
p ]
)
,

the second equality by Lubin-Tate theory [Ser67]. �
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15. An exceptional Rubin’s style formula

Let $ := γ0 − 1 ∈ IΛ, for a fixed topological generator γ0 ∈ ΓQ∞ . We identify ΓQ∞
∼= ΓΦ∞ , Λ ∼= Λ

under the (fixed) embedding ρ∗p : GQp ⊂ GQ. Let

H1
Iw(Q∞, Vp(A))o :=

{
x ∈ H1

Iw(Q∞, Vp(A)) : ∂p,∞(x) ∈ $ ·H1
Iw(Φ∞,Qp)

}
(147)

=
{
x ∈ H1

Iw(Q∞, Vp(A)) : pr0(x) ∈ H1
f (Q, Vp(A))

}
,

where pr0 denotes the natural projection H1
Iw(Φ∞,Qp) → H1(Qp,Qp) = Homcont(Gab

Qp ,Qp). The equality
above follows by Remark 14.4 (telling us that the induced map pr0 : H1

Iw(Φ∞,Qp)/$ ↪→ H1(Qp,Qp) is
injective) and the proof of Lemma 14.6 (showing that H1

f (Q, Vp(A)) = ker (∂p,0)).
Given x ∈ H1

Iw(Q∞, Vp(A)) such that ∂p,∞(x) = $ · y for some y ∈ H1
Iw(Φ∞,Qp), we write

(148) Derp(x) := logp($) · pr0(y)(Frobp) ∈ Qp,

where as usual Frobp ∈ GFp ⊂ Gab
Qp is the arithmetic Frobenius. As suggested by the notation Derp(x) does

not depend on the choice of y, i.e. we have the following:

Lemma 15.1. Formula (148) defines a morphism Derp : H1
Iw(Q∞, Vp(A))o → Qp.

Proof. The cohomology class y is unique up to the addiction of an element of the$-torsion submodule
H1

Iw(Φ∞,Qp)[$]. Remark 14.4 gives an isomorphism

β0
$ : Qp = H0(Qp,Qp) ∼= H1

Iw(Φ∞,Qp)[$],

and a similar (and simpler) argument to that used in the proof of Lemma 14.7 easily proves that

Im
(
H0(Qp,Qp)

β0
$−→ H1

Iw(Φ∞,Qp)
pr0−→ H1(Qp,Qp)

)
= Qp · logp (χcycl) ⊂ Homcont(Gab

Qp ,Qp).

As χcycl vanishes on the Frobenius Frobp the Lemma follows. �

The following proposition is an ‘exceptional-case’ analogue of the main result (i.e. Th. 3.2) of [Rub94].

Proposition 15.2. Let x ∈ H1
Iw(Q∞, Vp(A))o and write x0 := pr0(x). Then

logA(x0) ·Derp(x) =
−1

ordp(qA)
· det

〈qA, qA〉
Nek
Q,p 〈qA,x0〉Nek

Q,p

〈x0, qA〉Nek
Q,p 〈x0,x0〉Nek

Q,p

 .

Proof. Let x0 ∈ C1
cont(Q, Vp(A)) be a 1-cocycle representing x0, and recall (cfr. Section 14.2.2) that

we identify x0 ∈ H1
f (Q, Vp(A)) with σ̃(x0) =:

[(
x0, x

+
0,p, γ(x0)

)]
∈ H̃1

f (Q, Vp(A)). Write V∞(A) := Vp(A)Q∞

for the cyclotomic deformation of Vp(A), and Gn := Gal(QN/Qn) for every n ∈ N (with N := cond(A/Q)).
As H1(Qn,v, Vp(A)) = 0 for every place v|` 6= p of Qn and every n ∈ N (see the proof of Proposition 14.6),
we can use Shapiro’s Lemma to indetify:

H1
Iw(Q∞, Vp(A)) ∼= lim←−

cor

H1(Gn, Vp(A)) ∼= H1(G, V∞(A)).

as Λ-modules, with G := G0 (see Remark 14.4). Let us choose a 1-cocycle

x̃ ∈ C1
cont(G, V∞(A)); [̃x] = x ∈ H1

Iw(Q∞, Vp(A))

representing x. We also choose cochains

x̃+
0,p ∈ C1

cont(Qp, V∞(A)+
p ); γ̃(x0) = (γ̃`(x0))`|N ∈

⊕
`|N

C0
cont(Q`, V∞(A))

lifting x+
0,p ∈ C1

cont(Qp, Vp(A)+
p ) and γ(x0) ∈

⊕
`|N C

0
cont(Q`, Vp(A)) respectively under the ‘augmentation

map’ εQ∞∗. (Here V∞(A)+
p :=

(
Vp(A)+

p

)
Q∞

is the cyclotomic deformation of Vp(A)+
p = Qp(1) ΦTate→ Vp(A).)
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Then by construction we have:

d eC•f
(̃
x, x̃+

0,p, γ̃(x0)
)

=
(

0, δ
(̃
x+
0,p

)
, (−res` (̃x0)− δ (γ̃`(x0))) 6̀=p ⊕

(
Φ̃Tate∗

(̃
x+
0,p

)
− resp (̃x)− δ (γ̃p(x0))

))
= $ ·

(
0, ỹ+

p ,
(
γ`(ỹf )

)
`|N

)
= $ · ỹf(149)

for a 2-cocycle ỹf :=
(

0, ỹ+
p ,
(
γ`(ỹf )

)
`|N

)
∈ C̃2

f (G, V∞(A)), where Φ̃Tate∗ is the map induced on cochains

by ΦTate⊗Λ : Qp(1)⊗Λ→ Vp(A)⊗Λ = V∞(A). Writing yf := εQ∞∗(ỹf ) =:
(

0, y+
p ,
(
γ`(yf )

)
`|N

)
, we have

again by construction (cfr. the proof of Proposition 14.7): β1
cycl (x0) = `$ · yf . Retracing the definitions of

Sections 0.4, 14.1.4 and 14.3 we obtain: for every zf = [(z, z+
p , (z`)`|N )] ∈ H̃1

f (Q, Vp(A))

`−1
$ · 〈x0, zf 〉Nek

Q,p = −〈[yf ], zf 〉PT
Q,W = −invp

([
γp(yf ) ∪W ΦTate∗(z+

p )
])

=−
〈
γ−p (yf ),

[
z+
p

]〉
Qp

= −γ−p (yf )
(
recQp

([
z+
p

]))
,(150)

where we have written γ−p (yf ) := πqA∗ (γp(yf )) (cfr. equation (141)) and we have used equation (145) (resp.,
local class field theory [Ser67]) for the third (resp., last) equality. (As above recQp : Q∗p⊗̂Qp

∼= Gab
Qp⊗̂Qp

normalized as in [Ser67].)
Let us write

`$ · γ−p (yf ) = Ap · LogqA +Bp · ψun
Qp ∈ Homcont(Gab

Qp ,Qp); Ap, Bp ∈ Qp,

where

ψun
Qp : Gun

Qp −→ Qp; LogqA = −
(

logp(χcycl) + Lp(A) · ψun
Qp

)
Frobp 7→ 1

(so that LogqA and ψun
Qp form a Qp-basis of Homcont(Gab

Qp ,Qp)). Recall that
[
x+
0,p

]
∈ Z∗p⊗̂Qp ⊂ H1(Qp,Qp(1))

by construction, so that logA(x0) = logp
([

x+
0,p

])
. Combining Lubin-Tate theory [Ser67], Lemma 14.7 and

equation (150) we obtain:

〈x0,x0〉Nek
Q,p = −`$ · γ−p (yf )

([
x+
0,p

])
= −Ap · LogqA

(
recQp

([
x+
0,p

]))
= −Ap · logA(x0);

logA(x0) = 〈qA,x0〉Nek
Q,p = 〈x0, qA〉Nek

Q,p = −`$ · γ−p (yf )
(
recQp(qA)

)
= −Bp · ordp(qA).

These equations, combined with Lemma 14.7 allows us to rewrite the determinant:

det

〈qA, qA〉
Nek
Q,p 〈qA,x0〉Nek

Q,p

〈x0, qA〉Nek
Q,p 〈x0,x0〉Nek

Q,p

 = −Bp · ordp(qA)2 ·
(
Bp −Ap ·Lp(A)

)
(151)

=
(

logA(x0) · ordp(qA)
)
·
(
`$ · γ−p (yf )(Frobp)

)
.

On the other hand: identify as usual H1
(
Qp, (Qp)Q∞

)
= H1

(
Qp, (Qp)Φ∞

)
∼= H1

Iw(Φ∞,Qp) via Shapiro’s

Lemma, and write γ−p (ỹf ) := π̃qA∗(γp(ỹf )) ∈ C1
cont

(
Qp, (Qp)Q∞

)
for the image of γp(ỹf ) under the map

induced by πqA ⊗Λ : V∞(A) = Vp(A)⊗Λ� Qp ⊗Λ. Then equation (149) (together with the naturality of
the Shapiro’s isomorphism) gives: γ−p (ỹf ) is a 1-cocycle and

(152) ∂p,∞ (x) =
(
π̃qA∗ ◦ resp ([̃x])

)
= −$ ·

[
γ−p (ỹf )

]
.

Since by definition γp (yf ) = εQ∞∗ (γp (ỹf )), we have γ−p (yf ) = pr0

([
γ−p (ỹf )

])
and combining (152) with

Lemma 15.1 we obtain:
Derp(x) = −`$ · γ−p (yf ) (Frobp) .

Together with (151) this proves the formula in the statement. �
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Remark 15.3. It seems to the author that ‘Nekovář’s Rubin-style formula’ [Nek06, Prop. 11.5.11]
is incorrect as stated, and then can not be applied in order to obtain (more quickly) Prop. 15.2. As
an example: let q̃f be as in the proof of Lemma 14.7 and take “xIw,f := q̃f ” (using again the notations
of [Nek06, Prop. 11.5.11]). Then loc. cit. would give ‘〈qA, zf 〉Nek

Q,p = 0’ for every zf ∈ H̃1
f (Q, Vp(A)),

which is clearly not the case by Lemm 14.7. (We think that the failure of loc. cit. is caused by the
presence of $-torsion in H1

Iw(Φ∞,Q). In the example above we have indeed d eC•f (q̃f ) = (0, ?, ĉp) and

π̃qA∗ (ĉp) = $ · ϑ̃$, where the 1-cocyle ϑ̃$ :=
{
GQp 3 g 7→

(
χ−1

Q∞
(g)− 1

)/
$
}

represents a cohomology

class lying in H1
Iw

(
Qp, (Qp)Q∞

)
[$].)

16. Kato’s Euler zeta elements

In this Section we recall some of the main properties of the Euler system for Tap(A) constructed by
Kato in [Kat04]. We refer the reader to [Rub00, Section 3.5] for more references, details and applications.

16.1. Dual exponentials. Let BdR be Fontain’s (topological) field of periods, and write B+
dR =

Fil0
(
B+

dR

)
for its ring of integers. Let us write R :=

{(
x(n)

)
∈
∏
n∈NOCp :

(
x(n+1)

)p
= x(n), ∀n

}
for the

‘perfection of OCp/pOCp ’, where Cp is the completion of an algebraic closure of Qp. Then we have a natural
GQp -equivariant injective map Zp(1) ↪→ R∗ and a (continuous) morphism of groups Log : Frac(R)∗ → B+

dR

which makes commutative the following diagram:

Frac(R)∗
Log //

����

B+
dR

����
C∗p

logp // Cp.

The left (resp., right) vertical arrow is
(
x(n)

)
n∈N 7→ x(0) (resp., projection to the residue field), and logp is

the branch of the p-adic logarithm vanishing on p. Fix a sequence qA =
(
qA, q

p−1

A , . . . , qp
−n

A , . . .
)
∈ R of

pn-th root of the Tate period and a generator ζ of Zp(1), so that we can identify {qA, ζ} with a Qp-basis
of Vp(A) via Tate’s theory (141). It is not difficult to show that qA 7→ Log(qA) and ζ 7→ Log(ζ) ‘realizes’
Vp(A) inside B+

dR, i.e. gives an injective Qp-linear and GQp -equivariant morphism Vp(A) ↪→ B+
dR. Then we

easily obtain: for every finite extension L/Qp

H0
(
L, Vp(A)⊗Qp B

+
dR

)
= L · ξA,

where
ξA := qA ⊗ 1− ζ ⊗

[
Log(ζ)−1 ·

(
Log(qA)− logp(qA)

)]
.

(As Log(ζ) is a uniformizer in B+
dR, ξA indeed lies in Vp(A) ⊗ B+

dR by the diagram above.) As proved in
[Kat93, Ch. II], the cup-product with logp ◦χcycl ∈ H1(L,Qp) gives an isomorphism H0(L, Vp(A)⊗B+

dR) ∼=
H1(L, Vp(A)⊗B+

dR). The Bloch-Kato dual exponential map can then be defined by the composition:

exp∗A,L : H1(L, Vp(A)) i∗−→ H1(L, Vp(A)⊗B+
dR) ∼=

(
Vp(A)⊗B+

dR

)GL
= L · ξA ∼= L,

where the last map sends ξA to 1. Since πqA ⊗ id : Vp(A) ⊗ B+
dR → Qp ⊗ B+

dR = B+
dR maps ξA to 1, by

construction the following diagram:

(153) H1 (L, Vp(A))
exp∗A,L //

πqA∗

��

L

H1(L,Qp)
exp∗L // L

commutes for every finite extension L/Qp. For every n ∈ N we will write exp∗A,n := exp∗A,Φn .
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16.2. Kato’s zeta elements. Let L(A, s) = L(A/Q, s) be the Hasse-Weil complex L-function of A/Q,
which is defined for <(s) > 3

2 by the Euler product:

L(A, s) :=
∏
`-N

(
1− a`(A)`−s + `1−2s

)−1 ·
∏
`|N

(
1− a`(A)`−s

)−1 =
∏
`

E`(`−s)−1.

HereN := cond(A/Q). For every prime ` - N the Euler factor E`(X) ∈ Z[X] is the characteristic polynomial
of an arithmetic Frobenius Frobq ∈ GQ` acting on Vp(A), for every prime q - N`. For a prime `|N we have
E`(X) = 1 − X (resp., E`(X) = 1 + X) if A/Q` has split (resp., non-split) multiplicative reduction, and
E`(X) = 1 if A/Q` has additive reduction [Sil86, Ch. V]. Given a finite order character χ : GQ → C∗ of
conductor fχ and an integer M we write

L{M}(A,χ, s) :=
∏

`-fχ·M

E`
(
χ (Frob`) · `−s

)−1
,

where Frob` ∈ GQ` ↪→ GQ is an arithmetic Frobenius at `. Thanks to the modularity theorem proved by
Wiles et al. and the work of Hecke we know that L{M}(A,χ, s) can be analytically continued to the whole
complex plane. If M = 1 we simply write L(A,χ, s) := L{1}(A,χ, s).

The following deep results is due to Kato. Its statement is taken from [Rub00, Th. 3.5.3], to which
we refer for precise references. We will write ΩA = Ω+

A ∈ R∗ for the real (or twice the real) period attached
to a global minimal Weierstrass model A/Z of A/Q [Sil86, Appendix C.16].

Theorem 16.1. (Kato) There exist ζKato
∞ = limn→∞ ζ

Kato
n ∈ H1

Iw(Q∞, Vp(A)) satisfying the following
interpolation property: for every n ∈ N and every character χ of Gal(Qn/Q)∑

γ∈Gal(Qn/Q)

χ(γ) · exp∗A,n
(

resp
(
γ
(
ζKato
n

)))
=
L{N}(A,χ, 1)

ΩA
,

where N is the conductor of A/Q.

Remark 16.2. As ψ(−1) = 1 for every Dirichlet character ψ mod pn+1 factoring throught Gal(Qn/Q),
a theorem of Shimura [Shi77b] gives

L{M}(A,ψ, 1)
ΩA

∈ Q(ψ)

for every such character and every integer M , where Q(ψ)/Q is the algebraic extension obtained by adding
to Q the values of ψ. The equalities of the preceding Theorem take place in Qp (identifying Q as a subfield
of Qp under our fixed embedding).

16.3. Zeta elements and the p-adic L-function. The (cyclotomic) p-adic L-function of A/Q is
defined to be a ‘measure on ΓQ∞ ’: Lp(A) ∈ Λ⊗Q satisfying the following interpolation property: for every
non-trivial character χ : ΓQ∞ → Q∗ of finite order

(154) χ
(
Lp(A)

)
= τ(χ) · L(A,χ−1, 1)

ΩA
.

Under our assumptions the existence of Lp(A) is proved (in greater generality) in [MTT86, Ch. I], while
its uniqueness follows by the Weierstrass preparation theorem. Given an integer M we write

Lp(A,M) :=
∏

`|M, 6̀=p

E`

(
`−1 · Frob−1

`

∣∣
Q∞

)
· Lp(A)

We denote by Lp(A,M, s) the p-adic Mellin transform of Lp(A,M), defined for every s ∈ Zp by

Lp(A,M, s) := χs−1
cycl

(
Lp(A,M)

)
.

We will simply write Lp(A, s) for Lp(A, 1, s).

Theorem 16.3. With the notations of Theorem 16.1: Lp(ζKato
∞ , s) = Lp(A,N, s).
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Proof. Let us write for simplicity C Kato
∞ := C∞

(
∂p,∞

(
ζKato
∞

))
, and let us identify Gal(Qn/Q) ∼=

Gn = Gal(Φn/Qp) under a fixed embedding ρp : Q ↪→ Qp (for every 0 ≤ n ≤ ∞). For every character
χ : ΓQ∞ � Gn → Q∗p of conductor pk > 1:

χ
(
C Kato
∞

)
= χ

(
C∞ ◦ ∂p,∞

(
ζKato
∞

))
Prop. 13.2

= τ(χ) ·
∑
γ∈Gn

χ−1(γ) · exp∗n
(
γ ◦ ∂p,n

(
ζKato
n

))
(153)
= τ(χ) ·

∑
γ∈Gal(Qn/Q)

χ−1(γ) · exp∗A,n
(

resp ◦ γ
(
ζKato
n

))
Theorem 16.1= τ(χ) ·

L{N}(A,χ−1, 1)
ΩA

= τ(χ) ·
L{N/p}(A,χ−1, 1)

ΩA
(154)
= χ

(
Lp(A,N)

)
.

By the Weierstrass preparation theorem: C Kato
∞ = Lp(A,N). Applying the Mellin transform to this equality

of measures we obtain the statement. �

Thanks to the work of Rohrlich (see again [Rub00, Sec. 3.5] for references) we know that Lp(A)
is non-zero, i.e. the special value L(A,ψ, 1) is non-zero for all but finitely many cyclotomic finite-order
characters ψ. As a corollary of the preceding Theorem we then obtain:

Corollary 16.4. (Rohrlich) ζKato
∞ 6= 0.

17. Proofs

In this section we conclude the proofs of the results stated in Section 3.
Let us fix u = limn→∞ un ∈ H1

Iw(Q∞, Vp(A)). We recall that the p-adic L-function attached to u is
defined by

Lp(u, s) := χs−1
cycl

(
C∞ ◦ ∂p,∞(u)

)
,

where C∞ : H1
Iw(Φ∞, Vp(A)) → I∞ ⊗Q ∼= IΛ ⊗Q is the (Q-linear extension of the) Coleman map defined

in Section 13.

17.1. Proposition 12.25 and Theorem 12.30. By Proposition 13.3 we have
d

ds
Lp(u, s)s=1 =

d

ds

[
χs−1

cycl

(
∂p(u0) (Frobp)
`$ · (1− p−1)

·$ +$2 · ?
)]

s=1

=
d

ds

((
`$(s− 1)− (`$(s− 1))2

/2 + · · ·
)
· ∂p(u0) (Frobp)
`$ · (1− p−1)

+ · · ·
)
s=1

(155)

=
(
1− p−1

)−1 · ∂p(u0) (Frobp) .

Looking at the long GQp -exact cohomology sequence attached to (141) we have

Im
(
H1(Qp, Vp(A))

πqA∗→ H1(Qp,Qp)
)

Kummer Theory
= ker

(
H1(Qp,Qp)

∗∪qA→ H1(Qp,Qp(1))
)

Class Field Theory
=

{
ψ ∈ Homcont(Gab

Qp ,Qp) : ψ
(
recQp(qA)

)
= 0
}

= Qp · LogqA ,

where LogqA := logp(χcycl) + Lp(A) ·ψun
Qp is as in the proof of Prop. 15.2. Then ∂p(u0) = ℘(u0) · LogqA for

some ℘(u0) ∈ Qp, so that we rewrite (155) as:

(156)
d

ds
Lp(u, s)s=1 =

(
1− p−1

)−1 · ℘(u) · LogqA (Frobp) =
(
1− p−1

)−1 ·Lp(A) · ℘(u0).

On the other, as expp (Qp) = Z∗p ⊗Q, the defining property of the dual exponential map exp∗Qp (128) gives
exp∗Qp(ψun

Qp) = 0 and exp∗Qp
(
logp (χcycl)

)
= 1. We then finally obtain

exp∗Qp (u0) = ℘(u0) · exp∗Qp (LogqA) = ℘(u0) = ∂log
p (u0),

which combined with (156) concludes the proof of Proposition 12.25.
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Let us now take u = ζKato
∞ : then

d

ds
Lp(A, s)s=1 =

∏
`|N ; l 6=p

E`
(
`−1
)−1 · d

ds
Lp(A,N, s)s=1

(
Th. 16.3

)
=

∏
`|N ; l 6=p

E`
(
`−1
)−1 · d

ds
Lp(ζKato

∞ , s)s=1

(
Prop. 12.25

)
=

∏
`|N

E`
(
`−1
)−1 ·Lp(A) ·

(
exp∗Qp ◦∂p

)(
ζKato

0

)
(
Th. 16.1 + (153)

)
=

∏
`|N

E`
(
`−1
)−1 ·Lp(A) ·

L{N}(A, 1)
ΩA

= Lp(A) · L(A, 1)
ΩA

,

concluding the proof of Theorem 12.30.

17.2. Proposition 12.28 and Theorem 12.31. Let u = limun ∈ H1
Iw(Q∞, Vp(A)) s.t. 0 6= u0 ∈

H1
f (Q, Vp(A)). Corollary 12.26 implies: Lp(u, s) vanishes to order at least 2 at s = 1. More precisely (cfr.

equation (147))
∂p,∞(u) = $ · u′p,

for some u′p = limn→∞ u′p,n ∈ H1
Iw(Φ∞,Qp). As χs−1

cycl($) = (s− 1) · `$ − 1
2 (s− 1)2 · `2$ + · · · and C∞ is a

morphism of Λ ∼= Λ∞-modules, applying Proposition 13.3 (and Lemma 15.1) we obtain:

1
2
· d

2

ds2
Lp(u, s)s=1 = `$ ·

d

ds
χs−1

cycl

(
C∞

(
u′p
) )∣∣∣

s=1

= `$ ·
(
1− p−1

)−1 · u′p,0 (Frobp) =
(
1− p−1

)−1 ·Derp(u).

(Note that C∞(u′p), and then Lp(u, s) depends only on u, even if u′p is well defined only up to $-torsion
elements.) Combined with proposition (15.2) this formula concludes the proof of Proposition 12.28.

Taking u = zKato
∞,$ (with the notations of Section 3), using the results of Section 16 and retracing the

definitions we easily see that Proposition 12.28 ‘specializes’ to Theorem 12.31.



APPENDIX A

A short course in Nekovář’s theory

Notations. Let R = (R,m) be a complete local Noetherian ring with finite residue field R/m of
characteristic p ≥ 3. We write D(R) for the derived category of complexes of R-modules [Har66, Ch. 1].

Let K/Q be a number field, and let Sf be a finite set of finite primes of K, containing every prime
dividing p. We denote by KS ⊂ K the maximal algebraic extension of K which is unramified outside
S := Sf ∪ {v|∞}. We fix, for every v ∈ Sf , an embedding ρv : K ↪→ Kv, and we write ρ∗v : GKv =
Gal(Kv/Kv) ↪→ GK for the induced map and Gv := ρ∗v(GKv ) for the corresponding decomposition group.
(Here Kv is the completion of K at the prime v.) We write Sp := {v ∈ Sf : v|p}.

Let G ∈ {GK,S , Gv, GKv}. For every admissible R[G]-module M (in the sense of [Nek06, Ch. 3]), we
can consider the complex C•cont(G,M) of (non-homogeneous) continuous cochains. We write

RΓcont(G,M) ∈ D(R); H∗(G,M) := H∗ (C•cont(G,M))

for the image of C•cont(G,M) in the derived category and its cohomology. We also use the notations:
C•cont(Kv,M) := C•cont(GKv ,M), RΓcont(Kv,M) := RΓcont(GKv ,M) and H∗(Kv,M) := H∗(GKv ,M).

When M is an R[G]-module of finite (resp, co-finite) type over R, then M is admissible precisely when
G acts continuously with respect to the m-adic (resp., discrete) topology on M , and C•cont(G,M) is the
usual continuous cochain complex. (For example, if M is of finite type over R we have

C•cont(G,M) = lim←− nC
•
cont(G,M/mnM),

considering of course on each M/mnM the discrete topology.)
We consider any admissible R[GK,S ]-module M as an admissible R[GKv ]-module (v ∈ Sf ) via ρ∗v. We

have natural isomorphism of complexes

C•cont(Gv,M) ∼→ C•cont(Kv,M),

i.e. that induced by the ‘morphisms of pairs’ (ρ∗v, idM ) : (Gv,M)→ (GKv ,M), under which we will always
identify these complexes. ‘Restricting cocycles’ from GK,S to Gv via the natural map Gv ⊂ GK � GK,S
then induces a restriction map

resv : C•cont(GK,S ,M)→ C•cont(Kv,M).

We also write resv : Hq(GK,S ,M)→ Hq(Kv,M) for the induced map and resSf := ⊕v∈Sf resv.

0.3. Generalities. LetX be an admissibleR[GK,S ]-module. A local condition ∆v(X) forX at v ∈ Sf
is a complex of R-modules U+

v (X), together with a morphism of complexes of R-modules

i+v = i+v (X) : U+
v (X) −→ C•cont(Kv, X).

(We usually write ∆v(X) = U+
v (X) when the morphism i+v is clear.)

Given local conditions ∆(X) = {∆v(X)}v∈Sf the associated Nekovář’s Selmer complex is defined by
[Nek06, Ch. 6]:

C̃•f (GK,S , X; ∆(X)) := Cone

C•cont(GK,S , X)⊕
⊕
v∈Sf

U+
v (X)

resSf−i
+
Sf−→
⊕
v∈Sf

C•cont(Kv, X)

 [−1].

Here i+Sf = ⊕v∈Sf i+v . We denote by (xn, (x+
n,v), (xn−1,v)) (or more simply by (xn, x+

n , xn−1)) an element of
C̃nf (GK,S , X; ∆(X)).

105
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For ∗ = ∅, ft, cf, let D∗ (R) be the derived category of complexes of R-modules with cohomology of
type ∗ over R. Here ft and cf means of finite and co-finite type respectively. Let

R̃Γf (GK,S , X; ∆(X)) ∈ D(R)

be the image of C̃•f (GK,S , X,∆(X)) in D(R), and

H̃q
f (GK,S , X; ∆(X)) := Hq

(
R̃Γf (GK,S , X; ∆(X))

)
.

When X is of ∗-type over R and U+
v (X) ∈ D∗(R), we have R̃Γf (GK,S , X; ∆(X)) ∈ D∗(R).

0.4. Class field theory. Let M be an R-module. With trivial GK,S-action, it is an admissible
R[GK,S ]-module, and so is its Tate twist M(1) := M ⊗Zp Zp(1) (with Zp(1) := lim←− n≥1µpn(K)). We
consider the complex

C(K,M) := τ≥3Cone

C•cont(GK,S ,M(1))
resSf→

⊕
v∈Sf

C•cont(Kv,M(1))

 [−1],

where τ≥3[· · ·X2
δ→ X3 → · · · ] := [0 → X3/Im(δ) → X4 → · · · ] denotes the ‘good truncation’ in degree

three. We note that C(K,M) = τ≥3C̃
•
f (GK,S ,M(1); ∆c), where ∆c,v : 0 → C•cont(Kv,M(1)) is the ‘full

local condition’ for every v ∈ Sf .
Let us denote by RC(K,M) the image of C(K,M) in the derived category D(R). It follows by global

class field theory that there is an isomorphism in D(R)

invSf (M) : RC(K,M) ∼→M [−3],

which is functorial in M . We can describe this isomorphism as follows.
For every v ∈ Sf let invv = invv(M) : H2(Kv,M(1)) ∼→ M be the isomorphism defined (taking

limits) by the invariant maps H2(Kv,Z/pnZ(1)) ∼→ Z/pnZ of local class field theory. Let m ∈ M =
(M [−3])3: by the fundamental exact sequence of global classfield theory, there exists 2-cocycles (yv)v∈Sf ∈
C•cont(Kv,M(1)) such that m =

∑
v∈Sf invv([yv]). Moreover if (y′v)v∈Sf is another sequence with this

property, then ([yv − y′v])v = resSf ([x]) ∈
⊕

v∈Sf H
2(Kv,M(1)) for a 2-cocycle x ∈ C•cont(GK,S ,M(1)).

This implies that
[(

0, (yv)v∈Sf
)]

=
[(

0, (y′v)v∈Sf
)]
∈ C(K,M). We then obtain a morphism of complexes

rM : M [−3]→ C(K,M),

defined in degree three by m 7→
[(

0, (yv)v∈Sf
)]
. Since GK,S and GKv have cohomological dimension

2, it follows easily by the definition that rM is a quasi-isomorphism, so that it induces an isomorphism
M [−3] ∼→ RC(K,M) in D(R). invSf (M) is defined as the inverse of this isomorphism. For more details
see [Nek06, Ch. 5].

We will write again invSf (M) : H3 (C(K,M)) ∼→M to denote the isomorphism induced in cohomology.

0.5. Greenberg local conditions. We will consider from now on modules and local conditions of
the following (elementary) type.

Let X a free R-module of finite type, with a continuous, R-linear action of GK,S . We assume that
there exists for every v ∈ Sf a short exact sequence of R[Gv]-modules

0→ X+
v

i+v→ X
p−v→ X−v → 0,

with X±v free as R-modules. We then define ∆v(X) = C•cont(Kv, X
+
v ), with i+v (X) : C•cont(Kv, X

+
v ) →

C•cont(Kv, X) defined as the morphism induced by i+v for every v ∈ Sf and ∆(X) := {∆v(X)}v∈Sf . We will
write from now on simply X‘ = ’{X; i+v : X+

v ↪→ X, v ∈ Sf} to denote the R[GK,S ]-module X, together
with the choice of R[Gv]-submodules i+v : X+

v ↪→ X. We will also write

C̃•f (GK,S , X) := C̃•f (GK,S , X; ∆(X)) ∈ K(R);

R̃Γf (GK,S , X) := R̃Γf (GK,S , X; ∆(X)) ∈ Dbft(R);
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H̃∗f (GK,S , X) := H̃∗f (GK,S , X; ∆(X)) ∈ (RMod)ft .

It follows by the definitions [Nek06, §(6.1.3)] that we have an exact triangle in D(R):

(157)
⊕
v∈Sf

RΓcont(Kv, X
−
v )[−1]→ R̃Γf (GK,S , X)→ RΓcont(GK,S , X).

Taking cohomology we obtain a long exact sequence of R-modules

(158) · · · →
⊕
v∈Sf

Hq−1(Kv, X
−
v )→ H̃q

f (GK,S , X)→ Hq(GK,S , X)→
⊕
v∈Sf

Hq(Kv, X
−
v )→ · · · ,

where the last map is obtained composing resSf with the (sum of) the maps induced by p−v .

0.6. Orthogonal local conditions. Let us fix X and Y as in the preceding Section. Let

π : X ⊗R Y → R(1)

be a morphism of R-modules, inducing a perfect duality between X and Y , i.e. such that

adj(π) : X ∼→ HomR(Y,R(1))

is an isomorphism of R[GK,S ]-modules (where adj(π)(x) : y 7→ π(x⊗ y)). We say that X+
v is π-orthogonal

to Y +
v , and write X+

v ⊥π Y +
v if the following composition is the zero map:

X+
v ⊗R Y +

v

i+v ⊗i
+
v→ X ⊗R Y

π→ R(1).

We write X ⊥π Y if X+
v ⊥π Y +

v for every v ∈ Sf .
If X+

v ⊥π Y +
v then adj (π) induces morphisms of short exact sequences of R[Gv]-modules:

(159) 0 // X+
v� _

α

��

// X

∼adj(π)

��

// X−v

β
����

// 0

0 // HomR (Y −v ,R(1)) // HomR (Y,R(1)) // HomR (Y +
v ,R(1)) // 0,

for every v ∈ Sf . We write Wv = Wv(π) := ker (β), sitting in an exact sequence of R[Gv]-modules

0→Wv(π)→ X−v → HomR
(
Y +
v ,R(1)

)
→ 0.

Moreover we say that X+
v is the (π-)orthogonal complement of Y +

v , written

X+
v ⊥⊥π Y +

v

if Wv(π) = 0 (or equivalently, if (159) is an isomorphism of short exact sequences of R[Gv]-modules).

0.7. Global cup-products. Let X, Y and π be as above. For G ∈ {GK,S , Gv}, the morphism π
induces a cup-product pairing

∪π : C•cont(G,X)⊗R C•cont(G, Y )→ C•cont(G,R(1)).

For x = (xv) ∈
⊕

v∈Sf C
•
cont(Kv, X) and y = (yv) ∈

⊕
v∈Sf C

•
cont(Kv, Y ), we write again x ∪π y :=

⊕vxv ∪π yv.

Lemma 0.1. Assume that X ⊥π Y and let r, s ∈ R.
a) The formula

(xn, x+
n , xn−1) ∪π,r (ym, y+

m, ym−1) :=

τ≥3

(
xn ∪π ym, xn−1∪π

(
r · resSf (ym) + (1− r) · i+Sf (y+

m)
)

(160)

+(−1)n
(

(1− r) · resSf (xn) + r · i+Sf (x+
n )
)
∪π ym−1

)
defines a morphism of complexes of R-modules

∪π,r : C̃•f (GK,S , X)⊗R C̃•f (GK,S , Y )→ C(K,R).
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b) The formula

(xn, x+
n , xn−1)⊗ (ym, y+

m, ym−1) 7→ τ≥3 (0, (−1)n(r − s) · xn−1 ∪π ym−1)

defines a homotopy between ∪π,r and ∪π,s.

Proof. A simple computation [Nek06, Prop. 1.3.2]. �

Under the condition of the preceding Lemma, ∪π,r and invSf (R) induce a morphism in D(R)

∪π : R̃Γf (GK,S , X; )⊗L
R R̃Γf (GK,S , Y )→ RC(K,R) ∼→ R[−3],

which is independent on the choice of r ∈ R. By adjunction we obtain a morphism

γπ := adj (∪π) : R̃Γf (GK,S , X) −→ RHomR
(
R̃Γf (GK,S , Y ),R

)
[−3].

(Here − ⊗L
R − and RHomR(−,−) are the derived functors attached to the total tensor product − ⊗R −

and Hom•R(−,−) on the (homotopy) category of complexes of R modules [Nek06, Ch. 2], [Har66, Ch.
2], and adj refers to the isomorphism in [Har66, Ch. 2, Prop. 5.15].)

Proposition 0.2. Assume that R is a Gorenstein ring (i.e. it is isomorphic in D(R) to a bounded
complex of injective R-modules). We have an exact triangle in D(R):

R̃Γf (GK,S , X)
γπ−→ RHomR

(
R̃Γf (GK,S , Y ),R

)
[−3] −→

⊕
v∈Sf

RΓcont (Kv,Wv(π)) .

Proof. Under our assumptions, this is a special case of [Nek06, Prop. 6.7.7]. �

0.8. Specializations. Let us take X, Y and π as in the preceding Section. We also assume X ⊥π Y .
Let f : R � R̃ be a surjective morphism of rings, and let I := ker(f). For every R-module M we write
M̃ := MR,f R̃ ∼= M/I ·M .

For Z ∈ {X,Y }, Z̃ is a free R̃-module, with a continuos R̃-linear action of GK,S . Moreover, for every
v ∈ Sf we have short exact sequences of R̃[Gv]-modules

0→ Z̃+
v → Z̃ → Z̃−v → 0,

where Z̃±v := Z̃±v are free R̃-modules. The morphism π induces a morphism of R̃[GK,S ]-modules

π̃ := π ⊗R,f R̃ : X̃ ⊗ eR Ỹ −→ R̃(1),

which is a perfect duality between X̃ and Ỹ over R̃, such that X̃ ⊥eπ Ỹ . In other words: X̃, X̃±v , Ỹ , Ỹ ±v
and π̃ are again data of the type discussed in the preceding Sections.

We will write Lf∗ : Db(R)→ Db(R̃) for the left derived functor of the base change functor −⊗R,f R̃
on the category of complexes of R-modules. (Here Db(∗) denoted the full triangulated subcategory of D(∗)
whose object are those complexes of ∗-module which are isomorphic in D(∗) to a bounded complex of
∗-modules.)

Remark 0.3. Write f∗ for the exact forgetful functor from R̃-modules to R-modules, so that we
have a natural isomorphism f∗ ◦ Lf∗ = −⊗L

R,f R̃. Since f∗ ◦ f∗ is isomorphic to the identity functor and
Rf∗ = f∗ : Db(R̃)→ Db(R) and Lf∗ : Db(R)→ Db(R̃) are adjoint functors [Har66, pag. 111], we easily
obtain natural isomorphisms for M ∈ Db(R) and N ∈ Db(R̃):

HomD( eR) (Lf∗(M), N) ∼= HomD(R)

(
M ⊗L

R,f R̃, f∗(N)
)

;

HomD( eR) (N,Lf∗(M)) ∼= HomD(R)

(
f∗(N),M ⊗L

R,f R̃
)
.

In other words: a morphism (resp., isomorphism) in D(R̃) between Lf∗M and N ‘is the same’ as a
morphism (resp., isomorphism) in D(R) between M ⊗L

R,f R̃ and f∗N .
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Lemma 0.4. Assume that I = x := (x1, . . . , xd) is generated by an R-regular sequence x.
a) For T ∈ {Z,Z±v } and G = GK,S or Gv, there exists canonical isomorphisms in D(R̃):

Lf∗ (RΓcont(G,T )) ∼= RΓcont(G, T̃ ).

b) There exists canonical isomorphisms in D(R̃)

Lf∗
(
R̃Γf (GK,S , Z; ∆(Z))

)
∼= R̃Γf (GK,S , Z̃; ∆(Z̃)).

c) The isomorphisms in b) induce a commutative diagram in D(R̃):

Lf∗
(
R̃Γf (X)⊗L

R R̃Γf (Y )
)

∼
��

Lf∗(∪π) // Lf∗ (R[−3])

∼

��
R̃Γf (X̃)⊗LeR R̃Γf (Ỹ )

∪eπ // R̃[−3]

(where R̃Γf (−) := R̃Γf (GK,S ,−; ∆(−))).

Proof. a) We prove the statement by induction on d.
Let d = 1 and write x = x1, which by assumption is a non-zerodivisor in R. By [Nek06, Prop. 3.4.2]

(and [Nek06, Prop. 3.5.10]), the tautological exact sequence of R[G]-modules 0→ T
x→ T → T̃ → 0 gives

rise to a short exact sequence of complexes of R-modules

(161) 0→ C•cont(G,T ) x→ C•cont(G,T )→ C•cont(G, T̃ )→ 0,

so that we have isomorphisms in the derived category D(R):

RΓcont(G,T )⊗L
R R̃

∼→ C•cont(G,T )⊗RP eR ∼→ Cone
(
C•cont(G,T ) x→ C•cont(G,T )

)
∼→ C•cont(G, T̃ ),

where P eR :=
(
R x→ R

)
, concentrated in degrees −1 and 0 is a free resolution of the R-module R̃. (The

first isomorphism follows by the definition of the derived functor −⊗L
R R̃.)

Assume now that d ≥ 2, and write: x := xd, x′ := (x1, . . . , xd−1), R̃′ := R/x′ and T̃ ′ := T ⊗R R̃′.
Then x is a non-zero-divisor in R̃′, R̃ = R̃′/x and we have a short exact sequence of R̃′-modules:

0→ T̃ ′
x→ T̃ ′ → T̃ → 0.

Using induction and what already proved we obtain isomorphisms:

RΓcont(G, T̃ )⊗L
R R̃

∼→
(
RΓcont(G,T )⊗L

R R̃′
)
⊗LeR′ R̃ ∼→ RΓcont(G, T̃ ′)⊗LeR′ R̃ ∼→ RΓcont(G, T̃ ),

which is easily seen to depend only on the prime I (i.e. not on the choice of the R-regular sequence
generating it). Using the discussion in Remark 0.3, this in turn defines the isomorphism in the statement.

b) The same argument used in the proof of a) applies. In fact, assume d = 1. The exact sequences
(161) are ‘compatible’ with respect to resSf : C•cont(GK,S , ) → C•cont(Kv,−) and i+v : C•cont(Kv, (−)+

v ) →
C•cont(Kv,−), so that they induce a short exact sequence of complexes of R-modules:

0→ C̃•f (GK,S , Z; ∆(Z)) x→ C̃•f (GK,S , Z; ∆(Z))→ C̃•f (GK,S , Z̃; ∆(Z̃))→ 0,

which can be rewritten as an isomorphism:

R̃Γf (GK,S , Z; ∆(Z))⊗L
R R̃

∼→ R̃Γf (GK,S , Z̃; ∆(Z̃)).

For d ≥ 2, the induction argument proceeds exactly as in the proof of a).
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c) This follows from the definitions and the commutativity of the following diagram of complexes of
R-modules, where r ∈ R, r̃ = r mod I, C̃•f (−) := C̃•f (GK,S ,−; ∆(−)), C(−) := C(K,−) (and the morphism
r− is defined in Sec. 0.4) :

C̃•f (X)⊗R C̃•f (Y )

��

∪π,r // C(R)

��

R[−3]
rRoo

��
C̃•f (X̃)⊗ eR C̃•f (Ỹ )

∪eπ,er // C(R̃) R̃[−3].
rfRoo

Here the vertical maps are those induces by ‘reduction modulo I’. The commutativity of the left-hand (resp.,
right-hand) square follows by the definitions of the cup-product in Lemma 0.1 (resp., by the functoriality
of the invariant maps of local classfield theory). �

0.9. Hermitian case. In this section we assume that R is equiped with an involution ι, i.e. with a
ring isomorphism ι : R → R such that ι2 = id. For every R-module M , we denote by M ι the R-module
with the same underline abelian group of M , but with R-action obtained composing the original action
with ι. This defines a functor M 7→ M ι on the category of R-modules (with f ι := f for a morphism
M → N). For a complex of R-modules X, Xι is defined by (Xι)n = (Xn)ι. Again this define a functor on
the category of complexes of R-module, which derive trivially to a functor on D(R). For every admissible
R[G]-module M (G ∈ {GK,S , Gv}), we have C•cont(G,M

ι) = C•cont(G,M)ι as complexes of R-modules.
Let X be as in Sec. 0.5. We write Y := Xι and Y ±v := (X±v )ι (v ∈ Sf ), which are again data of the

type considered in Sec. 0.5. We assume that there exists a perfect duality π : X ⊗R Y → R(1) between X
and Y , such that X ⊥π Y . We also assume that there exists c = ±1 such that

(162) π′ := π ◦ s12 = c · ι ◦ πι : Y ⊗R X −→ R(1).

We note that π′ is a perfect duality between Y and X, such that Y ⊥π′ X.
Let us write C̃•f (−) := C̃•f (GK,S ,−; ∆(−)) and C := C(K,R). As above, we have C̃•f (Y ) = C̃•f (X)ι, so

that Lemma 0.1 gives us a cup product pairing (r ∈ R)

∪π,r : C̃•f (X)⊗R C̃•f (X)ι −→ C,

and a corresponding product in the derived category:

∪π : R̃Γf (X)⊗L
R R̃Γf (X)ι −→ R[−3].

In the same way π′ induces:

∪π′,r : C̃•f (X)ι ⊗R C̃•f (X) −→ C; ∪π′ : R̃Γf (X)ι ⊗L
R R̃Γf (X) −→ R[−3].

It follows immediately from (162) and Lemma 0.1 that we have

∪π′,r = c · (ι ◦ (∪π,r)ι) .

By the functoriality of the isomorphism invSf (−) we also obtain the formula:

(163) ∪π′ = c · (ι ◦ (∪π)ι) .

Moreover, as in [Nek06, Sec. 6.5], the existence of ‘transposition operators’ for Greenberg local conditions
(see also Sec. 6.7 of loc. cit.) implies that the following diagram of complexes of R-modules:

C̃•f (X)⊗R C̃•f (X)ι

s12

��

∪π,r // C

C̃•f (X)ι ⊗R C̃•f (X)
∪π′,1−r // C
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commutes up to homotopy (with s12(x⊗ y) = (−1)ijy ⊗ x for x ∈ C̃•f (X)i and y ∈ C̃•f (X)j). In particular
(using b) of Lemma 0.1) we obtain the identity in D(R):

∪π′ ◦ s12 = ∪π.

Combined with (163), this proves the following:

Lemma 0.5. We have a commutative diagram in D(R):

R̃Γf (X)⊗L
R R̃Γf (X)ι

s12

��

∪π // R[−3]

R̃Γf (X)ι ⊗L
R R̃Γf (X)

c·(∪π)ι // Rι[−3].

ι

OO

In other words: ∪π is symmetric-Hermitian (resp., skew-Hermitian) if c = +1 (resp., c = −1).
In particular: assume that ι = id. Then ∪π is symmetric (resp., skew-symmetric) if c = +1 (resp.,

c = −1).

0.10. Cassels-Tate parings. The notations and hypothesis are as in the preceding Section, and we
write R := Frac(R) for its total ring of fraction. For every complex of R-modules M , let RΓ!(M) :=
M ⊗R

(
R −i→ R

)
and H∗! (M) := H∗ (RΓ!(M)), where

(
R −i→ R

)
=: P is concentrated in degrees 0 and

1. (The functor M 7→ RΓ!(M) derives trivially to a functor D(R) → D(R).) We note that RΓ!(M) ∼→
Cone

(
M
−i→M ⊗R R

)
[−1] as complexes of R-modules. In particular, if M ∈ Dft (R) we obtain for every

q ∈ Z a short exact sequence of R-modules:

(164) 0→ Hq−1(M)⊗R R/R → Hq
! (M)→ Hq(M)tors → 0,

where tors refers to the R-torsion.
We have a quasi-isomorphism

v : RΓ! (P) =
(
R (−i,−i)→ R ⊕R

id⊕−id→ R

)
→P,

defined by the identity in degree 0 and by the projection to the first component in degree 1. For every
complexes of R-modules M,N we can consider the composition

(165) (M ⊗RP)⊗R (N ⊗RP) s23→ (M ⊗R N)⊗R (P ⊗RP) id⊗v→ (M ⊗R N)⊗RP.

For complexes M,N which are cohomologically bounded above, this construction induces a functorial cup-
product pairing in D(R):

∪! = ∪!,M,N : RΓ!(M)⊗L
R RΓ!(N)→ RΓ!(M ⊗L

R N).

(Here s23((x⊗ y)⊗ (x′ ⊗ y′)) = (−1)ij(x⊗ x′)⊗ (y ⊗ y′) for x′ (reps., y) of degree j (resp., i).)

Lemma 0.6. Assume that M,N ∈ D−(R) are cohomologically bounded above. Then we have a com-
mutative diagram in D(R):

RΓ!(M)⊗L
R RΓ!(N)

∪!,M,N //

s12

��

RΓ!(M ⊗L
R N)

RΓ!(s12)

��
RΓ!(N)⊗L

R RΓ!(M)
∪!,N,M // RΓ!(N ⊗L

RM).
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Proof. Multiplication h : (P ⊗RP)3 := R ⊗ R → R = P1;µ ⊗ ν 7→ µ · ν defines a homotopy:
h : v  v ◦ s12. Then, for every complexes P,Q of R-modules the following diagram:

(P ⊗RP)⊗R (Q⊗RP)
s23 //

s12

��

(P ⊗R Q)⊗R (P ⊗RP)

s12⊗s12

��

id⊗v // (P ⊗R Q)⊗RP

s12⊗id

��
(Q⊗RP)⊗R (P ⊗RP)

s23 // (Q⊗R P )⊗R (P ⊗RP)
id⊗v // (Q⊗R P )⊗RP

commutes up to homotopy (i.e. in the homotopy category). Recalling the definition of ∪!,∗,† this implies
the statement of the Lemma. �

Let us abbreviate R̃Γf (−) := R̃Γf (GK,S ,−) and H̃∗f (−) := H̃∗f (GK,S ,−). Taking M := R̃Γf (X) and
N := R̃Γf (X)ι above, we obtain a morphism in D(R):

c̃π : RΓ!

(
R̃Γf (X)

)
⊗L
R RΓ!

(
R̃Γf (X)ι

)
∪!→ RΓ!

(
R̃Γf (X)⊗L

R R̃Γf (X)ι
)

RΓ!(∪π)−→ RΓ! (R) [−3].

This morphism induces a pairing in cohomology:

c̃′π,2,2 : H2
!

(
R̃Γf (X)

)
⊗R H2

!

(
R̃Γf (X)ι

)
−→ H1

! (R) ∼→ R/R,

the last isomorphism coming from (164) for M = R. Moreover, every term in (164) is a torsion R-module,
and the first term is R-divisible. We then see that c̃′π,2,2 factorizes through an R-bilinear form:

c̃π,2,2 : H̃2
f (X)tors ⊗R H̃2

f (X)ιtors −→ R/R,
called the (abstract) Cassels-Tate pairing on X attached to π.

Proposition 0.7. We have a commutative diagram of R-modules

H̃2
f (X)tors ⊗R H̃2

f (X)ιtors

s12

��

ecπ,2,2 // R/R

H̃2
f (X)ιtors ⊗R H̃2

f (X)tors

c·(ecπ,2,2)ι // (R/R)ι .

ι

OO

Proof. Let us write as above ∪! := ∪
!,gRΓf (X),gRΓf (X)ι

. We have:

c̃ ιπ ◦ s12 := RΓ!(∪πι) ◦ ∪ ι
! ◦s12

(by Lemma 0.6) = RΓ!(∪πι ◦ s12) ◦ ∪!

(by Lemma 0.5) = c ·RΓ!(ι ◦∪π) ◦ ∪!

= c ·RΓ!(ι) ◦RΓ!(∪π) ◦ ∪! =: c ·RΓ!(ι) ◦ c̃π.
Retracing the definitions this easily implies the commutativity of the diagram in the statement. �

0.11. Poitou-Tate duality. Let X be as in Sec. 0.5. For every (continuous) R[GK,S ]-module M of
finite type over R, we write

AM := Homcont (M,µp∞)
for the Kummer dual of M . (Here µp∞ := µp∞(K) (as GK,S-module) and cont refers to the m-adic (resp.,
discrete) topology on M (resp., µp∞).) Then AM , with the discrete topology has a continuous, R-linear
action of GK,S ; in particular it is admissible.

Defining A±X,v := (AX)±v := AX∓v (for v ∈ Sf ) as the Kummer dual of X∓v , Pontrjagin duality gives us
short exact sequences of R[Gv]-modules

0→ (AX)+
v → AX → (AX)−v → 0.

Defining ∆v(AX) := C•cont(Kv, (AX)+
v ) we can consider the complexes

C̃•f (GK,S ,AX) := C̃•f (GK,S ,AX ; ∆(AX)) ∈ K(R); R̃Γf (GK,S ,AX) := R̃Γf (GK,S ,AX ; ∆(AX)) ∈ Dcf(R),
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and the corresponding extended Selmer groups H̃∗f (GK,S ,AX) := H̃∗f (GK,S ,AX ; ∆(AX)). The represen-

tation with ‘Greenberg local conditions’ AX =
{

AX ,
{

A+
X,v

}
v∈Sf

}
is the Kummer dual representation of

X =
{
X, {X+

v }v∈Sf
}
. As in Sec. 0.5, we have a long exact cohomology sequence:

(166) · · · →
⊕
v∈Sf

Hq−1(Kv, (AX)−v )→ H̃q
f (GK,S ,AX)→ Hq(GK,S ,AX)→

⊕
v∈Sf

Hq(Kv, (AX)−v )→ · · · .

Proposition 0.8. For every q ∈ Z we have isomorphisms of R-modules:

H̃q
f (GK,S , X) ∼→ HomZp

(
H̃3−q
f (GK,S ,AX),Qp/Zp

)
,

Proof. This is a special case of [Nek06, Prop. 6.7.7] (see also loc. cit., Sec. 2.9.1 and Sec. 6.3.5). �

Remark 0.9. The isomorphisms of the preceding proposition come from cup-product pairings

∪ev : C̃qf (GK,S , X; ∆(X))× C̃3−q
f (GK,S ,AX ; ∆(AX))→ C̃3

f (GK,S , µp∞ ; ∆c(µp∞))

satisfying (the usual relation d (x∪ y) = dx∪ y + (−1)q · x∪ dy and) and (r · x) ∪ y = x∪ (r · y), together
with the isomorphism H̃3

f (GK,S , µp∞ ; ∆c(µp∞)) ∼→ Qp/Zp coming from Section 0.4. (Here ∆c(µp∞) is the
full local condition 0 → C•cont(GK,S , µp∞) at every v ∈ Sf ). The cup-product ∪ev is defined by the same
formula displayed in Lemma 0.1, once we replace the cup-products induced on complexes by π by those
induced using Kummer duality ev : X × AX → µp∞ .

Remark 0.10. Let X be a finite GK,S-modules of p-power order, equipped with the “empty local
conditions” ∆∅(X)v : C•cont(Kv, X) at every v ∈ Sf . Using the preceding proposition, (166) becomes the
well-known Poitou-Tate 9-terms exact sequence [Mil04, Ch. I]. In fact the proofs of Prop. 0.8 and Prop.
0.2 use this ‘special case’ in an essential way.





APPENDIX B

Iwasawa theory

Let K/K be a Zdp-extension for some d ≥ 1 (i.e. a Galois extension with Galois group isomorphic
to the additive group Zdp). We are interested in the variation of Selmer complexes with respect to finite
subextensions K ⊂ L ⊂ K. In particular, given a discrete (resp., compact) R[GK,S ]-module A (resp., M),
we are interested in the Selmer complex of A/K

R̃Γf (KS/K, A; ∆(A)) := lim−→
res,L

R̃Γf (Gal(KS/L), A; ∆L(A))

(resp., in the Complex of ‘K/K-universal norms’

R̃Γf,Iw(K/K,M ; ∆(M)) := lim←−
cores,L

R̃Γf (Gal(KS , L),M ; ∆L(M))),

where {∆L(∗)}L are ‘compatible’ Greenberg local conditions (and the restriction and corestriction mor-
phisms will be defined below). The key fact is that Shapiro’s lemma allows us to describe these ‘Iwasawa
complexes’ over K in terms of complexes over K of the Galois deformations HomR,cts (R[[Gal(K/K)]], A)
and M ⊗R R[[Gal(K/K)]] respectively. In other words, working with cohomology over general coefficient
rings allows us to include Iwasawa theory in the theory of Galois deformations. This point of view is well
explained in Greenberg [Gre94b] (see especially Prop. 3) and [Nek06, Sec. 0.11-0.13]. This Section is a
summary of some of the results in [Nek06, Ch. 8] (which of course works in much greater generality).

Notations. We use the notations of Section A. Let L/K be a finite Galois subextension of KS/K.
Write SL,f for the set of finite primes of L dividing primes in Sf = SK,f , and SL := SL,f ∪ {v|∞}. Then
GL,SL := Gal(KS/L) = Gal(LSL/L) is the Galois group of the maximal algebraic extension LSL/L which
is unramified outside SL. For every v ∈ Sf we write w0|v for the prime of L defined by ρv : K ↪→ Kv and
GL,w0 := Gv ∩GL for the corresponding decomposition group. For every other prime w|v we fix σw ∈ GK
such that σv(w0) = w, i.e. w is induced by the embedding ρw := ρv ◦ σ−1

w . (This amounts to fixing
representatives of the double coset space GL\GK/Gv, i.e.

GK =
∐
w|v

GLσwGv.
)

We also write GK,w := σw · Gv · σ−1
w and GL,w := σw · GL,w0 · σ−1

w , which are decomposition groups at w
for K and L respectively.

We consider an R-module X, which is assumed to be either of finite type or of co-finite type. We
assume that X is equipped with a continuous R-linear action of GK,S (with respect to the m-adic or the
discrete topology respectively), and with Greenberg local conditions for every v ∈ Sf , i.e. with fixed R[Gv]-
submodules i+v : X+

v ↪→ X. For every w|v ∈ Sf , we define the R[GK,w]-modules X+
w := σw (X+

v ) (viewing
X+
v ⊂ X under i+v ), so that we obtain an inclusion of R[GK,w]-modules

i+w := σw ◦ i+v ◦ σ−1
w : X+

w ↪→ X.

For every finite sub-extensionK ⊂ L ⊂ K, we will consider local conditions ∆(X) = ∆L(X) := {∆w(X)}w∈SL,f
defined as usual by i+w : C•cont(Lw, X

+
w ) ∼→ C•cont(GL,w, X

+
w )→ C•cont(GL,w, X) ∼→ C•cont(Lw, X). (As in the

preceding Section, we identify C•cont(Lw, ∗) and C•cont(GL,w, ∗) under the isomorphism induced by ρ∗w.) We

115
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will also omit ∆(X) from the notations, i.e. we write

R̃Γf (GL,SL , X) := R̃Γf (GL,SL , X; ∆L(X));

we also use similar notations C̃•f (GL,SL , X) and H̃∗f (GL,SL , X).

0.12. Shapiro’s lemma. LetK ⊂ L ⊂ KS be a finite Galois extension and letR(L) := R[Gal(L/K)].
We consider the R[GK,S ]-modules

(167) L(X) := HomR (R(L), X) ∼= X ⊗R R(L) =: X(L),

where the isomorphism is defined by f 7→
∑
σ∈Gal(L/K) f(σ)⊗σ. The Galois action on L(X) (resp., X(L))

is given by fg(σ) := g · f(g−1σ) (resp., (
∑
σ xσ ⊗ σ)g :=

∑
σ g(xσ)⊗ gσ) for every g ∈ GK,S . The functors

X 7→ L(X) and X 7→ X(L) commute with direct and inverse limits; in particular if X is of finite type over
R we have X(L) = lim←−

n

[
(X/mnX) (L)

]
.

We note that if A is a discrete R[GK,S ]-module, then A(L) is isomorphic as a GK,S-module to the
induced module

IndGK,SGL,SL
(A) :=

{
f : GK,S

loc. const.−→ A : f(γ · g) = γ · f(g), ∀γ ∈ GL,SL
}

with GK,S-action given by fτ (g) := f(g ·τ), and the isomorphism defined sending a GL,SL-equivariant map
f : GK,S → A to the element

∑
σ∈Gal(L/K)

(
σ̃ · f(σ̃−1)

)
⊗ σ, where σ̃|L = σ. Moreover Shapiro’s lemma

asserts the morphism of pairs
(
GL,SL ⊂ GK,S , IndGK,SGL,SL

(A)→ A; f 7→ f(1)
)
gives a quasi-isomorphism

sh : C•cont(GK,S , IndGK,SGL,SL
(A)) −→ C•cont(GL,SL , A).

The preceding isomorphism (167) then induces quasi-isomorphisms of complexes of R-modules

sh : C•cont(GK,S , X(L)) −→ C•cont(GL,SL , X); sh : C•cont(GK,S , L(X)) −→ C•cont(GL,SL , X)

induced by (⊂ ,pr1) : (GK,S , X(L)) → (GL,SL , X) and (⊂ , f 7→ f(idL)) : (GK,S , L(X)) → (GL,SL , X)
respectively, where pr1 (

∑
σ xσ ⊗ σ) = xidL . This follows immediately if X is of co-finite type (hence

discrete), while follows by a limit argument if X is of finite type over R. ( More precisely we apply Shapiro’s
lemma to any of the discrete modules (X/mnX) (L) and use the fact recalled above that X 7→ X(L)
commutes with inverse limits.)

Let v ∈ Sf and let us consider for every w|v the GK,w-module

X(Lw) := X ⊗R R[GK,w/GL,w].

(If X is discrete then X(Lw) ∼→ IndGK,wGL,w
(X).) We consider also X(Lw) as a GK,v = Gv-module via

the morphism Ad(σw) : Gv → GK,w; γ 7→ σwγσ
−1
w . We can easily check that the following defines an

isomorphism of Gv-modules:

(168) ωv =
⊕
w|v

ωw : X(L) ∼−→
⊕
w|v

X(Lw);
∑

σ∈Gal(L/K)

xσ ⊗ σ 7→

 ∑
γ∈GK,w/GL,w

σw

(
xσ−1

w ·γ

)
⊗ γ


w|v

.

(We have γ = σwγwσ
−1
w ∈ GK,w/GL,w = σw · Gv/GL,w0 · σ−1

w . Then σ−1
w · γ is by definition the element

γw · σ−1
w ∈ Gal(L/K) =

∐
w|v (Gv/GL,w0) · σ−1

w .) As above Shapiro’s Lemma induces a quasi isomorphism
of complexes of R-modules

shw : C•cont(Kv, X(Lw)) ∼→ C•cont(GK,w, X(Lw))
qis→ C•cont(Lw, X),
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where the first isomorphism is induces by the isomorphism of pairs (Ad(σ−1
w ), id) : (Gv, X(Lw)) →

(GK,w, X(Lw)) (recalling the definition of the action of Gv on X(Lw)). In particular we obtain a quasi-
isomorphism of complexes

shSf :
⊕
v∈Sf

C•cont(Kv, X(L))
L
v(ωv)∗−→

⊕
v∈Sf

⊕
w|v

C•cont(Kv, X(Lw))
L
v,w shw
−→

⊕
w∈SL,f

C•cont(Lw, X).

It follows by the definitions that for every w|v the following digram of complexes of R-modules commutes:

C•cont(GK,S , X(L))

resv

��

(σ−1
w )∗ // C•cont(GK,S , X(L)) sh // C•cont(GL,SL , X)

resw

��
C•cont(Kv, X(L))

(ωw)∗ // C•cont(Kv, X(Lw))
shw // C•cont(Lw, X).

Here σ∗ for σ ∈ GK,S denotes Galois conjugation, i.e. the isomorphism of complexes induces on cochains
by (Ad(σ−1), σ) : (GK,S , X) → (GK,S , X). (We recall that for a profinite group G and a continuous G-
module M , there exist homotopies hσ = hσ(G,X) between the the identity morphism on C•cont(G,M) and
σ∗, which are functorial in both G and M .) Fixing (functorial) homotopies hσ : id  σ∗, the preceding
diagram tells us that the diagram:

C•cont(GK,S , X(L))
resSf //

sh

��

⊕
v∈Sf C

•
cont(Kv, X(L))

shSf
��

C•cont(GL,SL , X)
resSL,f //

⊕
w∈SL,f C

•
cont(Lw, X)

is commutative up to the homotopy sX :=
⊕

v∈Sf
⊕

w|v resw ◦ sh ◦ hσ−1
w

: resSL,f ◦ sh shSf ◦ resSf .
Let us define for every v ∈ Sf the sub-R(L)[Gv]-modules i+v (L) := i+v ⊗ id : X(L)+

v := X+
v (L) ↪→ X(L).

We also define for every w|v ∈ Sf the GK,w-module

X+
w (Lw) := X+

w ⊗R R[GK,w/GL,w],

(which is isomorphic to IndGK,wGL,w
(X+

w ) if X+
w is a discrete GK,w-module). X+

w (Lw) is also a GK,v = Gv-
module via Ad(σw) : Gv → GK,w. Formula (168) again defines an isomorphism of Gv-modules

ω+
v : X(L)+

v
∼→
⊕
w|v

X+
w (Lw)

such that the following diagram

X(L)+
v

ω+
v //

i+v (L)

��

⊕
w|vX

+
w (Lw)

L
w|v i

+
w(Lw)

��
X(L)

ωv //
⊕

w|vX(Lw)

is commutative. (We have written i+w(Lw) := i+w⊗id.) Shapiro’s Lemma gives as above a quasi-isomorphism
sh+
w : C•cont(Kv, X

+
w (Lw))

qis→ C•cont(Lw, X
+
w ) (for w|v ∈ Sf ) such that i+w ◦ sh+

w = shw ◦ i+w(Lw). We then
obtain a quasi-isomorphism

sh+
Sf

:=
(
sh+
w ◦ (ω+

v )∗
)
w|v∈Sf

:
⊕
v∈Sf

C•cont(Kv, X(L)+
v )

qis−→
⊕

w∈SL,f

C•cont(Lw, X
+
w ),



118 B. IWASAWA THEORY

sitting in a commutative diagram of complexes of R-modules

⊕
v∈Sf C

•
cont(Kv, X(L)+

v )

i+Sf
��

sh+
Sf //

⊕
w∈SL,f C

•
cont(Lw, X

+
w )

i+SL,f
��⊕

v∈Sf C
•
cont(Kv, X(L))

shSf //
⊕

v∈SL,f C
•
cont(Lw, X),

where iSL,f :=
⊕

w∈SL,f i
+
w . Define X−w := X/X+

w and X(L)−v := X(L)/X(L)+
v for every w|v ∈ Sf ; we then

have completely analogous results replacing + with −.
Let us define again local conditions ∆(X(L)) = {∆(X(L))v}v∈Sf using the submodules X(L)+

v (i.e.
define ∆(X(L))v as the morphism of complexes i+v (L) : C•cont(Kv, X(L)+

v ) → C•cont(Kv, X(L))) and let us
write

C̃•f (GK,S , X(L)) := C̃•f (GK,S , X(L); ∆(X(L))); R̃Γf (GK,S , X(L)) := R̃Γf (GK,S , X(L); ∆(X(L)))

for the corresponding Selmer complex. Via ‘functoriality of cones’ [Nek06, Sec. 1.1.6] the constructions
above allow us to define a quasi isomorphism of complexes of R-modules

shf := shf,E/K : C̃•f (GK,S , X(L))
qis−→ C̃•f (GL,SL , X)(169)

(xn, x+
n , xn−1) 7→

(
sh(xn), sh+

Sf

(
x+
n

)
, shSf (xn−1) + sX(xn)

)
.

Moreover, as proved in [Nek06, Sec. 8.1.7.2] the image of shf in the homotopy category of complexes of
R-modules is canonical (i.e. the homotopy class of shf does not depend on the choice of the homotopies
hσ for σ ∈ GK). In particular we obtain a canonical isomorphism in D(R):

(170) shf : R̃Γf (GK,S , X(L)) ∼→ R̃Γf (GL,SL , X).

Moreover we see easily that this induces an isomorphism of exact triangles in D(R) (see (157)):

(171)
⊕

v∈Sf RΓcont(Kv, X(L)−v )[−1] //

sh−Sf
��

R̃Γf (GK,S , X(L))

shf

��

// RΓcont(GK,S , X(L))

sh

��⊕
w∈Sf RΓcont(Lw, X−w )[−1] // R̃Γf (GL,SL , X) // RΓcont(GL,SL , X).

Using the isomorphism (167), and defining L(X)+
v := HomR (R(L), X+

v ) ∼→ X(L)+
v we can replace

X(L) with L(X) in (169), (170) and (171).

0.13. Conjugation. With the notations introduced above, let γ ∈ Gal(L/K) and x =
∑
σ xσ ⊗ σ ∈

R(L). The formula γ ? x :=
∑
σ xσ ⊗ σγ−1 defines an action of Gal(L/K) on X(L) commuting with the

GK,S-action. This equips X(L) with the structure of an R(L)-module, such that X(L)+
v is an R(L)-sub-

module for every v ∈ Sf . Then C̃•f (GK,S , X(L)) is a complex of R(L)-modules.
The isomorphism (170) induces an isomorphism γ∗,f : R̃Γf (GL,SL , X) ∼→ R̃Γf (GL,SL , X), for every

γ ∈ Gal(L/K). More precisely: given g ∈ GK we can define a morphism of complexes

g∗,f : C̃•f (GL,SL , X) −→ C̃•f (GL,SL , X)(172) (
xn,
(
x+
n,w

)
w
, (xn−1,w)w

)
7→
(
g∗(xn),

(
g+
∗,w(x+

n,w)
)
w
, (g∗,w(xn−1,w))w + gX(xn)

)
,

whose homotopy class is canonical and such that the following diagram of complexes:

(173) C̃•f (GK,S , X(L))
shf //

(g|L)∗
��

C̃•f (GL,SL , X)

g∗,f

��
C̃•f (GK,S , X(L))

shf // C̃•f (GL,SL , X)
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commutes up to homotopy. We now explain the notations used above. First of all, for every g ∈ GK

g∗ :=
(
Ad(g−1), g

)
∗ : C•cont(GL,SL , X)→ C•cont(GL,SL , X)

is the morphism of complexes induced by the morphism of pairs (Ad(g−1), g) : (GL,SL , X) → (GL,SL , X).
For every w ∈ SL,SL , let us write g ·σw = αw ·σg(w) ·γw, with αw ∈ GL and γw ∈ Gv = GK,v. ( Here v is the
prime of K lying below w, and g(w) refers to the action of GK � Gal(L/K) on the set GL\GK/Gv ' {w|v}
of primes of L dividing v.) Then g∗,w denotes the composition

C•cont(Lw, X)
(Ad(σw),σ−1

w )∗−→ C•cont(Lw0 , X)
(Ad(γ−1

w ),γw)∗−→ C•cont(Lw0 , X)

“
Ad(σ−1

g(w)),σg(w)

”
∗−→ C•cont(Lg(w), X),

and similarly g+
∗,w is defined by the composition

C•cont(Lw, X
+
w )

(Ad(σw),σ−1
w )∗−→ C•cont(Lw0 , X

+
w0

)
(Ad(γ−1

w ),γw)∗−→

−→ C•cont(Lw0 , X
+
w0

)

“
Ad(σ−1

g(w)),σg(w)

”
∗−→ C•cont(Lg(w), X

+
g(w)).

Then i+SL,f ◦
(
g+
∗,w
)
w∈SL,SL

= (g∗,w)w∈SL,f ◦ i
+
SL,f

and it follows directly that:

g∗,w ◦ resw =
(
α−1
w

)
∗ ◦ g∗ ◦ resg(w).

Recalling that the conjugation morphism on C•cont(GL,SL , X) attached to every element of GL is homotopic
to the identity, we obtain a homotopy

gX :=
⊕

w∈SL,f

(
resg(w) ◦ hαw ◦ g∗

)
: resSL,f ◦ g∗  (g∗,w)w∈SL,f ◦ resSL,f

(where as above h? is a (bi-functorial) homotopy between the identity and (?)∗ for every ? ∈ GK). Again
by functoriality of cones [Nek06, Sec. 1.1.6] we see that (172) induces a quasi-isomorphism of complexes.
For a proof of the commutativity of (173) in the homotopy category see [Nek06, Sec. 8.1.7.3].

We then obtain for every g ∈ GK a commutative diagram of isomorphisms in D(R)

(174) R̃Γf (GK,S , X(L))
shf //

(g|L)∗
��

R̃Γf (GL,SL , X)

g∗,f

��
R̃Γf (GK,S , X(L))

shf // R̃Γf (GL,SL , X).

In particular we see that GL acts trivially on R̃Γf (GL,SL , X), so that we have a natural R-linear action of
Gal(L/K) on cohomology, i.e.

(175) H̃∗f (GL,SL , X) ∈
(
R(L)Mod

)
† ,

where † = ft (resp., † = cf) if X is of finite (resp., co-finite) type over R.
Using the isomorphism (167) we can replace X(L) with L(X) in the preceding discussion (where the

action of γ ∈ Gal(L/K) on f ∈ L(X) is given by (γ ? f) (σ) = f(σ · γ) for every σ ∈ Gal(L/K).)

0.14. Restriction. Let E/L/K be a tower of finite Galois sub-extensions ofKS . We have a restriction
morphism of complexes of R-modules

resE/L,f : C̃•f (GL,SL , X) −→ C̃•f (GE,SE , X)(176)

(xn, x+
n , xn−1) 7→

(
resE/L(xn), r+

SL

(
x+
n

)
, rSL (xn−1) + rX(xn)

)
,
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canonical up to homotopy, and such that the following diagram is commutative in the homotopy category:

(177) C̃•f (GK,S , L(X))

(iE/L)∗
��

shf // C̃•f (GL,SL , X)

resL/K,f

��

C̃•f (GK,S , X(L))
shfoo

(jE/L)∗
��

C̃•f (GK,S , E(X))
shf // C̃•f (GE,SE , X) C̃•f (GK,S , X(E)),

shfoo

where iE/L (resp., jE/L) is defined sending f : Gal(L/K)→ X to the function {σ ∈ Gal(E/K) 7→ f(σ|L)}
(resp, sending x ⊗ γ ∈ X ⊗ Gal(L/K) to

∑
σ|L=γ x ⊗ σ ∈ X ⊗ Gal(E/K)). In particular we obtain a

canonical morphism resE/L,f : R̃Γf (GL,SL , X)→ R̃Γf (GE,SE , X).
In (176) resE/L : C•cont(GL,SL , X) → C•cont(GE,SE , X) is the restriction morphism attached to the

inclusion GE,SE ⊂ GL,SL . Given w′ ∈ SE,f with w′|w ∈ SL,f , we have σw′ = βw′ · σw · αw′ , with βw′ ∈ GL
and αw′ ∈ GK,v. Then

rSL :=
(
rw′|w

)
:
⊕

w∈SL,f

C•cont(Lw, X)→
⊕

w′∈SE,f

C•cont(Ew′ , X),

where rw′|w denotes the composition

C•cont(Lw, X)
(Ad(σw),σ−1

w )∗−→ C•cont(GL,w0 , X)
(Ad(αw′ ),α

−1
w′ )∗−→ C•cont(GL,w0 , X)

(⊂,id)∗−→ C•cont(GE,w′0 , X)
(Ad(σ−1

w′ ),σw′)∗−→ C•cont(GE,w′ , X) = C•cont(Ew′ , X)

(where w′0 is the prime of E induced by ρv). The morphism

r+
SL

:=
(
r+
w′|w

)
:
⊕

w∈SL,f

C•cont(Lw, X
+
w )→

⊕
w′∈SE,f

C•cont(Ew′ , X
+
w′)

is defined in a similar way. We have i+SE,f ◦ r
+
SL

= rSL ◦ i+SL,f and a homotopy

rX :=
⊕

w′∈SE,f

(
resw′ ◦ resE/L ◦ hβw′

)
: resSE,f ◦ resE/L  rSL ◦ resSL,f ,

where as usual we have fixed bi-functorial homotopies hg : idC•cont(GL,S ,X)  g∗ for g ∈ GL. For a proof
of the independence of resE/L,f (up to homotopy) on this choice and the commutativity of (177) in the
homotopy category see again [Nek06, Sec. 8.1].

0.15. Norm. Let H be an open normal subgroup of a profinite group G, and let us fix a section
H\G→ G; γ 7→ γ of the natural projection. Then for every discrete G-module M the formula

corHG (ψ) (g1, . . . , gn) :=
∑

γ∈H\G

γ−1 · ψ
(
γ · g1 · γg1

−1, . . . , γg1 · · · gn−1 · gn · γg1 · · · gn−1
)

defines a morphism of complexes corHG : C•cont(H,M) → C•cont(G,M), whose homotopy class does not
depend on the choice of the section γ 7→ γ. (The cohomological functor {Hq(H, ∗) → Hq(G, ∗)}q≥0

induced by corHG is that defined via universality of the ‘fixed module functor’ on the category of discrete
G-modules by the natural transformation H0(H, ∗) ⇒ H0(G, ∗) defined by the norm map MH → MG;
m 7→

∑
γ∈H\G γ

−1(m) [NSW00, Ch. I-II].) Since corHG is functorial in M , this definition extends to
admissible G-modules.

Let E/L/K be finite Galois extensions contained in KS . Given a section i : GE,SE\GL,SL → GL,SL we
obtain a morphism

corE/L : C•cont(GE,SE , X) −→ C•cont(GL,SL , X).
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Fixing a section iw0 : GE,w′0\GL,w0 → GL,w0 (where as usual w′0|w0|v are the primes induced by ρv), a
construction completely analogous to that of the preceding section gives us morphisms

cSE :
⊕

w′∈SE,f

C•cont(Ew′ , X)→
⊕

w∈SL,f

C•cont(Lw, X);

c+SE :
⊕

w′∈SE,f

C•cont(Ew′ , X
+
w′)→

⊕
w∈SL,f

C•cont(Lw, X
+
w ),

such that cSE ◦ i+SE,f = i+SL,f ◦ c
+
SE

and cX : resSL,f ◦ corE/L  cSE ◦ resSE,f . (The homotophy cX depends
on the sections i, iw0 and on the choice of the usual homotopies hg for g ∈ GL.) As in the preceding
Sections, we obtain a corestriction (or norm) morphism

corf := corf,E/L : C̃•f (GE,SE , X) −→ C̃•f (GL,SL , X),

whose homotophy class can be shown to be independent on any choices. The relation with Shapiro’s Lemma
is given by the following diagram, commutative up to homotopy:

(178) C̃•f (GK,S , X(E))
shf //

pr∗

��

C̃•f (GE,SE , X)

corE/L,f

��

C̃•f (GK,S , E(X))
shfoo

(j∗E/L)∗
��

C̃•f (GK,S , X(L))
shf // C̃•f (GL,SL , X) C̃•f (GK,S , L(X)).

shfoo

(Here pr is the natural projection and j∗E/L is the map induced by jE/L : Gal(L/K) 3 σ 7→
∑eσ|L=σ σ̃ ∈

R[Gal(E/K)].) For the details we refer the reader once again to [Nek06, Ch. 8].

0.16. Zp-power extensions. Let K/K be the maximal Zp-power extension ofK, i.e. the composition
of all Zp-extensions of K inside K. Since every Zp-extension is unramified at every finite prime not dividing
p, we have K ⊂ KS . For every (possibly infinite) subfield K ⊂ L ⊂ K we write

R(L) := R[[Gal(L/K)]] = lim←−R[Gal(E/K)]

for the completed group algebra of Gal(L/K) over R, where E/L runs over all finite sub-extensions of
L/K. Inversion g 7→ g−1 on group-like elements induces an involution ι : R(L) → R(L) (i.e. an R-linear
ring isomorphism such that ι2 = ι). Given an R(L)[GK,S ]-module M we write M ι for the R[GK,S ]-module
M , with R(L)-action defined by r|Mι ·m := ι(r) ·m for every r ∈ R(L) and m ∈ M . For every n ∈ Z we
also write M < n > for the R(L)-module M with GK,S-action defined by g|M<n> ·m := χL(g)n · g(x) for
every g ∈ GK,S and m ∈M , where χL denotes the tautological representation:

χL : GK,S � Gal(L/K) ↪→ R(L)∗.

For every subfield K ⊂ L ⊂ K let us define the R(L)[GK,S ]-modules

(179) X(L) := lim←−X(E); L(X) := lim−→E(X),

where E/K runs over all finite sub-extensions of L/K and the inverse (resp., direct) limit is taken with
respect to projection R[Gal(E′/K)]� R[Gal(E/K)] (resp., the morphisms iE′/E : E(X)→ E′(X) (177))
for K ⊂ E ⊂ E′ ⊂ L.

0.16.1. Let us consider in this Section an R[GK,S ]-module T = X, free of finite type over R. Since the
natural map ‡ ⊗R R(L) := ‡ ⊗R lim←− (R[Gal(E/K)]) → lim←− (‡ ⊗R R[Gal(E/K)]) (where K ⊂ E ⊂ L runs
over the finite Galois subextensions of L/K) is an isomorphism for every R-module of finite type, and since
by definition z ∈ R(E) (resp., g ∈ GK,S) acts on T (E) := T⊗RR[Gal(E/K)] via multiplication by id⊗ι(z)
(resp., via g ⊗ g|E) (recall L/K is abelian), we obtain a canonical isomorphism of R(L)[GK,S ]-modules:

(180) T (L) ∼= (T ⊗R R(L)ι) < −1 > id⊗ι−→ (T ⊗R R(L)) < −1 >,
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(where we consider on R(L) the trivial GK,S-action). In a similar way we obtain canonical isomorphisms
of R(L)[Gv]-modules, for v ∈ Sf :

T (L)±v := T±v (L) ∼=
(
T±v ⊗R R(L)

)
< −1 > .

We will from now on identify T (L)†∗ with
(
T †∗ ⊗R R(L)

)
< −1 > under these isomorphisms. We can then

define the Selmer complex of R(L)-modules:

C̃•f,Iw(L/K, T ) := C̃•f (GK,S , T (L); ∆(T (L)))

using the local conditions ∆(T (L)) = {∆v(T (L))} induced on complexes by the embeddings i+v ⊗ R(L) :
T (L)+

v ↪→ T (L) for every v ∈ Sf . We also write

R̃Γf,Iw(L/K, T ) ∈ D(R(L))ft; H̃∗f,Iw(L/K, T ) ∈
(
R(L)Mod

)
ft

for the image of C̃•f,Iw(L/K, T ) in the derived category and its cohomology respectively. The following is
the main result of this appendix. For the (not difficult) details of its proof we refer to [Nek06, Prop. 8.8.6].

Proposition 0.11. 1. The canonical morphism of complexes of R-modules:

C̃•f,Iw(L/K, T ) ∼−→ lim←−
E/K; pr∗

C̃•f (GK,S , T (E))

is an isomorphism. As usual E/K runs over the finite sub-extensions of L/K and the limit is taken with
respect to the maps induced on Selmer complexes by the projections pr : T †∗ (E′)� T †∗ (E) for E ⊂ E′.

2. The isomorphism in 1. and the Shapiro’s morphisms of complexes (169) induce on cohomology
isomorphisms of R(L)-modules:

shf,L/K : H̃∗f,Iw(L/K, T ) ∼−→ lim←−
E/K; pr∗

H̃∗f (GK,S , T (E)) ∼−→ lim←−
E/K; corf

H̃∗f (GE,SE , T ).

Here the second isomorphism is defined by lim←−E/K

(
shf,E/K

)
∗ (see diagram (178)) and the structure of

R(L)-module on the R.H.S. is induced on the limit by Galois conjugation (see (174) and (175)).

0.16.2. Let us fix in this Section an R[GK,S ]-module X = A, of cofinite type over R. Let us consider
the Selmer complex of R(L)-modules:

C̃•f (KS/L,A) := C̃•f (GK,S , L(X); ∆(L(X))) ,

where ∆(L(X)) := {∆v(L(X))}v∈Sf is defined by the morphisms induced on complexes by the embedding
of R(L)[Gv]-modules:

lim←−
(
i+v
)
∗ : L(X)+

v := lim←−
E/K

HomR
(
R(E), A+

v

)
↪→ lim←−

E/K

HomR (R(E), A) ,

where as usual E/K runs over the finite sub-extensions of L/K. We write

R̃Γf (KS/L,A) ∈ (D(R(L)))cft ; H̃∗f (KS/L,A) ∈
(
R(L)Mod

)
cft

for the image of C̃•f (KS/L,A) in the derived category and its cohomology respectively. We have the
following ‘discrete’ analogous of Prop. 0.11, whose proof is also much easier (as, contrary to lim←−, the
functor lim−→ is exact).

Proposition 0.12. The natural morphism of complexes of R-modules:

lim−→
E/K

C̃•f (GK,S , E(A)) ∼−→ C̃•f (KS/L,A)

is an isomorphism. This isomorphisms, together with the Shapiro morphisms of complexes (169) induces
isomorphisms of R(L)-modules (cfr. diagram (177)):

shf,KS/L : lim−→
E/K; resf

H̃∗f (GE,SE , A) ∼−→ lim−→
E/K

H̃∗f (GK,S , E(A)) ∼−→ H̃∗f (KS/L,A),
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where the structure of R(L)-module on the L.H.S. is induced on the limit by the conjugation action of
Gal(E/K) on H̃∗f (GE,SE , A) defined in (174) and (175).

0.17. Global cup-products. We consider in this section X =
{
X, {X+

v }v∈Sf
}
, Y =

{
Y, {Y +

v }v∈Sf
}

and π : X ⊗R Y → R(1) as in Section 0.6. We also assume that π is a perfect duality and that X+
v ⊥π Y +

v

for every v ∈ Sf . Let us also consider a (possibly infinite) sub-extension L/K of K/K.
It is easily seen that under our assumptions the morphism of R(L)[GK,S ]-modules:

π(L) : X(L)⊗R(L) Y (L)ι ∼= (X ⊗R R(L)) < −1 > ⊗R(L) ((Y ⊗R R(L)) < −1 >)ι

id⊗id⊗id⊗ι−→ (X ⊗R R(L)) < −1 > ⊗R(L) (Y ⊗R R(L)) < 1 >

∼= (X ⊗ Y )⊗R R(L) π⊗id−→ R(1)⊗R R(L) ∼= R(L)(1)

defines a perfect duality between the R(L)-modules X(L) and Y (L)ι, such that X(L)+
v ⊥π(L) (Y (L)+

v )ι

for every v ∈ Sf . In particular the constructions of Section 0.7 give us a global cup-product in D(R(L)):

∪π(L) : R̃Γf,Iw(L/K,X)⊗L
R(L) R̃Γf,Iw(L/K, Y )ι −→ R(L)[−3].

We note that, if X = Y and π ◦ s12 = ±π, then π(L)ι ◦ s12 = ±ι ◦ π(L), where ι : R(L) ∼= R(L)
is the R-linear involution induced by inversion on Gal(L/K). In other words: if π is symmetric (resp.,
skew-symmetric) then π(L) is symmetric-Hermitian (resp., skew-Hermitian).

0.18. Control Theorems. Let X be as in the preceding section. Let us consider a tower of extensions
K ⊂ L ⊂ L′ ⊂ K and let us write εL′/L : R(L′) � R(L) be the augmentation map induced by restriction
of automorphisms Gal(L′/K)� Gal(L/K).

Proposition 0.13. There exists a canonical isomorphism in D(R(L)):

R̃Γf,Iw(L′/K,X)⊗L
R(L′),εL′/L

R(L) ∼= R̃Γf,Iw(L/K,X).

Proof. Fix an isomorphism G := Gal(K/K) ∼→ Zdp (d ≥ 1) and corresponding topological generators
σ1, . . . , σd ∈ G, so that R(K) ∼→ R[[X1, . . . , Xd]] with variables Xj := σj − 1. For every subextension E/K

of K/K the closed subgroup Gal(K/E) is topologically generated by xE :=
{
σp

nj

j = (Xj + 1)p
nj − 1

}d
j=1

,

for positive integers nj ≥ 0, so that the kernel of εK/E is identified with the ideal generated by xE ⊂ mR(K).
This is clearly an R(K)-regular sequence, so that Lemma (0.4) gives us a canonical isomorphism:

R̃Γf,Iw(K/K,X)⊗L
R(K),εK/E

R(E) ∼→ R̃Γf,Iw(E/K,X) ∈ D(R(E)).

Then using twice what already proved we obtain canonical isomorphisms:

R̃Γf,Iw(L′/K,X)⊗L
R(L′),εL′/L

R(L) ∼→
(
R̃Γf,Iw(K/K,X)⊗L

R(K),εK/L′
R(L′)

)
⊗L
R(L′),εL′/L

R(L)
∼→ R̃Γf,Iw(K/K,X)⊗L

R(K),εK/L
R(L) ∼→ R̃Γf,Iw(L,X).

�

0.19. Pontrjagin duality. Let T =
{
T, {T+

v }v∈Sf
}
be an R[GK,S ]-modules, free of finite type over

R, and let L/K be an arbitrary subextension of K/K. Let us write AT =
{

AT , {A+
T,v}v∈Sf

}
for the

Kummer dual AT := Homcont(T,Qp/Zp(1)) of T , with ‘local condition’ A+
T,v := Homcont(T−v ,Qp/Zp(1)) ↪→

AT .

Proposition 0.14. There exists canonical isomorphisms of R(L)-modules

H̃∗f,Iw(L/K, T ) ∼= HomZp

(
H̃∗−3
f (KS/L,AT )ι,Qp/Zp

)
.
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The rest of this Section will be devoted to the proof of this proposition. We begin by recalling some
facts from Matlis duality referring again to [Nek06] for the details: let S = (S,mS) be a complete
Noetherian local ring, with finite residue field kS := S/mS of characteristic p. For every compact or
discrete S-module V we write P (V ) := Homcts (M,Qp/Zp) (considering the discrete topology on Qp/Zp)
and MS(V ) := HomS(V,P(S)). Then the following two fact are known:

M1 For every S-module V which is either of finite or co-finite type, the canonical map:

V
∼−→ MS (MS(V ))

of V into its bi-P(S)-dual is an isomorphism of S-modules.
M2 For every S-module V which is either of finite or co-finite type, the canonical map:

MS(V ) ∼−→ P(V )

induced by evaluation at the identity of S is an isomorphism of S-modules.
In other words M1 tells us that P(S) is a dualizing functor on the category of S-modules of finite (resp.,
co-finite) type, so by Matlis duality the Pontrjagin dual P(S) of S is an injective hull of kS . Indeed M1
follows by M2 and Prontrjagin duality. See Sections 2.2, 2.3 and 2.9 of [Nek06] for details and precise
references.

We now show how the Proposition will follows from M1, M2 and the following claim:
C Let G ∈ {GK,S , Gv}. For every discrete R(L)[G]-module A of co-finite type over R, there exists

a canonical isomorphism of R(L)[G]-modules:

MR(L) (L (A)) ∼= {[MR(A)] (L)}ι .

This induces an isomorphisms of functors:

MR(L) ◦ L(∗) =⇒ ι ◦ {∗(L)} ◦MR :
(
R[G]Mod

)
R−cft

→R(L)[G] Mod

(where † − ft stands for: of finite type over †).
Indeed we then obtain canonical isomorphisms of R(L)[GK,S ]-modules:

AL(AT ) := P(L(P(T )(1)))(1) = (P ◦ L(∗) ◦P) (T )

(using M2) ∼=
(
MR(L) ◦ L(∗) ◦MR

)
(T )

(using C) ∼= (ι ◦ ∗ (L) ◦MR ◦MR) (T )

(using M1) ∼= (ι ◦ ∗ (L)) (T ) = T (L)ι,

expressing a perfect Kummer duality of R(L)[GK,S ]-modules:

(181) T (L)ι ⊗R(L) L(AT ) −→ Qp/Zp(1).

In a similar way, recalling that A±T,v is defined as the Kummer dual AT∓v of T∓v and L(AT )±v := L
(
A±T,v

)
,

we obtain canonical isomorphism of R(L)[Gv]-modules, for every v ∈ Sf :

AL(AT )±v
:= AL(A±T,v) := A

L
“

A
T
∓
v

” ∼= (
T (L)∓v

)ι
,

expressing a perfect Kummer dualities of R(L)[Gv]-modules:

(182)
(
T (L)±v

)ι ⊗R(L) L(AT )∓v −→ Qp/Zp(1).

Moreover, again by C, (181) and (182) are compatibles (in a suitable sense) under the natural maps ‘i+v ’
and ‘p−v ’ induced by i+v : T+

v ↪→ T and p−v : T � T−v for v ∈ Sf . In other worlds, with the terminology of
Section 0.11: L(AT ) =

{
L(AT ), (L(AT )+

v )v∈Sf
}

is the Kummer dual of T (L)ι =
{
T (L)ι, (T (L)+

v )v∈Sf
}
.

Then Proposition 0.14 turns out to be a special case of Proposition 0.8, working now with R(L)-coefficients
instead of R-coefficients.
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Proof of C. Let us fix an R[G]-module A, of cofinite type over R. Let us write T := MR(A)
be the ‘Matlis dual’ of A, which by assumption (cfr. M2) is a finite R-module, and let IR := P(R),
IR(L) := P(R(L)). We will consider on I∗ the trivial GK,S-action. Letting E/K runs over the finite
subextensions of L/K, we have canonical isomorphisms of R(L)-modules:

L(IR) := lim−→
E

HomR

(
R[Gal(E/K)], lim−→

n

HomZp (R/mn
R,Qp/Zp)

)
(R[Gal(E/K)] is finite, free over R) = lim−→

E,n

HomR
(
R[Gal(E/K)],HomZp (R/mn

R,Qp/Zp)
)

= lim−→
E,n

HomR (R[Gal(E/K)]⊗R R/mn
R,Qp/Zp)

= lim−→
E,n

HomR (R/mn
R[Gal(E/K)],Qp/Zp)

= HomR

(
lim←−
E,n

R/mn
R[Gal(E/K)],Qp/Zp

)
= HomR (R(L),Qp/Zp) =: IR(L).

Moreover, recalling the definitions: g ∈ GK,S acts on f = (fE)E ∈ L(IR) by fg(†) = f(g−1(†)) =
f(χL(g)−1 · †) = χL(g)−1 · f(†). In other words we have proved that there exist a canonical isomorphism
of R(L)[GK,S ]-modules:

(183) L(IR) ∼= IR(L) < −1 > .

Using this isomorphism we obtain a canonical isomorphism of R[G]-modules:

L(A) := lim−→
E

HomR (R[Gal(E/K)], A)

(by M1) ∼= lim−→
E

HomR (R[Gal(E/K)],MR ◦MR(A))

:= lim−→
E

HomR (R[Gal(E/K)],HomR (T, IR))

= lim−→
E

HomR (R[Gal(E/K)]⊗R T, IR)

= lim−→
E

HomR (T,HomR (R[Gal(E/K)], IR))

(since T is finite over R) ∼= HomR

(
T, lim−→

E

HomR(R[Gal(E/K)], IR)

)
=: HomR (T, L(IR))

(by (183)) ∼= HomR
(
T, IR(L)

)
< −1 >

= HomR(L)

(
T ⊗R R(L), IR(L)

)
< −1 >

= HomR(L)

(
(T ⊗R R(L)) < 1 >, IR(L)

)
(via the adjoint of id⊗ ι, cfr. (180)) = HomR(L)

(
T (L)ι, IR(L)

)
=: MR(L) (T (L)ι) .

Applying MR(L) to this isomorphism and recalling M1 we finally obtain a canonical (and functorial)
isomorphism of R(L)[GK,S ]:(

MR(L) ◦ L(∗)
)

(A) ∼= T (L)ι := {[MR(A)] (L)}ι = (ι ◦ {∗(L)} ◦MR) (A).

This concludes the proof of Claim C, and with it the proof of Proposition 0.14. �





APPENDIX C

Abstract height pairings

The notations and hypothesis are as in Section A.
Let R = (R,mR; ι : R → R) and X‘ = ’{X;X+

v , v ∈ Sf} be as in Section 0.9. Fix an ideal P ( R
generated by an R-regular sequence, and invariant under the involution ι : R → R. Let A = A[P] := R/P,
Y = Y[P] := X⊗RA and Y +

v =
(
Y[P]

)+
v

:= X+
v ⊗RA (v ∈ Sf ). We denote again by ι : A → A the involution

on A induced by ι : R → R. Then the perfect duality of R[GK,S ]-module π := πX : X ⊗R Xι → R(1)
induces a perfect duality of A[GK,S ]-modules:

πP := π ⊗A : Y ⊗A Y ι −→ A(1); s.t. Y ⊥πP Y ι.
Then the construction of Section 0.7 and Section 0.9 defines a skew-Hermitian pairing in D(A):

∪P := ∪πP : R̃Γf (GK,S , Y )⊗L
A R̃Γf (GK,S , Y )ι −→ A[−3].

0.20. Bockstein maps. As P = (x1, . . . , xd) is generated by an R-regular sequence, we can prove
easily that P/P2 is a free A-module (of rank d), generated by the residue classes of the generators xj . The
projection R/P2 � A induces an exact triangle in D(R)

(184) P/P2 → R/P2 → A ∂P→ P/P2[1].

Lemma 0.4 gives canonical isomorphisms in D(R) (cfr. Remark 0.3):

R̃Γf (GK,S , X)⊗L
R A ∼= R̃Γf (GK,S , Y );

R̃Γf (GK,S , X)⊗L
R P/P2[1] ∼=

(
R̃Γf (GK,S , X)⊗L

R A
)
⊗L
A P/P2[1]

(Lemma 0.4) ∼= R̃Γf (GK,S , Y )⊗L
A P/P2[1]

∼= R̃Γf (GK,S , Y )⊗A P/P2[1]

∼= R̃Γf (GK,S , Y )[1]⊗A P/P2,

where the third isonmorphism follows by the flatness of P/P2 over A. It follows that applying the derived
functor R̃Γf (GK,S , X)⊗L

R − to the exact triangle (184) induces an exact triangle in D(R):

R̃Γf (GK,S , X)⊗L
R R/P2 → R̃Γf (GK,S , Y )

βP−→ R̃Γf (GK,S , Y )[1]⊗A P/P2.

We call βP ‘ = ’R̃Γf (GK,S , X)⊗L
R ∂P the Bockstein map attached to P (cfr. [Nek06, Sec. 11.1.4]). If we

want to emphasize the Galois module we are considering we will write βX,P for βP .

0.21. Associated height pairings. We define the height pairing attached to P as the morphism in
D(A[P] = A) (emphasizing the dependence on P in the notations):

h̃P : R̃Γf (GK,S , Y[P])⊗L
A R̃Γf (GK,S , Y[P])ι

βP⊗id−→ R̃Γf (GK,S , Y[P])[1]⊗L
A R̃Γf (GK,S , Y[P])ι ⊗A P/P2

∼=
(
R̃Γf (GK,S , Y[P])⊗L

A R̃Γf (GK,S , Y[P])ι
)

[1]⊗A P/P2 ∪P [1]⊗id−→ A[−2]⊗A P/P2 ∼= P/P2[−2].

Given integers i, j ∈ Z s.t. i+ j = 2 we will write

h̃P,i,j := Hi,j(h̃P) : H̃i
f (GK,S , Y[P])⊗A H̃j

f (GK,S , Y[P])ι −→ P/P2

127
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for the pairing induced by h̃P in (i, j)-cohomology. As above we will also write h̃X,P and h̃X,P,i,j in order
to emphasize which Galois module we are considering.

0.22. Decomposition of pairings. Assume that P = (x,y) is generated by x = (x1, . . . , xr) and
y = (y1, . . . , ys). Let us write Ay := R/y, Y[y] := Y ⊗R Ay and Py ⊂ Ay for the ideal generated by the
projections of x1, . . . , xr modulo y. Since we are assuming R (local and) Noetherian, Py is generated by
an Ay-regular sequence. As A := A[P] = Ay/Py, we have Y[y] ⊗Ay A = Y[P] and using again the ‘control
Theorem’ (Lemma 0.4) the general construction explained above produces an exact triangle in D(Ay):

R̃Γf (GK,S , Y[y])⊗L
Ay Ay/P

2
y −→ R̃Γf (GK,S , Y[P])

βPy−→ R̃Γf (GK,S , Y[P])[1]⊗A Py/P2
y.

We have abbreviated βPy := βY[y],Py ‘ = ’R̃Γf (GK,S , Y[y])⊗L
A[y]

∂Py , where ∂Py is the ‘connecting morphism’
in the exact triangle A[y]/P2

y → A→ Py/P2
y[1]. Exactly as above we can define associated height pairings:

h̃Py : R̃Γf (GK,S , Y[P])⊗L
Ay R̃Γf (GK,S , Y[P])ι −→ Py/P2

y[−2];

(i+ j = 2) h̃Py,i,j := Hi,j(h̃Py ) : H̃i
f (GK,S , Y[P])⊗A H̃j

f (GK,S , Y[P])ι −→ Py/P2
y.

(We note that we are now considering Ay as our coefficient ring instead of R, so the notations could be
a little confusing. Anyway we still continue to use the more compact notations h̃Py and h̃Py,i,j instead of
the more precise ones h̃Y[y],Py and h̃Y[y],Py,i,j). Let us write pry : P/P � Py/P2

y for the map induced by
the projection R� Ay.

Lemma 0.15. h̃Py = pry[−2] ◦ h̃P ∈ MorD(A)

(
R̃Γf (GK,S , Y[P])⊗L

A R̃Γf (GK,S , Y[P]),Py/P2
y[−2]

)
. In

particular, for every i+ j = 2:
h̃Py,i,j = pry ◦ h̃P,i,j .

Proof. Recall A = A[P] := R/P and Y = Y[P] := X⊗RA. Applying the functor R̃Γf (GK,S , X)⊗L
R−

to the morphism of exact triangles in D(R):

P/P2

pry
����

// R/P2 //

����

A // P/P2[1]

pry [1]
����

Py/P2
y

// Ay/P2
y

// A // Py/P2
y[1],

using the canonical isomorphism:

R̃Γf (GK,S , X)⊗L
R ‡ ∼=

(
R̃Γf (GK,S , X)⊗L

R Ay
)
⊗L
Ay ‡

Lemma 0.4∼= R̃Γf (GK,S , Y[y])⊗L
Ay ‡

valid for every cohomologically bounded above complex of Ay-modules ‡, and recalling the constructions
above we easily find a commutative diagram of Bockstein maps:

R̃Γf (GK,S , Y )

βPy ++VVVVVVVVVVVVVVVVVV

βP // R̃Γf (GK,S , Y )[1]⊗A P/P2

id⊗pry

��
R̃Γf (GK,S , Y )[1]⊗A Py/P2

y.

Recalling the definition of h̃∗, we conclude the proof. �

We note that the preceding lemma implies that the ‘height pairing’ h̃Py (and then h̃Py,i,j for i+ j = 2)
depends only on the quotient Yy := X/y ·X as a GK,S-module. Moreover, letting {zt}t be an R-regular
sequence generating P, we see that to compute h̃P,i,j it is sufficient to compute h̃(zt),i,j for every principal
ideal (zt) ⊂ R. In Section 0.24 we will give a useful description of the pairings h̃(z),i,j attached to a non-zero
divisor z ∈ R using the formalism of abstract Cassels-Tate pairings.
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0.23. Behaviour under specializations. Using again the notations of the preceding sections, let
us consider a second ideal I ⊂ R generated by an R-regular sequence, and invariant under the involution
ι on R. As in Section 0.8 we will write M̃ := M ⊗R R/I, for every M ∈ RMod. We also assume that the
ideal P̃ ⊂ R̃ is generated by an R̃-regular sequence. We will denote again by ι the involution induced by
ι : R ∼→ R on any quotient module.

Since Ỹ := Ỹ[P] := (X ⊗R R/P)⊗R R/I is canonically isomprphic to (X ⊗R R/I)⊗ eR R̃ ⊗R R/P =:
X̃ ⊗ eR R̃/P̃, and similarly Ã = R̃/P̃, the constructions of the preceding sections (applied this time to the
data R̃, P̃ and X̃) give a Bockstein map in D(Ã):

β eP = β eX, eP : R̃Γf (GK,S , Ỹ ) −→ R̃Γf (GK,S , Ỹ )[1]⊗ P̃/P̃2,

with associated derived pairing in D(Ã):

h̃ eP = h̃ eX, eP : R̃Γf (GK,S , Ỹ )⊗LeA R̃Γf (GK,S , Ỹ )ι −→ P̃/P̃2[−2].

As usual we write h̃ eP,i,j = Hi,j
(
h̃ eP
)
for the morphism induced in (i, j)-cohomology.

Lemma 0.16. Let πI : R̃Γf (GK,S , Y ) → R̃Γf (GK,S , Ỹ ) be the morphism of complexes induced by the
natural projection πI : R� R̃, and let πI,∗ := H∗(πI) be the morphism induced on cohomology. For every
integers i+ j = 2 the following diagram commutes:

H̃i
f (GK,S , Y )⊗A H̃j

f (GK,S , Y )ι
ehP,i,j //

πI,i⊗πI,j
��

P/P2

πI

��
H̃i
f (GK,S , Ỹ )⊗ eA H̃j

f (GK,S , Ỹ )ι
eh eP,i,j // P̃/P̃2.

Proof. Let us consider the natural morphism of exact triangles in D(R):

R/P2 //

πI

��

A
∂P //

πI

��

P/P2[1]

πI [1]

��
R̃/P̃2 // Ã

∂ eP // P̃/P̃2[1].
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Applying R̃Γf (GK,S , X) ⊗L
R − to this morphism, using Lemma 0.4 (and its proof) and recalling the defi-

nitions we obtain a commutative diagram in D(R):

R̃Γf (GK,S , Y )
βP // R̃Γf (GK,S , Y )[1]⊗A P/P2

R̃Γf (GK,S , X)⊗L
R A

id⊗∂P //

∼

OO

id⊗πI
��

R̃Γf (GK,S , X)⊗L
R P/P2[1]

∼

OO

id⊗πI [1]

��
R̃Γf (GK,S , X)⊗L

R Ã
id⊗∂ eP // R̃Γf (GK,S , X)⊗L

R P̃/P̃2[1]

(
R̃Γf (GK,S , X)⊗L

R R̃
)
⊗LeR Ã id⊗id⊗∂ eP //

∼
��

(
R̃Γf (GK,S , X)⊗L

R R̃
)
⊗LeR P̃/P̃2[1]

∼
��

R̃Γf (GK,S , X̃)⊗LeR Ã id⊗∂ eP //

∼
��

// R̃Γf (GK,S , X̃)⊗LeR P̃/P̃2[1]

∼
��

R̃Γf (GK,S , Ỹ )
β eP // R̃Γf (GK,S , Ỹ )[1]⊗ eA P̃/P̃2,

where every isomorphism denoted by a tilde comes from Lemma 0.4 (or better its proof). Retracing the
proof of Lemma 0.4 we see easily that this commutative diagram induces in cohomology a commutative
diagram of A-modules:

(185) H̃i
f (GK,S , Y )

Hi(βP) //

πI,i

��

H̃i+1
f (GK,S , Y )⊗A P/P2

πI,i⊗πI
��

H̃i
f (GK,S , Ỹ )

Hi(β eP)
// H̃i+1

f (GK,S , Ỹ )⊗ eA P̃/P̃2.

Let us write ∪∗,s,t := Hs,t(∪∗) for the map induced in (s, t)-cohomology by the cup product pairing ∪∗
associated to the ideal ∗ = P (reps., ∗ = P̃) of R (resp., R̃). Then, for s + t = 3 we know again by c) of
Lemma 0.4 that the following diagram commutes:

H̃s
f (GK,S , Y )⊗A H̃t

f (GK,S , Y )ι
∪P,s,t //

πI,s⊗πI,t
��

A

πI

��
H̃s
f (GK,S , Ỹ )⊗ eA H̃t

f (GK,S , Ỹ )ι
∪fP,s,t // Ã.

Combined with diagram (185) and the definitions we easily conclude the proof of the Lemma. �

0.24. Relation with Cassels-Tate pairings. We assume in this section that P is a principal ideal,
generated by a non-zero divisor R 3 $ - 0.

We recall by Section 0.10 that Nekovář’s abstract Cassels-Tate pairing defines a skew-Hermitian pairing:

c̃π,2,2 : H̃2
f (GK,S , X)R−tors ⊗R H̃2

f (GK,S , X)ιR−tors −→ R/R,
where R = Frac(R) is the total ring of fractions of R. Moreover we have seen in the proof of Lemma 0.4
that the natural projection induces an exact triangle in D(R):

R̃Γf (GK,S , X) $→ R̃Γf (GK,S , X)→ R̃Γf (GK,S , Y[P]).
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The long exact cohomology sequence attached to this triangle gives us in particular an exact sequence of
A = A[P]-modules:

0→ H̃1
f (GK,S , X)⊗R A → H̃1

f (GK,S , Y[P])
i$→ H̃2

f (GK,S , X)[$]→ 0,

where ?[$] denotes the $-torsion submodule of ?. We can then define an ‘height pairing’:

h̃′P,1,1 : H̃1
f (GK,S , Y[P])⊗A H̃1

f (GK,S , Y[P])ι
i$⊗iι$→

→H̃2
f (GK,S , X)[$]⊗A H̃2

f (GK,S , X)ι[$]
ecπ,2,2−→ (R/R) [$]

ξ$
→ P/P2.

The non-canonical isomorphism ξ$ is defined sending a
$ mod R ∈ R/R to (a ·$) mod P2 ∈ P/P2. It is

easily seen that h̃′P,1,1 depends only on P and not on the choice of the generator $. It comes as no surprise
that we have defined nothing new.

Proposition 0.17. h̃′P,1,1 = h̃P,1,1.

Proof. Write P(A) := (R $→ R), concentrated in degrees −1 and 0. The projection pP (resp., the
map p′P defined byR 3 a 7→ (a ·$) mod P ∈ P/P2) induces quasi isomorphism of complexes ofR-modules
(again denoted by the same symbol) pP : P(A)

qis→ A and p′P : P(A)
qis→ P/P2. Let ∂̃P : P(A)→P(A)[1]

be the morphism of complexes defined in degree −1 by the identity. Let us consider the following diagram
in D(R):

P(A)
pP //

ρ

**

f∂P
��

A

−∂P
��

Cone
(
P/P2 i→ R/P2

)fpPoo

pr

��
P(A)[1]

p′P [1] // P/P2[1] P/P2[1],

where ρ is defined in degree −1 (resp., 0) by R 3 r 7→ [$ ·r] ∈ P/P2 (resp., the natural projection), and p̃P
is defined in degree 0 by the projection pP . By definition, the right-hand square is commutative. Moreover
we have pr◦ρ = p′P [1]◦ ∂̃P and p̃P ◦ρ = pP . It follows that the left-hand square also commutes, i.e. −∂̃P is
a lift of ∂P to R-free resolutions of A and P/P2[1]. Applying R̃Γf (GK,S , X)⊗L

R − and using Prop. 10.2,
we obtain by construction a commutative diagram in D(R):

(186) R̃Γf (GK,S , X)⊗L
R A

id⊗∂P // R̃Γf (GK,S , X)[1]⊗L
R P/P2

C̃•f (GK,S , X)⊗RP(A)

∼
��

∼

OO

fβP // C̃•f (GK,S , X)[1]⊗RP(A)

∼
��

∼

OO

R̃Γf (GK,S , Y[P])
βP // R̃Γf (GK,S , Y[P])[1]⊗A P/P2,

where β̃P is defined as the composition of −id ⊗ ∂̃P with the natural isomorphism † ⊗ (‡[1]) ∼→ (†[1]) ⊗ ‡.
For the vertical arrows: the first isomorphism (as the commutativity of the upper square) arises from the
definition of the derived tensor product, and the second is the natural projection. Indeed the composition
of the vertical arrows are precisely the isomorphisms used to prove the control Theorems: R̃Γf (X)⊗L

RA
∼→

R̃Γf (Y[P]) and R̃Γf (Y )⊗L
R P/P2 ∼=

(
R̃Γf (X)⊗L

R A
)
⊗A P/P2 ∼= R̃Γf (Y[P])⊗A P/P2 (see the proof of

Lemma 0.4).



132 C. ABSTRACT HEIGHT PAIRINGS

Given [x] ∈ H̃1
f (GK,S , Y[P]) we write x(P) ∈ C̃2

f (GK,S , Y[P]) for any 2-cocycle representing the image
of [x] under the composition

H̃1
f (GK,S , Y[P])

i$→ H̃2
f (GK,S , X) mod $→ H̃2

f (GK,S , Y[P]).

As i$ is the connecting morphism attached to the short exact sequence of complexes C̃•f (X)
$
↪→ C̃•f (X)�

C̃•f (Y[P]), writing x̃ ∈ C̃1
f (GK,S , X) for any lift of x under ‘reduction modulo $’, we have x(P) = x mod $,

where x ∈ C̃2
f (GK,S , X) is the 2-cocycle s.t. $ · x = d eC•f x̃. In other words referring to diagram (186):

x̃− x ∈ Z1
(
C̃•f (GK,S , X)⊗RP(A)

)
is a 1-cocycle ‘lifting’ x. Applying H1(β̃P) to the cohomology class represented by x̃ − x and using again
the commutative diagram (186) we thus obtain:

H1(βP) : H̃1
f (GK,S , Y[P]) −→ H̃2

f (GK,S , Y[P])⊗A P/P2

[x] 7→ [x(P)]⊗ [$].

Recalling the definitions, this formula gives us: for every [x] ∈ H̃1
f (GK,S , Y[P]) and [y] ∈ H̃1

f (GK,S , Y[P])ι

(187) h̃P,1,1 ([x]⊗ [y]) = invSf (A) ([x(P) ∪P,0 y]) · [$] ∈ P/P2.

Here, recalling the fixed perfect duality π : X ⊗ Xι → R(1) (resp., πP := π ⊗R A) such that X ⊥π Xι

(resp., Y[P] ⊥πP Y ι[P]) we have written ∪P,0 := ∪πP ,0 : C̃•f (GK,S , Y[P]) ⊗A C̃•f (GK,S , Y[P]) → C(K,A) for
the cup-product pairing attached to πP (and defined in Lemma 0.1), and invSf (A) is the isomorphism
H3(C(K,A)) ∼→ A defined in Section 0.4 using local class field theory.

We now compute h̃′P,1,1([x] ⊗ [y]), for [x] ⊗ [y] ∈ H̃1
f (Y[P]) ⊗A H̃1

f (Y[P])ι. We will use the notations
of Section 0.10. Let x̃ ∈ C̃1

f (GK,S , X) and x ∈ C̃2
f (GK,S , X) be as above, and define similarly ỹ and y.

Recall by the discussion above that x (resp., y) is a 2-cocycle in C̃•f (GK,S , X) (resp., C̃•f (GK,S , X)ι) whose
cohomology class represents i$([x]) (resp., iι$([y])). Then

x′ := (x, x̃⊗$−1) ∈
(
RΓ!

(
C̃•f (GK,S , X)

))2

(resp., y′ := (y, ỹ ⊗$−1) ∈
(
RΓ!

(
C̃•f (GK,S , X)ι

))2

)

is a 2-cocycle whose image in H2
!

(
C̃•f (GK,S , X)

)
(resp., H2

!

(
C̃•f (GK,S , X)ι

)
) lifts i$([x]) (resp., iι$([y]))

under the projection in (164). We compute the composition (165) (for M := C̃•f (X), N := C̃•f (X)ι) on the
4-cocycle x′ ⊗ y′, obtaing the 4-cocycle:

(x⊗ y, (x⊗ ỹ)⊗$−1) ∈ RΓ!

(
C̃•f (GK,S , X)⊗R C̃•f (GK,S , X)ι

)4

.

Let us now apply RΓ!(∪π,0) = ∪π,0 ⊗ id, obtaining the 4-cocycle:

(‡) :=
(
x∪π,0 y, (x∪π,0 ỹ)⊗$−1

)
∈
(
RΓ! (C(K,R))

)4

.

As H4(C(K,R)) = 0, there exists T ∈ C(K,R)3 s.t. dC(K,R)T = x∪π,0 y, so that the cohomology class of
(‡) is equal to that of the 4-cocycle

(†) :=
(
0, (x∪π,0 ỹ −$T )⊗$−1

)
∈
(
RΓ! (C(K,R))

)4

.

We have an isomorphism γ : H4
! (C(K,R)) ∼→ H1

! (R) ∼→ R/R, where the first isomorphism is induced by
the isomorphism in D(R): RΓ!

(
invSf (R)

)
: RΓ! (C(K,R)) ∼→ RΓ! (R[−3]), and the second comes from

(164) (with M = R[−3]). It follows immediately by the definitions that the image of i$([x]) ⊗ iι$([y])
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under c̃π,2,2 is obtained applying γ to the cohomology class of the cocycle (†). In other words we have the
formula: (

c̃π,2,2 ◦ (i$ ⊗ iι$)
)

([x]⊗ [y]) = γ ([(†)]) := invSf (R) ([x∪π,0 ỹ −$T ]) · [$−1] ∈ R/R.

Since x mod $ = x(P) (by the discussion above), ỹ mod $ = y (by construction), and π ⊗R A =: πP , by
the functoriality of invSf (−) and the definition of the global cup-products in Lemma 0.1, we have(

invSf (R) ([x∪π,0 ỹ −$T ])
)

mod P = invSf (A) ([x(P) ∪P,0 y]) ,

so that we finally obtain:
(
c̃π,2,2 ◦ (i$ ⊗ iι$)

)
([x]⊗ [y]) = invSf (A) ([x(P) ∪P,0 y]) · [$−1], i.e.:

h̃′P,1,1([x]⊗ [y]) =
(

invSf (A) ([x(P) ∪P,0 y]) ·$
)

mod P2 ∈ P/P2.

Together with (187) this concludes the proof. �

0.25. More general height pairings. Though we have considered in this Appendix a representation
X equipped with a perfect duality π : X ⊗R Xι → R(1) (with our main applications in mind) the
constructions and results of Sections 0.20-0.23 naturally generalize in the following setting.

Let R = (R,mR) be as in Section A, and let P be a an ideal of R generated by an R-regular sequence.
Let X = {X;X+

v , v ∈ Sf} be as in Section 0.5. As above we write A = A[P] = R/P, Y := Y[P] = X ⊗RA
and Y +

v :=
(
Y[P]

)+
v

:= X+
v ⊗R A for every v ∈ Sf . These data is all that is needed to define the Bockstein

map:
βP := βX,P : R̃Γf (GK,S , Y ) −→ R̃Γf (GK,S , Y )[1]⊗A P/P2.

Let Z = {Z;Z+
v , v ∈ Sf} be a representation ‘with Greenberg local condition’ as in Section 0.5, but this

time considering A as our Noetherian ‘coefficient ring’. Assuming that that there exists a perfect duality
π : Y ⊗A Z → A(1) such that Y ⊥π Z we can define ‘height pairings’

h̃X,π : R̃Γf (GK,S , Y )⊗L
A R̃Γf (GK,S , Z) −→ P/P2[−2];

(i+ j = 2) h̃X,π,i,j : H̃i
f (GK,S , Y )⊗L

A H̃
j
f (GK,S , Z) −→ P/P2

exactly as in Section 0.21, replacing ∪P with the global cup-product pairing

∪π : R̃Γf (GK,S , Y )⊗L
A R̃Γf (GK,S , Z) −→ A[−3]

induced by the duality π and defined in Section 0.7.
We leave to the interested reader to formulate analogues/generalizations of the results of Sections

0.20-0.23 to this more general setting.
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