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Abstract 

Pulmonary arterial hypertension (PAH), a common complication of limited 

cutaneous systemic sclerosis (lcSSc), is associated with alterations of markers of 

inflammation and vascular damage. Endoplasmic reticulum (ER) stress and unfolded 

protein response (UPR) have been implicated in various diseases. The presence of the 

HLA-B35 allele, Human antigen class I, has emerged as an important risk factor for the 

development of PAH in patients with lcSSc, however the mechanisms underlying this 

association have not been fully elucidated.  

We have recently reported that the presence of HLA-B35 contributes to human 

dermal microvascular endothelial cell (HDMEC) dysfunction by significantly increasing 

production of endothelin-1 (ET-1) and significantly decreasing endothelial NO synthase 

(eNOS). Furthermore, HLA-B35 greatly upregulated expression of chaperones, 

including heat shock proteins (HSPs) HSP70 (HSPA1A and HSPA1B) and HSP40 

(DNAJB1 and DNAJB9), suggesting that HLA-B35 induces the ER stress and UPR in 

ECs and this mechanism can mediate the induction of ET-1 in patients with PAH. 

The goal of this study was to better understand the role of HLA-B35-induced ER 

stress/UPR in the development/progression of PAH disease in lcSSc patients.  

First we focused on the molecular mechanisms of ET-1 induction by HLA-B35. 

ER stress inducer, Thapsigargin (TG) and HLA-B35 induced ET-1 expression with 

similar potency in HDMECs. HLA-B35 or ER stress activated the PERK/eIF2α/ATF4 

branch of the UPR and modestly increased the spliced variant of X-box binding protein 

(XBP1), but did not affect the Activating Transcription Factor -6 (ATF6) pathways. 
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Depletion of ATF4 decreased basal expression levels of ET-1 mRNA and protein, and 

completely prevented upregulation of ET-1 by HLA-B35/ER stress. Additional 

experiments have demonstrated that the JNK and NF-B pathways are also required for 

ET-1 upregulation by HLA-B35/ER stress. Formation of the ATF4/c-JUN complex, but 

not the ATF4/NF-B complex was also increased. The functional role of c-JUN in 

responses to HLA-B35/ER stress was further confirmed in ET-1 promoter assays. This 

study identified ATF4 as a novel activator of the ET-1 gene.  

Then we focus on whether markers of ER stress/UPR were present in PBMCs 

from lcSSc-PAH patients and if the presence of HLA-B35 contributes to activation of the 

immune cells. Several ER stress/UPR genes, including Immunoglobulin-heavy-chain 

binding protein (BiP), ATF4 and ATF6 and a spliced form of XBP1 were upregulated in 

lcSSc PBMCs, with the highest levels in patients with PAH. Also selected HSP genes, 

particularly DNAJB1, and IFN-related genes were found at significantly elevated levels 

in PBMCs from lcSSc patients, while IRF4 was significantly decreased. There was a 

positive correlation between DNAJB1 and severity of PAH disease (PAP) (r = 0.56, 

p<0.05) and between ER stress markers and IL-6 levels (r = 0.53, p< 0.0001) in lcSSc 

PBMCs.  

When we stratified all PBMC samples based on the presence of the HLA-B35 

allele, we could observe that HLA-B35 positive individuals showed higher levels of 

selected ER stress markers when compared to HLA-B35 negative individuals. 

Furthermore, patients carrying HLA-B35 antigen expressed higher levels of IL-6, a key 

inflammatory cytokine associated with development of PAH. This study demonstrates 

association between select ER stress/UPR markers and lcSSc-PAH suggesting that ER 
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stress/UPR may contribute to the altered function of circulating immune cells in lcSSc. 

All these associations were enhanced by the presence of HLA-B35. 

In conclusion, we hypothesize that HLA-B35 may play a role in EC dysfunction 

inducing ET1 via ER stress/UPR. Also activation of ER stress/UPR, in combination with 

presence of HLA-B35, might drive the inflammatory process in lcSSc-PAH. 
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Scleroderma 

 

Scleroderma or Systemic Sclerosis (SSc), is a complex autoimmune disease of 

unknown origin characterized by extensive pathological ECM remodeling resulting in 

fibrosis of the skin and internal organs (1). SSc is a highly heterogeneous disease, with 

manifestations from limited skin involvement to diffuse skin fibrosis and extensive 

internal organ involvement.(2) SSc is characterized by excessive deposition of collagen 

and other extracellular matrix proteins in the skin and multiple internal organs, 

degeneration of the microvasculature, and abnormalities in the cellular and humoral 

immune system.   Morphological changes in the skin include deterioration of the hair 

follicles and sebaceous glands, dramatic dermal thickening, epidermal degeneration, 

and overall tightening (3).  In early lesions, massive leukocyte infiltration is observed at 

the border between epidermis and subcutaneous fat layers (4).  The skin of the face 

and hands is most frequently affected and skin ulcerations are common (3).  Internal 

organ fibrosis in SSc is most frequently incurred in the gastrointestinal tract but 

pulmonary, renal, and cardiac involvement lead to the most serious and possibly fatal 

symptoms .The mortality rate for systemic SSc is about 55% at 10 years (5-7). No cure 

has been found for SSc and current treatments are ineffective.     
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Fugure 1.1. Scleroderma features. 

Scleroderma is characterized by thickening, tightening, and induration of the skin of the fingers .These 

changes may affect the entire extremity, face, neck, and trunk.  
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Possible causes of SSc 

Although the etiology of SSc is unknown, several possible hypotheses of the 

etiological agent of SSc pathogenesis have been proposed. Exposure to various 

environmental stressed (toxins and chemicals) has been implicated in developing SSc 

(7-9).  A genetic component is supported by familial clustering patterns and high 

prevalence of the disease among certain ethnic groups (1).  Various ethnic populations 

of SSc patients exhibit specific expression patterns of human leukocyte antigens 

(HLAs), major histocompatibility complex (MHC) alleles, and autoantibodies (3).  

Several single nucleotide polymorphisms (SNPs) are associated with SSc in genes 

encoding for vasomotor regulatory factors, B-cell markers, chemokines, chemokine 

receptors, cytokines, growth factors and their receptors, connective tissue growth factor 

(CCN2), transforming growth factor  (TGF-), and extracellular matrix (ECM) proteins 

(1). Infection of herpes virus, retrovirus, and human cytomegalovirus have been 

proposed as possible etiological agents in SSc development (3, 9-11) 

 

In SSc there are three main features involved: vascular damage (complete 

obliteration of microvessels), production of autoantibodies (by B and T cells) and 

activation of fibroblasts (production of excess extracellular matrix) (1).  Although the 

initial mechanisms of the disease are not fully understood, it is suggested that 

endothelial cell injury stimulates an immune response with B and T cell activation and 

subsequent release of pro-inflammatory mediators, growth factors, and cytokines [12].  

One of the major growth factors secreted by the immune cells is transforming growth 
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factor- (TGF-), which is important in wound-healing processes as well as plays a key 

role in the process of fibrosis.   

 

 

Figure 1.2. Abnormalities in 3 systems:  ECM, Immune, and Vascular. 

In SSc there are three main features involved: vascular damage (complete obliteration of microvessels), 

production of autoantibodies (by B and T cells) and activation of fibroblasts (production of excess 

extracellular matrix. 
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Fibrosis   

SSc fibroblast activation to produce ECM proteins occurs as a result of growth 

factors released from immune cells into the microenvironment.  The reasons why this 

fibroblast activation becomes chronic are not understood but eventually lead to fibrosis 

of the skin and internal organs. Fibrosis occurs when the rate of ECM synthesis 

exceeds the rate of breakdown resulting in deposition of ECM proteins.  The first 

indication that collagen protein production is altered in SSc was demonstrated in a 

historic study in which explanted SSc fibroblasts were shown to produce more collagen 

I protein in vitro than normal matched controls (2).  Collagen I is the principal 

component of the normal ECM accounting for 80% of matrix protein (12). Increased 

expression of several additional ECM proteins has been observed in SSc including 

collagen I, collagen VI, collagen VII, collagen XVI, fibronectin, tenascin, 

glycosaminglycans, and proteoglycans (12).  

 

Endothelial cell alterations 

 Although the hallmark of SSc is pathological remodeling of the connective 

tissues, the disease is believed to originate with an injury to the endothelial cells that 

becomes aggravated by a chronic inflammatory reaction (1).  The nature of the 

endothelial cell injury in SSc is not known but results in altered levels of several 

important vasoregulators.  ET-1, a vasoconstrictor, is elevated in early and late stage 

SSc and stimulates vessel wall ECM production and deposition (13). Although the 

vasodilator nitric oxide is present in SSc tissue, endothelial cell responsiveness to it is 
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reduced (14).  Altered expression of prostaglandins, von Willebrand factor, and tissue 

plasminogen activator in SSc contributes to an overall activation of the coagulation 

cascade and concomitant reduction in fibrin clot breakdown. In SSc skin, fibrin clots are 

commonly observed in thrombotic microvessels (15).  Contributing further to the 

occlusion of blood flow is aggregation of platelets and lymphocytes to the vessel wall 

because of increased adhesiveness (16).  Ultimately intimal proliferation, vessel wall 

stiffness, enhanced coagulation, and occluded vessels develop (17).  SSc vessels begin 

to degenerate as a result of endothelial cell apoptosis caused by anti-endothelial cell 

autoantibodies and interactions with killer T cells that induce Fas-mediated or 

granzyme/perforin-initiated apoptosis (16-18). Failure to deliver oxygenated blood to the 

tissues leads to ischemia and further increases the injury. These changes are 

diagnosed as Raynaud’s phenomenon, the earliest clinical manifestation of SSc (19).      

Attempts to repair endothelial cell damage by the initiation of angiogenesis 

processes fail.  The majority of damage occurs in the microvessels resulting in large 

avascular areas of SSc skin (19).  Blood mononuclear cells isolated from SSc patients 

have reduced ability to initiate angiogenesis compared to controls (20).  Several 

antiangiogenic factors are elevated in SSc including endostatin, platelet factor 4, 

thrombospondin, and IL-4 (21-24).  Surprisingly, elevated expression of several pro-

angiogenic factors is observed as well including VCAM-1, E-selectin, P-selectin, and 

monocyte chemoattractant protein-1 (25-27).  The most potent angiogenic factor, 

VEGF, and its receptors are also elevated in SSc skin and endothelial cells suggesting 

a functional defect in responding to angiogenic stimuli in SSc (28-29).  Failure to repair 
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the vascular damage and resolve the inflammatory response leads to pathological 

alterations in the skin. 

 

Inflammation and the immune response 

Activation of the immune system occurs early in SSc.  Currently it is not known if 

the SSc immune response is the initial pathogenic event or if it is secondary to other 

processes (30).  In affected skin of SSc patients, infiltration of T cells, macrophages, 

mast cells, and occasionally, B-lymphocytes in patients with recent onset (31).  

Lymphocytic infiltration precedes the development of fibrotic lesions and the degree of 

infiltration determines the severity of fibrosis (32).  Multiple alterations in the adaptive 

and humoral immune systems have been detected in SSc patients. 

Chemokines recruit mediators of the adaptive immune response to the site of 

injury. CD4+ helper T cells and macrophages are the most prominent mononuclear cells 

in SSc skin (33).  Oligoclonal expansion of T cells in situ in SSc skin suggests activation 

by a specific antigen although its identity has not been discovered (34).  Peripheral 

blood T cells in SSc express the interleukin-2 receptor, indicative of T-cell activation (3).  

Activated T cells produce Th2 cell-derived cytokines IL-4, IL-5, IL-10, IL-13, IL-17, and 

IL-21 (35-37).  IL-4 is a major fibrogenic cytokine of SSc that increases collagen 

production by fibroblasts and promotes production of TGF- (30).  The presence of a 

Th1 cytokine signature is detectable in some SSc patients having an increased 

percentage of IFN positive peripheral blood T cells (38).  Th1 and Th2 responses 

contribute to the adaptive immune response in SSc.     



 

12 
 

The humoral immune response in SSc is manifested in the activation of B cells 

indicated by hypergamma-globulinaemia, the production of autoantibodies, 

overexpression of the B cell transduction molecule CD19 in peripheral blood, expanded 

naïve B cells, and diminished but chronically activated memory B cells (39).  The 

presence of autoantibodies occurs in 90% of patients with SSc.  Antibodies against 

nuclear proteins include anti-Scl-70 directed against topoisomerase I, anticentromere, 

and anti-polymerase I and III auotantibodies.  Additionally, anti-fibribllarin, 

antiendoethelial cell, and antifibroblast antibodies have all been detected in SSc patient 

sera (1,30).  Although autoantibodies are common in SSc, their role in pathogenesis is 

not understood.  The resolution of both the adaptive and humoral immune responses in 

SSc skin does not occur and persistant inflammation leads to alterations in endothelial  

cells and fibroblasts.  
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Pulmonary Arterial hypertension  

Pulmonary Arterial Hypertension (PAH) is a severe and often fatal complication 

of SSc (10-16%), which occurs more frequently in patients with limited disease (40-41).  

PAH is characterized by an increase in blood pressure in the pulmonary artery or lung 

vasculature.  Clinically, it is defined as a sustained elevation in pulmonary arterial 

pressure above 25 mm Hg at rest and above 30 mm Hg during exercise, with a mean 

pulmonary-capillary wedge pressure and left ventricular end-diastolic pressure below 15 

mm Hg. PAH has been classified into three groups: idiopathic (cause unknown), familial 

(inherited), and secondary (associated with a variety of other conditions, such as 

infection with the human immunodeficiency virus, portal hypertension, anorexigen use, 

congenital heart disease, and connective tissue diseases like SSc) (42 ). Recently 

progress in diagnosis and treatments have been significantly improved quality of life of 

PAH patients, but for reasons that are not clearly understood, SSc-PAH patients have 

worse prognosis compared with other forms of PAH (43 . 

PAH has been recognized as a complex, multi-factorial condition involving 

numerous biochemical pathways and different cell types. It is a severe vascular disorder 

characterized by vasoconstriction of small pulmonary arteries, thrombosis and 

inflammation. Progressive intimal and medial thickening, due to proliferation and 

migration of vascular smooth muscle cells and fibroblasts, reduces the cross-sectional 

area of the pulmonary microvasculature, causing alterations in pulmonary resistance. 

The normal pulmonary endothelium maintains a low vascular resistance, suppresses 

vascular smooth muscle growth, inhibits platelet adherence and aggregation, and stems 
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inflammation. In patients with PAH, the endothelium has lost these vasoprotective 

functions (44-46)  

 

Figure 1.3. Three main pathways involved in Pulmonary Arterial Hypertension. 

 The chief vascular alterations occurring in PAH are vasoconstriction, SMC and EC proliferation, and 

thrombosis.  These observations indicate the presence of imbalances between vasodilators and 

vasoconstrictors 
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Figure 1.4. Phases of lesions in pulmonary arterial hypertension (PAH).  

(A) Normal intra-acinar artery. (B) Intra-acinar artery with markedly thickened media, presumably caused 

by extension of proliferating smooth muscle cells into distal vessels. (C) Concentric intimal thickening, 

cellular (laminar) type. (D) Plexiform lesion. There is a proliferation of small vessels with surrounding 

ectatic vessels filled with blood (arrowheads). The lesion is adjacent to a bronchiole (arrow). 
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Current theory suggests that endothelial dysfunction occurs early in disease 

pathogenesis, leading to reduced production of vasodilators, such as nitric oxide (NO) 

and prostacyclin, and increased elaboration of vasoconstrictors, mitogens, and 

prothrombotic and proinflammatory mediators (such as thromboxane, endothelin, 

plasminogen activator inhibitor, and 5-lipooxygenase). (47-49). Vascular remodeling 

itself involves all layers of the vessel wall and is characterized by proliferative and 

obstructive changes involving many cell types, including endothelial cells, smooth 

muscle cells and fibroblasts. These structural changes of the pulmonary vascular bed 

resulting in an increase in pulmonary vascular resistance   

In SSc-PAH patients, the presence of inflammatory cell infiltrates in perivascular 

regions of pulmonary arteries that have been detected more frequently than other forms 

of PAH (50-51). Immune cells are currently considered to be important mediators of 

PAH as a source of various cytokines and chemokines that contribute to the 

pathological vessel remodeling.8 Furthermore, recent studies described histological 

differences in pulmonary vessels of SSc-PAH when compared to idiopathic PAH (IPAH) 

(51-53).  

These findings suggest that in SSc patients, combinations of an enhanced 

inflammatory milieu together with the systemic vascular dysfunction are likely to 

contribute to the distinct manifestation of PAH. 
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Endothelin-1  

Endothelin-1 (ET-1) is a potent vasoconstricting peptide produced predominantly 

by endothelial cells, but it is also produced by leukocytes, macrophages, smooth muscle 

cells, cardiomyocytes and mesangial cells. It is a key regulator of vascular homeostasis. 

It is overproduced in pulmonary arterial hypertension and is a critical component of the 

disease progression. (54-58) The excess of ET is associated with dramatic structural 

changes in the pathology of PAH vasculature, including inflammation, vasoconstriction, 

cell proliferation, and fibrosis. 

ET-1 genes (pre-pro-ET-1 genes) code for a large precursor-protein mRNA (pre-

pro-ET-1 mRNA). Different stimuli modulate the transcription of the pre-pro-ET-1 gene. 

The translation of pre-pro-ET-1 mRNA results in the formation of a 203-amino acid pre-

proET-1 peptide, which is cleaved to the 38-amino acid peptide big ET-1. Big ET-1 is 

transformed to ET-1 through cleavage bond by ET-converting enzyme-1 (ECE-1).  
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Figure 1.5. ET-1 structure. 

ET-1 genes (pre-pro-ET-1 genes) code for a large precursor-protein mRNA (pre-pro-ET-1 mRNA). 

Different stimuli modulate the transcription of the pre-pro-ET-1 gene. The translation of pre-pro-ET-1 

mRNA results in the formation of a 203-amino acid pre-proET-1 peptide, which is cleaved to the 38-amino 

acid peptide big ET-1. Big ET-1 is transformed to ET-1 through cleavage bond by ET-converting enzyme-

1 (ECE-1).  
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Endothelin-1 exerts its effects by binding to two distinct cell surface ET receptors, ETA 

and ETB. Both receptors belong to the G protein-coupled receptor (GPCR) family and 

mediate biological responses from a variety of stimuli. ETA-receptors may play a role in 

the maintenance of basal vasomotor tone and blood pressure in humans due to an 

increase in cytosolic calcium level via influx of extracellular calcium and release from 

intracellular stores (59-60). ETA-receptors are coupled to Gq/11, G12/13 and Gi 

heterotrimer G protein subunits which link to phospholipase C, RhoA-GTPase and 

adenylyl cyclase (AC) inhibition, respectively (61). 

 

 

Figure 1.6. Main functions of Endothelin 1 
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Regulation of ET-1 production 

              Regulation of ET-1 gene expression has been studied intensely in different 

experimental models. Several cytokines such as thrombin, TGF-β, tumor necrosis 

factor-β, interleukin-1 and insulin have been shown to increase ET-1 production in 

cultured endothelial cells (62-63). These studies implicated several signaling pathways, 

including [Ca2+] mobilization, PKC, MAP kinase, and cAMP as mediators of ET-1 gene 

regulation. However, specific mechanisms whereby elevated intracellular [Ca2+]i levels 

regulate ET-1 synthesis are still not known. Progress has also been made in 

characterizing transcription factors regulating ET-1 promoter activity. One of the main 

regulatory factors is a FOS/JUN complex that binds to an activator protein 1 (AP-1) 

response element located at a -108 bp in the ET-1 promoter region. This site mediates 

upregulation of the ET-1 gene by phorbol esters, Angiotensin II, Thrombin, and High-

density lipoprotein (HDL), which stimulate AP-1 in a Protein kinase C (PKC)-dependent 

manner. On the other hand, Leptin activates AP-1 through the Jun N-terminal kinase 

(JNK) and extracellular-signal-regulated kinases 1/2 (Erk1/2) pathways. AP-1 in 

cooperation with GATA-binding factor 2 (GATA2) is also required for the basal 

transcription of the ET-1 gene in endothelial cells, while other members of the GATA 

family regulate ET-1 expression in other cell types. Additional important transcription 

binding sites include hypoxia response element, Hypoxia-inducible factors (HIF-1), 

transforming growth factor β (TGF-β)/Smad response element, which have been also 

described to cooperate with AP-1 to induce ET-1 (64) as well as the Nuclear factor kB 

(NF-B) binding site that mediates responses to inflammatory cytokines. Other cell type 

specific response elements have also been characterized (65) 
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Human leukocyte antigen (HLA)  

HLA is the name of the subset of genes within the human major 

histocompatibility complex (MHC) that encode cell-surface antigen-presenting proteins. 

The HLA system was initially discovered because of its role in tissue rejection following 

transplantation and many of the genes have been shown to have important functions in 

the biology of the immune system (66-69). HLA consists of over 140 known genes, 

which are located on the short arm of chromosome 6 (6p21.3). Based on its function, 

HLA is subdivided into two classes. HLA class I contains the classical HLA-A, B and C 

spread over a region of 2Mb. These genes are involved in the presentation of peptides 

predominantly derived from intracellular proteins, to CD8+ cytotoxic T cells. HLAs class 

II (HLA-DP, DQ and DR) are functionally specialized for presentation of short protein 

fragments (antigenic peptides) mainly derived from extracellular proteins, to the T cell 

receptor on CD4+ helper T cells.  

HLA class I - structure and function 

HLA class I molecules are heterodimers, consisting of a single transmembrane 

polypeptide chain (the α-chain) and b2 microglobulin. The α chain has three polymorphic 

domains, α 1, α 2, α 3. The peptide-binding groove which binds peptides derived from 

cytosolic proteins is located between α 1 and α 2 domains. The α 3 segment is highly 

conserved and is homologous to Ig constant domains and is non-covalently bound to β 2 

microglobulin (β2m). These two components interact with alpha1 and alpha2 domains to 

maintain their proper conformation. All nucleated cells in the body express class I HLA 

molecules. The MHC class I proteins display intracellular antigens on the cell surface for 

http://en.wikipedia.org/wiki/Major_histocompatibility_complex
http://en.wikipedia.org/wiki/Major_histocompatibility_complex
http://en.wikipedia.org/wiki/Heterodimer
http://en.wikipedia.org/wiki/Transmembrane_protein
http://en.wikipedia.org/wiki/Beta-2_microglobulin
http://en.wikipedia.org/wiki/Cytosol
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recognition by T cell receptors on CD8+ T cells. These antigenic peptides are primarily 

generated by proteolysis of endogenous proteins through proteasome and other 

enzymes (70). Folding of MHC class I heavy chains and assembly into complexes 

containing β2m and peptide takes place in the endoplasmic reticulum (ER). Newly 

synthesized heavy chains are translocated into the ER and properly folded with the aid 

of molecular chaperones calnexin and calreticulin. After binding of β2m, calnexin is then 

released from the complex. Peptides, which are generated in the cytoplasm are 

transported to the ER via transporter associated with antigen processing (TAP). 

Peptide-loading complex also contains tapasin (TSN), thiol oxidoreductase ERp57 and 

protein disulfide isomerase (PDI). These additional proteins play a role in loading and 

optimizing peptide binding. After successful peptide loading, MHC class I molecules are 

released from the peptide-loading complex and exported through Golgi to cell surface.  
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Fig. 1.7. The three-dimensional structure of HLA class I.  

Human leukocyte antigen (HLA) class I molecules are heterodimers comprising a heavy chain membrane 

glycoprotein of ∼44 kDa noncovalently bound to a light chain of 12 kDa, termed β2-microglobulin (β2m). 

The heavy chain has three well-differentiated structural regions: a highly hydrophilic intracytoplasmic tail 

of ∼30 amino acids; a hydrophobic transmembrane region of ∼25 amino acids; and an extracellular 

region that contains the groove where the peptides bind. The peptide-binding groove is not a 

homogeneous space. There are smaller subgrooves known as pockets (six in total, A to F) that 

accommodate the amino acid chains of the peptide located in the groove. A high degree of homology is 

found among all HLA class I molecules in the framework regions, but the amino acids adjacent to the 

peptide binding site are highly polymorphic, thus the size and hydrophobicity of these pockets varies 

among different HLA class I molecules; they therefore will bind different peptides 
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The role of HLA polymorphism in disease susceptibility 

HLA genes are highly polymorphic with different HLA molecules binding a 

different set of peptides. The polymorphism within HLA genes maximizes the number of 

antigenic peptides that can be bound and presented to an individual's T cells. The 

polymorphism among class I HLA gene products creates variation in the chemical 

surface of the peptide-binding groove. For any given HLA molecule, binding of a peptide 

usually requires the peptide to have one or more specific amino acids at a fixed 

position, frequently the terminal or penultimate amino acid of the peptide. Binding of the 

specific amino acid in the groove of the HLA molecule occurs in what is termed the 

anchor site(s). The other amino acids can be variable so that each HLA molecule can 

bind many different peptides. Other polymorphic residues of the HLA molecule are 

those in contact with the T cell receptor (TCR), which interacts with both peptide and the 

HLA molecule itself. Polymorphic loci in the HLA provide useful tools for the study of 

evolution in man (71-73) and to investigate the contribution of the HLA to genetic 

disease, particularly of the autoimmune type.  

HLA polymorphism influences the ability of different HLA molecules to present 

endogenous peptides; such differences are believed to underlie most of the 

associations between HLA class I antigens and susceptibility to diseases (7, 9) or 

progression of the diseases (74-79). There are two general explanations for HLA and 

disease associations. First, there may be linkage disequilibrium between alleles at a 

particular disease-associated locus and the HLA allele associated with that disease. 

Another possible explanation for these associations is that the HLA antigen itself plays a 

role in the disease providing a binding site on the surface of the cell for a disease-
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provoking virus or bacterium allowing it to enter the cell or resembling the pathogenic 

molecule so that the immune system fails to recognize it as foreign and fails to mount 

an immune response against it.  

A unique mechanism with a possible relevance to our study was recently 

proposed to explain pathological contribution of HLA-B27 to ankylosing spondilitis. It 

appears that HLA-B27 heavy chain exhibits abnormal properties, including a tendency 

to misfold in the ER triggering ER stress response and activation of unfolded protein 

response (UPR) (80). ER stress caused by accumulation of unfolded proteins leads to 

reduced global protein synthesis, induction of chaperons to increase folding capacity of 

the ER, and translocation of misfolded proteins to the cytoplasm where they undergo 

proteosome-mediated degradation. The latter process is known as ER-associated 

degradation (ERAD). On the other hand, prolonged ER stress can lead to cell death 

(81).  
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Fig. 1.8.  Antigen processing and presentation. 

 HLA class I molecules is initiated in the endoplasmic reticulum (ER). (a) Newly synthesized heavy chain 

(HC) binds a membrane-bound chaperone known as calnexin, which retains the HLA molecule in a 

partially folded state in the ER. (b) The binding of β2-microglobulin (β2m) to the HC dissociates calnexin 

and the HC–β2m heterodimer subsequently binds to a complex of proteins, one of which, (c) calreticulin, 

is also a chaperone. (d) The transporter associated with antigen processing 1 (TAP1)-associated protein, 

tapasin, binds to the TAP1 subunit of the TAP complex. The association of tapasin with HC–β2m allows 

the heterodimer to await a suitable peptide. (e) Cytosolic proteins targeted for destruction are degraded 

by the proteasome, yielding peptides of 8–12 residues, usually nonamers, which are suitable for HLA 

class I presentation. (f) These peptides are translocated to the ER by the TAP complex. (g) When a 

peptide binds to the HC–β2m heterodimer, the HLA class I molecule folds properly and is released from 

the ER, (h) entering the secretory pathway to be (i) displayed at the cell surface. Usually the peptides 

displayed at the cell surface are self-proteins and do not initiate an immune response. Only when 

pathogen-derived proteins appear in the cytosol can they contribute to a pool of HLA–peptide complexes 

displayed at the surface. These peptides are recognized by specific class I-restricted CD8
+
 T cells that 

initiate an immune response against the pathogen. 
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HLA-B35 association with disease  

HLA-B35 is a specific HLA class I antigen. Its frequency depends on ethnic 

background and varies between 10-20% of total population. In particular 9.9% of 

European Caucasian, 8.6% of American Caucasian, 12.5% of African American, 22.1% 

of Oriental American, 7.2% of African, and 9.4% of Japanese carry this allele. HLA-B35 

presence is particularly high (15.4%) in the Italian population. Previous studies have 

found association between HLA-B35 and numerous disorders (82-83), as well as severe 

viral infections (84-85). The molecular mechanisms underlying these associations are 

still unknown, but according to some studies the role of HLA-B35 in the rapid 

progression of infection could be related to the changes in the levels of free 

cytoplasmatic Ca2+ and Mg2+ ions (86-87).  Studies in patients with HIV infection from 

different geographical areas have shown a correlation between HLA-B35 phenotype 

and progression of AIDS (88-97). Among HLA class I alleles, HLA-B*57 and B*27 have 

consistently been associated with slower rates of disease progression, while HLA-B*35 

and B*53 have been associated with more rapid development of AIDS (98-100).  

 

HLA-B35 association with SSc vasculopathy 

There is a strong evidence for the contribution of genetic factors to the 

development of SSc (101) In particular, polymorphism of several loci within the MHC 

region was consistently found in different cohorts of SSc patients and was recently 

confirmed in a large scale GWAS study (102). Of particular interest is HLA-B35, which 

was shown to be associated with increased risk for developing PAH in Italian SSc 

patients (103-104). Frequency of HLA-B35 depends on ethnic background and varies 
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between 10-20% of total population. HLA-B35 allele was also found to be strongly 

associated with SSc in Choctaw Indians (105). Notably, studies of patients with HIV 

infection have shown a correlation between HLA-B35 allele and a rapid progression of 

AIDS (106). 
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ER stress and unfolded protein response  

 Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) 

constitute a homeostatic response to accumulation of misfolded protein as well as 

numerous other stimuli and can occur in various tissues and organs. Although ER 

stress serves a protective role that allows cells to deal with the noxious stimuli, 

prolonged ER stress contributes to the development and progression of many diseases, 

including neurodegenerative disorders, type 2 diabetes, artherosclerosis and cancer 

(107).  

 The ER is an intracellular organelle where most of the secretory and 

membrane proteins are synthesized, post-translationally modified and folded into their 

correct conformations. Only properly folded proteins can be transported to the Golgi for 

further processing (108). In addition, the ER is responsible for intracellular calcium 

homeostasis (109). ER stress occurs when there is an imbalance between protein load 

and folding capacity, but also can be induced by other mechanisms (110). In response 

to ER stress, cells activate an adaptive mechanism known as UPR (111). UPR restores 

protein homeostasis by suppressing protein translation, inducing ER-related molecular 

chaperones to promote refolding of unfolded proteins, removing unfolded proteins by 

activating the ER associated protein degradation (ERAD) system, and promoting cell 

survival. However, during prolonged or overwhelming ER stress when UPR fails to 

restore the normal function of the ER, a proapoptotic pathway is initiated through the 

activation of CHOP (CCAAT/enhancer-binding homologous protein) also termed 

growth-arrest and DNA-damage inducible gene 153 (GADD153) (112). 
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 There are three branches of UPR that are initiated by distinct ER stress 

transducers located on the ER membrane: (1) PERK, PKR-like endoplasmic reticulum 

kinase, (2) IRE1, inositol-requiring enzyme 1 and (3) ATF6, activating transcription 

factor 6. Under basal conditions these proteins are bound by the ER chaperone BiP 

(immunoglobulin-heavy-chain binding protein, also known as GRP78) and maintained in 

an inactive state (113). When ER stress develops, BiP is sequestered by the misfolded 

peptides and, as a consequence, released from the three sensor proteins, which 

triggers activation of the UPR branches (114). All three branches of the UPR regulate 

the activation of CHOP, a central mediator of ER stress-induced apoptosis; however, 

ATF4 is considered to be a major inducer of CHOP expression. CHOP is expressed at a 

very low level under physiological conditions but its expression level significantly 

increases in the presence of severe or persistent ER stress. As a transcription factor, 

CHOP has been shown to regulate numerous pro- and anti-apoptotic genes, including 

Bcl-2 and GADD34 (115). 
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Figure 1.9. Unfolded Protein Responses (UPR) pathways. 

Scheme of three UPR pathways: PERK/eIF2α/ATF4 Pathway,  IRE1/XBP1 Pathway and  ATF6 Pathway.  
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The PERK/eIF2α/ATF4 Pathway.  

 When unfolded proteins accumulate in the ER lumen, the first response is 

to attenuate further protein translation, which reduces the ER load and prevents 

accumulation of unfolded protein. The PERK/eIF2α pathway mediates this response. 

PERK, a transmembrane serine/threonine kinase localized in the ER membrane, is 

activated by ER stress via dimerization and autophosphorylation leading to 

phosphorylation of eIF2α resulting in a global inhibition of translation. Phosphorylated 

eIF2α promotes expression of the selected proteins such as transcription factors ATF4. 

In response to long-term adaptation to stress conditions, phosphorylation of eIF2α 

induces the expression of the growth arrest and DNA damage gene, GADD34, an 

important component of translational recovery during the ER stress response (116-119). 

 

The IRE1/XBP1 Pathway.  

 During ER stress, IRE1 dissociates from BiP, becomes activated and 

induces splicing of XBP1. The newly generated spliced XBP1 is an active transcription 

factor, which can induce downstream genes, such as ER chaperones and proteins 

involved in ER-associated protein degradation (ERAD). These proteins work together to 

restore the ER homeostasis and promote cell survival (119).  

 

The ATF6 Pathway.  

ATF6 is a type II ER transmembrane protein. Like IRE1 and PERK, ATF6 binds 

to BiP and remains in an inactive state in unstressed cells. In response to ER stress, the 

BiP/ATF6 complex is dissociated, resulting in the translocation of ATF6 from the ER 
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membrane to the Golgi where it is cleaved by two serine proteases to produce the 

active form. The active ATF6 then moves to the nucleus and directly induces 

transcriptional activation of chaperone molecules such as BIP/GRP78 and ER stress 

response element- (ERSE-) related genes through binding their promoters. It also 

induces other URP genes, such as XBP-1 and CHOP(120-121). 

 

 

ER stress  and endothelial dysfunction 
 

Vascular endothelial cells play a major role in maintaining vascular homeostasis. 

The endothelium not also provides a physical barrier between the vessel wall and 

lumen, but also secretes several mediators that regulate platelet aggregation, 

coagulation, fibrinolysis, and vascular tone. Endothelial dysfunction is associated with 

various diseases, including hypertension, coronary artery disease, chronic heart failure, 

peripheral artery disease, diabetes, and chronic renal failure. In these vascular 

diseases, endothelial dysfunction is characterized by an imbalance between 

vasodilation and vasoconstriction with a shift toward reduced vasodilation, a 

proinflammatory state, and prothrombic properties. 

In atherosclerosis, in vitro and in vivo evidence showed prolonged ER stress 

often leads to tissue dysfunction and disease. In particular, chronic ER stress has effect 

on ECs biology (the cause of EC apoptosis in advanced lesions) and mediate 

proinflammatory effects in early stage disease. 

In human aortic endothelial cell (HAEC) culture, IRE1α, ATF6α, and XBP1 were 

increased as increased of the UPR effector GRP78 expression was observed. In 

particular, XBP1 was linked to a decrease of VE-cadherin and endothelial cell apoptosis 
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suggesting that XBP1 splicing could trigger a form of detachment-mediated cell death. 

In human microvascualr endothelial cell (HMEC) instead was observed an activation of 

the ER stress transducers, GRP94 and GRP78/BiP and  activation of all three UPR 

branches response and expression of the proapoptotic factor CHOP. In vivo there are 

evidence for the activation of adaptive UPR in susceptible ECs through ATF6α and 

IRE1α but not PERK. In such a scenario, additional risk factors may be required to 

trigger PERK activation.  

In patients with diabetes, endothelial dysfunction appears to be a consistent 

finding and ER stress response results in vascular endothelial-cadherin suppression, 

apoptotic process is detachment of endothelial cells. Several studies suggest that 

endothelial cells exposed to elevations and reductions of blood nutrients, high glucose, 

disrupted Ca2+ homeostasis, ROS generation, can go in an apoptosis which may be 

induced by ER stress response mediators. Both GRP78 and PERK pathway are 

sensitive to glucose concentration and shown to be induced in endothelial cells. In 

particular PERK activated an antioxidant program though ATF4 and NRF2 activation. 

NADPH oxidase, the prime source of ROS in endothelial cells is activated in the 

presence of high glucose with a concomitant decrease in the generation of NO. NADPH 

oxidase (Nox1/Nox2) activation might link ER stress and oxidative stress to the high 

glucose-induced apoptosis of endothelial cells. Nox2 activation and oxidative stress 

further amplify CHOP/GADD153 induction, which in turn promotes apoptosis. Reports 

suggest that CHOP induction and apoptosis as a response to ER stress is reduced in 

Nox2-deficient mice thereby preventing renal dysfunction. This might be true for high 

glucose-exposed endothelial cells where Nox2 activation has shown to induce 
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apoptosis which might be possibly through the activation of CHOP-mediated ER stress 

response. The ER stress response-conferred insulin resistance in endothelial cells 

could also further promote inflammatory stress signaling and contribute to the metabolic 

deterioration that is associated with type II diabetes and vascular diseases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

36 
 

Overall Hypothesis:  

ER stress and UPR play a pathogenic role in SSc-PAH by sensitizing endothelial 

and immune cells. HLA-B35 may further intensify the disease process by contributing to 

endothelial cell dysfunction, as well as to activation of immune system in patients with 

PAH.  

This work attempts to understand a possible role of HLA-B35/ER stress in the 

development/progression of PAH disease in SSc patients. Hopefully, characterization of 

the role of ER stress and its link with disease will enable targeted drug therapy 

treatment in SSc-PAH patients 

 

Aim 1 : To determine the role of HLA-B35 and ER stress/UPR in 

endothelial cell function  

 

Specific Aim 1.1: We will determine whether HLA-B35/ER stress affects 

stimulation of ET-1 expression 

 

Specific Aim 1.2:  To determine whether ER stress/UPR markers are 

elevated in skin biopsies from patients with SSc-PAH 
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Aim 2 : To determine the role of ER stress/UPR and HLA-B35 in 

activation of   immune cells 

 

Specific Aim 2.1: To characterize ER stress/UPR signature in PBMCs 

obtained from lcSSc patients with PAH  

 

Specific Aim 2.2: To determine whether signature of ER stress/UPR 

correlate with the known disease markers in PBMCs  

 

Specific Aim 2.3. To determine whether HLA-B35 contributes to 

activation of immune cell 
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Chapter 2 

HLA-B35/ER stress induce endothelin-1  

via activation of ATF4  

in human microvascular endothelial cells 
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INTRODUCTION 

Endothelin-1 (ET-1) is a potent vasoconstrictor and one of the key regulators of 

vascular homeostasis. ET-1 dysfunction is associated with a number of pathological 

conditions including hypertension, atherosclerosis, cardiovascular disorders, and cancer 

(56,57,107). Under physiological conditions, ET-1 is produced in small amounts mainly 

in endothelial cells (ECs). However in pathophysiological conditions, its production is 

stimulated in a large number of different cell types, including endothelial cells, vascular 

smooth muscle cells, cardiac myocytes, and inflammatory cells such as macrophages 

and leukocytes. In addition to its main role as a vasoconstrictor, ET-1 also contributes to 

inflammation, as well as fibrosis during various pathophysiological processes.  

Extensive studies of ET-1 gene expression have led to characterization of the 

signaling pathways and transcription factors involved in its regulation (62,63). A 

complex network consisting of the common and tissue specific transcription factors 

responding in the coordinated fashion to physiological and pathological stimuli have 

been shown to regulate ET-1 expression in a cell type and context specific manner. One 

of the main regulatory factors is a FOS/JUN complex that binds to an activator protein 1 

(AP-1) response element located at a -108 bp in the ET-1 promoter region. This site 

mediates upregulation of the ET-1 gene by phorbol esters, Angiotensin II, Thrombin, 

and High-density lipoprotein (HDL), which stimulate AP-1 in a Protein kinase C (PKC)-

dependent manner. On the other hand, Leptin activates AP-1 through the Jun N-

terminal kinase (JNK) and extracellular-signal-regulated kinases 1/2 (Erk1/2) pathways. 

AP-1 in cooperation with GATA-binding factor 2 (GATA2) is also required for the basal 

transcription of the ET-1 gene in endothelial cells, while other members of the GATA 
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family regulate ET-1 expression in other cell types. Additional important transcription 

binding sites include hypoxia response element, Hypoxia-inducible factors (HIF-1), 

transforming growth factor β (TGF-β)/Smad response element, which have been also 

described to cooperate with AP-1 to induce ET-1(64), as well as the  

(NF-B) binding site that mediates responses to inflammatory cytokines. Other cell type 

specific response elements have also been characterized (65).  

Reticulum (ER) stress is defined as accumulation of unfolded or misfolded 

proteins in the ER, triggering an adaptive program called the unfolded protein response 

(UPR). The UPR alleviates ER stress by suppression of protein synthesis, facilitation of 

protein folding via induction of ER chaperones, and reinforced degradation of unfolded 

proteins. Three major transmembrane transducers of ER stress have been identified in 

the ER. Those are the RNA-dependent protein kinase-like ER kinase (PERK), activating 

transcription factor 6 (ATF6), and inositol-requiring ER-to-nucleus signal kinase 1α 

(IRE1α). Activation of PERK leads to phosphorylation of the eukaryotic translation 

initiation factor 2α (eIF2α), causing general inhibition of protein synthesis. In response 

to ER stress, ATF6 transits to the Golgi where it is cleaved by the proteases Site-1 

protease (S1P) and Site-2 protease (S2P), yielding a free cytoplasmic domain which 

functions as an active transcription factor. Similarly, activated IRE1α catalyzes removal 

of a small intron from an X-box-binding protein 1 (XBP1) mRNA. This splicing event 

produces an active transcription factor XBP1. If the cell fails to deal with the protein-

folding defect and restore homeostasis, a pro-apoptotic CCAAT/-enhancer-binding 

protein homologous protein (CHOP)-mediated pathway is initiated (107). 
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We have recently shown that ectopic expression of HLA-B35, an antigen 

associated with SSc in Choctow Indians (105) and SSc-PAH in Italian patients (108, 

104), led to a significant increase of  ET-1 and a decrease of eNOS in cultured 

endothelial cells (ECs) (106).  In addition to ET-1, we have also observed upregulation 

of interferon-regulated genes and other inflammatory genes in ECs expressing HLA-

B35. Furthermore, expression of HLA-B35, but not a control antigen HLA-B8, potently 

upregulated several cellular chaperones including BiP, HSP70 and HSP40, suggesting 

an activation of ER stress/UPR in these cells. However, other UPR genes such as 

ERO1 (ER oxidoreductin 1), and PDI (protein disulphide isomerase), which are involved 

in oxidative protein folding, as well as a pro-apoptotic UPR mediator, CHOP were not 

upregulated, consistent with activation of an adaptive phase of the UPR.   

The goal of this study was to investigate which mediators are involved in ET-1 

gene regulation in response to HLA-B35/ER stress. Here we report that induction of ER 

stress activate the eIF2α-ATF4 pathway and promote formation of the ATF4/c-JUN 

complexes. This protein complex in concert with the NF-B pathway activates ET-1 

gene transcription in endothelial cells. 
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MATERIALS AND METHODS 

Reagents 

Thapsigargin (TG) was purchased by Sigma-Aldrich (St. Louis, MO). Tissue 

culture reagents, EBM kit by Lonza (Walkersville, MD). The protease inhibitor cocktail 

set III and phosphatase inhibitor cocktail set II were purchased from Calbiochem (San 

Diego, CA). Enhanced chemiluminescence reagent and bicinchoninic acid protein assay 

reagent were obtained from Pierce Chemical Co. (Rockford, IL). TRI Reagent was 

purchased from the Molecular Research Center Inc. (Cincinnati, OH). 

For western blot, antibodies were used as followed: goat ATF4 and rabbit ATF6 

(Santa Cruz Biotechnology, Santa Clara, CA) at a 1:500 dilution; rabbit pPERK and 

PERK (Santa Cruz Biotechnology, Santa Clara, CA) at a 1:500 dilution, rabbit p-eIF2α 

and mouse eIF2α Ab (Santa Cruz Biotechnology, Santa Clara, CA) at 1:500 dilution; 

rabbit cJun and rabbit NF-Bp65 Ab (Santa Cruz Biotechnology, Santa Clara, CA) at a 

1:500 dilution; monoclonal β-actin Ab (Sigma-Aldrich) at 1:5000 dilution and mouse 

Lamin A/C at 1:1000 dilution.  

 

Cell culture 

Human dermal microvascular endothelial cells (HDMECs) were isolated from 

human foreskins using the protocol of Richard et al [18]. Upon informed consent and in 

compliance with the Institutional Review Board of Human studies, written approval was 

obtained from Perinatal Committee (IRB number H-29190) of Boston University Medical 
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School. Briefly, primary cultures of human foreskins were established after the removal 

of epidermis. Such cultures consist of a mixture of HDMECs, dermal fibroblasts, and 

some keratinocytes. Subconfluent cultures were treated with tumor necrosis factor-α for 

6 h to selectively induce the expression of E-selectin in HDMECs. HDMECs were then 

purified using magnetic beads coupled to an anti-E-selectin monoclonal antibody. First 

passage cultures usually consist of >99% HDMECs. A second immunomagnetic 

purification step ensures homogenous population of HDMECs suitable for long term 

culturing. Purity of the HDMEC cultures was evaluated using anti-CD31 and anti-von 

Willebrand factor antibodies. These cells were cultured on collagen-coated 6-well plate 

in EBM medium supplemented with 10% FBS, EC growth supplement mix at 37°C 

under 5% CO2 in air. The culture medium was changed every other day. HDMECs 

harvested between passage 2 and 6 were used for experiments. 

 

Adenoviral constructs 

An adenoviral vector expressing HLA-B35 (or Ad-B8) and control green 

fluorescent protein (Ad-Go) were generated as described earlier [18]. The dose used to 

transduce human dermal microvascular endothelial cells was 10 multiplicities of 

infection of the adenovirus (MOI). ECs grown in a 6-well dish were transduced with Ad 

(Ad-B35/GFP, -B8/GFP, and -GFP), after 48 h cells were collected for RNA analyses or 

for Western blot. 
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Real-time PCR 

Total RNA was extracted using the guanidiniumthiocyanate-phenol-chloroform 

method, concentration and purity was determined by measuring OD at 260 and 280 nm 

using a spectrophotometer. RNA was reversibly transcribed by aid of the first-strand 

cDNA Synthesis Kit for RT-PCR (Roche Applied Science, Indianapolis, IN). To avoid 

amplification from traces of possible DNA contamination in the RNA isolation, PCR 

primers were designed to span introns. All primers were checked for specificity by Blast 

search. Real-time RT-PCR was performed using IQ SYBR Green Supermix (Bio-Rad, 

Hercules, CA) and MyiQ Single-Color Real-Time PCR Detection System (Bio-Rad). The 

amount of template used in the PCR reactions was cDNA corresponding to 200 ng 

reverse-transcribed total RNA. DNA polymerase was first activated at 95°C for 3 min, 

denatured at 95°C for 30 s, and annealed/extended at 61°C for 30 s, for 40 cycles 

according to the manufacturer's protocol. Expression of the housekeeping gene β-actin 

served as an internal positive control in each assay performed. After measurement of 

the relative fluorescence intensity for each sample, the amount of each mRNA transcript 

was expressed as a threshold cycle value. The primers listed in table 1. 
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Table 1. List of primers used for Real-Time PCR 

 

 

Western blot analysis 

Cells were collected and washed with PBS. Cell pellets were suspended in lysis 

buffer containing 20 mM Tris-HCl, pH 7.5, 15 mM NaCl,1mM EDTA, 1 mM EGTA, 1% 

Triton X-100, 2.5 mM sodium pyrophosphate, and 1 mM glycerophosphate with freshly 

added phosphatase inhibitors (5 mM sodium fluoride and 1 mM Na3VO4) and a 

protease inhibitor mixture (Sigma-Aldrich). Protein concentration was quantified using 

the BCA Protein Assay kit (Pierce). Equal amounts of total proteins per sample were 

separated via SDS-PAGE and transferred to nitrocellulose membranes (Bio-Rad). 

Membranes were blocked in milk in TBST overnight at 4°C and probed with primary Ab 

overnight at 4°C. After TBST washes, membranes were probed with HRP-conjugated 

secondary Ab against the appropriate species for 1–2 h at room temperature. Protein 

levels were visualized using ECL reagents (Amersham Biosciences, Piscataway, NJ). 

 

 

 

Forward Reverse

PPET-1 5′-gctcgtccctgatggataaa-3′ 5′-ccatacggaacaacgtgct3′

ATF4 5’-tggctggctgtggatgg-3’ 5’-tcccggagaaggcatcct-3’

ATF6 5’-ttttagcccgggactctttc-3’ 5’-tcagcaaagagagcagaatcc-3’

XBP1 unspliced 5’-ccttgtagttgagaaccagg-3’ 5’-gggcttggtatatatgtgg-3’

XBP1 spliced 5’-ggtctgctgagtccgcagcagg-3’ 5’-gggcttggtatatatgtgg-3’

βACTIN 5′-aatgtcgcggaggacctttgattgc-3′ 5′-aggatggcaagggacttcctgtaa-3′
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ET-1 bio-assay 

The ET-1 bioassay was performed according to the protocol supplied with the kit 

from Assay Designs (cat no. 900-020A). Standards and samples were incubated in 

supplied pre-coated 96-well plate, washed, incubated with horse radish peroxidase 

labeled anti- ET-1 antibody and washed again before adding the provided TMB 

substrate and measuring the absorbance. 

 

siRNA experiments 

HDMECs were trasfected with either siRNA specific to human ATF4 (ON-

TARGET plus  SMARTpool, Dharmacon RNA Technologies, CO), PKR (Santa Cruz 

biotechnology, CA) or negative-control siRNA (Qiagen, Chatsworth, CA) at 

concentration of 20nM using HiPerfect reagent (Qiagen) according to the 

manufacturer's protocol. After 48 hours, RNA was extracted and Real-time PCR was 

performed. 

 

Inhibitor experiment 

HDMECs were incubated in the presence of the 25nM of JNK SP600125 or NF-

B SN50 inhibitor (Enzo Life Sciences, Farmingdale, NY) for 3 hours before treatment. 

After 48 hours, RNA and protein were extracted. 
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Co-Immunoprecipitation 

Cell lysates were prepared after appropriate treatment in radioimmune 

precipitation buffer. For immunoprecipitation of cJUN (or NF-B p65), antibody was 

added to 300 μg of precleared cell lysate, and complex formation was carried out at 4 

°C overnight. The protein-antibody complexes were recovered using protein G-

Sepharose beads for 2 h at 4°C. The immunoprecipitates were washed four times in 

radioimmune precipitation buffer, eluted by boiling for 5 min in 2× SDS sample buffer, 

and analyzed by Western blot with anti-ATF4 antibody (Santa Cruz Biotechnology, Inc., 

Santa Cruz, CA). 

 

Plasmids, Transient Transfections and Luciferase Assay 

Luciferase reporters driven by −650-bp and −193-bp fragments (representing the 

wildtype and mutated AP-1 site) of the human ET-1 promoter described previously 1. 

Transient transfections of promoters were performed in HDMECs seeded into 6-well 

plates using Fugene6 (Roche Applied Science) according to the manufacturer's 

instructions. After overnight incubation, cells were treated and then further incubated for 

24 h. The cells were harvested and assayed for luciferase reporter activity using the 

Promega luciferase assay kit according to the manufacturer's instructions. 

Promoter/reporter plasmids were cotransfected with pCMV-βGal (Clontech), which was 

used to adjust for differences in transfection efficiencies between samples. Cells were 
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harvested and Luciferase activity of the promoter was assayed using Promega 

Luciferase assay kit. Values given are means ± standard errors of triplicate assays from 

three individual experiments. 

 

Immunostaining 

Skin sections biopsies from healthy individuals and limited cutaneous systemic 

sclerosis (lcSSc) patients including 8 patients with pulmonary arterial hypertension 

(lcSSc-PAH) based on echoradiography and right heart catheterization and 11 patients 

without PAH (lcSSc-noPAH) and 5 healthy controls were provided by the Boston 

University Core Centers. Patient information is included in Table 1. 

Immunohistochemistry was performed on formalin-fixed, paraffin-embedded tissue 

sections using a Vectastain ABC kit (Vector Laboratories, Burlingame, CA) according to 

the manufacturer’s instructions. Briefly, 8-micrometer-thick sections were mounted on 

APES (amino-propyl-triethoxy-silane)-coated slides, deparaffinized with Histo-Clear 

(National diagnostic, Atlanta GA), and rehydrated through a graded series of ethanol. 

Endogenous peroxidase was blocked by incubation in 0.3% hydrogen peroxide for 15 

minutes and incubated with blocking buffer for 1 hour. The sections were then incubated 

overnight at 4°C with antibody against ATF4 (Abcam, Cambridge, MA) diluted 1:500 in 

blocking serum, followed by the incubation with secondary antibody. The concentration 

of primary antibody was first tested to determine the optimal sensitivity range. The 

immunoreactivity was visualized with diaminobenzidine (Vector laboratories, 

Burlingame, CA) and the sections were counterstained with hematoxylin.  
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Statistical Analysis 

Student's t test analysis was performed to determine statistical significance. 

Values less than or equal to 0.05 were considered statistically significant. All 

experiments were repeated at least three times using independently isolated endothelial 

cell cultures. 
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Table 1. Clinical and hemodynamic data of study subjects. PAP = pulmonary artery pressure. PCWP 

= pulmonary capillary wedge pressure. PASP=pulmonary artery systolic pressure. 

 

- indicates no staining or little staining in <10% of the cells 

+ indicates faint, partial staining in >20% of the cells 

++ indicates light to moderate stain in >50% of the cells 

+++ indicates bright staining in >50% of the cells 



 

51 
 

RESULTS 

HLA-B35/ER stress activate common ER stress/UPR pathways in HDMECs  

In the initial experiment we compared the effects of HLA-B35 with a known ER 

stress inducer, thapsigargin (TG) on the expression of ET-1 mRNA and protein in 

primary dermal microvascular endothelial cells (HDMECs).  HLA-B35 was expressed 

using adenoviral delivery as previously described [16]. To control for the presence of 

adenoviral genes we used adenovirus expressing a closely related antigen, HLA-B8, as 

well as an empty virus.  As shown in Fig. 2.1a, HLA-B35 upregulated (pre-pro-

endothelin-1) PPET-1 mRNA levels with a similar potency 7-fold ± 0.58, p = 0.05 vs 8-

fold± 0.25, p=0.05, respectively, while TG was a stronger inducer of PPET-1 (26-fold ± 

0.75, p = 0.001). Ad-HLA-B8, as well as an empty virus vector (data not shown) did not 

affect PPET1 mRNA expression.  To verify that the increase in PPET-1 mRNA 

corresponds to an increase of the bioactive 21-aa ET-1 peptide, we measured levels of 

ET-1 protein in supernatants of Ad-B35 (and Ad-B8) and TG treated ECs (fig.2.1b). 

Consistent with the mRNA measurements ER stress inducers increased ET-1 protein 

levels (Ad-B35, 3.5-fold± 0.6, p=0.05 and TG, 5.3-fold± 0.80, p=0.05).  

To further characterize the nature of the HLA-B35-mediated ER stress, we 

examined the effect of HLA-B35 (or HLA-B8) and TG on the mRNA expression of the 

three main UPR mediators, transcription factors ATF4, ATF6 and XBP1. ATF4 mRNA 

levels were significantly increased in response to the HLA-B35, while TG was a less 

potent inducer of ATF4 mRNA under this experimental conditions (Fig. 2.2a). 

Furthermore, both HLA-B35 and TG moderately increased spliced (active) form of the 
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transcription factor XBP1 (XBP1s) (Fig. 2,2c). In contrast, the expression level of ATF6 

was not responsive to any of these treatments in HDMECs (Fig.2.2b).  

 

 

 

Figure 2.1. HLA-B35 and TG upregulate ET-1 mRNA and protein in HDMECs 

Upregulation of PPET-1 mRNA after HLA-B35 (or HLA-B8) and TG treatments alone (a) in HDMECs. 

Confluent dishes of HDMECs were transduced with 10 MOI of Adenovirus encoding HLA-B35/GFP (Ad-

HLA-B8/GFP) for 48 h or treated with 10pM TG for 24 hours. Total RNA was extracted and mRNA levels 

of PPET-1 were quantified by quantitative RT-PCR. Expression of the housekeeping gene β-actin served 

as an internal positive control in each assay performed. After measurement of the relative fluorescence 

intensity for each sample, the amount of each mRNA transcript was expressed as a threshold cycle 

value. (b) Bioactive 21-aa ET-1 peptide in HDMECs after Ad-B35/GFP (Ad-B8/GFP), TG. ET-1 protein 

was measured by ELISA in the supernatants. The average protein concentration for each group is 

represented as a bar ± SE. *p = 0.05; **p = 0.001  
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Figure 2.2. HLA-B35/ER stress activate selected ER stress/UPR pathways 

ATF4 (a), ATF6 (b) and XBP1 splicing (c) levels in HDMECs treated with HLA B35 (HLA-B8) and TG. 

Confluent dishes of HDMECs were transduced with 10 MOI of Ad-B35/GFP (or Ad- B8/GFP) for 48 h 

treated with 10pM TG for 24 hours. Total RNA was extracted and mRNA levels of transcription factors 

were examined by quantitative RT-PCR. Expression of the housekeeping gene β-actin served as an 

internal positive control in each assay performed. After measurement of the relative fluorescence intensity 

for each sample, the amount of each mRNA transcript was expressed as a threshold cycle value. *p = 

0.05; **p = 0.001 
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Since nuclear translocation of ATF4 is indicative of its activation status, we 

examined nuclear extracts for the presence of ATF4 by western blot. Nuclear ATF4 was 

examined at various time points (15 min. to 6 hours) after TG treatments and 24 hours 

post infection with HLA-B35 or HLA-B8 adenoviruses. Nuclear ATF4 was rapidly 

increased (15-30 min) after TG (Fig. 2.3a). Likewise, HLA-B35 markedly increased 

nuclear presence of ATF4 (Fig. 2.3b). Furthermore, increased phosphorylation of the 

upstream activators of ATF4, PERK and eIF2α, was observed in response to these 

treatments (Fig. 3, right panels). Consistent with the mRNA data, nuclear levels of ATF6 

remained unchanged. Together, these results demonstrate that ATF4 is activated in a 

similar manner by HLA-B35 and ER stress/UPR inducer in endothelial cells.  
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Figure 2.3. HLA-B35/ER stress activate ATF4 nuclear translocation and enhance phosphorylation 

of PERK and eIF2α 

ATF4, pPERK/PERK, and p-eIF2α/eIF2α protein levels in HDMECs after treatment with 10pM TG (a) or 

transduction with 10 MOI of HLA-B35 or HLA-B8 Ads for 48 hours (b). 20 μg of nuclear extract were 

separated via 15% SDS-PAGE for ATF4 and 10% SDS-PAGE for ATF6. 20 μg of total cellular proteins 

were separated via 15% SDS-PAGE for pPERK/PERK and 10% SDS-PAGE for peIF2α/eIF2α, then 

transferred to a nitrocellulose membrane. The blots were probed overnight with primary Abs at 4°C. As a 

control for equal protein loading, membranes were stripped and reprobed for Lamin A/C or β-actin. 

Representative blots from at least three independent experiments are shown. 
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ATF4 is required for the upregulation of ET-1 in response to HLA-B35/ER stress a 

in HDMECs  

In order to determine whether ATF4 is directly involved in the regulation of ET-1 

gene we employed a siRNA approach to knock down ATF4. Initial experiments 

established an optimal dose and time for the ATF4 siRNA to achieve maximal inhibition 

of endogenous ATF4 mRNA level. Treatment of HDMECs with 20nM ATF4 siRNA for 

48 hours resulted in depletion of ATF4 mRNA levels (up to 50-60%) (Fig 2.4a). Under 

these conditions basal expression levels of ET-1 mRNA and protein were also 

consistently decreased by ~30% (Fig. 2.4b and c). Following 24 hour incubation with 

siRNA, cells were treated with Ad-B35/GFP (or Ad-B8) and TG for additional 24 hours. 

Depletion of ATF4 completely abolished upregulation of ET-1 mRNA (Fig. 2.4b) and 

protein (Fig. 2.4c) in response to these treatments, suggesting that ATF4 is required for 

these responses.  

 

We next examined the distribution of ATF4 protein in the human skin by 

immunohistochemistry. Analyses of skin microvessels showed heteregoneus 

distribution of ATF4, with some vessels exhibiting strong endothelial cell nuclear 

staining, while other vessels were negative for ATF4 (Fig. 2.4d). The number of positive 

vessels also varied between different individuals. Because patients with SSc have 

elevated circulating levels of ET-1 [20] we also analyzed skin samples obtained from 19 

patients with limited cutaneous SSc (lcSSc), including 8 patients with PAH (lcSSc-PAH), 

and 11 lcSSc-noPAH. Similar to healthy control skin, endothelial cell expression of 
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ATF4 varied between the patients, however there was no overall difference in the 

intensity or staining pattern between lcSSc and healthy individual biopsies. We did not 

have information regarding the level of circulating ET-1 or the presence of HLA-B35 

antigen in this group of patients. Together, these data indicate that ATF4 is highly 

expressed in a subset of dermal microvessels, where it is likely involved in responses to 

various environmental stimuli.  
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Figure. 2.4. HLA-B35/ER stress upregulate ET1 via ATF4 

80% confluency, HDMECs were treated with 20nM ATF4 siRNA (or siSCR) prior to treatment with HLA-

B35 (HLA-B8) and TG. Total RNA was extracted and mRNA level of ATF4 (a) and PPET-1 (b) were 

quantified by quantitative RT-PCR. Expression of the housekeeping gene β-actin served as an internal 

positive control in each assay performed. After measurement of the relative fluorescence intensity for 

each sample, the amount of each mRNA transcript was expressed as a threshold cycle value. (c) ET-1 

protein was measured by ELISA in the supernatants (n=2). The average ET-1 protein concentration for 

each group is represented as a bar ± SE. *p = 0.05; **p = 0.001. 
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Fig. 2.4 (d). ATF4 protein expression in human skin microvessels.  

Lesional skin biopsies were obtained from patients with lcSSc (with and without PAH) and healthy 

controls, and processed for immunohistochemistry as described under Methods. Representative images 

of microvessels from healthy control and lcSSc patients is shown; similar immunostaining pattern was 

observed in control and lcSSc skin biopsies. Bar: 50µm, 10 µm 
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JNK and NF-B contribute to HLA-B35/ER stress induction of ET-1  

JNK and NF-B pathways have been previously reported to contribute to the ET-

1 gene expression in response to various stimuli [4,5]. To determine if JNK and NF-B 

contribute to the upregulation of ET-1 in response to ER stress, cells were treated with 

HLA-B35 and TG in the presence or absence of the pharmacological inhibitors of these 

pathways. Treatment with JNK inhibitor (SP6001, 25 mM) resulted in down regulation of 

the basal and agonist-induced PPET-1 mRNA levels (Fig. 5a, top panel). On the other 

hand, basal expression of PPET-1 mRNA was not affected by the NF-B inhibitor 

(SN50, 25 mM), however stimulation of PPET1 by HLA-B35 and TG was completely 

inhibited (Fig. 2.5b, top panel). Similar results were observed at the protein levels (Fig. 

2.5a and b, bottom panels). Interestingly, while stimulation of ET-1 by HLA-B35 or TG 

was similarly affected by the inhibitors of the JNK and NF-B pathways. 
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Fig. 2.5. JNK and NF-B contribute to the HLA-B35/ ER stress induction of ET-1 

Cells were treated with 25nM of JNK (a) or NF-B (b) inhibitors for 3 hours before HLA-B35 (HLA-B8) and 

TG treatment. Total RNA was extracted and mRNA levels of PPET-1 were quantified by quantitative RT-

PCR (top panel). ET-1 protein was measured by ELISA in the supernatants (bottom panel). The average 

protein concentration for each group (n=2) is represented as a bar ± SE *p = 0.05; **p = 0.001 
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ATF4/c-JUN complexes mediate ET-1 induction by HLA-B35/ER stress  

ET-1 gene promoter contains binding sites for a number of transcription factors, 

however using bioinformatics tools we were unable to locate consensus ATF4 binding 

site within the promoter region. Based on the previous report identifying ATF4 as a 

partner of c-JUN in a two-hybrid screen [21], we asked whether ATF4 could form protein 

complexes with c-JUN in HDMECs. As shown in Fig. 2.6a, ATF4/c-JUN complexes 

were present in unstimulated cells and were increased upon stimulation with HLA-B35 

and TG. While, we could also detect formation of the ATF/NF-B complexes in 

unstimulated cells, formation of these complexes was not affected by the agonists (Fig. 

2.6b), suggesting that formation of the ATF4/c-JUN complexes is not simply driven by 

the elevated levels of ATF4 in stimulated cells.  

 

We next utilized human ET-1 promoter constructs consisting of the −650/+172–

bp fragment fused to the luciferase reporter gene to confirm functional role of ATF4 in 

regulation of the ET-1 gene. Transcriptional activation of the ET-1 promoter was 

observed after treatment with HLA-B35 and TG (Fig. 2.6c). To analyze whether AP1 

binding site was required for the regulation of ET-1 transcription, cells were transfected 

with the 193-bp ET-1-prom-luc construct (wild type) or the same construct carrying 

mutated AP-1 binding site. As shown in Fig. 2.6d, mutation in the AP1 binding site 

reduced the ER stress induction of the ET-1 promoter. These results support the 

functional role of the AP1 complex in the ER stress-mediated induction of the ET-1 gene 

expression. 
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Fig. 2.6. Transcriptional upregulation of ET-1 by HLA-B35/ER stress is mediated through the 

ATF4/cJUN complex 

Cell lysates from the HLA-B35 (HLA-B8) and TG treated HDMECs were immunoprecipitated with cJUN 

(a) or NF-B p65 antibodies (b) and then analyzed for ATF4 by western blot. Cells were transfected with 

the luciferase reporter driven by the −650/+172–bp fragment of the human ET-1 promoter (c) or with the 

−193-bp ppET-1-prom-luc construct (wild type) or constructs with specific mutations in the AP-1 binding 

site (d). 24 hours post transfection with the indicated plasmids, cells were stimulated with HLA-B35 (HLA-

B8) Ads and TG for an additional 24 h. Transfections were normalized using pSVgalactosidase control 

vector. Basal and induced luciferase activity was measured by luminometry. The graph represents fold 

change in promoter activity in response to various treatments in comparison with control promoter, which 

was arbitrarily set at 1. (e) Schematic diagram showing PERK induced activation of the eIF2α-ATF4 axis 

followed by the protein complex formation with c-JUN and induction of the ET-1 gene transcription 

through the AP1 response element. 
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DISCUSSION 

In this study we show for the first time that ATF4 is a novel regulator of the ET-1 

gene in endothelial cells. ATF4 contributes to the basal expression of ET-1 and is 

required for the induction of ET-1 in response to ER stress. Our results strongly suggest 

that activation of the eIF2α/ATF4 pathway leads to increased formation of the ATF4 

protein complexes with c-JUN, which, in turn, activate ET-1 transcription through the 

AP1 response element. ER stress inducers, including HLA-B35 and TG, also upregulate 

mRNA and protein expression of ATF4, thus further amplifying this signaling pathway 

(see diagram, Fig. 6e). Additional experiments show that NF-B, which is also activated 

by the ER stress in HDMECs, contributes to the activation of ET-1 gene expression. 

Interestingly, although, ATF4 forms protein complexes with NF-B in HDMECs, 

formation of these complexes was not increased by the stimuli used in our study. Since 

NF-B plays a key role in activation of the ET-1 gene by cytokines, it is possible that the 

ATF4/NF-B complexes are involved in those responses. Together, this study identifies 

ATF4 as a key mediator of ET-1 gene activation in response to cellular stress. 

 

ATF4 is a short-live, basic region-leucine zipper (bZip) protein that belongs to a 

family of the ATF/CREB transcription factors (109). Under normal physiological 

conditions translation of the ATF4 protein is inefficient due to the presence of a short 

open reading frame in its 5’ untranslated region; however ATF4 protein translation is 

facilitated by various stress conditions that trigger global inhibition of protein synthesis 

(109). Such conditions, including ER stress, viral infection, nutrient starvation, and low 
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levels of heme induce activation of distinct protein kinases that in turn lead to 

phosphorylation of a common downstream mediator, eIF2α  translational 

repression. In a related study Gargalovic et al have reported activation of the eIF2α-

ATF4 in human atherosclerotic lesions and in cultured aortic endothelial cells exposed 

to oxidized phospholipids (110). The authors demonstrated that ATF4 contributed to the 

upregulation of several inflammatory cytokines in cultured aortic endothelial cells. ATF4 

was also upregulated by herpesvirus 8 infection and contributed to proangiogenic 

response via MCP1 upregulation (111). Furthermore, rapid induction of ATF4 has been 

observed in smooth muscle cells (SMCs) in the medial compartment of balloon injured 

rat carotid arteries [24]. Additional studies with cultured SMCs have demonstrated that 

Fibroblast growth factors (FGF)-2 and mechanical injury stimulate ATF4 levels, and that 

ATF4 is required for the FGF-2 mediated upregulation of Vascular endothelial growth 

factor (VEGF)-A (112). Our study indicates that ET-1 is among the target genes 

positively regulated by the eIF2α-ATF4 axis in response to ER stress in endothelial 

cells. Collectively, these studies support a key role for the eIF2α-ATF4 pathway in 

response to vascular injury (113). 

 

Endothelial cells constitute a first line of defense protecting tissues from injury. 

Elevated production of ET-1 is a common characteristic associated with endothelial cell 

dysfunction in various pathological conditions, including pulmonary arterial hypertension 

(114). Previous studies have shown that HLA-B35 is associated with an increased risk 

for developing PAH in patients with scleroderma (SSc) (104). The current study further 

supports the potential pathogenic role of HLA-B35 in upregulating ET-1 production and 
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clarifies the molecular mechanism involved in this process in endothelial cells. In 

addition, this study raises an intriguing possibility that chronic activation of the 

eIF2α/ATF4 pathway could contribute to the disease pathogenesis. Although, we were 

able to demonstrate, activation of ATF4 in selected skin biopsies of patients with lcSSc, 

absence of full clinical data, including levels of circulating ET-1 and presence of HLA-

B35 antigen, precluded proper analyses of these samples. This limitation may be 

addressed in future studies with a larger set of fully characterized samples from patients 

with lcSSc.  
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Chapter 3 

 

Increased expression of ER stress genes in 

patients with limited cutaneous Systemic 

Sclerosis and Pulmonary Arterial Hypertension 
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INTRODUCTION 

Pulmonary Arterial Hypertension (PAH) is a complex, multi-factorial condition 

involving numerous biochemical pathways and cell types resulting in alterations in 

vascular reactivity, vascular structure, and interactions of the vessel wall with circulating 

blood elements (114). PAH is a serious and often fatal complication of SSc, occurring 

primarily in patients with the limited cutaneous form of the disease (lcSSc), and is one of 

the main causes of morbidity and mortality in these patients (115-117). It has been 

suggested that autoimmunity/inflammation and systemic vasculopathy could contribute 

to the development of lcSSc-PAH, but the underlying mechanisms have not been fully 

elucidated (43). 

Notably, inflammatory cell infiltrates have been observed in perivascular regions 

of pulmonary arteries more frequently in SSc-PAH than in other forms of PAH (41, 118). 

The cytokines and chemokines released by these immune cells could contribute to the 

pathological vessel remodeling in PAH (43). 

The Endoplasmic Reticulum (ER) is a multifunctional organelle, which 

coordinates protein folding, lipid biosynthesis, calcium storage and release. 

Perturbations that disrupt ER homeostasis lead to ER stress and activation of signaling 

cascades termed the Unfolded Protein Response (UPR). The main UPR branches 

include PERK (protein kinase RNA-like ER kinase); IRE1 (inositol requiring protein–1) 

and ATF6 (activating transcription factor–6). Under basal conditions these specialized 

ER membrane-associated sensor proteins are bound by the ER chaperone BiP 

(immunoglobulin-heavy-chain binding protein, also known as GRP78) and maintained in 
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an inactive state. Accumulation of misfolded proteins in the ER lumen activates adaptive 

UPR mechanisms through the release of BiP from the sensor proteins and initiation of 

specific cellular responses aimed at the restoration of ER homeostasis (119). When 

activated, PERK oligomerizes and phosphorylates itself and the ubiquitous eukaryotic 

translation initiation factor 2 alpha (eIF2α), which results in global attenuation of  influx 

of proteins to the ER, while selected mRNAs, including ATF4 (activating transcription 

factor–4), are preferentially translated. PERK also phosphorylates nuclear erythroid 2 

p45- related factor (NRF2) involved in restoration of redox balance (120). The 

transmembrane kinaseendoribonuclease IRE1, governs splicing of the mRNA encoding 

X-box binding protein–1 (XBP1), a potent transcription factor involved in regulation of 

genes controlling ER-associated degradation (ERAD), synthesis of ER chaperones, as 

well as the phospholipid synthesis required for ER expansion. Because of its regulatory 

role in protein folding and degradation XBP1 is active during the early cytoprotective 

phase of ER stress, but its activity declines during prolonged ER stress (121). The third 

arm of the UPR is regulated by ATF6, which upon release from BiP translocates to the 

Golgi where it is cleaved by S1P and S2P proteases. A released N-terminal ATF6 

fragment moves to the nucleus and in concert with XBP1 activates ER stress target 

genes, including BiP (119-121). Chronic or severe ER stress activates UPR-dependent 

apoptotic death. While not yet fully understood, this process is associated with PERK-

eIF2α mediated transcription activation of C/EBP-homologous protein (CHOP; also 

known as GADD153), which then downregulates expression of the antiapoptotic 

mediator B cell lymphoma 2 (BCL-2) and upregulates expression of proapoptotic BIM. 

Importantly, recent studies point to a more complex regulation of the intensity and 
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kinetics of UPR signaling depending on the nature of the cellular stress and input from 

other cellular pathways (121). Accumulating evidence indicates that ER stress is 

associated with a range of diseases, including neurological disorders, diabetes, 

metabolic disease, intestinal inflammation and autoimmunity making ER stress a 

probable instigator of pathological cell death and dysfunction (122-126). Interestingly, 

there is also evidence that ER homeostasis is closely related to regulation of 

inflammatory gene expression. A link between ER stress and the inflammatory 

response was reported in different experimental models, including endothelial cells and 

immune cells (124, 109, 127, 106). Inflammation can be triggered by chronic excess of 

metabolic factors, cytokines, and hormones, and those factors can also trigger ER 

stress, which 

can further disrupt metabolic function, leading to more inflammation (106,128). 

We have recently reported that ectopic expression of HLA-B35, an antigen 

associated with SSc in Choctow Indians (104) and SSc-PAH in Italian patients (107, 

103), led to changes in the expression of genes related to ER stress in cultured 

endothelial cells (ECs) (105). Furthermore, activation of the ER stress/UPR pathway 

correlated with upregulation of interferon-regulated genes and other inflammatory genes 

in ECs expressing HLA-B35. The goal of this study was to further explore the potential 

contribution of ER stress/UPR to the pathogenesis of lcSSc-PAH by examining 

expression levels of the ER stress/UPR genes in PBMCs obtained from patients with 

lcSSc. Herein, we showed for the first time that expression of selected ER stress/UPR 

genes is significantly elevated in PBMCs from lSSc patients, with the highest levels 

observed in patients with PAH. Importantly, there was a positive correlation between ER 
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stress markers and severity of PAH (PAP) and between ER stress markers and IL-6 

levels in lcSSc PBMCs, suggesting that activation of ER stress/UPR, might drive 

inflammation in PAH associated with SSc. 
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MATERIALS and METHODS 

Study Participants. 

Subjects included normal healthy controls (HC, n=36) and patients with 

lcSSc(n=66), according to criteria established by LeRoy et al. (2). Patients with lcSSc 

were stratified into those with or without PAH based on echocardiography or right heart 

catheterization (RHC); all patients designated as PAH were confirmed by RHC. Patients 

were considered not to have PAH (n=34) if echocardiogram demonstrated a pulmonary 

artery systolic pressure <35mm Hg and normal right ventricular size and function. 

Subjects with mean pulmonary arterial pressure ≥ 25mm Hg, a pulmonary capillary 

wedge pressure (PCWP) ≤15 and a pulmonary vascular resistance ≥3 Wood units by 

RHC were considered to have PAH (n=32). LSSc patients with mildly elevated 

pulmonary capillary wedge pressure (PCWP) (>15 to ≤18) were included in our primary 

analyses consistent with the REVEAL registry with similar rationale (129). Patients that 

had a mild increase in PCWP included in the primary analysis all had significantly 

elevated pulmonary vascular resistance (PVR), and significant increases in both the 

pulmonary artery diastolic minus pulmonary capillary wedge pressure (PAd-PCWP) 

gradient (>10) and the transpulmonary gradient (>15). Thus, each was considered to 

have PAH by the pulmonary hypertension expert caring for the patient. Patient 

characteristics are listed in Table 1. 
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Table 1.Clinical and hemodynamic data of study subjects. 

PAP = pulmonary artery pressure. PCWP = pulmonary capillary wedge pressure. CO/CI = Cardiac output 

(L/min)/ cardiac index (L/min/m2). PVR= pulmonary vascular resistance. ILD = interstitial lung disease. 

ILD was defined as present (Y=yes) or absent (N=no) based on high resolution computed tomography 

assessment of the lungs.FVC (%) = estimated forced vital capacity. DLCO = carbon monoxide diffusing 

capacity.SPAP = estimated systolic pulmonary artery pressure by echocardiogram. 

 

 

 

 

 

 

 

 

Sample Age Sex PAP PCWP CO/CI PVR ILD FVC DLCO HAP HGB HGB on  DLCO adj PASP Disease ANA pattern

(yrs) (mmHg) (mmHg) (% ) (% ) PAH y/n g/dL PFT y/n for Hgb (mmHg) duration titer

lcSSc-noPAH s-y-19 36 F N 97 61 N NA NA 20 20 yrs 1::640 centromere

lcSSc-noPAH s-y-102 43 F N 107 83 N NA NA NORMAL 4 yrs 6 mo 1::1600 speckled

lcSSc-noPAH s-y-116 57 F 21 N 100 66 N 13 N 66.84 35 29 yrs 1::320 centromere

lcSSc-noPAH s-y-35 46 F N 65 82 N NA NA NORMAL 25 yrs

lcSSc-noPAH s-y-52 61 F Y 82 69 N NA NA 33 10 yrs 2 mo 1::2560 centromere

lcSSc-noPAH s-y-55 60 F N 96 61 N NA NA 22 18 yrs 4 mo 1::640 centromere

lcSSc-noPAH s-y-58 44 F 18 10 5/3.7 114 N 110 95 N 14.3 Y 92.54 20 18 yrs 1::5120 anticentromere

lcSSc-noPAH s-y-67 45 F N 108 94 N NA NA 30 10 yrs >1::2560 centromere

lcSSc-noPAH s-y-75 55 F N 90 98 N NA NA 30 10 yrs 1::1280 centromere

lcSSc-noPAH s-y-80 51 F N 105 82 N 11.2 Y 88.63 NORMAL 5 yrs 1::1280 centromere

lcSSc-noPAH s-y-81 37 F N na na N NA NA 25 10 yrs

lcSSc-noPAH s-y-82 76 F 21 13 5.1/3.0 125 N 96 51 N 11.2 N 55.12 35 7 months 1::1280 centromere

lcSSc-noPAH s-y-86 51 F Y 42 61 N 12.1 N 63.7 NORMAL 7 yrs

lcSSc-noPAH s-y-87 38 M N 95 90 N 15.2 N 88.54 32 1 yr 1::1280 nucleolar

lcSSc-noPAH s-y-91 56 F Y 117 65 N NA NA 30 5 yrs

lcSSc-noPAH s-y-98 56 F N 89 82 N NA NA 25 11 yrs

lcSSc-noPAH s-y-182 65 F Y 64 35 N NA NA NORMAL 15 yrs

lcSSc-noPAH s-y-41 61 F 13 1 Y 88 49 Y 14.8 N 47.09 6 yrs 1::120 nucleolar

lcSSc-noPAH s-y-138 54 F N 97 69 N 12.6 Y 70.8 1 yr 3 mo 1::1280 homogenous

lcSSc-noPAH s-y-12 33 F N 119 94 N 14.4 N 91.31 4 yrs 3 mo 1::2560 centromere

lcSSc-noPAH s-y-47 69 F N 96 76 N 13.4 N 76 10 yrs centromere

lcSSc-noPAH s-y-0 149 56 F N 88 52 N 12.3 N 53.91 29 17 yrs

lcSSc-noPAH s-y-0 201 71 F 19 12 4.73/2.44 118 84 76 N NA NA 40 3 yrs 1::160 antinuclear body

lcSSc-noPAH s-y-0 215 61 F 82 73 N NA NA NORMAL 3 yrs

lcSSc-noPAH s-y-0 221 57 F 21 8 5.69/3.69 183 N 65 52 N 12.1 Y 54.3 39 15 yrs 1::160 speckled

lcSSc-noPAH s-y-0 227 61 F Y 72 72 N 11.6 N 76.6 22 5 yrs 1::1280 homogenous

lcSSc-noPAH s-y-0 228 54 F N 89 62 N NA NA 33 13 yrs 1::2560 centromere

lcSSc-noPAH s-y-0 254 57 F Y 79 77 N 12.4 N 79.56 27 2 yrs 1::320 homogenous

lcSSc-noPAH s-y-1 148 50 F 94 71 N 14.6 N 68.6 NORMAL 8 yrs 1::640 nucleolar

lcSSc-noPAH s-y-1 160 57 F Y 67 43 N NA NA NORMAL 9 yrs

lcSSc-noPAH s-y-1 172 50 F Y 78 68 N NA NA NORMAL 4 yrs 2 mo 1::640 centromere

lcSSc-noPAH s-y-2 100 41 F 87 105 NA NA NA NORMAL 15 yrs

lcSSc-noPAH s-y-3 127 41 F N 101 107 N NA NA 26 11 yrs 1::320 & 1::80 antinuclear

lcSSc-noPAH s-y-3 52 65 F Y 92 51 Y NA NA 34-39 7 yrs 1::2560 centromere
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Table 1.Clinical and hemodynamic data of study subjects. 

PAP = pulmonary artery pressure. PCWP = pulmonary capillary wedge pressure. CO/CI = Cardiac output 

(L/min)/ cardiac index (L/min/m2). PVR= pulmonary vascular resistance. ILD = interstitial lung disease. 

ILD was defined as present (Y=yes) or absent (N=no) based on high resolution computed tomography 

assessment of the lungs.FVC (%) = estimated forced vital capacity. DLCO = carbon monoxide diffusing 

capacity.SPAP = estimated systolic pulmonary artery pressure by echocardiogram. 

 

 

 

 

 

 

 

 

Sample Age Sex PAP PCWP CO/CI PVR ILD FVC DLCO HAP HGB HGB on  DLCO adj PASP Disease ANA pattern

(yrs) (mmHg) (mmHg) (% ) (% ) PAH y/n g/dL PFT y/n for Hgb (mmHg) duration titer

lcSSC-PAH s-y-173 63 f 44 15 7.0/3.7 331 N 90 49 Y 13.4 N 49 57 1 yr 1::1280 centromere

lcSSC-PAH s-y-66 80 F 52 16 3.4/2.0 846 N NA 49 Y NA NA 10 yrs

lcSSC-PAH s-y-195 66 F 40  3.3/1.9 N 68 23 Y 12.1 N 24.02 50 2 yrs 1::1280 centromere

lcSSC-PAH s-y-191 67 F 34   15/14 4.5/2.85 356 Y 90 56 Y 12.6 N 57.46 44 4 yrs 1::320 nucleolar

lcSSC-PAH s-y-130 57 F 25 14 N 100 76 Y 27 yrs Y

lcSSC-PAH s-y-123 68 F 54  18-19 5.0/2.9 543 N Y 10 yrs

lcSSC-PAH s-y-68 55 F 48 13 6.0/3.4 466 N NORMAL Y 13.9 N 1 yr

lcSSC-PAH s-y-71 63 M 32 10 Y 66 48 Y 12.4 N 51.32 6 yrs 1::80 homogenous

lcSSC-PAH s-y-101 67 F 26 14 Y 10 yrs 389 units anti-centromere

lcSSC-PAH s-y-99 67 F 27 15 N 66 65 Y 20 yrs

lcSSC-PAH s-y-94 52 F 25 16 N 107 62 Y 12.5 N 63.84 4 yrs 1::1280 nucleolar

lcSSC-PAH s-y-0 281 52 F 34 5 6.1/3.28 236 N 102 41 Y 14.3 39.94 1 yr

lcSSC-PAH s-y-0 282 62 F 61 3 3.29/2.24 899 Y 86 32 Y 68 11 yrs

lcSSC-PAH s-y-0 209 64 F 85 4.04/2.17 931 Y 80 32 Y 12.1 Y 33.42 45-50 30 yrs

lcSSC-PAH s-y-1 157 61 M 38 11 7.0/3.41 172 Y 93 67 borderline 37 17 yrs 1::160 speckled

lcSSC-PAH s-y-3 116 60 F 34 13 5.77/3.35 153 N 100 66 borderline 13 N 66.84 30 28 yrs 1::320 centromere

lcSSC-PAH s-y-4 24 60 F 72 4 2.7/1.53 1067 Y 97 32 Y 15/6 Y 31.71 7 yrs

lcSSC-PAH s-y-29 62 M 58 14 7.4/4.8 475 80 40 Y 4 yrs 2 mo 1::2560 centromere

lcSSC-PAH s-y-45 52 F 52 11 5.5/3.4 625 48 Y 84 6 yrs

lcSSC-PAH s-y-48 63 M 45 10 6.2/3.2 451 Y 75 33 Y 16.3 N 31.58 14 yrs 1::1280 nucleolar

lcSSC-PAH s-y-54 65 F 34 8 5.5/3.0 378 Y 58 3 yrs 1::640

lcSSC-PAH s-y-60 70 F 48 9 4.3/2.4 706 94 50 Y 14 yrs 8 mo 1::640 centromere

lcSSC-PAH s-y-62 70 F 43 8 3.3/1.8 823 86 44 Y 8.8 N 53.47 55 no data 1::1280 nucleolar

lcSSC-PAH s-y-64 64 F 33 13 5.4/2.9 222 Y 59 54 Y 13.4 Y 54 3 yrs

lcSSC-PAH s-y-83 64 F 37 11 4.1/2.3 519 101 34 Y 10.2 N 38.39 3 yrs 1::640 centromere

lcSSC-PAH s-y-85 69 M 53 9 720 61 43 Y 13.6 N 42.74 102 1 yr. 1::640 speckled

lcSSC-PAH s-y-90 56 F 42 5 6.2/3.9 503 Y 99 38 Y 80 10 yrs 1::2560 centromere

lcSSC-PAH s-y-2 67 F 31 14 5.1/3.3 282 79 58 Y 38 12 yrs 6 mo 1::2560 centromere

lcSSC-PAH s-y-31 70 F 32 16 5.8/3.2 207 100 68 Y 11.8 N 71.8 10 yrs 1::1280 centromere

lcSSC-PAH s-y-42 59 F 57 18 4.4/2.5 745 Y Y 12 years 1::2560 nucleolar

lcSSC-PAH s-y-89 67 F 37 16 8.2/2.6 205 Y 48 43 Y

lcSSC-PAH s-y-0 207 71 F 85 4 4.02/2.28 876 95 44 Y 11.9 N 46.28 65 2 yrs
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Peripheral Blood Mononuclear Cell (PBMC) isolation. 

Blood was collected from healthy controls and patients in CPTTM tubes designed 

for one-step cell separation (Becton Dickinson, Mountain View, CA). The sample was 

then immediately mixed and centrifuged at 1,800 RCF at ambient temperature for 30 

minutes. The PBMC cell layer was then transferred to a 15ml tube, and PBMCs were 

washed twice with PBS and lysed in RNeasy RLT buffer (Qiagen, Valencia, CA). 

Healthy control PBMCs were plated in 6 well plates at 8x105-1x106 cells/well in RPMI 

supplemented with 10% FCS and 1% AA and stimulated with 5 or 10 uM Thapsigargin 

(TM) for 2, 4, 8, 12 and 24 hours. Per manufacturer’s protocol, total RNA was extracted 

using Qiagen’s RNeasy Mini kits, and sent for microarray analysis. 

 

Microarray hybridization and data analysis. 

 RNA quality was assessed using the Agilent 2100 Bioanalyzer and RNA 6000 

Pico Kit. RNA concentration was measured on a Thermo Scientific NanoDrop 2000 

Spectrophotometer. Total RNA (25ng) from each sample was converted to Cy3-CTP  

(Perkin Elmer) labeled cRNA, and Universal Human Reference (UHR) RNA 

(Stratagene) was converted to Cy5-CTP (Perkin Elmer) labeled cRNA using the Low 

Input QuickAmp Labeling Kit (Agilent Technologies) for hybridization as described 

previously (130). Labeled cRNA from UHR and sample were co-hybridized to Agilent 

Whole Human Genome (4x44K) Oligo Microarrays (G4112F), representing 41,000 

unique genes and transcripts. Microarrays were scanned using Agilent’s Dual Laser 

High-Resolution C Scanner. These microarray image files were processed using 

Agilent's Feature Extraction software, which automatically finds and places microarray 



 

76 
 

grids, rejects outlier pixels, accurately determines feature intensities and ratios, flags 

outlier pixels, and calculates statistical confidences. Data were Log2 LOWESS 

normalized for the Cy5/Cy3 ratio, and data was filtered to select array spots with an 

intensity 2 fold or greater than the local background in either the Cy3 or Cy5 channel. All 

data were multiplied by negative one to convert the log10 (C5/C3) ratios to log2 

(Cy3/Cy5) ratios. Probes missing more than 20% of the data across all arrays were 

omitted from further analysis. The time course was time zero transformed by subtracting 

the mean of the zero time points from all other time points. Gene expression data were 

organized by average linkage hierarchical clustering using Cluster 3.0 and filtered using 

2 arrays, 2-fold cutoff. That resulted in 3,746 probes. This subset was visualized using 

Java TreeView and partitioned into 1,582 probes upregulated and 2,164 probes 

downregulated. Agilent probe IDs were converted to Ensembl gene IDs via g:Convert, a 

part of g:Profiler (131). 1,582 upregulated probes were converted to 1,488 unique gene 

IDs (94.1% conversion rate) and 2,164 downregulated probes were converted to 1,891 

unique gene IDs (87.4% conversion rate). Sets of Ensembl gene IDs were analyzed for 

functional enrichment via g: GOSt, another component of g:Profiler, in the following 

annotation categories: Gene Ontology (GO) (132) – biological process (BP), molecular 

function (MF) and cellular component (CC) and pathways; KEGG (133) and 

REACTOME (134). Specific functional terms (with the number of annotated genes in the 

genome below 1,000) were selected in order to account for the biologically informative 

categories 
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Quantitative Real-time PCR. 

 Real-time RT-PCR was performed using IQTM SYBR Green Supermix (Bio-

Rad) and MyiQ™ Single-Color Real-Time PCR Detection System (Bio-Rad). The 

amount of template used in the PCR reactions was cDNA corresponding to 200 ng 

reverse-transcribed total RNA. DNA polymerase was first activated at 95°C for 3 min., 

denatured at 95°C for 30 sec., and annealed/extended at 61°C for 30 sec., for 40 cycles 

according to the manufacturer's protocol. Expression of the housekeeping gene β-actin 

served as an internal positive control in each assay performed. After measurement of 

the relative fluorescence intensity for each sample, the amount of each mRNA transcript 

was expressed as a threshold cycle (ct) value. The primers are available upon request. 

 

Statistical analysis. Comparisons of RT-PCR expression were analyzed by Student’s 

t-test. Correlations were tested by Pearson’s correlation coefficient 
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RESULTS 

ER stress and UPR genes are upregulated in PBMCs from lcSSc patients 

Subjects selected for this study included patients with lcSSc who were recently 

characterized in a study examining expression of PAH biomarkers (135), as well as 

an additional lcSSc patients with PAH and lcSSc patients without PAH (Table 1). PBMC 

samples from a total of 34 lSSc patients without PAH (lcSSc-NoPAH), 32 lSSc patients 

with PAH (lcSSc-PAH) and 36 healthy controls (HC) were analyzed for the presence of 

ER stress/UPR-related genes. The candidate ER stress/UPR genes consisted of 

molecular chaperone BiP/Grp78, indicator of the onset of the UPR, as well as key 

regulators of the UPR pathway including transcription factors ATF4, ATF6, and XPB1. 

Compared with healthy control subjects, PBMCs from lcSSc -NoPAH patients 

demonstrated significantly higher expression of BiP (p<0.0001). The highest level of BiP 

was present in samples from patients with lcSSc-PAH when compared to lcSSc-NoPAH 

samples (p<0.05) or HCs (p<0.0001) (Fig. 3.1). The transcription factors ATF4 and 

ATF6 were significantly elevated in patients with lcSSc- PAH compared to HCs 

(p<0.001) and lcSSc-NoPAH (p<0.05) for ATF6. XBP1 splicing was increased in lcSSc 

compared with HCs (p<0.05), but no significant difference was observed between 

lcSSc- NoPAH and lcSSc-PAH. Together, these results demonstrate that activation of 

selected ER stress/UPR in PBMCs is associated with lcSSc and is progressively 

increased in patients with PAH. 
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Figure 3.1. Elevated mRNA expression of selected ER stress/UPR markers in patients with lcSSc.  

PBMCs were isolated from HC (n=36), lcSSc-NoPAH (n=34) and lcSSc-PAH (n=32). mRNA levels of BiP 

and  ATF4 (top panel), ATF6 and XBP1 splicing (bottom panel) were measured by qPCR. Expression of 

the housekeeping gene β-actin served as an internal positive control. Data are expressed as the fold-

change normalized to mRNA expression in HC samples. Each data point represents a single subject; 

horizontal lines show the mean.  
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Thapsigargin upregulates heat shock proteins and interferon-regulated genes in 

PBMCs 

Microarray analyses were used to further investigate genes regulated by ER 

stress in PBMCs. PBMCs were isolated from healthy controls and treated with a known 

ER stress inducer, Thapsigargin (TG), which activates UPR by inhibiting the ER Ca2+ 

ATPase. The basal expression levels of 3,746 probes were significantly changed in 

response to TG compared to untreated PBMCs. Analysis of enriched functional terms 

among the probes with increased and decreased expression showed terms generally 

associated with immune responses including B cell activation, cytokine production and 

inflammatory response, among others. Genes with increased expression were enriched 

in terms related to the endoplasmic reticulum and the unfolded protein response (Table 

2). Genes with decreased expression showed significant enrichment in functional terms 

related to homeostasis, lysosome and GTPase signaling (Table 3). A complete 

functional enrichment data is available upon request.  

Examination of specific sets of genes deregulated by TG treatment showed 

increased expression of heat shock proteins (HSP) and IFN-regulated genes (Fig 3.2). 

The HSP group consisted of HSP70 (HSP5A, HSP9B) and its co-chaperones, HSP40 

isoforms (DNAJB1, DNAJB5, DNAJB11 and DNAJC3), HSP90 (HSPCB) and 

HSP150/110 (HSPH1). IFN related genes with altered expression included many well-

known IFN-regulated genes: IFI44, IFI44L, IFIT1, IFIT2, IFIT3, IFIT5, IFITM3, MX1, IFN 

alpha–inducible proteins 2 and 3 (GlP2 and G1P3), Interferon-induced guanylate-

binding protein 1 (GBP1), IFN-inducible RNA dependent protein kinase (PRKR), and 

IFN regulatory factor 4-1-7 (IRF4, IRF1, IRF7). Upregulation of HSP and representative 
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IFN-regulated genes in PBMCstreated with TG was confirmed by qPCR (data not 

shown). 

 

Table 2. Functional terms enriched in probes with increased expression after TG 

treatment. 

 

Term Domain, functional annotation category of interest (see Materials and Methods for details). List total 

number of genes in the gene set annotated to a given term. Genome Total, number of genes in the 

genome annotated to a given term. P-value, measure of the significance of the functional enrichment 

corrected for multiple testing. 

 

 

 

Term Name Term List Genom p-value

ER-nucleus signaling pathway BP 35 98 1.01E-16

cellular response to unfolded protein BP 32 84 4.21E-16

endoplasmic reticulum unfolded protein response BP 32 84 4.21E-16

response to endoplasmic reticulum stress BP 34 98 9.99E-16

response to unfolded protein BP 40 143 5.08E-15

endoplasmic reticulum-Golgi intermediate compartment CC 14 54 1.57E-03

endoplasmic reticulum-Golgi intermediate compartment membrane CC 9 24 5.25E-03

melanosome CC 19 108 1.07E-02

pigment granule CC 19 108 1.07E-02

nucleosome CC 18 105 2.74E-02

GTP binding MF 47 399 9.96E-04

GTPase activity MF 33 242 2.10E-03

guanyl nucleotide binding MF 47 411 2.33E-03

guanyl ribonucleotide binding MF 47 411 2.33E-03

sequence-specific DNA binding transcription factor activity MF 90 997 2.46E-03

Protein processing in endoplasmic reticulum KEGG 48 186 2.38E-14

Measles KEGG 31 154 3.65E-06

NOD-like receptor signaling pathway KEGG 16 65 4.82E-04

Protein export KEGG 9 23 9.37E-04

Transcriptional misregulation in cancer KEGG 29 185 1.97E-03

Cytosolic tRNA aminoacylation

REACTOM

E 13 27 4.04E-07

Insulin Synthesis and Secretion

REACTOM

E 14 46 1.03E-04

Translocation of Preproinsulin to Endoplasmic Reticulum

REACTOM

E 10 26 4.63E-04

tRNA Aminoacylation

REACTOM

E 13 49 1.54E-03

Amino acid transport across the plasma membrane

REACTOM

E 10 31 2.93E-03
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Table 3. Functional terms enriched in probes with decreased expression after TG 

treatment.  

 

 

 

 

 

 

 

 

Term Name Term Domain
List 

Total

Genome 

Total
p-value

wound healing BP 97 651 4.89E-09

coagulation BP 83 528 1.23E-08

hemostasis BP 83 528 1.23E-08

blood coagulation BP 82 524 2.10E-08

activation of immune response BP 67 417 5.47E-07

lytic vacuole CC 67 401 9.60E-08

lysosome CC 67 401 9.60E-08

vacuole CC 69 455 3.75E-06

actin cytoskeleton CC 56 337 4.68E-06

ruffle CC 23 117 1.55E-02

GTPase regulator activity MF 81 445 6.77E-12

nucleoside-triphosphatase regulator activity MF 82 457 1.06E-11

enzyme activator activity MF 69 402 1.38E-08

small GTPase regulator activity MF 55 294 6.75E-08

GTPase activator activity MF 50 255 9.29E-08

Lysosome KEGG 34 135 8.65E-08

Hematopoietic cell lineage KEGG 25 108 8.45E-05

Leukocyte transendothelial migration KEGG 25 115 2.89E-04

Fc gamma R-mediated phagocytosis KEGG 22 97 5.44E-04

Regulation of actin cytoskeleton KEGG 35 211 2.31E-03

Hemostasis REACTOME 47 234 6.21E-08

Signaling in Immune system REACTOME 62 431 7.30E-05

Signaling by Rho GTPases REACTOME 26 117 1.39E-04

Rho GTPase cycle REACTOME 26 117 1.39E-04

Formation of Platelet plug REACTOME 24 118 2.12E-03
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Figure 3.2. HSP and IFN-regulated gene expression in healthy control PBMCs treated with 

thapsigargin.  

Heat map showing the expression of genes clustered using average linkage, hierarchical, and supervised 

clustering. Left, Cluster of HSP genes, right, Cluster of IFN-regulated genes. Values above the mean 

expression level of each gene are indicated in red and below the mean are indicated in green. 
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DNAJ/HSP40 genes are upregulated in PBMCs from lcSSc-PAH patients 

DNAJ/HSP40 isoforms were among the genes most notably altered in the TG 

treated PBMCs and were subsequently analyzed in control and patient PBMCs by qRT-

PCR. Compared with healthy control subjects, PBMCs from lcSSc-NoPAH patients 

demonstrated elevated expression of DNAJB1 (p<0.0001) with a further increase in 

lcSSc-PAH (p<0.05). DNAJB11 was less prominently, but also significantly increased in 

lcSSc-PAH samples (p<0.05), (Fig. 3.3). Furthermore, expression of DNAJB1 showed 

the highest positive correlation with pulmonary arterial pressure (PAP) by 

catheterization of lcSSc patients (r=0.56, p< 0.05). On the other hand, with the 

exception of BiP, expression of other HSP70 isoforms, as well as HSP90 and 

HSP150/110 isoforms was not significantly different between HC and lcSSc (with or 

without PAH) PBMCs (data no shown), suggesting a distinct association of HSP40 with 

lcSSc. 
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Figure 3.3. Elevated mRNA expression of selected DNAJ/HSP40 in patients with lcSSc.  

PBMCs were isolated from HC (n=36), lcSSc-NoPAH (n=34) and lcSSc-PAH (n=32). mRNA levels of 

DNAJ/HSP40 ( DNAJB1, DNAJB11) were measured by qPCR. Expression of the housekeeping gene β-

actin served as an internal positive control. Data are expressed as the fold-change normalized to mRNA 

expression  in HC samples. Each data point represents a single subject; horizontal lines show the mean. 

Bottom panel, linear regression analysis of the relationship between the mean pulmonary artery pressure 

(PAP) and DNAJB1 in PBMCs from lcSSc-PAH patients. 
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IFN-regulated genes are altered in PBMCs from lcSSc-PAH patients 

The presence of "interferon signature" in SSc PBMCs, including patients with 

lcSSc has previously been reported (135, 136). From the cluster of the IFN-regulated 

genes induced by TG in HC PBMCs (Fig. 3.2), we selected several representative 

genes that were not previously validated in patient PBMCs, including IFIT1, IFIT2, 

IFITM1, and IRF4 for the qPCR analysis in PBMCs. Consistent with previous studies 

IFIT1, IFIT2, and IFITM1 were expressed at a significantly higher level in patients with 

lcSSc- NoPAH vs healthy controls (Fig. 3.4) but did not show a progressive increase in 

lcSSc-PAH patients compared to lcSSc-NoPAH. Interestingly, IRF4 was significantly 

downregulated in lcSSc vs HC (HC vs lcSSc-NoPAH, p<0.0001, HC vs lcSSc-PAH, 

p<0.001). Expression of other IRF genes, including IRF5, was not significantly changed. 

To further investigate whether endogenously produced interferon was 

contributing to the UPRmediated upregulation of IFN-related genes, HC PBMCs were 

treated for 24 hours with TG (5pM) or IFNα (250U, used as control) in combination with 

B18R, a decoy receptor for type I Interferon. Selected IFN-induced genes were 

analyzed by qPCR. IFNα-induced IFIT1, IFITM1, MX1, CXCL10, IRF7 and IRF4 were 

abrogated by B18R. Although, blockade of IFN also attenuated upregulation of those 

genes in response to TG, the inhibitory effects were less potent, possibly suggesting 

contribution of the IFN-independent pathways (Fig. 3.5). Interestingly, while IRF4 was 

only moderately upregulated by IFNα, it was very potently upregulated by TG. 

Unexpectedly, B18R further potentiated stimulation of IRF4 by TG, suggesting that IFN 

may both positively and negatively regulate IRF4 expression depending on the 

activation status of other signaling pathways. 
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Figure 3.4. mRNA expression of  IFN-regulated genes in patients with lcSSc.  

PBMCs were isolated from HC (n=36), lcSSc-NoPAH (n=34) and lcSSc-PAH (n=32). mRNA levels of 

IFIT1, IFIT2, IFITM1 and IRF4 were measured by qPCR. Expression of the housekeeping gene β-actin 

served as an internal positive control. Data are expressed as the fold-change normalized to mRNA 

expression in HC samples. Each data point represents a single subject; horizontal lines show the mean. 
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Figure 3.5. mRNA expression of  IFN-regulated genes in HC PBMCs after IFN blocker treatment. 

PBMCs were isolated from HC and treated with IFNα or TG in combination with IFN blocker. mRNA levels 

of IFIT1, IFITM1, MX1, CXCL10, IRF7 and IRF4 were measured by qPCR. Expression of the 

housekeeping gene β-actin served as an internal positive control. Data are expressed as the fold-change 

normalized to mRNA expression in untreated HC PBMC.  
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ER stress/UPR correlates with increased expression levels of pro-inflammatory 

cytokines 

Elevated expression levels of inflammatory mediators, including IL-6, IL-1β and IL-13 

have been previously reported in PBMCs from lcSSc patients (137-139). mRNA 

expression of IL-6 was determined in PBMC samples used in this study. In agreement 

with previous findings IL-6 mRNA levels were significantly elevated in lcSSc vs healthy 

control (p<0.005) PBMCs, with the highest levels in lcSSc- PAH PBMCs. Notably, there 

was a positive correlation (r = 0.53, p<0.0001) between mRNA expression of IL-6 and 

BiP in PBMC samples from patients with lSSc (Fig. 3.6). Similar correlations were 

observed when mRNA level of DNAJB1 were compared with IL-6 levels (data not 

shown). These results suggest that ER stress/UPR could contribute to increased 

inflammation in patients with lcSSc. 
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Figure 3.6. IL-6 expression correlates with ER stress/UPR genes.  

mRNA levels of IL-6 was determined by qPCR in PBMC isolated from HC (n=36), lcSSc-NoPAH (n=34) 

and lcSSc-PAH (n=32). Expression of the housekeeping gene β-actin served as an internal positive 

control. Data are expressed as the fold-change normalized to mRNA expression in HC samples. Each 

data point represents a single subject; horizontal lines show the mean. Right panel depicts linear 

regression analysis of the relationship between expression of BiP and IL-6 in PBMCs from lcSSc patients. 
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DISCUSSION 

This study characterized expression of ER stress and UPR related genes in PBMCs 

obtained from a well-characterized cohort of lcSSc patients with and without evidence of 

PAH, as well as healthy control subjects. We demonstrate that lcSSc PBMCs express 

significantly higher levels of genes representing all three branches of the UPR. Notably, 

BiP, ATF6, ATF4, as well as chaperone DNAJB1 showed the highest levels of 

expression in patients with PAH. On the other hand, spliced XBP1 was only moderately 

elevated in lcSSc patients with no evidence of further upregulation in patients with PAH. 

A less pronounced activation of the XBP1 pathway may indicate a chronic nature of the 

ER stress in patients with PAH (121). There was a significant correlation between 

expression of DNAJB1 and pulmonary arterial pressure, as well as BiP and IL-6 

expression suggesting that chronic UPR may contribute to increased inflammation in 

lcSSc through activation of the NF-κB and AP-1 pathways (123). 

The current study further expands the analyses of biomarkers in lcSSc PBMCs 

(136, 135). Similar to the previously observed pattern of gene expression in the 

"biomarker cluster" (IL3RA1, CCR1), selected ER chaperons, including BiP and 

DNAJB1, showed an increased expression in patients with lcSSc-NoPAH with the 

highest level of expression in patients with PAH. Expression of DNAJB, as well as BiP 

correlated strongly with PAP by right-heart catheterization. An earlier study by 

Christmann et al showed a strong association of the macrophage alternative activation 

marker gene, MRC1, with PAP, (136), but ER stress genes only weakly correlated with 

MRC1 (r=0.32, p<0.05 for MRC1 and BiP) and did not correlate with IL13RA1 but, 

instead correlated strongly with IL-6 (0.53, p<0.0001 for BiP and IL-6). These results 
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suggest heterogeneous mechanisms involved in worsening PAP in patients with lcSSc. 

Further studies are needed to determine whether increased levels of ER stress markers 

in lcSSc patients results from the changes in a specific subset of cells, e.g. monocytes 

or dendritic cells, or whether a majority of circulating cells contribute to the ER stress 

signature. 

Growing evidence suggests that inflammation contributes to the development 

and/or progression of PAH. Plexiform lesions often contain lymphocytes, macrophages 

and mast cells, and antibody-complement deposits have been associated with PAH (43, 

118). Furthermore, elevated expression levels of several inflammatory mediators have 

been observed in plasma of PAH patients (137). In particular, IL-6 has been implicated 

in the pathogenesis of PAH (136, 137) and increased levels of IL-6 have been reported 

in lcSSc-PAH patients (135, 138). Consistent with those earlier reports, we found 

elevated levels of IL-6 mRNA levels in lcSSc PBMCs, with the highest levels in lcSSc-

PAH samples. Furthermore there was a positive and significant correlation between BiP 

and IL-6 mRNA expression levels, consistent with the possibility that ER stress may 

function as an endogenous inducer of inflammation. Interestingly, several of the ER 

stress/UPR genes showed variable expression in healthy individuals. A recent study by 

Dombroski et al (140) that characterized ER stress/UPR in human B cells obtained from 

healthy individuals have also found an extensive individual variability in expression of 

the ER stress/UPR related genes in response to the ER stress-inducing agents. Many 

of these variable genes were the known disease linked genes, suggesting a 

mechanistic link between ER function and human disease. Indeed, genetic 

polymorphisms in UPR genes have been functionally linked to inflammatory bowel 
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disease and asthma (141, 142). Relevant to these findings, we have previously shown 

that HLA-B35, which is associated with increased risk for developing PAH in Italian SSc 

patients (107, 103) induced ER stress-mediated upregulation of endothelin 1, 

proinflammatory cytokines, and IFNrelated genes in human microvascular endothelial 

cells (105). However, factors contributing to the induction of ER stress/UPR in patients 

with SSc are currently unknown. 

Analyses of PBMCs subjected to thapsigargin-mediated ER stress in vitro 

revealed upregulation of a large number of IFN-regulated genes consistent with 

previous studies that demonstrated induction of IFNα by TG in mouse macrophages 

(RAW 264.7 cells) (143). Furthermore, priming of RAW 264.7 cells with TG greatly 

potentiated their responses to TLR4 and TLR3 ligands and this synergistic interaction 

was completely dependent on XBP-1 (143). In agreement with the previous reports 

(136, 138, 139), we have also observed increased expression of IFN-related genes, 

including IFIT1, IFIT2, and IFITM1 that correlated with increased XBP-1 splicing in our 

lcSSc patient cohort, suggesting that ER stress may contribute, among other factors, to 

the "interferon signature" in lcSSc patients. Consistent with this conclusion, we found 

that upregulation of IFN-regulated genes by TG in PBMCs was in part dependent on 

activation of the endogenous type I IFN. Unexpectedly, while both IFNα and TG induced 

IRF4 in HC PBMCs, there was a significant decrease of IRF4 expression in lcSSc-

NoPAH and lcSSc- PAH PBMCs compared to healthy individuals, suggesting that ER 

stress and/or IFN-dependent pathways may not be involved in the downregulation of 

IRF4 in lcSSc patients. Given the prominent role of IRF4 in regulation of the immune 

response, in the future it would be important to focus on the mechanisms involved in its 
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dysregulation in lcSSc. IRF4 is expressed in both T and B cells and plays an important 

role in mature CD4+ T cell function (rev. in (144). Interestingly, a lack of IRF4 results in 

enhanced IFNα production under TH2 conditions (144). Additional studies revealed that 

peritoneal macrophages isolated from Irf4-deficient mice showed markedly enhanced 

induction of IL-6 and IL- 12p40 in response TLR4, TLR7 or TLR9 stimulation (145). 

Functionally, IRF4 was shown to compete with IRF5, but not IRF7 for MyD88 interaction 

(145). Since IRF5 expression levels were not changed in lcSSc PBMCs analyzed in this 

study (data not shown), lower levels of IRF4 may alter IRF5 signaling in this group of 

patients. Importantly, an IRF5 polymorphism was identified as one of the susceptibility 

loci associated with SSc in a recent SSc-genome wide association study (146). 

Together, these studies suggest that low expression levels of IRF4 may contribute to 

the enhanced cytokine production in lcSSc patients. 

In conclusion, we demonstrate increased expression of selected UPR genes in 

PBMCs from patients with lcSSc. Since activation of UPR may result from a variety of 

factors that disturb cellular homeostasis, additional studies will be required to 

investigate specific factors contributing to this process in lcSSc. It may be relevant that 

viral infections have been associated with induction of UPR, as well as the interferon 

response (147), and since herpesviruses have been linked to SSc pathogenesis (148-

150), it may suggest a possible role for a herpesvirus in activation of the UPR response 

in lcSSc. Regardless of the initial stimulus, activation of the UPR may signal disease 

worsening and selected ER stress/UPR genes may serve as markers of disease 

progression in patients with lcSSc. Interestingly, activation of ER stress/UPR markers 
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was recently demonstrated in monocytes from patients with type 2 diabetes and was 

implicated in attenuation of the response to TLR agonists (151). It may also be relevant 

that an altered TLR-mediated induction of proinflammatory cytokines was observed in 

dendritic cells from patients with SSc, including lcSSc (152). Future studies should 

determine whether ER stress/UPR alter the function of immune cells in patients with 

lcSSc. 
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Chapter 4 

Role of the presence of HLA-B35 in 

activation of immune cells 
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Specific Aim 2.3. To determine whether HLA-B35 contributes to 

activation of ER stress in immune cells  

Our previous study in ECs showed that the presence of HLA-B35 leads to 

changes in the expression of genes associated with ER stress and furthermore, 

activation of UPR pathway correlated with upregulation of interferon-regulated genes 

and other inflammatory genes ( JI paper).  The presence of ER stress and UPR markers 

in endothelial cells expressing HLA-B35 has suggested that HLA-B35 could induce ER 

stress in other cell types, including immune cells. 

 We decided to determine whether HLA-B35 influences the expression of ER 

stress/UPR genes in PBMC of patients with lcSSc-PAH. To explore the potential 

contribution of HLA-B35 to immune aspects of the disease, we stratified all PBMC 

samples based on the presence of the HLA-B35 allele. 

The presence of HLA-B35 allele exacerbates activation of only selected ER 

stress/UPR in PBMCs 

Among the previously tested ER stress markers, only BiP was consistently higher 

in PBMCs HLA-B35 positive compared with HLA-B35 negative samples, with 

statistically significant differences (p<0.05) observed in each lcSSc subset, as well as in 

healthy control samples (fig.4.1). ATF4 showed significant differences in lcSSc-noPAH 

subset and in healthy control samples (p<0.005 HC B35- vs B35+ and p<0.001 lcSSc-

noPAH B35- vs B35+) but not in lcSScPAH samples. Furthermore, the elevated levels 

of ATF6 observed in lcSSc-PAH samples, were not influenced by the presence of HLA-

B35 antigen. In contrast lcSSc-PAH HLA-B35-positive individuals showed a significantly 
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higher expression of spliced XBP1 compared to lcSSc HLA-B35-negative patients 

(p<0.05)(fig.4.1). 

 

 

Figure 4.1.  HLA-B35 correlates with higher expression of selected ER stress/UPR genes.  

PBMCs were isolated from HC (n=36), lcSSc-NoPAH (n=34) and lcSSc-PAH (n=32) and grouped 

according to the presence of the HLA-B35 allele: HC B35+ (n = 7), HC B35- (n=29); lcSSc-NoPAH B35+ 

(n = 12), lcSSc-NoPAH B35- (n=22); lcSSc-PAH B35+ (n = 14), lcSSc-PAH B35- (n=18). mRNA levels of 

BiP and ATF4 (top panel), ATF6 and ATF6 (bottom panel). mRNA were measured by qPCR. Expression 

of the housekeeping gene β-actin served as an internal positive control. Data are expressed as the fold-

change normalized to mRNA expression in a single HC sample. Each data point represents a single 

subject; horizontal lines show the mean. 
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Interestingly, the presence of HLA-B35 showed positive correlation with DNAJB1, with 

statistically significant differences observed in each group (p<0.0001 HC B35- vs HC 

B35+, p< 0.05 lcSSc-NoPAH B35+ vs lcSsc-NoPAH B35- and lcSSc-PAH B35+ vs 

lcSsc-PAH B35-) (Fig.4.2). The correlation between DNAJB1 and severity of PAH 

(PAP) previously observed (r= 0.56) was not related to presence of antigen HLA-B35 in 

the PBMC patients. 

 

Figure 4.2.  HLA-B35 correlates with higher expression of selected HSP40/DNAJB 

PBMCs were isolated from HC (n=36), lcSSc-NoPAH (n=34) and lcSSc-PAH (n=32) and grouped 

according to the presence of the HLA-B35 allele: HC B35+ (n = 7), HC B35- (n=29); lcSSc-NoPAH B35+ 

(n = 12), lcSSc-NoPAH B35- (n=22); lcSSc-PAH B35+ (n = 14), lcSSc-PAH B35- (n=18). mRNA levels of 

DNAJB1 and ADNAJB11. mRNA were measured by qPCR. Expression of the housekeeping gene β-actin 

served as an internal positive control. Data are expressed as the fold-change normalized to mRNA 

expression in HC sample. Each data point represents a single subject; horizontal lines show the mean. 
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The presence of HLA-B35 allele in PBMC enhances the correlation between  ER 

stress/UPR and  increased expression levels of IL-6  

With regard to IFN-regulated genes, when patients were stratified based on the 

presence of the HLA-B35 allele, we could observed a significantly higher level of IFIT1 

expression in lcSSc samples (p<0.05 NoPAH B35- vs NoPAH B35+ and PAH B35- vs 

PAH B35+). Interestingly, healthy control HLA-B35 positive samples showed lower level 

of IRF4 compared to HC HLA-B35 negative samples. On the other hand, we observed a 

slightly higher level of IRF4 in HLA-B35 positive lcSScPAH patients (p<0.05) (fig.4.3).  

As shown before, IL-6 mRNA levels were significantly elevated in lSSc vs healthy 

control (p<0.0001) PBMCs, with the highest levels in lcSSc-PAH PBMCs. When PBMCs 

were stratified based on the presence of the HLA-B35 allele, the expression level of IL-6 

was consistently higher in HLA-B35 positive lcSSc PBMCs (fig.4.4). Statistically 

significant differences between HLA-B35-positive and HLA-B35-negative samples were 

observed in lcSSc-NoPAH (B35+ vs B35-, p<0.05) and lcSSc-PAH (B35+ vs B35-, 

p,0.05) but not in healthy controls. Previously we showed a positive correlation (r = 0.53, 

p< 0.0001) between mRNA expression of IL-6 and BiP in PBMC samples from patients 

with lcSSc. Notably, IL-6 expression was also correlated with the presence of HLA-B35. 

When lcSSc samples were stratified for HLA-B35 positive and HLA-B35 negative, the 

correlation between IL6 and BiP in B35+ samples was higher than the HLA-B35 

negative samples (r=0.38 vs r+0.16). 
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Figure 4.3. HLA-B35 correlates with expression of some Type I IFN induced genes.  

PBMCs were isolated from HC (n=36), lcSSc-NoPAH (n=34) and lcSSc-PAH (n=32) and grouped 

according to the presence of the HLA-B35 allele: HC B35+ (n = 7), HC B35- (n=29); lcSSc-NoPAH B35+ 

(n = 12), lcSSc-NoPAH B35- (n=22); lcSSc-PAH B35+ (n = 14), lcSSc-PAH B35- (n=18). mRNA levels of 

IFIT1, IFIT2, IFITM1 and IRF4 were determined by. Expression of the housekeeping gene β-actin served 

as an internal positive control. Data are expressed as the fold-change normalized to mRNA expression in 

HC sample. Each data point represents a single subject; horizontal lines show the mean. Right panels 

represent MX1 and IFIT1 mRNA levels in PBMCs stratified based on the presence of the HLA-B35 allele.  
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Figure 4.4. IL-6 expression correlates with ER stress/UPR genes.  

PBMCs were isolated from HC (n=36), lcSSc-NoPAH (n=34) and lcSSc-PAH (n=32) and grouped 

according to the presence of the HLA-B35 allele: HC B35+ (n = 7), HC B35- (n=29); lcSSc-NoPAH B35+ 

(n = 12), lcSSc-NoPAH B35- (n=22); lcSSc-PAH B35+ (n = 14), lcSSc-PAH B35- (n=18). mRNA levels of 

IL-6 was determined by qPCR. Expression of the housekeeping gene β-actin served as an internal 

positive control. Data are expressed as the fold-change normalized to mRNA expression in a single HC 

sample. Each data point represents a single subject; horizontal lines show the mean. Left panel depicts 

linear regression analysis of the relationship between expression of BiP and IL-6 in PBMCs from lcSSc 

B35 negative  and B35 positive patients.  
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Conclusion 

Our analyses of PBMCs from HLA-B35 positive individuals showed higher levels 

of selected ER stress markers when compared to HLA-B35 negative individuals. In 

particular, cellular chaperones, BiP and DNAJB1 showed higher levels of expression in 

both healthy controls and lcSSc patients. This is agreement with our previous study 

linking HLA-B35 to stimulation of ER stress in microvascular endothelial cells. Together,  

our published and preliminary results support the view that genetic factors could 

contribute to the increased levels of ER stress at least in a subset of lcSSc patients.  

We found elevated levels of IL-6 mRNA. We also observed a positive and 

significant correlation between BiP and IL-6 mRNA expression levels in HLA-B35 

positive patients. These results support the theory that HLA-B35 could have a direct role 

in inducing IL-6 expression, possibly through the activation of ER stress/UPR pathways.    

In conclusion we hypothesized that activation of ER stress/UPR, in combination 

with genetic factors, might drive the inflammatory process in SSc-PAH. 

 Further studies are needed to determine a specific “HLA-B35 signature” in lcSSc 

PBMCs. An array analyses on HC PBMC transduced with lentvirus carrying HLA-B35 

will help us to determine specific ER stress gene upregulated that will be tested on our 

patient samples. 

. 
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Discussion 

PAH is a severe disease with worse survival rates for patients with lcSSc-PAH, 

who have a poorer response to therapy. All forms of PAH are characterized by severe 

pulmonary vascular remodeling that leads to increased vascular resistance and 

ultimately right heart failure. The molecular mechanisms underlying the remodeling 

process still remains elusive despite recent major strides made in the understanding of 

the pathogenesis of PAH.  

Certain conditions are associated with PAH, such as congenital heart disease or 

connective tissue disease, but in the absence of these associated conditions, the 

causes of PAH remain a mystery. . A role for genetic association has been recognized 

supported by familial clustering patterns and high prevalence of the disease among certain 

ethnic groups. (distribution between female and male patients, age of onset, and natural 

history) (153,154).  

The discovery of heterozygous mutations of the BMPR2 gene, encoding for the 

bone morphogenetic protein receptor-II (BMPR-II), in a substantial proportion of patients 

with familial pulmonary arterial hypertension (FPAH), as well as many cases of sporadic 

or idiopathic disease (IPAH), represents perhaps the single greatest advance toward an 

understanding of the molecular mechanisms that underpin this puzzling and often lethal 

vascular disease (155-159).  The overall result is a deficiency in functional BMPR-II but 

it is not clear yet how loss-of-function mutations are actually related to the development 

of this disease. 
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We believe that understanding the mechanism of genetic predisposition to PAH 

is essential to the discovery of the root pathogenesis.      

Various ethnic populations of SSc patients also exhibit specific expression 

patterns of human leukocyte antigens (HLA) and autoantibodies. Several reports 

suggest that HLA class I alleles, besides their pivotal role in antigen presentation, can 

modulate cell signaling (160-167). Furthermore, our previous studies showed that 

expression of HLA-B35 at the physiological level found in B35-positive individuals 

influences the production of the two key regulatory molecules, ET-1 and eNOS, involved 

in maintaining vascular homeostasis. The presence of HLA-B35 significantly increased 

endothelin-1, while at the same time significantly decreased endothelial nitric oxide 

synthase production (107), thus strongly suggesting that HLA-B35 could play 

pathogenic role in PAH by directly contributing to vasoconstriction. However, the 

mechanisms underlying this association have not been fully elucidated yet.  

 In an effort to identify genes differentially expressed in dermal microvascular 

ECs, a microarray analysis revealed high upregulation of Heat Shock Proteins (HSPs) 

in ECs expressing HLA-B35. In particular HSP-70 (HSPA1A and HSPA1B) and its co-

chaperone, HSP40 (DnaJB1 and DNAJB9) were upregulated suggesting the activation 

of ER stress and unfolded protein response (UPR) in cells expressing HLA-B35.   

Accumulating evidence indicates that ER stress is associated with a range of 

diseases, including neurological disorders, diabetes, metabolic disease, intestinal 

inflammation and autoimmunity making ER stress a probable instigator of pathological 

cell death and dysfunction (161-164). Interestingly, there is also evidence that ER 
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homeostasis is closely related to regulation of inflammatory gene expression. A link 

between ER stress and the inflammatory response was reported in different 

experimental models, including endothelial cells and immune cells (162, 165-167). 

Inflammation can be triggered by chronic excess of metabolic factors, cytokines, and 

hormones, and those factors can also trigger ER stress, which can further disrupt 

metabolic function, leading to more inflammation (167, 168).  

The association between ER stress response and expression of the HLA allele 

was previously observed for HLA-B27, a central mediator of many 

spondyloarthropathies (SpA), including ankylosing spondylitis (169). While the 

mechanism whereby HLA-B27 contributes to development of SpA is complex and not 

fully understood, one of the proposed pathogenic events involves protein misfolding. 

Several studies have shown that HLA-B27 heavy chain (HC) exhibits abnormal 

properties, including a tendency to misfold and to accumulate in the ER thereby 

triggering an ER stress response and activation of the UPR (170-173). Since the effects 

of HLA-B35 observed in our in vitro cell model point to an internal mechanism, it is 

conceivable that by the analogy with HLA-B27, pathogenic role of HLA-B35 could also 

be related to slow or improper HC folding.  

All these observations suggested us the possibility that HLA-B35 could induce 

ER stress and UPR response resulting in deregulated expression of ET-1 and indicating 

a possible pathogenic role of HLA-B35 in PAH disease. 
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The goal of my research was to determine a pathogenic role of HLA-B35/ER 

stress in lcSSc-PAH by contributing to endothelial cell dysfunction, as well as to 

activation of immune system in lcSSc-PAH patients. 

Endothelial cells constitute a first line of defense protecting tissues from injury. 

Elevated production of ET-1 is a common characteristic associated with endothelial cell 

dysfunction in various pathological conditions, including pulmonary arterial 

hypertension. Previous studies have shown that HLA-B35 is associated with an 

increased risk for developing PAH in patients with scleroderma (SSc) (83). 

In this study we show for the first time that ATF4, a mediator of ER stress, is a 

novel regulator of the ET-1 gene in endothelial cells. ATF4 contributes to the basal 

expression of ET-1 and is required for the induction of ET-1 in response to HLA-B35/ER 

stress. Our results strongly suggest that activation of the eIF2α/ATF4 pathway leads to 

increased formation of the ATF4 protein complexes with c-JUN which activates ET-1 

transcription through the AP1 response element.  

The current study further supports the potential pathogenic role of HLA-B35/ER 

stress in upregulating ET-1 production and may clarifies in part the molecular 

mechanism involved in this process in endothelial cells supporting a key role for the 

eIF2α-ATF4 pathway in response to vascular injury (112)..  

We also expanded the analyses of biomarkers in lcSSc PBMCs (135-139). 

Selected ER chaperons, including BiP and DNAJB1, showed an increased expression 

in patients with lcSSc-NoPAH with the highest level of expression in patients with PAH. 
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Expression of DNAJB, as well as BiP correlated strongly with PAP by right-heart 

catheterization.  

Growing evidence suggests that inflammation contributes to the development 

and/or progression of PAH. Elevated expression levels of several inflammatory 

mediators have been observed in plasma of PAH patients (137). In particular, IL-6 has 

been implicated in the pathogenesis of PAH (137,138) and increased levels of IL-6 have 

been reported in lcSSc-PAH patients (136, 138). Consistent with those earlier reports, 

we found elevated levels of IL-6 mRNA levels in lcSSc PBMCs, with the highest levels 

in lcSSc-PAH samples. Also there was a positive and significant correlation between ER 

stress (BiP) and IL-6 mRNA expression levels, consistent with the possibility that ER 

stress may function as an endogenous inducer of inflammation. 

Furthermore, genetic polymorphisms in UPR genes have been functionally linked 

to inflammatory diseases (141, 142). Relevant to these findings, we have previously 

shown that HLA-B35, which is associated with increased risk for developing PAH in 

Italian lcSSc patients (83, 107), induced ER stress-mediated upregulation of ET-1, 

proinflammatory cytokines, and IFN-related genes in human microvascular endothelial 

cells (107).  

In agreement with our previous study linking HLA-B35 to stimulation of ER stress 

in microvascular endothelial cells, HLA-B35 positive individuals showed slightly higher 

levels of some ER stress markers when compared to HLA-B35 negative individuals. 

Notably, higher levels of some ER stress/UPR markers were also present in PBMCs 

obtained from healthy individuals carrying the HLA-B35 allele, supporting the view that 
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genetic factors could contribute to the increased levels of ER stress at least in a 

restricted population of SSc patients. Our observation is consistent with an another 

study that showed ER stress/UPR activation in human B cells obtained from healthy 

individuals is consistent with this notion (140). This suggested that there is a genetically 

determined extensive individual variability in expression of ER stress/UPR related 

genes in response to ER stress-inducing agents. Many of these variable genes are 

known disease-linked genes, suggesting a mechanistic link between ER function and 

human disease. 

In conclusion we demonstrated a novel paradigm that activation of ER 

stress/UPR pathways is the key process contributing to the pathogenesis of lcSSc-PAH 

(see diagram fig. 5.1). Although, ER stress/UPR has previously been linked to 

autoimmunity 1, metabolic diseases 2 and intestinal inflammation 3, these pathways 

have not been investigated in the context of lcSSc. Our studies correlate the degree of 

ER stress/UPR with the clinical status of lcSSc patients and provide new knowledge on 

the pathogenic effects of HLA-B35, providing the first understanding of functional 

genomics in lcSSc-PAH  

However, factors contributing to the induction of ER stress/UPR in patients with 

lcSSc-PAH are currently unknown but selected ER stress/UPR genes may serve as 

markers of disease progression in patients with lcSSc.
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Figure 5.1. Schematic diagram showing hypothetical role of HLA-B35/ER in the pathogenesis of 

lcSSc-PAH. 

In endothelial cells, HLA-B35 induced upregulation of ET1 via activation of ATF4 suggesting a potential 

pathogenic role of HLA-B35/ER in vascular injury. In PBMC, HLA-B35/ER stress induced increased of IL6 

expression suggesting that chronic UPR may contribute to increased inflammation.  
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