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Abstract. We investigate the equilibration and thermalization properties
of quantum systems interacting with a finite-dimensional environment. By
exploiting the concept of time-averaged states, we introduce a completely
positive map which allows us to describe in a quantitative way the dependence
of the equilibrium state on the initial condition. Our results show that the
thermalization of quantum systems is favored if the dynamics induces small
system—environment correlations, as well as small changes in the environment,
as measured by the trace distance.
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1. Introduction

The mechanisms behind thermalization have recently attracted renewed interest and initiated
the development of novel statistical formulations of equilibration in the realm of quantum
mechanics [1-9]. These descriptions have typically taken the total system under investigation
as finite dimensional, so that the asymptotic limit of the dynamics does not exist and the
system returns, with possibly very long recurrence time, arbitrarily close to its initial state
infinitely many times [10, 11]. Relaxation to equilibrium in the usual sense is thus impossible.
Nevertheless, one can introduce an extended notion of equilibration if the system tends towards
some state, which can be identified as the equilibrium state of the dynamics, and stays close
to it most of the time. There will still be some fluctuations around the equilibrium state, but
extremely small or rare. It is important to note that extensions of these new approaches to the
infinite-dimensional case have recently been developed [12].

In this work, we consider the situation in which a closed quantum system can be
decomposed into two parts, an open system S and a bath B, and investigate the equilibration
properties of the subsystem S. We use the extended notion of equilibration, i.e. we will say that
the open system equilibrates if its time-evolved state (also called reduced state) ps(¢) approaches
some equilibrium state and spends most of the time close to it. In the same spirit, one can
introduce the notion of thermalization of the open system by means of additional conditions
on its equilibrium state [3]. Namely, one requires that the latter does not depend on the initial
total state, besides a possible dependence on macroscopic parameters, such as temperature,
characterizing the initial state of the bath. In this case one says that the open system thermalizes
if, in addition, the equilibrium state takes the form of a Gibbs state. The capability of an open
system to thermalize traces back ultimately to specific properties of the total Hamiltonian, which
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fixes the evolution of the total closed system and, in particular, characterizes the interaction
between the open system and the bath. Indeed, if the open system and the bath do not interact
no thermalization is expected. Moreover, if there are conserved quantities for the open system
its equilibrium state will unavoidably depend on the initial reduced state. More generally, it has
been shown [8] that the lack of a sufficient amount of entanglement in the energy eigenbasis is
a basic reason for the absence of thermalization.

Here, we want to discuss the thermalization of open quantum systems within the above-
mentioned framework, with the aim of clarifying the role of general dynamical mechanisms
that can induce or prevent it. Apart from the obvious situation of conserved quantities for the
open system, which features of the dynamics imply a dependence of the equilibrium state on the
initial reduced state? Thermalization requires a sufficient amount of entanglement in the energy
eigenbasis, but what is the role played by the interaction-induced correlations between the open
system and the bath? We investigate how the equilibrium state is modified when one resets
the correlations between the system and the bath, as well as the environmental state, to their
initial value. We find that small system—environment correlations, together with small changes
in the environmental state, generally lead to an equilibrium state that hardly depends on the
initial state of the open system. The system—environment correlations built by the dynamics thus
play a role which is, in a sense, contrary to that of the entanglement in the energy eigenbasis.
The interaction-induced correlations can prevent thermalization: strong system—environment
correlations and changes in the environmental state allow us to distinguish between equilibrium
states corresponding to different initial states. The information about the initial state of the
reduced system, transferred to the environment through the establishment of correlations, does
influence the equilibrium state. In this sense it can be considered as trapped in the equilibrium
state. For this reason, we will refer to this mechanism preventing thermalization as information
trapping. The quantitative characterization of information trapping will be given in terms of
trace distance, which measures the distinguishability between quantum states [13] and has
already been used to detect through its variation the information flow between the system and
the environment [19, 20], as also discussed later on.

2. General framework

Consider a finite-dimensional Hilbert space, which can be decomposed as ‘H = Hs ® Hg, with
‘Hs and Hp Hilbert spaces associated with the open system S and the bath B, respectively.
A crucial assumption here is that the total Hilbert space H has finite dimension, which will be
denoted by d, while we denote by ds and dp the dimensions of the open system and the bath.
The evolution of the total system is governed by a one-parameter group of unitary operators

U@) = e i H! , which is fixed by the total Hamiltonian
H:H5+HB+HSB, (1)

where Hg and Hy are the free Hamiltonians of the system and the bath, and Hsg is the interaction
term. Given a total state psg(#) at time ¢ we denote by ps(#) = trg {psg(?)} the state of the open
system, also called the reduced state, and by pg(¢) = trs {psg(?)} the state of the environment.
If the initial total state factorizes, i.e. psg = ps ® pg With a fixed initial state of the bath, there
is a well-defined reduced dynamics [14], i.e. there is a family of completely positive and trace
preserving maps A (#) on the set S(Hs) of statistical operators on Hg such that the reduced state
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ps(t) at time ¢ is given by ps(t) = A(t)ps, where ps = ps(0):
A@) : S(Hs) — S(Hs),
ps —> ps(t) = A(1)ps, (2)
with
A(t)ps =trg {U () ps ® psU' (1)} . 3)

In [3], it has been shown that an open system equilibrates under very general assumptions if
the effective dimension of the bath, i.e. the dimension of the subspace of Hp involved in the
dynamics, is much larger than the open-system dimension ds. In this case, for any initial state ps,
the corresponding time-evolved state ps(#) will be most of the time close to the time-averaged
state ps, which is defined as

I B
0s = lim —/ dtps(T) 4)
t—oo 0

and represents the equilibrium state of the reduced dynamics. Note that throughout the paper we
will use an overline to denote the time average of any operator or function. More precisely, if
the total Hamiltonian has non-degenerate energy gaps, the average distance between ps(¢) and
the time-averaged state pg is bounded by [3]

Dlos,79) < = | —5 (5)
IOS 7/05 X 2 deff(p_B)’

1
s (7]
represents the effective dimension of the bath. Here and in the following, we characterize the

distance between quantum states by means of the trace distance. Given two quantum states p!
and p?, their trace distance is defined as

D(p', p*) = 3llp" = P°ll, (7

where the trace norm is considered. The upper bound in (5), which has been proven in [3] for a
pure product initial state, can be easily extended to a mixed product initial state, see appendix A.

On that account, the open system equilibrates under very general conditions, but
nevertheless, despite some significant results [3, 5, 6, 8, 9], a widely open question still
remains: what are the conditions determining whether an open system, besides equilibrating,
also thermalizes? In the following, we will focus on this issue and, in particular, on finding the
conditions for the dependence of the time-averaged state on the initial state of the open system.

where

dett(pB) = (6)

3. Information trapping

3.1. Time-averaging map

First of all, let us take a closer look at the time-averaged state defined in (4). In the following,
we assume for simplicity a non-degenerate Hamiltonian H =), Ei|Ey)(E|, but analogous
considerations can be made in the degenerate case. For a fully generic initial total state psg,
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starting from equation (3) and by using the spectral resolution of the overall unitary time
evolution operator, one has

Ps= Y (Eilpss|Er)of. ®)
k

The result is obtained exploiting the finite dimensionality of the total space; however, a possible
extension to the infinite-dimensional case, in which the sum over k is replaced by a proper
series, has been considered in [12]. In the expression for ps we have used the notation

o§ =trg {|Ex) (Exl} . ®)

If the initial total state is a product state ps® pp, with a fixed environmental state pg,
equation (8) defines a map A on the state space of the open system S(Hs):

ps — Aps = lim % /0 drps(t) = ;<Ek|ps ® ppl E)og . (10)
which can also be written as
Aps =) pios, (11)
k
with
P = (Ex|ps ® ps|Ex) = Tr{| Ex) (Ex|ps ® ps} - (12)

This map associates with any initial state of the system the corresponding time-averaged
state, and therefore we will call it the time-averaging map. This is a linear, trace preserving
and completely positive map and its image A(S(Hs)) =Im A can be identified as the set
of equilibrium states of the reduced dynamics. A state ps is said to be invariant if it is left
unchanged by the time-averaging map, i.e. if Aps = ps. A natural question then is whether
equilibrium states are invariant, i.e. if, given a state ws = Aps for some initial state ps, one
has Aws = ws. This can happen for any ws if and only if the map A is a projector. That is, it

—2 —2
satisfies the idempotence relation A~ = A, where of course A~ indicates the composition of A
with itself. Note that

A ps=Y (Eilps® psl Ex){Evlot ® ps| Ev)o . (13)
kk!

Let us now make the following important remark. First, recall that any trace preserving and
positive map A is a contraction for the trace distance [15, 16], i.e. D(Ap', Ap?) < D(,o 0%
for any p! and p2. A map is further said to be strictly contractive [17, 18] if D(Ap', Apz) <
D(p', p?) for any p' # p>. Indeed, the time-averaging map A is contractive, but in general
not strictly contractive. It is clear that the only way for it to be both strictly contractive and

idempotent is to map every initial state to the same time-averaged state. That is, the maps A,
defined as

A,ps=p, VpseSHs) (14)

for a fixed state p, are the only idempotent and strictly contractive maps on S (’HS) In fact,
let a)l, w, € Im A be two elements of the image of A, i.e. w; = Ap! and w, = Ap? for some
pS, ,oS € S(Hs). The idempotence of A implies that D(Aw;, Aw,) = D(w;, w,) and, because
of the strict contractivity, it follows that w; = w,. Hence the image of A consists of only a single
element which proves our claim.
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As a consequence, the dependence of the equilibrium state on the initial state of the
system can always be related to the violation of either property. In other words, the absence
of thermalization can always be associated with either the lack of idempotence or strict
contractivity of the time-averaging map. In the following we will focus on the violation of
the idempotence of A, which will be referred to as information trapping. This will be shown
to capture an interesting dependence of the equilibrium state on the initial state, and we will
demonstrate a connection between information trapping and the creation of correlations between
the system and the bath due to their mutual interaction.

3.2. Measure for information trapping

Rather than simply assessing whether the time-averaging map is idempotent, one needs to
quantify its possible deviation from idempotence in order to point out if this can be treated
as ‘small’. The very definition of the equilibration of a quantum system interacting with a finite-
dimensional bath involves the idea that the reduced state ps(¢) will stay most of the time in
the neighborhood of the corresponding equilibrium state A ps. For the sake of concreteness, let
us denote by X the radius of such a neighborhood. Now, if the distance between two different
equilibrium states Apd and A p3 is smaller than X, the corresponding time-evolved states pd (¢)
and pd(¢) can be close to each other for almost all times, so that one cannot practically infer
that they approach different equilibrium states by monitoring their evolution. This leads us to
the conclusion that it is more meaningful to investigate the amount of information trapping of a
given dynamics, rather than its mere presence.
In particular, we propose the following measure for information trapping:
T(A)= max D(A ps, Aps). (15)
psES(Hs)

This directly quantifies the violation of the idempotence of A, and it is indeed equal to O if and
only if A is idempotent. In appendix B, we introduce an alternative, but qualitatively equivalent,
measure. Now, if T(K) exceeds X, there is some pg such that one can actually determine that
ps and A ps evolve to different equilibrium states and no thermalization occurs. In addition, as
will be shown by means of examples, the measure 7 (A) provides a useful way to describe how
the different features of a given dynamics can enhance or decrease the information trapping and
thus the dependence of the equilibrium state on the initial state of the open system.

4. Information trapping and the system-environment correlations

In this section, we explicitly connect the notion of information trapping with the interaction-
induced correlations between the system and the bath, as well as the changes in the
environmental state. First of all, it is useful to come back to the full unitary dynamics, where
the time averaging can be described by means of a trace preserving and completely positive
map U, such that (compare with (8))

_ 1
U psg = thm ;/ drpsg(7) = Z(Ek|,OSB|Ek)|Ek)(Ek|- (16)

Indeed, this map can be defined for any initial total state, but we will focus on _the case
Psg = ps ® pg, with fixed pp, to guarantee the existence of the reduced map A, which
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can be expressed as
Aps =trg {U(ps ® pp)} - (17)

In the following diagram, one can see the relation between the map U on the total system and
both the reduced time-averaging map A and its twofold application N

U — U —
ps @ pp ——> wsg = U (ps @ pB) ws®pg —> U(ws® pp)
trBl trBl trBJV tl‘Bl (18)
A —_ —_ A —2
ps — ws = A ps ws = Aps ——> A ps

where we introduced the notation wsg = U(ps ® pp) to indicate the time-averaged state of the
total system, so that wg = trgwsg = ps and wp = trswsg = pg are the time-averaged states of

. . -2 . .
the system and the bath, respectively. In particular, note how the reduced map A" is obtained
after resetting the total state from wsg to ws ® pg. Now, the map U on the total state is always

idempotent, i.e. U = U, as can be easily checked by means of (16), since it amounts to a
von Neumann measurement of the total energy. Introducing the map ® =trgo U : S(Hsp) —

S(Hs) , from the diagram (18) and the idempotence of U, one has szs = & (ws @ pg), while
A ps = ®(wsp). But then, since ® is trace preserving and completely positive, the contractivity
of the trace distance implies

) —
D(A ps, Aps) < D(wsp, ws @ pg) < D(wsp, ws @ w) + D(pgp, wp). (19)

The information trapping is upper bounded by the total amount of correlations between the
system and the bath in the total time-averaged state wsg plus the distinguishability between
the time-averaged state of the bath wg and the fixed initial state pg. This means that, while a
small amount of entanglement in the energy eigenbasis prevents a full thermalization [8], such a
phenomenon will be generally favored if the dynamics builds up a small amount of correlations
between the system and the bath, together with small changes in the state of the bath.

From a physical point of view, we can explain the connection between information trapping
and system—environment correlations by taking advantage of the notion of information flow
associated with the changes of the trace distance between reduced states in the course of
time [19, 20]. The basic idea is that if there is some information trapped in the open system
when it approaches the equilibrium, then, by resetting the system—environment correlations
as well as the bath state to their initial condition, see (18), one can restart an information
flow between the system and the bath, thus leading the system to a different equilibrium state.

The distinguishability between the new equilibrium state N ps and A pg then provides a way
of quantifying the information trapped in the open system due to the system—environment
correlations and the changes in the environmental state.

The relevance of bounds, determined by correlations in the total state as well as different
environmental states, for the trace distance among different system states was first pointed out
in [21], where the time dependence of the trace distance has been related to the presence of
initial correlations. Here, however, the different system states do not correspond to different
initial conditions, but rather to the action of distinct mappings.
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5. Examples

5.1. Product energy eigenbasis
As a first representative example, consider a product energy eigenbasis [3],
H =" Etol Ex)(Ei | ® |E)(Ep . (20)
kika

For such a Hamiltonian any reduced observable of the form A =}, ay, |Ey,)(Ey, | represents a
conserved quantity. Note that a non-degenerate conserved quantity on the open system implies
a product eigenbasis of the total Hamiltonian. For H as in (20), the time-averaging map is not
strictly contractive. In fact, one has

ws = Aps =) (Ex|ps|Ex) | Ex ) (Ex,], @b
ki
implying that if we choose as initial states two different elements of the basis {| Ey,)}x,=1
,0§ = |E;)(E},| and ,0§ =|E};,)(Ey |, we obtain that

D(AIE;)(E},|, N Ey)(Ey|) = D(Ej)(Ej,|, | Ey)(Ey ) = 1.

----- ds>»

On the other hand, for a product energy eigenbasis there is no information trapping, since the
time-averaging map is a projection. Even more, as is clearly evident from the expression of the
time-averaged state (21), by setting ws ® pp as the initial total state, the reduced system does
not evolve at all. This clearly shows that, unlike violation of strict contractivity, information
trapping describes a mechanism preventing thermalization which is not only due to conserved
quantities of the open system.

Moreover, for a product energy eigenbasis, the total time-averaged state is a product state,
i.e. wsg = ws @ wg, but in general the time-averaged state of the bath wg will be different from
the initial state pg:

1
D(ws, pp) = 7| Z (Er, o8l E) | Eiy ) (Eg |- (22)
koK)

Nevertheless, we have just now shown that szs = Aps for any ps, whatever the value
of D(wsg, pg) is in equation (22). Indeed, inequality (19) gives an upper bound to the
amount of information trapping, which implies that it may so happen that, despite strong
system—environment correlations or changes in the environmental state, the equilibrium state
presents no information trapping.

5.2. The Jaynes—Cummings model

Let us now consider the Jaynes—Cummings model, i.e. a two-level system interacting under
the rotating wave approximation with a single mode of the radiation field. Moreover, the
latter is initially in a thermal state, so that the effective dimension of the bath can be made
arbitrarily large by properly increasing the bath temperature. Indeed, this model is much
simpler than systems with a macroscopic number of degrees of freedom [2, 5, 7] or many-
body systems [22-25], which are usually taken into account when studying thermalization in
the quantum setting. In this context, the Jaynes—Cummings model can be seen as a toy model,
which allows us to explicitly evaluate all the quantities presented in the previous sections. We
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emphasize, however, that our general analysis can be applied to any open system, the only
requirements being that the dimension of the total Hilbert space is finite and that the open
system and the bath are initially uncorrelated.

The Hamiltonian giving the total dynamics is

H = wyo,0_+wb'b+ g0, ®b+0_Q® b, (23)

where o, =|1)(0|] and o_ =|0)(1| are the raising and lowering operators of the two-level
system, while the creation and annihilation operators of the field mode, b' and b, obey the
standard bosonic commutation relation. Finally, g is the coupling constant and we will denote
by A = wy — w the detuning between the frequency w, of the atom and the frequency w of the
field mode. Moreover, one can think of a high-energy cutoff in order to keep the dimension of
the bath finite. For an initial total state psg = ps ® pg, where

P11 P10
= 24
ps (,001 Poo) 24)

and pg = gPob’h /Z is the thermal state of the bath, the reduced state at time 7 is given as [26]

poo (1 —a(?)) +pup (1) pioy (1)
ps(t) = ) , (25)
pory™ (1) pooct (1) + p11 (1 — B (1))
where
a() = (c' (@, e, 1),
B@) = (c'(i+1,0)c(i+1,1))s,
y (&) ={c@, t)c(+1,1))s,
with (A)g = Tr {Apg}, the number operator 71 = b'b and
, t 1A t
c(i, 1) =e“"? | cos (\/ A? +4g2ﬁ—) — ————sin (x/ A2 +4g2f1—> i
2) JATvagh 2
The time average can be directly calculated, thus giving
— poo (1 —@) + p11 B 0
Aps = _ — ] (26)
0 Pood + p11(1 — B)
with
_ [A?+2g%
C=\—"—F—""57~/ >
A2+4g%n [,
27
—  [A*+2g%(+1) @7)
C\AZ+4g2(a+ 1) [y
From (26) one has
—2
—2 ((A Ps)11 0 )
A ps= — )
0 L —(A ps)Hu
(28)

(A ps)ii = poo (1 —@) @+ B) +pui (1+@+B)(B—1)),
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—2 —_ . _ J— _ J—
sothat A" = Aifandonlyif ¢+ 8 =1ora = 1 and B = 1. The latter case corresponds to g = 0,
which implies, as expected from the discussion in section 5.1, that there is no strict contractivity,
see equation (25), and A is idempotent. In all the other situations one has f+o — 1 < 1 and

. . . . AZ2g%h | A42g%(n+1)
the map is strictly contractive. Moreover, since for A # 0, 357 27 AT

possibility to have & + 8 = 1 is actually the resonant situation, A = 0. In this case, the derivation
of & through equation (27) has to be performed quite carefully. One can take the limit A — 0
into the function that the series in (27) converges to, or equivalently note that ¢ (0, £)¢(0, t) = 1,
so that for A = 0 one has

_ 1 | g~Phen I 1
d=—+) = =—+-.
zZ “—~ 2 Z 2Z 2

> 1, the only

(29)

Thus, we have o + E —1=1/(2Z), meaning that, apart from the trivial case, in this model there
is always information trapping and there is never only one equilibrium state.

We can now characterize the dependence of the equilibrium state of the open system on
its initial state by means of the measure for information trapping introduced in equation (15) of
section 3.2:

T(A) = H}Jﬁﬂﬂn@‘*‘ﬁ—z)(a‘*B— D+ —-@@+B—1)|

=@+p -1 ~p), (30)

where the maximum is assumed for ps = |1)(1|. Note that from (29) one has for A =0
— 1
T(A) = Z(l —e Py, (31)

In figure 1, we have plotted the measure 7(A) as a function of the detuning A, for different
values of the bath temperature 7. The resonant situation A = 0 represents a minimum for the
dependence of the equilibrium state on the initial state. The residual amount of information
trapping has to be compared with the radius of equilibration X, as discussed in section 3.2.
If T(A) < X, the residual dependence of the equilibrium state on the initial state of the open
system is not enough to recognize that ps and A pg evolve to different equilibrium states. On the
grounds of numerical simulations, we can consider the rhs of (5) as an upper bound to X, see
also [8]. Thus, in figure 1 one can see that the information trapping is actually larger than X" for
high enough detuning.

From the point of view of the Hamiltonian eigenvectors, the condition A = 0 is in fact very
peculiar: the eigenvectors of the Jaynes—Cummings Hamiltonian, the so-called dressed states,
reduce for A =0 to

1
V2

plus the vacuum state |0, 0). Every eigenvector |¥¥) is maximally entangled in C> ® C?, where
Cfl is the two-dimensional subspace of Hg spanned by |n) and |n — 1). Note that, at resonance,
both the entanglement on the energy eigenbasis and the amount of residual information trapping,
see (31), do not depend on the coupling constant g between the system and the bath. Thus,
for the model at hand, a high entanglement in the energy eigenbasis ensures an (effective)
independence of the equilibrium state from the initial state of the open system, as one can
expect from [8].

W) = — (10,n) £ [1,n = 1)), (32)
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T(A)

N T A R Aw
-20 -10 10 20

Figure 1. Measure for information trapping 7 (A) defined in (30) as a function of
A/w for g/w =1 and Bw = 0.003 (blue line), fw = 0.005 (red line) and Bw =
0.01 (yellow line); the values for A = 0 can be obtained through equation (31),
as well. The marks on the vertical axis give the values of the rhs of (5), which are
upper bounds for the value of X as discussed in the text, for A = 0 and for the
different temperatures: these marks are, respectively, 0.027, 0.035 and 0.050.

TN
—mmm-a 025} B

\ 0.20 - 4
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Figure 2. Measure for information trapping 7 (A) (blue line) and D(wsg, ws ®
wg) + D(wg, pp) (red, dashed line) versus A /w for g/w =1 and Bw = 0.01; wsp
is given by U (ps ® pg), see (18), with pg = e #*"/Z and ps = |1) (1] the reduced
state maximizing the information trapping in (30).

Now, we want to explicitly quantify the role of the system—environment correlations, as
well as the changes in the environmental state, by means of the upper bound introduced in (19),
i.e. D(wsp, ws @ wp) + D(wg, pp). This quantity can be explicitly evaluated by following the
same strategy employed in [27] to calculate the amount of correlations in the total Gibbs state,
which takes advantage of the block diagonal structure of the total Hamiltonian (23) with respect
to the dressed states. In figure 2, one can see the measure T (A) as a function of the detuning
A compared with the upper bound. We observe how the latter, despite being quite far from the
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actual value of the measure for information trapping, follows its behavior from a qualitative
point of view. Indeed, as follows from the bound (19), small system—environment correlations
and changes in the state of the bath imply a small amount of information trapping, and therefore
an equilibrium state of the two-level system that hardly depends on its initial state. But for
the model at hand, whenever strict contractivity holds, we have in addition that the more the
interaction induces system—environment correlations and changes in the environmental state,
the more the equilibrium state will depend on the initial reduced state ps.

5.3. Structured environment

As a complementary example, we consider now the model of a system interacting with a
structured reservoir introduced in [28, 29]. A two-level system is coupled to two energy bands
with the same width Je; the energy levels in each band are equidistant and there are N; (V)
levels in the lower (upper) band. The distance A E between the central levels of the two bands
is in resonance with the free energy of the two-level system. The coupling constants between
the two-level system and the two bands are independent and identically distributed complex
Gaussian random variables and their overall strength is parameterized by a constant A. Finally,
we assume that the initial state of the environment is given by a maximally mixed combination
of the lower band levels. Thus, by means of Hilbert space averaging [29] or correlated projection
superoperator [30] techniques, one obtains the following equations in the Schrodinger picture
for the excited state population p;;(¢) and the coherence po(?):

P11(t) = —yp11(t) +y1011(0),

(33)
p10(t) = —(AAE +y2/2) p1o(2),
where y; =27 A%N;/8€,i = 1,2, and y =y, + y». These equations are solved by
Py (1 +y:e7"") proe” /A
pslt) = < POTC_(VZ/Z_ME)' poo — p11 (5 + %e_zyt - 1)) . GY
The time-averaging map corresponding to the evolution in (34) is, see (10),
Kps = <p“y7l | ) . (35)
0 poo+pn(l— %

Indeed, for y,/y, = 0 this map reduces to the identity map, while in all other situations it is a
strictly contractive non-idempotent map. The square of the time-averaging map is given by

_ v 0
Nps= (""" . ). (36)
Vi
0 ,000+,011(1—7)

so that the measure for information trapping defined in (15) is

_ 2 NN
Ty="_N__ T2 37)
Yy v (Ni+Ny)
and the maximization is obtained with pg = |1)(1]. The information trapping is completely
determined by the ratio N;/N, and, in [Brticular, it vanishes only in the limit N,/N; — 0,
which corresponds to the trivial situation A = 1, or in the limit N; /N, — 0.
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Finally, let us present a remark about the connection between information trapping and
the non-Markovianity of a quantum dynamics [19, 31]. Note that the relation between the
asymptotic state of a reduced dynamics and its non-Markovianity has been studied in [32].
From (34) one can easily obtain a time-local master equation in the form

d
3 PO =K0p) (38)

to characterize the dynamics of the two-level system. The time-local generator K (¢) is, in fact,
simply given as [26]

K@) =AW@A (1), (39)

so that, for the model at hand, it reads

d 1
() =—IAE [ovo_, p()] + T (1) |:U_,0(t)a+ —5 lowo, p(t)}]

+05(1) [o.p (1o — p(1)] (40)
with
| —e
rn=—22_ rop="2—""°"_) (41)
viev + 4 \ e 7' +y

Such coefficients are positive at every time, implying that the reduced dynamics under
consideration is always Markovian, both in the sense that it implies a monotonic decrease of
the trace distance in the course of time and in the sense that it is fixed by a divisible family
of dynamical maps [19, 31, 33, 34]. This clearly shows that one can actually have information
trapping also in the presence of a Markovian dynamics: more generally, the dependence of
the equilibrium state of the open system on its initial state does not provide a signature of
non-Markovianity according to the above-mentioned definitions.

6. Conclusions

In this paper, we have investigated the thermalization of finite-dimensional quantum systems,
within the framework of the theory of open quantum systems. By only assuming an initial
product state, we have shown how one can introduce a time-averaging map on the state space
of the open system that associates with any initial state the corresponding equilibrium state. In
this way, we could formulate relevant questions related to equilibrium properties of the open
system in terms of suitable properties of the time-averaging map. In particular, the dependence
of the equilibrium state on the initial reduced state can always be traced back to the violation of
at least one of the properties of strict contractivity and idempotence of the time-averaging map.
Indeed, the violation of idempotence has been shown to provide an indication of the amount
of information about the initial system state stored in the equilibrium state. We have therefore
dubbed this violation as information trapping. It has been shown to be strictly connected to
the interaction-induced correlations between the system and the bath, as well as the changes in
the environmental state, which keep track of the system—environment information flow. More
precisely, small system—environment interactions, together with small changes in the state of
the bath, lead to an equilibrium state with a small dependence on the initial state of the open
system, as quantified by means of the trace distance.
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Furthermore, we have introduced a measure in order to evaluate the amount of information
trapping of a given dynamics. This provides a way to determine how different features of the
dynamics influence the dependence of the equilibrium state on the initial state of the open
system and therefore how they can favor or prevent a full thermalization. In particular, in the
Jaynes—Cummings model one can conclude that if the time-averaging map is strictly contractive,
then strong system—environment correlations and changes in the environmental state imply a
significant dependence of the equilibrium state on the initial state of the open system. Indeed,
it would be important to determine whether, or at least to what extent, this implication holds in
general.

Finally, let us note that the present results could provide a further insight into the role of the
weak coupling assumption in the process of thermalization. If the open system and the bath are
weakly coupled, one expects that the total state at a generic time can be effectively described by
neglecting the system—environment correlations and the changes in the environmental state. In
this regard, it will be of interest to investigate the connection between the correlation properties
of the total time-averaged states studied in this work and the correlation properties of the total
state in the course of time.
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Appendix A. Extension of the bound in the average distance between a state and its time
average to a generic initial product state

Here we prove inequality (5) for a generic initial product state ps ® pg, under the assumption
that the total Hamiltonian H has non-degenerate energy gaps, i.e. £y — Ey = E; — E; implies
that k =k’ and j = j' or k = j and k' = j’. We will essentially follow the proof in [3] for initial
pure product states. First, let us introduce the notation

cew = (Ek|ps ® psl Ex), (A.1)
so that

ps(t) =Y e BB eptrg (| Ex) (Ev|) (A2)

k!

and therefore, compared with equations (8) and (9),

Aps =Y cuctrs {| Ex)(Exl} . (A3)
k
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From the bound ||p|| < v/dsl|pllus, Where ||-|lgs denotes the Hilbert—Schmidt norm ||A||12Hs =
trgAT A, and by exploiting the concavity of the square root we have

- — 1 p—
Dips(0), Aps) < 5 dstts {(os() — Aps)?). (A4)
From equations (A.2) and (A.3), it follows that

ps(t) — Aps = Z e B ED e trg {|Ey) (Evel}
Py

Using the identity
trs {trg {| Ex)(Er |} trg {| Exv ) (Ex|}} = trg {trs {| Ex) (Ex|} trs {| Ex) (Ex|}} ,

and the fact that H has non-degenerate energy gaps, one finds that

trs {(ps(1) — Aps)?} = Z CrrCritrp {trs {| Ex) (Ex|} trs {| Ex ) (Ex|}}
Ty

< Y cuockntrs {trs {| Ex) (Eil}trs {| Ex) (E[}} .
kk'

Further exploiting the Schwarz inequality
Crk Ckk S CrrCrks (A.5)

we finally come to

trs { (ps (1) — Aps)?} < Z crecrrtrs {trs {| Ex) (Ex|} trs {| Ex ) (Ev | }}
Kk

= tr {Z cutrs {|Ex) (Exl} Y cuwtrs {| Ex) (Ep |}
k k'

2
=ty { |, (A6)
which, together with (A.4) and (6), gives (5).

Appendix B. An alternative measure for information trapping

The measure for information trapping in equation (15) directly quantifies the effect of removing
correlations and resetting the environmental state to its initial condition in the time-averaged
state wsg, see also (18) and (19). On the other hand, it is in some sense arbitrary to consider only
the twofold application of the time-averaging map instead of a large number of applications. It
is, in fact, clear that the dynamics obtained by resetting the total state to Aps ® pg can still
present some information trapped in the new equilibrium state as a consequence of further
system—environment correlations built up by the interaction, and so on. For this reason, we
introduce the following alternative measure for information trapping:

To(A)= max D (hm K"ps,Kps), (B.1)

pseS(Hs) k— 00

which is set equal to 1 if the limit does not exist for some ps. It is important to note that the two
measures, 7 (A) and T, (A), give the same qualitative characterization of information trapping,
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i.e. also T (A) is equal to 0 if and only if A is idempotent. The ‘if” part is obvious. To check the
‘only if” part, 7o (A) = 0 implies by definition the existence of the limit in (B.1), and therefore
in particular

i —k-1
klgglo A ps—A" psll =0, Vps € S(Hs). (B.2)

Moreover, we > can define the map A~ through A~ ps = hmk_mo A ps, and T (A) = 0 further
implies that A is equal to A. This requires ImA~ —ImA but then since in general

ImA C ImA2 C-.-ClIm A it follows that Im A = Im A = Im A Finally, (B.2) is

equivalent to lim;_, A| w1 =1, implying that Al,x=1,1ie. A= = A, which completes
our proof.

Furthermore, note that if A is strictly contractive, due to the Banach fixed point theorem
it has a unique invariant state p‘s) = lim;_, Ak,os, which is then a natural reference state
to quantify the dependence of the equilibrium state on the initial condition: in this case,
measure (B.1) can be simply written as

Too(A) = max D(pg, Aps). (B.3)
pseS(H)

For example, in the Jaynes—Cummings model, for g # 0, the time-averaging map A (26) is
strictly contractive. Since

r—1

A ps)n=1-® > B+a— D' +pn(B+a— 17, (B.4)
1=0
the limit map AT s given by
oo L 0
A" ps = <”°‘ 5 | (B.5)
2-B—a

which then provides the unique invariant state of the strictly contractive map A. The
measure (B.1) is thus given by
— ﬁ —
Te(B) = = <1 -B). (B.6)
to be compared with (30). Analogously, in the model considered in section 5.3, for N,/N; # 0,
the map A~ associates every state ps with the unique fixed point, the vacuum state |0) (0], of
the strictly contractive map A in equation (35), i.e.

—o0 00
and the measure for information trapping reads
— N,
Too(A) = , B.8
(A) NN (B.8)

to be compared with (37). In both cases the use of this alternative measure does not qualitatively
change the results, which justifies concentrating on idempotence.
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