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ABSTRACT
We report on work in progress devoted to the formalization
of an Ordered Logical Framework (OLF) [16] based on a two-
levels architecture [10] in the Hybrid system [2]. OLF here
is a second-order version of ordered linear logic to be used
as a meta-language for the verification of the (meta)theory
of deductive systems. It is implemented roughly as a meta-
interpreter on top of the Hybrid system, which provides the
full HOAS language. We apply the framework to the for-
mal verification of type preservation of a simple continuation
machine for Mini-ML.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory; F.4.1 [Mathematical Logic]: Lambda Calculus
and Related Systems—Mechanical theorem proving, Proof
theory ; I.2.3 [Artificial Intelligence]: Deduction and The-
orem Proving—Deduction, Inference engines, logic program-
ming, meta theory

General Terms
Theory, Languages, Verification

Keywords
Continuation machines, higher order abstract syntax, logical
frameworks, ordered linear logic

1. INTRODUCTION
Much current research is concerned with how to encode

and formally verify the (meta)theory of languages with vari-
able binding. Sometimes, however, the main issue is merely
which kind of syntax best fits the bill, spanning from named
syntax to De Bruijn indexes, to various forms of higher-order
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abstract syntax (HOAS). While this choice is a fundamental
one, which is bound to heavily influence any subsequent for-
mal development, the methodology with which one encodes
judgements is equally important. Indeed, as initially sug-
gested by Martin-Löf and practised in the Edinburgh Logi-
cal Framework (LF), a (full) HOAS syntax naturally leads
to (and benefits from) the pervasive use of hypothetical and
parametric judgments to encode object level “relations-in-
context”. The benefits as well as the challenges associated
with this methodology are by now well-known [15]. Roughly,
object-level environments are represented by meta-level (log-
ical) contexts, simplifying or even making irrelevant a sub-
stantial part of bookkeeping jobs, such as weakening and
substitution lemmas. These lemmas, albeit trivial from a
mathematical standpoint, in practice tend to be a bottleneck
during formal verification. On the other hand, reasoning by
induction in this setting has been notoriously difficult and
only recently have solutions, with various degrees of success,
been proposed [20, 10, 12].

As fruitful as this has been for frameworks based on in-
tuitionistic logic, it soon became apparent that some of the
structural properties of such a meta-logic, namely weaken-
ing and contraction, are inherited by object level encodings,
and this may not always be appropriate for every domain;
case in point being when the notion of (updatable) state is
paramount. To fix ideas, let us consider the case of encod-
ing the static and dynamic semantics of a functional pro-
gramming language with imperative features, say Mini-ML
with references (MLR). While encoding the typing system
with an intuitionistic context is adequate, a declarative rep-
resentation of the store requires a mutable notion of con-
text. If the store is modelled by a set of assumptions, say
contains C V, where C is a cell and V a value, then linear
logic is the natural choice, since updates can be obtained via
linear operations that consume and/or add resources. This
is one of the motivations for proposing frameworks based on
linear logics such as LLF [5]. On the other hand, work on
the automation of reasoning in such frameworks is still in
its infancy [9].

In this paper we propose to push further this methodology
that aims to refine, in a conservative way, a logical frame-
work so as to capture, declaratively and at the right level
of abstraction, different object level phenomena. Here we
adopt an ordered logical framework (OLF) [16], by which we
mean, in this incarnation, a second-order minimal ordered
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Hybrid

Isabelle/Hol

Specification logic

Object logic

Syntax : lam x . E x. . .
Semantics: typing Γ; · ` ofI I T ,

evaluation ·; Ω ` ex I

Sequent calculus: Γ; Ω ¤n G,
induction on height

Meta-language: “Datatype”
for a λ-calculus

Tactics/Simplifier
HOL induction

Figure 1: 2-Levels Architecture

linear logic. Ordered (formerly known as non-commutative)
linear logic combines reasoning with unrestricted, linear and
ordered hypotheses. Unrestricted hypotheses may be used
arbitrarily often, or not at all regardless of the order in which
they were assumed. Linear hypotheses must be used exactly
once, also without regard to the order of their assumption.
Ordered hypotheses must be used exactly once subject to
the order in which they were assumed. We refer to Sec-
tion 5 for a brief review of how this has been applied to the
meta-theory of programming languages so far.

This additional expressive power allows, e.g., the possibil-
ity for the logic to directly handle the notion of stack. Stacks
of course are ubiquitous when dealing with abstract and vir-
tual machines; in particular, the operational semantics in
the very elegant proof of type preservation of MLR in [5]
is based on a continuation machine. As we detail in Sec-
tion 2, this entails, however, the introduction of additional
layers of instructions, continuations and states compared
to the text-book presentation of the operational semantics
based on configurations. Moreover, those entities need to
be typed, in a sense complicating the set-up. On the other
hand, we argue that, by using a form of OLF, the notion
of continuation can be disposed of via internalization in an
ordered context, in analogy on how the notion of state is
internalized in the linear context. In particular, the ordered
context operates as a stack of continuations to be evaluated.

The contribution of this paper is in the implementation
of OLF and its use for meta-reasoning according to the
FOλ∆IN two-levels architecture suggested in [10] and adopted
in [12], which we refer to for more details. The basis is the
higher-order meta-language Hybrid [2], within Isabelle HOL
that provides a form of HOAS to represent object logics.
The HOAS user level is separated from the infrastructure
that is implemented definitionally by means of a de Bruijn
style encoding. The two-levels idea refers to the separation
between the level of specification and of (inductive) meta-
reasoning within a system. Inside the meta-language we
develop a specification logic (SL) — in this case, ordered lin-
ear logic — which in turn is used to specify an object-logic
(OL); this, for this paper, will be the static and dynamic
semantics of a continuation machine. This partition solves
the problem of meta-reasoning in the presence of negative
occurrences in hypothetical judgments, since the latter are
now encapsulated within the OL and therefore not required
to be inductive. The architecture is depicted in Figure 1.

We can view our realization of the two-levels approach as
a way of “fast prototyping” HOAS logical frameworks. We

can implement very quickly and experiment with a SL, in
particular we can do meta-reasoning in a way compatible
with induction and tactical theorem proving. For example,
we do not need to develop a new unification algorithm, but
we rely on the one provided by the proof assistant. The price
to pay is the additional layer where we explicitly reference
provability, requiring thusly a sort of meta-interpreter (the
SL logic) to drive it. This indirectness can be alleviated by
defining appropriate tactics, but this is intrinsic in the design
choice of relying on a fairly general meta-meta-logic (here
HOL, in [10] some variation of FOλ∆IN ). This contrasts
with the architecture proposed in [9], where the meta-meta-
logic is itself sub-structural and explicitly tailored to the
automation of a linear framework.

Our current goal is investigating the meta-theory of lan-
guages with imperative features, starting with the formal
verification of the proof of type preservation for a language
such as MLR. This paper sets the project going by imple-
menting the framework and testing it with type preserva-
tion of the CPM for pure Mini-ML only. For the sake of
presentation, we will restrict ourselves to the semantics of
call-by-name λ-calculus. Further, although the implementa-
tion handles all of second-order Olli (the uniform fragment
of ordered linear logic) [16], we will omit references to the
(unordered) linear context and linear implication, and to or-
dered left implication, as they do not play any role in this
case-study.

The paper is organized as follows: in the next Section 2 we
introduce, at the mathematical level, the continuation ma-
chine. Section 3 recalls some basic notions of Hybrid and its
syntax representing techniques. In Section 4 we introduce
the two-levels architecture, describing the SL (4.1) and the
OL (4.2), culminating in the formal verification of the proof
of type preservation. We conclude with a few words on re-
lated (Section 5) and future work (Section 6).

We use a pretty-printed version of Isabelle HOL concrete
syntax; a rule (a sequent) with conclusion C and premises
H1 . . . Hn is represented as [[ H1; . . . ; Hn ]] =⇒ C. A type
declaration is m : : [ t1, . . . tn ]⇒ t. Isabelle HOL connec-
tives are represented according to the usual logical notation,
in particular implication is ⊃. Free variables (upper-case)
are implicitly universally quantified, the sign == (Isabelle
meta-equality) is used for equality by definition. The key-
word MC-Theorem denotes a machine-checked theorem,
while Inductive introduces an inductive relation. We have
tried to use the same notation for mathematical and formal-
ized judgments.



2. A CONTINUATION MACHINE
We use the continuation machine for Mini-ML formulated

in [14], which we refer to for motivation and full details. Val-
ues are distinguished from terms by an asterisk; so lamx. e
is a term while lam∗x. e is a value.

Expressions e ::= lamx. e | e1 e2 | v
Values v ::= lam∗x. e | x

We define the machine as follows:

Instructions i ::= ev e | return v | app1 v1 e2

Continuations K ::= init | K; λ x. i

Machine States s ::= K ¦ i | answer v

We use the following transition rules for machine states:

st init :: init ¦ return v ↪→ answer v

st return :: K; λ x. i ¦ return v ↪→ K ¦ i[v/x]

st lam :: K ¦ ev (lamx. e) ↪→ K ¦ return (lam∗x. e)

st app :: K ¦ ev (e1 e2) ↪→ K; λ x1.app1 x1 e2 ¦ ev e1

st app1 :: K ¦ app1 (lam∗x. e) e2 ↪→ K ¦ ev e[e2/x]

In order to prove type preservation of this machine we
may consider sequences of transitions by taking the reflexive-
transitive closure ↪→∗ of the above relation. Further we add
typing judgments for expressions, values, instructions and
continuations [5]. These can be found in Figure 2, their
complete encoding in Figure 4.

Theorem 1 (Subject Reduction).
K ¦ i ↪→∗ answer v and Γ `i i : τ1 and Γ′ `K K : τ1 → τ2

implies · `v v : τ2.

Proof. By induction on the length of the execution path
using inversion properties of the typing judgments. ut

3. THE Hybrid META-LANGUAGE
We briefly recall that the theory Hybrid [2] provides sup-

port for a deep embedding of higher order abstract syntax
within Isabelle HOL. In particular, it provides a model of
the untyped λ-calculus with constants. Let con denote a
suitable type of constants. The model comprises a type expr
together with functions

CON :: con ⇒ expr
$$ :: expr ⇒ expr ⇒ expr

VAR :: nat ⇒ expr
lambda :: (expr ⇒ expr)⇒ expr

and two predicates proper : : expr ⇒ bool and abstr : :
(expr ⇒ expr) ⇒ bool . The elements of expr that sat-
isfy proper are in one-one correspondence with the terms of
the untyped λ-calculus modulo α-equivalence. The function
CON is the inclusion of constants into terms, VAR is the
enumeration of an infinite supply of free variables, and $$
is application. For this data to faithfully represent the syn-
tax of the un-typed λ-calculus, it must be that CON, VAR, $$
are injective on proper expressions, and furthermore, lambda
is injective on some suitable subset of expr ⇒ expr . This
cannot the whole of expr ⇒ expr for cardinality reasons.
The predicate abstr identifies those functions that are suffi-
ciently parametric to be realized as the body of a λ-term,

and lambda is injective on these. Hybrid is implemented in a
definitional style using a translation into de Bruijn notation.
The type expr is defined by the grammar

expr ::= CON con | VAR var | BND bnd

| expr $$ expr | ABS expr

The translation of terms is best explained by example.
Let TO = Λ V1. Λ V2. V1 V3 be an expression in the con-
crete syntax of the λ-calculus. This is rendered in Hy-
brid as TH = lambda (λ v1. (lambda (λ v2. (v1 $$ VAR 3))))
where λvi is Isabelle HOL’s meta-abstraction. The function
lambda : : (expr ⇒ expr) ⇒ expr is defined so as to map
any function satisfying abstr to a corresponding proper de
Bruijn expression. The expression TH is reduced by rewrit-
ing to the term ABS (ABS (BND 1 $$ VAR 3)). Given these
definitions, the essential properties of Hybrid expressions
can be proved as theorems from the properties of the under-
lying de Bruijn representation.

With this in place we recall how to represent the fragment
of Mini-ML in question in Hybrid. First, we need constants
for object-level constructors. Thus, we declare these con-
stants (for example cApp) to belong to con and then make
the following definitions:

@ : : expr ⇒ expr ⇒ expr
e1@ e2 == CON cAPP $$ e1 $$ e2

lam : : (exp ⇒ exp)⇒ exp
lam x . E x == CON cABS $$ lambda (λ x. E x)

where lam is indeed an Isabelle HOL binder. As shown
in [2], it is now possible to prove the freeness properties of
constructors:

MC-Theorem 1. The constructors have distinct images;
for example:

lam x . E x 6= e1 @ e2

Furthermore, every binding constructor is injective on ab-
stractions; for example:

[[ abstr E; abstr E′ ]] =⇒
(lam x . E x) = (lam x . E′ x)↔ E = E′

Proof. By Isabelle HOL’s simplification, using injectiv-
ity of Hybrid abstraction in the binding cases. ut

We also need to introduce values val and instructions
instr and related constructors, but not continuations. We
only show their types glossing over the definitions:

lam∗ : : exp ⇒ exp ⇒ val
app1 : : val ⇒ exp ⇒ instr

ev : : exp ⇒ instr
return : : val ⇒ instr

4. TWO-LEVELS ARCHITECTURE
After having introduced the HOAS syntax of our case

study, we move to encoding the specification and the ob-
ject logic. We will define them using Isabelle HOL’s in-
ductive definitions and data-types. This is possible because
the HOAS syntax is only a definition of standard first-order
terms. However, hypothetical judgments are encapsulated
in a database of Prolog-like rules, because they may not be
inductive. Reasoning is conducted in the SL: inversion prin-
ciples are derived by the elimination rules associated to the



x:τ ∈ Γ
of var

Γ `e x : τ

Γ, x:τ `e e : τ ′
of lam

Γ `e lamx. e : τ → τ ′
Γ `e e1 : τ ′ → τ Γ `e e2 : τ ′

of app
Γ `e e1 e2 : τ

Γ `v v1 : τ ′ → τ Γ `e e2 : τ ′
ofI app1

Γ `i app1 v1 e2 : τ

Γ `e e : τ
ofI ev

Γ `i ev e : τ

Γ `v v : τ
ofI return

Γ `i return v : τ

Γ, x:τ `e e : τ ′
of lam∗

Γ `v lam∗x. e : τ → τ ′

ofK init
Γ `K init : τ → τ

Γ, x:τ1 `i i : τ Γ `K K : τ → τ2
ofK cont

Γ `K K; λ x. i : τ1 → τ2

Figure 2: Typing Rules for the Continuation Machine

definition of provability and of program clause; we use com-
plete induction on the height of the derivation to simulate
structural induction.

4.1 Encoding the Specification Logic
We introduce our specification logic, which corresponds

to the aforementioned fragment of second-order Olli [16]; in
particular ’³’ denotes right-ordered implication:

Atoms A infinite set of atomic formulae

Goals G ::= A | A→ G | A ³ G | G1 ∧G2 | > | ∀x. G

Clauses P ::= ∀(A←− [G1, . . . , Gm] ;; [G′1, . . . , G
′
n])

where a clause ∀(A←− [G1, . . . , Gm] ;; [G′1, . . . , G
′
n]) is meant

to represent the logical compilation of the universal closure
of the formula Gm → . . .→ G1 → G′n ³ . . . ³ G′1 ³ A. We
choose this “compilation” to emphasize that the operational
semantics of proof search will solve subgoals from innermost
to outermost. Our sequents have the form

Γ;Ω −→Π G

where Π contains the program clauses, which are unrestricted
(i.e. can be used an arbitrary number of times); Γ contains
unrestricted atoms; Ω contains ordered atoms; and G is the
formula to be derived. The rules are depicted in Figure 3.
The derivation rules ware completely determined by the
structure of the goal. Note that in this fragment of the logic
implications have only atomic antecedents and this there-
fore yields only atomic contexts. We have the usual right
sequent rules to break down the goal. For atomic goals, we
have two initial sequent rules, for the leaves of the derivation,
and a single backchaining rule that simultaneously chooses
a program formula to focus upon and derives all the ensu-
ing sub-goals; rule (bc) applies the instance of a program
clause A ←− [G1 . . . Gm] ;; [G′1 . . . G′n]. Note that the rule
assumes that every program clause must be placed to the
left of the ordered context. This assumption is valid for our
fragment of the logic because it only contains right ordered
implications (³) and the ordered context is restricted to
atomic formulae. Furthermore, the ordering of the Ωi, in
the conclusion of the rule, is forced by our compilation of
the program clauses.

We encode the above logical language with the Isabelle

HOL datatype:

datatype oo ::= tt | 〈atm〉 | atm → oo | oo with oo
| atm ³ oo | all (prpr⇒ oo)

where 〈 〉 coerces atoms into propositions. The universal
quantifier is intended to range over all proper Hybrid terms.
In analogy with logic programming, it will be left implicit
in clauses.

The encoding of provability is inspired by [10] and is spe-
cialized to right ordered implication. We use three mutually
inductive definitions:

Γ;;Ω ¤n G :: [ atm list , atm list ,nat , oo ]⇒ bool

Γ ¤n Goals :: [ atm list ,nat , oo list ]⇒ bool

Γ;;Ω ¤n Goals :: [ atm list , atm list ,nat , oo list ]⇒ bool

where the natural number decoration represents the height
of a proof, facilitating reasoning by complete induction.

The implementation of the sequent rules (first judgment)
are completely unsurprising, except maybe for the back-
chain rule:

[[ A←− OL ;;IL & Γ;;Ω¤nOL & Γ¤nIL ]] =⇒ Γ;;Ω ¤n+1〈A〉
The notation A ←− OL ;; IL corresponds to an inductive
definition of a set prog of type [ atm, oo list , oo list ]⇒ bool ,
see Figure 4 for examples. Incidentally, the sequent calculus
is parametric in those clauses and so are its meta-theoretical
properties. Backchaining uses two list judgments to encode
execution of the (compiled) body of a clause. Intuitionistic
list consumption is immediate:

=⇒ Γ ¤n [ ]
[[ Γ ¤n G & Γ ¤n Gs ]] =⇒ Γ ¤n+1 G ∗Gs

Ordered list consumption is analogous, but behaves multi-
plicatively w.r.t. the ordered context:

=⇒ Γ;; [ ] ¤n [ ]

[[ osplit Ω ΩR ΩG & Γ;;ΩG ¤n G & Γ;;ΩR ¤n Gs ]]
=⇒ Γ;;Ω ¤n+1 G ∗Gs

Therefore the judgment relies on the inductive definition
of a predicate for order-preserving split of a context. This
corresponds to the usual logic programming implementation
of append with the first argument being in input mode.

=⇒ osplit Ω [ ] Ω
osplit Ω1 Ω2 Ω3 =⇒ osplit (A ∗ Ω1) (A ∗ Ω2) Ω3



initΩ

Γ; A −→Π A
initΓ

Γ, A; · −→Π A

ΓA; Ω −→Π G →R

Γ;Ω −→Π A→ G

Γ;ΩA −→Π G
³R

Γ;Ω −→Π A ³ G

Γ;Ω −→Π G1 Γ;Ω −→Π G2 ∧R

Γ;Ω −→Π G1 ∧G2

>R

Γ;Ω −→Π >
Γ;Ω −→Π G[a/x]

∀a
R

Γ;Ω −→Π ∀x. G

Γ; · −→Π G1 . . . Γ; · −→Π Gm Γ;Ω1 −→Π G′1 . . . Γ;Ωn −→Π G′n
bc

Γ;Ωn . . . Ω1 −→Π A

Figure 3: Sequent Rules

The rest of the sequent rules are as expected and left to
the on-line documentation. Note that the very fact that
provability is inductive makes available inversion principles
as elimination rules of the above definitions. For convenience
we define Γ;;Ω ¤ G iff there exist n such that Γ;;Ω ¤n G
and ¤ G iff [ ] ;; [ ] ¤ G. Similarly for the other judgments.

MC-Theorem 2 (Structural Rules). The following
rules are admissible:

• Weakening for numerical bounds:

1. [[ Γ ;;Ω ¤n G; n < m ]] =⇒ Γ;;Ω ¤m G

2. [[ Γ ;;Ω ¤n Goals; n < m ]] =⇒ Γ;;Ω ¤m Goals

3. [[ Γ ¤n Goals; n < m ]] =⇒ Γ ¤m Goals.

• Context weakening:

1. [[ Γ ;;Ω ¤ G; Γ ⊆ Γ′ ]] =⇒ Γ′ ;;Ω ¤ G

2. [[ Γ ;;Ω ¤ Goals; Γ ⊆ Γ′ ]] =⇒ Γ′ ;;Ω ¤ Goals

3. [[ Γ ¤ Goals; Γ ⊆ Γ′ ]] =⇒ Γ′ ¤ Goals.

Proof. The proof is by mutual structural induction on
the three sequents judgments and is achieved simply by a
call to Isabelle HOL’s classic reasoner. ut

The sequent calculus in [16] enjoys various forms of cut-
elimination. For the sake of the type preservation proof
(MC-Theorem 3) we only need the following atomic intu-
itionistic cut:

[[ A ∗ Γ;; [ ] ¤ G; ¤ 〈A〉 ]] =⇒ Γ;; [ ] ¤ G

and similarly for judgments on lists. This proof is work-in-
progress.

4.2 Encoding the Object Logic
We now show how the continuation machine can be writ-

ten as an Olli program. Rather than building an explicit
stack-like structure to represent the continuation K, we will
simply store instructions in the ordered context. Thus we
will use the following representation to encode the machine
(ignoring the intuitionistic context):

K ¦ i ; pKq ¤ piq

where pKq is the representation, described below, of the
continuation (stack) K and similarly for piq.

Given the goal: init V ³ ex (ev e) our program will eval-
uate the expression e and instantiate V with the resulting
value. The intended reading of this query is: evaluate e
with the initial continuation (the continuation which just
returns its value). A goal ex (return i) is intended to mean:
execute instruction i. A goal ex (return v) is intended to
mean: pass v to the top continuation on the stack (i.e. the
rightmost element in the ordered context).

We have the following informal representations:

init ¦ return v ; init W ¤ ex (return pvq)

where the logic variable W is the final answer;

K; λ x. i¦return v ; pKq, cont (λ x. piq)¤ex (return pvq)

where the ordering constraints force the proof of ex return pvq
to focus on the rightmost ordered formula. The faithfulness
of our representation of evaluation could be formally stated
and proved in an adequacy theorem, analogously to the The-
orem 3.4 in [5].

As usual in the two-levels approach [12] we introduce a
datatype atm to encode the atomic formulae of the OL,
which in this case study consists of:

datatype atm ::= ceval exp val | ex instr | init val
| cont (val ⇒ instr) | of exp tp
| ofI instr tp | ofV val tp | ofK tp

We can now give the clauses for the OL deductive systems
in Figure 4, starting with typing. These judgments are in-
tuitionistic, except typing of continuations. The judgments
for expressions, values and instructions directly encode the
corresponding judgments and derivation rules. The judg-
ments for continuations differ from their analogs in Figure 2
in that there is no explicit continuation being typed; instead,
the continuation to be typed is in the ordered context. Thus,
these judgments must first get a continuation from the or-
dered context and then proceed to type it.

The evaluation clauses of the program fully take advan-
tage of ordered contexts. The first one is just a wrapper
to put queries into the correct form. The rest directly mir-
rors the machine transition rules: Note the presence of the
abstraction annotations as Isabelle HOL premises in rules
mentioning second-order terms. This in turn allows to sim-
ulate definitional reflection via the built-in elimination rules
of the prog inductive definition without the use of freeness
axioms [8, 12].



Inductive ←− ;; :: [ atm, oo list , oo list ]⇒ bool

=⇒ of (E1 @ E2) T ←− [ ] ;; [〈of E1 (T ′ arr T )〉, 〈of E2 T ′〉]
[[ abstr E ]] =⇒ of (lam E) (T1 arr T2)←− [ ] ;; [all x. (of x T1)→ 〈of (E x) T2〉]
[[ abstr E ]] =⇒ ofV (lam∗ E) T ←− [ ] ;; [of (lam E) T ]

=⇒ ofI (ev E) T ←− [ ] ;; [〈of E T 〉]
=⇒ ofI (return V ) T ←− [ ] ;; [〈ofV V T 〉]
=⇒ ofI (app1 V E) T ←− [ ] ;; [〈ofV V (T2 arr T )〉, 〈of E T2〉]
=⇒ ofK (T arr T )←− [〈init V 〉] ;; [ ]

[[ abstr K ]] =⇒ ofK (T1 arr T2)←− [〈cont K〉, 〈ofK T arr T2〉] ;; [all v. (ofV v T1)→ 〈ofI (K v) T 〉]

=⇒ ceval E V ←− [init V ³ ex (ev E)] ;; [ ]

=⇒ ex (return V )←− [〈init V 〉] ;; [ ]

[[ abstr E ]] =⇒ ex (return V )←− [〈cont E〉, 〈ex (E V )〉] ;; [ ]

[[ abstr E ]] =⇒ ex (ev (lam E))←− [〈ex (return (lam∗ E))〉] ;; [ ]

=⇒ ex (ev (E1 @ E2))←− [cont (λv. app1 v E2) ³ 〈ex (ev E1)〉] ;; [ ]

[[ abstr E ]] =⇒ ex (app1 (lam∗ E) E2)←− [〈ex (ev (E E2))〉] ;; [ ]

Figure 4: Hybrid’s Encoding of Program Clauses

Now we can address the meta-theory, namely the subject
reduction theorem:

MC-Theorem 3.

[ ] ;; init V, Ω ¤i 〈ex I〉 =⇒
∀T1T2. ¤ 〈ofI I T1〉 ⊃
([ ] ;; init V, Ω ¤ 〈ofK (T1 arr T2)〉) ⊃ ( ¤ 〈ofV V T2〉)

Proof. The proof is by complete induction on the height
i of the derivation of the premise and one case is detailed in
Figure 5. ut

As far as proof search is concerned, once we have instructed
the system to aggressively apply every deterministic split-
ting, the proof script for the above case consists of three in-
structions, including giving the correct instantiation of the
height of the proof, in order to fire the IH. Other cases, typ-
ically the ones which increase the current continuation need
more care. In particular, the user is required to provide the
correct splitting of the ordered hypothesis.

Corollary 1 (Subject Reduction).

[[ ¤ ceval E V ; ¤ of E T ]] =⇒ (¤ ofV V T )

5. RELATED WORK
We refer to [2] for a review of related work about HOAS.

The present paper generalizes the approach in [12], which
in turn was inspired by [8, 10]. The latter in particular
presents a two-levels proof of type preservation for MLR in
a second-order linear specification logic. This is a variant
of the proof implemented in the linear logical framework
LLF [5], where, in the Elf tradition, a meta-theorem is a
relation (type family) between judgments whom the logic
programming-like interpretation provides an operational se-
mantics to. Finally, external coverage checking (which cur-
rently does not extend to LLF [21]) verifies that the given

relation is indeed a realizer for that theorem. In the same
vein, Polakow and Pfenning [17] have used an Ordered Log-
ical Framework to formally show that terms resulting from
a CPS translation obey stack-like ordering properties with
respect to intermediate values [7, 6]. Polakow and Yi [18]
later extended these techniques to a CPS translation for a
language with exceptions that employed a continuation pair
(one for success, one for failure). While both of these efforts
carried out a formal proof in OLF, neither of them were
automated in any way. Only very recently, Mω [20], the
meta-logic of LF has been extended to L+

ω , a meta-logic for
LLF [9].

6. CONCLUSIONS
We have presented a two-levels approach to formalize an

ordered logical framework on top of the Hybrid system that
allows inductive reasoning about objects defined via HOAS
in an established environment such as Isabelle HOL. This
replicates, in a well-understood and interactive setting, the
architecture of FOλ∆IN [10], so all results are proved with-
out ad-hoc lemmas that are not warranted by the mathemat-
ics of the problem. The specification logic is implemented
and its meta-theoretical properties are proved once and for
all and it can be varied depending on the application under
study without changing infrastructure.

As we said in the Introduction, this paper is merely a
stepping stone toward investigating the meta-theory of lan-
guages with imperative features. The next objective would
be to replay the cited proof of type preservation for MLR,
which will be simplified by the internalization of the instruc-
tions stack. From this viewpoint, it is somewhat disappoint-
ing that we still have to retain a notion of typing of contin-
uations ofK T . An intriguing possibility is to move to the
third-order machine described in [16], which, by using left
implication ¾, does not need the level of instructions. For
example evaluating an application would be in Olli syntax:



Legenda:

[ ] ;; init V, Ω ¤i 〈ex I〉 corresponds to [] ;; init V * Ome |- < ex I > ::: i

¤ 〈ofI I T1〉 corresponds to [] ;; [] |-- < ofI I T1 >

[ ] ;;Ω ¤i Goals corresponds to [] ;; Ome ||> Goals ::: i

The inductive hypothesis (which will be omitted next) is

ALL m. m < n -->

(ALL I V Ome.

[] ;; init V * Ome |- < ex I > ::: m -->

(ALL T1 T2.

[] ;; [] |-- < ofI I T1 > &

[] ;; init V * Ome |-- < ofK (T1 arr T2) > -->

[] ;; [] |-- < ofV V T2 > ))

We begin by inverting on [] ;; [] ;; init V * Ome |- < ex I> ::: i and then on the prog clauses defining execution,
yielding several goals, one for each evaluation clause. Let’s look at the case for lam:

[| ...[] ;; init V * Ome ||> [< ex (return (lam* E)) >] ::: i’;

[] ;; [] |-- < ofI (ev (lam E)) T1 > ;

[] ;; init V * Ome |-- < ofK (T1 arr T2) > ; abstr E |]

==> [] ;; [] |-- < ofV V T2 >

First we apply the lemma that T1 must be of functional form T1’ arr T2’. Note that this requires several inversion steps as
we need to move back and forth between the prog and provability level. Then we invert on the ||> statement:

[| ...[] ;; [] |-- (< ofI (ev (lam E)) (T1’ arr T2’) >) ;

[] ;; init V * Ome |-- (< ofK ((T1’ arr T2’) arr T2) >) ;

osplit (init V * Ome) Og Or; [] ;; Or ||> [] ::: i’;

[] ;; Og |- (< ex (return (lam* E)) >) ::: i’ |]

==> [] ;; [] |-- < ofV V T2 >

However, by inversion on the ||>, it must be that Or = [], hence splitting is deterministic returning Og = init V * Ome:

[| ...[] ;; [] |-- (< ofI (ev (lam E)) (T1’ arr T2’) >) ;

[] ;; init V * Ome |-- (< ofK ((T1’ arr T2’) arr T2) >) ;

[] ;; init V * Ome |- (< ex (return (lam* E)) >) ::: i’ |]

==> [] ;; [] |-- < ofV V T2 >

That follows by IH and the easy inversion lemma:

[] ;; [] |-- < ofI (ev (lam E)) (T1 arr T2) > ==> [] ;; [] |-- < ofI (return (lam* E)) (T1 arr T2) >

Figure 5: The Lambda Case in the Proof of Subject Reduction



ev_app : ev (E1 @ E2) <<-

({V1} return V1 <-< app1 V1 E2) ->> (ev E1)

where now

app1 : : [ val , exp ]⇒ bool
ev : : exp ⇒ bool

return : : val ⇒ bool

that is they are predicates. This would entail some changes
in the SL, namely generalizing the structure of implicational
clauses and of backchaining. It may be argued that there
seems to be a natural progression from intuitionistic second-
order logic [12] to second and finally third order ordered
linear logic; whereby we simplify the machine, first internal-
izing explicit continuations in the CPM [14] then removing
instructions by making use of a more expressive logic.

The possibility of handling in such an elegant fashion both
state and order opens up literally dozens of applications,
typically abstract machines, which up to now have been en-
coded in a rather indirect fashion. One current project is
the verification of compilation based on monadic intermedi-
ate languages, such as MIL-lite [4]. Further there are several
other applications beyond programming languages for an
ordered framework, for example GSOS with priorities [22].
The latter may require a more sophisticated notion of or-
der, typically branching. It is conceivable that this could be
mirrored by refining linear ordered context in the sense of
BI’s bunches along the lines of [19, 1].

As far as the infrastructure is concerned, note that simi-
larly to [12] in this case study we only needed to induct over
closed terms, although we reason (typically by inversion) in
presence of hypothetical judgments. Inducting HOAS-style
over open terms is a major challenge [20]; in this setting
generic judgments are particularly problematic, but can be
dealt with by switching to a more expressive SL, based on
a eigenvariable encoding [11]. The new theory of terms-
in-infinite-context underlying the new version of Hybrid [3]
directly supports this syntax. With that in place, we will be
able, for example, to replay in a full HOAS style a notion
of program equivalence based on bisimilarity [13] and finally
approach at the right level of abstraction the verification of
the compiler optimizations of MIL-lite [4].

Source files for the Isabelle HOL code can be found at
www.mcs.le.ac.uk/~amomigliano/isabelle/2Levels/Oll2
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