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ABSTRACT
It is well known that there are problems associated with for-
mal systems which attempt to combine higher order abstract
syntax (HOAS) with principles of induction and recursion.
We describe a formal system, called Bsyntax, which we have
implemented in Isabelle HOL. Our contribution is to prove
the existence of a combinator for primitive recursion with
parameters over HOAS. The definition of the combinator is
facilitated by the use of terms with infinite contexts. In
particular, our work is purely definitional, and is thus con-
sistent with classical logic and choice. An immediate payoff
is that we obtain a primitive recursive definition of higher
order substitution. We give a presheaf model of Bsyntax,
providing additional semantic validation of Bsyntax’s prin-
ciples of recursion. We outline an application of our work
to mechanized reasoning about the compiler intermediate
language MIL-lite [2].

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory; F.4.1 [Mathematical Logic]: Lambda Calculus
and Related Systems; I.2.1 [Deduction and Theorem
Proving]: Deduction
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1. INTRODUCTION
Higher order abstract syntax (HOAS) has been the sub-

ject of considerable research efforts over the last few years.
The fundamental idea, dating back to Church, is to repre-
sent the variables of an object level logic by the variables of
a meta-logic (and terms of the meta-logic represent terms
of the object level logic). Thus, in particular, variable bind-
ing in the object logic is represented by variable binding in
the meta-logic, and functions such as substitution can be
defined once and for all in the meta-logic. In this paper, the
“meta-logic” we use as a basis for HOAS is Isabelle HOL.

It is well known that various problems can arise when try-
ing to combine HOAS with principles of induction, see, for
example, [12, 25, 1]. One particular problem concerns how
to define recursive functions over the terms of HOAS. In or-
der to state properties of and reason about object logics, we
may want to employ definitions by (primitive) recursion. For
example, to encode the operational semantics of a (object
level) functional programming language we require meta-
level capture avoiding substitution, which can be defined by
primitive recursion (with parameters). Of course, functions
such as substitution can be defined in other ways, often as
a relation which one attempts to prove total and functional.
But such approaches are often quite messy in practice. The
key issue here is how to define recursive calls over terms in-
volving λ-binders. This is problematic, and is discussed in
detail in [25, 24]. The main contributions of this paper are

• a presentation of weak HOAS [22] using a λ-calculus
of terms with infinite contexts, coded in Isabelle HOL
(based on work from [6, 13])

• a proof of existence of a combinator for primitive re-
cursion over HOAS, coded in Isabelle HOL (a key con-
tribution of this paper, and not developed in [6]);

• a presheaf topos model, from which we obtain seman-
tic validation of recursion principles by exhibiting the
types over which recursion takes place as initial alge-
bras (the actual model is new, but is based upon the
work of [12] and [9]).

• an outline of the representation of a substantial object
logic, namely the compiler intermediate language MIL-
lite [2], together with machine proofs of properties of
the system (this is new implementation work).
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We refer to our Isabelle HOL Theories by the name Bsyntax

(binding syntax).
In Section 2 we introduce a datatype for HOAS and show

how to identify a subtype of λ-calculus terms-in-context. In
Section 3 we motivate and introduce a combinator for prim-
itive recursion. In Section 4 we show how to capture the
semantics of a very simple programming language within
Bsyntax, and how to define a family of higher order substi-
tution functions using the combinator. We outline the MIL-
lite language of Benton and Kennedy [2] and show that we
can also capture its semantic description, and prove program
properties. In Section 5 we present an abstract presheaf
topos model of our representation of λ-calculus. In Sec-
tion 6 we review related work and draw some conclusions.
The Appendix 6 contains proofs of selected results.

2. AN ENCODING OF THE λ-CALCULUS
WITH TERMS-IN-INFINITE-CONTEXTS

We define the type var def= nat . The datatype below will
be used to give a general exposition of our definition of ex-
pressions of (weak [22]) HOAS; it is implemented in Isabelle
HOL as part of Bsyntax.

datatype exp ::= V var | Lambda (var ⇒ exp) | exp A exp

Note that the actual datatype which one sees in our Isabelle
HOL implementation has a clause C string specifying con-
stants, and a clause ERR specifying an “error” term. Con-
stants are crucial in a logical framework for naming the con-
structors of object logics. The error type is used to take care
of exotic terms [5]. While an important part of Bsyntax, for
pedagogical reasons we have chosen to suppress these tech-
nical aspects.

A typical abstraction term Lambda (λ v. e v) of type exp
will be written using the sugared notation L v. e v. From
this datatype we wish to extract those terms of type exp
which correspond to terms of the λ-calculus. To do this, first
recall the standard encoding of an object level λ-calculus
into terms of type exp. If the λ-calculus has a set Λ of
terms given by

E ::= V | E E′ | ΛV.E
then we can define a translation into our datatype by setting

pV q def= V v

pE E′q def= pEq A pE′q
pΛV.Eq def= L v. pEq

As is well known [5], the function p−q : Λ → exp is not a
bijection, due to the presence of exotic terms. Moreover, in
order to obtain a representation of the λ-calculus in which
the usual operational properties are correctly modeled, the
translation function should also preserve substitutions. Any
such translation function is said to provide an adequate rep-
resentation. We obtain such a function by carving out a
subtype lam of so called “proper” terms of type exp such
that the function p−q : Λ → lam is indeed a compositional
bijection. We aim to define a function prop : : exp ⇒ bool
such that lam = {e | e : : exp ∧ prop e}. Let us see what
happens if we proceed naively by recursion. We might define

prop (V v)

prop e1 prop e2

prop (e1 A e2)

?

prop (L v. e v)

but then one has to consider a problem which arises in the
final clause. The type of e is var ⇒ exp, and not exp
which prop expects. We could try defining the antecedent
as ∀v. prop (e (V v)) so that binders are traversed via a
meta-level universal quantification. This can be used with
some success [1]. However, there can be serious drawbacks
when reasoning on the left of meta-logical sequents [17, 18],
typically when performing an induction over open terms,
but also when performing simple inversions. We could also
try ∀x.e prop x −→ prop (e x), but this leads to a non-
monotonic definition which is rejected by a traditional proof
assistant based on inductive definitions [types]. In this pa-
per we develop another approach. By thinking about the
way in which the L binder interacts with free and bound
variables, one is lead to consider defining judgments over
terms-in-context, in particular here prop. Traditionally, a
term-in-context takes the form Γ ` e, where Γ is a finite list
of variables occurring free in e. Now, such terms-in-context
are usually identified up to a consistent renaming of the vari-
ables which occur in the context. As such, we can capture
the notion by regarding the context as a variable binding op-
eration at the Isabelle HOL meta-level. A term-in-context
would take the form λ v0 . . . vr−1. e v0 . . . vr−1 : : varr ⇒
exp. We would then define functions prop r : : varr ⇒ exp
for any r ≥ 0 which satisfy

prop (r + 1) (λ v0 . . . vr. e v0 . . . vr)

prop r (λ v0 . . . vr−1. L u. e v0 . . . vr−1 u)

This approach will also not work in Isabelle HOL, which
does not have dependent types.

We circumvent such problems by using a method which
is founded on similar approaches in [6, 13]. The key idea
is to work with terms-in-context as motivated above where
the contexts are infinite. In particular, a context will be a

stream of variables, realized as a term of type var stream def=
nat ⇒ var1. One reason for working with infinite contexts
is that some of the bookkeeping tasks mentioned above are
simplified. In particular, we make use of the functions which
compute the nth element of, the tail of, and drop n elements
from a list l, denoted by (l ! n), tl l and drn l, while u consed
onto l is denoted by u # l. Note that over finite lists, tail
and drop are not total, which can complicate matters in a
theorem prover such as Isabelle HOL which disallows par-
tial functions. Each such term-in-infinite-context has type

eic def= var stream ⇒ exp; a typical one has the η-long form
λ l. e l : : eic. The revised definition of prop : : eic ⇒ bool
is given in Table 1.

Here is an example of a proper term.

λ l. L u. (V u) A (V (l ! 4)) A (V (l ! 8))

This is an encoding of a λ-calculus term Γ ` ΛU.U V4 V8,
where, for example, Γ(4) = V4. One has to take care in
understanding the meaning of say λ l. V (l ! 4). Recall that
l : : var stream. So λ l. V (l ! 4) is the fourth “actual”
variable in a fixed enumeration. In fact we will think of it
as the fourth projection of an arbitrary infinite sequence of
variables. Note also the binder λl gives rise to a notion of
context, and that traditionally contexts consist of distinct
variables. This is indeed the case here, as we can prove that
λ l. V (l ! n) = λ l. V (l ! m) just in case m = n. We refer to
λ l. V (l ! n) as the nth (variable) projection. Moving to

1This because of the lack of co-datatypes in Isabelle HOL.



prop (λ l. V (l ! n))

prop e1 prop e2

prop (λ l. (e1 l) A (e2 l))

prop (λ l. e (l ! 0) (tl l))

prop (λ l. L u. e u l)

Table 1: Definition of Proper Terms-in-infinite-contexts

the definition of proper abstractions, consider for example
the term in context

u, v1, v2 · · · ` U V5 V9

v0, v1 · · · ` ΛU.U V4 V8

and its formalization

prop ( λ l. (V (l ! 0)) A (V (l ! 5)) A (V (l ! 9)) )

prop ( λ l. L u. (V u) A (V (l ! 4)) A (V (l ! 8)) )

Notice that in our system, when variables are bound by the
L binder, binding is forced to occur over the 0th projec-
tion. Note also that the effect of replacing tl l by l is to
decrease all other projection indices by 1 when an abstrac-
tion is formed. This is a key point, and will be fundamental
to achieving a definition of a recursion combinator. To help
understand the formulation of the λl binder, note that the
types var ⇒ eic and eic are isomorphic, with λ u. λ l. e u l
corresponding to λ l. e (l ! 0) (tl l) (see Lemma 3, page ).
This isomorphism is a basic property which holds because
of the definitional property of a stream of variables. Thus
properness of λ l. L u. e u l occurs just in case properness
of λ l. e (l ! 0) (tl l) occurs. We will return to this point
in Section 5, when we will select specific coproducts in our
presheaf model in order to correctly model this definition of
abstraction—similar issues are discussed in detail in [9].

Note also that the revised definition of prop involves only
Horn clauses, unlike the alternative definitions of prop al-
luded to above. There is no use of a meta-logical universal
quantifier—the “stream binder” λl has rendered the quan-
tification “internal” to prop—and this has payoffs when un-
dertaking machine proofs, in particular by induction over
open terms. Typically, when binding are traversed via meta-
logical universal quantification, the structural induction prin-
ciple tends to be too weak and has to be replaced by induc-
tion on the size of the term [14]. In this paper, many results
are about the Bsyntax system, and have been implemented
in Isabelle HOL. In such cases we indicate this as follows

Remark 1 (Isabelle HOL). The definition in Table 1
specifies a monotone operator yielding a well-defined induc-
tive definition.

3. A COMBINATOR FOR PRIMITIVE RE-
CURSION

Recall our long term aim of using some form of HOAS to
encode object level languages with variable binding, and to
reason about them using a proof assistant such as Isabelle
HOL. In our setting, object level terms will be encoded
as proper terms of type eic. We will often want to define
functions by primitive recursion over the syntax of object
level encodings. Doing this requires a measure of the size of
encoded object level terms. In Bsyntax we can define such
a size function through primitive recursion over the under-
lying proper terms of type eic, which is itself achieved by
calling a combinator for primitive recursion. All definitions

by primitive recursion are automatically functional. We will
want our combinator to handle primitive recursion with pa-
rameters. In particular we can then define substitution func-
tionally using the combinator. We could define substitution
as a relation, and prove it total and functional; see, for ex-
ample, [15]. However, such proofs of functionality may not
be straightforward and must be repeated for each new func-
tion introduced by the programmer, and this is very time
consuming. We believe our approach is new, and has prac-
tical payoffs: a recursion combinator provides a single and
uniform method for the direct definition of functions—all
proofs that graphs of relations are total and functional are
subsumed by the proof of the existence of the combinator.

To our knowledge, no-one has yet given a direct proof
of the existence of such a combinator for primitive recursion
over weak HOAS. The (un-curried) type of our Isabelle HOL
combinator synr is

(var ⇒ B) ∗ (B ⇒ B) ∗ (B ⇒ B ⇒ B) ∗ eic ⇒ B (†)
The type may look mysterious: it does not match up with
our HOAS datatype. In order to explain the type of synr,
we move to a categorical setting in which we recall the cat-
egorical analogue of such a combinator.

Let C be a category equipped with a strong monad (T, µ, η, τ).
Think of C as a categorical model of Bsyntax. Suppose that
there is a pair (Ω, σ) such that for any object P (of param-
eters) and morphism f : P × TB → B, there is a unique f
such that

P × TΩ
id× σ - P × Ω

P × TB

〈πP , µ ◦ T (η ◦ f) ◦ τ〉
?

f
- B

f

?

Then f is said to be defined by recursion with parame-
ters over Ω. (The analogue of Ω in Bsyntax is of course eic.)
Now, any category which models higher order logic must be
cartesian closed. And in such a category, the following is
a well known theorem, which, informally, says primitive re-
cursion with parameters is equivalent to standard primitive
recursion.

Theorem 1. The existence of an initial algebra (Ω, σ) for
the functor T of a strong monad (T, τ) over C is equivalent
to the existence of a pair (Ω, σ) such that for any object P
the square given above commutes with the given property.

Hence we can restrict our attention to initial algebras over a
cartesian closed C. Consider the datatype for exp in Bsyntax;
the defining clauses have a categorical analogue, namely a

functor Twhξ
def= var +(var ⇒ ξ)+ξ2 where var is an object

of C. Note that category C is distributive, and hence [19]
the functor is a monad for which there is a strength τ .
Thus Theorem 1 applies: if there exists an initial algebra



(Ω, σ), then functions can be defined by primitive recur-
sion with parameters over Ω. Any morphism TwhB → B
in C must have the form [vf, af, lf] where vf : var → B,
lf : var ⇒ B → B and af : B2 → B, and hence there is a
unique morphism [vf, lf, af] : Ω → B. Recall that in a (locally
small) cartesian closed category, C(X,Y ) ∼= C(1, X ⇒ Y )
and X ⇒ (Y ⇒ Z) ∼= X × Y ⇒ Z. The unique morphism
is thus a global element 1 → Ω ⇒ B, and its existence is
equivalent to the existence of a morphism

s : (var ⇒ B)×((var ⇒ B) ⇒ B)×(B ⇒ B ⇒ B) → Ω ⇒ B

such that s ◦ 〈vf, lf, af〉 has the required universal property.
And s corresponds to a morphism

1 → (var ⇒ B)×((var ⇒ B) ⇒ B)×(B ⇒ B ⇒ B) ⇒ Ω ⇒ B

or equivalently

1 → (var ⇒ B)×((var ⇒ B) ⇒ B)×(B ⇒ B ⇒ B)×Ω ⇒ B

Suppose that in addition we have var ⇒ Ω ∼= Ω. This
may seem like a strange assumption—however we will see
that this is indeed a property of the categorical model we
will produce in Section 5. Moreover, we have already met
this property in Bsyntax, namely var ⇒ eic ∼= eic. Then
equivalently we can require s to be a morphism

1 → (var ⇒ B)× (B ⇒ B)× (B ⇒ B ⇒ B)× Ω ⇒ B

and the analogue of this in Bsyntax is precisely a combinator
of type (†).

Having given this motivation, we can now define (the
graph of) our combinator as an inductive definition in higher
order logic. Note that there is a default case, omitted from
this paper, when none of these patterns match.

synr vf lf af (λ l. V (l ! n)) (vf n)

synr vf lf af (λ l. e (l ! 0) (tl l)) x

synr vf lf af (λ l. L u. e u l) (lf x)

synr vf lf af e1 y synr vf lf af e2 z

synr vf lf af (λ l. (e1 l) A (e2 l)) (af y z)

Theorem 2 (Isabelle HOL). The relation synr spec-
ified above is a total function, with the required properties of
a combinator for primitive recursion, namely:

synr vf lf af (λ l. V (l ! n)) = (vf n)

synr vf lf af (λ l. (e1 l) A (e2 l)) = af (synr vf lf af e1)

(synr vf lf af e2)

synr vf lf af (λ l. L u. e u l) = lf (λ l. e (l ! 0) (tl l))

This is a key result. Once again, as we saw when defining
prop, we make a crucial use of the isomorphism eic ∼= var ⇒
eic, which holds only because we work with the type eic of
terms-in-infinite-contexts. Calling synr over λ l. L u. e u l
yields, via the isomorphism, a call over λ l. e (l ! 0) (tl l).
The presence of the isomorphism means that the usual prob-
lem associated with recursive calls passing under binders is
by-passed.

We finish this section by giving a simple example showing
how synr works in practice. Take the type B to be nat . De-

fine vf def= λ n. 1 and lf def= λ n. n and af def= λ n. λ m. n+m.
Then synr vf lf af will compute the number of occurrences

of all variables V · in a term. For example, the number N of
variables in λ l. L u. (V u) A (V (l ! 3)) is 2, and is given by

N = synr vf lf af (λ l. L u. (V u) A (V (l ! 3)))
= lf (synr vf lf af ((V (l ! 0)) A (V (l ! 4))))
= lf (af (synr vf lf af (λ l. V (l ! 0)))

(synr vf lf af (λ l. V (l ! 4))))
= lf (af (vf 0) (vf 4))
= (λ n. n) ((λ n. λ m. n+m) 1 1)
= 2

4. APPLICATIONS TO OBJECT LEVEL LAN-
GUAGES

In order to illustrate how our ideas are applied in prac-
tice, we define a small (object level) language, encoding its
static and dynamic semantics. While the language is ele-
mentary, we later mention that our methodology can indeed
be successfully applied to a much more complex language.
The types are given by integers and computation types [19].
The terms of the language are given by

Int z def= C (stringof z)

e1 + e2
def= (C Add) A e1 A e2

Val e def= (C Val) A e

Let x⇐ e1 in e2 x
def= (C Let) A e1 A (L x. e2 x)

Note that in this section we do make use of Bsyntax con-
stants. Each constructor C has type string ⇒ exp, and we
use strings to give “names” (such as Add) to the constants
of our object level language. Note that the let terms of a
computational monad contain a binder (x above is bound)
and this is captured by meta-level (Bsyntax) binding.

We define a ternary type assignment relation Γ ` e : : τ
with carrier types stream ∗ eic ∗ types. The idea is that
object level contexts which supply types to (free) object
variables are represented by a stream of types. The rela-
tion is inductively defined using the rules in Table 2. We
also define an evaluation semantics, relating terms of type
eic, in Table 3—the substitution function hosub is explained
below. In order to use Bsyntax to represent operational
semantics in a weak HOAS setting, we must be able to
represent substitution. We can define “standard” substi-
tution via the recursion combinator as a function with the
expected type synr vf af lf : : eic ⇒ var ⇒ eic ⇒ eic,
for suitable values of vf, lf, and af. However, in order to
make proper use of HOAS, we want to be able to define
higher order substitution—the recursion operator achieves
this in a systematic way. In Table 3 the function hosub
has type (var ⇒ eic) ⇒ eic ⇒ eic where e2 : : var ⇒
eic and λ l. v1 l : : eic. In general we seek functions
hosub : : (varn ⇒ eic) ⇒ eicn ⇒ eic for each n ≥ 1.
This we can do—again by primitive recursion—over the type
varn ⇒ eic. In a later section we shall give a categorical
model which validates such a definition, by exhibiting a cate-
gory with an initial algebra Tsr(var

n ⇒ eic) → varn ⇒ eic.
Here we give a definition of hosub which is accepted by Is-
abelle HOL. We can define first order substitution (n = 1)
by taking

vf def= λ m n f l. if m < n then V (l ! m) else
if m = n then f l else V (l ! (m− 1))

lf def= λ e n f l. L u. e (Suc n) (λ l. f (tl l)) (u # l)

af def= λ e1 e2 n f l. (e1 n f l) A (e2 n f l)



Γ ` λ l. V (l ! n) : : (Γ ! n) Γ ` λ l. Int z : : int

Γ ` λ l. e l : : τ

Γ ` λ l. Val (e l) : : CT τ

Γ ` λ l. e1 l : : int Γ ` λ l. e2 l : : int

Γ ` λ l. (e1 l) + (e2 l) : : int

Γ ` λ l. e1 l : : CT τ1 τ1 # Γ ` λ l. e2 (l ! 0) (tl l) : : CT τ2

Γ ` λ l. Let x⇐ e1 l in e2 x l : : CT τ2

Table 2: A Type Assignment Relation

λ l. (Int z) + (Int z′) ⇓ λ l. Int z + z′

λ l. e l ⇓ λ l. v l
λ l. Val (e l) ⇓ λ l. v l

λ l. e1 l ⇓ λ l. v1 l hosub e2 (λ l. v1 l) ⇓ λ l. v l
λ l. Let x⇐ e1 l in e2 x l ⇓ λ l. v l

Table 3: An Evaluation Relation

and setting

hosub def= λ e. synr vf af lf (λ l. e (l ! 0) (tl l)) 0

of type (var ⇒ eic) ⇒ eic ⇒ eic. In the general definition
of lf, f is being substituted for the nth projection occurring
in e. Note that in passing under a L binder, n is increased
by 1, as are the projection indices in f (via tl), and the
bound u is added to the context l. In the definition of af,
f is being substituted for the nth projection occurring in
the subterms e1 and e2 of an application term. In vf, f
is being substituted for the nth projection; and m gives
the projection at which the substitution is “currently taking
place”. Thus if m = n then indeed f is substituted (in F
below, m = 1 is generated from v). Indices m < n are
generated from L bound variables so remain untouched by
vf (in F below, m = 0 is generated from L bound u). Indices
m > n arise from projections already present, so have been
increased by 1 by the call of tl in hosub; hence in the case
m > n the indices m are reduced by 1 (in F below, m = 5
is generated from projection index 3).

An example may make the ideas clearer, depicted in Fig-
ure 1. Consider the informal substitution

ΛU.U V V3[V := V8] ≡ ΛU.U V8 V3

and its formal rendition, where E is

hosub (λ v. λ l. L u. (V u) A (V v) A (V (l ! 3))) (λ l. V (l ! 8))

Here, the overall effect of the function hosub should be to
substitute λ l. V (l ! 8) for the metavariable v. When hosub
is called, the abstracted variable v is replaced by a 0th pro-
jection, and the call of tl ensures that all other projections
are increased by 1 (4=3+1). Hence E = F 0 (V (l ! 8)) =
λ v. λ l. L u. (V u) A (V (l ! 8)) A (V (l ! 3)) This will seem
like a lot of work. Remember that for us, Isabelle HOL takes
the strain! For the language given in this section, we can
prove

Theorem 3 (Isabelle HOL). The simple object level
language is deterministic and enjoys subject reduction.

A specific goal of our work is to investigate the viability of
encoding and reasoning about effect based compiler trans-
formations. We have chosen to study the MIL-lite language
of Benton and Kennedy [2], although the application of our
tools to MIL-lite is not, in itself, a central topic of this paper
and it will be described it in detail in a forthcoming paper.
The purpose of this section is to demonstrate the applica-
bility of Bsyntax. FL [3] is a SML-to-Java bytecode com-
piler, constructed through a typed intermediate language
with effect-specific computation types, called MIL. Benton
and Kennedy identified a fragment of MIL, called MIL-lite,
and have shown that it can be used to validate effect based
transformations. MIL-lite is a non-trivial language, whose
type system contains integers, integer references, functions,
products, sums, and effect based computations. Moreover, a
subtyping relation is induced by effect inclusion. The term
system includes the expected machinery. We have encoded
in Isabelle HOL the MIL-lite type system, and its evalua-
tion relation, and proved that a subject reduction theorem
holds.

5. A PRESHEAF TOPOS MODEL
We give a presheaf model of Bsyntax. As well as being

interesting in its own right, a key point is that we show that
it validates recursion over all types varn ⇒ eic by exhibiting
such types “as” initial algebras—see Section 5.5. Of course,
our definitional approach in Isabelle HOL should be (inter-
nally) consistent! This work provides additional justification
for what we are doing. We work with a topos of presheaves

Fw
def= SetFω . In this section we show that there is an initial

algebra (exp, [V, L,A]) for the functor Twh : Fw → Fw, that
is

Twh exp = var + (var ⇒ exp) + exp2 [V, L,A]- exp

where of course var and exp are now objects (functors) of

Fw. Let us write Tsr ξ
def= Kω + (var ⇒ ξ) + ξ2 and also

Tsr′ ξ
def= Kω + ξ + ξ2, where Kω is a constant functor in

Fw. We shall also show that the functor eic def= varω ⇒ exp



informal substitution ΛU.U V V3[V := V8] ≡ ΛU.U V8 V3

formal rendition E def= hosub (λ v. λ l. L u. (V u) A (V v) A (V (l ! 3))) (λ l. V (l ! 8))
E = (synr vf af lf λ l. L u. (V u) A V (l ! 0) A (V (l ! 4))| {z }

F

) 0|{z}
n

(λ l. V (l ! 8)| {z }
f

)

F = . . . = lf (af (af (vf 0|{z}
m

) (vf 1|{z}
m

)) (vf 5|{z}
m

))

F equals to
λ n f l . L u.

A (if 0 < Suc n then V (u # l ! 0) else if 0 = Suc n then fl else V (u # l ! −1))
A (if 1 < Suc n then V (u # l ! 1) else if 1 = Suc n then fl else V (u # l ! 0))
A (if 5 < Suc n then V (u # l ! 5) else if 5 = Suc n then fl else V (u # l ! 4))

Figure 1: Substitution Example

gives rise to initial algebras Tsr eic → eic and Tsr(var
n ⇒

eic) → varn ⇒ eic and Tsr′ eic → eic and Tsr′(var
n ⇒

eic) → varn ⇒ eic. This semantically validates the higher
order substitution functions which are defined by primitive
recursion over such types.

In the remainder of this section we proceed as follows.
First, we give a collection of technical definitions and re-
sults2 which underpins the results mentioned above. Then
we prove the existence of an initial algebra in Fw for Twh.
We can then define the data (exp, [V, L,A]) and show that
exp ∼= Ω. Finally we show that eic and varn ⇒ eic are also
initial algebras for both Tsr and Tsr′ .

5.1 Some Supporting Definitions and Results
Fω is the full subcategory of Set whose objects are the

Peano sets 0, 1, 2, . . . and ω. We will use χ and ζ to range
over arbitrary objects.

We will write Y : Cop → SetC for the Yoneda embedding,

with Y ξ def= C(ξ,−), where of course Fξ ∼= SetC(Y ξ, F ) is
the Yoneda isomorphism.

We will use the shift functor, δ : Fw → Fw, defined by

δ ξ def= ξ ◦ (1 + (−)). We often, as in this definition, iden-
tify objects A of categories with the corresponding identities
idA. The definition here is a minor adaptation of the shift
functor of [9]. This functor is used to model the contrac-
tions of contexts by one variable which takes place when
abstraction terms are formed in Bsyntax.

The presheaf var is defined by var(ξ) def= ξ where ξ is
either an object or morphism of Fω. Notice that var is also
defined up to isomorphism by Y 1 where Y : Fop

ω → Fw, that
is, by the embedding of the finite generic context consisting
of a single variable.

We also need a number of lemmas and propositions. For
space reasons these are all in the appendix.

5.2 Obtaining an Initial Algebra for Twh in Fw

Lemma 5 tells us that var ⇒ G ∼= δ G for any G. Hence
we can find an initial algebra for Twh by instead finding an
initial algebra (Ω, σ) for the functor ξ 7→ var + (δ ξ) + ξ2.
We could show that Ω exists using an adaptation of the
traditional methods expressing Ω as a colimit of a certain

chain. Here, we proceed directly. We define S0
def= ∅, the

empty presheaf, and set Sr+1
def= var + (δ Sr) + S2

r , giving
a family of presheaves (Sr | r ≥ 0). It is easy to check that
there are subobjects ir : Sr ↪→ Sr+1, so that we can define

2Most appear in the appendix, along with sketch proofs.

Ω def=
S

r Sr by Lemma 6. Some of the remaining details are
contained in the appendix, page , and related examples can
be found in [4].

5.3 Defining the Algebra(exp, [V, L,A])

Now we can define the presheaf exp in Fw. We will deal
with Isabelle HOL variables of types e : : varn ⇒ eic,
l : : var stream, f : : nat ⇒ nat . We will also regard
morphisms ρ† : ω → ω in Fω as Isabelle HOL variables of
type nat ⇒ nat (see Lemma 2). We let k range over the
natural numbers. The function occ is defined by primitive
recursion in Bsyntax, and occ k (λ l. e l) indicates that
V (l ! k) occurs in λ l. e l. On an object χ we define exp χ
as

{λ l. e (l◦f) | prop (λ l. e l) ∧ ∀k ≥ χ(¬occ k (λ l. e (l ◦ f)))}
which is well defined by Lemma 4. The idea, roughly speak-
ing, is that exp χ is the set of proper terms whose variables
are all projections which are strictly less than χ. On a mor-
phism ρ : χ→ ζ we set

(exp ρ)(λ l. e (l ◦ f)) def= λ l. e (l ◦ ρ† ◦ f)

Note that this does indeed define a functor! This follows
from the restriction ∀k ≥ χ(¬occ k (λ l. e (l ◦ f)), together
with the simple fact that if k < χ and ρ1 : χ → ζ and
ρ2 : ζ → ζ′, then by Lemma 2 we have (ρ2 ◦ ρ1)

†(k) =
ρ2 ◦ ρ1(k) = ρ2

† ◦ ρ1
†(k).

We define the natural transformations alluded to on page .
V : var → exp has components Vχ : var χ → exp χ given

by V(i) def= λ l. V (l ! i) where i < χ. Next, L : δ exp → exp
has components Lχ : exp(1 + χ) → exp χ given by

Lχ(λ l. e (l ◦ f)) def= λ l. L u. be u (l ◦ (λ k. f(k)− 1))

where we make use of Lemma 3 to define be. Finally, natural
transformation A : exp2 → exp has components Aχ : (exp χ)2 →
exp χ given by

Aχ(λ l. e1 (l◦f), λ l. e2 (l◦f)) def= λ l. (e1 (l◦f)) A (e2 (l◦f))

See the appendix, page , for the interesting case of naturality
of L which depends crucially on our choice of coproducts in
Fω.

5.4 Proving Initiality of (exp, [V, L,A])

We now show that the presheaf algebra Ω is isomorphic
to the presheaf exp. We show that there are natural trans-
formations φ : Ω → exp and ψ : exp → Ω, such that for



any χ in Fω, the functions φχ and ψχ give rise to a bijection
between Ω χ and exp χ. To specify φ : Ω → exp we define a
family of natural transformations φr : Sr → exp, and appeal
to Lemma 7.

• φ0 : S0 = ∅ → exp has as components the empty
function, and

• recursively we define

φr+1
def= [V, L◦δ φr,A◦φ2

r] : Sr+1 = var+δ Sr+S
2
r → exp

To specify ψ : exp → Ω, for any χ in Fω we define functions
ψχ : exp χ→ Ω χ as follows. First note that Srχ ⊂ Ωχ for
any r by definition of Ω. Then we define

• ψχ(λ l. V ((l ◦ f) ! i)) def= (f(i), 1) ∈ S1χ = χ× {1}.

• ψχ(λ l. L u. e u (l ◦ f)) def= inSr(1+χ)(ψ1+χ(λ l. e ((l !
0)) (tl (l ◦ f)))) where r ≥ 0 is the rank of λ l. L u. e u (l◦
f).

• ψχ(λ l. e1 (l◦f) A e2 (l◦f)) def= in(Srχ)2((ψχ(λ l. e1 (l◦
f)), ψχ(λ l. e2 (l ◦ f)))) where r ≥ 0 is the rank of
λ l. e1 (l ◦ f) A e2 (l ◦ f).

5.5 Validating Higher Order Recursion Prin-
ciples

The idea of using initial algebras to validate induction
principles first appears in [12]. Here, we adapt Hofmann’s
ideas. Summarizing, we have an initial algebra

Twh(exp) = var + (var ⇒ exp) + exp2 [V, L,A]- exp

in the category Fw. We define the presheaf eic def= varω ⇒
exp. Note that by Proposition 2, the presheaf varω ⇒ (−)
preserves all colimits. It obviously has a left adjoint, so
preserves all limits. Hence we have the following

eic ∼= varω ⇒ (var + (var ⇒ exp) + exp2)
∼= (varω ⇒ var) + (varω ⇒ (var ⇒ exp)) + varω ⇒ exp2

∼= (varω ⇒ var) + var ⇒ (varω ⇒ exp) + (varω ⇒ exp)2

∼= Kω + (var ⇒ eic) + eic2

∼= Kω + eic + eic2

where the penultimate isomorphism follows by calculating

with Lemma 5. Moreover, if in Proposition 1 we take T ′ def=

Tsr, L
def= varω ⇒ (−) and T def= Twh, we see that eic is an

initial algebra for Tsr. Similarly, we can see that eic is also
an initial algebra for Tsr′ . Finally, note that varn ⇒ (−)
also has both left and right adjoints, so varn ⇒ eic is also
an initial algebra for the same functors.

6. RELATED WORK AND CONCLUSIONS
The idea of viewing open terms as functions on arbitrary

numbers of variables implemented via streams originally ap-
peared in [6]. The only reported experiment was the ad-
equacy of the translation between the second order weak
HOAS syntax and a first-order one, with the induction prin-
ciple being provided by the valid predicate. Note that this
work did not address the question of how to define a combi-
nator for primitive recursion. Later, possibly due to the lack
of extensional equality in Coq, [5] abandoned this track to
revert to standard weak HOAS. The term-in-context style of
encoding was resurrected in McDowell’s thesis [13] to handle

proofs by induction over open terms in a two-level approach,
such as type uniqueness. Miller noted the same problems
with respect to the encoding of properties of the π-calculus
such as bisimulation [17] which eventually led him to in-
ternalize this behavior with a new universal quantifier ∇
operating over local signatures [18].

Miller was also the first one to investigate functional pro-
gramming over HOAS [16]. Here the idea is to enrich a
language such as SML with the capability to directly han-
dle data involving variable binding, abstraction and higher-
order pattern matching on bound variables. One related
outcome is the FreshML language by Pitts and Gabbay [26],
which is a full-fledged functional language which addition-
ally provides a very elegant and semantically sound [11] way
to program modulo α-conversion. Programs are checked for
freshness of object bound names and are promoted only
if used in ways that are insensitive to renaming. Many
other features are present (see www.freshml.org); we just
remark that abstractions act over pairs “atom, expression”
and capture-avoiding substitution is easily programmed over
a user-defined data type with variable binding. Gabbay
is exploring same ideas in the context of a logical frame-
work [10].

Schürmann [24] proposes functional programming with
full HOAS via a two-level approach: the Edinburgh Logi-
cal Framework provides the data representation language,
and a meta type-theory M+

ω supports programming with
pattern matching and recursion. The crucial problem of re-
cursion over open LF terms is solved by the notion of regular
world which captures the predictable way a datatype with
variable bindings is extended when descending by recursion
into the binding cases. This idea is also at the heart of Twelf,
the meta-logical framework which allows induction over full
HOAS [23].

A one-level approach based on a modal λ-calculus was in-
stead suggested in [25] and somewhat refined in [7]. The
aim is to provide a uniform system where one can define
functions by case analysis and primitive recursion, while
preserving the adequacy of full HOAS encodings. This is
achieved by separating the parametric function space from
the primitive recursive one with the S4 box operator, which
classifies those closed terms over which one can iterate or
distinguish cases. This approach, albeit elegant, has not
been implemented yet.

These approaches differ from ours in that they involve
re-engineering of the logical framework. Our work has the
advantage that it remains within (classical) Isabelle HOL.

Our presheaf model was developed by contemplating the
ideas presented in [12] and [9]. In these papers, the gen-
eral idea that presheaf toposes can be used to model vari-
able binding is developed. In particular, Hofmann shows
how to formulate initial algebras to validate induction prin-
ciples. The contribution of our paper is to adapt this work to
our setting; the modelling of infinite contexts requires care-
ful handling of technical detail, which extends this previous
work.

We solved the problem of how to define a combinator
for primitive recursion over HOAS by adapting some known
techniques (described in the previous Section) to produce a
type eic of λ-calculus terms-in-infinite-contexts. This type
satisfies the isomorphism var ⇒ eic ∼= eic which crucially
enables recursion under binders by creating and internal-
izing a closed world assumption for “traditional” terms-in-



context (open terms). The combinator allows us to define
functions directly—in a theorem prover one often has to
show that relations are total and functional. Here, the proof
of existence of the combinator subsumes such labour. We
have developed an interesting topos model, and showed that
we can exhibit the types over which we perform recursion
as initial algebras in the topos model. We have applied our
work to the encoding of, and reasoning about, a substantial
object level language.

In the proof of subject reduction for MIL-lite there are
various lemmas for the weakening and substitution prop-
erties of the typing judgment. These are proved via con-
ventional arguments about the injective relabelling of free
variables. These proofs are elegantly expressed in Bsyntax

since relabelling amounts to pre-composition of a stream
l : : nat ⇒ var with a function r : : nat ⇒ nat . In order
to determine how well our techniques scale it would be inter-
esting to see if these proofs could be made generic or proved
‘once and for all’ for suitable equivariant predicates [11].

To reason about object logics we will need to establish
principles of induction and primitive recursion over syntax
defined by an arbitrary binding signature. Given the work
presented here, the derivation of such principles should be
routine and we hope to implement them as an Isabelle HOL
package similar to the current datatypes package. Moreover,
we shall investigate the possibility of defining functions by
cases over HOAS and by well-founded recursion.

The combinator for primitive recursion has been devel-
oped in a framework of weak HOAS (where variables are of
type var rather than of type exp). In principle, there is no
reason why the same approach could not be applied in the
full HOAS framework of Hybrid [1], together with an ex-
tension of the categorical models. There are some technical
details to be sorted out but it should be possible to prove in
Hybrid that substitution defined by primitive recursion co-
incides (for proper terms) with the meta-level β-equality of
Isabelle. The full HOAS notion of terms-in-contexts can be
used to implement Miller & Tiu’s ∇ logic [18], where local
signatures are seen as contexts, e.g σ . B as λσ.B.

Finally, nothing prevents us from implementing the static
and dynamic semantics of MIL-lite with the two-level ap-
proach [8, 20], that is encoding object-level environments
such as typing contexts with hypothetical judgments in the
meta-logic. Since MIL-lite has some imperative features,
it would benefit from an encoding based on a linear spec-
ification logic in the spirit of[13]. Further, the terms-in-
context approach directly supports reasoning by induction
over open terms; this is crucial when establishing the notion
of program equivalence [21] which is used for the compiler
optimizations in MIL-lite [2],
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APPENDIX

Some Lemmas and Propositions
We shall make crucial use of the fact that Fw has coproducts;
in modeling Bsyntax we need a specified choice.

Lemma 1. The category Fω has coproducts. The data in
the proof constitute a specific choice.

Proof. There are coproduct diagrams

n
inl- n+m ¾inr

m

where inl(i) def= i and inr(j) def= n+ j; and

n
inl - ω ¾ inr

ω

where inl(i) def= i and inr(j) def= n+ j; and

ω
inl - ω ¾ inr

ω

where inl(i) def= 2i and inr(j) def= 2j + 1. Note the fact that
in both cases, inl(0) = 0. This will play a crucial role in
modeling variable binding—recall the discussion at the end
of Section 2 where it is pointed out that abstractions are
formed over 0th variable projections. We will sometimes
write n+ ω or ω + ω instead of ω if this makes the use of a
canonical coproduct more transparent.

Each morphism ρ in Fω will give rise to a re-labelling of
variable projections, sending V (l ! i) to V (l ! ρ(i)). In order
to do this we will need to extend each ρ so that it may be
composed with a stream l. The lemma below shows how to
do this.

Lemma 2. Suppose that ρ : χ→ ζ is any Fω morphism.

Then there is a canonical morphism ρ† def= [ι◦ρ, idω] : ω → ω
which extends the source of ρ if χ is finite, that is for all
i < χ, ρ†(i) = ρ(i) and otherwise ρ†(i) = i, where ι : ζ → ω.

The next lemma will be used in the definition of the cat-
egorical analogue of Bsyntax abstraction, allowing contexts
to be expanded or contracted

Lemma 3. For any m and n we have varn ⇒ eic ∼=
varm ⇒ eic given by a mapping ξ 7→ bξ which is defined
in the proof.

Proof. Without loss of generality, suppose that m =
n+ ε with ε ≥ 1 (if not swap n and m). Define isomorphism
witnesses by setting

λ v0 . . . vn−1 l. e v0 . . . vn−1 l 7→
λ v0 . . . vn−1 u0 . . . uε−1 l. e v0 . . . vn−1 (u0 # . . . # uε−1 # l)

and

λ v0 . . . vm−1 l. e v0 . . . vm−1 l 7→
λ v0 . . . vn−1 l. e v0 . . . vn−1 (l ! 0) # . . . (l ! ε− 1) # (drε l)

The easy proof involves simple reasoning up to βη equal-
ity.

Lemma 4 ensures the re-labelling mentioned above to pre-
serve properness of terms.

Lemma 4. If f : : var ⇒ var and prop (λ l. e l), then
prop (λ l. e (l ◦ f)).

Lemma 5 is used in the proof of Proposition 2, and at the
end of Section 5.

Lemma 5. Let G be a presheaf. Then for any χ in Fω

we have a natural isomorphism varχ ⇒ G ∼= δχ G where

varχ def= Πi∈χvar is a product in the presheaf category Fw.

Proof. We have

(varχ ⇒ G)(ζ) ∼= Fw((Y ζ)× (Y χ), G) ∼=
Fw(Y (ζ + χ), G) ∼= G(χ+ ζ)

where the first isomorphism follows from the definition of
exponentials and the simple fact that varχ ∼= Y χ in Fw,
the second from the universal property of coproducts, and
the final isomorphism is Yoneda together with a simple iso-
morphism of coproducts.



Proposition 1 is used in the proof of the existence of var-
ious initial algebras.

Proposition 1. Let T, T ′, L,R : C → C be functors, such
that L a R, and φ : T ′ ◦ L ∼= L ◦ T naturally. If (Ω, σ)
is an initial object in the category CT of T -algebras, then

(LΩ, Lσ ◦ φΩ) is initial in CT ′ .

Proof. We can define functors LT : CT → CT ′ and
RT ′ : CT ′ → CT by setting

LT (A, σA) def= (LA,LσA ◦ φA)

RT ′(B, σB) def= (RB,RσB ◦ T ′(εRB) ◦ φ−1
RB)

on objects, with the expected extension to morphisms. It

is a tedious exercise to show that LT a RT ′ . Hence LT

preserves all colimits and hence LT (Ω, σ) is an initial T ′-
algebra as required.

Proposition 2 shows that the functor varn ⇒ (−) is itself
a left adjoint, and hence it can be used as an instance of L
in Proposition 1.

Proposition 2. The functor varχ ⇒ (−) : Fw → Fw

has a right adjoint R given on objects and morphisms by

RF (ξ) def= Fw(varχ ⇒ Y ξ, F ).

Proof. We have to give a natural bijection Fw(varχ ⇒
G,F ) ∼= Fw(G,RF ). Note that from Lemma 5 we have
varχ ⇒ Y ζ ∼= Fω(ζ, χ + (−)). If α : G → RF in Fw, then
we have

(αζ : Gζ → Fw(Fω(ζ, χ+ (−)), F ) | ζ ∈ Fω)

and we define the mate across the adjunction by (α̃ζ : G(χ+

ζ) → Fζ | ζ ∈ Fω) by (α̃ζ(x)
def= αχ+ζ(x)ζ(idχ+ζ) | ζ ∈ Fω).

The remaining details are omitted.

The final two lemmas of this section are minor modifica-
tions of standard results used in the construction of initial
algebras as (co)limits of diagrams of chains [27].

Lemma 6. Suppose that (Sr | r ≥ 0) is a family of presheaves
in Fw, with ir : Sr ↪→ Sr+1 for each r. Then there is a union
presheaf U in Fw, such that i ′r : Sr ↪→ U . We sometimes
write ∪rSr for U .

Proof. On objects χ of Fω we define Uχ def=
S

r Srχ. On
morphisms ρ : χ→ ζ in F we define the function Uρ : Uχ→
Uζ by setting (Uρ)(ξ) def= (Srρ)(ξ) where ξ ∈ Uχ, and r is
any index for which ξ ∈ Sr(χ).

Lemma 7. Let (φr : Sr → A | r ≥ 0) be a family of
natural transformations in Fw with the Sr as in Lemma 6,
and such that φr+1 ◦ ir = φr. Then there is a unique natural
transformation φ : U → A, such that φ ◦ i ′r = φr.

Proof. The proof requires a simple calculation using the
definitions. Note that there are functions φχ : Uχ → Aχ

where we set φχ(ξ) def= (φr)χ(ξ) for ξ ∈ Srχ. The conditions
of the lemma (trivially) imply the existence and uniqueness
of the φχ, which are natural in χ.

Proof Sketches
Lemma 5

Proof. We have

(varχ ⇒ G)(ζ) ∼= Fw((Y ζ)× (Y χ), G) ∼=
Fw(Y (ζ + χ), G) ∼= G(χ+ ζ)

where the first isomorphism follows from the definition of
exponentials and the simple fact that varχ ∼= Y χ in Fw,
the second from the universal property of coproducts, and
the final isomorphism is Yoneda together with a simple iso-
morphism of coproducts.

Lemma 6

Proof. On objects χ of Fω we define Uχ def=
S

r Srχ. On
morphisms ρ : χ→ ζ in F we define the function Uρ : Uχ→
Uζ by setting (Uρ)(ξ) def= (Srρ)(ξ) where ξ ∈ Uχ, and r is
any index for which ξ ∈ Sr(χ).

Lemma 7

Proof. The proof requires a simple calculation using the
definitions. Note that there are functions φχ : Uχ → Aχ

where we set φχ(ξ) def= (φr)χ(ξ) for ξ ∈ Srχ. The conditions
of the lemma (trivially) imply the existence and uniqueness
of the φχ, which are natural in χ.

Proposition 1

Proof. We can define functors LT : CT → CT ′ and
RT ′ : CT ′ → CT by setting

LT (A, σA) def= (LA,LσA ◦ φA)

RT ′(B, σB) def= (RB,RσB ◦ T ′(εRB) ◦ φ−1
RB)

on objects, with the expected extension to morphisms. It

is a tedious exercise to show that LT a RT ′ . Hence LT

preserves all colimits and hence LT (Ω, σ) is an initial T ′-
algebra as required.

Proposition 2

Proof. We have to give a natural bijection Fw(varχ ⇒
G,F ) ∼= Fw(G,RF ). Note that from Lemma 5 we have
varχ ⇒ Y ζ ∼= Fω(ζ, χ + (−)). If α : G → RF in Fw, then
we have

(αζ : Gζ → Fw(Fω(ζ, χ+ (−)), F ) | ζ ∈ Fω)

and we define the mate across the adjunction by

(α̃ζ : G(χ+ ζ) → Fζ | ζ ∈ Fω)

by

(α̃ζ(x)
def= αχ+ζ(x)ζ(idχ+ζ) | ζ ∈ Fω)

The remaining details are omitted.

Obtaining an Initial Algebra for Twh in Fw

Next we consider the structure map σ : var +δ Ω+Ω2 → Ω.
This natural transformation in Fw must be given by a cotu-

pling of (insertion) natural transformations σ def= [κ, κ′, κ′′].
For the first morphism, note that var ∼= S1, and we set

κ def= i ′r◦ ∼= where i ′r : Sr ↪→ U . We define κ′′ by applying
Lemma 7 to the family of morphisms

κ′′r : Sr
inSr - var + Sr + S2

r = Sr+1 ↪→ Ω



Finally, to define κ′, note that (δ T )ξ def= T (1+ξ) =
S

r Sr(1+
ξ) =

S
r(δ Sr)ξ = (

S
r δ Sr)ξ. Hence we can apply an in-

stance of Lemma 7 to the family of morphisms

κ′r : δ Sr
inδ Sr - var + δ Sr + S2

r = Sr+1 ↪→ Ω

Note that we must check that δ Sr ↪→ δ Sr+1 for all r, by
induction. The routine details are omitted.

We must verify that σ : TwhΩ → Ω is an initial algebra.
Consider

var + δ Ω + Ω2 σ - Ω

(∗)

var + δ A+A2

var + δ α+ α2

?

α
- A

α

?

To define α : Ω → A we specify a family of natural trans-
formations αr : Sr → A and appeal to Lemma 7. We define
α0 to be the natural transformation with components the

empty functions ∅ : ∅→ Aχ for each χ in Fω, and αr+1
def=:

[α◦invar , α◦inA◦δ αr, α◦inA2◦α2
r] : Sr+1 = var+Sr+S

2
r → A

The verification that (∗) commutes is omitted.

Naturality of L

Naturality is the requirement that for any ρ : χ→ ζ in Fω,
the diagram below commutes

(δ exp)χ = exp(1 + χ)
Lχ- exp χ

(δ exp)ζ = exp(1 + ζ)

(δ exp)ρ = exp(1 + ρ)

?

Lζ

- exp ζ

exp ρ

?

It does commute, as seen from the following calculation

λ l. e (l ◦ f)
Lχ- λ l. L u. be u (l ◦ (λ k. f(k)− 1))

λ l. e (l ◦ (1 + ρ)† ◦ f)

exp(1 + ρ)

?

Lζ

- λ l. L u. be u (l ◦ (λ k. ρ(f(k)− 1))

exp ρ

?

whose proof requires a straightforward calculation, and Lemma 1
which specifies coproducts in Fω. The key point here is
that in forming the abstractions via Lζ , any variable pro-
jection index k for which f(k) = 0 will be abstracted, as

(1 + ρ)†(f(k)) = (1 + ρ)(f(k)) = 0. Otherwise f(k) =

1 + j for some j, and then λ k. ((1 + ρ)† ◦ f)(k) − 1 =
λ k. (ρ(f(k)− 1) + 1)− 1 using Lemma 1 and Lemma 2.

Proving Initiality of (exp, [V, L,A])

We remark that for any χ in Fω, there is a natural bijection

Ω χ

φχ-∼=¾
ψχ

exp χ

We shall just show that ψχ◦φχ = idΩ χ and omit the other
details. Suppose that ξ ∈ Srχ ⊂ Ωχ. Then by definition,
ψχ(φχ(ξ)) = ψχ((φr)χ(ξ)). We show by induction that for
all r ≥ 0, if ξ is any element in level r and χ any object of Fω,
then ψχ((φr)χ(ξ)) = ξ. For r = 0 the assertion is vacuously
true, as S0χ is always empty. We assume the result holds
for any r ≥ 0. Let ξ ∈ Sr+1χ = var χ + Sr(1 + χ) + Srχ

2.
Then we have

ψχ((φr+1)χ(ξ)) = ψχ([Vχ, Lχ ◦ (φr)1+χ,Aχ ◦ (φr)
2
χ](ξ))

We can complete the proof by analyzing the cases which
arise depending on which component ξ lives in. We just
consider the case when ξ = inSr(1+χ)(ξ

′) for some ξ′ ∈ Sr(1+
χ). We have

ψχ((φr+1)χ(ξ)) = ψχ((Lχ ◦ (φr)1+χ)(ξ′))

= ψχ(λ l. L u. ̂(φr)1+χ(ξ′) u l)

= inSr(1+χ)χ(ψ1+χ(λ l. ̂(φr)1+χ(ξ′) (l ! 0) (tl l)))

= inSr(1+χ)χ(ψ1+χ((φr)1+χ(ξ′)))

= inSr(n+1)χ(ξ′)

= ξ

where the penultimate equation follows by induction.


