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ABSTRACT. The problem of estimating the variance of the Horvitz-Thompson estimator under a prob-
ability proportional to size design is concerned. Some IPPS-bootstrap algorithms are proposed with the
purpose of both simplifying available procedures and of improving efficiency. Results from a simula-
tion study using both natural and artificial data are presented in order to empirically study the bias and
stability of the bootstrap variance estimators proposed.

1 INTRODUCTION

In complex survey sampling every population unit i ∈ U is assigned a specific probability
πi,(i = 1 . . .N) to be included in the sample and the random mechanism providing sample
data further violates the classical iid hypothesis for instance with cluster, multistage and
without replacement selection. We assume the total Y = ∑

N
i=1 yi of a quantitative study vari-

able y as the parameter to be estimated. A sampling design without replacement and with
inclusion probability proportional to an auxiliary variable x (usually referred as IPPS sam-
pling or πPS sampling) paired with the well-known unbiased Horvitz-Thompson estimator
ŶHT = ∑

n
i=1 yi/πi devises a strategy methodologically appealing since the estimator variance

V (ŶHT ) tends to zero as the relationship between x and y approaches proportionality. From
a practical prospective a variance estimator is essential for assessing estimate’s accuracy and
for providing confidence intervals. For a fixed sample size n, the Sen-Yates-Grundy estimator

v̂SY G = ∑
i< j

n

∑
j=1

πiπ j−πi j

πi j

(
yi

πi
−

y j

π j

)2

(1)

has a closed analytic form and is unbiased for V (ŶHT ) under non restrictive conditions. How-
ever it presents some drawbacks which limit the applications: v̂SY G depends on the joint in-
clusion probability πi j of pair of sampled units i 6= j ∈U , (i, j = 1 . . .N) which can not be
computed for sample sizes greater than 2 for the greatest part of the collection of IPPS designs
available in literature, it is not uniformly positive for any IPPS design and it is often stated as
highly instable in practical applications. A bootstrap estimate, although numeric, is a natural
alternative for addressing those issues since it is positive by construction, can be computed for
any sample size and does not require the explicit knowledge of joint inclusion probabilities.
Since the original Efron’s bootstrap applies in the classical iid setup (Efron, 1979; Shao and
Tu, 1995) suitable modified bootstrap algorithms are needed in order to handle the complex-
ity of the sampling. In section 2 IPPS-bootstrap algorithms previously appeared in literature
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are briefly discussed. Three modified IPPS-bootstrap algorithms aiming at both simplifying
the procedure and improving efficiency are introduced in section 3 and 4. Results from an
extended simulation study using both natural and artificial data are presented in section 5.

2 IPPS BOOTSTRAP ALGORITHMS

Several proposals to adapt the original Efron’s bootstrap to handle with non-iid situations
have been introduced, particularly for the without replacement selection. Among the other,
the with-replacement bootstrap (Mc Carthy and Snowden, 1985), the rescaling bootstrap (Rao
and Wu, 1988), the mirror-match bootstrap (Sitter, 1992) and the without-replacement boot-
strap (Gross, 1980 and Chao and Lo, 1985). The latter is based on a pseudo-population U∗

termed bootstrap population, formed by sampled units only each replicated N/n times, and
on a without replacement resampling from U∗ with the same sample size n as in the original
sample. Holmberg (1998) generalized this approach for a general IPPS sampling design. For
each unit i = 1 . . .n included in the original sample s, the inverse of the inclusion probability
is decomposed as 1/πi = ci + ri where ci = b1/πic, i.e. the integer part, and 0≤ ri < 1. Let εi
be the realization of n independent Bernoulli random variables with parameter ri. Then define
di = ci + εi. The Holmberg’s IPPS-bootstrap algorithm consists of the following steps:

1. Construct the bootstrap population U∗ = {1∗, . . . , i∗, . . . ,N∗} replicating di times each
unit in s . Thus N∗ = ∑

n
i=1 di and X∗ = ∑

n
i=1 dixi.

2. Select from U∗ a sample s∗ of size n according to the original IPPS sampling design with
(resampling) inclusion probabilities πi∗ = nxi∗/X∗.

3. Calculate the replication Ŷ ∗ = ∑i∈s∗ yi/πi∗ of ŶHT .
4. Repeat steps 3 to 4 B times (B chosen sufficiently large) providing the bootstrap distribu-

tion
{

Ŷ ∗b ,b = 1, . . . ,B
}

5. Let v̂boot be the variance of the bootstrap distribution; the Holmberg’s bootstrap estimate
of V

(
ŶHT

)
is given by

v̂bH =
n

n−1
· v̂boot (2)

Note that in the Holmberg’s method a further step in the bootstrap algorithm is needed for
constructing the bootstrap population U∗. Particularly, in step 1. n random variables have to
be simulated in order to compute the weights di. Then, if ri does not equal zero for some i, an
entire class U =

{
U∗h ,h = 1 . . .2n

}
of 2n possible bootstrap populations remains defined. The

further step is actually performed to select a unique bootstrap population by randomization
into U. As a consequence the Holmberg’s IPPS-bootstrap results computationally heavy and
resource consuming.

3 0.5 IPPS BOOTSTRAP

Our first proposal aims at simplifying the original Holmberg’s algorithm by skipping the ran-
domization step discussed above. We will call this modified algorithm “0.5 IPPS-bootstrap”
since it is based on the following trivial approximation in order to compute weights di

di =
{

ci if ri < 0.5
ci +1 if ri ≥ 0.5 (3)



Hence a unique bootstrap population U∗ is readily derived. Moreover, it is the maximum
probability bootstrap population in the class U. In fact it maximizes the joint probability
function of the n independent Bernoulli trials required by the original Holberg’s algorithm.
Except for this slight modification, the bootstrap steps remain as described in section 2.

4 x-BALANCED IPPS BOOTSTRAP

With the last two proposals efficiency gains in the bootstrap variance estimator are fostered
by a more complete use of the auxiliary information. We suggest to balance (Tillé, 2006)
with respect to the known population total X = ∑

N
i=1 xi when constructing U∗ i.e. under the

restriction X∗ ≈ X . Let U∗0 be the basic bootstrap population formed by sampled units each
replicated ci times. Starting from U∗0 , iteratively add sampled units i ∈ s previously sorted in
a decreasing order according to ri. The process ends when the bootstrap population ensuring
the best approximation to X is detected in U, i.e. when |X∗−X | reaches its minimum in U.
The algorithm consists of the following steps:

1. Start with U∗(0) = U∗0 ; s(0)← s
2. Iteration step:

t← 1
Select unit kt in s(t) so that rkt ≥ r j ∀ j ∈ s(t)
Add unit kt to U∗(t−1) thus producing U∗(t)
If X∗(t) > X , exit the loop
next t

3. If |X∗(t)−X |< |X∗(t−1)−X | then U∗ = U∗(t), otherwise U∗ = U∗(t−1)
4. Perform steps 2 to 4 of the original Holmberg’s algorithm as described in section 2.

We will denote the resulting bootstrap estimate of V (ŶHT ) with v̂bHx1. The last proposal con-
sists of the previous algorithm except for the fact that an additional unit i ∈ s is inserted into
U∗(t−1) by considering the values qi = π

−1
i /(ci +1) instead of ri. By using qi an advantage to

units with higher ci for equal ri is given, i.e. to units appearing with larger frequency in U∗0 .
The resulting bootstrap estimate will be denoted by v̂bHx2. Notice that both the x-balanced
algorithms ensure the construction of U∗ in a number of steps less or equal to n leading to a
bootstrap population included in U. Hence a potential computational advantage with respect
to the original Holmberg’s algorithm is given while efficiency improvements are expected
from using a bootstrap population closer the the actual population according to a basic boot-
strap principle.

5 SIMULATION

In order to check the performance of the algorithms proposed a simulation study has been
carried out. Several variance estimators have been compared: the customary v̂SY G, the naı̈ve
bootstrap estimator provided by the classical Efron’s bootstrap, Holmberg’s bootstrap esti-
mator v̂bH as given in section 2 and the three variance estimators provided by the algorithms
proposed in section 3 and 4: v̂bH0.5, v̂bHx1, v̂bHx2. Two approximate estimators following by



approximating the joint inclusion probabilities πi j in terms of πi only as recommended from
previous simulation studies (Haziza, Mecatti and Rao, 2004; 2008) have been also consid-
ered: v̂HR (Hartley and Rao, 1962) and v̂BM . Samples were simulated under the Rao-Sampford
IPPS design and standard Monte Carlo performance indicators have been computed: the MC
Relative Bias: RB =

(
EMC(v̂)−V (ŶHT )

)
/V (ŶHT ), the MC Relative Efficiency of a bootstrap

estimator v̂ with respect to v̂SY G: E f f = MSEMC(v̂SY G)/MSEMC(v̂) and the MC coverage of
95% bootstrap confidence intervals according to the percentile method cove.

5.1 SIMULATION DESIGN

Both natural and artificial populations have been considered. Two natural populations from
the MU281 dataset of 281 Swedish municipalities (Särndal et al.) consisting of N = 100 units
randomly selected from MU281 and three artificial populations produced as follows. The
auxiliary variable x was generated according to a random variable Gamma with parameters
α and β giving chosen levels of variability of X as measured by cvx. The study variable y
was generated conditionally to x under the model yi|xi = axi +ni, where ni are N independent
random variables normally distributed with zero mean and variance σ2xi. The values of a and
σ2 were chosen to garantee the correlation between x and y close to 0.9 since high correlation
suggests the use of a IPPS sampling design. The simulation set up is described in Table 1.

Population N cvy cvx ρxy
MU100 100 1.107 1.015 0.9931

MU100CS 100 0.325 0.527 0.2829
GN1 100 0.529 0.598 0.897
GN2 100 0.981 1.122 0.916
GN3 100 1.419 1.692 0.928

Table 1. Characteristics of natural and artificial populations simulated

0.05, 0.10 and 0.15 were used for the sampling fraction f = n/N under the restriction
πi < 1 for all population units. The number of simulation steps (between 1000 and 10000) has
been used to control the Monte Carlo error according to the rule:

∣∣[EMC
(
ŶHT

)
−Y

]
/Y

∣∣ < 1%
and

∣∣[EMC(v̂SY G)−V (ŶHT )
]
/V (ŶHT )

∣∣ < 3%.

5.2 SIMULATION RESULTS

A synthesis of the simulation results is displayed in Tables 2, 3 and 4. It clearly appears
the poor performance of the naı̈ve bootstrap algorithm when applied to a non-iid situation
as in the IPPS sampling design. Simulation results also show the good performance of the
modified algorithms proposed in section 3 and 4 in terms of bias and relative efficiency as
compared with all the other estimators considered both bootstrap and analytic. In some cases
they allows for efficiency gains greater or equal 7% with respect to the customary estimator.
As a conclusion the bootstrap approach which is more general than the analytic approach for
applying to any IPPS sampling design with any sample size n, can be improved as suggested



in section 3 and 4 under both respect of computational simplification and statistical proper-
ties of the resulting variance estimator. Future research will concern the estimation of other
population characteristics such as the median for which there is no analytic standard variance
estimator.

estimator
MU100 f = 0.05 MU100 f = 0.10 MU100CS f = 0.05 MU100CS f = 0.10
RB Eff cove RB Eff cove RB Eff cove RB Eff cove

SYG -1.62 1.0000 94.1 0.85 1.0000 94.5 -2.46 1.0000 88.2 -1.18 1.0000 87.3
bH 0.23 0.9671 79.3 1.76 1.0182 76.9 -2.42 1.0191 78.3 -1.24 1.0178 83.6

bH0.5 0.41 1.0031 79.9 5.58 1.0093 81.2 -2.20 1.0154 78.0 -1.82 1.0300 82.4
bHx1 0.53 0.9939 82.4 1.12 1.0740 89.2 -1.43 0.9842 78.1 -0.94 1.0191 83.4
bHx2 0.13 0.9872 82.3 3.00 1.0108 87.3 -2.12 0.9960 78.5 0.37 0.9995 83.5
bnaı̈ve 8.22 0.8747 85.1 23.46 0.6538 92.3 1.15 0.9859 79.0 7.00 0.9217 85.1

BM 0.40 0.9957 94.2 3.45 1.0287 94.7 -2.14 1.0102 88.8 -0.83 1.0143 87.7
HR -1.48 0.9991 94.1 1.53 0.9937 94.5 -2.44 0.9998 88.3 -1.06 0.9983 87.4

Table 2. Simulation results for natural populations.

estimator
GN1 f = 0.05 GN1 f = 0.10 GN1 f = 0.15

RB Eff cove RB Eff cove RB Eff cove
SYG 2.01 1.0000 96.0 2.27 1.0000 94.6 0.46 1.0000 94.4
bH 3.21 0.9760 84.1 3.39 0.9828 89.6 1.50 0.9718 90.0

bH0.5 2.84 0.9960 83.6 5.00 0.9249 89.3 5.44 0.8680 90.4
bHx1 3.16 0.9784 84.7 3.59 0.9698 90.2 2.97 0.9587 91.4
bHx2 3.35 0.9785 85.0 3.66 0.9663 89.8 2.17 0.9557 91.3
bnaı̈ve 8.63 0.8813 85.2 16.36 0.7302 91.4 22.64 0.5556 94.0

BM 3.24 0.9834 96.2 3.66 0.9851 94.8 1.83 0.9993 94.7
HR 1.99 1.0009 96.0 2.23 1.0020 94.6 0.38 1.0030 94.4

Table 3. Simulation results for artificial population GN1.

estimator
GN2 f = 0.05 GN2 f = 0.10 GN2 f = 0.15 GN3 f = 0.05 GN3 f = 0.10

RB Eff cove RB Eff cove RB Eff cove RB Eff cove RB Eff cove
SYG 2.84 1.0000 95.8 0.98 1.0000 95.9 0.64 1.0000 95.4 2.04 1.0000 95.7 -2.29 1.0000 93.8
bH 4.57 0.9963 82.1 2.19 1.0055 89.7 1.87 0.9915 86.8 4.45 1.0080 84.0 0.20 0.9012 84.4

bH0.5 4.58 0.9925 82.3 5.61 0.9394 89.2 -2.44 1.1301 90.6 0.78 1.0769 85.8 -1.27 1.0421 86.6
bHx1 4.45 0.9996 82.3 3.02 0.9914 90.9 -0.43 1.0804 91.6 2.50 1.0350 84.9 -0.55 1.0140 88.0
bHx2 4.28 1.0011 82.3 2.49 0.9756 91.3 3.40 0.9424 91.1 4.34 0.9802 84.0 1.50 0.9298 88.6
bnaı̈ve 13.76 0.8556 83.1 24.00 0.6554 94.1 40.33 0.4302 95.6 19.13 0.8212 86.8 40.57 0.4331 95.0

BM 4.89 0.9997 95.8 3.07 1.0064 94.8 3.18 1.0374 95.5 5.26 1.0279 95.8 2.46 1.0090 95.6
HR 2.81 1.0033 95.8 0.91 1.0061 94.6 0.49 1.0125 95.4 1.92 1.0184 95.7 -2.43 1.0330 94.4

Table 4. Simulation results for artificial populations GN2 and GN3.
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