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Abstract 

Background 

Environmental pollution is a known risk factor for multiple diseases and furthermore 

increases rate of hospitalisations. We investigated the correlation between emergency room 

admissions (ERAs) of the general population for respiratory diseases and the environmental 

pollutant levels in Milan, a metropolis in northern Italy. 

Methods 

We collected data from 45770 ERAs for respiratory diseases. A time-stratified case-crossover 

design was used to investigate the association between air pollution levels and ERAs for 

acute respiratory conditions. The effects of air pollutants were investigated at lag 0 to lag 5, 

lag 0–2 and lag 3–5 in both single and multi-pollutant models, adjusted for daily weather 

variables. 

Results 

An increase in ozone (O3) levels at lag 3–5 was associated with a 78% increase in the number 

of ERAs for asthma, especially during the warm season. Exposure to carbon monoxide (CO) 

proved to be a risk factor for pneumonia at lag 0–2 and in the warm season increased the risk 

of ERA by 66%. A significant association was found between ERAs for COPD exacerbation 

and levels of sulphur dioxide (SO2), CO, nitrate dioxide (NO2), and particulate matter (PM10 

and PM2.5). The multipollutant model that includes all pollutants showed a significant 

association between CO (26%) and ERA for upper respiratory tract diseases at lag 0–2. For 

chronic obstructive pulmonary disease (COPD) exacerbations, only CO (OR 1.19) showed a 

significant association. 

Conclusions 

Exposure to environmental pollution, even at typical low levels, can increase the risk of ERA 

for acute respiratory diseases and exacerbation of obstructive lung diseases in the general 

population. 
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Background 

Today, in industrialized countries as in the low and middle income ones, the association of 

respiratory diseases and environmental pollution represents a relevant social and health 

problem. Various studies have been performed to evaluate the effects of air pollution on 

health status demonstrating that not only West Europe and North America are involved in this 

problem but also developing countries [1-3]. However, further investigation, in the form of 

both human and animal studies, as well as in vitro, needs to be performed to fully 

comprehend the relationship between air pollution and human morbidity and mortality. 

Several experiences have demonstrated the adverse health effects of environmental pollution 

[4] particularly concerning respiratory [5] and cardio-vascular diseases [6]. Special attention 

will be focused on the respiratory system which is the first point of contact with air pollutants 

in humans. Seaton et al. [7] proposed that inhaled air pollutants induce alveolar inflammation 

with activation of cellular and molecular chain mechanisms promoting lung disease 

exacerbations. The level of environmental pollution has a role in human health as well as 

temporal exposure. The differences in pollutant exposure between single individuals is 

another interesting point and probably subjects at risk, such as people with asthma and other 

chronic respiratory diseases, may be more likely affected by particulate pollution if they live 

or work close to busy roads or other sources of air pollution [8]. Furthermore, some high-risk 

groups have been identified, such as children, [9] and elderly people [10]. Acute effects 

studies have found significant correlation between concentrations of particulate matter with 

an aerodynamic diameter ≤ 10 or 2.5 micron (PM10 and PM2.5), NO2, SO2, and disease 

exacerbations, emergency admissions, hospitalizations and mortality [5]. The main sources of 

exposure in the general population are combustion processes, traffic, automobile service 

stations, gasoline transfer, exhaust fumes from motor vehicles, and industrial emissions [11]. 

The association between acute or prolonged effect of particulate air pollution and emergency 

room visits or hospital admission for respiratory conditions and asthma represent, even today, 

an important question. In fact, many previous experiences have reported that pollutants 

promote health problems in different countries thus including Italian cites as well [12-17]. 

Indeed, every country and city has their geographical, socio-political and health regulations, 

so performing large number of studies may offer the possibility to better understand the 

global problem of air pollution. Thus, the aim of our study was to investigate the correlation 

between ERA for respiratory diseases in the general population and the environmental 

pollutant levels in Milan, the largest metropolis of northern Italy. 

Methods 

Study population 

This study (named POEMI: POllution and Emergencies in MIlan) was carried out in the 

Emergency Departments (EDs) of the main five city hospitals in Milan, Italy. These five 

hospitals covered about 80% of the total number of ERAs in Milan. Patients were included in 

the study carried out between January 1, 2007 and December 31
st
, 2008 if they were upper 

respiratory tract infections (URTI), acute asthma, pneumonia or exacerbation of chronic 

obstructive pulmonary disease (COPD). An MD reviewed the ED records and recorded 

admission date, age, gender, race, postal code, ED diagnosis and outcome (either discharge or 

death) for each patient. 



The study was firstly approved by the central ethics committee and then by the other 

individual research ethics boards. 

Data on air pollution exposure 

Outdoor air pollution levels within the city of Milan are measured by eight air quality 

monitoring stations managed by the Regional Environmental Protection Agency (ARPA). At 

the time of this study, the number of city stations for monitoring nitrogen oxides (NO, NO2, 

NOX) were eight, for CO five, O3 and PM10 three, benzene, toluene and xylenes two, and SO2 

and PM2.5 one. 

The methods and technologies used to measure air concentrations are designated at national 

and international level (i.e., UV fluorescence for SO2, chemiluminescence for NOX, UV 

photometry for O3, IR photometry for CO etc.). As for particulate matter, PM10 and PM2.5 are 

currently obtained using beta-ray attenuation monitors and corrected TEOM (Tapered 

Element Oscillating Microbalance). The ARPA has determined correction factors for 

particulate matter levels based on gravimetric and TEOM measure comparison. The parallel 

geometric instruments have been placed in different sites and for different period during the 

year; the correction factors have been verified retrospectively and subsequently applied. 

Five monitoring stations are classified as "traffic" sites (typically CO and benzene stations) 

and are located mostly along main streets or squares in Milan. Three stations are "urban 

background" sites, dedicated to the measurement of SO2 and PM2.5 and are situated in urban 

areas far from major streets. One of them is located inside a large urban park. PM10 is 

measured at two traffic stations and one urban background station. Nitrogen oxides are 

measured at all of the stations. 

None of the stations is classified as "industrial" because industrial sources are not significant 

sources of pollution in the city of Milan. Automobiles and domestic heating plants are the 

main sources of atmospheric emissions in Milan. 

Pollutant concentrations measured hourly by the regional monitoring network have been 

aggregated by day according to the specific air quality standards required by European laws. 

For example, the average concentration of SO2, particulate matter and benzene over 24-hours 

was measured, whereas the maximum hourly concentrations were considered for O3 and NO2 

etc. Finally, registered daily values of each air pollutant were from all the stations, in order to 

obtain their average level and to assess the global environmental situation of the city. 

Temperature and humidity levels were derived from the archive of the regional 

meteorological service and they refer to data measured at "urban" stations in the city. 

To obtain a complete dataset over the study period, a few missing values were estimated with 

the assumption of a constant (i.e., not time-dependent) proportional relationship between the 

mean values measured by each monitoring station. The number of missing values is very 

small. In the study period (2 years) there are no missing observations for NO2, CO, O3, and 

PM10. The days with missing values were 34 for SO2, 48 for PM2,5 and 40 for C6H6, C7H8, 

C8H10. These data were estimated by ARPA based on the trend of concentrations detected by 

monitoring stations not belonging to the Municipality of Milan, but as much as possible next 

to it and positioned in locations similar to the urban environment of Milan. 



Design and statistical analysis 

We used a case-crossover design [18] to assess the risk of ERA for acute conditions based on 

exposure to various pollutants. The case-crossover design controls for long-term trends and 

seasonal changes. We used the time-stratified approach [19] to select control days. Thus, 

every seventh day from the event day within the same month and year of the event day was 

considered a control. This approach desumes seasons by matching months and year. It also 

partly controls other variables, such as weather, because all comparisons are made within the 

same month and on the same day of the week. The event day is termed lag 0, and the day 

before the event day is lag 1. The day before lag 1 is lag 2, and so forth. To assess the excess 

risk of ERA based on several potential predictors and to control confounding factors, 

conditional regression models were fitted using odds ratio (OR) and corresponding 95% 

confidence intervals (95% CI). All models included daily weather variables (including 

temperature, temperature squared, and humidity on lag 1). To assess pollution exposure, 

same-day average exposures and lagged intervals extending from 1 to 5 days before the case 

or control event were obtained. Additionally we averaged levels from lag 0 to lag 2 to explore 

an early effect. Stratified analyses of exposure based on the average exposure at lag 0 to lag 2 

based on age, class, gender, race and season was undertaken to evaluate effect modification. 

The results of the analyses were expressed as an OR to quantify the increase in risk based on 

a corresponding increased exposure of 10 μg/m
3
 of NO2, PM10, and PM2.5, 5 μg/m

3
 of SO2 

and 1 μg/m3 of CO. For benzene (C6H6), toluene (C7H8), and xylene (C8H10), an interquartile 

range was measured based on the daily mean levels of each air pollutant over the entire study 

period. To explore cumulative exposure we constructed dummy variables that assumes the 

value of 1 when the levels for each pollutant at lag 3–5 were larger than the value of the 

interquartile range (Table 1). 

Table 1 (A) Daily environmental variables; and (B) Spearman correlation coefficients 

for these variables 
 Warm Season Cold Season Total Percentiles  

(April-September) (October-March) 

A. Mean SD Mean SD Mean SD 25th 50th 75th IQR 

 C6H6 1.41 0.72 3.99 2.06 2.70 2.01 1.18 2.05 3.78 2.60 

 C9H6N2O2 5.23 3.36 12.51 7.84 8.87 7.04 3.90 6.83 11.86 7.96 

 C8H10 2.35 1.85 6.44 4.84 4.39 4.19 1.62 3.09 5.86 4.24 

 PM10 31.08 11.96 63.13 33.17 47.08 29.62 26.92 37.00 60.15 33.23 

 PM2.5 16.20 9.70 49.44 28.35 32.80 26.92 13.00 22.00 47.00 34.00 

 SO2 3.75 2.69 4.51 4.25 4.13 3.57 1.04 3.61 6.00 4.96 

 NO2 89.47 28.01 115.79 34.23 102.62 33.91 79.71 99.43 121.71 42.00 

 CO 1.03 0.27 1.95 0.60 1.49 0.65 1.00 1.33 1.86 0.86 

 O3 109.42 33.69 39.05 24.70 74.29 45.95 32.67 68.50 111.67 79.00 

B. C6H6 C9H6N2O2 C8H10 PM10 PM2.5 SO2 NO2 CO O3  

WARM SEASON (April-September) 

 C6H6 1.00 0.88 0.87 0.49 0.43 −0.13 0.61 0.49 0.11  

 C9H6N2O2 0.88 1.00 0.84 0.44 0.40 0.01 0.58 0.47 0.06  

 C8H10 0.78 0.90 1.00 0.45 0.40 −0.01 0.65 0.57 0.00  

 PM10 0.77 0.67 0.58 1.00 0.75 −0.08 0.52 0.52 0.21  

 PM2.5 0.76 0.63 0.54 0.96 1.00 −0.17 0.51 0.54 −0.01  

 SO2 0.51 0.35 0.30 0.46 0.44 1.00 −0.20 −0.20 0.17  

 NO2 0.67 0.70 0.64 0.54 0.48 0.30 1.00 0.67 0.12  

 CO 0.78 0.69 0.61 0.60 0.60 0.34 0.59 1.00 −0.18  

 O3 −0.44 −0.27 −0.24 −0.39 −0.46 −0.33 0.07 −0.41 1.00  

COLD SEASON (October-March) 



Multi-pollutant models were fitted for each specific disease, using the mean values from lag 

0–2 for all statistically significant pollutants from the univariate analyses. 

Results 

Study subjects and pollutants data 

During the two-year study period, 45770 ERAs were recorded. The demographic and clinical 

characteristics of this study population are shown in Table 2. The number of total ERAs was 

comparable between the two study years, but higher rates of ERAs were observed during the 

cold season (61.3% of admissions occurred from October to March). 

Table 2 Distribution of daily ERAs for acute respiratory diseases according to several 

characteristics 

Variable Asthma URTI Pneumonia COPD Exacerbation Total 

Age class 

 0-4 821 17971 832 - 19624 

 5-19 601 7660 513 - 8774 

 20-34 718 2901 384 - 4003 

 35-54 899 2552 760 108 4319 

 55-65 172 744 442 185 1543 

 65-74 161 1054 763 437 2415 

 75+ 197 1805 1995 1095 5092 

Gender 

 Males 1918 18784 3125 1033 24860 

 Females 1651 15903 2564 792 20910 

Race 

 Black 312 1401 136 30 1879 

 Asian 134 967 110 4 1215 

 Caucasian 2377 29617 4963 1635 38592 

 Hispanic 222 1570 145 4 1941 

 Unknown 524 1132 335 152 2143 

Hospitalization 

 No 2978 31923 1801 499 37201 

 Yes 591 2764 3888 1326 8569 

Year 

 2007 1936 17212 2917 960 23025 

 2008 1633 17475 2772 865 22745 

Season 

 Warm 2049 12908 2087 666 17710 

 Cool 1520 21779 3602 1159 28060 

Total 3569 34687 5689 1825 45770 

URTI were responsible for the largest number of ERAs (75.7%), mainly due to the high 

proportion of children up to 19 years of age in this study. Pneumonia, asthma and COPD 



exacerbation accounted for 12.4%, 7.9% and 4.0% of ERAs, respectively. The 45770 total 

ERAs resulted in 8569 hospital admissions. Summary statistics for air pollutants and 

Spearman correlation coefficients are included in Table 1. Daily NO2 and SO2 levels were 

higher during the winter season, as opposed to the warmer period of the year, even if the 

difference between the two was lower than for other pollutants. However, an increase in the 

daily levels of polycyclic aromatic hydrocarbons (C6H6, C7H10, C8H10), PM10, PM2.5 and CO 

occurred in the cold season, and an increase in O3 levels occurred in the warm season. There 

was a high correlation among several pollutants; in particular, benzene, other polycyclic 

aromatic hydrocarbons and NO2 were highly correlated in the warm season, and PM10, PM2.5, 

CO and NO2 were highly correlated in the cool season and inversely related to O3 levels. 

Upper respiratory tract infections 

The results of the single-day lags are illustrated in Table 3. Increases in all the pollutants 

were significantly correlated with ERAs, with the exception of ozone. Single pollutant 

models exploring the association between pollution levels at lag 3 to lag 5 and ERAs 

demonstrate an increase in risk of ERAs from 3% to 10% per one interquartile increase in 

pollutant concentration (Table 3). 



Table 3 Association of ERAs and upper respiratory tract infections 
(A) lag 0 lag 1 lag 2 lag 3 lag 4 lag 5 lag 0-2 ↑ 3 of 5 days 

 SO2 (5 μg/m
3
) 1.010 (0.989-1.031) 1.056 (1.035-1.077) 1.072 (1.052-1.093) 1.104 (1.083-1.124) 1.096 (1.076-1.117) 1.076 (1.056-1.096) 1.076 (1.049-1.103) 1.098 (1.061-1.137) 

 CO (1 mg/m
3
) 1.101 (1.073-1.129) 1.144 (1.116-1.172) 1.124 (1.096-1.152) 1.144 (1.115-1.172) 1.143 (1.114-1.172) 1.122 (1.093-1.152) 1.174 (1.140-1.209) 0.987 (0.952-1.023) 

 NO2 (10 μg/m
3
) 0.999 (0.995-1.003) 1.012 (1.008-1.016) 1.013 (1.009-1.016) 1.016 (1.012-1.020) 1.017 (1.013-1.021) 1.009 (1.005-1.013) 1.012 (1.007-1.017) 1.059 (1.029-1.089) 

 O3 (10 μg/m
3
) 0.999 (0.993-1.006) 0.999 (0.992-1.006) 0.992 (0.986-0.999) 0.986 (0.980-0.991) 0.989 (0.983-0.994) 0.983 (0.978-0.989) 0.994 (0.985-1.003) 1.060 (1.009-1.113) 

 PM10 (10 μg/m
3
) 1.019 (1.014-1.024) 1.022 (1.017-1.026) 1.019 (1.014-1.024) 1.019 (1.014-1.024) 1.020 (1.016-1.025) 1.022 (1.017-1.027) 1.029 (1.024-1.035) 1.075 (1.038-1.113) 

 PM2.5 (10 μg/m
3
) 1.018 (1.013-1.024) 1.019 (1.013-1.024) 1.016 (1.011-1.022) 1.020 (1.014-1.025) 1.024 (1.019-1.030) 1.027 (1.022-1.033) 1.026 (1.019-1.033) 1.028 (0.995-1.062) 

 C6H6 (2.6 mg/m
3
) 1.020 (1.001-1.041) 1.063 (1.043-1.083) 1.062 (1.042-1.083) 1.074 (1.054-1.095) 1.085 (1.064-1.107) 1.081 (1.060-1.103) 1.076 (1.050-1.102) 1.051 (1.013-1.090) 

 C7H8 (7.96 mg/m
3
) 0.975 (0.958 (0.991) 1.027 (1.011-1.045) 1.025 (1.008-1.042) 1.043 (1.026-1.060) 1.050 (1.033-1.068) 1.036 (1.019-1.054) 1.015 (0.994-1.037) 1.030 (0.993-1.068) 

 C8H10 (4.24 mg/m
3
) 0.983 (0.969 (0.998) 1.018 (1.004-1.033) 1.023 (1.008-1.038) 1.024 (1.009-1.038) 1.023 (1.008-1.038) 1.011 (0.996-1.026) 1.015 (0.995-1.035) 1.005 (0.974-1.037) 

(B) Age group Gender Race Season 

≤16 ≥65 Males Females Caucasian Others Warm Cold 

 SO2 (5 μg/m
3
) 1.074 (1.044-1.106) 1.085 (0.990-1.189) 1.076 (1.040-1.113) 1.075 (1.036-1.116) 1.067 (1.039-1.097) 1.125 (1.054-1.201) 0.873 (0.815-0.936) 1.118 (1.088-1.149) 

 CO (1 mg/m
3
) 1.187 (1.148-1.227) 1.112 (0.995-1.243) 1.192 (1.146-1.240) 1.153 (1.104-1.204) 1.179 (1.142-1.216) 1.148 (1.063-1.239) 0.885 (0.785-0.997) 1.203 (1.166-1.241) 

 NO2 (10 μg/m
3
) 1.016 (1.010-1.022) 0.999 (0.980-1.017) 1.011 (1.004-1.018) 1.013 (1.005-1.020) 1.013 (1.008-1.019) 1.004 (0.991-1.017) 0.983 (0.972-0.995) 1.020 (1.014-1.025) 

 O3 (10 μg/m
3
) 0.989 (0.979-1.000) 0.998 (0.967-1.029) 0.994 (0.982-1.007) 0.993 (0.980-1.007) 0.997 (0.987-1.006) 0.978 (0.955-1.002) 1.022 (1.009-1.035) 0.965 (0.952 (0.977) 

 PM10 (10 μg/m
3
) 1.031 (1.024-1.038) 1.013 (0.992-1.035) 1.029 (1.021-1.037) 1.030 (1.022-1.039) 1.027 (1.021-1.034) 1.041 (1.025-1.058) 1.028 (0.999-1.058) 1.029 (1.023-1.035) 

 PM2.5 (10 μg/m
3
) 1.028 (1.020-1.036) 1.004 (0.980-1.028) 1.028 (1.018-1.037) 1.024 (1.015-1.034) 1.025 (1.018-1.032) 1.030 (1.012-1.048) 0.997 (0.965-1.030) 1.026 (1.020-1.033) 

 C6H6 (2.6 mg/m
3
) 1.094 (1.064-1.124) 1.016 (0.928-1.113) 1.079 (1.045-1.115) 1.072 (1.035-1.111) 1.073 (1.045-1.101) 1.091 (1.025-1.162) 1.099 (0.979-1.234) 1.077 (1.050-1.104) 

 C7H8 (7.96 mg/m
3
) 1.030 (1.005-1.056) 0.953 (0.880-1.033) 1.013 (0.984-1.043) 1.018 (0.986-1.050) 1.019 (0.996-1.043) 0.986 (0.932-1.044) 0.904 (0.840-0.973) 1.028 (1.005-1.052) 

 C8H10 (4.24 mg/m
3
) 1.022 (1.000-1.045) 0.976 (0.908-1.050) 1.014 (0.987-1.041) 1.015 (0.986-1.045) 1.016 (0.995-1.038) 0.998 (0.947-1.051) 0.880 (0.810-0.955) 1.024 (1.003-1.045) 

KEY: Results are expressed as Odds Ratio (OR) and corresponding 95% confidence intervals (95% CI) with (A) various pollutants at various 

lags and (B) in various subgroups at lag 0–2 from conditional logistic regression analysis including terms for daily weather variables (1-day lag 

for temperature, humidity and temperature squared) 

The effects of the pollutants in the subgroups were similar. However, a seasonal effect emerged. Increases in ozone correlated with increases in 

URTI in the warm season. On the other hand, PM10 and PM2.5 were only associated with increased risk for ERA for URTI in the cold season. In 

a multipollutant model using the lag 0–2 structure for all pollutants associated with URTI in the single pollutant model, only CO (OR 1.261; 

95% CI 1.199-1.327) and PM10 (OR 1.02; 95% CI 1.014-1.032) retained statistically significant association with URTI ERAs. 

Asthma 

Adjusted odd ratios for ERAs for asthma due to increases in pollution are displayed in Table 4. Increases in ozone levels from lag 1 to lag 5 corresponded to increases in ERAs for asthma. 



Table 4 Association of ERAs and asthma 
(A) lag 0 lag 1 lag 2 lag 3 lag 4 lag 5 lag 0-2 ↑ 3 of 5 days 

 SO2 (5 μg/m
3
) 0.975 (0.904-1.052) 0.976 (0.906-1.053) 1.059 (0.986-1.137) 1.041 (0.970-1.117) 1.050 (0.980-1.125) 1.021 (0.952-1.094) 1.008 (0.919-1.106) 0.970 (0.852-1.104) 

 CO (1 mg/m
3
) 1.032 (0.938-1.134) 1.030 (0.938-1.132) 1.003 (0.912-1.104) 1.041 (0.945-1.147) 1.114 (1.011-1.226) 1.142 (1.037-1.257) 1.031 (0.921-1.154) 1.063 (0.932-1.211) 

 NO2 (10 μg/m
3
) 0.968 (0.954-0.981) 0.972 (0.958-0.986) 0.997 (0.983-1.011) 1.013 (0.999-1.027) 1.034 (1.021-1.048) 1.023 (1.009-1.037) 0.967 (0.951-0.985) 0.980 (0.896-1.071) 

 O3 (10 μg/m
3
) 1.010 (0.991-1.029) 1.052 (1.029-1.076) 1.052 (1.033-1.072) 1.061 (1.043-1.078) 1.044 (1.028-1.060) 1.039 (1.024-1.055) 1.068 (1.040-1.097) 1.781 (1.584-2.002) 

 PM10 (10 μg/m
3
) 0.998 (0.981-1.016) 1.005 (0.987-1.024) 1.014 (0.996-1.033) 1.020 (1.002-1.038) 1.015 (0.997-1.032) 1.014 (0.996-1.031) 1.009 (0.987-1.031) 1.044 (0.919-1.186) 

 PM2.5 (10 μg/m
3
) 0.993 (0.973-1.014) 0.991 (0.970-1.011) 1.000 (0.980-1.021) 1.003 (0.983-1.023) 1.001 (0.981-1.021) 1.011 (0.991-1.031) 0.992 (0.967-1.017) 1.076 (0.954-1.213) 

 C6H6 (2.6 mg/m
3
) 0.941 (0.873-1.014) 0.920 (0.854-0.992) 0.949 (0.881-1.023) 0.980 (0.910-1.056) 1.034 (0.957-1.117) 1.025 (0.949-1.108) 0.905 (0.825-0.992) 0.955 (0.835-1.093)) 

 C7H8 (7.96 mg/m
3
) 0.947 (0.891-1.006) 0.947 (0.890-1.006) 0.965 (0.908-1.026) 0.981 (0.923-1.044) 1.036 (0.974-1.102) 1.023 (0.961-1.090) 0.924 (0.855 (0.999 1.044 (0.912-1.196) 

 C8H10 (4.24 mg/m
3
) 0.926 (0.878 (0.977) 0.934 (0.886 (0.986) 0.953 (0.902-1.005) 0.983 (0.932-1.037) 1.016 (0.964-1.071) 1.001 (0.950-1.055) 0.894 (0.833 (0.959 0.942 (0.850-1.043) 

(B) Age group Gender Race Season 

≤16 ≥65 Males Females Caucasian Others Warm Cold 

 SO2 (5 μg/m
3
) 0.975 (0.850-1.117) 1.099 (0.846-1.428) 0.901 (0.792-1.025) 1.135 (0.993-1.297) 1.020 (0.917-1.133) 0.964 (0.795-1.170) 0.986 (0.815-1.194) 1.028 (0.923-1.144) 

 CO (1 mg/m
3
) 1.059 (0.901-1.243) 1.472 (1.048- 2.067) 1.082 (0.921-1.271) 0.985 (0.841-1.155) 1.127 (0.993-1.278) 0.724 (0.559- 0.937) 1.179 (0.869-1.599) 1.011 (0.890-1.148) 

 NO2 (10 μg/m
3
) 1.001 (0.975-1.027) 1.008 (0.957-1.063) 0.980 (0.957-1.004) 0.954 (0.930 -0.978) 0.993 (0.973-1.014) 0.910 (0.881-0.940) 0.943 (0.918-0.970) 0.993 (0.970-1.016) 

 O3 (10 μg/m
3
) 1.021 (0.977-1.067) 1.034 (0.944-1.133) 1.062 (1.024-1.100) 1.077 (1.034-1.121) 1.022 (0.989-1.056) 1.162 (1.110-1.217) 1.104 (1.068-1.142) 1.005 (0.959-1.053) 

 PM10 (10 μg/m
3
) 0.996 (0.964-1.029) 1.030 (0.964-1.101) 0.999 (0.969-1.031) 1.019 (0.988-1.051) 1.027 (1.003-1.053) 0.933 (0.887-0.983) 0.959 (0.893-1.030) 1.009 (0.985-1.033) 

 PM2.5 (10 μg/m
3
) 0.983 (0.948-1.020) 1.033 (0.956-1.117) 0.983 (0.949-1.018) 1.002 (0.967-1.038) 1.021 (0.993-1.050) 0.882 (0.833-0.935) 0.846 (0.783- 0.913) 1.006 (0.979-1.033) 

 C6H6 (2.6 mg/m
3
) 0.948 (0.831-1.081) 1.098 (0.832-1.447) 0.931 (0.816-1.061) 0.884 (0.775-1.007) 1.035 (0.936-1.145) 0.504 (0.401-0.633) 0.462 (0.344- 0.619) 1.005 (0.911-1.108) 

 C7H8 (7.96 mg/m
3
) 0.975 (0.870-1.092) 1.241 (0.994-1.549) 0.952 (0.854-1.062) 0.897 (0.802-1.004) 0.976 (0.894-1.066) 0.777 (0.654-0.925) 0.813 (0.679- 0.973) 0.979 (0.895-1.071) 

 C8H10 (4.24 mg/m
3
) 0.973 (0.881-1.074) 1.128 (0.914-1.393) 0.904 (0.818- 0.998) 0.885 (0.801- 0.978) 0.982 (0.909-1.061) 0.618 (0.523-0.731) 0.591 (0.491-0.712) 0.982 (0.907-1.062) 

KEY: Results are expressed as Odds Ratio (OR) and corresponding 95% confidence intervals (95% CI) with (A) various pollutants at various 

lags and (B) in various subgroups at lag 0–2 from conditional logistic regression analysis including terms for daily weather variables (1-day lag 

for temperature, humidity and temperature squared). Models for asthma included terms for total pollen levels as tertiles 

The effect was strongest among non-Caucasian subjects (OR 1.162; 95% CI 1.110-1.217) and during the warm season (OR 1.104; 95% CI 

1.068-1.142). CO appeared to be higher during the warm season and increased risk of asthma attacks with ERA (47%) in the elderly population. 

Almost no significant gender difference was found between asthma and ERAs. Only PM10 could influence asthma attacks in Caucasian subjects, 

however with a very little risk (OR 1.027; 95% CI 1.003-1.053). 

Pneumonia 

Table 5 shows the case-crossover analysis results for pneumonia ERAs. Reported data underline an acute effect of CO, SO2 and PM10 on ERAs for pneumonia particularly evident at lag 0 and 1. Moreover, 

CO increases risk of ERA at lag 0–2, highlighting also a cumulative effect (OR 1.108; 95% CI 1.028-1.194). Stratified analysis for lag 0–2 days showed a 66% risk increase for ERAs for pneumonia in the 



warm season. A significant ERA increase can be found in the Caucasian female population with over 65 years of age. The young female population seems to have ERAs for pneumonia during the cold 

season with a risk of 16% every 5 μg/m
3
 increase of SO2. PM10 and PM2.5 could represent a risk factor for pneumonia ERA in warm season with an increased risk of respectively 8 and 10%. 

Table 5 Association of ERAs and pneumonia 
(A) lag 0 lag 1 lag 2 lag 3 lag 4 lag 5 lag 0-2 ↑ 3 of 5 days 

 SO2 (5 μg/m
3
) 1.010 (0.960-1.062) 1.056 (1.004-1.110) 1.041 (0.991-1.094) 1.012 (0.965-1.061) 0.998 (0.952-1.046) 1.018 (0.971-1.067) 1.058 (0.993-1.128) 1.043 (0.955-1.139) 

 CO (1 mg/m
3
) 1.108 (1.039-1.180) 1.065 (1.000-1.134) 1.055 (0.992-1.122) 1.064 (0.999-1.132) 1.047 (0.982-1.117) 1.047 (0.983-1.115) 1.108 (1.028-1.194) 0.947 (0.869-1.033) 

 NO2 (10 μg/m
3
) 1.009 (0.999-1.019) 1.002 (0.992-1.013) 1.002 (0.992-1.013) 1.007 (0.998-1.017) 1.002 (0.992-1.012) 0.999 (0.989-1.009) 1.007 (0.994-1.020) 1.007 (0.940-1.079) 

 O3 (10 μg/m
3
) 1.003 (0.988-1.019) 0.999 (0.980-1.017) 0.992 (0.977-1.008) 0.993 (0.979-1.007) 0.985 (0.972-0.999) 0.984 (0.970-0.997) 0.997 (0.974-1.019) 0.910 (0.805-1.029) 

 PM10 (10 μg/m
3
) 1.013 (1.001-1.025) 1.002 (0.990-1.014) 1.009 (0.997-1.021) 1.015 (1.003-1.027) 1.009 (0.997-1.020) 1.013 (1.001-1.024) 1.011 (0.997-1.026) 1.071 (0.985-1.165) 

 PM2.5 (10 μg/m
3
) 1.007 (0.994-1.021) 1.000 (0.987-1.014) 1.006 (0.993-1.020) 1.011 (0.997-1.024) 1.010 (0.997-1.023) 1.014 (1.001-1.027) 1.007 (0.990-1.023) 1.009 (0.932-1.093) 

 C6H6 (2.6 mg/m
3
) 1.023 (0.973-1.074) 0.975 (0.927-1.025) 1.005 (0.957-1.056) 1.017 (0.969-1.067) 0.994 (0.945-1.045) 1.027 (0.977-1.078) 1.001 (0.941-1.065) 0.953 (0.873-1.041) 

 C7H8 (7.96 mg/m
3
) 1.018 (0.976-1.062) 0.980 (0.939-1.023) 0.998 (0.957-1.040) 1.009 (0.968-1.052) 0.988 (0.947-1.031) 0.990 (0.950-1.033) 0.998 (0.945-1.054) 0.964 (0.884-1.052) 

 C8H10 (4.24 mg/m
3
) 1.017 (0.980-1.056) 0.971 (0.935-1.009) 0.989 (0.953-1.026) 0.987 (0.951-1.024) 0.967 (0.932-1.003) 0.989 (0.953-1.026) 0.987 (0.939-1.038) 1.003 (0.929-1.082) 

(B) Age group Gender Race Season 

≤16 ≥65 Males Females Caucasian Others Warm Cold 

 SO2 (5 μg/m
3
) 1.165 (1.033-1.314) 1.043 (0.947-1.149) 1.004 (0.920-1.096) 1.126 (1.025-1.237) 1.058 (0.989-1.133) 1.059 (0.880-1.274) 0.994 (0.834-1.186) 1.072 (1.000-1.148) 

 CO (1 mg/m
3
) 1.094 (0.947-1.263) 1.188 (1.063-1.328) 1.092 (0.985-1.210) 1.129 (1.012-1.260) 1.102 (1.016-1.194) 1.132 (0.925-1.385) 1.657 (1.248- 2.199) 1.061 (0.979-1.149) 

 NO2 (10 μg/m
3
) 0.998 (0.973-1.024) 1.019 (1.000-1.038) 1.001 (0.984-1.019) 1.014 (0.995-1.033) 1.010 (0.996-1.024) 0.985 (0.950-1.021) 1.020 (0.992-1.049) 1.000 (0.985-1.015) 

 O3 (10 μg/m
3
) 0.967 (0.919-1.016) 0.983 (0.952-1.014) 0.980 (0.950-1.010) 1.017 (0.984-1.050) 0.982 (0.958-1.006) 1.104 (1.035-1.177) 1.005 (0.974-1.038) 0.986 (0.955-1.018) 

 PM10 (10 μg/m
3
) 1.016 (0.988-1.045) 1.017 (0.995-1.039) 1.012 (0.993-1.032) 1.011 (0.989-1.033) 1.011 (0.996-1.027) 1.009 (0.966-1.054) 1.081 (1.008-1.159) 1.007 (0.992-1.022) 

 PM2.5 (10 μg/m
3
) 1.008 (0.977-1.041) 1.019 (0.995-1.043) 1.010 (0.988-1.033) 1.002 (0.978-1.027) 1.008 (0.991-1.026) 0.988 (0.942-1.037) 1.101 (1.018-1.190) 1.002 (0.985-1.019) 

 C6H6 (2.6 mg/m
3
) 1.019 (0.906-1.146) 1.046 (0.954-1.147) 0.957 (0.879-1.043) 1.053 (0.963-1.153) 1.021 (0.955-1.090) 0.857 (0.718-1.024) 1.095 (0.828-1.448) 0.989 (0.928-1.055) 

 C7H8 (7.96 mg/m
3
) 0.981 (0.882-1.091) 1.038 (0.959-1.124) 0.967 (0.897-1.042) 1.035 (0.955-1.121) 0.994 (0.937-1.053) 0.991 (0.849-1.157) 1.055 (0.898-1.239) 0.978 (0.922-1.038) 

 C8H10 (4.24 mg/m
3
) 0.964 (0.877-1.060) 1.019 (0.947-1.097) 0.964 (0.900-1.033) 1.013 (0.942-1.090) 0.990 (0.938-1.045) 0.928 (0.806-1.068) 1.204 (0.994-1.459) 0.959 (0.909-1.012) 

KEY: Results are expressed as Odds Ratio (OR) and corresponding 95% confidence intervals (95% CI) with (A) various pollutants at various 

lags and (B) in various subgroups at lag 0–2 from conditional logistic regression analysis including terms for daily weather variables (1-day lag 

for temperature, humidity and temperature squared) 

COPD exacerbation 

A significant association was found between ERAs for COPD exacerbation and increases in SO2, CO and PM10 on previous days when measured as linear effect (Table 6). Analysis of lag 0–2 shows an 

increase in ERA for COPD exacerbation of 3%, 14% and 24% for increases in PM10, SO2, and CO, respectively. An increase of one interquartile of PM10 for 3 days in a period of 5 days prior to the event 

produced an increased risk of ERA of 21%. There was a 3-fold increased risk of ERA (OR 3.124; 95% CI 1.845-5.289) among non-White populations with corresponding increases in CO. 



Table 6 Association of ERAs and COPD exacerbation 
(A) lag 0 lag 1 lag 2 lag 3 lag 4 lag 5 lag 0-2 ↑ 3 of 5 days 

 SO2 (5 μg/m
3
) 1.035 (0.951-1.127) 1.105 (1.015-1.203) 1.121 (1.031-1.218) 1.116 (1.028-1.210) 1.058 (0.973-1.150) 1.085 (1.002-1.176) 1.144 (1.027-1.274) 1.092 (0.936-1.274) 

 CO (1 mg/m
3
) 1.145 (1.019-1.286) 1.229 (1.100-1.373) 1.114 (0.994-1.249) 1.087 (0.969-1.219) 1.106 (0.984-1.243) 1.049 (0.937-1.174) 1.236 (1.080-1.415) 1.108 (0.952-1.289) 

 NO2 (10 μg/m
3
) 1.008 (0.989-1.026) 1.033 (1.015-1.053) 1.014 (0.996-1.033) 1.016 (0.998-1.034) 1.005 (0.988-1.023) 1.004 (0.987-1.021) 1.029 (1.005-1.052) 1.157 (1.023-1.309) 

 O3 (10 μg/m
3
) 0.987 (0.961-1.013) 0.957 (0.926-0.989) 0.960 (0.933-0.987) 0.969 (0.945-0.993) 0.969 (0.947-0.993) 0.985 (0.963-1.008) 0.944 (0.908-0.982) 0.864 (0.701-1.065) 

 PM10 (10 μg/m
3
) 1.022 (1.001-1.044 1.028 (1.006-1.049) 1.023 (1.001-1.045) 1.013 (0.993-1.035) 1.017 (0.997-1.038) 1.017 (0.997-1.037) 1.036 (1.010-1.063) 1.213 (1.046-1.407) 

 PM2.5 (10 μg/m
3
) 1.017 (0.992-1.042) 1.023 (0.999-1.048) 1.023 (0.999-1.048) 1.015 (0.992-1.039) 1.023 (1.000-1.046) 1.020 (0.998-1.043) 1.031 (1.001-1.062) 1.096 (0.950-1.265) 

 C6H6 (2.6 mg/m
3
) 1.015 (0.926-1.111) 1.082 (0.991-1.182) 1.047 (0.957-1.145) 1.008 (0.923-1.100) 0.989 (0.903-1.084) 0.994 (0.911-1.084) 1.076 (0.962-1.203) 1.096 (0.937-1.283) 

 C7H8 (7.96 mg/m
3
) 0.997 (0.924-1.076) 1.082 (1.004-1.166) 1.031 (0.955-1.113) 1.021 (0.948-1.099) 0.970 (0.899-1.046) 0.961 (0.894-1.034) 1.061 (0.963-1.170) 0.935 (0.800-1.092) 

 C8H10 (4.24 mg/m
3
) 1.046 (0.981-1.116) 1.083 (1.016-1.155) 1.051 (0.986-1.120) 1.029 (0.967-1.095) 0.988 (0.928-1.051) 0.948 (0.892-1.009) 1.112 (1.019-1.212) 0.995 (0.868-1.141) 

(B) Age group Gender Race Season 

≤16 ≥65 Males Females Caucasian Others Warm Cold 

 SO2 (5 μg/m
3
)  1.095 (0.975-1.231) 1.193 (1.036-1.375) 1.077 (0.911-1.273) 1.139 (1.017-1.274) 1.227 (0.828-1.817) 0.905 (0.678-1.209) 1.205 (1.071-1.356) 

 CO (1 mg/m
3
)  1.205 (1.041-1.395) 1.346 (1.128-1.607) 1.092 (0.886-1.348) 1.155 (1.003-1.330) 3.124 (1.845-5.289) 1.745 (1.024 2.975) 1.144 (0.990-1.323) 

 NO2 (10 μg/m
3
)  1.028 (1.003-1.054) 1.035 (1.005-1.066) 1.019 (0.983-1.056) 1.022 (0.998-1.047) 1.147 (1.048-1.256) 1.070 (1.016-1.126) 1.012 (0.985-1.039) 

 O3 (10 μg/m
3
)  0.945 (0.905- 0.986) 0.892 (0.845-0.941) 1.009 (0.952-1.069) 0.956 (0.918- 0.997) 0.820 (0.714 -0.942) 0.973 (0.921-1.028) 0.916 (0.864 (0.970) 

 PM10 (10 μg/m
3
)  1.029 (1.000-1.058) 1.049 (1.015-1.085) 1.017 (0.977-1.059) 1.036 (1.008-1.064) 1.127 (1.017-1.248) 1.133 (0.991-1.295) 1.027 (1.000-1.054) 

 PM2.5 (10 μg/m
3
)  1.025 (0.992-1.058) 1.043 (1.004-1.083) 1.013 (0.967-1.061) 1.034 (1.002-1.066) 1.115 (0.995-1.251) 1.108 (0.950-1.293) 1.024 (0.993-1.055) 

 C6H6 (2.6 mg/m
3
)  1.070 (0.948-1.208) 1.120 (0.968-1.297) 1.016 (0.855-1.208) 1.078 (0.960-1.210) 1.443 (0.914 2.276) 0.991 (0.587-1.675) 1.065 (0.949-1.195) 

 C7H8 (7.96 mg/m
3
)  1.054 (0.948-1.172) 1.111 (0.978-1.263) 0.994 (0.855-1.156) 1.051 (0.949-1.163) 1.478 (0.998 2.188) 0.886 (0.628-1.250) 1.054 (0.950-1.169) 

 C8H10 (4.24 mg/m
3
)  1.069 (0.972-1.177) 1.166 (1.041-1.306) 1.037 (0.907-1.186) 1.041 (0.947-1.144) 1.908 (1.421 2.563) 0.959 (0.664-1.384) 1.085 (0.989-1.191) 

KEY: Results are expressed as Odds Ratio (OR) and corresponding 95% confidence intervals (95% CI) with (A) various pollutants at various 

lags and (B) in various subgroups at lag 0–2 from conditional logistic regression analysis including terms for daily weather variables (1-day lag 

for temperature, humidity and temperature squared) 



The multipollutant model of CO, NO2 and PM10 using lag 0–2 average values showed a 

significant effect of CO increases on ERAs for COPD with an OR of 1.193 (95% CI 1.035-

1.375). 

Discussion 

Our study prospectively analysed the impact of air pollution on ERAs for lung disease among 

the general population of Milan. The results identified a positive association between ERAs 

for respiratory diseases and ambient exposure to pollutants such as PM10, O3, CO and SO2. 

Climatic considerations 

Recently, concern on the effects of meteorological factors, such as weather and temperature, 

on population health has increased. Some studies [11,16] have shown that mortality rate from 

respiratory diseases has a direct correlation to air temperature increase, even if the mortality-

temperature relationship has generally a U-shape, pointing out the issue of the extremes of 

temperature. For this reason, we reported the seasonal variation of pollutants during the cold 

and the warm periods. As reported in the literature, O3 is one of the most important 

atmospheric gases involved in photochemical reactions [17]. O3 levels were higher in the 

warm months in our study, a finding that is in line with scientific evidence that this 

atmospheric gas is usually dominant during the summer season [20]. On the other side, the 

most important source of CO in the Mediterranean areas is the incomplete combustion from 

cars and trucks, especially from gasoline engines operating at low speeds and during winter 

[21]. This data has been confirmed in our study too, as CO levels increased in the winter 

months (Table 1). As is already well known, atmospheric chemistry transport model 

simulations suggest that summer time O3 levels are greatly enhanced throughout the entire 

Mediterranean troposphere, contributing substantially to the radiative forcing of climate [22]. 

As reported in Table 1, there was a high correlation among several pollutants; in particular, 

benzene, other polycyclic aromatic hydrocarbons and NO2 were highly correlated in the 

warm season. O3 in the troposphere, is a product of photochemical reactions that involve 

primary pollutants, such as oxides of nitrogen (NOx), CO and volatile organic compounds 

from industrial and traffic emission [20]. Hence, the O3 high level and reactivity, justified 

besides its presence also the increase of other pollutants. The PM10, PM2.5, CO and NO2 

correlation underline an environmental situation characteristically present during the cool 

season and justified the inverse correlation between these pollutants and O3 levels. 

Clinical implications 

It is also important to consider the impact of environmental air on health. Increases in ERAs 

due to URTI have certain socioeconomic repercussions. In fact, our data from single-

pollutant models showed that increases of CO, SO2, PM10 and PM2.5 increase URTI ERA by 

17%, 7%, 3% and 2.6%, respectively. This finding is in line with a previous paper published 

by Jaakkola et al. who found a significant association between upper respiratory infections 

and living in an air-polluted area [23]. In our study, there were nearly 23000 subjects ≤16 

years of age who presented with URTIs, and approximately 20% of these subjects were non-

EU members. The high number of URTIs among children was the same finding of the 

previous study performed in Southwest Milan where CO and NO2 played a principle role 

during acute pollutant exposure [14]. The high number of these patients has socioeconomic 



repercussions on the health system (e.g. higher costs in terms of human and instrumental 

resources) and on the management of emergency departments. 

COPD and asthma: environmental and biological considerations 

Unlike URTIs, COPD and asthma can have serious complications, so more detailed 

considerations should be made. Approximately 25% of COPD exacerbations are likely due to 

non-infectious causes [24]. Air pollution may be one of the main non-infectious triggers of 

COPD exacerbations. Anderson et al. demonstrated in a previous study that air pollution was 

associated to daily hospital admissions for COPD with an increase of 50 μg/m
3
 in daily mean 

level of pollutant (SO2, black smoke and total suspended particulates) [12]. Interesting at this 

point, is the fact that the mean increase values of pollutant we considered were different from 

that used by APHEA Project and appear lower (Table 6). In particular, our study showed that 

ERAs for COPD exacerbation significantly increased with an acute exposure at lag 0–2, to 

CO (23%), SO2 (14%), PM10 (3.6%) and PM2.5 (3%). Only PM10 displayed a significant 

association at lag 3–5 (OR 1.21), indicating that the effect of PM10 is linked to cumulative 

and acute exposure. Of the considered pollutants, the effect of CO on COPD exacerbations 

should be carefully noted. COPD is more common in older men [25]. In fact, our data 

demonstrated that for a 1 mg/m
3
 increase of CO there was a 20% increase in ERAs for COPD 

exacerbations in patients over 65. Patients older than 75 had the highest number of ERAs and 

72% (1326) of them were ultimately hospitalised. There were differences in the effects of CO 

on ERAs by race. However, for PM10 exposure there was an increased risk of ERAs (OR 

1.12) in non-White subjects, which could be due to poor living conditions or to higher 

outdoor exposure during the cold seasons. Moreover, our data show that CO levels appear to 

play a major role in COPD exacerbations during the warm season. This finding follows an 

acute exposition pattern: in the presence of a 1 mg/m
3
 increase of CO there was a significant 

increase (OR 1.74) in ERAs for COPD exacerbations. This is likely the result of high outdoor 

exposure during the spring and summer, as people are more likely to walk outside. However, 

in our study considering the multipollutant model (Table 1), CO was an environmental agent 

with increased levels throughout the year. As the CO represents one of the major components 

of diesel exhaust, coming from vehicular traffic, the chance that subjects could be exposed to 

this pollutant are high. Subsequently, CO triggers the start of the complex proinflammatory 

cascade in the airways [26]. The latter observation has been demonstrated in a recent study 

too, where the authors reported that an exposure to major urban streets increases the cell 

oxidative stress [27]. Lung inflammation in COPD is also related to lipid cell membrane 

peroxidation [28,29], so the previous evidence appears in line with our data and may explain 

the possible increase in COPD bronchial inflammation during exposure to pollutants. 

Moreover, interesting too SO2 appears to play a role in increasing ERAs for COPD 

exacerbations (OR 1.20). The toxic effects of SO2 on the respiratory tract have been 

demonstrated in experimental studies [30]. It is likely that SO2, PM10, cold air and a variety 

of hydrated metal ions contribute to airways cytotoxicity, inflammation and mucociliary 

clearance dysfunction [31,32]. This process could be responsible for the 1159 ERAs that 

occurred during the cold season, which represent 63% of all COPD ERAs in our study. 

Asthma is an inflammatory disease sensible to a number of substances and environmental 

factors [33]. Increased bronchial reactivity to O3 may contribute to inflammation or airway 

injury [34]. In more recent studies, high ozone levels were associated with ERAs for asthma 

during the warm season [35] a finding that has been confirmed by our data. In fact, we also 

observed the association of ERAs for asthma with a 5 μg/m
3
 increase in O3 in any lag, though 

the findings were more striking with a prolonged exposure (OR 1.78). Our result goes with 



that by Colais P. et al. and confirms an important role of ozone in inducing an effect on 

asthmatics airways with a deleterious short impact of air pollution on respiratory morbidity in 

Italian cities [13]. The stronger associations shown between O3 levels and ERAs during the 

warm season among men and women are consistent with previous findings [35]. The rate of 

ERAs for asthma in the general population rises by 42% during the cold season and this 

increase can be attributed to viral infections or to an interaction of infectious and 

environmental factors. We can presume that during the warm season there are fewer 

competing causes of asthma exacerbation. Indeed, even the triggers for these apparent 

seasonal differences are not clear. We can speculate that, younger patients, who represented 

approximately 60% of our asthma admissions, are more responsive to air pollutants when 

they occur simultaneously with hot temperatures, high humidity and other meteorological 

factors. Additionally, the personal pollutant exposure could increase in the spring and 

summer due to the desire to remain outside for longer periods. 

Pneumonia: public health and biological considerations 

Finally, we analysed the rates of ERAs for pneumonia, an important cause of hospitalisation, 

morbidity and mortality among adults over 65 years of age [36]. Our data suggest that the 

main pollutants significantly associated with ERA for pneumonia were CO, SO2, PM2.5 and 

PM10. During the cold season only sulphur dioxide could be related to increased admissions 

for pneumonia, and these data appear to be in line with that of Martins et al. [37]. This data 

appears to be contradictory, but can be explained with the tendency of the population to stay 

in their homes during cold season thus so reducing outdoor exposition. As the SO2 showed to 

be a highly reactive pollutant [30], probably even a short exposure may be able to lead a lung 

immunosuppressive pathway with a consequent increase of airway infections. PM2.5 is a 

traffic pollutant that has been examined as a risk factor for pneumonia, and our data agree 

with a study by Zanobetti et al. [38], which demonstrated an association between PM2.5 and 

hospital admissions for pneumonia in an elderly population. Our study population was not 

limited to older adults, who made up (only) the 48% of the total number of pneumonia ERAs, 

while the remaining population was represented by subjects less than 65 years old. Moreover, 

68% (3888) of those with pneumonia ERAs required hospitalisation and 71% of them were 

over 65. These data emphasize what has been reported in literature [36,38], that the elderly 

may be more susceptible to pollution. Paradoxically, the OR is more impressive for 

pneumonia ERAs during the warm season, a finding that has been observed in previous 

studies [38]. These pollutants probably priming a cellular and molecular activation of airways 

with consequent proinflammatory and immuno-suppressant activity [30]. Furthermore, the 

elderly are more likely to walk outside in warm weather where they are exposed to pollutants. 

Pollutants act by causing bronchoalveolar irritation and inflammation [39] a common 

pathway in all (of) the respiratory diseases. 

Conclusions 

Our study confirms the association between exposure to pollutants and ERAs for respiratory 

diseases in a large northern Italian town, based on over two years of systematic data 

collection. We found health effects in both the young and the elderly, even at the low levels 

normally found in the general environment. Our data demonstrated that in multipollutant 

models combined exposure to CO emissions and PM10 level were particularly notable, but 

when the single pollutant models are considered other environmental agents gain relevance. 

So, Milan environmental management should take all this data into account. The 



consequences of exposure to pollutants are relevant from both a medical and a social 

perspective, also in view of the direct costs. We must consider the direct costs of providing 

treatment for these diseases and the indirect costs due to lost productivity. 
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