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Abstract

In species where females mate promiscuously, the reproductive success of males depends both on their ability to acquire
mates (pre-copulatory sexual selection) and ability of their ejaculates to outcompete those of other males (post-copulatory
sexual selection). Sperm competition theory predicts a negative relationship between investment in body traits favouring
mate acquisition (secondary sexual characters, SSCs) and investment in ejaculate size or quality, due to the inherent costs of
sperm production. In contrast, the phenotype-linked fertility hypothesis posits that male fertilizing efficiency is reliably
reflected by the phenotypic expression of male SSCs, allowing females to obtain direct benefits by selecting more
ornamented males as copulation partners. In this study, we investigated the relationships between male SSCs and size and
quality (viability and longevity) of ejaculates allocated to females in mating trials of the freshwater crayfish
Austropotamobius italicus. We showed that the relative size of male weapons, the chelae, was negatively related to
ejaculate size, and that chelae asymmetry, resulting from regeneration of lost chelipeds, negatively covaried with sperm
longevity. Moreover, males allocated more viable sperm to mates from their own rather than different stream of origin. Our
findings thus suggest that, according to sperm competition theory, pre-copulatory sexual selection for large weapons used
in male fighting may counteract post-copulatory sperm competition in this crayfish species, and that investment in cheliped
regeneration may impair ejaculate quality.
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Introduction

When females are polyandrous, both pre- and post-copulatory

sexual competition can occur [1,2], and paternity success of males

may be affected by secondary sexual characters (arms or

ornaments, SSCs hereafter) as well as by traits influencing

fertilizations success. Males can thus win the paternity race by

both being more attractive (sexy or strong) and/or more fertile.

Sperm competition theory predicts that pre- and post-copulatory

forms of sexual selection counteract each other [1,3]. Specifically,

since males should increase their investment in sperm production

as sperm competition increases, and the amount of energy needed

to produce both SSCs and sperm cells is limited, there should be a

negative relationship between investment in ejaculate size/quality

and investment in all other reproductive traits, including those that

influence mate attraction [1]. In practice, males may face a trade-

off between sperm production/fertilization efficiency and mate

acquisition [4].

Some empirical studies on insects, fish and birds supported the

hypothesis of a negative relationship between exaggerated arms or

ornaments and ejaculate size/quality (e.g. [4–7]). In contrast,

other studies failed to find any sort of association between SSCs

and ejaculate traits (e.g. [8–11]), and many others revealed instead

positive relationships between investment in ejaculate size/quality

and investment in secondary sexual characters (e.g. [12–18]). In

the latter case, according to the phenotype-linked fertility

hypothesis [19], male exaggerated SSCs may have evolved as

reliable signals of male fertilization efficiency via condition-

dependency of both ornaments and sperm. Under this scenario,

more ornamented/armed males are advertising their ability to

provide enough and efficient sperm to fertilize an entire set of ova,

and females may directly benefit by choosing such males if they

thereby improve the chances of mating with more fertile partners.

However, experimental evidence of fecundity benefits associated

with female mating preferences for showy males is presently

limited or ambiguous [16,20].

Astacid freshwater crayfish offer a valuable opportunity to study

the relationships between weapons (chelae), that provide benefits

in intermale conflicts [21], and ejaculate traits, as shaped by sperm

competition and/or female cryptic choice. Crayfish have a

promiscuous breeding system, which includes multiple mating,

sexual coercion, absence of mate guarding and paternal care, and

a peculiar mode of external fertilization and sperm competition

(see ‘Study organism’ below). In this study, we used the freshwater

crayfish Austropotamobius italicus (Faxon 1914; Crustacea: Astacidae)

as a model to investigate the relationships between male SSCs and
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size and quality (viability and longevity) of ejaculates allocated to

females during mating.

Males and females at maturity (from the third year onward)

possess a similar carapace, but male chelae are 25% larger than

those of females, because male (but not female) chelae size

increases allometrically with carapace length throughout life [21–

23]. Chelae are used to threaten and attack opponents during

inter-male conflicts, as well as to seize, overturn and position

females prior to and during copulation [24]; mating is in fact

rough and often coercive, since females may resist male advances

[25,26]. Chelae autotomy, an antipredator adaptation enhancing

survival chances of individuals [27], commonly occurs in this and

other decapods, but regeneration of lost chelipeds leads to a large

asymmetry in chelae size, which disfavours males during contests

over resources [21,28], as well as during mating and sperm

removal [26]. Thus, male chelae size and symmetry may be the

targets of both pre- and post-copulatory sexual selection

[21,26,29]. In our previous mating experiments that excluded

potential confounding effects of male-male competition we did not

find any evidence of pre-copulatory mate choice by females, since

latency to mating and insemination did not vary according to body

size, chelae size or asymmetry [25,30]. However, a post-copulatory

female cryptic choice in the form of differential allocation may

occur, since females lay larger eggs but smaller clutches when

paired with relatively small-sized, large-clawed males, and larger

clutches of smaller eggs for relatively large-sized, small-clawed

males [31].

A previous study on a different crayfish population showed that

ejaculate size of A. italicus increased with female body size and

copulation date, but was not correlated with male body size,

chelae size or chelae asymmetry when excluding the effect of a

few, very large and possibly senescent, individuals [30,32].

However, sperm traits other than ejaculate size may contribute

to paternity, namely sperm viability, longevity and mobility (see

[33] and references therein), and male SSCs might reflect these

sperm characteristics rather than sperm number.

In this study, differently from previous ones [25,30–32], we

conducted mating trials using male and female crayfish assorted at

random concerning body and chelae size, to obtain data on

ejaculate size and quality while mimicking more natural mating

conditions. If the phenotype-linked fertility hypothesis applies to

this crayfish species, we predicted a positive relationship between

SSCs (chelae size) and sperm traits (ejaculate size, viability and

longevity). Alternatively, in line with sperm competition theory, we

may expect a negative association between investment in SSCs

and sperm traits, since ejaculate size/quality may be traded

against investment in pre-copulatory sexual traits, resulting in

lower-quality ejaculates for larger-clawed males. In both cases,

since regenerating a lost cheliped may compete energetically with

spermatogenesis, we expected a negative association between

sperm traits and chelae asymmetry.

Materials and Methods

Study Organism, Subjects and Housing Conditions
Austropotamobius italicus is a long-lived (maximum lifespan is 10–

13 years) crayfish native to Italy [34,35], which reproduces in

October–November [36]. Insemination takes place when males

attach some spermatophores to the thoracic sternites of females,

mainly on a specialized external receptor, the spermatophoric

plate. Spermatophores, consisting of vermicular white filaments of

variable length (4–9 mm), are composed by two parts: the central

sperm mass and a three-layered spermatophore wall ([37]; PG,

unpubl. data]. Following ejaculation and spermatophore attach-

ment to the female thorax, this wall rapidly hardens in water and

no sperm is released until egg spawning, which occurs within days

to weeks from mating [31], thus leaving ample opportunities for

multiple mating by both sexes, and hence for sperm competition.

In fact, males mating with already mated females feed on

spermatophores previously deposited by other males before

releasing their own sperm [28,38], likely leading to a strongly

skewed last-male prevalence in paternity [25]. Fertilization takes

place externally, when the mass of eggs, accompanied by a copious

amount of glair, is extruded from the female thoracic oviducts and

passes over the spermatophores. The glair dissolves their hard

membrane and brings spermatozoa, which are aflagellate and

immotile in decapods [39,40], into contact with eggs [41].

Sexually mature (.27 mm of carapace length; CL hereafter)

male and female crayfish that had not yet mated in the current

year (‘virgin’ individuals hereafter) were collected under license of

the local authority (Provincia di Piacenza, authorization N.

0067895, issued on September 22, 2010) from seven different

streams tributaries of the river Trebbia (N Apennines, Emilia-

Romagna, Italy) during September 2010 (194 individuals, sex-

ratio 1:1) and 2011 (212 individuals, sex-ratio 1:1) before the

breeding season began. Sexes were held separately under a natural

light:dark cycle in 150-l opaque plastic jars. Further details on

housing conditions are provided in [25,26,30,31]. Crayfish were

uniquely marked with a number on the top of the carapace to

allow individual identification. CL of individuals of both sexes and

right and left chelae length of males were recorded using a digital

calliper (accuracy 0.01 mm); as a measure of chelae length we used

the maximum chelae length (chelae length hereafter), and only

individuals with both chelipeds were considered for mating trials.

The occurrence of regenerated chelipeds was noted, and relative

chelae asymmetry was calculated as the percentage of the absolute

difference in size between the two chelae on chelae length

[25,30,31]. In our sample, relative chelae asymmetry ranged

between 0% and 67%, being on average 9%. This measure of

chelae asymmetry was highly repeatable (r = 0.99; see [30]) due to

large interindividual variation, and was not related to chelae

length (r = 0.017, P.0.80, n = 163). At the end of trials, all crayfish

were returned to their natal streams.

Mating Trials
In both years, we formed focal pairs of crayfish by randomly

assigning a virgin, receptive female (identified by the whitish

colour of mature glair glands along abdominal sternites) to a virgin

male. The mean difference between male and female CL of

mating pairs was 20.04 mm 67.98 s.d. (ranging from 215.8 to

18.3 mm, non-significantly different from 0, t162 = 20.07,

P = 0.95; Table 1). We used 161 pairs in mating trials: 57 in

2010 (40 females spawned before trials started and became no

longer suitable for tests), and 104 in 2011 (two pairs died before

the start of experiments). Forty-three pairs were formed by

individuals belonging to the same natal stream.

The onset of breeding activity was determined by preliminary

mating trials; the first mating attempts were observed around

October 20 in both years. Mating trials took place in the afternoon

between 4–11 November 2010 (the delay was due to technical

constraints) and between 24 October–9 November 2011. Ten min

before a trial started, pair members were placed separately in a 15-

l plastic aquarium, provided with a gravel substratum, air stones

and an opaque perforated plastic divider, forming two habituation

chambers. The divider was then removed and the animals were

allowed to freely interact for 60 min. Four pairs were observed at a

time under dim red light and their behaviour was recorded by an

observer; if copulation and spermatophore deposition (i.e.
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insemination) did not occur during a mating trial, pair members

were returned to their original jar and re-tested in the following

days until a maximum of four trials was reached (the same pair

was tested on average 1.5 times). Overall, we performed 242

mating trials, and insemination took place in 113 out of 161

crayfish pairs (40/57 in 2010 and 73/104 in 2011).

After insemination, we took two pictures of the ventral parts of

each female with a millimetre reference by its side using a digital

camera (Panasonic Lumix DMC FZ28, 10.1 Mp sensor resolution,

3.64862.736 pixels output images) in a standard photographic set

(illumination, camera settings and distance of the subject set

constant for all pictures). Spermatophores were then removed

from female ventral parts and opened within 10 min of collection

to determine sperm viability and longevity (see below).

Measures of Ejaculate Size and Quality
As a measure of ejaculate size we calculated the area covered by

spermatophores on the female ventral parts (sperm area hereafter).

Spermatophores are mostly deposited horizontally as a single layer

on or around the female spermatophoric plate, with limited

overlap. Sperm area represents a reliable index of sperm

expenditure, as it is strongly positively correlated with both sperm

mass (r = 0.83, P,0.0001, n = 49) and total sperm number

(r = 0.72, P,0.0001, n = 42; see [42]).

The total area covered by spermatophores was measured in

mm2 using the image processing and analysis software ImageJ 1.44

[43]. Within a subsample of individuals, sperm area was highly

repeatable both within and between pictures of the same female

(r = 1.0, F9,10 = 4969.2, P,0.0001, and r = 0.99, F9,10 = 2376,

P,0.0001, respectively).

Measures of sperm quality were recorded only on ejaculates

collected in 2011, when we developed a reliable method to extract

and analyze sperm. Astacid crayfish spermatozoa, which are

tightly packed within the spermatophore lumen, are large, roundish

and aflagellate. At release from opened spermatophores, sperm

cells activate by spreading out a variable number of tiny radial

arms or spikes (3–9, Fig. 1a), which seemingly serve to passively

attach the sperm to the surrounding eggs within the glair emitted

by females during spawning [44].

We recorded two measures of sperm quality: sperm viability,

expressed as the % of live sperm at extraction from the

spermatophore, and sperm longevity, expressed as the % of live

sperm at 30 min after extraction from the spermatophore and

sperm cell activation. We used the % of live sperm at 30 min as a

proxy of sperm longevity because crayfish sperm are non-motile

and, thus, sperm longevity cannot be assessed through the

traditional measures of duration of sperm motility (e.g. [45,46]).

Two complete, randomly selected, fresh spermatophores from 55

males were placed separately into 100 ml of NaCl 0.9%

physiological solution. Using soft tweezers and microlancets, each

spermatophore was uncapped under a binocular microscope and

Table 1. Body traits of male and female crayfish used in mating trials in the two years of study.

Body traits 2010 (n = 57) 2011 (n = 164)

mean s.d. min; max Mean s.d. min; max

Female CL (mm) 40.15 4.65 29.7; 50.5 39.88 4.57 30.3; 52.2

Female body mass (g) 19.35 6.73 8.5; 37 19.30 6.91 9; 45

Male CL (mm) 40.07 6.92 29.4; 51.9 40.10 6.56 28.1; 52.7

Male body mass (g) 22.03 12.54 7.5; 46 23.22 12.64 7; 65

CL difference male-female (mm) 0.08 8.88 215.2; 18.3 20.11 7.49 215.8; 18.1

Male chelae length (mm) 33.96 11.17 19.2; 55.8 34.00 10.149 18.3; 53.3

Chelae asymmetry (mm) 3.06 5.46 0; 29.2 3.11 5.05 0; 31

doi:10.1371/journal.pone.0043771.t001

Figure 1. Stained freshwater crayfish sperm cells released from
spermatophores (406magnification). a) Phase contrast microsco-
py: note the radial nuclear arms or spikes spreading out from the sperm
cells at activation; b) Fluorescence microscopy: the same sperm cells
under fluorescence light with blue excitation filter (l = 450–480 nm);
living sperm with intact cellular membranes are green, while dead
sperm are red.
doi:10.1371/journal.pone.0043771.g001
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gently squeezed to collect two 10 ml sperm samples by a micro-

pipette; one sample was immediately analyzed at extraction to

assess viability, whereas the other was conserved in an Eppendorf

tube at 10uC and processed after 30 min to assess longevity. The

latter procedure led to sample decay (sperm agglutination) in 8

cases. Thus, we analyzed two sperm samples at extraction for 55

males and two at 30 min for 47 males.

To assess sperm viability and longevity, we used a live/dead

sperm viability assay (Invitrogen Molecular Probes), which stains

live sperm green with SYBR-14, a membrane-permeant nucleic

acid stain, while dead sperm with damaged membranes is stained

red with membrane-impermeant propidium iodide (Fig. 1b). Each

sperm sample was added with 3 ml of diluted (1:25 in DMSO and

then 1 10 in distilled water) 1 mM SYBR-14, incubated in the

dark for 5 min and mixed with 1 ml of 2.4 mM propidium iodide.

The sample was then incubated in the dark for an additional

5 min before being observed in fluorescence microscopy on an

‘‘improved Neubauer chamber’’ haemocytometer. The incubation

period for both stains was shortened from 10 to 5 min in order to

limit the potential negative effects described for this method [47].

For each sample we assessed the proportion of live sperm over 100

sperm cells counted using an Olympus BX51 microscope

equipped with a 100W mercury lamp, at a 406 magnification

under a 450–480 nm excitation filter. This measure resulted

highly repeatable between the two spermatophores from the same

ejaculate both soon after extraction (r = 0.98, F9,10 = 137.4,

P,0.0001) and after 30 min (r = 0.99, F9,10 = 296.6, P,0.0001).

Thus, we averaged sperm viability and longevity measured on the

two spermatophores, and the mean value was used in the analyses.

Descriptive statistics of ejaculate traits are shown in Table 2.

Statistical Analyses
All variables expressed as proportions (including relative chelae

asymmetry, sperm viability and longevity) were !-arcsine trans-

formed (and thus expressed as degrees) before being included in

the analyses. The difference in CL between male and female of

mating pairs (CL difference hereafter) was expressed as the

absolute value.

Since male chelae length scaled allometrically with CL (type II

log-log linear regression of chelae length on male CL: estimate

1.89, 95% c.i. 1.81–1.99) and the two variables were strongly

positively related (r = 0.95, see also [30]), their simultaneous

inclusion in statistical models as independent predictors may result

in unreliable parameter estimates. We therefore applied a

principal component analysis on log-transformed male CL and

chelae length to obtain a measure of chelae size relative to body

size (e.g. [48]). The first component (PC1) explained 97.8% of

variance and was indeed strongly positively related to both male

traits (loading 0.99), thus reliably capturing variance in body size.

On the other hand, the second component (PC2), which explained

the residual variance, was positively related to chelae length

(loading 0.15) and negatively to male CL (loading 20.15); PC2

therefore expressed variation in shape of both chelae and CL: high

scores of this component denoted males with relatively large chelae

but relatively small CL. We thus considered PC2 as a measure of

relative chelae size and included both components as independent

predictors in statistical models.

We first evaluated the factors affecting the probability that

insemination occurred during a mating trial (probability of

insemination hereafter) by using a mixed binary logistic regression

including stream of male origin and year as random effects, and

stream origin of pair members (same or different stream of origin),

number of trials, date of trial (with day 1 = 24 October for both

years), PC1 (male body size), PC2 (relative chelae size), female CL,

CL difference and male chelae asymmetry as covariates.

To assess the relationships between ejaculate features (sperm

area, sperm viability and longevity), female size and male SSCs,

we ran mixed model analyses (REML method, degrees of freedom

estimated according to the Kenward-Roger method), including

stream of male origin and year as random effects, and stream

origin of pair members (same or different), date of insemination

(with day 1 = 24 October for both years), number of trials, PC1,

PC2, female CL, CL difference, and male chelae asymmetry as

covariates. In models of sperm viability and longevity, we

additionally included sperm area as a possible predictor of these

sperm traits. Statistical analyses were performed using SPSS 18.0,

R 2.8.1 and SAS 9.1.3 (GLIMMIX procedure) packages.

Estimates of regression coefficients are reported together with

their associated standard errors.

Results

Probability of insemination decreased significantly with the

number of mating trials a pair effected (20.8060.23, t138 = 23.44,

P = 0.0008) and marginally non-significantly with increasing CL

difference between pair members (20.09260.047, t138 = 21.95,

P = 0.052). Conversely, probability of insemination was unaffected

by date of testing or any other variable (all P-values .0.26). These

results were strengthened when all non–significant predictors were

removed from the model at a time (number of trials: 20.8260.23,

t144 = 23.53, P = 0.0006; CL difference: 20.09360.046,

t144 = 22.00, P = 0.047).

The mixed model of sperm area showed that PC2 (relative

chelae size) was significantly negatively associated with ejaculate

Table 2. Ejaculate traits of male crayfish used in this study.

Traits n mean s.d. min; max CV

Sperm area (mm2) 113 33.32 14.93 5.35; 73.7 44.81

Sperm viability (%) 55 67.95 17.43 13.2; 91.6 25.65

Sperm longevity (%) 47 49.31 16.83 8.5; 79.8 34.14

Sperm viability is expressed as the % of live sperm at extraction from the
spermatophores, while sperm longevity is the % of live sperm after 30 min of
extraction (see Materials and Methods for details). CV = coefficient of variation.
doi:10.1371/journal.pone.0043771.t002

Figure 2. Relationships between sperm area and relative
chelae size. Relative chelae size is expressed as PC2 scores (see
Methods). The regression line is shown.
doi:10.1371/journal.pone.0043771.g002
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size (estimate: 23.9961.16, F1,102 = 11.9, P = 0.0008). Thus,

males with relatively smaller chelae allocated more sperm to

females than males with relatively larger chelae (Fig. 2). Sperm

area significantly increased with insemination date (F1,23 = 8.48,

P = 0.008; estimate: 1.0860.37; Fig. 3), while no significant effects

of all other predictors, including PC1 (relative body size), were

apparent (all P-values .0.08). Results were qualitatively un-

changed when all non-significant predictors were removed at a

time from the model (details not shown for brevity).

The mixed model of sperm viability showed a positive, though

marginally non-significant, effect of sperm area (F1,45 = 3.74,

P = 0.059; estimate: 0.2560.13), and a significant effect of origin of

pair members (F1,45 = 7.86, P = 0.007; estimate: 8.6063.07). No

other terms reached statistical significance (all P-values .0.18).

The effect of sperm area was however possibly masked by the

simultaneous inclusion of PC2 (relative chelae size) and date of

insemination, both of which covaried with sperm area (see above).

Indeed, when all non-significant predictors were removed at a

time from the model, the effect of sperm area on sperm viability

became highly statistically significant (F1,52 = 9.12, P = 0.004;

estimate: 0.3460.11), and the significant effect of origin of pair

members was confirmed (F1,52 = 7.14, P = 0.010; estimate:

7.8262.93). Thus, larger ejaculates contained more viable sperm

and males ejaculated more viable sperm when mating with females

coming from the same stream than when pair members came from

different streams.

A mixed model including all variables showed that sperm

longevity increased with increasing date of insemination

(F1,38 = 6.42, P = 0.016, estimate: 1.0460.41). Conversely, sperm

longevity significantly decreased with increasing chelae asymmetry

(F1,38 = 4.54, P = 0.039, estimate: 20.3160.14; Fig. 4). All other

variables did not significantly predict sperm longevity in any

model (all P-values .0.10). Results were qualitatively unaltered

when all non-significant terms were removed from the model at a

time (insemination date: F1,45 = 5.73, P = 0.020, estimate:

0.7660.32; chelae asymmetry: F1,45 = 6.97, P = 0.011, estimate:

20.3860.14). Thus, males that inseminated females later in the

breeding season emitted longer-lived sperm. Conversely, males

with highly asymmetric chelae appeared to release shorter-lived

sperm.

Discussion

The main finding of our study was that, consistent with sperm

competition theory rather than with the phenotype linked fertility

hypothesis (sensu [19]), the expression of sexual weapons, chelae

size, an androgen-dependent trait in decapods [49], negatively

covaried with sperm expenditure, though it did not predict sperm

viability or longevity. Therefore, for similarly-sized males,

ejaculate size decreased with increasing chelae length. Since

ejaculate size was positively related to sperm viability, this

suggested that relatively larger-clawed males were also less fertile.

In addition, the sperm of highly asymmetric-clawed males, which

have been investing energy in regenerating a lost cheliped, showed

a reduced longevity compared with those of more symmetric-

clawed individuals.

Thus, energy allocation to weapons may competitively reduce

energy investment in sperm production and quality, and males

with exaggerated SSCs may therefore be incapable of increasing

investment in their ejaculates. Alternatively, larger-clawed males

could reduce sperm allocation per female in order to fertilize a

greater number of partners than smaller-clawed males (e.g.

[50,51]). However, probability of mating was unrelated to male

chelae size, and thus larger-clawed males are unlikely to produce

smaller ejaculates in order to allocate sperm sparingly among

multiple partners. Nevertheless, males growing larger weapons are

advantaged in inter-male agonistic encounters as well as in

coercive mating [28,52], but beyond a certain threshold, they may

become hindered by these massive structures (chelae in decapods

can actually make up 35–50% of their total dry weight; [24]),

mainly if males invest more in developing larger chelae, or in

regrowing a lost chela, than in producing a high-quality chelae

muscle, as for example occurs in male slender crayfish (Cherax

dispar, [53]). Although favoured in pre-copulatory sexual compe-

tition (intimidation or fighting), males with disproportionately

large chelae release fewer sperm and thus may be disfavoured by

post-copulatory sexual selection either in the form of sperm

competition or cryptic female choice. In fact, this handicap may

promote cryptic female choice for males that are better able to

trade efficiency in pre-copulatory sexual competition (chelae size)

with efficiency in post copulatory sexual selection (ejaculate size

and quality): males that do not grow chelae disproportionately

Figure 3. Relationships between sperm area and date of
insemination. The regression line is shown.
doi:10.1371/journal.pone.0043771.g003

Figure 4. Relationships between sperm longevity and male
chelae asymmetry. Both variables were ! arcsine-transformed and are
thus expressed in degrees (u) (see Materials and Methods). The
regression line is shown.
doi:10.1371/journal.pone.0043771.g004
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larger than their carapace could be favoured by post-copulatory

sexual selection.

These findings may be reconciled with our previous study

documenting female differential allocation to egg and clutch size

depending on male traits [31], with females laying larger clutches

for relatively large-sized and small-clawed males, possibly maxi-

mising their reproductive success since this allocation pattern may

lead to an increased production of high-quality offspring (classical

differential allocation). On the other hand, females laying fewer

larger eggs for small, large-clawed males may be optimizing clutch

size to the limited sperm supplies provided by relatively small-

sized, large-clawed males. Whether a larger investment in egg size

than number reflects a form of maternal favouritism or

‘compensatory’ maternal investment (sensu [54–56]) remains to

be elucidated by determining the fitness payoffs of relatively large-

clawed males under natural, competitive, mating conditions.

Another remarkable finding of this study is that male crayfish

provided more viable sperm when mated to females of their own

natal stream. This surprising allocation strategy may result in

favouring genetically more similar females, which may possess co-

adapted gene complexes associated with beneficial adaptations to

local environmental conditions, thus preventing outbreeding

depression [57,58]. Thanks to a vast array of sense organs (eyes,

chemoreceptors, sensory hairs), crayfish males might recognize

females of their own stream not only by means of distance (sex

pheromone) and tactile chemoreception [44,59], but also visually,

perhaps through variation in body colour linked to stream

substrate (PG, pers. obs.; [60]). Recent studies of humans, feral

fowl and crickets suggest that males are capable of making rapid

adjustments to the quality of sperm they ejaculate [61–63]. Male

crayfish may adjust sperm viability by means of seminal fluids

secreted by vasa deferentia during sperm transit, which may function

in nourishing and conserving sperm during and after ejaculation,

thereby influencing viability of sperm contained in the spermato-

phores. Alternatively, male crayfish can have sperm in their vasa

deferentia that vary in age, as for example occurs in the cricket Acheta

domesticus [64]; in this case, males could be able to allocate their

more valuable young viable sperm to copulations that are likely to

provide the greater reproductive payoff, and this may occur when

mating with females of their own population [58]. Of course,

sperm viability could also be affected by the female’s reproductive

tract [65], but in A. italicus spermatophores are attached externally

to female body and sperm contained in spermatophores does not

come in contact with the female genital tract (see Introduction).

Moreover, in our experimental design, spermatophores remained

attached to female sternites for just few minutes after ejaculation,

i.e. before female egg release, and it is thus highly unlikely that

female body fluids mediated the differences in sperm viability we

observed between pairs from the same stream and pairs from

different streams.

Probability of insemination did not increase with date of trial,

i.e. male and female receptivity was similar all over the breeding

season, but sperm investment increased with insemination date.

The increase in sperm expenditure with breeding season we

observed in this study is not surprising, since in our previous

experiments we found that both ejaculate size and duration of

copulation increased with date of insemination [30]. Interestingly,

also sperm longevity increased with insemination date. Longevity

of sperm after release from spermatohores may be the key

component of fertilization success in a species where sperm are

immotile and may take hours to reach eggs. At the end of breeding

season, most females are ready to spawn and the lag between

insemination and spawning may be very short (even a few minutes

after insemination), thereby reducing female chances of further

mating, as males rarely approach and attempt to mate with

spawning females [28,38] and lowering the risk for last-mating

males of sperm removal by rivals. Thus, for males copulating with

virgin females the risk of sexual interference (total removal of

spermatophores, see [25]) or sperm competition (partial removal of

spermatophores) should be higher at the start of breeding season,

when weeks may pass between insemination and egg spawning,

and females may repeatedly mate with other males in the

meantime [25,31]. Moreover, spermatophores attached to female

ventral side may also be consumed by the attrition with substrate

during locomotion. Under this scenario, males are expected to

forgo copulation or invest fewer and lower-quality sperm in risky

matings early in the breeding season, when the opportunity of

future mating is higher. Conversely, the risk to have their own

sperm removed or lost should be lower for males copulating at the

end of the breeding season, when also opportunity for further

mating substantially declines [66]. Hence, a male strategy to

increase own chances of paternity should be to allocate the best-

quality ejaculates late in the breeding season to females which are

in pre-spawning condition, as this study showed. Admittedly, this

strategy may be mainly or only played on by large, dominant

males that can easily monopolize larger females and for a longer

time compared to smaller males. This may happen because large

males may actively displace the latter from copulation or limit

their access to females in competitive contexts, thus potentially

increasing their own mating opportunities [28,30,52]. This pattern

of sperm allocation deviates from theoretical models of sperm

competition, which predict increased sperm expenditure under

sperm competition risk [1], but is consistent with the strongly

loaded raffle occurring among males (and sperm) of this crayfish

species. Actually, even a single rival is able to completely remove

or significantly reduce previously deposited spermatophores [25],

and males do not gain any advantage by increasing their sperm

expenditure with increasing risk of sperm competition, because the

more sperm they release, the more is removed by subsequent

mating males [26].

Finally, the probability of insemination was higher on the first

attempt, declining over successive trials, and varied according to

body size difference between partners. The relative size of partners

may be important in shaping mating decisions in this species.

Males may have greater difficulties in seizing and assuming the

correct copulation position when mating with females much

smaller than them, while, on the other hand, a male much smaller

than his partner hardly or never achieves any mating if the female

resists (PG, pers. obs.). Taken together, these findings confirm that

males and females do not mate indiscriminately [28,52], but if the

pair is not well assorted by size, mating may not occur at all or be

delayed until the end of the breeding season.

In conclusion, this study highlighted some aspects of the sexual

behaviour of A. italicus that may contribute to our understanding of

selective forces shaping mating strategies, including the role of

male SSCs in post-copulatory sexual selection and female

preference. According to sperm competition theory [1,67], post-

copulatory sexual selection may counteract the effects of pre-

copulatory sexual selection in this crayfish species. Inter-male

competition for mating and the coercive mode of copulation may

have driven, in a seemingly Fisherian runaway fashion, the

evolution of exaggerated armaments to the point that some males

became handicapped in sexual competence.
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