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ability to assess adequately the overall impact of the
BP load upon the heart [8]. When LV thickening is
found the clinical record should be carefully reviewed
and blood pressure should be assessed using state-of-
the art methods such as ambulatory blood pressure
monitoring in the interdialytic period [11] and exercise
BP monitoring. Search for additional evidence of
target-organ damage, e.g. thickening of the aortic or
the carotid artery wall should also be carried out. This
laborious and time-consuming approach will certainly
complicate our lives and those of our patients. The
alternative, however, would be to risk inadequate
treatment of arterial hypertension and relentless pro-
gression of LVH.

The role of antihypertensive treatment

The aim of effective antihypertensive treatment must
be (i) to lower BP below the (currently controversial)
risk threshold and (ii) to achieve reversal of LVH
without perturbing LV functional properties [3]. It is
beyond the scope of this short communication to
discuss control of hypervolaemia. Treatment using
antihypertensive medication may reverse LVH by two
mechanisms (i) resetting of central and peripheral
haemodynamics (which is a long-term process) and (ii)
reversal of LVH by non-haemodynamic mechanisms
of the drugs (which may be a matter of weeks).
Reversal of LVH occurs more rapidly with ACE inhib-
itors than with calcium-channel blockers or beta block-
ers [12]. The protean effects of these drugs, however,
renders it difficult to delineate to what extent the
benefit is related to arterial and venous dilatation,
reduction of the arterial stiffness [8], inhibition of
systemic RAS, enhanced activity of the kinin system,
or inhibition of cardiac growth independent of haemo-
dynamic effects [3,12]. In theory, accelerated regression
of LVH in the face of incomplete lowering of BP may
cause damage by upsetting the balance between
myocardial contractility and hydraulic work load. This
does not appear to be a clinical problem. In the absence
of further information on the detailed mechanisms, it
is wise to combine treatment with ACE inhibitors and
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calcium-channel blockers in patients with difficult to
control hypertension [6].

It follows from the above that the ideal treatment
of LVH is currently not available, but recent progress
has gone a long way to make LVH a problem that can
be rationally managed by the clinical nephrologist.
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Treatment of hyperparathyroidism—why is it crucial to control
serum phosphate?
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The reasons for failure of phosphate control in uremic taken have been recently reviewed [1-4]. Briefly, what
patients and the therapeutic interventions that can be
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should be done for every dialysis patient is the follow-
ing: restriction of dietary intake of phosphate, optim-
ization of dialysis efficiency, correction of metabolic
acidosis and use of phosphate binders, possibly
avoiding aluminum gels.
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What is the role of phosphate in the genesis of
abnormal calcium metabolism in renal failure?

Which are the reasons why we should do all of this?
When more than 20 years ago Slatopolsky and Bricker
[5] formulated the 'trade off' hypothesis, they clearly
established that phosphate restriction prevents hyper-
parathyroidism in renal failure: a decline in glomerular
filtration rate while eating a regular diet is accompanied
by a progressive rise in PTH levels, while limiting
phosphate intake prevents the development of second-
ary hyperparathyroidism. This conclusion was drawn
from the experimental data at a time when the role of
calcitriol was not known but this is generally still
valid today.

It was later demonstrated that in moderate renal
failure phosphate restriction is followed by an increase
in the production of calcitriol [6], which in turn
suppresses PTH synthesis and secretion directly and
by increasing serum calcium levels. However, in
advanced renal failure calcitriol levels do not change
after phosphate restriction, but PTH levels improve,
indicating a direct action of phosphate on PTH secre-
tion, independent of calcium and calcitriol [7,8]. This
issue has been recently studied in detail by Kilav et al.
[9]: they showed that hypophosphatemic, normo-
calcemic rats with normal serum 1,25(OH)2D3 levels
had decreased PTH mRNA levels, indicating that
hypophosphatemia itself decreases PTH mRNA levels
without a contribution of calcium or vitamin D.
Moreover, they provided additional evidence that the
effect of hypophosphatemia was not mediated by
vitamin D. It was documented that the effect was not
transcriptional: in nuclear transcript run-on assays
there was no difference in the transcription of PTH
from rats on a low phosphate diet as compared to a
normal diet. Slatopolsky et al. [10] provided evidence
that in parathyroid glands of normal rats in vitro, high
phosphate levels have a direct stimulatory effect on
PTH secretion with no difference in PTH mRNA,
suggesting a post-transcriptional mechanism; in addi-
tion, they showed that phosphate restriction in uremic
rats prevents parathyroid gland growth and secondary
hyperparathyroidism independent of ionized calcium
and 1,25(OH)2D3. Almaden et al. [11] evaluated the
effect of phosphate on PTH secretion in vitro using
fresh parathyroid gland tissue from parathyroidectom-
ized patients: they also demonstrated that phosphorus
has a direct stimulatory effect on PTH secretion.

The different pathophysiologies in early and in
advanced renal failure

It therefore appears that the relationship between
calcium, phosphate, PTH, and calcitriol in the dialysis
patient is peculiar insofar as the pathophysiology is
completely different from the patient with mild to
moderate renal insufficiency. In mild renal failure, the
hypersecretion of PTH is initially appropriate, since it
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tends to normalize serum phosphate, calcitriol and
calcium levels; in the long term, however, PTH loses
its ability to maintain normophosphatemia when the
GFR falls below 30 ml/min. Because of the inhibitory
effect of PTH on proximal phosphate reabsorption,
the fraction of the filtered phosphate that is reabsorbed
can fall from the normal 80 to 95% to as low as 15%
in severe renal failure. At this point, PTH is unable to
further increase phosphate excretion but continues to
promote phosphate release from bone, resulting in
persistent hyperphosphatemia if intake of phosphate
is not diminished, leading to the development of a
vicious cycle. In addition, secondary hyperparathyroid-
ism may at this stage contribute to the hyperphosphate-
mia by continuing to enhance the release of calcium
phosphate from bone. The combination of marked
hyperphosphatemia and normal or low-normal plasma
calcium concentration will result in an elevated cal-
cium-phosphate product and a tendency for metastatic
calcification, i.e. calcium phosphate precipitation into
arteries, joints, and soft tissues.

Phosphate control—the academic ivory tower
versus real life

Now, although we know that in theory we can prevent
all of this simply by controlling serum phosphate,
things in real life are a little different: serum phosphate
is poorly controlled in many dialysis patients and
secondary hyperparathyroidism is a common problem.
Treatment of secondary hyperparathyroidism with
calcitriol is usually (but not always) effective, and
sometimes is complicated by the occurrence of hyper-
calcemia and hyperphosphatemia. Also it is debated
whether PTH synthesis and secretion can be controlled
at all by medical therapy once parathyroid hyperplasia
has developed [12].

Does hyperphosphatemia interfere with the
response to treatment with active vitamin D?

Two main unanswered questions arise: 1. Can we
reverse secondary hyperparathyroidism by restricting
phosphate intake? And if the answer is yes, how? 2.
Can we use calcitriol in the presence of hyperphosphat-
emia? Conflicting data have been reported on the
reversibility of parathyroid gland hyperplasia following
calcitriol treatment: a promising report from Japan
[13] could not be reproduced by other investigators.
In experimental renal failure, Szabo et al. [14] have
shown that calcitriol may inhibit the development of
parathyroid hyperplasia but can not reverse the pro-
cess. Calcitriol might exert its antiproliferative effect
on the parathyroid gland through an inhibition of the
replication associated oncogene, c-myc, whose expres-
sion was stimulated by exposure of parathyroid cells
to uraemic serum [15]. As far as the role of phosphate
is concerned, a preliminary report from Slatopolsky
et al. [16] shows that although in vitro studies failed
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to demonstrate any effect of phosphate on PTH syn-
thesis and secretion, in vivo experiments confirmed a
significant effect of phosphate restriction on pre-pro
PTH mRNA and PTH secretion in advanced renal
insufficiency, independent of the levels of calcitriol and
calcium. This was confirmed by the study of Kilav
et al. [8]. Preliminary data from the same group [17]
indicate that hypocalcemia, hyperphosphatemia and
uremia lead to an increase of parathyroid cell mitoses,
while hypophosphatemia completely abolishes them.
On the other hand, 1,25(OH)2D3 had no effect on cell
mitoses, emphasizing the importance of normal phos-
phate and calcium in the prevention of parathyroid
hyperplasia.

The mechanisms of the inhibitory effect of phosphate
restriction on PTH synthesis and secretion are therefore
still unknown: it has been postulated that the low-
phosphorus diet might affect the phospholipid com-
position of the parathyroid cell membranes modifying
local calcium fluxes and/or regulation of the number
or of the conformation of calcitriol receptors of the
parathyroid cells.

Although it is not proved whether a combination of
calcitriol treatment and phosphate control represents
the most effective approach to the treatment of second-
ary hyperparathyroidism, several facts suggest that this
might be the case. First, hyperphosphatemia may cause
nonresponsiveness to the inhibitory action of calcitriol
on PTH release by the parathyroid gland. Rodriguez
et al. [18] observed worsening of secondary hyperpara-
thyroidism in two patients receiving appropriate doses
of intravenous calcitriol. In these two patients, there
was an initial marked decrease in serum PTH in
response to intravenous calcitriol, but as severe hyper-
phosphatemia developed, there was a gradual and
steady increase in serum PTH; the change occurred
despite the presence of mild hypercalcemia and appro-
priate blood levels of calcitriol. Second, Quarles et al.
[19] performed a controlled study of pulse oral versus
intravenous calcitriol treatment of severe secondary
hyperparathyroidism and failed to document a consist-
ently beneficial effect of either route of administration.
Patients had hyperphosphatemia at the beginning and
remained hyperphosphatemic throughout the study,
furthermore hyperphosphatemia predicted refractori-
ness to calcitriol therapy. Third, on the other hand,
Cannella et al. [20] demonstrated that long-term
therapy with high-dose i.v. pulses of calcitriol in
patients with severe secondary hyperparathyroidism
was highly effective if care was taken to achieve good
control of serum phosphate levels: the authors observed
an 80% decrease of initial PTH levels, a marked
improvement of all histomorphometric indices of hyp-
erparathyroid bone disease, and a reduction of the
functional mass of the parathyroid glands assessed by
parathyroid scintigraphy.

Phosphate control—the orphan of treatment of the
dialysis patient

Optimal control of serum phosphorus in dialysis
patients should always be viewed in the context of
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adequate nutrition and protein intake, keeping in mind
the necessity to avoid malnutrition and the consequent
higher risk of death [21], we strongly favour better
control of intestinal absorption of phosphate by a
combination of reduced dietary intake and the use of
calcium salts, which are almost always necessary in the
anuric well-nourished dialysis patient. In fact, thrice
weekly dialysis with 4 h sessions can not counterbal-
ance a normal phosphorus intake [22] although a
recent study suggests that slow nocturnal home hemod-
ialysis, performed six nights weekly for 8 h per session
resulted in a decreased phosphate level despite a 50%
increase in phosphate intake and avoidance of phos-
phate binders after five months of treatment [23].
However, this dialysis technique is impractical.
Therefore, control of hyperphosphatemia in dialysis
patients is mandatory: it is difficult but inexpensive
and it can improve the action of calcitriol.
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