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We describe a simple optical model for ConDDM and numerical calculations for evaluating its accuracy in

determining the structure factor S(q) and H(q) from the short-time behavior of the image structure functions.

We show how our procedure leads to accurate determinations of these quantities, even at low values of q, so

long as the particle radius a is smaller than the thickness of the confocal slice δz.

Following standard treatments [1], we consider the con-

focal microscope to be a linear, space-invariant system, and

therefore write the intensity distribution collected on a two-

dimensional detector as:

I(~x, t) =

∫

d~x′dz′K(~x− ~x′,−z′)c(~x′, z′, t) (1)

where c is the fluorophore concentration at the point in 3D

realspace (x, y, z) ≡ (~x, z) at time t, and K is (up to a multi-

plicative factor) the 3D realspace point-spread function of the

microscope [1, 2]. The Fourier-space image correlation func-

tion is:

G(~q, δt) ≡ 〈I∗(~q, 0)I(~q, δt)〉 (2)

=

∫

dqz |K̃(~q, qz)|
2F (~q, qz, δt) (3)

where K̃(~q, qz) is the Fourier transform of K(~x, z) (i.e., the

Fourier-space optical transfer function), and F (~q, qz , δt) =
〈c∗(~q, qz, 0)c(~q, qz, δt)〉 is the unnormalized intermediate

scattering function [2, 3]. As in the main text of the paper,

~q is the 2D wavevector in the plane of the image, so we there-

fore use capital ~Q to represent the wavevector in the full 3D

reciprocal space:

~Q ≡ (qx, qy, qz) ≡ (~q, qz) (4)

As described in the main text, the dynamics measured us-

ing ConDDM are described by the image structure function

∆(~q, δt), which is related to the image correlation function

G(~q, δt) by:

∆(~q, δt) = 2 [G(~q, 0)−G(~q, δt)] (5)

For a system of N identical, possibly interacting colloidal

particles, the intermediate scattering function is in general a

nonexponential function of δt; however, for short times, as is

common in dynamic light scattering (DLS), F (Q, δt) can be

approximated with an exponential:

F (Q, δt) ≃ NP (Q)S(Q)e−δt/τ(Q) (6)

This can, in turn, be approximated by the standard expansion:

F (Q, δt) ≃ NP (Q)S(Q)

[

1−
δt

τ(Q)

]

(7)

where P (Q) is the particle form factor, S(Q) is the structure

factor, and Q ≡ ~Q2 =
√

~q2 + q2z is the magnitude of the 3D

wavevector. The Q-dependent correlation time, τ(Q), is as in

DLS:

τ(Q) = τdil
S(Q)

H(Q)
(8)

where τdil = (D0q
2)−1 is the correlation time for a dilute

suspension with volume fraction φdil, such that:

Sdil
∼= Hdil

∼= 1 (9)

Substituting,

F (Q, δt) ≃ NP (Q)

[

S(Q)−H(Q)
δt

τdil

]

(10)

where H(Q) is the hydrodynamic factor [4].

Combining Eqs. 3 and 7:

G(~q, δt) = N

∫

dqz |K̃(~q, qz)|
2P (Q)

[

S(Q)−H(Q)
δt

τdil

]

(11)

We rewrite this as:

G(q, δt) ≡ A(q)

[

1−
δt

τ(q)

]

(12)

where

A(q) = N

∫

dqz|K̃(~q, qz)|
2P (Q)S(Q) (13)

and

τ(q) = τdil

∫

dqz |K̃(~q, qz)|
2P (Q)S(Q)

∫

dqz |K̃(~q, qz)|2P (Q)H(Q)
(14)

are extracted from the ConDDM data, as shown in Fig. 1 of

the main paper.
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For relatively concentrated samples with particle volume

fraction φ, in the regime where φdil ≪ φ < 1, the ConDDM-

derived experimental structure factor Sφ(q) and hydrody-

namic factor Hφ(q) are given in the main paper:

Sφ(q) =

(

φdil

φ

)

Aφ(q)

Adil(q)
(15)

Hφ(q) = Sφ(q)
τ(q)

τdil
(16)

Substituting,

Sφ(q) =

(

φdil

φ

)

Aφ(q)

Adil(q)

=

∫

dqz |K̃(~q, qz)|
2P (Q)Sφ(Q)

∫

dqz|K̃(~q, qz)|2P (Q)
(17)

≡ 〈Sφ(Q)〉

Hφ(q) = Sφ(q)
τφ(q)

τdil(q)

=

∫

dqz |K̃(~q, qz)|
2P (Q)Hφ(Q)

∫

dqz|K̃(~q, qz)|2P (Q)
(18)

≡ 〈Hφ(Q)〉

where 〈.〉 indicates the expectation value calculated in the nor-

malized distribution:

p(qz; ~q) =
|K̃(~q, qz)|

2P (Q)
∫

dqz |K̃(~q, qz)|2P (Q)
(19)

We calculate eqns. 17 and 18 by using standard theoretical

estimates for P (Q) and K . For the form factor, we use the

standard relation for scattering from a sphere of radius R:

P (Q) =

[

3 (sin (QR)−QR cos(QR))

(QR)3

]2

(20)

=
4π

3

(

QR

2π

)

−
3

2

J3/2 (QR) (21)

where J3/2 is the Bessel function of the first kind of order 3/2.

For the point-spread function, we use the Gaussian-Lorentzian

model:

K(~x, z) =





exp
(

− 2x2

w2

0
(1+ζ2)

)

(1 + ζ2)





2

(22)

where ζ = λz/πnw2
0 , n is the refractive index, w0 is the beam

waist, and the Stokes shift between illumination and collection

wavelengths is neglected, so that λ represents the average of

the two wavelengths.

Combining these relations, we calculate numerically the in-

tegrals in eqns. 17 and 18 for the conditions of our exper-

iments: particle radius aPY = 0.51 µm, volume fractions

φ=0.04, 0.09, 0.20, 0.40, and confocal slice thickness δz=1.6
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FIG. 1. (color online) Structure factor (top) and hydrodynamic fac-

tor (bottom) for colloidal dispersions at various volume fractions

(red circles: φ = 0.04, blue diamonds: φ = 0.09, green squares:

φ = 0.20, cyan triangles: φ = 0.40). Lines represent the theoretical

predictions according to Percus-Yevick (left) and Beenaker-Mazur

theories. Symbols are the results of ideal ConDDM experiments ob-

tained by numerical solution of eqn. 17 (top) and eqn. 18 (bottom).

µm. Our numerically calculated S(Q) and H(Q) are in ex-

cellent agreement with the theoretical estimates of Percus-

Yevick, and Beenakur-Mazur, as shown in Fig. 1. This agree-

ment persists through the entire Q-range relative to our exper-

iment, in particular at low-Q. We explicitly determine the dif-

ference between our numerical estimate using the ConDDM

framework, and the theoretical prediction, at a low value of

Q= 0.1 µm−1, where the dynamics are determined by num-

ber fluctuations of particles in the confocal region; the relative

differences in S(Q) are 2.0 × 10−2 (φ = 0.04), 3.4 × 10−2

(φ = 0.09), 5.0×10−2 (φ = 0.20), and 5.2×10−2 (φ = 0.40).

For H(Q), the relative errors are 1.6 × 10−2 (φ = 0.04),

2.6×10−2 (φ = 0.09), 4.7×10−2 (φ = 0.20), and 7.3×10−2

(φ = 0.40). In all cases, the agreement is good to within a few

percent; furthermore, repeating the calculations for smaller

particles improves the agreement. For example, consider-

ing particles with half the radius, the largest relative error at

φ = 0.40 for S(Q) and H(Q) decreases to 9.4 × 10−3 and
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FIG. 2. (color online) Structure factor (top) and hydrodynamic factor

(bottom) for colloidal dispersions at various volume fractions (fol-

lowing the colors and symbols of figure 1), but for much larger parti-

cles where aPY = 3 µm. In all cases, the agreement between numer-

ical calculations and theoretical predictions breaks down at low-q.

2.7× 10−2, respectively.

There are limits, however, to this agreement. For larger

particles, the numerical calculations of eqns. 17 and 18 begin

to deviate from the theoretical predictions, as shown for much

larger particles with aPY = 3 µm in fig. 2. We observe that

the quantitative agreement for S(Q) and H(Q) persists, so

long as the radius of the particle is less than the thickness of

the confocal slice:

a < δz (23)

when this condition is met, the particle is small enough that it

is observed in the microscope essentially in its entirety. There-

fore, so long as the image statistics are sufficient, ConDDM

correctly measures the physics of the particle motion, as

demonstrated by the calculations shown in fig. 1. However,

for particles larger than this limit, only a portion of the parti-

cle is observed in confocal microscopy, leading ConDDM to

an incorrect estimate of the structure and dynamics, as shown

by the calculations in fig. 2.

Therefore, these results demonstrate that, under the con-

ditions relevant to our experiment, the agreement between

the ConDDM-derived experimental measurements of S(q)
and H(q) and the theoretical predictions, as demonstrated in

the manuscript, are robust throughout the entire accessible q
range, in particular the low-q limit where τ(q) has a plateau.

This agreement is inherent to the technique, as shown explic-

itly with our numerical calculation, and is not an artifact—so

long as the particles are smaller than the thickness of the con-

focal slice (eqn. 23).
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