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Translation-covariant Markovian master equation for a test
particle in a quantum fluid
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A recently proposed master equation in the Lindblad form is studied with respect to
covariance properties and existence of a stationary solution. The master equation
describes the interaction of a test particle with a quantum fluid, the so-called Ray-
leigh gas, and is characterized by the appearance of a two-point correlation function
known as the dynamic structure factor, which reflects symmetry and statistical
mechanics properties of the fluid. In the case of a free gas, all relevant physical
parameters such as fugacity, ratio between the masses, momentum transfer, and
energy transfer are put into evidence, giving an exact expansion of the dynamic
structure factor. The limit in which these quantities are small is then considered. In
particular, in the Brownian limit a Fokker–Planck equation is obtained in which the
corrections due to quantum statistics can be explicitly evaluated and are given in
terms of the Bose functiong0(z) and the Fermi functionf 0(z). © 2001 American
Institute of Physics.@DOI: 10.1063/1.1386409#

I. INTRODUCTION

The study of dissipative systems in a quantum mechanical framework is a subject of
interest for many physical communities especially in connection with applications. Recently,
ever, the subject has gained new interest also for physicists concerned with foundations o
tum mechanics, due to the relevance of the notion of decoherence as a gateway betw
classical and quantum worlds.1 This interest is strongly supported and partially motivated b
spectacular improvement in many experimental techniques useful for handling with great
sion single- or few-particle systems, checking for coherence properties in their dyna
evolution.2 In this connection models for quantum dissipation determined by the symmetry
erties of the microphysical interaction and by symmetry and statistical mechanics properties
environment could be of interest for a large class of phenomena. In the Markovian limit qua
dynamical semigroups3 seem the most natural quantum mechanical framework for the descri
of dissipative systems4 and a lot of work has been done in this direction, both at rigorous
formal levels, especially with reference to the structural result of Lindblad, which fixes the for
the generator of a completely positive quantum-dynamical semigroup in the case of
continuity.5 In this article we will study in detail some structural properties of a recently propo
Markovian master equation for the description of the dynamics of a test particle in a fluid,6–9 the
so-called Rayleigh gas.4 This simple but realistic model is of particular interest in statisti
mechanics, being a paradigmatic example which opens the way to the study of interactin
many-body systems. In the quantum regime a feature of independent interest is the relev
quantum statistics of particles making up the fluid, especially in connection with the recen
perimental realization of almost noninteracting degenerate gas samples of both Bose and
particles.10 The considered master equation was derived by assuming a translationally inv
interaction between the test particle and a homogeneous fluid, and has the general struct
generator of translation-covariant dynamical semigroups considered in Ref. 11. In this way a

a!Electronic mail: bassano.vacchini@mi.infn.it
42910022-2488/2001/42(9)/4291/22/$18.00 © 2001 American Institute of Physics
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4292 J. Math. Phys., Vol. 42, No. 9, September 2001 Bassano Vacchini
physical interpretation arises, at least in a particular case, of the general structure given in R
Further symmetry or equilibrium properties, which are of fundamental relevance in ord
determine the realm of validity of a given master equation,9 are shown to be a direct consequen
of particular physical features of the environment, embodied in a specific two-point corre
function, the so-called dynamic structure factor.12

The article is organized as follows: in Sec. II the master equation is introduced an
property of covariance with respect to translations and rotations is considered with reference
corresponding symmetries of the environment embodied in its dynamic structure factor; mor
the existence of a stationary solution is proved, provided the environment is in ab-KMS state.13

In Sec. III the case of a free quantum gas is considered, the dynamic structure factor is ex
calculated, its exact expansion with respect to the relevant physical parameters is obtained
the limit of small fugacityz the expression for Maxwell–Boltzmann particles is recovered. In S
IV the Brownian limit in which the test particle is much heavier than the particles making up
gas is dealt with, together with the limit of small momentum transfer, leading from the m
equation to a Fokker–Planck equation, strongly dependent on the statistics of the gas. In
the obtained results are briefly summarized and discussed.

II. GENERAL FEATURES OF THE MASTER EQUATION

Let us recall the general expression of the master equation proposed in Refs. 7 and 8
description of the motion of a test particle in a homogeneous fluid supposed to be at equili
whose properties we are going to study. The obtained result is based on a scattering
derivation, assuming a translationally invariant interaction in terms of two-particle collisions
is expected to be valid on a time scale much longer than the relaxation time of the environ
In the Schro¨dinger picture the master equation is given by

d%̂

dt
5M@%̂#52

i

\
@Ĥ0 ,%̂#1L@%̂#, ~1!

whereĤ05p̂2/2M is the Hamiltonian of the free particle,M being the mass of the test particl
while the dissipative part is given by the following mapping with a Lindblad structure:

L@•#5E
R3

dm~q! F Û~q!AS~q,p̂!•AS~q,p̂!Û†~q!2
1

2
$S~q,p̂!,•%G , ~2!

where the integral is over the parameter space of the translation group in momentum space
dimensions, the parameterq being the momentum transferred in a collision,$Â,B̂% denotes the
Jordan productÂ+B̂5ÂB̂1B̂Â, and the operatorp̂ is the generator of translations. The unita
operatorsÛ(q)5e( i /\)q• x̂, qPR3, are the generators of translations in momentum space or bo
The positive measuredm(q) is given by

dm~q!5
2p

\
~2p\!3nu t̃ ~q!u2d3q, ~3!

thus being invariant under both rotations and translations. In factn is the particle density in the
macroscopic system, and the functiont̃ (q), given by

t̃ ~q!5E
R3

d3x
e~ i /\!q•x

~2p\!3
t~x!,

whereq5uqu andx5uxu, is the Fourier transform with respect to the transferred momentumq of
the T matrix describing the translationally and rotationally invariant interaction between th
particle and the particles of the fluid, which is supposed to be energy independent. The fu
Downloaded 16 Jul 2012 to 159.149.103.6. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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4293J. Math. Phys., Vol. 42, No. 9, September 2001 Translation-covariant master equation
S(q,p), which appears operator-valued in~2!, is a positive two-point correlation function know
as the dynamic structure factor,12 given by the Fourier transform with respect to energy trans
E(q,p) and momentum transferq of the time dependent pair correlation function of the fluid

S~q,p!5
1

2p\ER
dtE

R3
d3x e~ i /\![E(q,p)t2q•x]G~x,t !, ~4!

whereG(x,t) is the time dependent pair correlation function

G~x,t !5
1

NER3
d3y ^N~y!N~y1x,t !&, ~5!

N(y) being the operator density of particles in the fluid and^¯& the ensemble average wit
respect to the state of the macroscopic system. The expressionE(q,p) gives the energy transfer in
a collision where the test particle changes its momentum fromp to p1q, so that

E~q,p!5Ep1q2Ep5
q2

2M
1

p"q

M
. ~6!

Note that in~4! we have used as variables momentum and energy transferred to the test p
In the sequel we will use both the equivalent notationsS(q,p) andS„q,E(q,p)…[S(q,E), accord-
ing to convenience. The dynamic structure factor is a very important physical quantity, givin
spectrum of spontaneous fluctuations of the system, and it is of direct experimental access:
as first obtained by van Hove in a fundamental work,14 it is directly related to the energy depen
dent differential cross-section per target particle describing scattering of a microscopic prob
macroscopic sample through the formula

d2s

dVp8dEp8

5~2p\!6S M

2p\2D 2
p8

p
u t̃ ~q!u2S~q,E!, ~7!

referring to scattering of the microscopic probe fromp to p85p1q. The dynamic structure facto
is given in~7! as a function of momentum and energy transfer, which are the measured qua
in scattering experiments, the energyE being related toq andp through~6!. The appearance of th
dynamic structure factor in~7! gives the physical reason for its being positive definite for ev
system. The main point in~1! and ~2! is the determination of the specific expressions for
measuredm(q) given by~3!, and of the operator valued functionS(q,•), given by~4!, which can
only be obtained on the basis of a microphysical derivation of the equation, relying on
physical model. A general structure encompassing~2! has already been considered by Holevo in
purely mathematical context, studying the general structure of generators of translation-co
dynamical semigroups.11 In particular Holevo has proven that when the generator is bounde
must have a structure of the form~1! with L given by~2! provided all operators appearing in~1!
and ~2! are bounded11 @see also Refs. 15 and 16, where further restrictions to the structure o~2!
appear, to be discussed later on#, and allowing, instead of the structure

Û~q!AS~q,p̂!•AS~q,p̂!Û†~q!

appearing in~2!, whereS(q,p̂) is self-adjoint and positive, the more general structure

Û~q!L~q,p̂!•L†~q,p̂!Û†~q!.

If the generator is unbounded also diffusion terms of the form considered in~37! may appear, and
the operators appearing in~1! and ~2! may be unbounded~see Ref. 11 for further details!. In the
Downloaded 16 Jul 2012 to 159.149.103.6. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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4294 J. Math. Phys., Vol. 42, No. 9, September 2001 Bassano Vacchini
general model considered here the Hamiltonian is given by the unbounded operatĤ0

5p̂2/2M , while the remaining part of the generator is determined by the explicit expression o
physical quantitiest̃ (q) andS(q,p), depending on the specific model for the fluid.

We now consider the behavior of~1! with respect to symmetry transformations. Let us co
sider a locally compact groupG and a unitary representationÛ(g), with gPG, on the Hilbert
space of the system. Following Ref. 11 we say that a mappingM in the Schro¨dinger picture is
G-covariant if it commutes with the mappingUg@•#5Û(g)•Û†(g) for all gPG:

M@Ug@•##5Ug@M@•##. ~8!

Let us first consider the case of spatial translations. Then the unitary operators are giv
Û(a)5e2( i /\)a•p̂ with aPR3 and exploiting

@Û~a!,Ĥ0#50, @Û~a!,S~q,p̂!#50,

together with the Weyl CCR,

Û~q!Û~a!5Û~a!Û~q!e~ i /\!a•q,

one immediately has that the mappingM given by~1! is translation-covariant. This property goe
back to homogeneity of the fluid and translational invariance of the interaction, as can be s
the derivation of the master equation.7,8 We then consider invariance under rotations, so that
relevant set of unitary operators takes the formÛ(R), with RPSO(3). In this case exploiting

@Û(R),Ĥ0#50 and the relations

Û†~R!Û~q!Û~R!5Û~R21q!, Û†~R!p̂Û~R!5Rp̂,

one has thatM is rotation-covariant provided the dynamic structure factor satisfies foR
PSO(3)

S~Rq,Rp!5S~q,p!. ~9!

In fact, if ~9! holds, one has

M@UR@•##5E
R3

dm~q! Û~R!F Û~R21q!AS~q,Rp̂!•AS~q,Rp̂!Û†~R21q!2
1

2
$S~q,Rp̂!,•%GÛ†~R!

5E
R3

dm~q! Û~R!F Û~q!AS~q,p̂!•AS~q,p̂!Û†~q!2
1

2
$S~q,p̂!,•%GÛ†~R!

5UR@M@•##.

On the other hand,~9! is directly linked to rotational invariance of the surrounding environme
as one can see observing thatE(q,p) as given by~6! satisfies

E~Rq,Rp!5E~q,p!,

and considering the identity

S~Rq,Rp!5
1

2p\ER
dtE

R3
d3x e~ i /\![E(Rq,Rp)t2Rq•x]G~x,t !

5
1

2p\ER
dtE

R3
d3xe~ i /\![E(q,p)t2q•x]G~Rx,t !
Downloaded 16 Jul 2012 to 159.149.103.6. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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4295J. Math. Phys., Vol. 42, No. 9, September 2001 Translation-covariant master equation
so that~9! holds if and only if the pair correlation function is invariant under rotations,

G~Rx,t !5G~x,t !.

In order to proceed further and consider the existence of stationary solutions we ma
natural assumption that the state of the macroscopic system, with respect to which the expe
value in ~5! is calculated, is ab-KMS state, so that the relation

^Â~w!B̂&5^B̂Â~w1 i\b!& ~10!

holds. This in turn implies that the dynamic structure factorS(q,p) satisfies an identity known a
detailed balance condition,12

S~q,p!5e2b(q2/2M1p•q/M )S~2q,p1q!, ~11!

usually expressed in terms of the dependence on the transferred energy

S„q,E~q,p!…5e2bE(q,p)S„2q,2E~q,p!…, ~12!

the sign of the exponential being determined by the fact that we are considering momentu
energy transferred to the particle. It will prove useful for further considerations to introdu
symmetrized version of the dynamic structure factor, given by

S̃~q,E!5e~b/2! ES~q,E! ~13!

or equivalently

S̃~q,p!5e~b/2!(q2/2M1p•q/M )S~q,p!, ~14!

satisfying instead of~12! the more symmetric

S̃~q,E!5S̃~2q,2E!,

so that~11! becomes

S̃~q,p!5S̃~2q,p1q!. ~15!

We now look for a stationary solution of~1!, given that the environment is in ab-KMS state, so
that due to~10! the dynamic structure factor satisfies the detailed balance condition as in~11!.
According to translation covariance of the generators we look for a solution invariant u
translation, of the formr(p̂). Since @Ĥ0 ,r(p̂)#50, r(p̂) will be a stationary solution of~1!
provided

L@r~ p̂!#5E
R3

dm~q! @Û~q!S~q,p̂!r~ p̂!Û†~q!2S~q,p̂!r~ p̂!#

5E
R3

dm~q! @S~q,p̂2q!r~ p̂2q!2S~q,p̂!r~ p̂!#50. ~16!

Introducing the function

A~q,p!5S~q,p2q!r~p2q!2S~q,p!r~p!, ~17!

the requirement~16! becomes
Downloaded 16 Jul 2012 to 159.149.103.6. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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E
R3

dm~q! A~q,p!50. ~18!

A sufficient condition for~18! to be valid is thatA(q,p) be an odd function inq, and we shall see
that this is exactly the case ifr(p̂) has the canonical structurer0(p̂)5e2bp̂2/2M, with M the mass
of the test particle andb the inverse temperature of the macroscopic system, as it is to be exp
on physical grounds. Letr0(p̂)5e2bp̂2/2M. Then

r0~p2q!5r0~p!e2b(q2/2M 2p•q/M ),

so that

A~q,p!5r0~p!@S~q,p2q!e2b(q2/2M2 p•q/M )2S~q,p!#

and exploiting~11!

A~q,p!5r0~p!@S~2q,p!2S~q,p!#,

which is manifestly odd inq.
As mentioned earlier the structure given in~2! is a particular realization of the gener

expression considered in Ref. 11; however, it does not meet the more stringent require
exhibited by the dissipative mapping considered in Ref. 16. According to Ref. 11 these re
ments are unnecessary if one is looking for the most general translation-covariant genera
we shall show that in the present framework they would lead to unphysical results. In fa
structure proposed in Ref. 16 for the dissipative part would take in the Schro¨dinger picture the
form

L@•#5E
R3

dm~q! FP~q,p̂!•P†~q,p̂!2
1

2
$P†~q,p̂!P~q,p̂!,•%G , ~19!

with the further requirement

P†~q,p̂!5P~2q,p̂!, ~20!

which in our case, since

P~q,p̂!5Û~q!AS~q,p̂! ~21!

is not satisfied, being equivalent to the requirement

Û~q!AS~q,p̂!5Û~q!AS~2q,p̂1q!,

which does not hold due to the presence of the factore2b(q2/2M1p•q/M ) in ~11!. If instead of the
dynamic structure factorS(q,p) one would consider the symmetrized dynamic structure fa
S̃(q,p) given by ~14!, so thatP(q,p) in ~21! would be replaced by

P̃~q,p̂!5Û~q!AS̃~q,p̂!,

then according to~15! the relation~20! would hold and the dissipative mappingL would conform
to the structure proposed in Ref. 16. In this case, however, one would have the unphysica
that r0(p̂)5e2b p̂2/2M is no longer a stationary solution, because

Ã~q,p!5S̃~q,p2q!r0~p2q!2S̃~q,p!r0~p!
Downloaded 16 Jul 2012 to 159.149.103.6. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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4297J. Math. Phys., Vol. 42, No. 9, September 2001 Translation-covariant master equation
is no longer odd inq. Other unphysical features linked to the further restriction~20! will be
considered in Sec. IV. Note that these features can only be discovered with reference to a s
structure of a translation-covariant generator determined by starting from some microph
model. In fact the restriction~20!, though unnecessary from a mathematical standpoint, could
proven interesting as well from a physical point of view, thus suggesting the result of Ref.
a useful starting point for phenomenological approaches. This does not seem to be the case
the substitutionS(q,p)→S̃(q,p), natural in order to comply with Ref. 16, leads to unphysi
results.

III. EXACT EXPRESSION FOR A FREE QUANTUM GAS

It is of course of interest to analyze the mappingM given in ~1! for a model in which the
dynamic structure factor of the fluid can be explicitly calculated: this is the case for an
quantum gas considered at finite temperatureT51/bk, where k is Boltzmann’s constant, and
obeying either Bose or Fermi statistics. Apart from simplicity, the case of a free gas can
interest also in view of the recent experimental realization of dilute quantum samples of Bo
Fermi particles in the degenerate regime.10 The dynamic structure factor for an ideal gas takes
form12

SB/F~q,p!5
1

nER3

d3k

~2p\!3
^nk& B/F~16^nk2q& B/F!dS ~p1q!2

2M
1

~k2q!2

2m
2

p2

2M
2

k2

2mD , ~22!

where the indexes B or F and signs1 or 2 refer to Bose or Fermi statistics, respectively,M is the
mass of the test particle,m is the mass of the particles making up the gas,n is the density of
particles in the gas, and̂nk&B/F is

^nk&B/F5
1

z21ebek71
, ek5

k2

2m
,

wherez is the fugacity of the gas, related to the chemical potentialm by z5ebm. For a Bose gas
at finite temperature 0<z,1, while for a Fermi gasz>0. The integral in~22! can be explicitly
calculated both for bosons and fermions, giving the result~A6! obtained in Appendix A:

SB/F~q,p!57
1

~2p\!3

2pm2

nbq

1

12ebE(q,p)
logF 17z exp@2~b/8m!„2mE~q,p!1q2

…

2/q2#

17z exp@2 ~b/8m!„2mE~q,p!2q2
…

2/q2#
G ,

~23!

with q5uqu. In the same way one can consider the case of a free gas of particles sati
Maxwell–Boltzmann statistics, thus having

SMB~q,p!5
1

nER3

d3k

~2p\!3
^nk& MBdS ~p1q!2

2M
1

~k2q!2

2m
2

p2

2M
2

k2

2mD , ~24!

with

^nk&MB5ze2bek,

so that the integral in~24! can also be explicitly calculated giving the expression~A8!:

SMB~q,p!5
1

~2p\!3

2pm2

nbq
zexpF2

b

8m

„2mE~q,p!1q2
…

2

q2 G . ~25!

A convenient way to write~23! and ~25! for later expansions is in terms of the function
Downloaded 16 Jul 2012 to 159.149.103.6. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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s~q,p!5
1

2q
@q212aME~q,p!#, ~26!

where the ratioa5m/M between the masses of the particles of the gas and of the test partic
been put into evidence, thus obtaining, respectively,

SB/F~q,p!57
1

~2p\!3

2pm2

nbq

1

12exp@~b/2m!„2s~q,p!q2q2
…#

3 logF 17z exp@2~b/2m!s2~q,p!#

17z exp@2~b/2m!„s~q,p!2q…2#
G ~27!

and

SMB~q,p!5
1

~2p\!3

2pm2

nbq
zexpF2

b

2m
s2~q,p!G . ~28!

We have thus put into evidence all the physical parameters which are of interest in specifyi
physical model under consideration and its range of validity:q, E, a, andz. In this perspective the
expression for a gas of Maxwell–Boltzmann particles can also be obtained as expected fr
dynamic structure factor for a Bose or Fermi gas in the limit of small fugacityz. In fact, starting
from ~27! and expanding the logarithm up to first order inz one has

SB/F~q,p,z!1!5
1

~2p\!3

2pm2

nbq

z

12exp@~b/2m!„2s~q,p!q2q2
…#

3H expF2
b

2m
s2~q,p!G2expF2

b

2m
„s~q,p!2q…2G J

5
1

~2p\!3

2pm2

nbq
zexpF2

b

2m
s2~q,p!G5SMB~q,p!.

Both ~23! and~25! or equivalently~27! and~28! are invariant under rotation, as one can see fr
the fact that they depend onq andp only throughE(q,p) and the modulusq of q, so that

SB/F~Rq,Rp!5SB/F~q,p!, SMB~Rq,Rp!5SMB~q,p!,

thus leading to a rotation-covariant mappingM when substituted in~1!. In order to grant the
existence of the stationary solutionr0(p̂) we have to check that the obtained expressions sa
the principle of detailed balance. Starting from~23! we have, setting for simplicityE(q,p)5E and
inverting the argument of the logarithm,

e2bESB/F~2q,2E!57
1

~2p\!3

2pm2

nbq

e2bE

12e2bE
logF 17z exp@2~b/8m!~22mE1q2!2/q2#

17z exp@2 ~b/8m!~22mE2q2!2/q2#
G

57
1

~2p\!3

2pm2

nbq

1

12ebE
logF 17z exp@2b/8m!~2mE1q2!2/q2]

17z exp@2 ~b/8m!~2mE2q2!2/q2]
G

5SB/F~q,E!,

which proves~12!. Similarly
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e2bESMB~2q,2E!5
1

~2p\!3

2pm2

nbq
z exp@2bE#expF2

b

8m

~22mE1q2!2

q2 G
5

1

~2p\!3

2pm2

nbq
zexpF2

b

8m

~2mE1q2!2

q2 G5SMB~q,E!.

The master equation~1! for the Rayleigh gas in the case of a free gas of Bose or Fe
particles takes therefore the form

d%̂

dt
5M B/F@%̂#52

i

\
@Ĥ0 ,%̂#1E

R3
dm~q!

3F Û~q!ASB/F~q,p̂!%̂ASB/F~q,p̂!Û†~q!2
1

2
$SB/F~q,p̂!,%̂%G , ~29!

with SB/F(q,p) given explicitly by ~23!, and a similar expressionM MB can be considered for a
free gas of Maxwell–Boltzmann particles. BothMB/F and MMB are translation- and rotation
covariant and admit the same stationary solution with the canonical structurer0(p̂).

IV. BROWNIAN LIMIT

In the framework of an ideal gas considered in Sec. III, i.e., referring toM B/F andM MB , we
now want to consider the physically distinguished case in which the test particle is much h
than the particles making up the gas, so thata5m/M is much smaller than one, the so-calle
Brownian limit. In order to do this we have to evaluate the dynamic structure factor for a fre
in the casea!1. The natural starting points are expressions~27! and ~28! in which the factora
has been put into evidence through the function~26!. In particular we have the relations

b

2m
s2~q,p!5

b

8m
q21

b

2

1

2M
@q212p•q#1

b

2

1

q2
a

1

4M
@q212p•q#2

5
b

8m
q21

b

2
E~q,p!1

b

2

m

q2
E2~q,p!,

b

2m
„s~q,p!2q…25

b

8m
q22

b

2

1

2M
@q212p•q#1

b

2

1

q2
a

1

4M
@q212p•q#2

5
b

8m
q22

b

2
E~q,p!1

b

2

m

q2
E2~q,p!, ~30!

b

2m
~2s~q,p!q2q2!5

b

2M
@q212p•q#5bE~q,p!.

The Brownian limit can now be taken neglecting the terms of ordera in ~30! or equivalently
considering small energy transfer, corresponding to a broader time scale, and keeping in~30! only
the terms linear inE, disregarding higher powers of the energy transfer. The resulting dyn
structure factors, denoted by an index`, are given by

SB/F
` ~q,p!57

1

~2p\!3

2pm2

nbq

1

12eb[q2/2M 1q•p/M ]
logF 17ze2~b/8m!q2

e2~b/2![q2/2M1q•p/M ]

17ze2 ~b/8m!q2
e1~b/2![q2/2M1q•p/M ] G

~31!
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and

SMB
` ~q,p!5

1

~2p\!3

2pm2

nbq
ze2~b/8m!q2

e2~b/2![q2/2M1q•p/M ] , ~32!

respectively. Considering the corresponding expressions in terms ofE(q,p),

SB/F
`

„q,E~q,p!…57
1

~2p\!3

2pm2

nbq

1

12ebE(q,p)
logF 17ze2~b/8m!q2

e2~b/2! E(q,p)

17ze2~b/8m!q2
e1~b/2! E(q,p)G ~33!

and

SMB
`

„q,E~q,p!…5
1

~2p\!3

2pm2

nbq
ze2~b/8m!q2

e2~b/2! E(q,p), ~34!

one immediately sees that rotational invariance is preserved in this approximation. One can
that also the detailed balance condition is not spoiled. In fact from~33! one has

e2bESB/F
` ~2q,2E!57

1

~2p\!3

2pm2

nbq

e2bE

12e2bE
logF17ze2 ~b/8m!q2

e1~b/2! E

17ze2~b/8m!q2
e2~b/2! EG

57
1

~2p\!3

2pm2

nbq

1

12ebE
logF 17ze2~b/8m!q2

e2~b/2! E

17ze2 ~b/8m!q2
e1~b/2! EG

5SB/F
` ~q,E!,

and from~34!

e2bESMB
` ~2q,2E!5

1

~2p\!3

2pm2

nbq
ze2~b/8m!q2

e2bE(q,p)e~b/2! E(q,p)5SMB
` ~q,E!.

As a result, in place of~29! we now consider the mappingM B/F
` :

d%̂

dt
5M B/F

` @%̂#52
i

\
@Ĥ0 ,%̂#1E

R3
dm~q!

3F Û~q!ASB/F
` ~q,p̂!%̂ASB/F

` ~q,p̂!Û†~q!2
1

2
$SB/F

` ~q,p̂!,%̂%G , ~35!

and similarlyM MB
` for Maxwell–Boltzmann statistics.M B/F

` andM MB
` are still translation- and

rotation-covariant and admit the same stationary solution with the canonical structurer0(p̂).
In the master equation~1!, or according to the physical system under consideration~29! or

~35!, the quantum scattering rate or transition probability appears through the dynamic str
factor and the square modulus of the Fourier transform of the T matrix determining the integ
measure~3!, these quantities being connected to the differential scattering cross-section by~7!. In
order to pass from the master equation to the related Fokker–Planck equation through a Kra
Moyal expansion, as stressed by van Kampen17 we need to put into evidence a small parame
governing the size of the fluctuations in the macroscopic system. In our case this param
naturally given by the momentum transferq, which through the dynamic structure factor is d
rectly linked to the equilibrium fluctuations of the macroscopic system. Smallq means long-
wavelength fluctuations, corresponding to the macroscopic, long range properties of the en
ment. It is physically meaningful to consider both approximationsuqu!1 and a!1, or
equivalently small energy transfer, together, so that starting from the Maxwell–Boltzmann
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M MB
` @•#52

i

\
@Ĥ0 ,•#1z

4p2m2

b\ E
R3

d3q
u t̃ ~q!u2

q
e2~b/8m!(112a)q2

3Fe~ i /\!q• x̂e2~b/4M !q•p̂
•e2~b/4M !q•p̂e2~ i /\!q• x̂2

1

2
$e2~b/2M !q•p̂,•%G

we expand the dissipative part of the mapping in the small parameterq. We will expand the
operators depending onq up to second order, so as to have contributions at most bilinear in
operatorsx̂ and p̂, position and momentum of the Brownian particle. We thus obtain a struc
analogous to the classical Fokker–Planck equation, with a friction term linearly proportion
velocity: this class of models is known as quantum Brownian motion.18–20 Recalling thata!1
and exploiting the symmetry properties of the integration measure the result for the dissipativ
is7

2z
2p2m2

b\ E
R3

d3q
u t̃ ~q!u2

q
e2~b/8m! q2

(
i 51

3

qi
2

3H 1

\2 @ x̂i ,@ x̂i ,•##1
b2

16M2 @ p̂i ,@ p̂i ,•##1
i

\

b

2M
@ x̂i ,$p̂i ,•%#J ,

where i 51,2,3 denotes Cartesian coordinates. Due to the isotropy of the environment we
qi

25 1
3q

2, so that we can define the coefficients

Dpp5
2

3

p2m2

b\ E
R3

d3q u t̃ ~q!u2qe2~b/8m! q2
,

Dxx5S b\

4M D 2

Dpp , ~36!

g5S b

2M DDpp ,

and introduce the following mapping describing quantum dissipation:

L QD@•#52
Dpp

\2 (
i 51

3

@ x̂i ,@ x̂i ,•##2
Dxx

\2 (
i 51

3

@ p̂i ,@ p̂i ,•##2
i

\
g(

i 51

3

@ x̂i ,$p̂i ,•%#, ~37!

thus coming to the Fokker–Planck equation

d%̂

dt
52

i

\
@Ĥ0 ,%̂#1L MB@%̂#52

i

\
@Ĥ0 ,%̂#1zL QD@%̂#. ~38!

In view of the result~38! for the Fokker–Planck equation describing the motion of
Brownian particle in a gas obeying Maxwell–Boltzmann statistics, we now look for the co
tions to~38! brought about by quantum statistics at finite temperature. As usual we will deal
both Bose and Fermi statistics, exploiting expression~B6! obtained in Appendix B by deriving an
exact expansion forSB/F

` (q,E):
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SB/F
` ~q,E!5SMB

` ~q,E!F (
k50

`

~6z!k2
b

8m
q2(

k51

`

~6 !kkzk

1
1

12
~bE!2(

k51

`

~6 !kkzk1
1

24
~bE!2(

k51

`

~6 !kk2zk1O~q4!G , ~39!

where a suitable expansion in the small parameterq has already been performed. Let us fir
introduce the Bose–Einstein and the Fermi–Dirac functions,21,22 given by

gn~z!5
1

G~n!
E

0

1`

dx
xn21

z21ex21
, 0<z,1, n.0, ~40!

and

f n~z!5
1

G~n!
E

0

1`

dx
xn21

z21ex11
, 0<z,`, n.0, ~41!

respectively, related for integern by f n(z)52gn(2z). These functions, typically appearing in th
quantum statistical mechanics of Bose and Fermi systems, satisfy the recurrence relations

gn21~z!5z
]

]z
@gn~z!#, f n21~z!5z

]

]z
@ f n~z!#, ~42!

so that they can be defined also forn<0. Starting from~42! and exploiting the following repre-
sentations foruzu,1,

gn~z!5 (
k51

`
zk

kn
, f n~z!5 (

k51

`

~2 !k21
zk

kn
,

one can write~39! in the Bose case as

SB
`~q,E!5SMB

` ~q,E!Fg0~z!

z
2

b

8m
q2g21~z!1

1

24
~bE!2

„g22~z!12g21~z!…1O~q4!G ~43!

and in the Fermi case as

SF
`~q,E!5SMB

` ~q,E!F f 0~z!

z
1

b

8m
q2f 21~z!2

1

24
~bE!2

„f 22~z!12 f 21~z!…1O~q4!G , ~44!

where the functions appearing in~43! can be written for 0<z,1 in closed form as

g0~z!5
z

12z
,

~45!

g21~z!5
z

~12z!2 , g22~z!5
z1z2

~12z!3 ,

while the functions appearing in~44! can be written for 0<z,` in closed form as

f 0~z!5
z

11z
,

~46!
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f 21~z!5
z

~11z!2 , f 22~z!5
z2z2

~11z!3 .

To evaluate the corrections due to quantum statistics we note that whenSMB
`

„q,E(q,p)… is substi-
tuted by an expression of the form

SMB
`

„q,E~q,p!…A@112Bq212C~p•q!2#,

so that keeping terms at most quadratic inq in the correction

ASMB
`

„q,E~q,p!…→ASMB
`

„q,E~q,p!)AA@11Bq21C~p•q!2#,

the mappingM MB
` always in the same approximation becomes

2
i

\
@Ĥ0 ,•#1AE

R3
dm~q! F Û~q!ASMB

` ~q,p̂!•ASMB
` ~q,p̂!Û†~q!2

1

2
$SMB

` ~q,p̂!,•%G
12ABE

R3
dm~q! q2F Û~q!ASMB

` ~q,p̂!•ASMB
` ~q,p̂!Û†~q!2

1

2
$SMB

` ~q,p̂!,•%G
1ACE

R3
dm~q! @Û~q!ASMB

` ~q,p̂!$~ p̂•q!2,•%ASMB
` ~q,p̂!Û†~q!2$SMB

` ~q,p̂!~ p̂•q!2,•%#.

~47!

Looking at~47! one immediately sees that, keeping terms at most quadratic inq, the last two terms
are to be neglected, since the dynamic structure factorSMB

` (q,p̂) and the unitary operatorsÛ(q)
can now only bring in a constant factor. The only change in the structure of the mapp
therefore given by the numerical factorA multiplying the dissipative part. This factor is actual
given byg0(z)/z in the Bose case and byf 0(z)/z in the Fermi case. The Fokker–Planck equati
~38! in the case of Bose statistics of the gas therefore becomes

d%̂

dt
52

i

\
@Ĥ0 ,%̂#1L B@%̂#52

i

\
@Ĥ0 ,%̂#1g0~z!L QD@%̂#, ~48!

while for Fermi particles one has

d%̂

dt
52

i

\
@Ĥ0 ,%̂#1L F@%̂#52

i

\
@Ĥ0 ,%̂#1 f 0~z!L QD@%̂#, ~49!

and the following simple relations hold:

LMB5zLQD,

LB5g0~z!LQD5
z

12z
LQD5

1

12z
LMB , ~50!

LF5 f 0~z!L QD5
z

11z
LQD5

1

11z
LMB .

According to~50! and setting after~36!

g MB5zg5z
b

2M
Dpp5z

1

3

p2m2

M\ E d3q u t̃ ~q!u2qe2~b/8m! q2
, ~51!
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one has the following very simple relation between the friction coefficients in~38! and ~48! or
~49!:

gB/F5
gMB

17z
. ~52!

The relationship between the Fokker–Planck equations for Maxwell–Boltzmann or Bos
Fermi statistics, as given, respectively, by~38!, ~48! and~49!, is actually remarkably simple: the
have the very same operator structure, apart from an overall coefficient depending on the fu
of the gas, which determines the relative weight of the dissipative contribution to the dynami
it is to be expected, only the statistics of the reservoir is of relevance, since the test partic
single particle. The Fokker–Planck equations obtained for the description of quantum dissi
may be compactly written:

d%̂

dt
52

i

\
@Ĥ0 ,%̂#1z~z!L QD@%̂#, ~53!

with z(z) defined as follows:

z~z!5H z, Maxwell–Boltzmann,

z/~12z!, Bose,

z/~11z! Fermi.

~54!

We now briefly come back to the question dealt with at the end of Sec. II about the ph
relevance of the structure of the translation-covariant master equation obtained in Ref.
already stressed, the master equation~1!, while having the general translation-covariant struct
considered in Ref. 11, does not comply with the further restrictions given in Ref. 16, while
would be the case if instead of the dynamic structure factorS(q,p) one would consider the
symmetrized correlation functionS̃(q,p), which is an even function ofq andE(q,p). This could
be considered a natural phenomenological ansatz in view of the result obtained in Ref. 16.
II we showed, however, that this substitution would spoil the existence of the expected stat
solution. More than this, if we now consider the Brownian limit, the symmetrized versio
SMB

` (q,p̂), which can be immediately obtained from~34!, reads

S̃MB
`

„q,E~q,p!…5
1

~2p\!3

2pm2

nbq
ze2~b/8m!q2

,

so that the dependence onp is completely lost and the whole operator structure in~37! and~38! is
washed out, apart from the double commutator with the position operatorsx̂i . In particular the
friction term is missing, so that, even though a Lindblad structure is retained, only a comp
different physics can be described. In the same way, for the Bose or Fermi dynamic str
factor in the Brownian limit one has from~B6!

S̃B/F
` ~q,E!5S̃MB

` ~q,E!F (
k50

`

~6z!k2
b

8m
q2(

k51

`

~6 !kkzk

1
1

12
~bE!2(

k51

`

~6 !kkzk1
1

24
~bE!2(

k51

`

~6 !kk2zk1O~q4!G ,
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and, once again, recalling~47! written in terms ofS̃MB
` rather thanSMB

` , one sees that under th
same approximations as before the operator structure in the dissipative part of both~48! and~49!
is washed out apart from the contribution due to the double commutator in the position ope
of the particlex̂i .

We now consider some structural features of the mappingLQD given by~37! in terms of which
the Fokker–Planck equation~53! encompassing all three statistics is given.G-covariance ofLQD

under translations and rotations immediately follows from its very structure and the transform
laws for the operatorsx̂ and p̂:

Û†~a!x̂Û~a!5 x̂1a, Û†~a!p̂Û~a!5p̂, Û†~R!x̂Û~R!5Rx̂, Û†~R!p̂Û~R!5Rp̂.

One can also see that an operator with the expected canonical structure is a stationary sol
~53! in that

L QD@r0~ p̂!#50,

due to the relationship

g

Dpp
5

b

2M
~55!

obeyed by the coefficients defined in~36! and entering in~37!. A few more remarks are in orde
The typical structure of translation-covariant mappings describing quantum dissipation in an
with the classical Fokker–Planck equation that one finds in the physical literature is given23

L FP
x @•#52

i

\
g(

i 51

3

@ x̂i ,$p̂i ,•%#2
1

\2

2Mg

b (
i 51

3

@ x̂i ,@ x̂i ,•##2x
bg

M (
i 51

3

@ p̂i ,@ p̂i ,•##, ~56!

where the ratio between the first two coefficients, given byb/2M as in ~55!, is fixed by the
requirement thatr0(p̂) be a stationary solution, i.e.,L FP

x @r0(p̂)#50, and the only freedom left
apart from the overall multiplying coefficientg, is given by the adimensional factorx. If one
further asks that~56! can be cast in Lindblad form, so thatL FP

x is the generator of a completel
positive dynamical semigroup,19 one has the further simple requirement18,24

x> 1
8. ~57!

In fact under this condition, observing that for the operators

B̂i 65 x̂i6 ikp̂i

we have the identity

B̂i 6•B̂i
†

62 1
2$B̂i

†
6B̂i 6 ,•%52 1

2$@ x̂i ,@ x̂i ,•##1k2@ p̂i ,@ p̂i ,•##62ik@ x̂i ,$p̂i ,•%#7 ik@$x̂i ,p̂i%,•#%,

we may writeL FP
x in an explicit Lindblad form in terms of the two generators

L̂ i 15 x̂i1 i
\b

M
Ax

2
p̂i , L̂ i 25 x̂i2 i

\b

M
Ax

2
p̂i

according to
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L FP
x @•#51

2gM

\2b S 11A 1

8x D(
i 51

3 F L̂ i 1•L̂ i
†

12
1

2
$L̂ i

†
1L̂ i 1 ,•%G

1
2gM

\2b S 12A 1

8x D(
i 51

3 F L̂ i 2•L̂ i
†

22
1

2
$L̂ i

†
2L̂ i 2 ,•%G2

i

\

g

2 (
i 51

3

@$x̂i ,p̂i%,•#. ~58!

The Fokker–Planck structureL QD falls within this class, with the coefficientg given by ~36! in
terms of a suitable integral of the Fourier transform of the T matrix describing collision
microphysical level. Moreover, it corresponds to the valuex5 1

8 in ~57!, so that

L QD5L FP
1/8 . ~59!

This in turn implies thatL QD can be written in a manifest Lindblad form in terms of a sing
generator for each Cartesian direction. We make the choice7,24

âi5
A2

lM
S x̂i1

i

\

lM
2

4
p̂i D ,

where lM5A\2b/M , the thermal wavelength associated to the Brownian particle, is put
evidence, so that one has the commutation relations

@ âi ,âj
†#5d i j .

In such a way we have the alternative expression

L QD@•#52
Dpp

\2

lM
2

4 (
i 51

3
i

\
@$x̂i ,p̂i%,•#1

Dpp

\2
lM

2 (
i 51

3 F âi•âi
†2

1

2
$âi

†âi ,•%G , ~60!

in which the single generator feature is put into evidence.

V. CONCLUSIONS AND REMARKS

In this article we have considered the behavior with respect to covariance under trans
and rotations, and the existence of a stationary solution of a recently proposed master equa~1!
for the description of the interaction of a test particle with a fluid, a physical model correspo
to the so-called Rayleigh gas. The key result in~1! is the appearance of a two-point correlatio
function known as dynamic structure factor and given by~4!, the general structure conforming t
results already obtained in the mathematical literature for the generator of a translation-co
dynamical semigroup. This correlation function, depending on symmetry and statistical mec
properties of the fluid, directly determines the behavior of the master equation with resp
covariance under translations and rotations, and existence of a stationary solution with t
pected canonical form. Considering the specific case of a free gas, the dynamic structure fac
been explicitly evaluated for Bose, Fermi, and Maxwell–Boltzmann statistics, and the depen
on the physical parameters determining the peculiar features of the model under considerat
been put into evidence in an exact expansion of the dynamic structure function. These para
are the fugacity of the gasz, the ratio between mass of the gas particles and of the test partica,
the transferred momentumq, and the transferred energyE(q,p). Stability of the covariance prop
erties of the master equation and of the existence of a stationary solution is then considere
limit in which these parameters are small, together with the different explicit expressions o
master equation. In particular, in the Brownian limita!1 and considering small momentum
transfer, corresponding through the physical interpretation of the dynamic structure fac
long-wavelength fluctuations, a Fokker–Planck equation with a Lindblad structure is obta
given by~53!, where the results corresponding to Bose, Fermi, and Maxwell–Boltzmann sta
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are jointly considered. The correction due to quantum statistics in the Fokker-Planck equa
simply expressed through the Bose and Fermi functions given by~45! and ~46!, respectively.
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APPENDIX A: DERIVATION OF EQ. „23… AND EQ. „25…

In this Appendix we want to explicitly calculate the expression of the dynamic structure f
for a free gas as a function ofq and p. Working at finite temperature we can carry out t
calculation for both Bose and Fermi particles at the same time adopting the convention th
symbol 6 means a1 sign for Bose particles and2 for Fermi particles. We start from the
expression

SB/F~q,p!5
1

nER3

d3k

~2p\!3
^nk& B/F~16^nk2q&B/F!dS ~p1q!2

2M
1

~k2q!2

2m
2

p2

2M
2

k2

2mD
with

^nk&B/F5
1

z21ebek71
, ek5

k2

2m
,

which can be found, for example, in Ref. 12 and corresponds to~4! for a free gas apart from a
singular term proportional, in the continuum limit considered here, tod3(q), relevant only forq
50 and not contributing to the master equation. In fact, in the derivation of the master equ
the contributions forq50 exactly cancel out. This term according to~7! corresponds to forward
scattering. We now have to evaluate the integral ink. This is most easily done writingSB/F(q,p)
in the form

SB/F~q,p!5
1

nER3

d3k

~2p\!3
^nk&B/F~16^nk2q&B/F!d„E~q,p!1ek2q2ek…

and observing that

^nk& B/F~16^nk2q&B/F!5
1

12eb(ek2ek2q)
~^nk& B/F2^nk2q&B/F!,

so that one has

SB/F~q,p!5
1

n

1

12ebE(q,p)ER3

d3k

~2p\!3
~^nk&B/F2^nk2q& B/F!d„E~q,p!1ek2q2ek…

5
1

n

1

12ebE(q,p)ER3

d3k

~2p\!3
$^nk& B/Fd„E~q,p!1ek2q2ek…

2^nk&B/Fd„E~q,p!1ek2ek1q…%

5
1

n

2m

12ebE(q,p)ER3

d3k

~2p\!3
^nk& B/F$d„2mE~q,p!1q222k•q…

2d„2mE~q,p!2q222k•q…%. ~A1!
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We are thus led to consider an integral of the form

E
R3

d3k ^nk& B/Fd~h22k•q! ~A2!

with h a real parameter. Denoting byj the cosine of the angle betweenk andq the integral in~A2!
becomes

2pE
21

1

djE
0

1`

dk k2^nk& B/Fd~h22jkq!

5E
21

1

djE
0

1`

dk k2^nk&B/FE
2`

1`

dp eip(h22jkq)

5E
2`

1`

dk k̂ nk& B/FE
2`

1`

dp
eip(h12kq)

i2pq
. ~A3!

and, using the identity

k^nk& B/F56
m

b

d

dk
log@17ze2ek#, ~A4!

we get, integrating by parts,

E
R3

d3k ^nk& B/Fd~h22k•q!57
2pm

b E
2`

1`

dk log@17ze2ek#E
2`

1` dp

2p
eip(h12kq)

57
pm

bq
logH 17zexpF2

b

8m S h

q D 2G J . ~A5!

Inserting the result~A5! in ~A1! one immediately has

SB/F~q,p!57
1

~2p\!3

2pm2

nbq

1

12ebE(q,p)
logF17z exp[2 ~b/8m!„2mE~q,p!1q2

…

2/q2)]

17z exp[2 ~b/8m!„2mE~q,p!2q2
…

2/q2]
G .

~A6!

In a similar way, starting from the expression of a gas of Maxwell–Boltzmann particles

SMB~q,p!5
1

nER3

d3k

~2p\!3
^nk&MBdS ~p1q!2

2M
1

~k2q!2

2m
2

p2

2M
2

k2

2mD ,

with

^nk&MB5ze2bek,

we write it in the form

SMB~q,p!5
1

nER3

d3k

~2p\!3
^nk&MBd„E~q,p!1ek2q2ek…

5
2m

n E
R3

d3k

~2p\!3
^nk&MBd„2mE~q,p!1q222k•q…. ~A7!

Analogously to~A2! we have to consider
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E
R3

d3k ^nk& MBd~h22k•q!,

which according to~A3! becomes

E
2`

1`

dk k̂ nk&MBE
2`

1`

dp
eip(h12kq)

i2pq
.

Exploiting instead of~A4! the relation

k^nk& MB52
m

b

d

dk
ze2ek

we obtain

E
R3

d3k ^nk&MBd~h22k•q!5
pm

bq
z expF2

b

8m S h

q D 2G ,
which has to be substituted in~A7! leading to

SMB~q,p!5
1

~2p\!3

2pm2

nbq
zexpF2

b

8m

„2mE~q,p!1q2
…

2

q2 G . ~A8!

APPENDIX B: EXACT EXPANSION OF SBÕF AND DERIVATION OF EQ. „39…

We will now derive an expression forSB/F(q,p) equivalent to~27!, in which, however, a series
expansion in powers of the fugacityz is put into evidence. The starting point is the Tayl
expansion for the logarithm log(11x)5(k51

` (2)k11xk/k, which leads us to write~27! in the form

SB/F~q,p!57
1

~2p\!3

2pm2

nbq

1

12e~b/2m!„2s(q,p)q2q2
…

3 (
k51

`

~2 !k11
~7z!k

k
e2 ~b/2m!s2(q,p)@12ek~b/2m!„2s(q,p)q2q2

…#. ~B1!

Considering now in~B1! a geometrical progression of reasone(b/2m)„2s(q,p)q2q2
…, according to the

formula

12xk5~12x! (
n50

k21

xn, ~B2!

Eq. ~B1! becomes

SB/F~q,p!5
1

~2p\!3

2pm2

nbq (
k51

`

~6 !k11
zk

k
e2k~b/2m!s2(q,p) (

n50

k21

en~b/2m!„2s(q,p)q2q2
…,

where it is to be noted that the sum overn is due to the presence of the statistical correction
6^nk2q& B/F in ~22! and disappears, being replaced by a factor of 1, if this correction is negle
It is worthwhile to put into evidence a factor

1

~2p\!3

2pm2

nbq
ze2~b/2m!s2(q,p),
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corresponding to the expression of the dynamic structure factor for a free gas of Max
Boltzmann particles, thus obtaining

SB/F~q,p!5SMB~q,p!F11 (
k51

`

~6 !k
zk

k11
e2k~b/2m!s2(q,p) (

n50

k

en~b/2m!„2s(q,p)q2q2
…G .

In the Brownian limita!1 considered in Sec. IV, neglecting in~30! the contributions of ordera,
this expression goes simply over to

SB/F
` ~q,p!5SMB

` ~q,p!F11 (
k51

`

~6 !k
zk

k11
e2k~b/8m!q2

e2k~b/2![q2/2M1q•p/M ] (
n50

k

enb[q2/2M1q•p/M ] G ,

~B3!

whereSB/F
` (q,p) andSMB

` (q,p) are given, respectively, by~31! and ~32!. In terms ofE(q,p) Eq.
~B3! takes the remarkably compact form

SB/F
` ~q,E!5SMB

` ~q,E!F11 (
k51

`

~6 !k
zk

k11
e2k~b/8m!q2

e2k~b/2! E(
n50

k

enbEG , ~B4!

whereSB/F
` (q,E) andSMB

` (q,E) are given by~33! and~34!. We now go one step further noting tha
the following identity holds:

e2k~b/2! E(
n50

k

enbE5
sinh@~k11! ~b/2!E#

sinh„~b/2!E…
,

which can be easily obtained exploiting~B2!, so that~B4! becomes

SB/F
` ~q,E!5SMB

` ~q,E!(
k50

`

~6 !k
zk

k11
e2k~b/8m!q2 sinh@~k11! ~b/2! E#

sinh„~b/2!E…
. ~B5!

Equation~B5! is the most convenient expression in order to consider the limit of small mome
transfer. Exploiting the expansion

sinh@ 1
2~k11!bE#

sinh~ 1
2bE!

5~k11!F11
1

24
~bE!2~k212k!1O~E4!G

and recalling thatE is given by~6! we may write~B5! as

SB/F
` ~q,E!5SMB

` ~q,E!F (
k50

`

~6z!k2
b

8m
q2(

k51

`

~6 !kkzk

1
1

12
~bE!2(

k51

`

~6 !kkzk1
1

24
~bE!2(

k51

`

~6 !kk2zk1O~q4!G . ~B6!

Recalling~B5! and the explicit expression ofSMB
` given by ~22! one also has

SB/F
` ~q,E!56

1

~2p\!3

2pm2

nbq

e2~b/2!E

sinh„~b/2!E… (
k51

`

~6 !k
zk

k
e2k~b/8m!q2

sinhS k
b

2
ED

and, exploiting22
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(
k51

`
pk

k
sinh~kx!5arthF p sinhx

12p coshxG ,
we obtain the alternative expression

SB/F
` ~q,E!56

1

~2p\!3

2pm2

nbq

e2~b/2! E

sinh„~b/2!E…
arthF 6ze2(b/8m)q2

sinh„~b/2) E…

17ze2(b/8m)q2
cosh„~b/2)E…

G ~B7!

equivalent to~31! as can also be directly checked starting from the identity

arthx5
1

2
logF11x

12xG . ~B8!

Note that~31! and ~B7! in the Fermi case can also be written in the form

SF
`~q,E!52

1

~2p\!3

pm2

nbq

e2~b/2!E

sinh~~b/2!E!
logF12@z/(11z)](12e2(b/8m)q2

e2 (b/2) E)

12@z/~11z)#(12e2(b/8m)q2
e1(b/2)E)

G
and

SF
`~q,E!52

1

~2p\!3

2pm2

nbq

e2~b/2!E

sinh~~b/2!E!
arthF [z/(11z)]e2(b/8m)q2

sinh„(b/2)E…

[z/(11z)](12e2(b/8m)q2
cosh„~b/2)E)…21

G ,

respectively, which can be useful if one is interested in an expansion for large valuesz.
According to~B8!, also forSB/F(q,E) given by ~23! one has the alternative expression

SB/F~q,E!56
1

~2p\!3

2pm2

nbq

e2~b/2! E

sinh„~b/2!E…
arthF 6ze2~b/8m!q2

e2~b/2!~m/q2! E2
sinh„~b/2!E…

17ze2~b/8m!q2
e2~b/2!~m/q2!E2

cosh„~b/2!E…
G .

~B9!

The validity of the detailed balance condition for~B9! according to~12! can immediately be
checked observing that both sinhx and arthx are odd functions, while coshx is an even function.
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