brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

] / / /
/ ’/Juumal of
I /Mathematical P
| /

I /.

provided by AIR Universita degli studi di Milano

Trahslation-covariant Markoviahl rhaSter eqﬁation for a test particle in a
quantum fluid

Bassano Vacchini

Citation: J. Math. Phys. 42, 4291 (2001); doi: 10.1063/1.1386409
View online: http://dx.doi.org/10.1063/1.1386409

View Table of Contents: http://jmp.aip.org/resource/1/JMAPAQ/v42/i9
Published by the American Institute of Physics.

Related Articles

Controlling activated processes of nonadiabatically, periodically driven dynamical systems: A multiple scale
perturbation approach
J. Chem. Phys. 136, 234506 (2012)

Brownian motions on metric graphs
J. Math. Phys. 53, 095206 (2012)

Optimizing hierarchical equations of motion for quantum dissipation and quantifying quantum bath effects on
quantum transfer mechanisms
J. Chem. Phys. 136, 224103 (2012)

Force-dependent mobility and entropic rectification in tubes of periodically varying geometry
J. Chem. Phys. 136, 214110 (2012)

Brownian rod scheme in microenvironment sensing
AIP Advances 2, 012180 (2012)

Additional information on J. Math. Phys.

Journal Homepage: http://jmp.aip.org/

Journal Information: http://jmp.aip.org/about/about_the journal
Top downloads: http://jmp.aip.org/features/most_downloaded
Information for Authors: http://jmp.aip.org/authors

ADVERTISEMENT

The most comprehensive support for physics in any mathematical software package
‘World-leading tools for performing calculations in theoretical physics

= Your work in Maple matches how you would write the problems and solutions by hand

v
Maple 16

The Essential Tool for Mathematics and Modeling

www.maplesoft.com/physics

= State-of-the-art environment for algebraic computations in physics

= The only system with the ability to handle a wide range of physics computations as well as

pencil-and-paper style input and textbook-quality display of results

= Access to Maple's full mathematical power, programming language, visualization routines,

and document creation tools

Downloaded 16 Jul 2012 to 159.149.103.6. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions


https://core.ac.uk/display/187894362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://jmp.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/1570277243/x01/AIP/MapleSoft_JMPCovAd_1640x440banner_05_30_2012/Physics_advert_May2012.jpg/7744715775302b784f4d774142526b39?x
http://jmp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Bassano Vacchini&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jmp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.1386409?ver=pdfcov
http://jmp.aip.org/resource/1/JMAPAQ/v42/i9?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4729848?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4714661?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4724193?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4726193?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3699034?ver=pdfcov
http://jmp.aip.org/?ver=pdfcov
http://jmp.aip.org/about/about_the_journal?ver=pdfcov
http://jmp.aip.org/features/most_downloaded?ver=pdfcov
http://jmp.aip.org/authors?ver=pdfcov

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 42, NUMBER 9 SEPTEMBER 2001

Translation-covariant Markovian master equation for a test
particle in a quantum fluid

Bassano Vacchini®
Dipartimento di Fisica dell’Universitadi Milano and Istituto Nazionale di Fisica
Nucleare, Sezione di Milano, Via Celoria 16, 1-20133, Milan, Italy

(Received 9 March 2001; accepted for publication 11 May 2001

Arecently proposed master equation in the Lindblad form is studied with respect to
covariance properties and existence of a stationary solution. The master equation
describes the interaction of a test particle with a quantum fluid, the so-called Ray-
leigh gas, and is characterized by the appearance of a two-point correlation function
known as the dynamic structure factor, which reflects symmetry and statistical
mechanics properties of the fluid. In the case of a free gas, all relevant physical
parameters such as fugacity, ratio between the masses, momentum transfer, and
energy transfer are put into evidence, giving an exact expansion of the dynamic
structure factor. The limit in which these quantities are small is then considered. In
particular, in the Brownian limit a Fokker—Planck equation is obtained in which the
corrections due to quantum statistics can be explicitly evaluated and are given in
terms of the Bose functiogy(z) and the Fermi functioffig(z). © 2001 American
Institute of Physics.[DOI: 10.1063/1.1386409

I. INTRODUCTION

The study of dissipative systems in a quantum mechanical framework is a subject of major
interest for many physical communities especially in connection with applications. Recently, how-
ever, the subject has gained new interest also for physicists concerned with foundations of quan-
tum mechanics, due to the relevance of the notion of decoherence as a gateway between the
classical and quantum worldsThis interest is strongly supported and partially motivated by a
spectacular improvement in many experimental techniques useful for handling with great preci-
sion single- or few-particle systems, checking for coherence properties in their dynamical
evolution? In this connection models for quantum dissipation determined by the symmetry prop-
erties of the microphysical interaction and by symmetry and statistical mechanics properties of the
environment could be of interest for a large class of phenomena. In the Markovian limit quantum-
dynamical semigroupsseem the most natural quantum mechanical framework for the description
of dissipative systenisand a lot of work has been done in this direction, both at rigorous and
formal levels, especially with reference to the structural result of Lindblad, which fixes the form of
the generator of a completely positive quantum-dynamical semigroup in the case of norm
continuity? In this article we will study in detail some structural properties of a recently proposed
Markovian master equation for the description of the dynamics of a test particle in & fiutee
so-called Rayleigh gasThis simple but realistic model is of particular interest in statistical
mechanics, being a paradigmatic example which opens the way to the study of interacting truly
many-body systems. In the quantum regime a feature of independent interest is the relevance of
quantum statistics of particles making up the fluid, especially in connection with the recent ex-
perimental realization of almost noninteracting degenerate gas samples of both Bose and Fermi
particles'® The considered master equation was derived by assuming a translationally invariant
interaction between the test particle and a homogeneous fluid, and has the general structure of a
generator of translation-covariant dynamical semigroups considered in Ref. 11. In this way a direct
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physical interpretation arises, at least in a particular case, of the general structure given in Ref. 11.
Further symmetry or equilibrium properties, which are of fundamental relevance in order to
determine the realm of validity of a given master equatiane shown to be a direct consequence

of particular physical features of the environment, embodied in a specific two-point correlation
function, the so-called dynamic structure facfor.

The article is organized as follows: in Sec. Il the master equation is introduced and the
property of covariance with respect to translations and rotations is considered with reference to the
corresponding symmetries of the environment embodied in its dynamic structure factor; moreover,
the existence of a stationary solution is proved, provided the environment i8iKMS state™
In Sec. lll the case of a free quantum gas is considered, the dynamic structure factor is explicitly
calculated, its exact expansion with respect to the relevant physical parameters is obtained and in
the limit of small fugacityz the expression for Maxwell-Boltzmann particles is recovered. In Sec.

IV the Brownian limit in which the test particle is much heavier than the particles making up the
gas is dealt with, together with the limit of small momentum transfer, leading from the master
equation to a Fokker—Planck equation, strongly dependent on the statistics of the gas. In Sec. V
the obtained results are briefly summarized and discussed.

Il. GENERAL FEATURES OF THE MASTER EQUATION

Let us recall the general expression of the master equation proposed in Refs. 7 and 8 for the
description of the motion of a test particle in a homogeneous fluid supposed to be at equilibrium,
whose properties we are going to study. The obtained result is based on a scattering theory
derivation, assuming a translationally invariant interaction in terms of two-particle collisions, and
is expected to be valid on a time scale much longer than the relaxation time of the environment.
In the Schrdinger picture the master equation is given by

dg_ A_iAA A
qp = Mlel=-+[Ho.el+Llel, (1)

whereHo=p?/2M is the Hamiltonian of the free particl®/ being the mass of the test particle,
while the dissipative part is given by the following mapping with a Lindblad structure:

. _ . 1 .
U(q)vS(q,p)-VS(q,p)UT(q)—g{S(q,p),~} : (2

where the integral is over the parameter space of the translation group in momentum space in three
dimensions, the parametgrbeing the momentum transferred in a collisieﬁ?\,é} denotes the
Jordan producAB=AB+BA, and the operatop is the generator of translations. The unitary

operatord) (g) =eMaX qe R3, are the generators of translations in momentum space or boosts.
The positive measuréu(q) is given by

qq:Lgmm

2

du(a)=—(27h)°n[t(q)[?d%, 3
thus being invariant under both rotations and translations. Inrfastthe particle density in the
macroscopic system, and the functitf), given by
e(i/ﬁ)q-x

(27h)3

Rm=Lg% t(x),

whereq=|q| andx= x|, is the Fourier transform with respect to the transferred momemtom
the T matrix describing the translationally and rotationally invariant interaction between the test
particle and the particles of the fluid, which is supposed to be energy independent. The function
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S(q,p), which appears operator-valued (@), is a positive two-point correlation function known
as the dynamic structure factBrgiven by the Fourier transform with respect to energy transfer
E(qg,p) and momentum transfay of the time dependent pair correlation function of the fluid

1 )
S(@ap = 5o | dt[_gxemEap g, @

whereG(x,t) is the time dependent pair correlation function

1
G-y | PV NDING+x0), ©

N(y) being the operator density of particles in the fluid anet) the ensemble average with
respect to the state of the macroscopic system. The exprdsgipp) gives the energy transfer in
a collision where the test particle changes its momentum fsdmp+q, so that

9° |, P

E(qrp):Ep+q_Ep:m+V- (6)
Note that in(4) we have used as variables momentum and energy transferred to the test particle.
In the sequel we will use both the equivalent notati€tg,p) andS(q,E(q,p))=S(q,E), accord-
ing to convenience. The dynamic structure factor is a very important physical quantity, giving the
spectrum of spontaneous fluctuations of the system, and it is of direct experimental access: in fact,
as first obtained by van Hove in a fundamental witk,is directly related to the energy depen-
dent differential cross-section per target particle describing scattering of a microscopic probe off a
macroscopic sample through the formula

o, ﬁ>6< : >2p,|'f< )125(0,E) 7
d0,.dE, ) \2an2) p ! VIEAED

referring to scattering of the microscopic probe frprto p’ = p+qg. The dynamic structure factor

is given in(7) as a function of momentum and energy transfer, which are the measured quantities
in scattering experiments, the eneigypeing related ta andp through(6). The appearance of the
dynamic structure factor ifi7) gives the physical reason for its being positive definite for every
system. The main point ifil) and (2) is the determination of the specific expressions for the
measured . (q) given by(3), and of the operator valued functi®(q, -), given by(4), which can

only be obtained on the basis of a microphysical derivation of the equation, relying on some
physical model. A general structure encompass$idnas already been considered by Holevo in a
purely mathematical context, studying the general structure of generators of translation-covariant
dynamical semigroup.In particular Holevo has proven that when the generator is bounded it
must have a structure of the forth) with £ given by(2) provided all operators appearing (ih)

and(2) are boundet! [see also Refs. 15 and 16, where further restrictions to the struct of
appear, to be discussed later]oand allowing, instead of the structure

U(a) VS(a,p)- VS(a,p)UT(a)
appearing in(2), whereS(q,p) is self-adjoint and positive, the more general structure

U(g)L(a,p)-LT(a.p)UT(g).

If the generator is unbounded also diffusion terms of the form considen@&¥)jmay appear, and
the operators appearing (tt) and(2) may be unboundetsee Ref. 11 for further detajlsin the
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general model considered here the Hamiltonian is given by the unbounded opélr@tor
=p%/2M, while the remaining part of the generator is determined by the explicit expression of the

physical quantities(q) andS(q,p), depending on the specific model for the fluid.
We now consider the behavior ¢f) with respect to symmetry transformations. Let us con-

sider a locally compact grou@ and a unitary representatidh(g), with ge G, on the Hilbert
space of the system. Following Ref. 11 we say that a mappihin the Schradinger picture is

G-covariant if it commutes with the mappirdg,[ - 1=U(g)-U'(g) for all ge G:
MUl - 1T=U[ ML - 1] tS)

Let us first consider the case of spatial translations. Then the unitary operators are given by
U(a)=e (/2P with ac R® and exploiting

[U(a),Ho]=0, [U(a),S(a,p)]1=0,
together with the Weyl CCR,
U(q)U(a)=U(a)U(qg)e"™aq,

one immediately has that the mapping given by(1) is translation-covariant. This property goes
back to homogeneity of the fluid and translational invariance of the interaction, as can be seen in
the derivation of the master equatibhWe then consider invariance under rotations, so that the

relevant set of unitary operators takes the fduR), with Re SO(3). In this case exploiting
[U(R),Ho]=0 and the relations

UT(R)U(9)U(R)=U(R *g), UT(R)pU(R)=Rp,

one has thatM is rotation-covariant provided the dynamic structure factor satisfiesRfor

e SO(3)
S(Rq,Rp)=S(aq,p). 9

In fact, if (9) holds, one has

. . = —~ 1 A .
Ml 11= (@ O(R) U<R1qNs<q.Rp>-Js<q,Rp>u*<R1q>—§{8<q,Rp>,-}}uT<R>

=fR3du(q) U(R)[U(q)vs(q,p)-VS(q,p)UT(q)—E{S(q,p)w}}U*(R)
=Ur[M[-]].

On the other hand9) is directly linked to rotational invariance of the surrounding environment,
as one can see observing tli#tg,p) as given by(6) satisfies

E(Rq,Rp)=E(q,p),

and considering the identity

1 .
S(Rq,Rp) = mfRdth3d3X eli/A)[E(Rq,Rp)t— RQ'X]G(X,t)

1

= 3yl/M)[E(q.p)t—a-X]
thJRdtJ’de xe G(Rx,t)
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so that(9) holds if and only if the pair correlation function is invariant under rotations,
G(Rx,t)=G(x,t).
In order to proceed further and consider the existence of stationary solutions we make the

natural assumption that the state of the macroscopic system, with respect to which the expectation
value in(5) is calculated, is 88-KMS state, so that the relation

(A(w)B)=(BA(W+i%B)) (10

holds. This in turn implies that the dynamic structure fa&6g,p) satisfies an identity known as
detailed balance conditigtf

S(q,p) =e AP aMIS—qp+ ), (1)
usually expressed in terms of the dependence on the transferred energy

S(q,E(q,p))=e PE@PS(—q,—E(q,p)), (12)

the sign of the exponential being determined by the fact that we are considering momentum and
energy transferred to the particle. It will prove useful for further considerations to introduce a
symmetrized version of the dynamic structure factor, given by

S(q,E)=eP?Eg(q,E) (13
or equivalently
S(q,p) =P paMIg g ), (14)

satisfying instead of12) the more symmetric

S(a,E)=S(—q,—E),
so that(11) becomes

S(a.,p=S(—q,p+0q). (15)
We now look for a stationary solution @¢1), given that the environment is in@KMS state, so

that due to(10) the dynamic structure factor satisfies the detailed balance condition (48)in
According to translation covariance of the generators we look for a solution invariant under

translation, of the formp(p). Since[Hq,p(p)1=0, p(p) will be a stationary solution ofl)
provided

Llp(p)]= fdemm[0(q>8<q,b>p(b>of<q>—S<q,|6>p<ﬁ>]

= fdeMq)[S<q,|6—q>p<|6—q>—s<q,|6>p<|6>]=o. (16)
Introducing the function

A(q,p)=S(g,p— ) p(p—a)—S(a,p)p(p), (17

the requirement16) becomes
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J ,du(a) A(q,p)=0. (18
R

A sufficient condition for(18) to be valid is thatA(g,p) be an odd function i, and we shall see

that this is exactly the case #(p) has the canonical structupg(p) =€~ #*/?, with M the mass
of the test particle an@ the inverse temperature of the macroscopic system, as it is to be expected

on physical grounds. Leio(p)=€ #*/M. Then

po(p—a)= Po(p)e_ﬁ(qZIZM “PaM),

so that

A(G,p) = po(P)[S(q,p— gy AaTM= P M) _g(q n)]

and exploiting(11)

A(G,p)=po(P)[S(—a,p) —S(a.p)],

which is manifestly odd ing.

As mentioned earlier the structure given (B) is a particular realization of the general
expression considered in Ref. 11; however, it does not meet the more stringent requirements
exhibited by the dissipative mapping considered in Ref. 16. According to Ref. 11 these require-
ments are unnecessary if one is looking for the most general translation-covariant generator and
we shall show that in the present framework they would lead to unphysical results. In fact the
structure proposed in Ref. 16 for the dissipative part would take in the @idger picture the
form

- ~ 1 A -
Ll-1= L@d’“(q) [P(q,p)- P'(a.p) - E{PT(q,p)P(q,p),} ; 19

with the further requirement

P(q,p)=P(—q,p), (20)
which in our case, since
P(q,p)=U(q)VS(a,p) (21)

is not satisfied, being equivalent to the requirement

U(q)Vs(a,p)=U(a) VS(—q,p+9),

which does not hold due to the presence of the faetdKa 2V +P &M in (11). If instead of the
dynamic structure facto®(qg,p) one would consider the symmetrized dynamic structure factor

S(q,p) given by(14), so thatP(q,p) in (21) would be replaced by

P(q,p)=U(a)VS(a,p),

then according tg§15) the relation(20) would hold and the dissipative mappidggwould conform
to the structure proposed in Ref. 16. In this case, however, one would have the unphysical result
thatpo(ﬁ)=e‘ﬁ"2’z'\" is no longer a stationary solution, because

A(a,p) =S(a,p— a) po(P—a) — S(a,p) po(P)
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is no longer odd ing. Other unphysical features linked to the further restricti@f) will be
considered in Sec. IV. Note that these features can only be discovered with reference to a specific
structure of a translation-covariant generator determined by starting from some microphysical
model. In fact the restrictio(R0), though unnecessary from a mathematical standpoint, could have
proven interesting as well from a physical point of view, thus suggesting the result of Ref. 16 as
a useful starting point for phenomenological approaches. This does not seem to be the case, in fact
the substitutionS(q,p)— S(q,p), natural in order to comply with Ref. 16, leads to unphysical
results.

lll. EXACT EXPRESSION FOR A FREE QUANTUM GAS

It is of course of interest to analyze the mappifg given in (1) for a model in which the
dynamic structure factor of the fluid can be explicitly calculated: this is the case for an ideal
quantum gas considered at finite temperaflirel/Bk, wherek is Boltzmann’s constant, and
obeying either Bose or Fermi statistics. Apart from simplicity, the case of a free gas can be of
interest also in view of the recent experimental realization of dilute quantum samples of Bose or
FerrrIi2 particles in the degenerate regith@he dynamic structure factor for an ideal gas takes the
form

d*k (p+9? (k=9? p* K
3 (N Bir(1E(Nk—q) BiF) O M am oM am) (2

( )_EJ’ =
SeF(Q.P) = - RS 2mth)

where the indexes B or F and sigttsor — refer to Bose or Fermi statistics, respectivéllyjs the
mass of the test particlen is the mass of the particles making up the gass the density of
particles in the gas, an@)g is

1 k2

<nk>B/F:m, &« om’

wherez is the fugacity of the gas, related to the chemical potentidly z=e”*. For a Bose gas
at finite temperature €z<<1, while for a Fermi gag=0. The integral in(22) can be explicitly
calculated both for bosons and fermions, giving the re@\#) obtained in Appendix A:

L 1 27m? 1
SB/F(va)_+(27Tﬁ)3 nBq 1—efE@P 9

1¥ zexd — (B/8m)(2mE(q,p) +9%)?/q?] 1
1¥zexd — (B/8m)(2mE(q,p)— g% q?])’

with g=|g|. In the same way one can consider the case of a free gas of particles satisfying
Maxwell-Boltzmann statistics, thus having

3 2 2 2 2
SMB<q,p>=%JR3%<nk> R "
with
(nme=2€P%,
so that the integral i1t24) can also be explicitly calculated giving the expressidBg):
Swp(0P) = 3 zw—mzzexp[ -5 Erapra (25
(27h)® npq 8m >

A convenient way to writg23) and(25) for later expansions is in terms of the function
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1
cr(q,p)=ﬁ[q2+2aME(q,p)], (26)

where the ratiacx=m/M between the masses of the particles of the gas and of the test particle has
been put into evidence, thus obtaining, respectively,

27m? 1
nAA 1—exd (B/2m)(20(q,p)q—g?)]

1
SB/F(q!p): I(Z’rrh)S

1% zexd — (B/2m)a?(q,p)]
og — . (27
15 zexd —(B/12m)(o(q,p) — )]
and
1 27m? B 5
SMB(va):(Zﬂ_h)s nﬂq zex _ﬁa (q,p) . (28)

We have thus put into evidence all the physical parameters which are of interest in specifying the
physical model under consideration and its range of validjt\&, «, andz. In this perspective the
expression for a gas of Maxwell-Boltzmann particles can also be obtained as expected from the
dynamic structure factor for a Bose or Fermi gas in the limit of small fugarity fact, starting

from (27) and expanding the logarithm up to first orderzione has

27m?

(27h)° nBA 1—exd(B/2m)(2c(q,p)q— )]

><|exp[ - %az(q,p) —exr{ - %(a(q,p)—q)zn

z

SeiF(Q,p,z<1)=

1 2mm?

B
(27%)° npq Zex‘{ B ﬁ"z(q’m} =Sus(a,p)-

Both (23) and(25) or equivalently(27) and(28) are invariant under rotation, as one can see from
the fact that they depend apandp only throughE(qg,p) and the modulusj of g, so that

Se/r(RQ,Rp) =Sg/r(a,p),  Swe(RA,Rp)=Sys(a,p),

thus leading to a rotation-covariant mapping when substituted ir{1). In order to grant the
existence of the stationary soluti(pxa(f)) we have to check that the obtained expressions satisfy
the principle of detailed balance. Starting fr¢&8) we have, setting for simpliciti(q,p) = E and
inverting the argument of the logarithm,

ef,BESB (—q—E)=7 1 2mm? e BE . {11ZeXF[—(,3/8m)(—2mE+q2)2/q2]l
AR T2 0m)® B 1—ePE 0 17 zext] — (B18m)(— 2mE—q?) /]

1 2mm? 1 15 zexg — B/8m)(2mE+q?)%/q?]
= (0]
T(27h)® NBA 1—efE ) 17 zexd — (B/8m)(2mE- q?) U]

= SB/F(qv E),

which proves(12). Similarly

Downloaded 16 Jul 2012 to 159.149.103.6. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



J. Math. Phys., Vol. 42, No. 9, September 2001 Translation-covariant master equation 4299
2 _ 2\2
“BES. (—q—E)= 1 2mm B (—2mE+q9)
€ wme( — 0,

2ah)? nBq ——zexd - BE]exr{ Sm—qz—

1 27Tm2 B (2mE+q?)?

~ 8m q
The master equatiofil) for the Rayleigh gas in the case of a free gas of Bose or Fermi
particles takes therefore the form

de _ A PP
E_MB/F[Q]__g[HOaQ]+fR3du(q)

- — . 1 ~ n
x| 0(0)VSer(aP0VSeraPU'(@) - 5{Sera.0}|, (29

with Sg;e(g,p) given explicitly by (23), and a similar expressioM yg can be considered for a
free gas of Maxwell-Boltzmann particles. Botg,r and M,z are translation- and rotation-

covariant and admit the same stationary solution with the canonical strygf(pe

IV. BROWNIAN LIMIT

In the framework of an ideal gas considered in Sec. lll, i.e., referriniyttg and M g, we
now want to consider the physically distinguished case in which the test particle is much heavier
than the particles making up the gas, so thatm/M is much smaller than one, the so-called
Brownian limit. In order to do this we have to evaluate the dynamic structure factor for a free gas
in the casex<<1. The natural starting points are expressi®id and(28) in which the factora
has been put into evidence through the funcii@®). In particular we have the relations

/3' ,3

B B 1
2 L a2 102 [ 2 2
(AP =gnd"*5 2M[q +2p-ql+ 3 2 2% [q +2p-q]

B

8m

2+ EE(q p)+ pm q—EZ(q P,

1
%(o(q,p)—q)z— P q°— '[23 Sy La®+2p: q]+éq—a [g%+2p-q]?

B B B m
=—mq2—§E(q,p)+§?E2(q,p), (30)

'6 >m(20(Apa—0%)= 5 [q2+2p al=BE(q.p).

The Brownian limit can now be taken neglecting the terms of owden (30) or equivalently
considering small energy transfer, corresponding to a broader time scale, and kedBDginly

the terms linear irE, disregarding higher powers of the energy transfer. The resulting dynamic
structure factors, denoted by an indexare given by

2.rm?2 1 15 7z (BBMA® o= (BI2)[4%/2M + - p/M]

T 27h)® NBq 1— Pladam ra ] 09 T o (BEmaZgr (B2 %M+ q-pM]
(31)

Sera.p) =
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and

1 27rm?

00 _ 2 _ 2 .
Sys(a,p)= (27T—ﬁ)3 B4 ze (FBmMA”g = (A2)[q72M+a-p/M] (32)

respectively. Considering the corresponding expressions in terfagopp),

. 1 2mm? 1 15 ze (BIBMA®g—(BI2) E(ap) -
Ser(@E(AP)=+ 5533 g 1o gpe@n %Y 1550 g r@aEan | OO
and
oo 1 2am® em?a— g
SMB(an(Qyp)):(Zﬂ_—h)s nBq 2¢ (Bl8m)a“eg = (A1) E(aP), (34)

one immediately sees that rotational invariance is preserved in this approximation. One can check
that also the detailed balance condition is not spoiled. In fact f@®hone has

2 —BE
e PES: (~q—E)=T 1 2wm° e log
e (2mh)* npq 1-e AE

15 ze (BB g+ (B2) El

1576 (BBMGg—(BI2) E

1 2mm* 1 15 ze (BEMA o= (B2 E
~ T (2wh)® nBq 1-efE Iog{ 17 ze (BBMG o+ (B2) E]
=Spr(9.E),
and from(34)
1 27m?

_ 0 _ 2 _ 00
e BESMB(_q,_E):W an ze (pI8m)q e IBE(pr)e(Blz) E(q’p):SMB(qu)-

As a result, in place 0f29) we now consider the mappin§y! g:

do N [N
H=MB,F[Q]=—g[Ho,erdeu(q)

) S — 1
x| 0 VS5e(ap@VSaraPpUT(@— 5{Serap) .o}, (39

and similarly M y;g for Maxwell-Boltzmann statisticsM g,z and M 5 are still translation- and
rotation-covariant and admit the same stationary solution with the canonical strpg(ﬁ:ﬂe

In the master equatiofil), or according to the physical system under considera@® or
(35), the quantum scattering rate or transition probability appears through the dynamic structure
factor and the square modulus of the Fourier transform of the T matrix determining the integration
measurg3), these quantities being connected to the differential scattering cross-section ly
order to pass from the master equation to the related Fokker—Planck equation through a Kramers—
Moyal expansion, as stressed by van Kantpeve need to put into evidence a small parameter
governing the size of the fluctuations in the macroscopic system. In our case this parameter is
naturally given by the momentum transfgrwhich through the dynamic structure factor is di-
rectly linked to the equilibrium fluctuations of the macroscopic system. Sqafleans long-
wavelength fluctuations, corresponding to the macroscopic, long range properties of the environ-
ment. It is physically meaningful to consider both approximatidgs<l and a<1, or
equivalently small energy transfer, together, so that starting from the Maxwell-Boltzmann case,
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- o 4m?m? [T(a)|? ,
Myggl-1=— %[HO,.]+2B—ﬁJR3d3qTe(3/8m)(1+2a)q

x| elih)a-xg=(BIAM)A-p, o= (BIAM)Q-Pg—(i/A)a-x _ %{e—w/zww, !

we expand the dissipative part of the mapping in the small parameté/e will expand the
operators depending apup to second order, so as to have contributions at most bilinear in the
operatorsx andp, position and momentum of the Brownian particle. We thus obtain a structure
analogous to the classical Fokker—Planck equation, with a friction term linearly proportional to
velocity: this class of models is known as quantum Brownian mdfioff Recalling thate<1
ar71d exploiting the symmetry properties of the integration measure the result for the dissipative part
is

3

2W2m2 [t(q)]?
_ f d3 : 7(,8/8m) Zqu

1 . . B .. i B . .
XV pzlxi [ 11+ ggzlpolp - 11+ 2 o DXdpn -1

wherei=1,2,3 denotes Cartesian coordinates. Due to the isotropy of the environment we have
qizz 102, so that we can define the coefficients

2 ’7sz2 ~ B 2
Dpp=3 B J'R3d3q|t(q)|2qe (BlBm) o,

Bh \?
Dxxz(m) Dpp, (36)
B
7’_(m) Dpp:

and introduce the following mapping describing quantum dissipation:

3 3 . 3
D, N D " a i ~ A
Lool-1== =5 2 Dl N=—5 2 [P N=7 72 Didpo e 39
thus coming to the Fokker—Planck equation

do i . .
d—$=—%—[HO,Q]+£MB[Q]———[HO Q]-I—ZEQD[Q] (38)

In view of the result(38) for the Fokker—Planck equation describing the motion of the
Brownian particle in a gas obeying Maxwell-Boltzmann statistics, we now look for the correc-
tions to(38) brought about by quantum statistics at finite temperature. As usual we will deal with
both Bose and Fermi statistics, exploiting expresgi®) obtained in Appendix B by deriving an
exact expansion fo®g(q,E):
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©

S G E) = Sip(0.6)| 2, (+2)~ %ngl (+)kz

+ %Z(EEFE (£)kZ+ ziuaE)ZE (£)"K*2*+0(q%) |, (39
k=1 4 k=1

where a suitable expansion in the small paramgtéias already been performed. Let us first
introduce the Bose—Einstein and the Fermi—Dirac functfdégiven by

1 J'+°c x’~1
(2)= dx————, 0=z<1, v>0, 40
DTG ) P e ’ “o
and
1 [+= xv1
f(2)= f dx , 0=z<w, v>0, 41
2 F(v)Jo z e+1 g “)

respectively, related for integerby f,,(z) = —g,(—2). These functions, typically appearing in the
quantum statistical mechanics of Bose and Fermi systems, satisfy the recurrence relations

J 0
9,-1(2)=2[9,(2)],  T,-1(2)=2[F.(2)], (42

so that they can be defined also fox 0. Starting from(42) and exploiting the following repre-
sentations fotz| <1,

9. (2= —, f(@2=2 (-1,
k=1 k" k=1 k¥
one can write(39) in the Bose case as

90(2) P

z  8m

S;(Q! E) = SO:\/IB(q! E)

1
g_1(2)+ 271(/8E)2(9_z(2)+29_1(2))+ O(q“)} (43
and in the Fermi case as

fo(2) +£

z 8m

Sr(.E)=Sy(a.E)

2 1 2 4
f*l(z)_ﬂ(IBE) (f_x(2)+2f_1(2))+0O(q )}, (44)

where the functions appearing (43) can be written for 8z<1 in closed form as

oz
9(2)= 7>
(45)
oz _z+Z?
9-1(2)= 1=2?2’ g-2(2)= 1=2°
while the functions appearing i#4) can be written for 8&cz<<« in closed form as
. z
oD=717
(46)
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oz B z—7°
ffl(Z)—mz, ffz(Z)—mg-

To evaluate the corrections due to quantum statistics we note that S, E(q,p)) is substi-
tuted by an expression of the form

Swe(0,E(a,p)A[1+2Bg?+2C(p-g)?],

so that keeping terms at most quadrati@iim the correction

VShe(@.E(a,p)— \Sys(a,E(q,p) VA[1+Bg?+ C(p-9)?],

the mappingM 5 always in the same approximation becomes

i . — . 1 .
- f—L[Ho,']JrAfdeM(CI) {um) VSius(ap)- VSius(apO'(a) - E{SME;(q,p),-}}

. - —. 1 .
+2ABL3dM(Q) qZ[U(q) VSie(aP) - VSie(ap0'(a) - E{S‘&B(q,p),-}}

+ACJR3O|M(Q) [0(a) VSys(a.p{(p- 9% }VSys(a.pUT (@) —{Shs(a.p) (p- )% - }1.
(47)

Looking at(47) one immediately sees that, keeping terms at most quadraijdire last two terms

are to be neglected, since the dynamic structure fe&T;;g(q,f)) and the unitary operatots(q)

can now only bring in a constant factor. The only change in the structure of the mapping is
therefore given by the numerical factBrmultiplying the dissipative part. This factor is actually
given bygo(z)/z in the Bose case and ly(z)/z in the Fermi case. The Fokker—Planck equation
(38) in the case of Bose statistics of the gas therefore becomes

d i .. ~ b p
d—$=—;L—[HO,Q]-F/:B[Q]:_%_[HoaQ]‘FgO(Z)ﬁQD[Q]v (48)

while for Fermi particles one has

do i . . . b~ s .
Go= 71021+ L81=— 1[0, 21+ To(2)L ool 8] (49

and the following simple relations hold:
LMB:Z‘CQDI

z 1
ﬁszgo(z)ﬁQD:EEQD:EEMBa (50

z 1
Le=1o(2) £ gp= mEQDz mﬁms .

According to(50) and setting afte(36)

ﬁ 1 ’IT2m2 ~ _ 2
?’MB:ZY:ZmDpp:Z§ WJ d®q[t(q)|qe” M, (51)
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one has the following very simple relation between the friction coefficient88h and (48) or
(49):

_ YwvB
YeFT 15, (52

The relationship between the Fokker—Planck equations for Maxwell-Boltzmann or Bose and

Fermi statistics, as given, respectively, (38), (48) and(49), is actually remarkably simple: they

have the very same operator structure, apart from an overall coefficient depending on the fugacity
of the gas, which determines the relative weight of the dissipative contribution to the dynamics. As

it is to be expected, only the statistics of the reservoir is of relevance, since the test particle is a
single particle. The Fokker—Planck equations obtained for the description of quantum dissipation
may be compactly written:

do i .. .
gt zlHoel+ i Lodle], (53

with £(z) defined as follows:

z, Maxwell-Boltzmann,
{(z)=4 Z/(1—2), Bose, (54)
z/[(1+2z) Fermi.

We now briefly come back to the question dealt with at the end of Sec. Il about the physical
relevance of the structure of the translation-covariant master equation obtained in Ref. 16. As
already stressed, the master equatibn while having the general translation-covariant structure
considered in Ref. 11, does not comply with the further restrictions given in Ref. 16, while this
would be the case if instead of the dynamic structure fa8(a@y,p) one would consider the
symmetrized correlation functioB(q,p), which is an even function af andE(q,p). This could
be considered a natural phenomenological ansatz in view of the result obtained in Ref. 16. In Sec.
Il we showed, however, that this substitution would spoil the existence of the expected stationary
solution. More than this, if we now consider the Brownian limit, the symmetrized version of

SR'}lB(q,E)), which can be immediately obtained frof84), reads

1 2mm? )
Shus(@.E(a.p)= @i nBg 28 (plam)q?,

so that the dependence pris completely lost and the whole operator structur€3ir) and(38) is

washed out, apart from the double commutator with the position openrgtois particular the
friction term is missing, so that, even though a Lindblad structure is retained, only a completely
different physics can be described. In the same way, for the Bose or Fermi dynamic structure
factor in the Brownian limit one has froitB6)

©

Sor(aE)=Sie(a.E)| X (£2)*~ %ngl () k"

<ﬂE)22 () kkz+ ﬁE)Z k2Z*+0(q% |,
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and, once again, recalling?) written in terms ofS},g rather tharS},5, one sees that under the
same approximations as before the operator structure in the dissipative part ¢4®cdind (49)
is washed out apart from the contribution due to the double commutator in the position operators
of the particlex; .

We now consider some structural features of the mapgigggiven by(37) in terms of which
the Fokker—Planck equatig®3) encompassing all three statistics is giv&covariance of qp
under translations and rotations immediately follows from its very structure and the transformation

laws for the operatorg andp:
Uf(axU(a)=x+a, Uf(apl(a=p, UTRXU(R)=Rx, UT(R)pU(R)=Rp.

One can also see that an operator with the expected canonical structure is a stationary solution of
(53) in that

LQD[PO(Fs)]=0,

due to the relationship
— = (55)

obeyed by the coefficients defined({86) and entering in37). A few more remarks are in order.
The typical structure of translation-covariant mappings describing quantum dissipation in analogy
with the classical Fokker—Planck equation that one finds in the physical literature is giten by

3 3
>, [, ,-]]—x%

i 1 2M -
LR == 573 P 52 (B[ 11, (56

where the ratio between the first two coefficients, givendigM as in (55), is fixed by the
requirement thap,(p) be a stationary solution, i.eL;XFF{pO(f))]=O, and the only freedom left,
apart from the overall multiplying coefficient, is given by the adimensional factgr. If one
further asks that56) can be cast in Lindblad form, so thAtl, is the generator of a completely
positive dynamical semigrou}3,one has the further simple requiremérif

eI

X= (57
In fact under this condition, observing that for the operators
Bi.=X*ikp
we have the identity
Biu- Bl —HBLBiu - == 3% [X - N+ <P [P 1= 20X {py - HF [P} -1,

we may write£ %, in an explicit Lindblad form in terms of the two generators

BB e . . BB [x-.
Li+=Xi+|V\[§pi, Li-=x—=17 V3P

according to
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2yM T A U U
7,8 + a)zl Li+'|-iT+_§{|-iT+|—i+a'}
2yM [TV [ o 1. iysAA
* 328 1- 8y 21 Li-Li—Sibi-Lio ) —%52 [{x,pi},- 1. (58)

The Fokker—Planck structutg op, falls within this class, with the coefficient given by (36) in
terms of a suitable integral of the Fourier transform of the T matrix describing collisions at
microphysical level. Moreover, it corresponds to the vajses in (57), so that

Lop=LE. (59)

This in turn implies thatC o5 can be written in a manifest Lindblad form in terms of a single
generator for each Cartesian direction. We make the chtfice

B

D F

Tha P

where Ny = VAZBIM, the thermal wavelength associated to the Brownian particle, is put into
evidence, so that one has the commutation relations

[a,a]]1=5;.
In such a way we have the alternative expression

D, )\

. 3
Lol 1==—F 7 2 1ﬁ[{x.,p. z[aa

{a'a, -}}, (60)

I\)II—\

in which the single generator feature is put into evidence.

V. CONCLUSIONS AND REMARKS

In this article we have considered the behavior with respect to covariance under translations
and rotations, and the existence of a stationary solution of a recently proposed master €djation
for the description of the interaction of a test particle with a fluid, a physical model corresponding
to the so-called Rayleigh gas. The key resul{iyis the appearance of a two-point correlation
function known as dynamic structure factor and given4y the general structure conforming to
results already obtained in the mathematical literature for the generator of a translation-covariant
dynamical semigroup. This correlation function, depending on symmetry and statistical mechanics
properties of the fluid, directly determines the behavior of the master equation with respect to
covariance under translations and rotations, and existence of a stationary solution with the ex-
pected canonical form. Considering the specific case of a free gas, the dynamic structure factor has
been explicitly evaluated for Bose, Fermi, and Maxwell-Boltzmann statistics, and the dependence
on the physical parameters determining the peculiar features of the model under consideration has
been put into evidence in an exact expansion of the dynamic structure function. These parameters
are the fugacity of the gas the ratio between mass of the gas particles and of the test particle
the transferred momenturp and the transferred ener@(q,p). Stability of the covariance prop-
erties of the master equation and of the existence of a stationary solution is then considered in the
limit in which these parameters are small, together with the different explicit expressions of the
master equation. In particular, in the Brownian linit<1 and considering small momentum
transfer, corresponding through the physical interpretation of the dynamic structure factor to
long-wavelength fluctuations, a Fokker—Planck equation with a Lindblad structure is obtained,
given by(53), where the results corresponding to Bose, Fermi, and Maxwell-Boltzmann statistics
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are jointly considered. The correction due to quantum statistics in the Fokker-Planck equation is
simply expressed through the Bose and Fermi functions givei@®yand (46), respectively.
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APPENDIX A: DERIVATION OF EQ. (23) AND EQ. (25)

In this Appendix we want to explicitly calculate the expression of the dynamic structure factor
for a free gas as a function af and p. Working at finite temperature we can carry out the
calculation for both Bose and Fermi particles at the same time adopting the convention that the
symbol £ means a+ sign for Bose particles and- for Fermi particles. We start from the
expression

L (pra? (k- p K
SB/F(q:p):ﬁfRSW<nk>B/F(1i<nkq>B/|:)5 S 3m oM~ om
with
1 k2

n :—, :—,
(N esr 7 leBer 1 %" 5m

which can be found, for example, in Ref. 12 and correspondg)téor a free gas apart from a
singular term proportional, in the continuum limit considered herei®(@), relevant only forg

=0 and not contributing to the master equation. In fact, in the derivation of the master equation
the contributions folg=0 exactly cancel out. This term according(f corresponds to forward
scattering. We now have to evaluate the integrad.iifhis is most easily done writin§g,-(q,p)

in the form

3

1 d°k
Sgir(a,p) = ﬁfm”m (N eE(1+(Nk_q)eip) S(E(Q,P) + €—q— €)

and observing that

(N sr(1=(N_g)pip) = m((nl& BiE— (Nk—q)BiF)

so that one has
J d3k
1—ePEEP JR3 (2713

1
n

Sei(a,p) = (N e (Nk—q) B/F) S(E(Q,P) + €—q— €)

11 dk
T h 1 ofE@n fRs(th)g, {{ni) BiFrS(E(Q,P) + €x—q— €k

— (N erd(E(Q,P) + € €+ )}

_1_2m dk o
n l—eﬂE(qvp)fRS(zﬂ_ﬁ)g <nk> B/F{5(2mE(q,p)+q —2k-q)

— 8(2mE(g,p) —g*—2k- g)}. (A1)
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We are thus led to consider an integral of the form

fR3d3k<nk> sird(n—2k-Q) (A2)

with 7 a real parameter. Denoting Eythe cosine of the angle betwekmandq the integral in(A2)
becomes

1 oo
2| e | akieng oot n-22ka

1 +oo b
= f dff dk k2<nk>B/Ff dp eP(7-2tka)
-1 Jo —

elP(7+2kag)
= [ ek e | dn Sy (A3)
and, using the identity
m d
k() BF= iE grloall+ze ], (A4)

we get, integrating by parts,

+ o0 +00
fR3d3k<nk>B,F5(n—2k-q)—+—f dklog[1¥ze fk]f dp glP(n+2ka)

_mm _ B [n)?
=+B—qlog[1+zex;{—8—m(a) ” (A5)

Inserting the resultA5) in (Al) one immediately has

2m? 1 1Fzexp[— (B/8m)(2mE(q,p) +q?)?/q?)]
Seir(Q,p) =

= 0
“(2nh)® nBq 1-efE@D Y 17, exp[— (B/8m)(2mE(q,p) — 9%)%/q?]

(A6)
In a similar way, starting from the expression of a gas of Maxwell-Boltzmann particles

3 (p+9? (k—a? p> K

2M 2m 2M  2m/’

(Nme

1 d
Swe(a.p) = EJR?’W

with
(nWu=2z€ P,

we write it in the form

1 d%
Swe(9.p) = f 2mh)? (N me S(E(D,P) + €x—q— €x)

2m d3k
= (2 ﬁ)g (Nmsd(2ME(q,p) + g%~ 2k-q). (A7)

Analogously to(A2) we have to consider
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fR3d3k<nk> ms (77— 2K-0),

which according tqA3) becomes

+ o0 + o0 eip(77+2kq)
f dk k<nk>MBf_w dpw-

Exploiting instead ofA4) the relation

d

dk267 k

k(N mg=—

=3

we obtain

m 2
fdk<nk>MB‘S(77 2k- q)—mzexp{ 8/311(2) },

which has to be substituted (A7) leading to

2 2\2
1 27m ’{ B (2mE(q,p)+9g°) ] (A8)

Swe(a,p)= 2ah)® ngq 8m o
APPENDIX B: EXACT EXPANSION OF Sg,- AND DERIVATION OF EQ. (39)

We will now derive an expression f&g,=(q,p) equivalent ta27), in which, however, a series
expansion in powers of the fugacity is put into evidence. The starting point is the Taylor
expansion for the logarithm Iogﬂﬂx):E;Ll(—)k“xk/k, which leads us to writ€27) in the form

1 2@ 1
T (27h)3 npq 11— eBEm@a(ana-a)

(F2)¢ _
— e

SB/F(va):

x kzl (—)krL <B/2m>oz<q,p>[1_ ek(ﬁfzmxza(q,p)q—q%]_ (B1)

Considering now ifB1) a geometrical progression of reaggfi’?™27(@aPa-9°  according to the
formula

k—1
1-xk=(1-x) > x", (B2)
n=0
Eqg. (B1) becomes
1 2am? va o K
k+1_ —k(pr2m)o=(q,p) n(B/2m)(2o(a,p)q— q)
e e
(AP = 57 nag gl< ) P}

where it is to be noted that the sum owers due to the presence of the statistical correction 1
+(ny_q) s in (22) and disappears, being replaced by a factor of 1, if this correction is neglected.
It is worthwhile to put into evidence a factor

1 27m?
(27h)° npBq

2z (Bl2ma?(ap)
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corresponding to the expression of the dynamic structure factor for a free gas of Maxwell—
Boltzmann particles, thus obtaining

14> (5 )k 2o kpzmoZan S gnpizm @o(ana-a?)
k=1 k+l n=0

Se/r(a,p)=Sms(a,p)

In the Brownian limita<<1 considered in Sec. |V, neglecting (80) the contributions of orded,
this expression goes simply over to

z 2 2 2
1+ + k_efk(ﬁISm)q efk(ﬁlz)[q /2M +q- p/M] en,B[q 2M +q- p/M]
kzl ( ) k+1 nZO

SEr(d,p)=Sys(a.p)

(B3)

where S;-(q,p) and Sys(q,p) are given, respectively, b§B1) and(32). In terms ofE(q,p) Eq.
(B3) takes the remarkably compact form

K k

o ” . z 2 _
SeR(QE)=Sys(Q.B)|[ 1+ 2 (1)< e KT KIDEY & (B4)
k=1 n=0

whereSg,(q,E) andSyz(q,E) are given by(33) and(34). We now go one step further noting that
the following identity holds:

_sinf{ (k+1) (BI2)E]
~ sinh(BIR)E)

k
e kBI2)E E gnBE
n=0

which can be easily obtained exploititt§2), so that(B4) becomes

) ) - 2 ema2 SINH(K+1) (BI2) E]
SeraB)=Sie(aE) 2 (=) qge T —

(BS)

Equation(B5) is the most convenient expression in order to consider the limit of small momentum
transfer. Exploiting the expansion
sind 3(k+1) BE]

=(k+1
sntiipe) Y

1
1+ ﬂ(ﬁE)z(k2+2k)+O(E4)}
and recalling thak is given by(6) we may write(B5) as
Seir(d,E) = Syge(a,E) i (2)*~ L zi (%) k2
k=0 8m " =1

1 - 1 -
+35(BE)? 2 (£)kZ+ o (BE)2 2, (+)"KPZ+0(q) |. (B6)
12 =1 24 k=1
Recalling(B5) and the explicit expression &g given by(22) one also has

2 —(BI2)E o K
+ ! 3 2 .e > (t)kz—e‘k(ﬂlgmmzsin kEE
(27h)° nBq sinh(BI2)E) &1 k 2

Ser(0,E)=

and, exploiting®
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* k

sinhx
> p—sinr’( kx) = art)‘{p—

k=1 k 1—p coshx

we obtain the alternative expression

1 2m7m? e (FDE + 7o (BlEmA® sinh((B/2) E)
Seir(Q,.E)==* 3 . art 2 (B7)
(27h)° npq sinh((BI2)E) 15 ze (FBMA” cosK( BI2)E)
equivalent to(31) as can also be directly checked starting from the identity
1 1+x
arthx= Elog 1| (B8)

Note that(31) and (B7) in the Fermi case can also be written in the form

1 7Tm2 e—(B/Z)E
(27%)% nBq sinh((BI2)E) 9

SOFC(qu): -

1-[z/(1+2)](1— e (BT (B2 E)
1-[2Z/(1+2)](1— e~ (Flema’e+ (B2)E)

and

’

) 1 2mm? e (BRE [2/(1+2)] e B84 sink(( B/2)E)
SF(qu):_ 3 i art — 2
(2mh)® npq sinh((BI2)E) [2/(1+2)](1—e (F/8M3" cosK(BI2)E))— 1

respectively, which can be useful if one is interested in an expansion for large values of
According to(B8), also forSg/(q,E) given by (23) one has the alternative expression

Ser(9.E)=*

1 2m7m? e (BPAE ize‘(ﬁ’gm)qze‘(ﬁ”)(m’qz)Ezsinh((ﬁ/Z)E)
(2n%)® nBq sn(BR)E) " 17z BB o (BRMDE cock( A12)E)
(B9)

The validity of the detailed balance condition f@9) according to(12) can immediately be
checked observing that both sirland arthx are odd functions, while costis an even function.
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