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Abstract
The concept of “lifestyle” includes different factors such as nutrition, behavior, stress, physical
activity, working habits, smoking and alcohol consumption. Increasing evidence shows that
environmental and lifestyle factors may influence epigenetic mechanisms, such as DNA
methylation, histone acetylation and microRNA expression.

Several lifestyle factors have been identified that might modify epigenetic patterns, such as diet,
obesity, physical activity, tobacco smoking, alcohol consumption, environmental pollutants,
psychological stress, and working on night shifts.

Most studies conducted so far have been centered on DNA methylation, whereas only a few
investigations have studied lifestyle factors in relation to histone modifications and miRNAs.

Here, we review current evidence indicating that lifestyle factors might affect human health via
epigenetic mechanisms.
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Introduction
The term lifestyle is broadly used to describe the “typical way of life or manner of living
characteristic of an individual or group” [1]. This concept includes different factors such as
diet, behavior, stress, physical activity, working habits, smoking and alcohol consumption.
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Individual genetic background and environmental factors are intertwined to lifestyle in
determining the health status of individuals (Figure 1). Increasing evidence shows that
environmental and lifestyle factors may influence epigenetic mechanisms, such as DNA
methylation, histone modifications and microRNA expression. Epigenetic mechanisms are
flexible genomic parameters that can change genome function under exogenous influence
but also provide a mechanism that allows for the stable propagation of gene activity states
from one generation of cells to the next [2]. Alterations in epigenetic marks have also been
associated with a variety of human diseases, including cancer, cardiovascular, respiratory
and neurodegenerative diseases [3]. In this review we will discuss examples of lifestyle
factors that have been investigated in relation to possible epigenetic effects, and the
implication of lifestyle-related epigenetic changes in disease etiology (Table 1).

Foods
A possible role for nutrition in modifying epigenetic mechanisms has been examined in
multiple investigations. For example, a diet rich in polyunsaturated fatty acids could
generate mutagenic free radicals and oxidative stress [4], which has been directly linked to
epigenetic alterations [5, 6]. Modulation of gene methylation has been observed in human
endothelial cells incubated with arachidonic acid promoting up-regulation of a pro-
angiogenic mechanisms [7]. Conversely, polyunsaturated fatty acids may have a suppressive
function in tumorigenic processes through dampening of inflammation and NF-kappaB
pathway [8]. Moreover, diets rich in fruits and vegetables, which contain many natural anti-
oxidants, can yield anticancer protection [9]. Chen and Xu [10] have extensively reviewed
the potential epigenetic effects of several nutritional components, mostly derived from
vegetables. For instance, a study in healthy human subjects fed with a single serving of
broccoli sprouts showed inhibition of histone deacetylase activity in circulating peripheral
blood mononuclear cells 3–6 hours after consumption, with concurrent induction of histone
H3 and H4 acetylation [11]. An in-vitro study on human tumor colon cell lines revealed that
high doses of diallyl-disulfide from garlic increased histone H3 and H4 acetylation [12].

Folate and Vitamin B12 Intake
Folic acid and Vitamin B12 play an important role in DNA metabolism and are required for
the synthesis of methionine and S-adenosylmethionine (SAM), the common methyl donor
required for the maintenance of methylation patterns in DNA [13]. Methylation reactions
could be influenced through the modification of the ratio between S-adenosylmethionine
(SAM) and S-adenosylhomocysteine (SAH) ratio [14]. The SAM:SAH ratio is a primary
determinant of the methylation capacity because SAM is converted to SAH by methionine
adenosyltransferase. Taking into consideration that methionine is regenerated by
methylation of homocysteine via the folate and B12 dependent reactions, a folate-deficient
diet could interfere with this system [15]. The SAM/SAH ratio has been related with DNA
methylation patterns. For example, a study conducted in rats examined the maternal folate
status and DNA methylation in placenta. A significant positive correlation was found
between placental DNA methylation, hepatic and plasma folate levels, and hepatic SAM/
SAH ratio [16].

Low folate intakes have been associated with risk of colorectal cancer [17]. Moreover, folate
depletion has been shown to cause lymphocyte DNA hypomethylation in healthy
postmenopausal women, an alteration reverted by folate repletion [18, 19]. A recent study
carried out among individuals susceptible to folate deficiency showed that methylation
status can be corrected with choline supply at higher-than-recommended doses (500 mg/day)
for 12-weeks [20]. In the context of the SAM cycle, choline can donate methyl groups to
SAM since it is a trimethylated molecule. Folate has also been shown to reverse the
dysregulation of miRNA expression associated with hepatocellular carcinogenesis,
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potentially by restoring dietary methyl donors [21]. The growing body of evidence showing
that folate intake modulate epigenetic mechanisms has been actively investigated in relation
to potential anticarcinogenic properties suggested by epidemiological studies [22–25]. Also,
investigating epigenetic effects from folate might help understand paradoxical observations,
such as those linking very high folate intakes with the development of colorectal carcinoma
from adenomatous polyps [26].

Polyphenols
Polyphenols are a large family of natural compounds widely distributed in plant foods, that
have been shown to modify the activity of DNA methyltransferases, histone acetylases
(HATs) and histone deacetylases (HDACs) [27, 28]. In particular, studies on cancer cells
have shown that polyphenols can reverse in in-vitro models some of the epigenetic
aberrations associated with malignant transformation [29]. Inhibitory effects on DNA
methyltransferases have been observed both in-vitro and in-vivo using different dietary
sources of polyphenols [28]. A retrospective analysis associated CDX2 and BMP-2 gene
hypermethylation with past low intake of polyphenol sources such as cruciferous vegetables
and green tea in patients with primary gastrocarcinoma [30, 31]. Green tea contains (−)-
epigallocatechin-3-gallate (EGCG), which is an inhibitor of DNA methyltransferases
activity. EGCG has been shown to reactivate methylation-silenced genes in cancer cell lines
[32, 33]. In in-vitro experiments on esophageal, prostate, colon and breast cancer cells lines,
several CpG islands in various loci were efficiently demethylated by EGCG, thus leading to
the expression of previously silenced genes [32–35].

Soy beans are also extremely rich in polyphenols [28]. Soy polyphenols include
phytoestrogens such as genistein, biochanin A, and daidzein [36]. These compounds have
also been shown to inhibit DNA methyltransferases and histone deacetylases in cancer cell
lines and to revert aberrant CpG island methylation [37]. Li et al. showed in benign
(MCF-10AT) and cancer (MCF7) breast cells that all the three main DNA
methyltransferases (DNMT1, DNMT3a, and DNMT3b) were down regulated by genistein
[38]. These results might help explain epidemiology data indicating that soy consumption is
associated with reduced risk of hormone-related cancers [39].

Selenium
Selenium can epigenetically modulate DNA and histones to activate methylation-silenced
genes [40]. Increasing data suggest that selenium may have anticarcinogenic properties
through modifications of epigenetic processes in the cell [41–43]. Selenium has been shown
to directly inhibit DNMT expression and activity [44, 45]. Selenium can also restore the
expression of hypermethylated genes, such as GSTP1, APC and CSR1, in human prostate
cancer cells by downregulating DNMTs and inhibiting HDAC activity [40]. These genes are
known to have anticancer activity by protection against oxidative damage, detoxification of
carcinogenetic chemicals or tumor suppression [40]. Moreover, in animal models, a
selenium-deficient diet has been shown to induce DNA hypomethylation [46, 47].

Obesity and Physical Activity
Overweight, obesity, and sedentary lifestyle are established and prevalent risk factors for
several diseases, including cancer and cardiovascular disease [48–50]. Because body weight
is regulated by genes controlling energy homeostasis, it has been hypothesized that dietary
macronutrients that affect DNA methylation could contribute to develop obesity through
epigenetic mechanisms [51]. Epigenetic biomarkers of obesity, including genes involved in
adipogenesis, (SOCS1/SOCS3), methylation pattern of obesity-related genes (FGF2, PTEN,

Alegría-Torres et al. Page 3

Epigenomics. Author manuscript; available in PMC 2013 August 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



CDKN1A and ESR1), inflammation genes as well as intermediary metabolism and insulin
signaling pathway genes, could help to predict susceptibility and prevent obesity [52].

Emerging evidence indicates that epigenetic mechanisms may be involved in mediating
effects of physical activity. In a recent work, physical activity was associated with higher
methylation in peripheral blood lymphocytes of LINE-1 elements, a class of repeated
sequences highly repeated in the human genome [53]. Low methylation in LINE-1 repetitive
elements has been associated with inflammatory responses, as well as with chromosomal
instability [54]. Interestingly, elderly individuals with high LINE-1 methylation in
peripheral blood lymphocytes have been recently shown to have lower incidence and
mortality from ischemic heart disease and stroke [55]. Whether the decreased cardiovascular
risks associated with LINE-1 methylation reflect beneficial effects from physical activity
remains to be determined. In human muscle biopsies following exercise, a global increase in
H3K36 acetylation has also been observed [56]. Moreover, a brief exercise has been shown
to alter miRNA profiles in circulating neutrophils in humans, including 38 miRNAs
involved in inflammatory pathways [57].

Tobacco smoke
Tabacco smoke contains a complex mixture of organic and inorganic chemicals, many of
which have carcinogenic, pro-inflammatory and proaterogenic properties. Individual effects
of these components have been examined through different epigenetic studies, but the results
are still inconclusive. For example, an in-vitro chronic toxicity study of normal human
fibroblast on Benzo[a]pyrene - a prominent carcinogenic polycyclic aromatic hydrocarbon
(PAH) found in cigarette smoke - found no aberrant patterns of DNA methylation in
genomic regions of relevance for lung cancer [58].

Conversely, cigarette smoke condensate has been shown in respiratory epithelial cells to
decrease the nuclear levels of certain histone modifications such as H4K16 acetylation and
H4K20 trimethylation [59]. These alterations were similar to changes in histone
modifications that can be found in lung cancer tissues which commonly precede aberrant
DNA methylation [60, 61]. For instance, demethylation in H19 and IGF2 occurred primarily
to the DNA hypermethylation-mediated silencing of p16, MGMT, DAPK, E-cadherin, and
cdh13 tumor suppressor genes as an early event in lung carcinonegesis induced by tobacco
smoke [62].

P53 hypomethylation has been reported in peripheral blood lymphocytes of smoking lung
cancer patients [63]. Despite the lack of consistent evidence for p53 gene aberrantly
methylated in human cancer, p53 hypomethylation has been associated with early events in
carcinogenesis such as DNA double-strand breaks and chromosomal instability [64, 65].

A study that evaluated global DNA methylation from buccal cells of children exposed to
prenatal maternal smoking demonstrated hypomethylation of LINE-1 repetitive elements. In
the same study, a microarray analysis of 1536 CpG sites identified differential methylation
of CpG loci in eight genes. Two of them, AXL and PTPRO, were validated by
pyrosequencing and showed significant increases in methylation [66]. Following findings
indicating that miRNAs in human placentas are differentially expressed in association with
adverse pregnancy outcomes [67], a recent study found that candidate miRNAs implicated
in growth and developmental processes (i.e., miR-16, miR-21, and miR-146a) were
significantly downregulated in cigarette smoke-exposed placentas compared to controls
[68]. Moreover, downregulation of microRNA expression was also observed in animal
experiments when lung of mice and rats were exposed to cigarette smoke. In this study,
mir-34b, mir-345, mir-421, mir-450b, mir-466, and mir-469 were downregulated at high-
dose of exposure; however, expression was restored one week after smoking cessation [69].
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Alcohol consumption
In contrast to polycyclic aromatic hydrocarbons (PAHs) and other carcinogenic molecules
found in tobacco smoke and tar, ethyl alcohol is not per se mutagenic, but rather acts mainly
as a cocarcinogen [70]. A Netherlands cohort study on diet and cancer correlated the intake
of folate and alcohol with changes in methylation of tumor suppressor and DNA repair
genes (APC-1A, p14ARF, p16INK4A, hMLH1, O6-MGMT, and RASSF1A) in paraffin-
embedded colorectal cancer tissues [71]. Also, this work suggested the association between
the intake of other methyl donors such as methionine, vitamins B6, and B12 with an
increased frequency of promoter hypermethylation of genes involved in colorectal
carcinogenesis [71]. However, a second cohort study did not find any association of folate
intake, methionine or alcohol with MLH1 hypermethylation, a frequent and well-
characterized early event in the development of colorectal cancer [72]. A positive
association between vitamin B6 intake and tumors showing MLH1 hypermethylation was
found, suggesting B6 vitamin may enhance colorectal cancer risk [72]. Alcohol consumption
has also been suggested to modify the association between blood markers of DNA
methylation and disease. In a population-based case-control study on a Polish population,
Hou et al. showed that repetitive elements hypomethylation in blood leukocyte DNA was
associated with gastric cancer and that the association between LINE-1 hypomethylation and
gastric cancer was stronger among individuals who were current alcohol drinkers [73].

Currently, there are demonstrations of alcohol effects on growth and neuronal development
through epigenetic marks. Mouse fetal cortical neurons chronically exposed to ethanol in
vitro, had NR2B gene demethylation which encodes an ionotropic glutamate receptor
possibly involved in certain memory and learning processes [74, 75]. Instead, acute
exposure to ethanol induced hypermethylation of specific cell cycle genes inhibiting the
growth factor-regulated cell cycle progression in monolayer cultures of neural stem cells.
Lengthening the time between G1 and S phase was observed when cells were exposed for 48
h [76]. In the mouse strain C57BL/6, alcohol exposure at early embryonic altered the DNA
methylation in embryos with a neural tube defect phenotype changing the expression for
genes involved in metabolism and development such as Nlgn3, Elavl2, Sox21, Sim1, Nlgn3,
Elavl2, Sox21 and Sim1. These disturbances may contribute to malformations and abnormal
fetal development [77]. Subsequently, Zhou et al. found a reduction in expression of
neurogenin, Sox5, Bhlhe22, Igf1, Efemp1, Tieg and Edil3 in mice embryo cultures. In this
case, the gene expression responsible for the neural tube development is modulated by
changes in DNA methylation patterns [78].

Environmental pollutants
In environmental studies, the flexibility of epigenetic states has generated growing interest
in evaluating whether environmental exposures can modify epigenetic states, including
DNA methylation and histone modifications [79]. Studies of DNA methylation and histone
modification in relation to environmental exposures to potentially toxic chemicals have been
examined in detail in a recent review article [80]. Here, we briefly review the main classes
of environmental exposures that are most frequently considered epigenetic toxicants.

Arsenic
In a human study from India, significant DNA hypermethylation of p53 and p16 promoter
regions was observed in blood DNA of subjects exposed to toxic arsenic levels compared to
controls [81]. In this study, p53 and p16 hypermethylation showed a dose-response
relationship with arsenic measured in drinking water. A large body of in vitro and animal
studies have shown that arsenic subtracts methyl donors from DNA methylation reactions
and induces global DNA hypomethylation [82]. An unexpected finding was recently
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reported in vivo, as a global dose-dependent hypermethylation of blood DNA was observed
in Bangladeshi adults with chronic arsenic exposure. This effect was modified by folate,
suggesting that arsenic-induced increases in DNA methylation were dependent from methyl
availability [82]. The same group, however, subsequently reported that lower blood DNA
methylation was a strongly associated with arsenic-induced skin lesions in a related
Bangladeshi population [83].

Air pollution
Exposure to air pollution, particularly to particulate matter (PM), has been associated with
increased morbidity and mortality from cardiorespiratory disease, as well as with increased
lung cancer risk [84–88]. In a human study, Tarantini et al recently demonstrated that iNOS
(inducible Nitric Oxide Synthase) promoter methylation decreased in blood samples of
foundry workers with well-characterized exposure to PM10 in samples taken at the end of a
four-day work week compared to baseline samples [89]. iNOS demethylation is expected to
increase expression and activity of the iNOS protein, an established key player in
inflammation and oxidative stress generation, two primary mechanisms that have been
suggested to link inhalation of air pollutants to their acute health effects [90–92]. In the
same study, long-term exposure to PM10 was negatively associated with methylation in both
Alu and LINE-1 [89]. Decreased LINE-1 methylation was also observed in association to
exposure to black carbon (BC), a marker of traffic particles, on 1,097 blood DNA samples
from the Normative Aging Study (NAS), a repeated measure investigation of elderly men in
the Boston area. As blood LINE-1 hypomethylation has been found in patients with cancer
[93] and cardiovascular disease [94], such changes may reproduce epigenetic processes
related to disease development and represent mechanisms by which particulate air pollution
affects human health [94]. A recent occupational study has recently examined the effects of
exposure to PM and metal components on miRNAs expression in 63 workers at an electric-
furnace steel plant. miR-222 and miR-21 – two candidate miRNAs related to oxidative
stress and inflammation – were overexpressed and positively correlated with the levels of
lead exposure and oxidative DNA damage, respectively [95].

Aromatic hydrocarbons and other organic pollutants
High-level exposure to benzene has been associated with increased risk of acute
myelogenous leukemia (AML) [96], which is characterized by aberrant global
hypomethylation and gene-specific hypermethylation/hypomethylation. In a study of
gasoline station attendants and traffic police officers, airborne benzene exposure was shown
to be associated with a significant reduction in LINE-1 and Alu methylation in peripheral
blood DNA [97]. Airborne benzene was also associated with hypermethylation in p15 and
hypomethylation of the MAGE-1 cancer-antigen gene [97]. These findings show that
benzene exposure at relatively low levels may induce altered DNA methylation reproducing
the aberrant epigenetic patterns found in malignant cells. Also, benzene-associated
demethylation of repetitive elements may help explain the epidemiological data linking
benzene exposure with increases risk of multiple myeloma [98, 99], which also exhibits
reduced methylation in Alu e LINE-1 repetitive elements [97]. These human data were
recently confirmed by the finding of global hypomethylation in human TK6 lymphoblastoid
cells treated for 48 hours with hydroquinone, one of the active benzene metabolites [100]. In
a study of Polish male nonsmoking coke-oven workers, chronic exposure to PAHs has been
shown to modify the methylation status of specific gene promoters (p53, p16, HIC1 and
IL-6), as well as of Alu and LINE-1 repetitive elements [101]. Perera et al. published an
exploratory study that used methylation sensitive restriction fingerprinting to analyze
umbilical cord white blood cell DNA of 20 children exposed to PAHs. Over 30 DNA
sequences were identified whose methylation status was dependent on the level of maternal
PAH exposure [102]. Rusiecki et al. evaluated the relationship between plasma
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concentrations of persistent organic pollutants and blood global DNA methylation, estimated
in Alu repeated elements, in 70 Greenlandic Inuit, a population presenting some of the
highest reported levels of POPs worldwide. In this work, a significant inverse linear
relationship was found for DDT, DDE, β-BHC, oxychlordane, α-chlordane, mirex, several
PCBs, and sum of all POPs [103].

Psychological stress
Earlier studies have indicated that DNA methylation is sensitive to environmental stressful
exposures in early development and later in life [104–109]. The glucocorticoid receptor gene
promoter was studied in the hippocampus of human suicide victims and controls [109].
Hypermethylation of the glucocorticoid receptor gene was found among suicide victims with
a history of abuse in childhood, but not among controls or suicide victims with a negative
history of childhood abuse [109]. On the contrary, positive early social experience might
have a mitigating effect on stress responses later in life via epigenetic mechanisms,
suggesting a protective role for positive early parental care [110, 111]. This is shown in
animal studies that have demonstrated that higher maternal care, as reflected in higher
licking and grooming of the pups, induces hypomethylation of the glucocorticoid receptor
gene in the hippocampus and reduces responses to stress [110].

Shiftwork
Recent advances in the epigenetic field have revealed that chronobiological regulators may
induce chromatin remodelling [see review 112]. CLOCK gene regulates circadian rhythm
through a histone-acetyltransferase activity which promotes chromatin-remodelling events
implicated in circadian control of gene expression [113, 114]. The circadian adjustment may
be affected by different factors such as shift-work. According to several epidemiological
studies shift-work that requires working at night can have a negative impact on the health
and well-being of workers due to a mismatch between the endogenous circadian timing
system and the environmental synchronizers (e.g. light/dark cycle) [115]. An epigenetic
reprogramming of circadian genes has been proposed as a potential response altered
circadian rhythms [116, 117]. A recent study on a population of night-shift workers has
shown alterations in blood DNA methylation, including changes in Alu repetitive elements
methylation and gene-specific methylation of inflammatory genes such as IFN-γ and TNF-
α [118].

Conclusions and Future Perspectives
In the last few years, several investigations have examined the relation between epigenetic
marks and lifestyle factors, including nutrition, behavior, stress, physical activity, working
habits, smoking and alcohol consumption. Although epigenetic modifications are influenced
by the environment, most of these changes tend to be re-established each generation;
however, this does not happen at some loci in the human genome [119, 120]. The possibility
that this phenomenon impacts successive generations is referred as transgenerational
epigenetic inheritance [121–124]. Epigenetics is expected to help explaining how gene
expression is modulated by lifestyle and environmental factors, and to bring a more
complete understanding of individual responses to environmental cues and acquired risk
factors (Figure 1). Because both epigenetic mechanisms and lifestyle are modifiable,
epigeneticists have largely untapped opportunities to determine how tightly epigenetic
markers are dependent on lifestyle factors and whether and how much epigenetic
mechanisms can be modified after positive or negative lifestyle changes are acquired and
sustained (Figure 2). Considering that epidemiological research are moving into new
technologies such as epigenetics, many of the studies cited here should be taken as
presumptive while there is no further evidence.
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Executive summary

Introduction

Lifestyle includes different factors such as nutrition, behavior, stress, physical activity,
working habits, smoking and alcohol consumption.

Environmental and lifestyle factors may influence epigenetic mechanisms.

Nutrition

Folate and Vitamin B12 Intake
Epidemiological data support the anticarcinogenic property of folate.

A protective effect of low folate status against colorectal cancer was reported.

These contrasting results suggest that folic acid supplementation could exert a negative
effect on already existing lesions.

Polyphenols
Polyphenols can impact DNA methyltransferases, Histone acetylases and Histone
deacetylases inducing reversibility of epigenetic dysregulation.

Selenium
Selenium can impact the DNA methylation status interacting directly with DNA
methyltransferases.

Obesity and Physical Activity

Macronutrient composition of the diet could help to develop obesity through epigenetic
mechanisms.

Epigenetic mechanisms may be implicated in mediating the effects of physical activity.

Tobacco smoke

Tabacco smoke effects have been examined through different epigenetic studies, but the
results are still under debate.

Smoking during pregnancy has been associated with increased risk for developing
diseases in fetal or later life, through epigenetic mechanisms.

Alcohol consumption

Alcohol is an antagonist of folate metabolism and may have effects on DNA methylation.

Environmental pollutants

Arsenic
Hypo/hypermethylation was observed in blood DNA of subjects exposed to toxic level of
arsenic.

Air pollution
Particulate air pollution may affect human health through DNA methylation alterations.

Aromatic hydrocarbons and other organic compounds
Repetitive element hypomethylation as well as either hyper- or hypomethylation of
specific genes has been reported for benzene and PAH exposures.

Psychological stress
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DNA methylation is sensitive to environmental stressful exposures early in development
and later in life.

Shiftwork

An epigenetic reprogramming of circadian genes, changes in Alu repetitive elements
methylation and gene-specific methylation of IFN-γ and TNF-α promoters have been
observed.

Conclusion and Future Perspectives
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Fig. 1.
Environment-Epigenetics interactions
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Fig. 2.
Lifestyle factors participating in environment-epigenetic interactions.
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Table 1

Lifestyle factors with epigenetic effects

Factor Example Studies on: Reference

Nutritional Folate humans [16, 17]

Phytoestrogen breast benign human cells [36]

human cancer cells [35]

Polyphenols human cancer cells [27, 30–33]

humans 28, 29

Selenium human cancer cells [38]

Physical Activity Exercise human muscle biopsy tissues [54]

humans [51, 55]

Tobacco Smoke Cigarette smoke humans [63]

lung cancer patients [60]

Cigarette smoke condensate placentas [65]

respiratory epithelia [59]

rats and mice [66]

Alcohol High alcohol intake humans [73]

Pollutans Arsenic humans [73–75]

PM10 humans [81, 87]

Black carbon humans [86]

Benzene humans [89]

PAHs humans [93]

human lymphoblastoid cells [92]

human umbilical cord blood [94]

POPs humans [95]

Emotional Stressful experiences rats [97]

mice [100]

suicide victims [101]

Shiftwork Working at night humans [107]
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