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New copper complexes of several thiosemicarbazones have been prepared and characterized. All
complexes have been prepared by employing Cu (II) acetate hydrate, but analytical and spectroscopical
data for the isolated complexes revealed that in most cases a reduction to copper (I) occurred. Cyclo-
propanation reactions of several olefins by ethyldiazoacetate (EDA) in the presence of catalytic amounts
of the complexes were examined. The reported results showed that all complexes are competent cata-
lysts for the cyclopropanation reaction of unactivated olefins. Cyclopropanes were obtained in high yields
(up to 97%, TON up to 18,400) with moderate to excellent diastereoselectivities (up to >99%).

© 2012 Published by Elsevier B.V.

1. Introduction

Cyclopropane derivatives are an important family of chemical
compounds that plays a prominent role in organic chemistry [1].
Naturally occurring and synthetic cyclopropanes are endowed with
a rich spectrum of biological properties [2] and a large number of
compounds carrying a cyclopropane ring have been synthesized
and described in the literature. As a result, great efforts have been
made to develop efficient stereoselective methods for the synthesis
of cyclopropanes [3]. A particularly versatile method is the metal-
catalysed cyclopropanation of olefins with diazo compounds, for
which several efficient homogeneous catalysts have been devel-
oped [4]. Nevertheless, the synthesis of these compounds remains
a considerable challenge, especially due to their interesting bio-
logical properties as well as their use as starting materials and
intermediates in organic synthesis. Among transition metal cata-
lysts for this reaction, copper complexes have attracted increasing
interest in the last years [5—15], especially due to their high effi-
ciency and to their lower cost when compared to other metal
derivatives, such as catalysts based on rhodium [16—18] or ruthe-
nium [19—-21]. A variety of copper (II) and copper (I) sources are
known to catalyse the cyclopropanation reaction although copper

* Corresponding author. Tel.: +39 02 50314372; fax: +39 02 50314405.
E-mail address: alessandro.caselli@unimi.it (A. Caselli).

0022-328X/$ — see front matter © 2012 Published by Elsevier B.V.
doi:10.1016/j.jorganchem.2012.03.018

(1) rather than copper (II) was established as the active catalyst,
where diazo compounds were found to reduce Cu (II) salts to Cu (I)
[22]. Nevertheless Cu (I) complexes are challenging to synthesize
and isolate due to the intrinsic instability of cuprous compounds
[11]: under many conditions disproportionation of Cu (I) to Cu (0)
and Cu (II) is thermodynamically favoured. We have recently
reported that Schiff bases derived from the condensation of
hydrazinecarbothioamide or phenyl thiosemicarbazone with 3-
acetyl-2H-chromen-2-one are suitable ligands for the synthesis of
copper (II) complexes very active as cyclopropanation catalysts
[23,24]. The structure of the thiosemicarbazide moiety confers
a good chelating capacity and the latter can be increased by
employing a suitable aldehyde or ketone for the formation of the
Schiff base possessing a further donor atom to render the ligand
tridentate [25].

We report here that Schiff bases derived from the condensation
reaction of hydrazinecarbothioamide with substituted salicylalde-
hydes are suitable ligands for copper and that the derived
complexes are competent catalysts for the cyclopropanation of
olefins with ethyldiazoacetate (EDA). Rarely metal complexes can
give high selectivities in cyclopropanation reactions together with
high turnover number (TON) [26]. In this work, different ligands
have been synthesized and characterized, by changing the steric
and electronic properties of the starting aldehyde employed in the
condensation reaction.
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2. Experimental
2.1. Materials and methods

All the reagents employed for the preparation of the ligands and
their complexes were of the highest grade available and used
without further purification. Copper (II) acetate monohydrate was
purchased from Aldrich and used as received. All aldehydes and
thiosemicarbazide were of reagent grade and used as purchased.
Thiosemicarbazones, 1-8 and 10—11, were prepared according to
a slightly modified procedure with respect to what reported in the
literature [27]. 2-Hydroxybenzaldehyde N-ethylthiosemicarbazone
(9) was purchased from Sigma—Aldrich. Unless otherwise stated, all
catalytic tests were carried out under an atmosphere of purified
dinitrogen using modified Schlenk techniques. Used solvents were
dried and distilled before use by standard methods. Benzene,
cyclohexene and 1-octene were distilled over sodium, styrene and
a-methylstyrene were distilled over calcium hydride and stored
under dinitrogen. NMR spectra were recorded on an Avance 300-
DRX Bruker instrument, operating at 300 MHz for 'H and at
75 MHz for 13C. Chemical shifts (ppm) are reported relative to TMS.
The 'H NMR signals of compounds described in the following have
been attributed by COSY and NOESY techniques. Assignments of the
resonances in C NMR were made using the APT pulse sequence,
HSQC and HMQC techniques. Elemental analyses and mass spectra
were recorded in the analytical laboratories of Milan University. GC
analyses were performed on a Shimadzu 2010 FAST-GC equipped
with an automatic sampler AOI-20i.

Some of the ligands and their metal complexes were analysed
for C, H, N and M contents at the Microanalytical Laboratory, Faculty
of Science, Cairo University, Egypt. IR spectra of the ligands and
their metal complexes were measured using KBr discs with a Jasco
FT/IR 300E Fourier transform infrared spectrophotometer and/or
on a Varian Scimitar FTS 1000 spectrophotometer covering the
range 400—4000 cm~! and in the 500—100 cm~! region using
polyethylene-sandwiched Nujol mulls on a Perkin Elmer FT-IR 1650
spectrophotometer. The electronic spectra of the ligands and their
complexes were obtained in DMSO solutions using an Agilent 8453
UV-uvisible recording spectrophotometer. Molar conductivities of
the metal complexes in DMSO (10~ M) were measured using a dip
cell and a Bibby conductimeter MC1 at room temperature. The
resistance measured in ohms and the molar conductivities were
calculated according to the equation: 41 =V x K x Mw/g x Q, where
4, molar conductivity (2! cm? mol~1); V, volume of the complex
solution (ml); K, cell constant 0.92 cm™~'; Mw, molecular weight of
the complex; g, weight of the complex; and Q, resistance measured
in ohms. Magnetic moments at 298 K were determined using the
Gouy method with Hg[Co(SCN)4] as calibrant [28]. XPS analyses
were carried out using an M-probe apparatus (Surface Science
Instruments).

2.2. Synthesis of the ligands

2.2.1. Typical procedure for the synthesis of the ligands
Thiosemicarbazide (202.2 mg, 2.22 mmol) was added to a hot
(75 °C) solution of salicylaldehyde (271.3 mg, 2.22 mmol) in ethanol
(20 ml). The reaction mixture was refluxed for 2.5 h. The reaction
mixture was then concentrated to ca. 10 ml. The precipitated white
product was filtered off, washed with water, methanol, recrystal-
lized from ethanol and dried under vacuum (412.7 mg, 95%).
Analytical and spectroscopical data for this compound are in
agreement with those reported in the literature [29,30]. For the IR
spectrum see Lobana et al. [31].1 (H,L'): "H NMR (300 MHz, DMSO-
dg): 6 = 11.33 (s, 1H, NH), 9.84 (s, 1H, OH), 8.34 (s, 1H, H(7)), 8.07 (br
s, 1H, NH), 7.90 (br s, 1H, NH,), 7.87 (d, ] = 7.5 Hz, 1H, H(3)), 7.18

(pst, J = 7.5 Hz, 1H, H(4)), 6.83 (d, ] = 7.5 Hz, 1H, H(6)), 6.79 (pst,
J = 7.5 Hz, 1H, H(5)). MS (EI): m/z = 195 (M"). Anal. Calcd. for
CgHoN30S (195.24 g/mol): C, 49.21; H, 4.65; N, 21.52. Found: C,
49.64; H,4.55; N, 21.51. IR (KBr, »/cm™!): 3441m (vop), 33185—2987s
(Vas and VSNHZ)v 3172s (V()H), 1616s (5NH2)- 1603s (Vc=N), 1539s, 1265s
(vco), 1061m (vc=s), 829m (rscs), 751s. UV/vis (10~> M, DMSO
(nm)): A = 276, 340.

2 (H,L?): in this case, in order to separate any trace of starting
thiosemicarbazide, a further purification by column chromatog-
raphy was needed (eluant n-hexane:ethyl acetate = 7/3) (yield
80%). '"H NMR (300 MHz, DMSO-dg): 6 = 11.33 (s, 1H, NH), 9.84 (s,
1H, OH), 8.26 (s, 1H, H(7)), 8.02 (br s, 2H, NH;), 7.29 (d, 4] = 2.3 Hz,
1H, H(4)), 7.16 (d, ¥ = 2.3 Hz, 1H, H(6)), 1.40 (s, 9H, CH3), 1.27 (s, 9H,
CH3). 'TH NMR (300 MHz, CDCl3): 6 = 1017 (s, 1H, NH), 9.93 (s, 1H,
OH), 8.13 (s, 1H, H(7)), 7.44 (s, 1H, H(4)), 7.08 (s, 1H, H(6)), 6.57 (br s,
2H, NH>), 145 (s, 9H, CHs), 1.32 (s, 9H, CHs). 3C NMR (75 MHz,
CDCl3): 6 = 1779 (Cs), 155.1 (C2), 150.4 (C7), 142.4 (Cq), 137.2 (Cy),
128.3 (Cy), 127.0 (Cg), 1163 (Cg), 35.5 (Cq), 34.5 (Cg), 31.8 (CH3),
29.8(CHs). MS (EI): m/z = 307 (M™). Anal. Calcd. for C1gH25N30S
(30745 g/mol): C, 62.50; H, 8.20; N, 13.67. Found: C, 62.38; H, 8.06;
N, 13.60. IR (KBr, »/cm™1): 3452m (von), 3274—2961s (vgsand vsnmo),
31665 (vnn), 17155 (Onmz), 1606s (vc=n), 1579m, 1538s, 1290m,
1265m (vco), 1108m, 1067w (vc=s), 826m (vscs), 769m. UV/vis
(107> M, DMSO (nm)): A = 274, 340.

3 (HoL3): (89%) 'H NMR (300 MHz, DMSO-dg): 6 = 11.36 (s, 1H,
NH), 9.19 (s, 1H, OH), 8.39 (s, 1H, H’), 8.05 (s, 1H, NH,), 7.85 (s, 1H,
NH,), 7.51 (d, 1H, 3] = 7.5 Hz, H®), 6.96 (dd, 1H, 3] = 7.5 Hz,
41=1.3 Hz, H%), 6.77 (pst, 1H, °] = 7.5 Hz, H>), 3.80 (s, 3H, OCH3). 13C
NMR (75 MHz, DMSO-dg): 6 = 178.6 (Cg), 148.7 (C2), 140.7 (C3), 140.4
(C7),121.6 (C1), 119.9 (Cs), 119.0 (Cs), 113.7 (C4), 56.8 (CH3). MS (EI):
mjz = 225 (M™"). Anal. Calcd. for CgH11N30,S (225.27 g/mol): C,
47.99; H, 4.92; N, 18.65. Found: C, 47.93; H, 5.02; N, 18.40. IR (KBr, v/
cm~1): 3461s (vou), 3343—2975m (rgs and venpp), 3167m (vnw),
1621m (Onn2), 1598s (vc=n), 1588m, 15365, 1281m, 1263s (vco),
1059m (vc=s), 822m (vscs), 778m. UV/vis (10*5 M, DMSO (nm)):
X =323, 390.

4 (H,LY): (85%) "H NMR (300 MHz, DMSO-dg): 6 = 11.04 (s, 1H,
NH), 9.52 (s, 1H, OH), 8.18 (s, 1H, H’), 7.81 (s, 1H, NHs), 7.64 (s, 1H,
NH,), 7,50 (d, 1H, 3] = 8.8 Hz, H®), 6.20 (dd, 1H, 3] = 8.8 Hz,
41=2.2Hz, H%),6.08 (d, 1H, ¥ = 2.2 Hz, H), 3.30 (q, 4H, %] = 6.9 Hz,
N(CH,CH3),), 1.09 (t, 6H, *] = 6.9 Hz, N(CH,CH3);). >°C NMR
(75 MHz, DMSO-dg): 6 = 177.3 (Cg), 159.0 (C2), 151.0 (C4), 143.3 (C7),
129.9(Cg), 108.2 (C1),104.8 (Cs), 98.2 (C3), 44.7 (CHy), 13.4 (CH3). MS
(ED): m/z =266 (M™). Anal. Calcd. for C12H1gN40S (266.36 g/mol): C,
54.11; H, 6.81; N, 21.03. Found: C, 54.52; H, 6.79; N, 21.20. IR (KBr, 7/
cm™1): 3409s (von), 3302—2960m (vgs and venpz), 3175m (vnh),
1630s (On2), 1610s (ve=n), 15905, 1553s, 1286m, 12455 (vco), 1058m
(ve=s), 821m (vscs), 787w. UV/vis (107> M, DMSO (nm)): A = 273,
364.

5 (HpL?): (90%) 'H NMR (300 MHz, DMSO-dg): 6 = 11.52 (s, 1H,
NH), 10.06 (s, 1H, OH), 8.33 (s, 1H, H(7)), 8.22 (br s, 2H, NH>), 8.06 (d,
4] = 2.6 Hz, 1H, H(4)), 7.52 (d, ¥ = 2.6 Hz, 1H, H(6)). >*C NMR
(75 MHz, DMSO-dg): 6 = 179.0 (Cg), 151.4 (C3), 138.5 (C7), 130.5 (Ca),
126.0 (Cq), 125.1 (Gs), 125.0 (Cq), 123.5 (Cq). MS (EI): mjz = 264 (M™*).
Anal. Calcd. for CgH7CI;N30S (263.13 g/mol): C, 36.38; H, 2.67; N,
15.91. Found: C, 36.54; H, 2.66; N, 15.75. IR (KBr, »/cm™!): 3464s
(von), 3347s (vasnm2), 3154m (vnp), 16125 (vc=n), 1153s, 1099m
(ve=s), 817m (vycs). UV/vis (107> M, DMSO (nm)): A = 275, 346.

6 (H5L%): (50%) TH NMR (300 MHz, DMSO-dg): ¢ = 11.50 (s, 1H,
NH), 10.04 (br s, 1H, OH), 8.29 (s, 1H, H(7)), 8.20 (br s, 2H, NH>), 8.11
(br s, 1H, H(4)), 7.74 (d, %] = 2.3 Hz, 1H, H(6)). >C NMR (75 MHz,
DMSO-dg): 6 = 178.9 (Cg), 152.8 ((2), 139.3 (C7), 136.0 (C4), 129.9
(Cs), 126.0 (Cq), 113.8 (Cq), 112.9 (Cq). MS (E): m/z = 353 (M™). Anal.
Calcd. for CgH7BryN30S (353.03 g/mol): C, 27.22; H, 2.00; N, 11.90.
Found: C, 23.34; H, 2.01; N, 11.91. IR (KBr, vjcm™"): 3468s (von),
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33575—3015m (vgs,and vsnpz), 3155m (vny), 1611s (ve=n), 1542s,
1535s,1288s,1265m (vco), 1138s, 1094m (vc=s), 859w, 815w, 714w.
UV/vis (10~ M, DMSO (nm)): A = 321, 346, 413.

7 (HaL7): (84%) 'H NMR (300 MHz, DMSO-dg): 6 = 11.40 (s, 1H,
NH), 10.21 (s, TH, OH), 8.29 (s, 1H, H(7)), 8.20 (d, ¥ = 2.6 Hz, 1H,
H(6)),8.14 (br s, 2H, NH>), 7.33 (dd, 3] = 8.7 Hz, 4] = 2.6 Hz, 1H, H(4)),
6.82 (d, 3] = 8.7 Hz, 1H, H(3)). °C NMR (75 MHz, DMSO-dg):
6 =179.0 (Cg), 156.4 (C3), 138.1 (C7), 134.0 (C4), 129.2 (Cg), 123.7 (Cy),
119.0 (C3), 112.0 (Cs). MS (EI): mfz = 273 (M*). Anal. Calcd. for
CgHgBrN30S (274.14 g/mol): C, 35.05; H, 2.94; N, 15.33. Found: C,
35.06; H, 2.59; N, 15.01. IR (KBr, »/cm~!): 3456s (von),
3250s—2997m (Vas and VSNHZ)- 3162s (VNH)v 1655s (5NH2)- 1610s
(ve=n), 1601s, 1545s,1294m, 1264m (vco), 1064 (vc=s), 819m (vscs).
UV/vis (10> M, DMSO (nm)): A = 270, 347, 400.

8 (H,L%): (31%). 'TH NMR (300 MHz, DMSO-dg): 6 = 11.51 (s, 1H,
NH), 10.05 (s, 1H, OH), 8.34 (s, 1H, H(7)), 8.19 (br s, 2H, NH>), 7.78 (d,
3] = 9.5 Hz, 1H, H(4)), 7.22 (dt, }] = 9.5 Hz, ¥ = 2.9 Hz, 1H, H(6)). '°F
NMR (282 MHz, DMSO-dg): 6 = —122.0 (pst, 3] = 9.5 Hz, 1F,
F(5)), —131.1 (d, ’] = 9.6 Hz, 1F, F(3)). MS (EI): m/z = 231 (M*). Anal.
Calcd. for CgH7F;N30S (231.22 g/mol): C, 41.56; H, 3.05; N, 18.17.
Found: C, 41.54; H, 3.14; N, 18.02. IR (KBr, »/cm™'): 3430s, 3324m,
3289s, 3176s, 1618s, 1588m, 1541s, 1485s, 1459s, 1378s, 1298m,
1226m, 1104m, 1011m, 987m, 832m.

10 (H,L'%): (66%). "TH NMR (400 MHz, DMSO-dg): 6 = 11.75 (s, 1H,
NH), 10.04 (s, 1H, NHPh), 9.97 (br s, 1H, OH), 8.50 (s, 1H, H(7)), 8.08
(d,J = 7.6 Hz, 1H, H(6)), 7.58 (d, ] = 7.8 Hz, 2H, PhHotno), 7.37 (pst,
J = 7.8 Hz, 2H, PhHpera), 7.24 (pst, | = 7.6 Hz, 1H, H(4)), 7.20 (pst,
J = 7.8 Hz, 1H, PhHpara), 6.89 (d, J = 7.6 Hz, 1H, H(3)), 6.84 (pst,
J = 7.6 Hz, 1H, H(5)). *C NMR (75 MHz, DMSO-dg): 6 = 176.6 (Cg),
157.5 (C2), 141.0 (C7), 140.0 (Cpp), 132.2 (C4), 128.9 (Cph-meta), 127.9
(C6),126.5 (Cph-ortho)> 126.0 (Cph-para), 121.1 (C1),120.1 (C3), 116.9 (Cs).
MS (EI): mjz = 271 (M™). Anal. Calcd. for C14H13N30S (271.34 g/
mol): C,61.97; H, 4.83; N, 15.49. Found: C, 61.40; H, 5.15; N, 15.29. IR
(KBr, v/cm™1): 3380m, 3150s, 2992m, 1621m, 1604m, 1593m, 1539s,
1509s, 1271s, 1260m, 1208s, 1151m, 1080m, 1033m, 794w, 755m,
742m, 692m. UV/vis (107> M, DMSO (nm)): A = 283, 344.

11 (HL'): (79%). "H NMR (400 MHz, DMSO-dg): 6 = 11.66 (s, 1H,
NH), 10.15 (s, 1H, NHPh), 9.98 (br s, 1H, OH), 8.38 (s, 1H, H(7)), 7.50
(d, J = 7.5 Hz, 2H, PhH), 7.38 (pst, ] = 7.5 Hz, 2H, PhH), 7.32 (d,
J = 2.1 Hz, 1H, H(4)), 7.20 (m, 2H, H(6) and PhH), 1.41 (s, 9H, CH3),
1.29 (s, 9H, CH3). 3C NMR (75 MHz, DMSO-dg): 6 = 177.1 (Cg), 154.1
(G2), 149.1 (C7), 141.8 (Cpp), 140.2 (Cs), 136.9(C3), 129.1 (Cph-meta)s
126.7 (Cph-para)» 126.6 (Ca), 126.4 (Cph-ortho)126.1 (Cs), 118.7 (C1), 35.5
(CCMe3)y 34.8 (CCMe3)y 321 (CCH3)- 30.2 (CCI-B)- MS (E[)Z m/z = 383
(M™). Anal. Calcd. for C2pH»9N30S (383.55 g/mol): C, 68.89; H, 7.62;
N, 10.96. Found: C, 68.58; H, 8.00; N, 10.91. IR (KBr, y/cm™"): 3325s,
3142s, 2956s, 1560s, 15455, 12725, 1210s, 1087m, 803w, 747m. UV/
vis (107> M, DMSO (nm)): A = 283, 345.

2.3. Synthesis of the complexes

2.3.1. Typical procedure for the synthesis of the copper complexes

A solution of copper (II) acetate monohydrate (222 mg,
1.11 mmol) in the minimum required amount of methanol was
added dropwise to a hot (75 °C) solution of HL! 1 (214 mg,
1.10 mmol) in ethanol (50 ml) (75 °C). The reaction mixture was
then refluxed for 2.5 h. The brown precipitate so formed was
recovered by filtration and was recrystallized from refluxing
ethanol. The collected solid was suspended in cold ethanol
(3 x 10 ml), separated by centrifugation, then suspended in diethyl
ether (3 x 10 ml), separated by centrifugation and dried under
vacuum.

[CuHL!], (12) was collected as a light brown powder (233 mg,
83%). MS (FAB™): m/z = 258 (M" + 1). Anal. Calcd. for CgHgCuN30S
(257.78 g/mol): C, 37.27; H, 3.13; N, 16.30. Found: C, 37.66; H, 3.00;

N, 16.14. IR (KBr, V/cm’l): 3467s,3367s,3352s,3267s,1599s, 1596m,
1511s, 1492s, 1317m, 1278m, 1210m, 1152w, 809m, 751s. UV/vis
(1075 M, DMSO (nm)): A = 279, 329, 396. UV/vis (10> M, DMSO
(nm)): A 578. Conductance Ay, (DMSO 103 M): 2.5 Q! cm? mol L
Uefr. (25 °C) = diamagnetic.

[CuHL?], (13) was collected as a brown powder (88%). MS
(FAB™): mjz = 370 (M" + 1), 677 [2M-Cu + 2]*. Anal. Calcd. for
C16H24CuN30S (369.99 g/mol): C, 51.94; H, 6.54; N, 11.36. Found: C,
51.90; H, 6.31; N, 11.10. IR (KBr, »/cm™1): 3472s, 3294s, 2960s, 1600s,
1596m, 1528m, 1432s, 1332s, 1301m, 1172s, 1026w, 839w, 784m.
UV/vis (107> M, DMSO (nm)): 1 = 275, 335, 407. UV/vis (107> M,
DMSO (nm)): A = 583. Conductance A (DMSO 103 M):
8.8 Q1 cm? mol L per (25 °C) = diamagnetic.

[CuHL3], (14) was collected as a green powder (58%). MS (FAB*):
mjz = 288 (M" + 1), 513 [2M — Cu + 2]*. Anal. Calcd. for
C9H19CuN30,S (287.81 g/mol): C, 37.56; H, 3.50; N, 14.60. Found: C,
37.42; H, 3.39; N, 14.20. IR (KBr, V/Cm’]): 3449s, 3347m, 3303s,
3200m, 1618m, 1602s, 1336m, 1307m, 1246s, 1218s, 1085w, 968w,
857w, 775m, 734m. UV/vis (10> M, DMSO (nm)): A = 260, 329,
398. UV/vis (10~> M, DMSO (nm)): A = 577. Conductance A, (DMSO
103 M): 3.5 Q=1 em? mol ™. peg (25 °C) = diamagnetic.

[CuHL*], (15) was collected as a light brown powder (90%). MS
(FABT): mjz = 329 (M + 1), 595 [2M-Cu + 2]". Anal. Calcd. for
C12H17CuN40S (328.9 g/mol): C, 43.82; H, 5.21; N, 17.03. Found: C,
44,24; H, 5.07; N, 16.75. IR (KBr, V/Cm’l): 3409s, 3291m, 3103s,
2967m, 1637m, 1610s, 1587s, 1354s, 1297m, 1244s, 1134s, 1051w,
829w, 785m. UV/vis (107> M, DMSO (nm)): A = 270, 388. UV/vis
(10~3 M, DMSO (nm)): A = 573. Conductance A, (DMSO 103 M):
12 Q' cm? mol L

[CuHL?], (16a) was collected as a brown powder (73.2%). MS
(FABT): m/z = 326 (M" + 1). Anal. Calcd. for CgHgCl,CuN30S
(326.67 g/mol): C, 29.41; H, 1.85; N, 12.86. Found: C, 29.32; H, 1.80;
N, 12.82. IR (KBr, V/cmfl): 3439s, 3247m, 3154s, 16175, 1613s, 1477s,
1441s, 1342m, 1319m, 1213m, 1182s, 866w, 772m, 760m. UV/vis
(10> M, DMSO (nm)): A = 274, 331, 418. UV/vis (10~> M, DMSO
(nm)): A = 591. Conductance A, (DMSO 103 M):
8.0 Q' cm? mol .

[CuHL®], (17) was collected as a brown powder (51%). MS
(FAB™): m/z = 414 (M* + 1), 766 [2M-Cu + 2], 829 [2M + 2] Anal.
Calcd. for CgHgBroCuN30S (415.57 g/mol): C, 23.12; H, 1.46; N, 10.11.
Found: C, 23.18; H, 1.50; N, 9.98. IR (KBr, »/cm™'): 3468s, 3232m,
3135m, 3066m, 1618s, 1608m, 1596m, 1474s, 1435s, 1410m, 1340m,
1308m, 1218m, 1167m, 867w, 730m. UV/vis (10~> M, DMSO (nm)):
A = 276, 341, 410. UV/vis (1073 M, DMSO (nm)): A = 585. Conduc-
tance Ay, (DMSO 107> M): 4.2 Q! cm? mol .

[CuHL’], (18) was collected as a brown powder (67%). MS
(FABT): mjz = 336 (M" + 1). Anal. Calcd. for CgH;BrCuN30S
(336.68 g/mol): C, 28.54; H, 2.10; N, 12.48. Found: C, 28.77; H, 2.09;
N, 11.99. IR (KBr, V/Cl‘l'r] ): 3418s, 3268m, 2999s, 16375, 1600s, 14965,
1464s, 1341m, 1294m, 1187s, 1038m, 869w, 809m, 751w. UV/vis
(1075 M, DMSO (nm)): A = 271, 335, 406. UV/vis (10~ M, DMSO
(nm)): A = 578. Conductance A (DMSO 103 M):
5.2 Q71 cm? mol . pegr (25 °C) = 118 B.M.

[CuHL®],, (19) was collected as a dark green powder (33%). MS
(FABT): mjz = 294 (M" + 1). Anal. Calcd. for CgHgCuF,N30S
(293.76 g/mol): C, 32.71; H, 2.06; N, 14.30. Found: C, 33.11; H, 1.74;
N, 14.40. IR (KBr, V/cm’]): 3430m, 3301s, 3154m, 2874m, 1587s,
1561m, 1465s, 1300m, 1267s, 1125s, 1069w, 997m, 849w, 832s,
745w. Conductance Ay, (DMSO 1072 M): 1.0 Q! cm? mol .

[CuHL®], (20) was collected as a light brown powder (85%). 'H
NMR (300 MHz, CDCls3): 6 = 11.75 (br s, 1H, CH), 11,00 (br s, 1H, OH
or NH), 8.00—7.80 (br s, 2H, ArH), 5.98 (br, 2H, ArH), 4.11 (br s, 1H,
NH), 1.75 (br, 2H, CH,), 1.58 (br, 2H, CHs). MS (FAB*): m/z = 286
(M™ + 1). Anal. Calcd. for C1gH12CuN30S (285.83 g/mol): C,42.02; H,
4.23; N, 14.70. Found: C, 41.67; H, 4.13; N, 14.92. IR (KBr, v/cm‘l):
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3369s, 2968m, 15965, 1555m, 1506s, 1474s, 1438m, 1320m, 1280m,
1204s, 1156w, 1073w, 835w, 745m. UV/vis (10~> M, DMSO (nm)):
A= 275,332, 397. UV/vis (10~ M, DMSO (nm)): A 577. Conductance
Am (DMSO 1073 M): 3.1 Q! cm? mol L

[CuHL!], (21) was collected as a light brown powder (62%). MS
(FABT): m/z = 334 (M" + 1), 605 [2M-Cu + 2]". Anal. Calcd. for
C14H12CuN30S (333.88 g/mol): C, 50.36; H, 3.62; N, 12.59. Found: C,
50.25; H, 3.72; N, 12.28. IR (KBr, v/cm™!): 3404w, 3235m, 3024m,
2937m, 1595m, 1508 m, 1498m, 1458s, 1431s, 1314m, 1251w, 1210m,
1178m, 1088w, 866w, 769m, 747m. UV/vis (107> M, DMSO (nm)):
A = 287, 323, 408. UV/vis (10~3 M, DMSO (nm)): no d—d band was
detected. Conductance A, (DMSO 103 M): 3.5 Q"' cm? mol ™.

[CuHL], (22) was collected as a dark green powder (77%). MS
(FABT): m/z = 446 (M" + 1), 829 [2M-Cu + 2]". Anal. Calcd. for
Cy2H,gCuN30S (446.09 g/mol): C, 59.23; H, 6.33; N, 9.42. Found: C,
58.92; H, 6.46; N, 9.33. IR (KBr, »/cm~!): 3421m, 3221m, 2955s,
2904m, 2868m, 1592s, 1541s, 1498s, 1548s, 1438s, 1314m, 1299m,
1256s, 1167s, 1065w, 832w, 745m. UV/vis (10> M, DMSO (nm)):
X = 324, 417. UV/vis (107> M, DMSO (nm)): A 592. Conductance /A,
(DMSO 1073 M): 2.5 Q! cm? mol .

2.3.2. Alternative synthesis of the copper complex 16b

A solution of copper (II) acetate monohydrate (200.0 mg,
1.00 mmol) in the minimum required amount of methanol was
added dropwise to a hot (60 °C) solution of H,L> 5 (191.0 mg,
0.723 mmol) in methanol (50 ml). The reaction mixture was
refluxed for 3 h and then concentrated to half volume. The dark
green precipitate so formed was recovered by filtration, it was
washed with ethanol, then with diethyl ether and dried under
vacuum over anhydrous CaCly. [CuL?-2H,0] (16b) was collected as
a dark green powder (2049 mg, 78.4%). Anal. Calcd. for
CgHoCl,CuN303S (361.69 g/mol): C, 26.57; H, 2.51; N, 11.91; Cu 17.57.
Found: C, 26.42; H, 2.63; N, 11.74; Cu 17.44. IR (KBr, »/cm™1): 3480s,
3464s, 3277s, 3182s, 1748w, 1620s, 1610m, 1601s, 1473s, 1439s,
1314s, 1212s, 1164w, 950m, 867m, 630w, 520w, 431w, 364W. lefr.
(25°C) = 1.79 B.M.

2.3.3. Detection of acetic aldehyde in the synthesis of complex 20

A solution of copper (II) acetate monohydrate (14.9 mg,
0.076 mmol) in the minimum required amount of water was added
to a hot (70 °C) solution of H,L?, 9 (15.2 mg, 0.068 mmol) in ethanol
(5 ml) in a pressure tube. The reaction mixture was heated to 80 °C
for 2.5 h and then cooled to 0 °C. After centrifugation, a sample of
the supernatant solution was withdrawn and analysed by GC.
Acetic aldehyde was detected [32].

2.4. Typical procedure for the catalytic cyclopropanation of olefins

CuHL! (12) (1.3 mg, 5.1-10> mmol) and a-methylstyrene
(0.660 ml, 51 mmol) were suspended in distilled dichloroethane
(9 ml) and the reaction mixture was heated under stirring at 70 °C.
Then dichloroethane solution (1 ml) of EDA (0.266 ml, 2.53 mmol) was
slowly added by a syringe pump during 100 min. The end of the
reaction was checked by IR, following the disappearance of the band
due to the stretching of N, moiety at 2114 cm™ .. After the addition of
EDA, a complete conversion of EDA (IR absorbance <0.025) was
observed; the solution was analysed by GC after the addition of 2,4-
dinitrotoluene (230 mg, 1.27 mmol) as internal standard. Yields
were confirmed by 'H NMR analysis of the crude and, in selected cases,
products were isolated and purified by column chromatography.
The collected analytical data for cis and trans ethyl-2-
phenylcyclopropanecarboxylate [33], cis and trans ethyl-2-p-tolylcy-
clopropanecarboxylate [33], cis and trans ethyl-2-methyl-2-
phenylcyclopropanecarboxylate [34], ethyl-2,2-dphenylcyclopropane
carboxylate [33], cis and trans ethyl-2-(4-chlorophenyl)-2-methyl

cyclopropanecarboxylate [35], cis and trans ethyl-2-naphthylcy
clopropanecarboxylate [36], cis and trans ethyl-2-hexylcyclopropane
carboxylate [37], cis and trans bicyclo[4.1.0]heptane-7-carboxylic
acid ethyl ester [37], and cis and trans ethyl chrysantemate [37] are
in agreement to those reported in the literature.

3. Results and discussion
3.1. Synthesis

Ligands were synthesized by reacting hydrazinecarbothioamide
with substituted salicylaldehydes in refluxing ethanol. Pure ligands
could be obtained by simple recrystallization from ethanol. Only in
the case of ligand 2 it was necessary to perform a column chro-
matography over silica in order to obtain a compound free from
traces of hydrazinecarbothioamide. The copper complexes were
synthesized by treating the ligands in refluxing ethanol with
copper (II) acetate monohydrate dissolved in the minimum
required amount of methanol. In all cases the formation of a dark
green or brown precipitate was observed at the very beginning of
the addition of the copper acetate. The reaction mixture was then
refluxed and the product collected upon filtration after cooling at
room temperature. A recrystallization step from hot ethanol was
needed to obtain a crystalline powder. Traces of water could be
removed only after repeated washing with ethanol and diethyl
ether. Both ligands and complexes were obtained in good yields.

3.2. Spectroscopy

The mass spectra (EI) of the Schiff base ligands 1-8 and 10—11
revealed molecular ion peaks which are coincident with the
formula weights for these ligands and support the identity of their
structures. Although numerous reports in the literature on the use
of thiosemicarbazide derived Schiff bases have been published in
the last years [29—31,38—41], reported spectroscopical and
analytical data are often scant; '3C NMR spectra are seldom
described and in some cases, especially concerning IR spectra,
reported data are not in good relative agreement (see later). The 'H
and 3C NMR spectra of the ligands are in agreement with the
proposed structure. Enol and keto tautomers are very close in
energy for Schiff bases and may compete for stability. As expected
for phenol Schiff bases derivatives, the enol form prevails and we
never observed any keto-enol tautomerism in DMSO-dg (nor in
CDCl3) solutions [42] (see Experimental section). The IR spectra of
powders show the characteristic intense bands in the range
1618—1590 cm ! associated with the yc=, frequencies. The »op)
band of the phenolic oxygen is found almost at the same
frequencies for all ligands, in the range 3468—3409 cm™ !, whilst the
medium to intense band in the region 3300—2900 cm ™' have been
attributed to yu2) and yu). The free ligands exhibit medium
intensity bands in the region 1099—1011 cm ' and 859-793 cm ™},
attributed respectively to yc=s) and to vscs). There is no general
agreement in the literature data in the identification of vgcs), that
for some authors is at lower frequencies (see for example Ref. [30]);
however, reported data in the experimental section are in accor-
dance with those reported by Campbell in his review [43]. This
band is particularly diagnostic for transition metal complexes of
thiosemicarbazide and thiosemicarbazones, since upon coordina-
tion could be shifted almost 100 cm™! to lower frequencies. A shift
of this order would indicate a considerable change in the bond
order, such as would result from the formation of a strong metal-
sulfur bond. As expected, for all the synthesized copper
complexes, the frequencies corresponding to vscs) were found in
the range 809—730 cm™, therefore indicating the coordination of
the copper ion to the S atom. This fact is supported even by the
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Fig. 1. FAB mass spectrum of complex 13 (left) compared with the simulated spectra for the cluster [CuHL?]*.

disappearance of the yc=s) band at around 1050 cm~L The
complexation of the metal ion is accompanied also by a negative
shift of the frequencies corresponding to ¥ c=n) (from the spectral
region 1618—1590 cm~! to lower wave numbers) and to Vamidel
(from 1550 to 1537 cm ™! to 1527—1465 cm™!) and a positive shift of
the v(co) (from 12711245 cm™ ! to 1318—1278 cm™ ') [40]. All these
data support that the ligand donor atoms, O, N, S, chelate the
copper atom in a tridentate manner. Noteworthy, we observed for
all metal complexes the persistence of a sharp band in the region
3484—3404 cm™~ . Normally absorption bands assigned to the V(OH)
modes of lattice water appear as broad and rather intense bands in
the spectral region of 3550—3200 cm~' (antisymmetric and
symmetric OH stretchings) and are accompanied by d(on) in the
region 1630—1600 cm™!, which are not observed in the present
case. It should be pointed out, however, that also the OH group in
hydroxo complexes lacks the HOH bending mode near 1600 cm™!
[44]. The absence of coordinated water molecules within the
coordination sphere of these complexes (with the exception of
complex 16b, see experimental section) is further supported by the
absence of bands in the 950—930 cm™~! and 635—615 cm™! regions,
due to H,0 rocking and wagging, respectively. On the other hand,
the existence of coordinated water molecules within the coordi-
nation sphere of complex [CuL’-2H,0] (16b) is supported by the

H
\N/N\l(NHZ \N/NYNHz
; S E S

—.‘ - O——“ =
O—=Cu Cu

N NH, H
N \( \N/NYNH
H o—cu'

I B

H m = 256
N NH
AN 7
N Y
VoS A
....CUI

H m = 257

Fig. 2. Possible molecular formulae (sketched as monomers) for complex 12: A
(monoanionic ligand); B (dianionic ligand).

presence of bands at 3480, 1610, 950 and 630 cm ™, due to OH
stretching, HOH deformation, H,O rocking and H,O wagging
respectively. The complexes under study did not show any band
which may be attributed to acetate ligand coordinated to the
central metal atom [44].

The molar conductivities Ay, of the metal complexes 12—22
dissolved in DMSO at 10~ M were found to be in the range
1-8 Q! cm? mol . These low values indicate that these complexes
are non-electrolytes due to the absence of any counter ion in their
structures [45].

The absence of water, as well as of coordinate acetate ions, in the
metal complexes is also indicated by the elemental analyses, which
are in perfect agreement with a 1:1 ratio metal/ligand of general
formula [CuHL], (with the exception of complex 16b, which is in
agreement with the formula CuL’-2H,0, see below). This general
formula is supported also by the result of the FAB mass analysis of
the metal complexes. In general the fast atom bombardment (FAB)
gives rise to molecular ions of the type [M™ + 1] and, to the best of
our knowledge, very seldom [M* + 2] peaks are observed. For all
copper complexes (with the exception of 16b) we observed a clean
base peak corresponding to a general formula [CuHL" + 1], which
seems to indicate that the ligand has just lost one hydrogen atom in
the complexation reaction and thus cannot behave as a dianionic
ligand, as would be expected. The mass spectra of complex 13 is
reported in Fig. 1 and compared with the spectrum simulated for
the cluster [CuHL?]".

Absorbance (AU)

0,00
500 550 600 650 700 750
Wavelength (nm)

Fig. 3. UV—vis spectra for complexes 13-15, 18 and 20 (see legend) in the region
500—700 nm; 10~3 M solutions in DMSO.
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Fig. 4. The Cuy, spin-orbit doublets obtained for complex 12.

It can be seen that, even if with low intensity, an ion peak cor-
responding to the molecular formula [CuL™ + 1] (369 m/e) is
present. The same pattern is found in all the mass spectra of the
metal complexes (see experimental section).

If we assume, as all analytical and spectroscopical data support,
that the metal to ligand ratio is 1:1 and that we do not have any
other ancillary ligand present in the metal complexes, we must
conclude that the copper complexes are not monomeric in the solid
state and that dimeric (or oligomeric) structures are formed. If the
ligand behaves as monoanionic (A, Fig. 2), then, to balance charges,
the copper atom must have been reduced to a formal I oxidation
state. On the other hand, if the ligand behave as dianionic (B, Fig. 2),
the metal ion should be formally described as copper (II).

The two structures A and B differ only for one proton, and for the
copper oxidation state. In the absence of coordinating solvents, we
must assume that these molecules are not monomers, but must
aggregate. Actually, all these metal complexes are almost insoluble
in most organic solvents, and a good solubility is observed only in
DMSO and DMEF. Unfortunately, any attempt to grow crystals suit-
able for X-ray structural determination from these solvents met
with failure. When we tried to record NMR spectra in deuterated
DMSO, we observed broad signals that prevented any attribution of
the chemical shifts. The only complex that showed a good solubility
even in chlorinated solvents was 20. In this case, it was possible to
record a 'H NMR spectrum in CDCls, that is in agreement with
a diamagnetic complex (see experimental section).

The solid copper complexes 12—14 are diamagnetic at room
temperature. The typical magnetic momentum value for
mononuclear copper (II) compounds with a S = ¥ spin state are
expected in the range 1.79—1.95 B.M [46]. Only in the case of
complex 18 we measured a room temperature magnetic moment of
1.18 B.M. which seems to indicate a partial antiferromagnetic
coupling of spins at this temperature [47]. Further studies on the

3
R S
H,N R"
R H H
OH H

1R=R'=R"=R"=H
2R=R"=tBu;R'=R"=H
3R=0Me;R =R"=R"=H
4R=R"=R"=H; R = NEt,
5R=R"=CIR'=R"=H

reflux R"

magnetism of these molecules at low temperature will be the
subject of a study in the next future.

The UV—vis spectra of the thiosemicarbazone ligands in DMSO
(10> M) showed broad bands in the range 270—275 nm assignable
to the phenyl ring T — w* transitions. This band is not affected to
a major extent upon coordination of the copper atom. The n — ©*
transitions associated with the C=N group [48] around 350 nm in
the spectra of the free ligands are generally shifted to higher energy
on complexation. In the spectra of some complexes this latter band
shifts to higher energies. The shifts of these bands with respect to
those of the free ligand indicate coordination of phenolic oxygen
and azomethine thioenol moieties to the metal ions. There are also
charge-transfer transitions partially responsible for the intense
colours of some of the complexes. The absorption bands with high
intensity observed at 420—430 nm are assigned to charge-transfer
transitions. The UV—vis spectra of the complexes (10~3 M in DMSO)
showed broad single band at 570—590 nm (e in the range
200—300 M~!' cm~!, Fig. 3) which is consistent with a distorted
square pyramidal geometry at a Cu (II) metal atom [41].

These experimental data provide grounds for suggesting
a polynuclear structure for the metal complexes 12—22 with
a spin—spin interaction between the paramagnetic copper ions.
This polymeric chain would break upon dissolution in strongly
coordinating solvents such as DMSO or DMF. It should be pointed
out that Cu (I) complexes are not stable towards oxidation and that
the experimental conditions used in the present work and the high
dilutions needed to record an UV—vis spectrum in DMSO hampers
the characterization of copper (I) in solution. On the other hand,
only the presence of copper in the oxidation state (I) would explain
the ion peaks of general formula [CuHL™ + 1] observed in the mass
spectra. To gain a better insight to the oxidation state of the central
metal atom, we decided to carry out an X-ray photoelectron spec-
troscopy (XPS) analysis of selected complexes. XPS analysis, in fact,
is helpful in identifying the oxidation states of elements in various
compounds because the binding energy (BE) measured for the core
electrons undergoes a “chemical shift” as a result of changes in the
chemical environment of the atoms [49]. The Cu2p spin-orbit
doublets (2p1)2 and 2p3j;) obtained from complex 12 are illus-
trated in Fig. 4. A characteristic feature of the Cu®>* (3d°) is a shift in
the Cu2p photoelectron peak doublet to higher BE side compared to

+(3d'%). This can be appreciated in the Cu2psp peak that is
actually split in two components: one major peak at —932 eV (A,
Fig. 4) that can be ascribed to copper (I), and a smaller peak
at —935 eV (B, Fig. 4), in the typical range for a copper (II) atom. A
small shake-up satellite (C Fig. 4) can be seen on the lower kinetic
energy (KE) (higher BE), which is normally associated with copper
(1I1). Similar spectra were obtained for complexes 13 and 20.

These data suggest that copper is present as copper (I) in the
complexes. The fact that small peaks due to the presence of some

7R=R=R"=H;R"=Br
8R=R"=F;R =R"=H
9R=R =R"=H;R"=Et
10R=R =R"=H;R"=Ph

11 R=R"=t-Bu;R'=H; R" = Ph

6R=R"=Br;R =R"=H

Scheme 1. . Formation of the thiosemicarbazone ligands H,L (1-11) and numbering scheme adopted.
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reflux \
R™ N > R™ _N
\NLN/ A R" \lTj ’Tj NS R"
| |
H H H H H H n
12R=R'=R"=R"=H 1 R=R =R"=H;R"=Br
13R=R"=tBu;R'=R"=H 19R=R"=F;R=R"=H
14R=0OMe;R'=R"=R"=H 20R=R'=R"=H:R"=Et
15R=R"=R"=H;R'=NEt, 21R=R'=R"=H;R"=Ph
16aR=R"=C|;R'=R"=H 22 R=R"=tBu; R'=H; R" =Ph
17R=R"=Br;R' =R"=H

Scheme 2. Formation of the copper complexes [CuHL], (12—22).

[Cu]
+ N7 DCOOEt — > .wCOOEt
C,yH4Cl,
70 °C
trans cis
Scheme 3.

Cu (II) are present suggests that the surface of the particles was
easily oxidized. We must underline that XPS analysis is a surface
technique and that a partial oxidation of the surface may always
occur [49].

To investigate if the employed solvent (ethanol) in the reaction
may be responsible for the reduction of copper during the
complexation, complex 16b was synthesized in methanol instead.
In this case we isolated a paramagnetic complex of copper (II) (uef,
(25 °C) = 179 B.M.) corresponding to the molecular formula
[CuL®-2H,0]. When the reaction was repeated in isopropanol (a
better reducing agent than ethanol) a less pure product but with
a chemical composition similar to 16a was obtained instead (see
experimental). The fact that copper (II) is reduced to copper (I) in
reaction with thioylcarbamoyl ligand [50] and with thio-
semicarbazones [51] is not unprecedented. However, in reported
cases, reduction took place in the absence of alcohols. To clarify the

Table 1
Catalytic cyclopropanation of a-methylstyrene by EDA.?

role played by the alcohol in the reduction from Cu (II) to Cu (I), we
have conducted a GC analysis of the reaction mixture to detect if an
oxidation product from ethanol was observed. In order to do this,
we had to run the reaction in the absence of methanol, that under
our experimental conditions interfere with the detection of acetic
aldehyde, by dissolving the copper acetate in the minimum of
water and performing the reaction in a pressure tube to avoid any
possible evaporation of the formed volatile products. Under these
conditions, we were able to detect a reasonable amount of acetic
aldehyde after the reaction took place (see experimental).

3.3. Catalytic activity

The catalytic activity of complexes 12—22 in cyclopropanation
reactions has been investigated. As a model reaction we choose the
cyclopropanation of o-methylstyrene by EDA (EDA = ethyldia

Table 2
Cyclopropanation of a-methylstyrene with EDA catalysed by complex 16b, CuL®
(H20)2.°

Entry Catalyst Conversion (%)° Yield (%)° trans|cis® Entry Cat/EDA/olefin Time (min) Conversion(%)® Yield (%) trans/cis®
1 12 >99% 79 56:44 1 1/500/1000 7/5/5d > 99 87 57:43
2 13 >99% 78 56:44 2¢ 1/1000/1500 100/1 00/]00d > 99 95 57:43
3 14 >99% 58 55:44 3f 1/10000/20000 380 92 77 56:44
4 15 >99% 62 56:44 48 1/20000/40000 420 92 74 55:45
d .

Z :gab igg? g; (68) 2;3; 2 Experimental conditions: EDA was added to a solution of 16b (2.73 mg,
7 17 > . 7.5 x 103 mmol) and a-methylstyrene in dichloroethane (10 ml) at 70 °C.

>99% 93 55:45 b o ion of the starting EDA
8 18 >99% 92 56:44 onversion ot the starting EUA.
9 19 o . ¢ Determined by GC (yield based on EDA).

>99% >4 >4:46 4 Aft let tion of the starting EDA, the catalytic cycl restored
10 20 299% 31 56-44  After complete consumption of the starting . the catalytic cycle was restore
1 21 ~99% 37 57.43 twice by addition of EDA and «-methylstyrene; global yield is reported.
12 2 >99; 38 55:45 € 16b (1.35 mg, 3.7 x 10~ mmol) in 9 ml of dichloroethane was used; EDA dis-

2 Experimental conditions: EDA (2.52 mmol) dissolved in CoH4Cl, (1 ml) was
slowly added (100 min) to a hot (70 °C) solution of cat (5.1 x 10> mmol) and a-
methylstyrene (5.1 mmol) in dichloroethane (9 ml).

b Conversion of the starting EDA.

¢ Determined by GC (yield based on EDA).

4 Isolated yield.

solved in C;H4Cl; (1 ml) was slowly added.

f This solution was prepared by dissolving 16b (1.35 mg, 3.7 x 10~ mmol) in
dichloroethane (10 ml); 1 ml of this solution was added to the solution of a-
methylstyrene in 9 ml of dichloroethane.

2 This solution was prepared by dissolving 16b (1.35 mg, 3.7 x 10~> mmol) in
dichloroethane (10 ml); 0.5 ml of this solution were added to the solution of a-
methylstyrene in 9.5 ml of dichloroethane.
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zoacetate) (Schemes 1-—3). Catalytic reactions were run by slow
addition of EDA by syringe pump (100 min) to a stirred solution
containing the olefin and the metal complex in dichloroethane
under dinitrogen (Cu/EDA/o-methylstyrene ratio 1:500:1000) at

70 °C. In all cases a quantitative conversion of the starting EDA was
observed at the end of the addition, as judged by IR spectroscopy,
checking the disappearance of the band due to the stretching of the
N, moiety (v = 2114 cm™1).

Table 3
Cyclopropanation of olefins with EDA.?
Entry Olefin Cat Time (min) Conversion(%)? Yield(%)" trans/cis®
1 ©/\ 16b 12 >99 68 72:28
2d /O/\ 16b 1004 >99 99 (90) 92:8
3d /©/§ 16b 1004 >99 82 (68) 57:43
Cl
Ph
4 @ 16b 100¢ >99 90 (63) -
X
5 16b 31 >99 76 71:29
6 CeH, g/\ 12 100¢ >99 63 68:32
- 16b 19 >99 65 69:31
16a 1004 >99 75 80:20
21 1004 >99 76 73:27
22 100¢ >99 78 66:44
7 16b 11 >99 67 91:9
16a 1004 >99 92 91:9
8 NN AN 16b 32 >99 82 64:36
16a 1009 >99 98 50:50
9¢ & 16b 100¢ >99 85 (51) 58:41:1:0
10/ g\J\ 16b 1004 >99 90 (84) >99
11 COOMe 21 1009 ~99 15 ~99

.
@)
=

Experimental conditions: EDA was added to a solution of cat (5.1 x 10~> mmol) and olefin in dichloroethane (10 ml) at 70 °C.

Conversion of the starting EDA.

a

b

¢ Determined by GC; isolated yield in parenthesis (yield based on EDA).

4 EDA dissolved in C,H4Cl, (1 ml) was slowly added to the solution containing the catalyst and the olefin in dichloroethane (9 ml).
e

The two major products were determined to be (1R,2R,2'R) and (1R,2R,2’'S) by comparison with literature data [52]. The fourth possible diastereoisomer was not detected.

f Only one diasteroeisomer (1R,2R, 2'R) was isolated [52].
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All tested copper complexes exhibited a remarkable catalytic
activity towards the decomposition of ethyldiazoacetate, and the
subsequent transfer of the carbene moiety to the C=C double bond.
In Table 1 are collected all the obtained results in the cyclo-
propanation reaction of a-methylstyrene with the different cata-
lysts. In all cases cyclopropanes were obtained in yields from good
to excellent. Fumarate and maleate, the homo-coupling product of
EDA, were the only other product detected and accounted for the
missing mass balance of the reactions. The diastereoselective
outcome of the reaction is rather poor in all cases (almost equi-
molar amount of trans and cis cyclopropanes) and does not seem to
be influenced by the steric and/or electronic requirement of the
thiosemicarbazone ligand.

Remarkably, almost no difference in the chemical yield was
observed employing a catalyst where copper is present as Cu (I) or
complex 16b, the only monomeric copper (II) catalyst tested. This
finding, however, is not surprising, since it is commonly accepted
that EDA reduces Cu (II) to Cu (I). We next optimised the reaction
conditions and catalyst loadings, employing complex 16b. The
results are summarised in Table 2.

When EDA was added in one portion to the reaction mixture
(entries 1, 3 and 4, Table 2), an induction period was observed,
that, in the case of complex 16b, can be necessary to reduce
copper (II) to copper (I). In fact, this induction period is not
observed upon the second and third additions (entry 1, Table 2).
Noteworthy, the copper complex does not lose its catalytic activity
after 3 consecutive runs. In contrast to the prolonged EDA addition
time generally required to reduce the formation of homo-coupling
products in cyclopropanation, we found complex 16b to be rather
insensitive to this: if we compare entry 1, Table 2 with entry 6,
Table 1, a decrease only from 97% to 87% in cyclopropane yield is
observed. At a 16b/EDA/a-methylstyrene ratio of 1/1000/1500
with slow addition of EDA products are obtained with excellent
yields (entry 2, Table 2). A 1.5 fold excess of olefin with respect to
EDA is however necessary to reduce the formation of homo-
coupling products. We were able to further reduce the catalyst
loading and TON up to 18,400 have been obtained (entry 4,
Table 2). Even if a poor diastereoselection was observed, to the
best of our knowledge, this is the higher TON reported for a single
site copper catalyst in homogeneous catalytic cyclopropanation
[23]. A TON of 100,000 has been recently reported by us with
a dinuclear copper polyoxometalate catalyst [26].

To determine the general applicability of copper thio-
semicarbazone complexes, cyclopropanation reactions of a series of
styrene derivatives with varied electronic and steric properties
were carried out, using EDA as carbene source (Table 3). At a cat/
EDA/olefin ratio of 1/500/1000 at 70 °C, the complexes catalysed
the cyclopropanation of a range of substrates with a quantitative
conversion and with selectivities ranging from good to excellent.
The results are summarised in Table 3.

When styrene was employed as substrate, we observed
a decrease in the reaction rate and in cyclopropane products with
respect to the case of a-methylstyrene (compare entry 1, Table 3
and entry 6, Table 1). However, in this case the diaster-
eoselectivity is improved (trans/cis = 2.6). Better yields in cyclo-
propane products and higher diastereoselectivities (trans/
cis = 11.5) were obtained when electron donating substituents are
present in the para position of the aromatic ring (entry 2, Table 3). If
4-chloro-a-methylstyrene was employed as substrate, a slight
decrease in the yield was observed instead (entry 3, Table 3). It can
be seen that in the absence of an a-substituent on the styrene
derivative the formation of the trans cyclopropane is always fav-
oured (entries 1, 2 and 5, Table 3). Steric hindrance at the o position
does not hamper the reaction and good yields were obtained with
1,1-diphenyl ethylene (entry 4, Table 3).

Even aliphatic alkenes that are generally less reactive in cyclo-
propanation reactions, gave excellent results. Though the time of
the cyclopropanation reaction for these substrates increased
slightly if compared to what observed for styrene derivatives
(compare entries 6, 7 and 8, Table 3, with entry 6, Table 1) yields
ranging from good to excellent were always obtained. Even in these
cases trans cyclopropane compounds were obtained as major
products and a remarkable diastereoselectivity (trans/cis = 10.1)
was observed for cyclohexene (entry 7, Table 3). With 2,5-dimethyl-
2,4-hexadiene, an important precursor to chrysanthemic acid [53],
the catalytic reaction yielded the desired cyclopropanes (cyclo-
propanation of only one double bond was observed, [37]) in very
good yields (98%) (entry 8, Table 3), without the need for a large
excess of the olefin. Out of the four possible diastereoisomers that
could be obtained in the cyclopropanation of (—)B-pinene, two
major isomers were obtained. The two major isomers are those
deriving from a formal attack of the carbene moiety on the less
sterically hindered side of the olefin [52]. On the other hand, when
(—)a-pinene was used as the substrate, only one diastereoisomer
(1R2R.2'R, Ref. [52]) was isolated as a clean product in good yield
(entry 10, Table 3). The only substrate that failed to give good yields
in the present study was methylfuroate, (entry 11, Table 3).
However, in this case, even if in low yield, only the trans isomer
(attack only at the non-substituted double bond) was detected [54].

4. Conclusions

The straightforward synthesis of several thiosemicarbazide
derived Schiff base copper complexes has been reported. The
presence of N, S, O donor atoms of thiosemicarbazones renders the
study their coordination to transition metals very interesting.
Spectral and analytical collected data in this study suggested that,
at least in part, reduction to copper (I) has occurred. Further studies
in determining the crystal structure of these complexes in the
absence of strong coordinating solvents are on-going in our lab.
However, all synthesized complexes showed excellent catalytic
activities in cyclopropanation reactions and TON up to 18,400 could
be obtained. In contrast to the prolonged EDA addition time
generally required to reduce the formation of homo-coupling
products in cyclopropanation, we found those complexes very
selective. Furthermore, a single addition of EDA is required to yield
the desired cyclopropanes in excellent yields. Moreover, the cata-
lysts are very robust and no decrease in yield was observed even
after three catalytic runs. Several cyclopropanes have been
obtained in good to excellent yields even from non-activated
olefins. In the case of the cyclopropanation of (—)a-pinene, out of
four possible diastereoisomers, only one product was formed that
could be isolated pure in 84% yield.
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