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Abstract
University of Bremen

Department of Physics and Electrical Engineering

Doctor rerum naturalium

Theoretical investigations of wide-bandgap semiconductor nanowires for

optoelectronic applications

by Dennis Franke

Improving existing optoelectronic devices is a crucial step in satisfying human-
ity’s increasing demand for electricity. This work explores different ways to
achieve this goal. First density functional theory (DFT) calculations are per-
formed on functionalized ZnO and GaN surface structures to investigate possible
changes to their structural, electronic, and optical properties due to the attached
functional groups. For both materials, attaching thiol groups leads to intra-gap
states, which are found to be optically active for ZnO.
Aiming at bigger GaN model sizes in future works compared to standard DFT
approaches, a DFTB model was developed for GaN surface nanostructures. The
interatomic interaction parameters were validated against standard DFT, achiev-
ing acceptable performances on bulk Ga, bulk GaN, and surface GaN systems.
Another possible route to modify the electronic properties of semiconductor nanos-
tructures is doping. ZnO bulk was doped with cobalt atoms to model different
intrinsic defect complexes. Many-body GW calculations were employed to inves-
tigate their electronic structures. One defect complex is identified to be responsi-
ble for the experimentally observed photoluminescence.
Due to the continuing decrease in size of electronic devices, the standard gate
oxide SiO2 needs to be replaced, since today’s required film thicknesses expose a
crucial weakness of SiO2, a high tunneling leakage current. Possible candidates
to be used as a replacement are HfxSi1−xO2 nanostructures, that avoid the de-
scribed weakness. In a first step a density functional-based tight binding (DFTB)
model for HfO2 was developed and validated against standard DFT calculations,
achieving a very good performance for Hf bulk and HfO2 bulk. The obtained
parameters were then used in a MD study on amorphous HfO2 systems to dis-
cuss their structural and electronic properties. In a second step this model was
extended by silicon and applied to amorphous HfxSi1−xO2 structures to evaluate
the influence of different Hf:Si ratios.
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Chapter 1

Introduction

1.1 Semiconductors for optoelectronics

Humanity is currently facing one of the biggest technological challenges since the
Industrial Revolution in the 18th century. Fossil fuels need to be replaced succes-
sively by renewable energies. But this task can only succeed, if energy is used
more efficiently and renewable energies are made easier accessible. At the end of
2016, renewable energies accounted for 10.4 % of the global energy consumption
[1]. 1.6 % were generated from solar-based sources. However, solar photovoltaic
(PV) capacity grew continuously over the past years, adding more than 5000 %
over the last decade. In particular 2017 was a remarkable year. Solar PV instal-
lations added more net capacity than natural gas, nuclear power, and coal com-
bined [1]. This development is not surprising, since every year, harvestable sun
energy hits the earth which is about three orders of magnitude bigger than the
global energy consumption in 2017.

Nowadays, solar cells are still predominantly made of crystalline silicon or com-
pounds partially made of crystalline silicon with a typical efficiency between 15
and 22 %. This rapid growth in capacity can be attributed to the decreasing cost
of the solar panels over the years. It reduced by over 60 % between 2010 and 2017
with the semiconductor module itself being the largest impact factor [2]. Man-
ufacturing costs decreased by 86 %, the module accounts for only 12 to 34 % of
the total cost, depending on the type of solar panel. On the other hand, so-called
“soft costs” like installment costs, taxes, profits, or overheads remained almost
constant. Consequently there is a natural limit to the total cost since the semi-
conductor’s contribution will decrease even further. Therefore, the second way
to reduce the cost is to increase the panel’s efficiency. That way more energy can
be generated with the same number of panels. As a consequence, scientific inter-
est in high-efficiency PV installments has grown over the past years. In order to
achieve higher efficiency rates, silicon is combined with wide-bandgap materials.
Very recently an efficiency of 33.3 % was achieved by combining Si with GaAs and
GaInP [3]. A good example for the scientific effort in this field is the development
of perovskite solar cells. First mentioned in 2009 with an efficiency of only 3.8 %



2 Chapter 1. Introduction

[4], recently researchers in Hong Kong successfully developed perovskite-silicon
solar cells with an efficiency of 25.5 % [5].

Silicon has been the material of choice for applications in the semiconductor in-
dustry since the invention of the first transistor in 1948 [6]. Main reasons for this
are its low cost and its ability to form an insulating silicon dioxide layer for the
use as a gate oxide for example in diodes, transistors, or PV panels. However,
due to the continuing decrease in size of electronic devices, silicon dioxide is no
longer reliable as the first choice, since the small thickness leads to high tunnel-
ing leakage current [7, 8]. Consequently, possible replacing materials need to be
investigated. In addition, silicon is not suited for applications in light-emitting
devices, since it is an Sindirect semiconductor. Therefore, an emission process is
unlikely to happen.

But besides harvesting renewable energies more effectively, energy in general
needs to be used more efficiently. One major contributor to the global electricity
consumption is lighting. It is responsible for around 20 % of the global electricity
consumption [9]. This is mainly due to the fact that light emitting diode (LED)
still do not account for the vast majority of the global lighting. However, during
the past years, the LED market grew considerably and LED-based devices ac-
counted for 54 % of the global lighting market in 2017 [10]. Consequently, there is
tremendous potential for further growth left. LEDs are up to 90 % more efficient
than traditional incandescent bulbs and therefore the global energy consumption
would benefit greatly from the described growth. Furthermore, similar to the
aforementioned solar cells, LEDs also benefit from the reduced costs of semicon-
ductor modules.

One possible route to address the aforementioned challenges and opportunities
are semiconductor-based nanowires. Nanowires are nanostructures with a diam-
eter of the order of a few nanometers and a large length-to-width ratio. Further-
more, they also have a large surface-to-volume ratio. These properties make them
interesting in particular for optoelectronic applications like PV devices or LEDs.
Figure 1.1 shows a SEM image of grown ZnO nanowires. Nanowires are typi-
cally being synthesized by two different approaches, either top-down or bottom-
up. Top-down approaches use lithography techniques to etch out thin structures
from a bulk material. This provides an easy way to synthesize ordered arrays of
nanowires, which makes it appealing for the use in optoelectronic devices. How-
ever, the desired target sizes are limited by the employed lithography technique
and the considered wavelength. Thus more advanced lithography approaches
need to be used, which lead to a drastic increase of cost of the nanowires. In con-
trast, bottom-up approaches use gases or liquids as precursors in order to grow
a crystalline structure by assembling the molecules step by step. This approach
offers greater control over the nanowire composition, providing access to more
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FIGURE 1.1: SEM image of ZnO nanowires. Reprinted from [11],
Copyright 2013, with permission from Elsevier.

complex forms. On the other hand, growing ordered arrays is challenging com-
pared to the top-down approach.

Improving these processes as well as developing different techniques to alter and
enhance the optoelectronic properties of nanowires is of great interest to many
scientific research groups and companies around the globe. The following chap-
ters will discuss different approaches on how to alter the optoelectronic proper-
ties of semiconductor nanostructures. Furthermore, a study on possible replace-
ments for silicon oxide in electronic devices will be presented.

1.2 Theoretical approach

Throughout history mankind has driven technological developments further with
determination and invented increasingly sophisticated devices along the way.
Nowadays it is possible to investigate materials on an atomic scale experimen-
tally and to observe time-dependent phenomena on femtosecond and sometimes
even attosecond timescales. Nevertheless, it is still a challenging task to attain in-
formation and knowledge on an atomic scale directly from experiments without
any supporting information such as theoretical input.

This raises the question, is there a way to combine theoretical and experimental
approaches to overcome the described difficulty?

One possible solution is the use of increasingly powerful computers. Computer
simulations serve as a bridge between microscopic length and time scales in a
real material and the macroscopic world inside a laboratory. A main benefit is
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the complete control over the chosen parameters. Furthermore, it provides safety
and even allows to simulate conditions, which are very hard or even impossi-
ble to employ in a laboratory like extreme temperatures or extremely short time
steps. From a practical point of view it is also cheaper and therefore allows to test
several different simulation conditions before actually conducting an experiment.
Thus, computer simulations in materials science could be described as virtual ex-
periments.

However, even with today’s computational resources, approximations have to
be made to a certain point, because an exact solution is simply too complex to
achieve for anything else than trivial problems. Several approximations and con-
sequently different levels of accuracy will be introduced and applied to different
physical systems in this thesis.

1.3 Outline of this thesis

This thesis is organized as follows. Chapter 2 introduces DFT, TDDFT, and the
GW method. The key aspects and physical ideas behind these approaches are
explained. Chapter 3 briefly reviews the DFTB method and the necessary ap-
proximations needed in order to make it work. In Chapter 4 the concept of MD is
introduced. The connection between statistical physics and computational mate-
rials science is derived and established in order to demonstrate how the dynamics
of an atomistic system can be treated with the use of a computer.

Chapter 5 presents the results for surface functionalization of ZnO and GaN
nanostructures. Referring to Chapter 2, the parameters for the executed DFT
and TDDFT calculations are given. In the first part the obtained results for mer-
captocarboxylic acids (MPA)-derived molecules (SH − (CH2)n − COOH) on ZnO
surfaces are shown. Structural as well as electronic and optical properties are
discussed. The second part reviews the functionalization of GaN surfaces with
thiol, carboxyl, and amine groups and evaluates the possibility to influence the
electronic and optical properties of GaN-based nanostructures.

A correct description of TM or RE-doped ZnO nanostructures is a challenging
task. The usual approaches within standard DFT often fail to describe the band
gap and especially the position of defect states accurately. Therefore, in Chapter 6
the GW approximation is validated for bulk ZnO and then applied to cobalt-
doped ZnO nanostructures with different defect complexes. Structural as well
as electronic properties are discussed in order to evaluate which defect complex
might be responsible for the photoluminescence that has been observed in exper-
iments on Co-doped ZnO.
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Even nowadays, describing a system of several hundred atoms in DFT is com-
putationally very expensive. Different DFT-based methods like the introduced
DFTB approach provide a way to overcome this difficulty. In Chapter 7 the DFTB
parametrizations of HfO2, HfxSi1−xO2, and GaN are presented and tested on
different target systems. The obtained parameters for HfO2 are used within a
MD study to generate information about the influence of a varying density on
the structural and electronic properties of amorphous HfO2 systems. For fur-
ther validation of the parametrization, the results are compared to classically ob-
tained models and DFT calculations from the literature. The parametrization for
HfxSi1−xO2 has also been validated against both a classical MD study and a DFT
MD approach. Chapter 8 concludes the thesis.
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Chapter 2

Density functional theory

This chapter will present a brief overview of the Density Functional Theory (DFT)
to the extent appropriate for the scope of this thesis. A more detailed review of
the background, exact mathematical formulation and available extensions can be
found in the literature [12–14].

2.1 Wave mechanics

The basic problem in computational materials science related calculations is solv-
ing the Schrödinger equation

ĤΦn(xi) = EnΦn(xi). (2.1)

with xi ≡ (ri, σi) containing the spatial and spin coordinates and Φ describing the
time-independent many-electron wave function for N interacting electrons

Φn = Φn(xi), i = 1...N. (2.2)

n labels the different energetic states with the ground state having the lowest
energy. The stationary and non-relativistic Hamiltonian of a many-body system
is given by

Ĥ =
N

∑
i

ĥ1(ri) +
1
2

N

∑
i 6=j

ĥ2(ri, rj) (2.3)

with

ĥ1(ri) = −
1
2
∇2

i −
Nn

∑
I

ZI

|ri − RI |

ĥ2(ri, rj) =
1

|ri − rj|

. (2.4)
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This Hamiltonian is valid in the Born-Oppenheimer approximation, which opens
up the possibility to separate the motion of the electrons from the motion of the
nuclei. This is justified by the large mass difference and therefore vastly different
time and length scales for the electrons and nuclei.

The aforementioned Schrödinger equation is a second-order partial differential
equation, which cannot be solved analytically for a many-electron system due
to the electron-electron interaction. There have been several approaches to deal
with this problem, such as the Hartree- and Hartree-Fock theory [15, 16]. The
former describes the many-electron wavefunction Φ as a product of one-electron
orbitals, while the latter extends this to a Slater determinant of spin orbitals. The
Slater determinant formulation ensures an antisymmetric solution and indistin-
guishable particles, and thus fulfills Pauli’s exclusion principle. While Hartree-
Fock theory can describe exchange interaction correctly, it cannot treat correlation
effects. Extensions like a linear combination of Slater determinants can describe
configuration interaction between states, but due to the interaction of all electrons
in a system, including spatial and spin variables, the computational complexity
increases drastically and scales exponentially to the number of atoms.

Density Functional Theory takes a completely different approach by reformulat-
ing the basic problem in terms of a simpler and more convenient variable, the
electron density n(r). The major advantage in using the electron density as the
main variable is its dependency on only three variables.

2.2 Hohenberg-Kohn theorems

Density Functional Theory is based on two theorems stated in 1964 by Hohenberg
and Kohn [17]. The first one can be formulated as

The external potential is a unique functional of the electron density in the

ground state, and therefore the total energy is also a functional of the ground

state electron density.

Following this theorem, the electron density n determines the ground state wave-
function Φ and thus all ground state properties of a given system, meaning that
these properties can be expressed as a functional of the density. In particular, the
total energy functional can be written as

E[n(r)] = F[n(r)] +
∫

drVext(r)n(r). (2.5)

with F[n(r)] describing an unknown, but universal functional of the electron den-
sity, which consists of a kinetic energy functional T and an interaction functional
Uee that contains all non-classical effects. Since the functional F[n(r)] is the same
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for all N-electron systems, the Hamiltonian H is entirely defined by the number
of electrons N and the external potential Vext(r). The second theorem states the
following:

Given a system with the electronic density n(r), the ground state energy E0

corresponds to the global minimum of the total energy functional E[n(r)],

and the density n0(r), which minimizes E[n(r)], is the exact ground state

density.

So the ground state energy in DFT is the minimum value of the energy functional
and obtained, when the functional is evaluated at the ground state density. With
n(r) being the ground state density and n′(r) being another density, the theorem
can be summarized as follows

E[n′(r)] > E[n(r)]. (2.6)

2.3 Kohn-Sham formalism

There are still some remaining problems in the theory of Hohenberg and Kohn,
and those concern finding the ground state density and a proper expression for
the functional F[n(r)] in order to be able to determine the ground state energy.
Kohn and Sham suggested the following separation of F[n(r)] in 1965 [18]:

F[n(r)] = T0[n(r)] + EH[n(r)] + EXC[n(r)]. (2.7)

Here T0[n(r)] describes the ground state kinetic energy functional for a fictious
system of N non-interacting electrons

T0[n(r)] = ∑
i

ni

∫

drΦ∗
i (r)(−

1
2
∇2)Φi(r). (2.8)

EH[n(r)] is the Hartree energy, a classical term describing the Coulomb repulsion

EH[n(r)] =
1
2

∫ ∫

drdr′
n(r)n(r′)

|r − r′|
. (2.9)

Lastly, EXC is the exchange-correlation functional accounting for all the non-classical
many-body effects and given by

EXC[n(r)] = T[n(r)]− T0[n(r)] + Uee[n(r)]− EH[n(r)], (2.10)

where T[n(r)] is teh kinetic energy of the interacting system. The terms ni and
Φi in Eq. (2.8) are the normalized occupation number and the eigenfunctions
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obtained by solving the one-electron Schrödinger equation for an effective single-
electron potential Veff

(−
1
2
∇2 + Ve f f (r))Φi(r) = εiΦi(r), (2.11)

respectively. Then, the electron density can be written as follows

n(r) =
occ

∑
i=1

ni|Φi(r)|
2, N =

∫

drn(r). (2.12)

The aforementioned Φi are the so-called Kohn-Sham orbitals, describing normal-
ized single-electron orbitals

∫

drΦ∗
i (r)Φi(r) =

∫

dr|Φi(r)|
2 = 1. (2.13)

This results in the following form for the Kohn-Sham energy functional

EKS[n(r)] = ∑
i

ni

∫

drΦ∗
i (r)(−

1
2
∇2 + Vext(r) +

1
2

∫

n(r′)

|r′ − r|
dr′)Φi(r) + EXC[n(r)].

(2.14)

Besides the last term EXC[n(r)] every part has an analytical form. This exchange-
correlation term needs to be approximated, apart from that the Kohn-Sham the-
ory is exact. Several different approaches to tackle this problem have emerged
over the course of the last five decades and will be discussed in the next section.
The ground state energy of the functional in Eq. (2.14) can be found by applying
the variation principle under consideration of the normalization condition. Us-
ing the Euler-Lagrange formalism, the variation at the ground state energy needs
to be equal to zero

δ

δΦ∗
i (r)

Ω[{Φi(r)}] =
δ

δΦ∗
i (r)

{E[n(r)]−
N

∑
i

N

∑
j

εij(
∫

drΦ∗
i (r)Φj(r)− 1)} = 0.

(2.15)

This results in the so-called Kohn-Sham equations

{−
1
2
∇2 + Vext(r) +

∫

dr′
n(r′)

|r′ − r|
+ VXC[n(r)]}Φi(r) = εiΦi(r). (2.16)

with

VXC[n(r)] =
δEXC[n(r)]

δn(r)
. (2.17)
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With the effective potential

Veff[n(r), r] = Vext(r) +
∫

dr′
n(r′)

|r − r′|
+ VXC (2.18)

this set of effective single-electron equations has the form of a Hartree equation
with the Kohn-Sham eigenfunctions Φi(r) and eigenenergies εi

[−
1
2
∇2 + Veff([n(r)], r)]Φi(r) = εiΦi(r). (2.19)

The Kohn-Sham equations are solved self-consistently, since Veff([n(r)], r) is a
functional of the electron density, which is being calculated by using the desired
wavefunctions Φi(r). Solving these equations analytically is unrealistic, so in or-
der to find a solution, the process starts with guessing a start effective potential
and using that as a starting point of the iteration scheme.

2.3.1 The plane wave formalism in DFT

In a crystalline system, a large number of atoms and consequently a large num-
ber of electrons and ions needs to be described by the employed theory. This is
computationally unattainable and therefore this number needs to be reduced in
practice. Bloch’s theorem is used for this purpose. It states that the wave func-
tions Φnk(r) of an electron in a periodic potential can be expressed as the product
of the cell-periodic un(r) and a plane wave function eikr

Φnk(r) = un(r)e
ikr, (2.20)

with n as the band index and k as a vector in reciprocal space that is confined
to the first Brillouin zone. The cell-periodic un(r) has the same periodicity as the
crystal lattice and can thus be expressed as a Fourier expansion of plane waves
with reciprocal lattice vectors G of the crystal as wave vectors

un(r) = ∑
G

Cn,GeiGr. (2.21)

G obeys the relation GR = 2πm with R as a lattice vector in real space. Combin-
ing Eqs. (2.20) and (2.21), every single-electron wave function can be described
as a sum of these plane waves

Φnk(r) = ∑
G

Cn,k+Gei(k+G)r. (2.22)

Expressing the wave functions in terms of plane waves in reciprocal space allows
a formulation of the Kohn-Sham equations in reciprocal space. Using the fact that
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the contributions to the effective potential in the Kohn-Sham equation (Eq. 2.19)
can be written as follows

v(r) = ∑
G

ṽ(G)eiGr, (2.23)

where ṽ(G) is the Fourier transform of the respective variable in real space, and
substituting Eq. (2.22) into Eq. (2.19), leads to the reciprocal space form of the
Kohn-Sham equations

∑
G′

{
|k + G|2

2
δGG′ + ṽext(G − G′)+ṽH(G − G′)

+ṽXC(G − G′)}Cn,k+G′ = εi(k)Cn,k+G.

(2.24)

Here, the first term is the kinetic energy, and the other three terms on the left side
of the equation are the Fourier representations of the external, the Hartree, and
the exchange-correlation functionals, respectively. It can be seen that the kinetic
energy is diagonal. An infinite number of plane waves needs to be considered for
an exact calculation, but since this is in practice not possible, an kinetic energy
cutoff is employed to consider only plane waves with a kinetic energy smaller
than the cutoff. This also defines the dimension of the Hamilton matrix in Eq.
(2.24)

|k + G|2

2
≤ Ecut. (2.25)

Increasing Ecut leads to a larger plane wave basis set and will therefore yield more
accurate results, however, it will also make the calculation computationally more
demanding. Thus, finding a reasonable compromise between accuracy and com-
plexity is important. The main weakness of the plane-waves approach is the poor
description of orbitals close to the nucleus. The strong changes of the potential
and wave functions near the nucleus require an unreasonable large number of
basis functions. This problem is avoided in practice by employing pseudo poten-
tials, which lead to a smooth behaviour of the wave functions in the core region.
Throughout this work, the projector-augmented wave method (PAW) has been
used to construct these pseudo potentials for all DFT calculations [19, 20].

2.3.2 Sampling the Brillouin zone

According to Bloch’s theorem, the electrons in a unit cell can be found at an in-
finite number of k-points. Consequently, an integral in real space over the unit
cell can be replaced by an integral in reciprocal space over the first Brillouin zone.
However, this would require the calculation of an infinite number of k-points in
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reciprocal space, which is not possible in practice. But since the wave functions
do not change significantly for k-points that are close to each other, a finite mesh
of k-points can be employed. Consequently, any quantity f (r) can be calculated
as follows

f (r) =
Ω

(2π)3

∫

BZ
dkF(k) = ∑

n

ωnF(kn), (2.26)

where F(k) is the Fourier transform of f (r), Ω is the cell volume and ωn is a
weighting factor. The number of k-points required to obtain sufficiently accurate
results depends on the system of interest. For example metallic system require a
denser mesh and therefore more k-points to properly describe the Fermi surface.
Thus, before actually investigating a system, the appropriate number of k-points
has to be figured out by converging the total energy of the system with respect to
the k-point mesh. For the calculations in this work, the Monkhorst-Pack method
was used to sample the first Brillouin zone [21]. Within this method, the k-points
are distributed evenly throughout the Brillouin zone. They are constructed as
follows

kprs = upb1 + urb2 + usb3, ur =
2r − qr − 1

2qr
, r = 1, 2, ...qr, (2.27)

where b1, b2, and b3 are the reciprocal lattice vectors. qr determines the number
of k-points in r-direction (the formalism is the same for p and s).

2.4 Exchange-Correlation functionals

The biggest problem in DFT is the fact that the exact form of VXC is unknown.
Over the years several approximations were suggested, which are typically para-
metrized against high-level quantum chemical approaches. This is sometimes
referred to as a weak spot of the otherwise exact DFT, but it also provides a certain
level of flexibility to make small corrections to these approximations at moderate
computational costs, if necessary. That being said, it is mandatory to get a deeper
understanding of the existing exchange-correlation functionals. Therefore, this
section will give a brief overview of the commonly used functionals.

2.4.1 Local density approximation

The simplest existing approximation to VXC is the local density approximation
(LDA) [18]. Kohn and Sham themselves suggested it in 1965. In LDA, the elec-
trons of a given system are treated as an homogeneous electron gas, meaning that
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the dependency of EXC is strictly local

ELDA
XC [n(r)] =

∫

drn(r)εLDA
XC [n(r)] (2.28)

with εLDA
XC as the exchange-correlation energy per electron inside a homogeneous

electron gas with density n(r). This leads to the following potential

VLDA
XC [n(r)] =

δELDA
XC [n(r)]

δn(r)

=
δ

δn(r)

∫

drn(r)εLDA
XC [n(r)]

= εLDA
XC [n(~r)] + n(~r)

δεLDA
XC [n(r)]

δn(r)

. (2.29)

LDA also assumes the possibility to split εLDA
XC into two terms, describing the

exchange and the correlation part, respectively.

εLDA
XC [n(r)] = εLDA

X [n(r)] + εLDA
C [n(r)] (2.30)

The exchange part is given by the Dirac exchange-correlation functional [22] for
the homogeneous electron gas and reads

εLDA
X [n(r)] = −

3
4
(

3
π

n(r)
1
3 ). (2.31)

Ultimately meaning that it can be computed exactly within the boundaries of
LDA. The correlation part does not have such an analytical expression. Fortu-
nately though, in 1980 Ceperley and Alder have shown a way to calculate it with
good accuracy by using Quantum Monte-Carlo methods [23]. In the following
years these methods have been interpolated to provide a variety of analytical
forms [24, 25].

But there is a major deficiency, namely self-interaction. This can be easily under-
stood by taking a look at the electron-electron interaction energy. It is a sum of
the Hartree part of the total energy and the exchange-correlation energy EXC

Ee-e
C =

1
2

∫

drdr′
n(r)n(r′)

|r − r′|
+ EXC (2.32)

As evident from this equation, the Hartree energy contains interaction of an elec-
tron with itself, which is unphysical. This can be understood rather straightfor-
ward, since the electron-electron interaction energy is not equal to zero for an
one-electron system. This self-interaction error would be cancelled by an exact
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exchange-correlation energy, however, within LDA this does not happen. Never-
theless, the LDA approach performs quite well for most systems with an uniform
electron distribution due to the nature of the aforementioned approximations,
but usually fails for other systems like surfaces or molecules. Due to the self-
interaction error, LDA typically overestimates cohesive properties, thus calculat-
ing too strong cohesion, dissociation and adsorption energies and consequently
giving too small lattice constants and bond lengths.

2.4.2 Generalized gradient approximation

LDA tends to overestimate the correlation energy and underestimate the exchange
energy [26]. This is due to the assumption of a uniform electron density, which
is not the case for most atomic and molecular systems. In order to counter this
tendency and improve upon LDA, generalized gradient approximations (GGA)
have been developed, which not only take into account the electron density it-
self, but also its gradient to be able to describe a varying electron density more
accurately [27–29]. Since the corrections take into account the density and the
density gradient, so consequently information about the density surrounding a
certain point r, they are often referred to as being semi-local. The GGA exchange-
correction functional has the following general form

EGGA
XC [n↑, n↓] =

∫

dr f (n↑, n↓,∇n↑,∇n↓). (2.33)

Several approaches have been made to come up with possible analytical forms
for f , generally separating the exchange and the correlation part, just as in LDA.
One popular example that is predominantly used in chemistry, is known as BLYP,
named after Becke for the exchange part [29] and Lee, Yang and Parr for the cor-
relation part [30] of the energy. A popular example in solid-state physics, which
was the standard choice for a long time, is the PW91 functional, named after
Perdew and Wang [27, 31]. It has a non-empirical form, thus it does not contain
any free parameters which were fitted to experimental data. It is derived from
quantum-mechanical relations. The advantage of such non-empirical GGA func-
tionals is the applicability to a variety of problems while yielding reliable results
at the same time. In contrast, empirical approaches are fitted to perform well for
a specific set of elements [32]. Another functional that is commonly used espe-
cially in solid-state physics nowadays, is the PBE functional, named after Perdew,
Burke and Ernzerhof [33]. It provides reliable results and describes structural and
cohesive properties of solids and molecules with good accuracy. Since this func-
tional plays a major role in this work, it will be explained in more detail. Like
the PW91 functional, it is an analytical solution, meaning it is not fitted to ex-
perimental data, but rather analytically derived. EXC is again separated into two
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parts, the exchange part reads

EPBE
X (n, |∇n|) =

∫

drnεLDA
X (n)FPBE

X (s) (2.34)

with FPBE
X (s) being the PBE exchange enhancement factor

FPBE
X (s) = 1 + κ −

κ

1 + µs2

κ

, (2.35)

where κ = 0.804, µ = 0.219, and s = |∇n|
2kFn is a dimensionless gradient term. The

correlation part has the following form

EGGA
C [n↑, n↓] =

∫

drn[εunif
C (rs, ζ) + H(rs, ζ, t)]. (2.36)

with εunif
C describing the correlation energy of the uniform electron gas, rs =

kF
π (4

9)
1
3 the local Seitz radius, ζ =

n↑−n↓

n the relative spin polarization and t =
|∇n(r)|
2gksn(r)

a dimensionless gradient term. The following analytical form is chosen
for H

H =
e2

a0
γΦ3ln[1 +

β

γ
t2(

1 + At2

1 + At2 + A2t4 )]. (2.37)

with

A(rs, ζ) =
β

γ

1

e−εLDA
C /γΦ3

− 1
, Φ(ζ) =

[(1 + ζ)
2
3 + (1 − ζ)

2
3 ]

2
, γ =

1 − ln(2)
π2 ,

(2.38)

where β = 0.067 and γ = 0.031. PBE improves upon every aspect of LDA, but
still suffers from the self-interaction error and the band gap problem. One way to
tackle this problem are hybrid functionals.

2.4.3 Hybrid functionals

The biggest issue with local and semi-local functional is the general underesti-
mation of the band gap of semiconducting and insulating materials. For example
GGA yields a band gap value of Eg = 0.7 eV for bulk ZnO, which is 79 % too small
compared to the experimental value of E

exp
g = 3.3 eV. The effect is less drastic for

GaN, but with 30 % discrepancy still of serious nature with Eg = 2.4 eV and
E

exp
g = 3.4 eV. This is of fundamental importance in the context of this work and

thus needs to be dealt with. An explanation for the band gap problem can be
found by taking a closer look at the Kohn-Sham theory. The fundamental band
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gap of a semiconductor or insulator material with N electrons is defined by the
difference between the first ionization energy I(N) and the first electron affinity
A(N) of a neutral solid [34]. With E(M) as the ground state energy of a given
system with M particles, the fundamental gap is also given by

Eg,fun = (EN+1 − EN)− (EN − EN−1). (2.39)

With εi as one-electron energies and Eg = εLU − εHO as the well known HOMO-
LUMO band gap, which denotes the energy difference between the highest occu-
pied and the lowest unoccupied orbital energy, it can be shown, that EHL

g equals
Efun

g for approximative functionals [35]. If we have a look at a qualitative sketch
of the behaviour of the exchange-correlation energy for the exact Kohn-Sham case
and the approximative GGA case in Fig. 2.1, it is clear that the former shows dis-
continuities for integer particle numbers. Based on Eq. (2.31) this leads to another

N-1 N N+1

number of electrons

E
X

C
 [

a
rb

. 
u

n
it

s]

exact KS
LDA

FIGURE 2.1: Qualitative sketch of the exchange-correlation energy
as a function with respect to the number of electrons in a generic

system. The red curve shows discontinuities at N-1, N, and N+1.

expression for the exact exchange-correlation functional

Eexact
g,fun = lim

ν→0+
{

δE[n]

δn(r)

∣

∣

N+ν
−

δE[n]

δn(r)

∣

∣

N−ν
}. (2.40)

By applying Janak’s theorem εi = δE[n]
δni(r)

[36] with εi denoting the energy of the
i-th electron and considering the derivative discontinuity ∆XC, this leads to

Eexact
g,fun = εN+1 − εN + ∆XC

= Eexact
g + ∆XC

. (2.41)
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This means that even in the exact exchange-correlation case, the fundamental
band gap does not equal the Kohn-Sham HOMO-LUMO gap, due to the absence
of the derivative discontinuity. To tackle this issue, Becke proposed in 1993 that
exact exchange contributions had to be included in the calculations to compensate
for the self-interaction error [37, 38]. This is achieved by admixing exact Hartree-
Fock exchange and GGA exchange-correlation energy. The resulting so-called
hybrid functionals have the following form

VXC = VGGA
C + (1 − α)VGGA

X + αVHF
X . (2.42)

α describes the amount of exact Hartree-Fock exchange. One popular hybrid
functional is the B3LYP functional, which mixes exchange and correlation ener-
gies on the LDA level with exchange and correlation energies on the GGA level
with exact Hartree-Fock exchange energy [39]. The mixing parameters are fit-
ted against a set of experimental thermochemical data. It was the first hybrid
functional which was widely accepted in the DFT community, because it outper-
forms GGA methods especially for molecule and atom based calculations and
thus made DFT popular even beyond condensed matter physics. PBE0 is an-
other popular and widely employed hybrid functional, which calculated the ex-
change and correlation parts of the energy on the PBE level [40], making it a
non-empirical approach. It uses an amount of 25 % Hartree-Fock exchange and
reads

VXC = VGGA
C +

3
4

VGGA
X +

1
4

VHF
X . (2.43)

One should keep in mind that this ratio is not universally valid and strongly
dependent on the system of interest [41]. Calculating exact exchange energy is
computational very expensive, therefore being two to four orders of magnitude
slower compared to pure DFT methods. In the case of PBE0, the long-range inter-
action is purely and inconsistently described, making it computational even more
expensive. On the other hand it significantly improves the thermochemical and
electronic properties of solids, in particular yielding accurate band gaps [42]. In
2003 Heyd, Scuseria and Ernzerhof proposed the HSE hybrid functional in order
to employ a faster way to tackle the weaknesses of conventional GGA approaches
[43]. It uses an error function to separate the short- and long-range Coulomb in-
teraction, treating the short-ranged part of the exchange on the PBE0 level, while
the long-ranged part is described on the PBE level. This separation is controlled
by an empirical parameter ω, turning this into a semi-empirical functional.

EHSE
XC (ω) = αEHF,sr

X (ω) + (1 − α)EPBE,sr
X (ω) + EPBE,lr

X (ω) + EPBE
C . (2.44)
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2.5 Time-dependent density functional theory

DFT has become the go-to choice to tackle a variety of stationary physics and
chemistry related problems on a computer. Nevertheless it cannot handle time-
dependent phenomena, thus tremendous effort has been put into research to
come up with a DFT-like approach for such non-stationary problems, the time-
dependent density functional theory (TDDFT). In 1984 Runge and Gross man-
aged to prove an analogy with the ground state Hohenberg-Kohn formalism [44].
Similar to the Hohenberg-Kohn theorems, they introduced the Runge-Gross the-
orem. It states that

For a fixed initial state and given an analytic time dependent potential, the

mapping to the time dependent probability density is injective. That is, for

the same initial state, two different external potentials can not give the same

probability density function n((r), t).

For a time-dependent field, the Hamiltonian takes the form

H(t) = T + U + Vext(t) (2.45)

with T describing the kinetic energy, U denoting the electron-electron interaction,
and Vext(t) being an external potential, which according to the theorem deter-
mines the time-dependent density of the system. In this case, the time-dependent
Schrödinger equation needs to be considered

H(t)Φ(r, t) = ih̄
∂

∂t
Φ(r, t). (2.46)

Analogous to the time-independent formalism, one needs to find a non-interacting
Hamiltonian Hs(t) corresponding to an effective potential Veff(r, t). Then, the
Hamiltonian reads

Hs(t) = T + Veff(r, t). (2.47)

Applied to the Schrödinger equation

Hs(t)Φi(r, t) = ih̄
∂

∂t
Φi(r, t) = {−

1
2
∇2 + Veff(r, t)}Φi(r, t), (2.48)

this determines a set of Kohn-Sham wave functions Φi(r, t), that ultimately gen-
erates the desired density

n(r, t) = ∑
i

= 1Nni|Φi(r, t)|2. (2.49)



20 Chapter 2. Density functional theory

Analogous to standard Kohn-Sham theory, this effective potential Ve f f (r, t) con-
sists of the applied external potential, the time-dependent Hartree potential and
an exchange-correlation term.

Veff(r, t) = Vext(r, t) +
∫

dr′
n(r′, t)

|r − r′|
+ VXC(r, t). (2.50)

Runge and Gross proposed to derive VXC via the Dirac action

A[Φ] =
∫ t1

t0

dt
∫

dr′Φ∗(r′, t){i
∂

∂t
− H(t)}Φ(r′, t), (2.51)

with VXC = δAXC
δn .

However, this approach suffers from a major issue. A change of the potential at
a certain time cannot affect the density of earlier times, this would violate the
causality. But the response functions the Dirac action produces are symmetric in
time and therefore do not fulfill this principle. This problem was not solved un-
til 1998, when van Leeuwen used the Keldysh formalism to define a new action
potential A [45]. This is based on the Keldysh time contour, which uses a pseu-
dotime parameter τ to parametrize the real time t(τ). If τ runs from an initial
pseudotime τi to a final pseudotime τf , the real time t runs from t0 to t1 and back.
The relation reads

VXC(r, t) =
δAXC

δn(r, τ)

∣

∣

n(r,t) (2.52)

In contrast to standard DFT, which is a well established method, TDDFT is still
less researched and therefore good approximations for the exchange-correlation
functional VXC are less sophisticated, although in principle, the standard DFT
hybrid functionals can be employed for TDDFT. For the TDDFT calculation in
Chapter 5, the PBE0 functional has been used.

2.6 The GW method

The Kohn-Sham formalism has proven itself as a successful method to describe
ground state properties of various systems like metals, semiconductors, insula-
tors or molecules. In standard DFT the many-body problem is mapped onto an
effective single-particle potential created by the other electrons. But for phenom-
ena linked to excitation such as photoemission or absorption, the energy required
to add or remove an electron from the system needs to be evaluated. Kohn-Sham
DFT does not provide a theoretical foundation to calculate these energies and
therefore a different method needs to be employed.
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In a real system, an electron (or hole) disturbs its surrounding, which results in
screening effects and a change to its effective mass. Consequently these particles
should be described together with that resulting screening cloud as a so-called
quasiparticle. It was first introduced by Landau in 1956 and originally intended
for investigating liquid helium [46]. One widely employed way to describe quasi-
particles is the Green function formalism [47].

2.6.1 Introducing the Green function

The single-particle Green function G(1, 2) is the key quantity in many-body per-
turbation theory and defined as

G(1, 2) = −i < Ψ|T̂[ψ̂(1)ψ̂†(2)]|Ψ > . (2.53)

Here, 1 and 2 are introduced as space-time-spin variables 1 ≡ {r1, t1, σ1}, 2 ≡

{r2, t2, σ2}. Ψ denote the N-electron many-body ground state wave function and
ψ̂(1) and ψ̂†(2) are annihilation and creation operators in the Heisenberg picture,
respectively. T̂ is a time-ordering operator and defined as

T̂[[ψ̂(1)ψ̂†(2)]] =

{

ψ̂(1)ψ̂†(2), t1 > t2

−ψ̂†(2)ψ̂(1), t1 < t2
. (2.54)

In the case of t1 > t2 the Green function describes the propagation of an electron
from state 1 to state 2 and in the case of t1 < t2 the same process for a hole. This
can be generalized to obtain the case of a N-particle Green function

GN(1, ...N; 1′, ...N′) = (−i)N
< Ψ|T̂[ψ̂(1)...ψ̂(N)ψ̂†(N′)...ψ̂†(1′)]|Ψ > . (2.55)

Using the commutation relations for fermions and the definitions of the one- and
two-particle Green functions according to Eq. (2.46), we can derive the following
equation of motion for the one-particle case

{i
∂

∂t1
− ĥ0(1)}G(1, 2) + i

∫

d3v(1, 3)G2(1, 3; 2, 3+) = δ(1, 2) (2.56)

with v(1, 2) = δ(t1−t2)
|r1−r2|

as the Coulomb interaction between two electrons and 3+

describing the time with a positive infinitesimal time shift t+3 = t3 + 0+. Thus,
the single-particle Green function’s equation of motion contains the two-particle
Green function and technically it is possible to construct any many-body Green
function this way. This hierarchy of integro-differential equations can be closed
by introducing the so-called exchange-correlation self-energy ΣXC which contains
all two-electron effects, leading to the following new equation of motion, the
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Dyson equation

{i
∂

∂t1
− ĥ0(1)}G(1, 2)−

∫

d3ΣXC(1, 3)G(3, 2) = δ(1, 2). (2.57)

The self-energy is defined by
∫

d3ΣXC(1, 3)G(3, 2) = −i
∫

d3v(1, 3)G2(1, 3; 2, 3+) (2.58)

or in an explicit form using the inverse of the Green function G−1

ΣXC(1, 4) = −i
∫ ∫

d2d3v(1, 3)G2(1, 3; 2, 3+)G−1(2, 4) (2.59)

with
∫

d2G(3, 2)G−1(2, 4) = δ(3, 4) as definition of the inverse. The self-energy Σ

accounts for all possible many-body effects a particle can experience while prop-
agating through a many-particle system. In general the self-energy is a non-local
and non-Hermitian operator, meaning its eigenvalues are complex. The real part
corresponds to exchange and correlation interactions, the imaginary part contains
information about the lifetime of the particle. Introducing the non-interacting
Green function G0, which is related to the single-electron Hamiltonian and there-
fore has no two-particle contributions, allows the formulation of the following
equation of motion

{i
∂

∂t1
− h0(1)}G0(1, 2) = δ(1, 2). (2.60)

Finally, combining the Eqs. (2.48) and (2.51) and multiplying the resulting equa-
tion with

∫

d2G−1(2, 4), this leads to the Dyson equation for the one-particle
Green function

G−1(1, 2) = G−1
0 (1, 2)− ΣXC(1, 2). (2.61)

This equation allows an approximative calculation of the interacting Green func-
tion G by using the non-interacting Green function G0 and an approximative form
for the self-energy ΣXC.

2.6.2 Quasiparticle energies

The self-energy Σ only depends on the time difference between times t1 and t2

τ = t1 − t2, so ΣXC(1, 2) = ΣXC(x1, x2, τ). Here, xi ≡ ri, σi denotes a generalized
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space-spin variable. With ΣXC(x1, x2, ω) being the corresponding Fourier trans-
form, Eq. (2.48) may be rewritten as

[ω − ĥ0(x1)]G(x1, x2, ω)−
∫

dx3ΣXC(x1, x3, ω)G(x3, x2, ω)

= δ(x1, x2).
(2.62)

With ψQP
n and EQP

n denoting the quasiparticle wavefunctions (or Dyson orbitals)
and the corresponding quasiparticles, respectively, this equation can be rewritten
as

ĥ0(x1)ψ
QP
nk (x1) +

∫

dx3ΣXC(x1, x3, EQP
nk )ψ

QP
nk (x3) = EQP

nk ψQP
nk (x1). (2.63)

These are the quasiparticle equations, yielding the quasiparticle wavefunctions
ψQP

nk and the corresponding quasiparticle energies EQP
nk . The latter describe the

ionization energies or electron affinities of the respective particles. Calculating
the self-energy is not trivial, since it still requires the unknown two-particle Green
function. One possible way to approach this problem are the integro-differential
equations, Hedin [47] proposed

G(1, 2) = G0(1, 2) +
∫

d34G0(1, 3)[v(3)δ(3, 4) + ΣXC(3, 4)]G(4, 2)

ΣXC(1, 2) = i
∫

d34G(1, 4)W(1+, 3)Γ(4, 2; 3)

W(1, 2) = v(1, 2) +
∫

d34v(1, 3)P(3, 4)W(4, 2)

P(1, 2) = −i
∫

d34G(2, 3)G(4, 2)Γ(3, 4; 1)

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +
∫

d4567
δΣXC(1, 2)
δG(4, 5)

G(4, 6)G(7, 5)Γ(6, 7; 3).

(2.64)

P(1, 2) describes the irreducible polarizability, W(1, 2) denotes the screened Coulomb
potential, which basically describes the Coulomb potential at a point 1 in space,
originating at point 2, while taking the electrons’ polarization into account and
Γ(1, 2; 3)is the so-called vertex function. Since each of Hedin’s equations depends
on the other four, it needs to be solved self-consistently in an iterative manner.
The corresponding scheme is sketched in Fig. 2.2

2.6.3 The GW approximation

Solving Hedin’s equations is in practice impossible without considering approx-
imations due to the complexity of the self-consistency conditions. In 1969, Hedin
suggested to approximate the self-energy in terms of the screened Coulomb-
interaction W [48].
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FIGURE 2.2: Qualitative sketch of the self-consistent scheme to solve
Hedin’s equations.

Starting with Γ = 0 and Σ = 0, this yields a vertex function without electron-hole
interactions

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) (2.65)

and the polarizability in the independent particle approximation (or random-
phase approximation RPA [49–51]) with G = G0

P(1, 2) = −iG(1, 2)G(2, 1). (2.66)

After this zeroth iteration the self-energy reads as follows in the first iteration

Σ(1, 2) = iG(1, 2)W(1, 2). (2.67)

This is known as the GW approximation.

2.6.4 Implementation in DFT

To perform electronic structure calculations within the GW approximation in
practice, the quasi-particle equation (2.54) needs to be solved. Introducing the
condition that EQP

nk is real and considering DFT wave functions ψn, it can be
rewritten in bra-ket notation as

EQP
nk =Re[〈ψnk|h0 + ΣXC(EQP

nk )− VXC|ψn〉]

=Re[〈ψnk|T + Vext + VH + ΣXC(EQP
nk )− VXC|ψnk〉].

(2.68)
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Since this is an equation with respect to EQP
nk itself, it needs to be solved by itera-

tion. Linearizing Σ(EN+1
nk around Σ(EN

nk) leads to an iterative solution

EN+1
nk =Re[〈ψnk|T + Vext + VH + ΣXC(EN+1

nk )− VXC|ψnk〉]

=EN
nk + ZnkRe[〈ψnk|T + Vext + VH + Σ(Enk)− VXC|ψnk〉 − EN

nk],
(2.69)

where Znk is the normalization factor

Znk =
(

1 − Re[〈ψnk|
∂Σ(ω)

∂ω

∣

∣

ω=EN
nk
|ψnk〉]

)−1. (2.70)

For readability purposes, the superscript QP has been omitted.
If only one iteration step of Eq. (2.60) is performed with DFT energies as initial
values, it is referred to as the G0W0 approximation. In the GW0 approximation,
several iterations are considered with the self-energy Σ

Σ̄(ω)nk,nk =〈ψnk|Σ(EN
nk)|ψnk〉

=
i

2πV ∑
q,G,G’

∑
n′

2
∫ ∞

0
dω′W̄q(G, G’, ω′)〈ψnk|e

i(G+q)r|ψn′k+q〉

〈ψn′k+q|e
−i(G’+q)r’|ψnk〉

( 1
ω + ω′ − εn′k+q + iηsgn[εn′k+q − µ]

+
1

ω − ω′ − εn′k+q + iηsgn[εn′k+q − µ]

)

,

(2.71)

and µ as the Fermi energy. The dielectric function is kept fixed at the DFT level.
Since W approaches the bare Coulomb kernel νbare

q at large frequencies ω, νbare
q

has been substracted from the screened potential W̄ to make the frequency inte-
gration well behaved

W̄q(G, G’, ω′) = Wq(G, G’, ω′)− νbare
q (G, G’). (2.72)

The final self-energy is then obtained by adding the exact Fock exchange term

Σ(ω)nk,nk = Σ̄nk,nk(ω) + 〈ψnk|VX|ψnk〉 (2.73)

To obtain a full PAW GW implementation, sophisticated knowledge and mod-
eling of the dielectric function would be required. In order to avoid this, it is
assumed that the dielectric matrix is an identity matrix whenever terms inside
atomic spheres are evaluated. Therefore, for the evaluating of one-center terms
of the self-energy, the bare Coulomb kernel replaces the screened counterpart,
leading to the Hartree-Fock Hamiltonian in this case. This approximation is ex-
pected to be reliable, since differences between pseudo-wave functions and exact
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wave functions are only significant for large vectors G, but ε approaches one in
these cases.

It is also important to include core-valence interaction contributions to the quasi-
particle energies in Eq. (2.60), which can be done within the PAW framework.
Within LDA, this yields

〈ψnk|V
LDA
XC,core-val|ψnk〉 = 〈ψnk|V

LDA
XC (nv + nc)− VLDA

XC (nv)|ψnk〉, (2.74)

where nc describes the core density and nv the valence density. Due to the frozen-
core approximation of the applied PAW framework, the core wave functions
need to be determined consistently with the partial wave functions of the valence
states. A more detailed review on the implementation of the GW approximation
in VASP can be found in the works of Shishkin and Kresse [52–54].

The aforementioned derivation can be summarized in the following scheme

• Starting with a Kohn-Sham system, construction the non-interacting Green
function G0 with one-electron energies and orbitals from a preliminary self-
consistent GGA or hybrid DFT calculation.

• Calculation of the polarizability P.

• Calculation of the screened Coulomb-interaction W.

• Evaluation of the self-energy ΣGW according to the GW approximation.

• Calculation of the quasiparticle energies EQP.

Theoretically, as a next step, the Dyson equation can be solved to obtain the inter-
acting Green function G. This procedure is then repeated until self-consistency is
reached.

If only one iteration is performed without updating the Green function, this is
referred to as G0W0. G0W0 has been applied successfully to a variety of problems,
including electronic excitation [55, 56] and the description of semiconductors [57,
58]. It also improves the band gaps in semiconductors and insulators compared to
LDA and GGA [59, 60]. Since G0W0 only performs one iteration, it is strongly de-
pendent on the initial non-interacting Green function G0 as a starting point and
therefore on the underlying DFT calculation. The approximation assumes that
the Kohn-Sham wavefunctions are almost equivalent to the quasiparticle coun-
terpart, which is true in many cases, but far from reality in others [58].

One possible way to improve upon this is the GW0 method [61, 62]. In this
framework only G is updated, whereas W is kept fix at the LDA or GGA level.
Formally, this is a partially self-consistent scheme, which proved to be a reason-
able compromise between desired accuracy and the computational costs of fully
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self-consistent GW methods [63, 64]. In this work, GW0 calculations have been
performed to determine the electronic properties of Co-doped ZnO systems in
Chapter 6.
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Chapter 3

Density functional based tight

binding

Over the years there have been several quantum mechanical approaches to tackle
biological, chemical or physical problems on a computer. DFT-based methods
gained tremendous significance over the years due to their accuracy and high ef-
ficiency. But they are still very demanding in terms of computational resources,
therefore less accurate and consequently less expensive methods have been de-
veloped to be able to describe larger systems and longer time spans. Among these
methods, the density functional based tight binding method (DFTB) provides a
very efficient way to investigate large systems of even a few thousand atoms. It
is typically about two or three orders of magnitude faster than conventional DFT
methods at comparable accuracy [65]. At first only intended to describe periodic
solids, several extensions to the DFTB method in the last years have turned DFTB
into a powerful tool to investigate a variety of problems. These extensions in-
clude the formulation to treat spin polarized systems [66] and a time-dependent
formalism [67, 68]. This chapter will give a brief review of the DFTB method and
its underlying mathematical derivation. A more detailed overview can be found
in [69].

3.1 From DFT to DFTB

Following standard density functional theory, the total energy of an atomic sys-
tem is the sum of the Kohn-Sham energy EKS of an ideally self-consistent density
n(r) and the core-core repulsion Ei−i

Etot = EKS[n(r)] + Ei-i({Rα}). (3.1)
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Here, Rα denotes the ion positions. The core-core term describes a coulomb en-
ergy. Based on the Kohn-Sham representation of the electron density

n(r) =
N

∑
i

ni|φi(r)|
2 (3.2)

we can write the total energy as follows

Etot =
occ

∑
i

ni

∫

drφ∗
i (r)

{

−
∇2

2
+ Vext(r) +

1
2

∫

dr′
n(r′)

|r − r′|

}

φi(r) + EXC[n(r)]

+
1
2

N

∑
a,b

ZaZb

|Ra − Rb|
.

(3.3)

The first sum is over Kohn-Sham eigenstates φi, the second term EXC describes
the exchange correlation energy, and the last term accounts for core-core repul-
sion contributions.

According to the idea of Foulkes and Haydock, the electron density can be ex-
pressed as a sum of a reference density n0(r) and density fluctuations δn(r) [70].
Using this, the total energy can be expanded up to second order in these density
fluctuations

Etot =
occ

∑
i

ni

∫

drφ∗
i (r)

{

−
∇2

2
+ Vext(r) +

∫

dr′
n′

0(r
′)

|r − r′|
+ VXC[n0(r)]

}

φi(r)

−
1
2

∫ ∫

drdr′
n′

0(r
′)(n0(r) + δn)

|r − r′|
−

∫

drVXC[n0(r)](n0(r) + δn)

+
1
2

∫ ∫

drdr′
δn′(n0(r) + δn)

|r − r′|
+ EXC[n0(r) + δn] +

1
2

N

∑
a,b

ZaZb

|Ra − Rb|
.

(3.4)

Here, the second term accounts for double counting contributions, the third term
for exchange-correlation contributions, and the fourth term describes a Hartree
energy with respect to n0 and δn. This can be summarized as follows

Etot = EBS[n0] + ERep[n0] + E2nd[n0, δn2]. (3.5)

The first so-called band structure term EBS describes the occupied Kohn-Sham
energies, as mentioned above and only depends on the reference density n0

EBS[n0] =
N

∑
i

ni

∫

drφ∗
i (r)

{

−
∇2

2
+ Vext(r) +

∫

dr′
n′

0
|r − r′|

+ VXC[n0]

}

φi(r).

(3.6)
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The middle term ERep corresponds to a repulsive energy contribution as in a reg-
ular tight-binding scheme [71]

ERep[n0] = −
1
2

∫ ∫

drdr′
n0n′

0
|r − r′|

−
∫

drVXC[n0]n0 + EXC[n0] +
1
2

N

∑
a,b

ZaZb

|Ra − Rb|
.

(3.7)

E2nd is the only contribution containing second-order terms in the density fluctu-
ations. This term plays an important role in the case of heteronuclear molecules
and polar semiconductors, where the bonding is significantly affected by long-
range Coulomb interactions and charge transfer processes and is subject in a self-
consistent treatment of DFTB

E2nd[n0, δn2] =
1
2

∫ ∫

drdr′
{

1
|r − r′|

+
δ2EXC

δnδn′

∣

∣

n0

}

δn(r)δn(r′). (3.8)

3.2 Approximations in DFTB

In order to achieve its computational speed and efficiency, a number of approx-
imations are made within the DFTB method. The general idea is to avoid the
computational most time-consuming parts of the calculations by establishing pre-
pared sets for the interactions between different elements. These preparatory
calculations can be done for every homo- and heteronucleic combination of two
elements and then be used for every DFTB calculations by just reading the values
from the resulting tables. This section will cover the main approximations, which
are done in the DFTB approach starting at the total energy expression in Eq. (3.5).

3.2.1 Pseudo atomic density

The reference density n0 in the DFTB method is chosen as a superposition of
single atom densities

n0(r) = ∑
a

na
0(r − Ra). (3.9)

Since the density of a free atom is diffuse and thus not suited to properly describe
the real situation in a compound system of many atoms or molecules, compressed
densities are used, because they simulate the effects of neighbouring atoms more
accurately, resulting in the description of pseudo-atoms [72]. Their densities are
obtained via self-consistent LDA or GGA DFT calculations. The pseudo-atoms
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are confined in space according to the following modified Kohn-Sham equation

{

−
1
2
∇2 + Veff[n

a
0] +

(

r

r0

)m}

φν(r) = ενΦν(r) (3.10)

with

Veff[n
a
0] = −

Z

r
+ VH[n

a
0] + VXC[n

a
0]. (3.11)

The term ( r
r0
)m represents a confinement potential to strengthen the localization

of the atomic orbitals. Although it was shown that the exponent m influences
the results only weakly, it can still be varied in order to obtain more accurate
results [73]. Nowadays m = 2 is mostly used, following the initial formulation of
the method. The compression value r0 can technically be obtained by applying
variational principles. The pseudo-atomic orbitals φν form a minimal LCAO basis
and are constructed by employing Slater-type atomic orbitals

φν(r) =
ni

∑
i=1

nj

∑
j=0

aijr
l+je−αirYlm

( r

r

)

(3.12)

with l and m denoting their angular momentum and magnetic quantum number,
respectively. Using a minimal basis means that only valence orbitals are consid-
ered, which reduces the computational effort.

Over the years different schemes have been used for the calculation of the den-
sity and the potential to calculate the atomic orbitals. In the original formulation,
Seifert used the self-consistent potential of the free atom, Porezag later used the
self-consistent potential of the confined atom. Shortly after that, Elstner proposed
to use weakly compressed densities with a density compression radius rn

0 . While
the first two schemes use only a small amount of variables and are therefore easier
to apply to atomic systems, the latter provides the possibility to describe desired
properties more accurately, despite introducing an additional variable, which is
debatable from a theoretical point of view.

3.2.2 Hamiltonian and overlap matrices

Using the atomic orbitals φν described above, Kohn-Sham-like wavefunctions can
be constructed

Φi(r) =
N

∑
ν=1

Ciνφν(r − Ra). (3.13)
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The corresponding Schrödinger equation reads

HΦi(r) =
N

∑
ν=1

Ciν

{

−
1
2
∇2 + Veff[n0, r]

}

φν(r) = εi

N

∑
ν=1

Ciνφν(r). (3.14)

Multiplying with φ∗
µ and integrating yield the Hamiltonian and non-orthogonal

overlap matrix elements h0
µν and sµν, respectively

h0
µν =

∫

drφ∗
µ(r)Hφν

sµν =
∫

drφ∗
µ(r)φν

(3.15)

with the corresponding secular equation

∑
ν=1

Ciν

(

h0
µν − εisµν

)

= 0, ∀i, µ. (3.16)

A symmetry evaluation of these integrals simplifies the problem significantly.
Only ten two-center interactions are not equal to zero, if no f -orbitals are con-
sidered. In the case of f -orbitals, twenty integrals remain. This is achieved by
decomposing the effective potential Veff into atomic-like contributions, either by
potential superposition (I) or by density superposition (II)

Veff[n0, r] =

{

∑c V0
c [n

c
0, rc], I

Veff(∑c n0
c(rc)), I I

. (3.17)

Both parametrizations presented in Chapter 7 use the density superposition, al-
though both approaches are still being used nowadays.

In practice, only the densities of atoms at which the atomic orbitals φµ and φν are
located, will contribute to the effective potential in the Hamiltonian H and conse-
quently to the calculation of the Hamiltonian matrix elements. With a, b denoting
orbital centers, c denoting the potential center, and basis functions µ ∈ a, ν ∈ b,
the integrals in Eq. (3.15) can be categorized as presented in Table 3.1

Category Centers Included

Onsite terms a = b = c Yes
Two-center terms a 6= b, c = a or c = b Yes

Three-center terms a 6= b 6= c No
Crystal-field terms a = b 6= c No

TABLE 3.1: Categories of integrals contributing to the Hamiltonian
matrix elements h0

µν.



34 Chapter 3. Density functional based tight binding

Neglecting the three-center terms in particular provides a significant simplifica-
tion and thus saves a lot of computational effort. In contrast, the crystal-field
terms technically could actually improve the simulation results at moderate com-
putational costs, but due to the nature of the theory, there is considerable error
cancellation involved and both neglections have to appear simultaneously. The
mathematical formalism behind this is quite complex and is therefore not derived
here. Nevertheless, it can be found in [69, 74].

These approximations finally allow the evaluation of the Hamiltonian matrix el-
ements h0

µν

h0
µν =















εfree atom
µ , µ = ν
∫

drφ∗
µ(r)(T + Veff[n

0
a + n0

b])φν, µ ∈ a, ν ∈ b

0, otherwise.

(3.18)

If one considers orbitals up to d, the remaining contributions to the integrals are

ddσ, ddπ, ddδ, pdσ, pdπ, ppσ, ppπ, sdσ, spσ, ssσ. (3.19)

The Hamiltonian and overlap matrix elements are calculated with respect to the
inter-atomic distance between the corresponding atoms and finally tabulated in
so-called Slater-Koster files (sk-files). Therefore, no integrals have to be evaluated
during a DFTB calculation, ultimately speeding up the process tremendously.

3.2.3 Repulsive potential

The previous section described a scheme to calculate the electronic part of the
DFTB total energy EBS according to Eq. (3.6). The next step is finding an ap-
propriate way to calculate the repulsive part ERep of the total energy according
to Eq. (3.7). With the definition of the reference electron density n0 as a super-
position of atomic neutral electron densities, there is no dependency on charge
fluctuations or long-range Coulomb-interaction involved in ERep. This leads to
the possibility to neglect three-center electron-electron contributions, since they
cancel each other out with nucleus-nucleus interaction terms. Thus, ERep can be
approximated by a sum of two-center terms and expanded into a cluster series
[70]

ERep[n0] = ∑
a

ERep[n
a
0] +

1
2 ∑

a
∑
a 6=b

{

ERep[n
a
0 + nb

0]− ERep[n
a
0]− ERep[n

b
0]
}

+ ... .

(3.20)
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In this formulation, ERep would not vanish for large interatomic distances Rab =

Rb − Ra, but rather approach a constant value

ERep[n0] = ∑
a

ERep[n
a
0], Rab → ∞. (3.21)

This is unphysical, since there should be no apparent repulsive interaction in the
dissociation limit, so as a consequence the monomer contributions are included
in the atomic orbital energies εi and the repulsive energy can be approximated as
the sum of short-ranged two-center terms

ERep[n0] = ERep[n0]− ∑
a

ERep[n
a
0] =

1
2 ∑

ab

V[na
0, nb

0]. (3.22)

The repulsive energy part can be determined as the difference between the elec-
tronic energy part EBS and the total energy resulting from a full LDA/GGA DFT
calculation and be written as a function of the interatomic distance between two
atoms

ERep(|Rab|) = ERep(Rab) = Etot
DFT(Rb)− EBS(Rb) =

1
2 ∑

a
∑
b 6=a

Vab
Rep(Rab). (3.23)

In practice, depending on the desired system to investigate, this short-range pair
potential is fitted to a dimer or a preferably simple crystalline system and repre-
sented mathematically by a polynomial of the following form

VRep(r) =

{

∑i ai(rc − r)i, r < rc

0, otherwise
. (3.24)

rc denotes the cutoff radius and is typically chosen between 1.5 and 2 times the
equilibrium bond length. Beyond that the repulsive interaction vanishes. A more
detailed overview on how to generate the repulsive part will be given in Chap-
ter 7 for the examples of HfO2 and GaN.

3.2.4 Second-order corrections

Finally the second-order correction term needs to be discussed. Whenever a rep-
resentation of the electron density as a sum of atomic electron densities is no
longer a justified approximation, this term needs to be considered in order to ob-
tain reliable results. Consistent with the aforementioned derivation of the DFTB
scheme, the density fluctuations δn(r) are decomposed into atomic contributions,
which decay quickly with an increasing distance from their respective centers.
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Combining this with Eq. (3.8) yields

E2nd[n0, δn] =
1
2 ∑

a,b

∫ ∫

drdr′
{

1
|r − r′|

+
δ2EXC

δnδn′

∣

∣

n0

}

δna(r)δnb(r
′). (3.25)

Next, the atomic density fluctuations are expanded into a sum of radial and an-
gular parts

δna(r) = ∑
l,m

ca
lmFa

lm(|r − Ra|)Ylm

(

r − Ra

|r − Ra|

)

≈ ∆qaFa
00(|r − Ra|)Y00. (3.26)

This multipole expansion is truncated after the monopole term as a compromise
between accuracy and complexity. Fa

lm describes the normalized radial depen-
dence of the density fluctuations at atom a. Finally, considering the charge preser-
vation ∑a ∆qa =

∫

drδn(r) with ∆qa = qa − q0
a describing a point charge, the final

expression for the second-order correction term reads

E2nd =
1
2

N

∑
a,b

∆qa∆qbγab (3.27)

with

γab =
∫ ∫

drdr′
1

4π

[

1
|r − r′|

+
δ2E XC

δnδn′

]

n0

Fa
00(|r − Ra|)Fb

00(|r − Rb|). (3.28)

In the case of different atom centers a 6= b the Coulomb interaction of their re-
spective charge distributions determines γab [75]. In the limit a = b, where
no Coulomb interaction is to consider, correlation effects become important and
need to be appropriately represented in the formalism. Consequently γaa is ap-
proximated by the Hubbard parameter of atom a, which is related to the chemical
hardness ηa. The Hubbard parameter basically describes the difference between
the ionisation potential and the electron affinity of the atom [76]. It is defined as
the second derivative of the total atomic energy with respect to the atom’s charge

γaa = Ua = 2ηa =
∂2Eat

tot
∂q2

a
. (3.29)

A possible interpretation of this result is the presence of highly localized wave-
functions for elements with a high chemical hardness. The latter is usually ob-
tained from a self-consistent DFT calculation. Using Janak’s theorem [36], this
expression can be rewritten as the first derivative of the highest occupied orbital
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energy with respect to its occupation number

γaa = Ua =
∂εHOMO

a

∂nHOMO
a

. (3.30)

In contrast, for large interatomic distances, γab describes the Coulomb interaction
between two point charges ∆qa and ∆qb. Since γab is only dependent on the in-
teratomic distance and the Hubbard parameters, it is an intrinsic parameter and
not empirical. Putting everything together, the SCC-DFTB total energy looks as
follows

EDFTB
tot = ∑

i

∫

drφ∗
i (r)Hφi(r) +

1
2 ∑

a,b
γab∆qa∆qb + ∑

a 6=b

Vab
Rep(Rab). (3.31)
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Chapter 4

Molecular dynamics

Molecular dynamics (MD) is one of the principal tools in the theoretical study
of biomolecules, chemical physics and materials science. Originally developed
in the late 1950s by Alder and Wainwright and applied to five hundred atoms,
nowadays it allows the simulation of up to hundreds of thousands of particles
[23]. In contrast to DFT, atoms are treated as classical particles in MD. The trajec-
tory of each atom is determined by solving Newton’s laws of motion to study the
dynamical evolution of the whole system over time. Therefore, the atoms are al-
lowed to interact with each other for a specific amount of time (typically no more
than a few femtoseconds). These interactions are determined by using force-field
methods, semi-empirical methods or ab-initio approaches. Due to the increased
computational complexity, the latter does not allow the same system sizes in MD
simulations, although with steadily increasing computational resources, it gained
more relevance over the past years.

4.1 Dynamics of an atomistic system

The foundation of MD is Newtonian mechanics. The goal is a numerical, step-by-
step solution of Newton’s equations of motion, which can be written as follows

mi
∂2ri

∂t2 = Fi, Fi = −
∂U{ri}

∂ri
, (4.1)

where mi denotes the mass of an atom i, Fi the applied force, and U{ri} the poten-
tial energy. ri

N
i=1 represents the 3N atomic coordinates. For solving this second-

order differential equation a numerical algorithm needs to be employed in order
to get access to the exact positions ri and velocities vi of an atom i. In 1967 the Ver-
let algorithm was introduced [77], which turned out to be very successful for MD
calculations, because it is simple to implement, time-reversible, fairly accurate
(error of the order ∆t4) and stable. It can be derived easily by Taylor expand-
ing the position r(t) up to third order twice, once forward and once backward in
time. With ∆t as one time step, v as the first, a as the second, and b as the third
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derivative of r with respect to the time t, the Taylor expansions read

r(t + ∆t) = r(t) + v(t)∆t +
1
2

a(t)∆t2 +
1
6

b(t)∆t3 + O(∆t4) (4.2)

r(t − ∆t) = r(t)− v(t)∆t +
1
2

a(t)∆t2 −
1
6

b(t)∆t3 + O(∆t4). (4.3)

Adding Eqs. (4.2) and (4.3) yields the basic form of the Verlet algorithm

r(t + ∆t) = 2r(t)− r(t − ∆t) + a(t)∆t2 + O(∆t4). (4.4)

A similar expression can be derived for the velocities v(t)

v(t) =
r(t + ∆t)− r(t − ∆t)

2∆t
+ O(∆t2) (4.5)

with a(t) = − F(t)
m .

However, one huge disadvantage of this original Verlet algorithm is the fact that
it is not self-starting. To calculate r(0), r(−∆t) is needed, which is an unknown
value that needs to be guessed. Another problem is the accuracy of the velocity
integration, which is just of the order ∆t2. A possible approach to overcome these
drawbacks is the Velocity-Verlet algorithm [78]. Writing the following Taylor ex-
pansions for r(t) and v(t)

r(t + ∆t) = r(t) + v(t)∆t +
1
2

a(t)∆t2 (4.6)

v(t +
1
2

∆t) = v(t) +
1
2

a(t)∆t (4.7)

v(t + ∆t) = v(t +
1
2

∆t) +
1
2

a(t + ∆t)∆t (4.8)

with a(t + ∆t) = − F(t+∆t)
m leads to the velocity form of the Verlet algorithm by

plugging Eq. (4.7) into Eq. (4.8)

r(t + ∆t) = r(t) + v(t)∆t +
1
2

a(t)∆t2

v(t + ∆t) = v(t) +
1
2
(a(t) + a(t + ∆t))∆t.

(4.9)

In this formulation, all mentioned disadvantages of the basic Verlet form are
avoided. Due to this, the Velocity Verlet algorithm was employed for the MD
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calculations in Chapter 7.

4.2 Statistical ensembles

MD simulations acquire results such as atomic positions or velocities at the mi-
croscopic level with the goal to connect them to macroscopic observables. These
observables are for example the total number of atoms N, the temperature T or
the total energy E. This desired connection between the microscopic world of the
atoms and the macroscopic properties of the system requires statistical physics.
Within statistical physics, there are a few important concepts, which will be in-
troduced below.

• The microscopic state of a system describes its complete set of positions ri and
velocities vi at any given time t. Or in terms of a phase space formulation,
it specifies the exact phase space vector Γ = {ri(t), vi(t)}

N
i=1.

• The macroscopic state of a system is defined by a macroscopic observable like
the temperature T or pressure P.

• An ensemble is a set of all possible systems with different microscopic states,
but the same macroscopic state.

There are different types of ensembles, which are usually characterized by the
macroscopic states, which are kept fixed. A few examples are

• A microcanonical ensemble describes an isolated system, which cannot ex-
change particles or energy with its surroundings. Since the volume is also
kept constant, it is typically referred to as NVE-ensemble.

• A canonical ensemble describes a system, which is in contact with a heat bath
at constant temperature, which allows energy exchange. Since every virtual
copy of this system will have the temperature T of the heat bath, it is usually
referred to as NVT-ensemble. This type of ensemble will be employed during
the MD simulations in Chapter 7.

• A grandcanonical ensemble describes a system, which is in contact with a heat
and a particle bath, so it can exchange energy and particles. For example a
liquid in contact with its vapor in equilibrium. Since both the system and
the head and particle bath are in equilibrium, the chemical potential is the
same for both. In consequence this type of ensemble is also referred to as
µVT-ensemble.
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In order to link macroscopic observables A to real measurements in an experi-
ment, the so-called ensemble average needs to be considered, since MD simu-
lations can only calculate time averages, whereas macroscopic observables are
ensemble averages. The ensemble average is defined as follows

< A >=
1
Z

∫

dΓA(Γ)ρ(Γ), (4.10)

where ρ = e−H(Γ) is the phase space density and Z =
∫

dΓρ(Γ) the partition
function. This leads to one of the fundamental principles of MD, the ergodic
hypothesis [79]. It states that the time average of a macroscopic observable A

and its ensemble average are the same, allowing the formulation of the following
equation

Āt =< A > . (4.11)

The idea behind this is that if the system evolves in time indefinitely, every point
in the phase space will have been passed through eventually. As a consequence,
only those systems can be considered as ergodic, in which every point in the
phase space can be reached. However, formally proving ergodicity for a given
system is not straightforward, but most systems in MD are treated as ergodic
systems, since the results justify this.

4.3 Thermostats - Controlling the temperature

In 1827, Robert Brown investigated the movement of pollen in water and noticed
that the pollen moved in an apparently random manner. This Brownian Motion
was later explained theoretically by Einstein in 1905 and served as evidence that
atoms and molecules exist [80, 81]. it is also referred to as a random walk, which
seems to be enhanced when the system is exposed to heat. MD makes use of this
relation between the dynamics of the atoms and the applied temperature by em-
ploying so-called thermostats. Thermostats can be used to monitor and actively
control the temperature in an atomic system. In kinetic theory, each particle has
three translative degrees of freedom. According to the equipartition theorem,
each of these degrees of freedom has an average kinetic energy of 1

2 kBT with kB

as the Boltzmann-constant as T denoting the temperature of the system. Using
the kinetic energy for a N-atom system, this allows to connect the velocity vi =

∂ri
∂t

to the temperature T

3
2

NkBT =
〈

3N

∑
i=1

mi

2
v2

i

〉

. (4.12)
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with T reading

T =
2

3NkB

〈

3N

∑
i=1

mi

2
v2

i

〉

. (4.13)

This average is an ensemble average. Using the aforementioned ergodic hypoth-
esis, we can express the temperature T in terms of the velocities’ time average.

T =
2

3NkB

3N

∑
i=1

mi

2
v2

i

t

(4.14)

If one is just interested in the momentary temperature, the time average can be
neglected and the temperature can be calculated. Furthermore, the temperature
can also be controlled and adjusted during the calculation by rescaling the ve-
locities of the atoms with a specific scaling factor after a few simulation steps
according to Eq. (4.5)

v′i =

√

T0

T
vi, (4.15)

where vi is the momentary velocity, v′i is the rescaled velocity, T is the momentary
temperature, and T0 is the desired temperature. In practice, this is often used for
equilibrating a system, where a new set of velocities and thus a new temperature
is generated in each step of the MD run. However, this approach to control the
temperature is not consistent with a canonical ensemble, because the momentary
temperature fluctuates and forcing it to a specific value disturbs the system.

A more sophisticated way to monitor and control the temperature are thermostats.
Instead of rescaling the temperature in a discrete way after a specific amount of
simulation steps, they monitor the control in a continuous way.

4.3.1 Nose-Hoover thermostat

One possible and widely employed option is the Nose-Hoover thermostat, in-
troduced by Nose in 1984 [82]. He proposed the introduction of an additional
degree of freedom s, which represents the heat bath, that can exchange heat with
the physical system. s can also be seen as a scaling factor of the physical time t

dt = sdt′, (4.16)

where t is the real time and t′ is a virtual time. As a consequence , dependent
on the value of s, the kinetic energy will either increase (s < 1) or decrease (s >

1). Using this, the Lagrangian of the extended system, consisting of the physical
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system and the heat bath, is written as follows

L =
N

∑
i=1

1
2

mis
2ṙ2

i − Φ(r) +
1
2

Qṡ2 − (3N + 1)kBT0ln(s). (4.17)

Here, Q is a fictious effective mass associated with the heat bath, while 1
2 Qṡ2

and (3N + 1)kBT0ln(s) are the corresponding kinetic and potential energies, re-
spectively. Q controls how strongly both systems are coupled and 3N + 1 is the
total number of degrees of freedom, limiting this derivation to the description
of atoms, but the transfer to molecules is straightforward. Applying the Euler-
Lagrange equations

d

dt
(

∂L

∂Ȧ
) =

∂L

∂A
, (4.18)

with A representing one of the variables, deriving the Nose equations of motion
for r and s is straightforward

r̈i =
Fi

mis2 −
2ṡ

s
ṙi, Qs̈ =

N

∑
i=1

misṙi −
(3N + 1)kBT0

s
. (4.19)

They sample a microcanonical ensemble in the extended system, however, it can
be shown that they sample a canonical ensemble in the real system [82]. In prac-
tice, it is easier to work with real time steps, since sampling a trajectory at uneven
time steps is impractical. Consequently the Nose equations are expressed with
respect to the real time t. Introducing γ = ṡ

s , the Nose equations look as follows

r̈i = −
Fi

mi
− γri,

1
2

Qγ̇ =
1
2

N

∑
i=1

mi ṙ
2
i −

1
2
(3N + 1)kBT0. (4.20)

The role of γ can be seen as an artificial friction, which causes the particles to
decelerate or to accelerate, depending on the value for Q, the coupling strength.
If the first term (momentary kinetic energy) in the equation for γ is larger than
the second one (desired kinetic energy), it will force the particles to decelerate to
match the desired kinetic energy and ultimately the desired temperature. Choos-
ing a proper value for Q is challenging, since too large values (weak coupling)
will result in poor temperature monitoring and temperature oscillations, while
very low values (strong coupling) will unnecessarily extend the time, the system
needs to reach a canonical distribution.
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4.3.2 Andersen thermostat

Another popular and simple thermostat, which correctly samples a canonical en-
semble, is the Andersen thermostat [83]. The energy of a given system at constant
temperature fluctuates, because of the above discussed Brownian motion. To ac-
count for that, Andersen introduced stochastic forces to influence the kinetic en-
ergy of the particles in a given system. This will mimic random collisions with
heat bath particles at a certain temperature T. The resulting new velocity of an
affected particle will be chosen according to the Maxwell-Boltzmann distribution

P(vx,i) =

√

mi

2πkBT
e
−

miv2
x,i

2kBT . (4.21)

This procedure will be applied to each velocity component separately. Similar
to the above described derivation of the Nose equations of motions, equations of
motions can be obtained for the Andersen case. Consequently, the system evolves
according to

ṙi = vi, v̇i = −∇ri
U, (4.22)

where U is the interatomic potential. In practice, a so-called collision frequency ν

is introduced. It determines how strongly the system is coupled to the heat bath.
The time intervals between successive collisions are distributed according to a
Poisson distribution

P(t) = νe−νt, (4.23)

with P(t)∆t describing the probability that a chosen time interval between colli-
sions is between t and t + ∆t. A proper value for ∆t is chosen prior to the simu-
lation. An alternative way to determine which particles are affected uses random
numbers. Here, a random number ai between 0 and 1 is selected for the i-th par-
ticle. This is done for each particle in the system. If ai < ν∆t, the velocity of
the i-th particle will be updated according to Eq. (4.11). Although the Andersen
thermostat samples a canonical ensemble correctly, it has shortcomings. Due to
the random reassignment of the velocities, within this scheme momenta are not
preserved. As a consequence, certain values such as diffusion constants or vis-
cosities cannot be calculated reliably. Nevertheless because of its simplicity and
ability to sample a canonical ensemble, it is employed for the MD calculations in
Chapter 7.
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4.4 Static correlation functions

Static correlation functions provide a way to obtain detailed information on the
structure of an atomic system. They are often employed for the description of
distance relations in amorphous structures. First, particle densities need to be
introduced. Besides an average density n0 = N

V , one-particle and two-particle
densities ν(1) and ν(1) can be expressed as follows

ν(1)(r) =
N

∑
i=1

δ(r − Ri),
∫

drν(1)(r) = N (4.24)

ν(2)(r1, r2) =
N

∑
i=1

N

∑
i 6=j

δ(r1 − Ri)δ(r2 − Rj),
∫ ∫

dr1dr2ν(r1, r2) = N(N − 1).

(4.25)

The construction of a N-particle density is straightforward. Due to thermal fluctu-
ations in a given atomic system of interest, thermodynamic average values need
to be considered. They provide access to the one-particle and two-particle distri-
bution functions

n(1)(r) = < ν(1)(r) > (4.26)

n(2)(r1, r2) = < ν(2)(r1, r2) > . (4.27)

Here, drn(1)(r) denotes the probability to find a particle in a volume element dr

around r. Analogously, dr1dr2n(2)(r1, r2) denotes the probabilities to find two par-
ticles at the same time in the volume elements dr1 and dr2 around r1 and r2. Using
these definitions, the pair distribution function can be formulated as follows

g(2)(r1, r2) =
n(2)(r1, r2)

n(1)(r1)n(1)(r2)
. (4.28)

g(2)(r1, r2) describes the probability to find a particle at r2 in the presence of an-
other particle at r1.

Since amorphous systems are generally discussed as being homogeneous and
isotropic, the following assumptions can be employed

n(1) = n(2) = n0, r1 − r2 → r, r → r. (4.29)
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Consequently, the following expression for g(2) = g results

g(r) =
V

4πN2r2 <

N

∑
i=1

N

∑
i 6=j

δ(r − rij) > . (4.30)

This derivation is valid for homonucleic systems, in case of a heteronucleic sys-
tem, the total pair distribution function g(r) as a weighted sum of partial pair
distribution functions gαβ needs to be considered

g(r) =
1

〈b2〉 ∑
α,β

cαbαcβbβgαβ(r), 〈b2〉 = (∑
α

cαbα)
2. (4.31)

cα,β denotes the concentration of the respective element and bα,β is the corre-
sponding scattering length. Unfortunately, the pair distribution function can only
be obtained during computational calculations, but not directly measured in ex-
periments. However, the so-called structure factor S(k) can be measured directly
and thus provides access to comparisons with experimental findings for electron,
x-ray or neutron scattering. It basically described the intensity distribution on a
detector in scattering experiments of crystalline or amorphous structures. Using
the pair distribution function g(r), S(k) reads in reciprocal space

S(k) = 1 + 2πn0

∫ ∞

0
drg(r)r2sinc(kr). (4.32)
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Chapter 5

Functionalization of ZnO/GaN

Scientific interest in hybrid nanostructures made of organic and inorganic mate-
rials for applications in electronic and optoelectronics has grown over the past
years. Surface functionalization is a possible way to modify electronic and opti-
cal properties of nanostructures. This Chapter will present the results of surface
functionalizations of zinc oxide (ZnO) and gallium nitride (GaN) surfaces.

5.1 ZnO

Zinc oxide is a widely used material for surface functionalization due to a variety
of reasons. It is a wide-bandgap semiconductor (3.3 eV) with high absorbance
in the UV range, a high electron mobility, and low production costs [84]. Fur-
thermore, it and can be synthesized in many different forms. As introduced in
Chapter 1, nanowires are interesting to the scientific community. Due to the large
surface-to-volume ratio of ZnO nanowires, surface functionalization is an effec-
tive way to enhance their electronic and optical properties, for example for one-
dimensional electron transport [85]. In contrast, zero-dimensional nanostructures
like colloidal quantum dots possess unique electronic and optical properties such
as superior photostability. Another important feature of zero-dimensional nanos-
tructures is a size-dependent band gap, which provides a way to a more efficient
absorption across the solar spectrum [86–88]. Recent works corroborate this by
suggesting that attaching ligand-capped quantum dots on ZnO surfaces could
lead to hybrid solar cells with a high absorption in a broad spectral range [89, 90].
In systems like that, the functional groups serve as a bridge between the surface
and the quantum dot.

Over the years, there have been several DFT studies on functionalizing ZnO
(1010) surfaces with small functional groups [91–96]. It was shown for exam-
ple that thiol groups bind strongly to the ZnO (1010) surfaces with a covalent
monodentate adsorption mode [95, 97]. Similar investigations were pursued ex-
perimentally and corroborated these findings. In particular, molecules consisting
of two functional groups bridged by long carbon chains were found to be stable
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[98, 99].

Therefore, this section will present a study for mercaptocarboxylic acids (MPA)
molecules of the form SH − (CH2)n − COOH, (n = 1,2,3,7) on ZnO (1010) sur-
faces. This Section is based on previously published results [100].

5.1.1 Computational details

DFT as implemented in the Vienna ab initio simulation package (VASP) [101–
104] was employed for the calculations. The projected augmented wave method
(PAW) was used [19, 20] throughout. Atomic structures were optimized on the
PBE level [33]. As has been shown in previous studies [105], the PBE func-
tional provides an accurate description of structural properties, however, the
electronic structure can be underestimated significantly as discussed in Chap-
ter 2 [40, 42, 62]. To overcome this bandgap problem, the PBE0 hybrid formalism
was applied for a more accurate description of the electronic properties. 25 %
of Hartree-Fock exchange is added to the PBE functional, ultimately yielding a
more reasonable band gap for ZnO [106]. A plane wave basis with an energy
cutoff of Ecut = 400 eV was applied. For the geometry optimization, a (1 × 4 × 4)
Monkhorst-Pack k-point sampling was used [21], whereas only the Γ point was
considered for the PBE0 calculations.

The independent particle approximation within the PBE0 functional (IPA-PBE0)
was employed for the calculation of the dielectric function. In addition TDDFT
has been used to partly include excitonic effects to obtain a more accurate dielec-
tric function. Finally the surface models consisted of a (3 × 2) surface supercell
with 96 atoms (48 ZnO units) units and one MPA molecule. Consequently a low
coverage regime of 1 molecule/nm2 was considered in this work.

5.1.2 Structural properties

First, the structural and thermodynamical properties will be discussed. In this
work, several different initial configurations have been tested for the MPA molecules
on the surfaces. Depending on the initial geometry, two stable optimized geome-
tries were found for every carbon chain length, a monodentate and a bidentate
mode. Figure 5.1 displays the ground state geometries for the monodentate and
the bidentate binding mode at the top and the bottom, respectively. The mon-
odentate mode is energetically more stable against bidentate and hollow posi-
tions. The energy difference ∆E between the ground state total energies of both
binding modes decreases with increasing carbon chain length. Therefore, longer
chain lengths need to be investigated in order to to see if the monodentate mode
remains more stable. For both binding modes, the MPA molecules are adsorbed
dissociatively with an adsorption energy Eads of around 1 eV for all chain lengths.
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FIGURE 5.1: Optimized structures for the (101̄0) ZnO surface func-
tionalized with one MPA molecule (SH-(CH2)n-COOH). The figures
at the top correspond to the monodentate binding mode, left to right
n = 1, 2, 3, 7. The figures at the bottom correspond to the bidentate
binding mode, left to right n = 1, 2, 3, 7. Adapted with permission

from [100]. Copyright 2018 American Chemical Society.

The adsorption energy was calculated as the difference between the total energy
of the functionalized system and the total energies for the bare surface and an iso-
lated MPA molecule via Eads = EMPA/ZnO

tot − Ebare surf
tot − EMPA

tot . This strong bond-
ing explains, why the Zn-S bond lengths dZn−S between the outermost zinc atom
of the slab and the sulphur atom of the molecule remain almost constant for all
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structures. This trend is also observed for the buckling ∆z, the relaxation of that
outermost Zn atom relative to other Zn atoms of the surface. These results are
summarized in Table 5.1.

chain length n ∆ z (Å) dZn−S(Å) ∆ E (eV) Eads(eV)
1 0.28 2.26 -2.20 1.00
2 0.35 2.23 -1.90 1.00
3 0.28 2.26 -1.10 1.10
7 0.28 2.26 -0.70 1.10

TABLE 5.1: Relative outward relaxation of the surface zinc atom
∆ z, Zn-S bond length dZn−S, energy difference ∆ E between mon-
odentate and bidentate modes, and adsorption energies Eads of the
monodentate mode for SH-(CH2)n-COOH (n=1,2,3,7) molecules on
ZnO (101̄0) surfaces. Reprinted with permission from [100]. Copy-

right 2018 American Chemical Society.

5.1.3 Electronic and optical properties

This part will cover the discussion on the electronic properties. Figure 5.2 shows
the total and projected density of states (PDOS) for the structures with a mon-
odentate mode. The systems with a bidentate binding mode will not be discussed
further, since they are energetically less stable and therefore unlikely to form. The
bands were aligned with respect to the electrostatic potential of the vacuum level
as derived in [107, 108]. The highest occupied molecular orbital (HOMO) of the
bare surface (Fig. 5.2(a)) denotes the zero of the energy axis for all structures. Fig-
ures 5.2 (b)-(e) show intra-gap states for all functionalized systems. These states
are strongly localized on the S atom of the MPA molecule (red curve) with small
hybridization with the ZnO surface and the first methyl groups of the carbon
chain. The energy difference between the intra-gap states and the valence band
maximum (VBM) remains the same for all carbon chain lengths. This indicates
that the interaction between atoms at the top of the slab and the functional group
close to it dominates the electronic structure. A look at the band decomposed
partial charge density in Fig. 5.3 corroborates this observation. The figures at the
top show the HOMO-1 orbitals in SH-(CH2)n-COOH (left to right, n=1,2,3,7) on
the (101̄0) ZnO surface, whereas the figures at the bottom show the HOMO for
these structures. A and B states in the Figs. 5.2 (b)-(e) correspond to the HOMO-1
and HOMO, respectively. The band decomposed partial charge densities clearly
show that the charge for both states is mainly localized on the S atom and the first
methyl group of the molecule with small contributions from the surface. This
confirms the small hybridization seen in Fig. 5.2. All investigated systems show
this feature, indicating that the methyl groups play a minor role in charge transfer
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respectively. Adapted with permission from [100]. Copyright 2018

American Chemical Society.

processes. Thus changes in the electronic structure of hybrid MPA/ZnO systems
are dominated by the attached functional thiol group, not by the chosen carbon
chain length for the MPA molecule.

Finally, the optical properties will be investigated. Intra-gap states can serve as
a way to modify the optoelectronic properties of an atomic system. In order
to investigate the possibility to use the aforementioned intra-gap states for this
purpose, the dielectric function in the independent particle approximation (IPA)
[109] has been calculated for the bare and the functionalized systems. The real
part was calculated from ε2 using the Kramers-Kronig relation according to

ε1(ω) = 1 +
2
π

∫ ∞

0
dω′ε2(ω

′)
( ω′

ω′2 − ω2

)

, (5.1)
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FIGURE 5.3: The band decomposed charge density at the Γ point.
The figures at the top correspond to the HOMO-1 in SH-(CH2)n-
COOH (n=1,2,3,7) on the (101̄0) ZnO surface. The figures at the bot-
tom correspond to the HOMO for the same systems. The A and B
states are indicated in the Fig. 5.2(b)-(e). Adapted with permission

from [100]. Copyright 2018 American Chemical Society.

On the other hand, for the imaginary part, the joint density of states and the
momentum matrix elements between occupied and unoccupied states was used
and calculated according to:

ε
ij
2 (ω) =

4π2e2

Ωm2ω2 ∑
knn′

〈

kn
∣

∣pi

∣

∣kn′
〉〈

kn′
∣

∣pj

∣

∣kn
〉

×

× fkn

(

1 − fkn′

)

δ
(

Ekn′ − Ekn − h̄ω
)

, (5.2)

where e is the electron charge, m the electron mass, Ω is the volume of the crystal,
fkn the Fermi distribution function, and

∣

∣kn
〉

the crystal wave function corre-
sponding to the nth eigenvalue Ekn with crystal wave vector k.

In anisotropic materials like the investigated hybrid ZnO systems, dielectric prop-
erties are described by the so-called dielectric tensor. In this work it can be written
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as follows

ε =







ε⊥ 0 0
0 ε || 0
0 0 ε ||






, (5.3)

for a polarization perpendicular (ε⊥) and parallel (ε ||) to the surface, respectively.
Figure 5.4 displays the dielectric function for all chain lengths.
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ε⊥ in Fig. 5.4 (a) and ε || in Fig. 5.4 (b) correspond to the propagation of the elec-
tromagnetic field perpendicular and parallel to the surface, respectively. Optical
activity of the intra-gap states is found for both cases. More precisely, ε⊥ shows a
peak around 2.3 eV for the SH-(CH2)3-COOH and SH-(CH2)7-COOH structures.
They stem from band-to-band transitions between the conduction band of the
surface and the molecular B state. In addition, transitions between the conduc-
tion band of the ZnO surface and the molecular A state correspond to a shoul-
der at low energies close to the main peak. This feature is found for all chain
lengths, because the charge distribution extends across the MPA molecule to car-
boxyl group, resulting in a more delocalized charge distribution.

So far the IPA was employed which does not take excitonic effects into account.
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However, the latter is needed in order to obtain a more accurate prediction of ma-
terials for optoelectronic devices. Electron-hole pairs can be included by employ-
ing different levels of approximative theoretical methods like TDDFT or GW+Bethe-
Salpether equation (BSE). This allows the partial inclusion of excitonic effects. Ex-
citation energies for catechol and dopamine interactions with TiO2 surfaces have
been obtained with TDDFT, as reported in [110]. Therefore, TDDFT calculations
as introduced in Chapter 2 were performed to calculate the dielectric function.
Occupied and empty states were calculated with the PBE0 functional. Compared
to IPA-PBE0, this approach should lead to improved absorption spectra which
are qualitatively equivalent to the solution of the BSE equation. Ultimately the
dielectric function is then obtained by solving Casida’s equation [111]. Figure 5.4
shows the results of this approach for the SH-(CH2)3-COOH structure for the ε⊥
and ε‖ components in (a) and (b), respectively.

Including many-body effects leads to a red shift of the spectrum. These results
could stimulate further experiments on surface functionalization of ZnO with
thiol groups. Additionally a GW+BSE spectrum would be helpful for compari-
son purposes, however, due to the high computational costs of such calculations,
this is not possible at the moment. It is important to point out that a change of
the physical picture is not expected when excitonic effects are included, since ex-
citon binding energies between delocalized conduction band states and localized
molecular states should be small, because of a small overlap in the corresponding
Coulomb exchange matrix elements.

In conclusion, the absorption around 2.3 eV could be used to enhance the effi-
ciency of functionalized semiconductor surfaces-based solar cells. Nanowires are
typically grown along the [0001] direction with the non-polar surfaces being ex-
posed. Since the additional absorption peak was found for the perpendicular
component of the dielectric function, it would be most effective, if the field prop-
agated along the nanowires surfaces.

5.2 GaN

GaN is a wide-bandgap semiconductor (3.4 eV), which is of high practical in-
terest, because it is widely used in electrically pumped UV-blue LEDs, photode-
tectors, lasers, and high temperature devices [112–114]. This stability is one of
the reasons, why GaN is often used for biomedical applications [115–118]. As
described in the former Section for ZnO, functionalization with small molecules
is a possible way to modify the physical properties of surface structures, since
these molecules can bind covalently to a variety of biomolecules [119, 120]. These
procedure can also be used to introduce optically active states into the band gap
for applications in optoelectronic devices [121], as seen for large MPA molecules
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on ZnO surfaces in the former Section. In the past organic groups like alkenes
[122], silanes [123], and thiols [124] were attached to GaN surfaces in order to
alter their electronic structure. Functionalization with thiol groups in particular
indicates that the bonds remain stable, even upon annealing [124]. Additionally,
the authors in [125] developed a technique to immobilize biomolecules by pro-
ducing amine groups directly on the GaN surfaces. But despite these efforts over
the years, GaN is still less explored than ZnO and several aspects like the ad-
sorbant coverage or the strength of interaction between suitable molecules and
the surface slabs and consequently their influence on the electronic structure of
the hybrid systems are unclear. Thus this section will present a DFT study of
electronic and optical properties of small ligands on GaN-(101̄0) surfaces.

5.2.1 Computational details

For these calculations the same framework conditions as described in the Section
about ZnO was employed. However, the smaller size of the attached molecules
allowed the employment of a (1 × 10 × 10) Monkhorst-Pack k-point sampling
[21]. The most stable crystal phase of GaN is a wurtzite structure with 2 Ga and
2 N atoms per unit cell. In this work a surface slab with 8 GaN atomic layers
and a vacuum region of 18 Å along the (101̄0) direction modeled the bare surface.
The same supercell dimensions were employed for the functionalized surfaces to
ensure that the attached molecule will not interact with itself across the supercell
boundaries. Furthermore, two molecules per supercell were considered, one on
each side of the slab, leading to one ligand per surface unit cell.

5.2.2 Molecules on GaN (10-10) surfaces

Three different molecules were adsorbed, thiol groups (CH3 − SH), carboxyl groups
(CH3 − COOH), and amine groups (CH3 − NH2). The optimized geometries are
presented in Fig. 5.5. First, the structural and thermodynamic properties will be
discussed. Thiol and carboxyl groups bind to the surface dissociatively, whereas
the amine group does not dissociate. Similar to Section 5.1, the molecules bind
with a monodentate binding mode to the surface. The Ga-N bond lengths in the
center of all investigated systems vary between 1.95 and 2.00 Å, values similar
to those found in bulk GaN. This means that the model is large enough to avoid
interactions between both sides. However, a difference in bond lengths can be ob-
served at the surface, where they are almost the same for the thiol and carboxyl
systems compared to bulk, but shorter for the bare and amine system compared
to bulk (1.84-1.90 Å). This is due to the presence of dangling bonds in the latter
two cases. The dangling bonds at the nitrogen binding sites are passivated for the
thiol and carboxyl cases due to the dissociation of the ligands.
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FIGURE 5.5: Optimized structures of the GaN surfaces functional-
ized with CH3 − SH (left), CH3 − COOH (middle) and CH3 − NH2
(right) molecules. The spheres represent gallium (bronze), nitrogen
(blue), oxygen (red), carbon (turquoise), sulphur (yellow), and hy-

drogen (white) atoms.

In the case of modification with thiol groups (Fig. 5.5, left) the functional -SH
groups adsorb on the surface via S-Ga bonds with a bond length of 2.26 Å and a
S-Ga-N angle of 115◦. The Ga-S-C angle is 111◦. For the carboxyl system (Fig. 5.5,
middle) the functional -COOH groups bind via two asymmetric bonds between
the oxygen atoms of the functional group and the gallium atoms of the surface
with a bond length of 1.90 Å and a O-Ga-N angle of 120◦. The O-C-O angle is
122◦. The amine groups (Fig. 5.5, right) bind via N-Ga bonds with a bond length
of 2.15 Å and a N-Ga-N angle of 117◦. The Ga-N-C angle is 132◦.

Adsorption energies were calculated to evaluate the stability of the investigated
molecules on GaN surfaces. Analogously to Section 5.1, they were calculated ac-
cording to Eads = EGaN/mol

tot − Ebare
tot − Emol

tot , with EGaN/mol
tot , Ebare

tot and Emol
tot as the

total energies for the functionalized GaN model, for the bare surface, and for the
isolated molecule, respectively. The resulting values are -3.22 eV (thiol), -4.01
eV (carboxyl), and -0.54 eV (amine). This indicates that all attached groups bind
strongly to the surface, which corroborates with experimental works [124, 125].

Secondly, the electronic properties are to be discussed. The total and projected
DOS for the bare and functionalized surfaces are presented in 5.6. The band align-
ment was done with respect to the vacuum level as described in [107, 108] and
performed in Section 5.1. As mentioned before, the vacuum region in which the
structures are embedded, is large enough to ensure that the electrostatic potential
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respectively. The dashed line denotes the Fermi energy.

reaches its vacuum value and flattens out. Furthermore, the DOS are aligned rel-
atively to the VBM of the bare surface, whose energy was set to 0 eV.

Using the PBE0 functional yields a band gap of 3.6 eV for bulk GaN which is
much more in line with the experimental value [106] and in agreement with other
works [126]. However, a slightly reduced band gap was found for the bare sur-
face. This is due to additional surface states close to the valence and conduction
bands.

In the case of modification with thiol groups two intra-gap states are introduced
into the band gap. They are located energetically at 0.3 eV and VBM + 1 eV, as dis-
played in Fig. 5.6 (b). These states stem mainly from S-p states of the thiol groups.
In addition, changes around the VBM are visible. This is also due to the S-p states,
which hybridize with the N-p states of the surface. The band decomposed partial
charge density was calculated in this case for a more complete picture of these
intra-gap states, and is shown in Fig. 5.7. This confirms the aforementioned find-
ings as the intra-gap states are strongly localized on the sulphur atoms, as shown



60 Chapter 5. Functionalization of ZnO/GaN

FIGURE 5.7: Band projected charge density for thiol group adsorbed
on the GaN-(101̄0) surface. From left to right, the HOMO-2, HOMO-

1, and HOMO is shown.

in Fig. 5.7 for the HOMO-1 (middle) and the HOMO (right). On the other hand,
the HOMO-2 (left) hybridizes with the surface. Fig. 5.6 (b) confirms this, conse-
quently leading to a delocalized charge.

The functionalization with carboxyl groups leads to different results. In contrast
to thiol, the electronic structure shows no intra-gap states as displayed in Fig. 5.6
(c). Instead, strong changes around the VBM are found, the surface N-p states
hybridize with the O-p states of the carboxyl group, which results in localized
states at the VBM. C-p states are located deep in the valence band and overlap
with Ga-d states. The molecular states at VBM + 7.7 eV in the conduction band
stem mainly from C-p and O-p states.

The DOS for the amine system (Fig. 5.6 (d)) shows a weak hybridization between
N-p states of the amine group and N-p surface states directly at the VBM. The
most striking feature is an overall shift to higher energies compared to the other
structures. A possible explanation is the non-dissociative binding behaviour of
the molecule. The surface N atoms possess dangling bonds, which results in a
strongly reduced work function. The required energy to remove an electron is
therefore decreased. These results agree with experimental works, suggesting
that functionalization with amine groups does not influence the conductivity of
GaN systems [125].

Finally, the optical properties will be discussed. Figure 5.8 shows the dielectric
function for all systems. The functionalization of ZnO surfaces in Section 5.1 lead
to the presence of optically active intra-gap states with an additional absorption
peak. This feature is not found for the intra-gap states introduced by thiol groups
on GaN surfaces. Thus functionalizing the surface with thiol groups would trap
non-recombining holes in the band structure. For carboxyl on GaN a similar be-
haviour is found. The presence of molecular states at the VBM suppresses optical
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absorption. In contrast to these observations, for bare surfaces and surfaces func-
tionalized with amine groups, a distinct peak is visible around the absorption
onset. This reflects the presence of dangling bonds.
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Chapter 6

Doping of zinc oxide with cobalt

This chapter reports on GW calculations of cobalt implanted ZnO nanostructures.
Structural as well as thermodynamic and electronic properties will be discussed
for a variety of intrinsic defects and defect complexes in order to investigate
which defect complex is responsible for the experimentally observed 3d-intrashell
emission [127–129].

6.1 Cobalt in zinc oxide

Cobalt doped zinc oxide nanoparticles have been investigated experimentally
and theoretically to some extent over the course of the last fifty years [127, 130–
132]. However, in more recent years, such systems gained considerable inter-
est due to the possibility for the use as diluted magnetic semiconductors (DMS).
DMS are of interest, because they possess unique spintronics properties and pro-
vide a way to possibly use the spin of electrons in addition to their charge. Ul-
timately this could be used to record information and consequently such spin-
polarized devices could be smaller and more efficient than today’s systems which
are based on the charge exclusively [133, 134]. However, these devices usually
only work at low temperatures due to their low Curie temperature TC, but Co-
doped ZnO nanostructures are ferromagnetic at room temperature. Zinc intersti-
tials and oxygen vacancies were found to be the reasons for this [135].

Furthermore, doping with transition metals can extend the emission range from
the intrinsic band gap to the infrared spectrum. Consequently, Co atoms can be
incorporated as optical centers into the ZnO matrix, allowing to tune its elec-
tronic and optical properties, making it interesting for optoelectronic devices, for
example as single-photon emitters [136, 137]. It was shown that it is an efficient
luminescent center when incorporated at substitutional sites [129, 138].

Several experiments indicate that transitional-metal elements like cobalt typi-
cally occupy cation sites in zinc oxide replacing a zinc atom [139, 140]. In the
case of cobalt, this leads to a formal charge of 2+ and a 3d7-configuration for
the Co ion, with a 4F ground state, followed by the 4P and 2G excited states.
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It was observed that the ground term splits into the 4T1(F) term at 0.78 - 1.13
eV and the 4T2(F) term at 0.45 - 0.55 eV above the 4A2 ground term [128, 141].
After implantation, several experiments assign a luminescence signature at 1.88
eV to the 2E(G) →4 A2(F) transition and an additional one at 2.02 eV to the
1T(P) →4 A2(F) transition [142, 143]. However, it is still not entirely clear, what
kind of intrinsic defect or defect complex is responsible for this phenomenon.
This study will offer an explanation for this from a computational perspective.

6.2 Computational details

A combination of DFT [17, 18] and many-body GW methods [47] as implemented
in the Vienna ab initio simulation package (VASP) [101–104] and introduced in
Chapter 2 has been employed in order to investigate the formation energies and
electronic structure of Co-doped ZnO and its complexes. The supercell consisted
of 72 atoms with a concentration of 2.8 %. The projected augmented wave method
has been used [19] to relax the structures with the PBE exchange-correlation func-
tional [33]. A plane wave basis set with an energy cutoff of Ecut = 400 eV and a
(3 × 2 × 2) Monkhorst-Pack k-point sampling was employed for the GW calcula-
tions of the defect complexes [21]. They have been performed with 1000 bands
after convergence tests. For ZnO, a (6 × 6 × 6) k-point sampling with a cutoff of
400 eV has been applied to a wurtzite bulk model, consisting of 4 atoms. For zinc
bulk, (10 × 10 × 10) k-points were used.

6.3 Results

6.3.1 Thermodynamic properties

Formation energies provide a way to assess the thermodynamic stability of defect
complexes. Following the approach described in [144], the formation energy Ef
of a neutral defect in ZnO is defined as

Ef = Etot
defect − Etot

bulk − ∑
i

niµi, (6.1)

where Etot
defect is the total energy of the respective defect complex and Etot

bulk is the
total energy of a bulk ZnO supercell. ni describes the number of atoms of type i

that have been added or removed from the complex with µi as the corresponding
chemical potential. Since the conditions can be anything in between Zn-rich or O-
rich conditions in a growth process, limits should be introduced to the chemical
potential µ. In the lower limit, the material is free of defects, whereas the upper
limit corresponds to the formation of elemental bulk phases. This can be avoided
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by employing the following condition for Co metal

µCo ≤ µCo-bulk. (6.2)

A similar condition can be imposed for cobalt oxide in order to avoid the forma-
tion of such crystal phases

µCo ≤ µCoO, (6.3)

where CoO was chosen as the upper limit, since it is a very stable phase of cobalt.
With µZn and µO as the chemical potentials of zinc and oxygen, respectively, the
ZnO chemical potential reads

µZnO = µZn + µO. (6.4)

Using the formation enthalpy of ZnO ∆HZnO

∆HZnO = Etot
ZnO − µZn − µO, (6.5)

the potential energy of oxygen can be expressed as

µO = µO2 + λ∆HZnO, (6.6)

where µO2 is the oxygen molecule chemical potential and λ is either 0 or 1 for
oxygen rich or oxygen poor conditions, respectively.

In order to obtain an expression for µCo, the chemical potential of cobalt oxide is
needed

µCoO = ∆HCoO + µCo-bulk + µO2 , (6.7)

where ∆HCoO is the formation enthalpy of cobalt oxide bulk. Finally, the chemical
potential for cobalt can be written as

µCo ≤ ∆HCoO + µCo-Bulk − λ∆HZnO. (6.8)

The total energy for the respective zinc and cobalt bulk systems were calculated
on hcp crystal phases.

A value of ∆HZnO = 2.88 eV was calculated for the formation of enthalpy for
bulk ZnO, which is in good agreement with other GGA calculations [145, 146].
Furthermore, cohesive energies of EZnO

c,PBE = −7.37 eV and EZn
c,PBE = −1.11 eV

have been calculated, which agree very well with experimental values of EZnO
c,exp =

−7.52 eV [106] and EZn
c,exp = −1.35 eV [147], respectively.
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Table 6.1 displays the calculated formation energies for the investigated defects
under O-rich and O-poor conditions.

Ef [eV]
defect O-rich O-poor
CoZn -0.91 0.94
VZn 1.63 4.51
VO 3.74 0.85
Zni 5.44 2.56
Oi 4.01 6.89

CoZn + VZn 0.25 4.99
CoZn + VO 3.41 2.37

CoZn + Znint 14.79 13.76
CoZn + Oint 1.83 6.57

TABLE 6.1: Formation energies Ef for the intrinsic defects and defect
complexes in ZnO calculated with the PBE functional.

As expected, incorporating cobalt into the ZnO matrix does not disturb the lattice
in a significant manner, which is reflected in the low formation energies of -0.91
eV and 0.94 eV for oxygen rich and oxygen poor conditions in the absence of
intrinsic defects, respectively. Oxygen vacancies also have a very low formation
energy (0.85 eV) under O-poor conditions, whereas zinc vacancies have a sim-
ilarly low formation energy (1.63 eV) under O-rich conditions, which is plausi-
ble. The formation energies further confirm that in the limit of O-rich conditions,
oxygen interstitials are also more likely to form compared to the O-poor case, as
expected. The opposite is true for zinc interstitials. These values agree with other
works [148]. On the other hand, incorporating cobalt at an interstitial site is un-
favourable due to the stress and will therefore not be discussed here [149].

The most stable defect complexes under O-rich (Zn-poor) conditions are the CoZn +

VZn (0.25 eV) and the CoZn + Oint (1.83 eV) defect complexes. So it is energeti-
cally more favourable to create a zinc vacancy than to create an oxygen interstitial.
This might be due to the fact that because of their size, incorporating an O atom
at an interstitial site causes more stress to the ZnO matrix. This is corroborated
by the observation, that CoZn + Znint complexes have very high formation en-
ergies under both conditions and are therefore very unlikely to form. This will
be of interest when discussing the electronic structure later. However, a possible
explanation for the stability of the CoZn + Oint complex could be the low diffu-
sion barrier for oxygen interstitials [148]. Furthermore, under O-poor (Zn-rich)
conditions, only the CoZn + VO complex has a fairly low formation energy (2.37
eV). Interestingly, the isolated oxygen interstitial has a fairly high formation en-
ergy. This means that once it is formed during an experiment, it can quickly form
complexes in the material.
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6.3.2 Electronic properties

Different functionals have been applied to the calculation of bulk ZnO. Since ev-
ery approach yields a different band gap, the results have been under debate. Pa-
rameters like the choice of the exchange-correlation potential for the underlying
DFT calculation [150, 151] or the number of total bands influence the outcome
[152]. Table 6.2 gives an overview of the calculated band gaps in this work for
several different functionals in comparison to values from the literature

Eg [eV]
Functional This work Literature

PBE 0.78 0.74 [153]
PBE0 3.16 3.18 [145]

HSE06 2.46 2.49 [145]
PBE+G0W0 2.57 2.12-3.01 [53, 131, 154, 155]
PBE+GW0 3.30 2.54-3.55 [131, 154–156]

TABLE 6.2: Calculated band gaps Eg for bulk ZnO calculated with a
variety of functionals.

Describing the band gap correctly is important for investigations of impurities in
semiconductors [157, 158]. Therefore, the PBE+GW0 approach was chosen in this
work, since it yields a band gap close to the experimental value. It was shown that
a large number of bands needs to be considered to obtain properly converged re-
sults in G0W0 calculations [150, 159]. However, Sarsari et al. have shown, that the
position of the defect states is not significantly affected by the number of empty
bands and the cutoff of the response function [131]. For the GW0 calculations
in this work, 1000 bands were used. This results in a quasi-particle band gap
of 3.30 eV in reasonable agreement with the experimental value of 3.44 eV [160]
and with other GW0 calculations [151]. Furthermore, it has been shown that the
GW method provides an accurate description for itinerant and localized states of
many open d-shell materials [161]. Consequently, from here on only results ob-
tained from GW0 calculations will be presented.

First, the structural and electronic properties of cobalt at a zinc lattice position
will be discussed. The corresponding geometry can be seen in Fig. 6.1. The cobalt
distances to nearest neighbour oxygen atoms are 1.97 Å and 1.98 Å for in-plane
and c-direction, respectively. The Co-Zn distances are 3.29 Å for in-plane and 3.23
Å for c-direction. These values agree very well with the corresponding distances
in pure ZnO, which are 1.98 Å for Zn-O and 3.24 Å for Zn-Zn. Therefore an incor-
poration of Co at a Zn position does not disturb the lattice significantly. Fig. 6.2
displays the density of states for the CoZn defect. The Co-d states lie inside the
band gap, around 2 eV above the VBM. In this configuration, Co has a formal
charge of 2+. The d spin-up orbitals are fully occupied, whereas the d spin-down
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FIGURE 6.1: Atomic structure around the CoZn defect calculated
with the PBE functional. Grey, red and blue spheres represent Zn,

O, and Co atoms, respectively.

orbitals are only partially occupied, resulting in a total magnetic moment of 3 µB.
However, there are no unoccupied states inside the band gap or close to the CBM,
which does not fit with the experimentally observed luminescence.
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FIGURE 6.2: Density of states for the CoZn defect calculated within
the PBE+GW0 approximation. The vertical line denotes the highest
occupied state. Positive (negative) values of the DOS denote spin up

(down).

Introducing intrinsic defects is a possible way to modify the oxidation state of
Cobalt in zinc oxide. Intrinsic defects disturb the lattice and lead to a change of
the environment. It was shown that during ion implantation intrinsic defects are
likely to form [136, 162]. Therefore, cobalt doped zinc oxide has been investigated
in the presence of intrinsic defects, namely zinc vacancies, oxygen vacancies, zinc
interstitials, and oxygen interstitials.

The optimized geometry of the CoZn + VZn complex is shown in Fig. 6.3. In this
case, the Co atom slightly shifts towards the vacancy, resulting in two different
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FIGURE 6.3: Atomic structure around the CoZn + VZn complex cal-
culated with the PBE functional. Grey, red and blue spheres repre-

sent Zn, O, and Co atoms, respectively.

Co-Zn distances for the c-direction with 3.21 Å and 3.29 Å as well as in two dif-
ferent Co-Zn distances for the in-plane direction with 3.27 Å and 3.30 Å. Con-
sequently, the Co-O bond lengths change accordingly. The in-plane distances
decrease to 1.79 Å and 1.90 Å, whereas they change along the c-direction to 1.94
Å. Fig. 6.4 shows the corresponding density of states.
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FIGURE 6.4: Density of states for the CoZn +VZn complex calculated
within the PBE+GW0 approximation. The vertical line denotes the
highest occupied state. Positive (negative) values of the DOS denote

spin up (down).

There are no unoccupied Co-d states inside the band gap and the formal charge
of the Co atom is closer to 3+. Occupied states are located at the VBM and around
1 eV above it. Considering both observations, this defect complex cannot be re-
sponsible for the experimentally observed 2+-emission.

Next, cobalt at a Zn site in the presence of an a oxygen vacancy was investigated.
The presence of the vacancy does not disturb the lattice strongly, compared to the
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case without it, the Co-O distances remain almost unchanged with 1.96 Å. The
geometry can be seen in Fig. 6.5.

FIGURE 6.5: Atomic structure around the CoZn +VO complex calcu-
lated with the PBE functional. Grey, red and blue spheres represent

Zn, O, and Co atoms, respectively.

Co-Zn distances are also almost the same with 3.27 Å for in-plane and 3.29 Å for
c-direction. The electronic structure for this system is displayed in Fig 6.6.
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FIGURE 6.6: Density of states for the CoZn + VO complex calculated
within the PBE+GW0 approximation. The vertical line denotes the
highest occupied state. Positive (negative) values of the DOS denote

spin up (down).

There are no intra-gap states stemming from the Co atom inside the band gap.
The energy difference between the occupied and unoccupied Co 3d-states is around
11 eV and therefore this defect complex cannot be responsible for the photolumi-
nescence.

Besides these vacancies, interstitals were also investigated. The optimized geom-
etry of the zinc interstitial defect complex is presented in Fig. 6.7. The zinc in-
terstitial disturbs the lattice and consequently the cobalt atom relaxes away from
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FIGURE 6.7: Atomic structure around the CoZn + Znint complex cal-
culated with the PBE functional. Grey, red and blue spheres repre-

sent Zn, O, and Co atoms, respectively.

it. This is corroborated by the fact that the distances between the interstitial and
its nearest oxygen neighbours vary from 1.69 Å to 2.20 Å. Thus it is incorporated
asymmetrically. Furthermore, this results in Co-O distances of 2.00 Å for the in-
plane and 2.06 Å in c-direction. The Co-Zn distances are 2.21 Å to the Zni and
3.25 Å to the second nearest neighbours in the lattice. The density of states for
this system is shown in Fig. 6.8.
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FIGURE 6.8: Density of states for the CoZn + Znint complex calcu-
lated within the PBE+GW0 approximation. The vertical line denotes
the highest occupied state. Positive (negative) values of the DOS

denote spin up (down).

For this system, intra-gap states appear. Unoccupied states are located at -2.5 and
-0.3 eV, while occupied states are located at 0.4 and 1.2 eV. The formal charge of
the Co atom remains close to 2+, which fits with the 4F ground state. However,
the very high formation energy of this complex makes it very unlikely that it is
responsible for the 3d-emission.
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The final investigated defect complex consists of an oxygen atom at a octahedral
interstitial site next to a cobalt atom at a zinc position. The corresponding atomic
structure is presented in Fig. 6.9.

FIGURE 6.9: Atomic structure around the CoZn + Oint complex cal-
culated with the PBE functional. Grey, red and blue spheres repre-

sent Zn, O, and Co atoms, respectively.

The Co-O distances to nearest neighbour oxygen atoms in the ZnO lattice are 1.92
Å along the c and 1.94 Å for the in-plane direction. The distance to the oxygen
interstitial is 1.73 Å. The corresponding electronic structure is shown in Fig. 6.10.
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FIGURE 6.10: Density of states for the CoZn + Oint complex calcu-
lated within the PBE+GW0 approximation. The vertical line denotes
the highest occupied state. Positive (negative) values of the DOS

denote spin up (down).

The occupied Co 3d-states are located inside the band gap, with the Co-3d or-
bitals being occupied with six electrons. The occupied and unoccupied states are
located at -0.6 eV and 1.6 eV, respectively. This fits well with the experimentally
observed luminescence signature at 1.88 eV and 2.02 eV. The total magnetic mo-
ment of the complex is 2.8 µB, determined by a magnetic moment of 1.92 µB on the
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cobalt, 0.2 µB on the oxygen interstitial atom, and contributions from the oxygen
atoms surrounding the defect complex. Therefore, also taking into consideration,
that this is a thermodynamically stable defect complex, the intra-3d luminescence
of the cobalt-doped zinc oxide is most likely due to CoZn + Oint complexes.
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Chapter 7

Density functional based tight

binding parametrization and

applications

7.1 HfO

Hafnium oxide (HfO2) is one of the most promising candidates to replace sili-
con dioxide (SiO2) as the main gate oxide material in electronic components [163,
164]. Nowadays, electronic devices are steadily being decreased in size. Conse-
quently, the SiO2 gate oxide needs to be manufactured with a very small thick-
ness as well, which leads to high tunneling leakage current [7, 8]. To deal with
this problem, metal oxides with higher dielectric constants κ like Al2O3 and HfO2

came into focus [163]. Scientific interest in HfO2 has grown over the past years,
because it provides advantages like high thermal stability in contact with silicon
besides the dielectric constant [165]. Those high-κ metal oxides are preferred in
their amorphous form for applications due to several reasons. The isotropic phys-
ical properties of amorphous structures matter especially, since they result in less
defects at the interface with the Si substrate and very low leakage currents, there-
fore avoiding the major problem of SiO2. Furthermore, amorphous metal oxides
are easier to handle during the CMOS fabrication process [166]. Additionally,
Hf-based alloy materials are also being studied and used as gate oxides in the
semiconductor industry [167, 168].

Another important application area of amorphous HfO2 is optical coating, since
most of the presently used optical components feature a thin-film coating. Hence,
modern coating techniques serve as important tools to produce thin films with
advanced optical properties [169]. Especially ion coating methods such as ion
beam sputtering (IBS) or ion assisted deposition tend to produce amorphous thin
films with enhanced properties like surface smoothness and high optical homo-
geneity.
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a-HfO2 has been widely investigated using ab initio molecular dynamics to de-
termine its structural, electronic and dielectric properties [170–174]. But the dis-
ordered nature of amorphous structures yields some computational problems.
Exploring large systems over long periods using conventional ab initio meth-
ods is very time consuming. Chapter 3 introduced the DFTB method, which is
one possible way to overcome these difficulties. This section will present the
DFTB parametrization procedure for hafnium oxide. The parametrization is then
validated against both, ab initio data on hafnium and hafnium oxide crystalline
structures as well as amorphous systems using classical potentials and DFT. Ma-
jor parts of this Section are based on previously published results [175]. Parts of
it were obtained during the author’s Master’s project.

7.1.1 Creating the reference data

At ambient pressure, HfO2 crystallizes in three polymorphs, dependent on the
temperature. The most stable one is the monoclinic phase (P21/c). The phase
transition to the less stable tetragonal phase (P42/nmc) takes place at 1720 °C
and the phase transition to the high temperature cubic (fcc) phase (Fm3̄m) occurs
at 2600 °C [176]. Hafnium on the other hand has two different crystalline phases,
a hexagonal close-packed phase (P633/mmc) and the less stable cubic (bcc) phase
(Im3m) with a phase transition at 1750 °C [177].

Ab initio reference data are needed for the parametrization procedure. For this,
the PBE functional within VASP [101–104] was employed in order to optimize
the different crystal structures of hafnium and hafnia. The projector augmented
waves (PAW) were applied to model the electrons in the core. In general, a DFTB
parametrization requires band structures, formation energies and structural data
of all considered crystal phases. More details about the geometric input for those
phases of hafnium and hafnia can be seen in table 7.1 [178, 179]. 12 × 12 × 12 and
4 × 4 × 4 Monkhorst-pack k-point meshes have been employed for DFT calcula-
tions of hafnium and hafnia, respectively [21]. In addition, a plane wave basis
and an energy cutoff of Ec = 400 eV was used [19, 20]. The atomic structures
were optimized using the PBE functional [33].

7.1.2 The parametrization procedure

The parametrization procedure consists of two major parts. First, the electronic
part of the interatomic interaction between two elements has to be created. This
is done by choosing a basis and confinement radii for the orbitals and density (see
Chapter 3) to calculate a DFTB band structure. Then, different confinement radii
are chosen until the DFTB band structure matches the reference DFT counterpart
satisfyingly. For the O-O interaction, the respective sk file was taken from the
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model phase parameter value

Hf bcc a 3.50 Å
Hf hcp a 3.197 Å
Hf hcp c 5.068 Å
Hf hcp γ 120.0 °

HfO2 fcc a 5.08 Å
HfO2 tetra a 5.15 Å
HfO2 tetra c 5.29 Å
HfO2 tetra d 0.302 Å
HfO2 mono a 5.127 Å
HfO2 mono b 5.175 Å
HfO2 mono c 5.291 Å
HfO2 mono γ 99.22 °
HfO2 mono rH f (0.276, 0.040, 0.208)
HfO2 mono rO1 (0.074, 0.332, 0.347)
HfO2 mono rO2 (0.449, 0.758, 0.480)

TABLE 7.1: Geometric parameters for the crystal phases of Hf and
HfO2. The lattice constants a, b and c are given in Å, the angle γ
in °. d describes the deviation of the O atom relatively to its ideal
position in the cubic phase. Atomic coordinates rH f , rO2 and rO1 are
given as internal coordinates. Reprinted with permission from [175].

Copyright 2018 by the American Physical Society.

well-established mio set for organic molecules [180]. This saves time and effort to
create a new SK-file for O-O and opens up the possibility to add hafnium to the
whole set of organics within the mio set, if needed. Secondly, the repulsive part
has to be created. For this purpose, several reference DFT calculations are needed
as target systems.

Electronic part

The electronic part contains Hamilton and overlap matrix integrals, which were
calculated according to Chapter 3. This requires choosing the confinement radii
for the orbitals and the density for the explicitly treated atomic orbitals in such a
way that the reference ab initio band structure is matched. For pure hafnium oc-
cupied 6-s, occupied 5-d, and unoccupied 6-p orbitals were considered. The other
orbitals were modeled as a frozen core. The optimal values for the confinement
radii in this case are 4.42 a0 for the density, 10.52 a0 for the 6-s and 5-d orbitals,
and 5.00 a0 for the 6-p orbitals.
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Repulsive part

For the Hf-O interatomic interaction, the repulsive part was obtained by fitting
the difference between the DFT total energy curve and DFTB electronic energy
curves against varying values of the lattice constant a for the fcc phase. This
simplifies the process, since only one nearest-neighbour bond length needs to be
considered in the process. The unit cells were then compressed and extended
isotropically from 85 % to 130 % of the equilibrium reference value in order to
describe a representative range of possible bond lengths. The final cutoff radius
for the repulsive potential is shown in Table 7.2.

A similar procedure was applied to the calculation of the Hf-Hf repulsive in-
teraction. In this case, the hcp phase was used with a varying lattice constant a

extending from 90 % to 130 % of the equilibrium reference value a=3.1967 Å [178].
The obtained cutoff radii can be seen in Table 7.2.

Interaction Reference system Cutoff radius [Å]

Hf-Hf hcp 4.4
Hf-O fcc 3.0

TABLE 7.2: Cutoff values for the repulsive potentials for the differ-
ent interactions. Reprinted with permission from [175]. Copyright

2018 by the American Physical Society.

7.1.3 Amorphous hafnia models

Generating the classical models

To enlarge the structure sizes of amorphous HfO2 systems to nanometer scale
classical MD simulations have been applied. The forces between the different
species were calculated using the Born-Mayer-Buckingham potential function
(BMB).

V(rij) = Ae
−

rij
ρ −

C

r6
ij

+
qiqj

4πε0rij
(7.1)

The parameters for the distinct elements are obtained from Ref. [181] and pre-
sented in Table 7.3, while spherically truncated, pairwise 1

r summation was used
for the summation of the Coulomb interactions [182]. The real space cut-off for
the Coulomb interactions was defined to be 12 Å and 8 Å for the short range in-
teractions, respectively.

The velocity Verlet algorithm as introduced in Chapter 4 was used for the time
integration with a time step of 1 fs. The simulation temperature was set to 300
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Element Charge A [eV] ρ [Å] C

Hf +4 1454.6 0.350 0.0
O -2 22764.3 0.149 20.4

TABLE 7.3: Parameters for the applied Born-Mayer-Buckingham po-
tential function. Reprinted with permission from [175]. Copyright

2018 by the American Physical Society.

K, accordingly to characteristic temperatures in IBS coating processes. Two dif-
ferent models were realized, a condensed periodic bulk system and a classical
grown thin film structure. A density of 8.60 g/cm3 was set for the bulk structure.
This is in agreement with other studies on amorphous HfO2 [183]. The structure
consists of 2400 atoms, 800 Hf atoms and 1600 O atoms. The applied temperature
of 300 K was controlled by the Andersen thermostat (see Chapter 4) over a times-
pan of 20 ps.

The thin film structure on the other hand was calculated by employing a devel-
oped layer growth model algorithm [184, 185] based on classical MD. The atoms,
which form the thin film, are successively deposited on a pre-defined substrate,
which is basically a relaxed hafnia structure consisting of 9600 atoms. Since the
growth should only happen along the c-direction, periodic boundary conditions
were applied for the in-plane direction. Two successive steps modeled the coat-
ing process. First, a microcanonical ensemble ensures an optimal energy of the
entry atoms and second, a canonical ensemble cools the system down to 300 K.
Thus, the total time integration is about 1 ps for one deposition step and the cor-
responding kinetic deposition energy was set to 5 eV.

However, due to higher oxygen reflection as described in [186], additional low
energetic O atoms were incorporated into the system after a certain number of
deposited atoms. This can be understood as providing additional oxygen gas in
the coating chamber during an experimental thin film coating process.

The described procedure was repeated until in total 78586 atoms were deposited
onto the substrate, resulting in a total number of 88186 atoms with a film thick-
ness of around 18 nm.

Generating the quantum mechanical models

The generated sk files were used in DFTB MD simulations of amorphous HfO2

systems. In addition two larger models have been generated using a classical
potential described before. Table 7.4 gives an overview of the different models.
To generate a reasonable initial structure for the DFTB MD simulation, the atoms
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Model ρ [g/cm3] N NHf NO a [Å] b [Å] c [Å]

DFTB-I 7.97 300 100 200 16.368 16.368 16.368
DFTB-II 8.50 300 100 200 16.021 16.021 16.021
DFTB-III 8.93 300 100 200 15.760 15.760 15.760
DFTB-IV 9.39 300 100 200 15.498 15.498 15.498
DFTB-V 10.0 300 100 200 15.176 15.176 15.176
BMB-VI 8.60 2400 800 1600 35.229 40.679 22.680
BMB-VII 8.50 88186 29438 58748 70.458 81.358 212.32
DFT-VIII 9.39 96 32 64 10.601 10.601 10.601

TABLE 7.4: Overview of the geometric input data for the different
models. N denotes the number of atoms and a, b, c denote the side
lengths of the supercells. DFTB-I to DFTB-V refer to structures cal-
culated using the DFTB method, while BMB-VI and BMB-VII refer
to structures calculated with the Born-Mayer-Buckingham potential
and DFT-VIII refers to an ab initio work [170] used for comparison.
Reprinted with permission from [175]. Copyright 2018 by the Amer-

ican Physical Society.

were chemically and spatially randomly distributed in a three dimensional super-
cell with periodic boundary conditions to model a gas of hard spheres. By doing
this, any memory effects and unphysical repulsive forces at the beginning of the
simulation are avoided. For the DFTB simulations, a simulated annealing strat-
egy was applied in the cooling procedure, using the Andersen thermostat (see
Chapter 4) in an exponential path from 5000 K towards 300 K over 23 ps. In total,
24000 steps with one step consisting of 40 atomic time units (1τ = 2.419 · 10−17 s)
were performed. The first 500 steps served as an equilibrating process. During
this dynamic quench process, the Andersen thermostat creates a canonical NVT-
ensemble. One DFTB structure is displayed in figure 7.1 as an example.

7.1.4 Results

Crystal phases

This section will cover the results for crystalline hafnium, crystalline hafnia, and
amorphous hafnium oxide, which were obtained with the created new param-
eters. All aforementioned crystal phases of hafnium and hafnia will be used as
target systems to assess the performance of the created DFTB parametrization.

As a first step, the band structures will be compared to reference DFT ones. The
figures 7.2 and 7.3 provide a comparison between the band structures calculated
with the PBE functional within DFT and DFTB for the crystal phases. All DFTB
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FIGURE 7.1: Structural snapshots of an amorphous HfO2-network at
a density of ρ = 8.93 g/cm3. Reprinted with permission from [175].

Copyright 2018 by the American Physical Society.

band structures show an excellent agreement with the respective DFT calcula-
tions. Especially the general shapes match well. With one exception at the W-
point in the bcc band structure, where the deviation is approximately 1 eV, the
general deviation is smaller than 0.5 eV, in most parts far smaller.

FIGURE 7.2: Band structures for hcp and bcc hafnium. Comparison
between PBE (red) and DFTB (black). Reprinted with permission

from [175]. Copyright 2018 by the American Physical Society.

It is important to point out that hafnium also suffers from the GGA band gap
problem. DFT-GGA calculates a band gap of Egap = 3.98 eV [187] for monoclinic
HfO2, a significant underestimation of the experimental gap, which lies between
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FIGURE 7.3: Band structures for monoclinic, fcc and tetragonal
hafnium oxide. Comparison between PBE (red) and DFTB (black).
Reprinted with permission from [175]. Copyright 2018 by the Amer-

ican Physical Society.

E
exp
gap = (5.30 − 5.85) eV [188, 189]. Therefore, an uniform shift of the conduc-

tion bands was performed in order to match the experimentally found gap with
DFTB. This resulted in a band gap of Egap = 5.65 eV in the DFT reference. Finally,
DFTB yielded a band gap of Egap = 5.40 eV for monoclinic hafnia, a value within
the experimental range.

As a second step, formation energies and bond lengths will be compared with the
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DFT reference in order to further assess the performance of the DFTB parametriza-
tion. Table 7.5 presents the results. DFTB identifies the most stable phases of

Eformation [eV] d [Å]
model phase VASP DFTB VASP DFTB

Hf hcp 0 0 3.157-5.155 3.171-5.152
Hf bcc +0.186 +0.390 3.528 3.529

HfO2 mono 0 0 2.033-2.231 2.037-2.223
HfO2 tetra +0.092 +0.289 2.056-2.366 2.048-2.350
HfO2 fcc +0.262 +0.235 2.169 2.196

TABLE 7.5: Formation energies per atom and bond lengths com-
pared between DFT and DFTB. Formation energies of the most sta-
ble phases are set to 0 eV by definition. Reprinted with permission

from [175]. Copyright 2018 by the American Physical Society.

hafnium and hafnia correctly. However, the energetic phase ordering for HfO2

is incorrect. The high temperature phases fcc and tetragonal are exchanged with
an energy difference of 0.054 eV per atom. But it is important to point out that
the energy difference in the DFT reference is also just 0.17 eV per atom. There-
fore, these results are very sensitive to any approximations and chosen values in
DFTB.

The bond lengths are being reproduced excellently with DFTB. The deviation is
below 1.4 % for all systems. Consequently, the parametrization performs very
well.

Amorphous models

After this successful test on crystal phases, the created sk files were used to in-
vestigate amorphous systems with different densities in order to investigate their
structural and electronic properties. Additionally, the results will be compared to
other theoretical models using ab initio and classical approaches.

First, the structural properties will be discussed. As introduced in Chapter 4,
the pair distribution function provides access to distance correlations in the dis-
cussed models and consequently enables the description of bond lengths, bond
angles, and coordination numbers. Figure 7.4 presents the partial pair distribu-
tion functions of all DFTB systems and one DFT result from [170] for the Hf-Hf,
Hf-O, and O-O correlations. Fig. 7.5 shows the pair distribution functions for the
classical models in comparison with one DFTB structure having similar density.
The graphs show no significant influence of the varying density.

Furthermore, they agree qualitatively well with the depicted DFT ab initio work.
This observation does also hold true for the bond lengths, which are shown in
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FIGURE 7.4: Partial pair distribution functions for the hafnium-
hafnium, hafnium-oxygen and oxygen-oxygen correlation.
Reprinted with permission from [175]. Copyright 2018 by the

American Physical Society.

table 7.6. In addition, an increasing density induces slightly decreasing bond
lengths for Hf-Hf and O-O correlations, whereas it causes the Hf-O bond length
to remain almost constant in the DFTB calculations. At the same time, the re-
sulting partial distribution functions and bond lengths also agree well with the
models obtained by classical-potential MD growth and MD condensation simula-
tions. In particular the locations of the minima and maxima and the general shape
of the curves are almost identical. Especially R

H f−H f
1 and R

H f−O
1 fit nicely into

the trend. However, RO−O
1 is slightly smaller with 2.83 Å (BMB-VI) and 2.91 Å

(BMB-VII) in the classical models compared to the DFTB values of 2.93 − 3.12 Å.
A possible reason for this is the increased coordination number as discussed in
the next paragraph. The only discrepancy is noticeable in the Hf-Hf pair distri-
bution functions for the large-scale classical models. In contrast to both the DFTB
structures and the ab initio model, they do not show the two peak structure in
the first coordination shell, which is a result of differently coordinated polyhedra
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FIGURE 7.5: Partial pair distribution functions for the hafnium-
hafnium, hafnium-oxygen and oxygen-oxygen correlation in com-
parison to the two classical models. Reprinted with permission from

[175]. Copyright 2018 by the American Physical Society.

within the amorphous network. But since the classical models contain signifi-
cantly more atoms, DFTB studies on larger HfO2 systems might reproduce this
feature.

The discussed partial pair distribution functions provide access to the description
of coordination numbers, which are displayed in Table 7.7. Coordination num-
bers can be obtained by integrating the first coordination shell of the respective
pair distribution function (first maximum) until a certain cutoff value. In this
case, the cutoff radius for the Hf-O interaction is rcutoff = 2.6 Å based on the first
minimum in the corresponding partial pair distribution function.

The values for the DFTB simulations are consistently slightly lower compared to
the other theoretical works. The best agreement between the coordination num-
bers calculated for the different DFTB models and other investigated theoretical
works is obtained with the classically grown model based on the potential em-
ployed by Lewis et al. [181] (BMB-VII). So a DFTB model of comparable size may
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Model ρ [g/cm3] RHf-Hf
1 [Å] RHf-O

1 [Å] RO-O
1 [Å]

DFTB-I 7.97 3.73 2.04 3.12
DFTB-II 8.50 3.77 2.06 3.03
DFTB-III 8.93 3.70 2.07 3.04
DFTB-IV 9.39 3.68 2.09 2.96
DFTB-V 10.0 3.67 2.09 2.93
BMB-VI 8.60 3.68 2.08 2.83
BMB-VII 8.50 3.66 2.09 2.91
DFT-VIII 9.39 3.50 2.06 2.75

TABLE 7.6: Average bond lengths for all systems. Reprinted with
permission from [175]. Copyright 2018 by the American Physical

Society.

Model ρ [g/cm3] KHf-O 4-fold 5-fold 6-fold 7-fold 8-fold

DFTB-I 7.97 5.20 17.0% 49.0% 33.0% 1.0% 0.0%
DFTB-II 8.50 5.46 7.0% 45.0% 46.0% 2.0% 0.0%
DFTB-III 8.93 5.58 1.0% 45.0% 48.0% 6.0% 0.0%
DFTB-IV 9.39 5.87 0.0% 29.0% 55.0% 16.0% 0.0%
DFTB-V 10.0 6.08 0.0% 19.0% 54.0% 26.0% 1.0%
BMB-VI 8.60 6.05 0.1% 17.3% 60.7% 21.3% 0.6%
BMB-VII 8.50 5.92 0.7% 21.0% 64.2% 13.8% 0.3%
DFT-VIII 9.39 6.49 - - - - -

TABLE 7.7: Coordination numbers for a-HfO2. KHf-O denotes the
average number of oxygen atoms bonding to a hafnium atom. A
more detailed overview of the coordination numbers was not avail-
able for model DFT-VIII, thus only the average number is given here.
Reprinted with permission from [175]. Copyright 2018 by the Amer-

ican Physical Society.

show similar coordination numbers. A very evident observation is the increas-
ing coordination number KHf−O for an increasing mass density ρ. KHf-O seems to
approach the value of the most stable monoclinic phase with increasing density,
KHf−O = 7. But an ideal value will never be reached in amorphous structures
due to the admixture and unordered arrangement of different crystalline struc-
tures. Figure 7.6 visualized this finding for the DFTB structures with the lowest
and highest densities, respectively.

The next structural property to discuss are bond angles. Analogous to the de-
scription of bond lengths in amorphous systems, bond angles are not sharply
defined, but widely distributed among a certain range. An overview of the dif-
ferent angles can be seen in Fig. 7.7. Model BMB-VII was too large to investigate
all angle correlations, therefore, only the bond angle distributions Hf-O-Hf and
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FIGURE 7.6: Comparison of the coordination numbers for ρ =
7.97 g

cm3 (left) and ρ = 10.0 g
cm3 (right). Oxygen is presented in red,

4-fold hafnium in blue, 5-fold in black, 6-fold in green, 7-fold in grey,
and 8-fold hafnium in gold. Reprinted with permission from [175].

Copyright 2018 by the American Physical Society.

O-Hf-O will be discussed for this system. In general all the depicted angles agree
well among both models. Especially the Hf-Hf-O, Hf-O-O and O-O-O curves
show an almost identical course. The Hf-Hf-Hf, Hf-O-Hf and O-Hf-O curves also
show a similar course between DFTB and the classic calculation, but their peaks
are shifted slightly. Again, this might be related to the coordination numbers.
Nevertheless, the qualitative agreement is still good. It is also important to point
out that the classical models generate smoother distributions, a result of the larger
system size.

Finally, the electronic properties of a-HfO2 will be discussed, since it is consid-
ered as a possible substitute for SiO2 in optical devices. Figure 7.8 displays the
electronic density of states (EDOS) for the DFTB structures and the smaller classi-
cal structure BMB-VI. The curves do not show any significant differences among
each other. So the mass density does not influence the qualitative course of the
EDOS significantly. Neither does the applied functional as the comparison with
the classical grown model demonstrates. Furthermore, the VBM stems mainly
from O-p orbitals, while the conduction band edge consists primarily of contri-
butions from Hf-d orbitals. These orbital characters do not change in a significant
manner for the different models. Figure 7.9 visualizes this result. It should be
noted, that all structures consistently show clean energy band gaps, so no defects
caused by direct Hf-Hf or O-O bonds occur, thus providing well-defined HOMO-
LUMO gaps.
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FIGURE 7.7: Angle distributions for the models DFTB-II, BMB-VI
and BMB-VII. Reprinted with permission from [175]. Copyright

2018 by the American Physical Society.

The resulting band gaps are summarized in table 7.12 and compared to values
obtained in other theoretical works. With one exception for ρ = 8.50 g/cm3, the
size of the band gap is slightly linear decreasing with increasing density for the
DFTB runs. Furthermore, the values between 4.15 eV < Egap < 4.68 eV indicate
an insulating nature for a-HfO2. The results also agree well with both the work
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FIGURE 7.8: Electronic density of states for the five DFTB models
and one classical structure.
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FIGURE 7.9: Projected density of states for DFTB-I (left) and DFTB-V
(right). The VBM was shifted to 0 eV in both cases.

Model ρ [ g
cm3 ] Egap [eV]

DFTB-I 7.97 4.66
DFTB-II 8.50 4.21
DFTB-III 8.93 4.49
DFTB-IV 9.39 4.53
DFTB-V 10.0 4.48
BMB-VI 8.60 3.52
DFT-VIII 9.39 3.80

TABLE 7.8: Calculated band gaps for the amorphous structures. The
result for DFT-VIII was obtained using GGA without a correction
of the band gap problem. Reprinted with permission from [175].

Copyright 2018 by the American Physical Society.
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of Chen and Kuo [190] and the classical model. They applied both, a GGA func-
tional and a PBE0 hybrid density functional and obtained Egap = 3.61 eV and
Egap = 5.90 eV, respectively. The GGA ab initio work DFT-VIII reflects this as
well with Egap = 3.80 eV. Interestingly, the classical MD condensation simulation
yields Egap = 3.52 eV, a value in the same range. Those results demonstrate, that
the applied functional influences the value in a significant way.

Since a variety of defects can occur in amorphous systems, the density of states
for an oxygen vacancy inserted into a monoclinic supercell was also investigated
to assess how well the parametrization handles a common defect like this and
ultimately legitimize it for the investigation of amorphous structures. Figure 7.10
presents the resulting curve and compares it to a DFT reference result obtained
with PBE. Both graphs show an intra-gap state. It is located at VBM + 2.5 eV for

FIGURE 7.10: Density of states for the oxygen vacancy defect in
monoclinic hafnia calculated with PBE (top) and DFTB (bottom).
The valence band maximum was shifted to 0 eV in both cases.
Reprinted with permission from [175]. Copyright 2018 by the Amer-

ican Physical Society.

the DFT and at VBM + 3.0 eV for the DFTB method. It is important to mention
that it is not possible to compare the exact locations of these defect states, since
hafnia suffers from the GGA band gap problem and therefore the band gap is 1.4
eV smaller than the respective DFTB band gap. The overall agreement of both
DOS is very well.

7.2 HfSiO4

The previous section covered results on amorphous hafnia and motivated why
it is an important study. But besides pure hafnia, hafnium silicate is also widely
used as a replacement of silicon oxide for gate dielectrics [191]. Hafnium sil-
icates possess the same advantages over silcon oxide as hafnia, however, they
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have a lower permittivity. Nevertheless, they are still of great interest, because
they can resist high temperatures longer in their amorphous phase compared to
hafnia, which consequently leads to lower leakage currents [192]. Furthermore,
hafnium silicates form naturally at the interface between a SiO2 substrate and the
HfO2 film during growth processes. Therefore, is is important to extend the HfO2

parametrization by Si in order to provide a full set of sk files for the description
of HfxSi1−xO2 structures.

7.2.1 Parametrization procedure

In order to describe HfxSi1−xO2 systems with DFTB, interaction with silicon had
to be added to the created hafnia parametrization. The compression radii and
basis set were taken from the existing pbc set [193]. Since the electronic part of the
pbc O-O sk-file is the same as the one from the mio O-O sk-file, no band structure
fitting had to be done. The Hf-Si repulsive was fitted on a artificially created
tetragonal HfSiO4 unit cell consisting of 24 atoms. All Hf-Si bond lengths were
the same. This simplifies the process tremendously. The cell was then compressed
and expanded isotropically from 78 % to 110 % of that reference to obtain an
array of target systems. The fitting procedure itself was done analogous to the
described procedure for hafnium. The difference between the DFT and DFTB
coherence energy curves with respect to varying values of the lattice constant a

for that artificial system was fitted. The cutoff radius is 3.30 Å.

7.2.2 Results

Applying the final set of sk-files to the HfSiO4 cell, the Si-O and Hf-O bond
lengths deviated by less than 1 % compared to the reference PBE values. Further-
more, no direct Hf-Hf, Si-Si or Hf-Si bonds were formed, resulting in defect-free
structures. As a next step, the validated parametrization were used to generate
amorphous structures. Three models of the type HfxSi1−xO2 were created. In
order to evaluate the effect of different ratios between HfO2 and SiO2, the values
x = 0.25, 0.50, 0.75 were chosen. To model a realistic density, the joint-density for
both oxides was used (ρHfO2 = 9.70 g/cm3, ρSiO2 = 2.65 g/cm3). The process to
generate the amorphous models is described in Section 7.1.3.

The resulting DFTB models were compared to two works from the literature, a
DFT study [194] as well as a classical approach [195]. Table 7.9 gives a quick
overview of the different models and their parameters. The authors in [194] used
the PBE functional within VASP to optimize the geometries and applied the PBE0
functional to get a more accurate description of the electronic properties. The au-
thors in [195] on the other hand used a Morse-BKS combined two-body potential
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Method x ρ [g/cm3] N NHf NSi NSi l [Å]

DFTB 0.25 4.41 300 25 75 200 15.43
DFTB 0.50 6.18 300 50 50 200 15.38
DFTB 0.75 7.94 300 75 25 200 15.35
DFT 0.25 3.85 96 8 24 64 -
DFT 0.50 5.44 96 16 16 64 -
DFT 0.75 7.04 96 24 8 64 -

M-BKS 0.25 4.08 648 54 162 432 -
M-BKS 0.50 5.64 648 108 108 432 -
M-BKS 0.75 7.28 648 162 54 432 -

TABLE 7.9: Overview of the geometric input data used for the dif-
ferent models. N denotes the number of atoms and l denotes the
side length of the supercells. Information about l was not available

for the models from [194] and [195].

to conduct a classical MD study. They developed this new potential by employ-
ing the widely used BKS silica potential as a basis [196]. By adding a Morse term
to introduce control the degree of covalency, they overcame a major weakness of
the BKS potential. They fitted the required parameters to DFT and experimental
values. Figure 7.11 displays two of the DFTB structures.

FIGURE 7.11: Structural snapshot of the amorphous HfxSi1−xO2
structures with x = 0.25 (left) and x = 0.75 (right). Hafnium, silicon,
and oxygen atoms are represented by grey, blue, and red spheres,

respectively.

First, the topological short-range order will be discussed. Therefore, Fig. 7.12
shows the partial pair distribution functions for the different models. For the
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FIGURE 7.12: Partial pair distribution functions of the DFTB models
(right) in comparison to the DFT and classical calculations (left). The
pictures on the left were reprinted from [195], with the permission

of AIP Publishing.

DFTB structures, only the Hf-Hf curve shows significant differences caused by
the varying density. For 25 % HfO2 contribution, the first Hf-Hf peak shows a
well pronounced shoulder around 3.8 Å. With increasing HfO2 contribution, this
feature vanishes, resulting in an overall broader and higher peak. However, its
location is not influenced significantly, the generated maxima are between 3.32
Å and 3.37 Å. This observation is in good agreement with the DFT calculation,
which shows a similar picture. The classical MD study on the other hand yields a
slightly different result. The Hf-Hf partial pair distribution function consists here
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of three less pronounced subpeaks, indicating, that the classical potential gen-
erates a less homogeneic bond length distribution. Nevertheless, the maximum
values are comparable with 3.35 Å < r < 3.48 Å for the DFT and 3.40 Å < r < 3.45
Å for the classical study.

This is also true for the Hf-O and Si-O curves. Both, the locations of the first min-
ima and maxima agree very well with the respective results in [194] and [195] for
Hf-O. For DFTB, the maxima are at 2.04 Å < r < 2.11 Å, meaning that an increasing
density induces slightly increasing interatomic Hf-O distances, an observation
that is reproduced in the DFT as well as in the classical study. It is important to
point out that neither of these studies made any comments regarding broadening
or normalization factors, therefore comparing the relative heights of the curves is
not possible.

O-O partial pair distribution functions fit into the depicted trend. In particular
the first maximum should be pointed out. Its general shape agrees exceptionally
well among the three methods. It gets broader with increasing density without
affecting the average bond lengths significantly. With 2.85 Å < r < 2.93 Å they
are overall larger for the DFTB models compared to r = 2.70 Å for DFT and 2.65
Å < r < 2.75 Å for classical potentials. This feature was most likely carried over
from the HfO2 parametrization and stands in direct correlation to the coordina-
tion numbers as discussed in the next paragraph. These results are summarized
in Table 7.10.

Method x RHf-Hf
1 [Å] RHf-O

1 [Å] RSi-O
1 [Å] RO-O

1 [Å]

DFTB 0.25 3.32 2.04 1.68 2.85
DFTB 0.50 3.34 2.05 1.70 2.93
DFTB 0.75 3.37 2.11 1.70 2.89
DFT 0.25 3.48 2.05 1.65 2.70
DFT 0.50 3.43 2.11 1.65 2.70
DFT 0.75 3.35 2.11 1.66 2.70

M-BKS 0.25 3.45 2.05 1.65 2.70
M-BKS 0.50 3.40 2.10 1.65 2.65
M-BKS 0.75 3.40 2.10 1.70 2.75

TABLE 7.10: Resulting average bond lengths for all models.

Next, the coordination numbers will be discussed. The obtained values are dis-
played in Table 7.11. The overall agreement with the DFT values is good. The
deviation is between 1.6 and 5.4 %. Furthermore, an increasing density results
in larger coordination numbers for the Hf-O interaction. An interesting obser-
vation is the large jump for KH f−O from 25 % to 50 % HfO2 contribution. Both
methods produce this. On the other hand, although KSi−O shows a good quanti-
tative agreement, the qualitative trend does not agree between both approaches.
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Method x KHf-O KSi-O

DFTB 0.25 5.04 4.23
DFTB 0.50 5.52 4.20
DFTB 0.75 5.72 4.20
DFT 0.25 4.92 4.00
DFT 0.50 5.73 4.06
DFT 0.75 5.81 4.12

TABLE 7.11: Coordination numbers for the DFTB and DFT struc-
tures. These data were not available for the M-BKS models.

Whereas the coordination numbers increase with increasing density (4.00 < KSi−O

< 4.12), they remain constant within the DFTB simulations (4.20 < KSi−O < 4.23).
However, it should be pointed out, that the DFT models consist of only 96 atoms
due to the required computational resources, and therefore even one additional
Si-O bond has a significant influence on the coordination number.

Since HfxSi1−xO2 systems play an important role as gate materials for optical de-
vices, the electronic properties need to be determined as well. Thus, the electronic
density of states for the DFTB structures can be seen in Fig. 7.13.
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FIGURE 7.13: Electronic density of states for the different DFTB
models. The VBM was shifted to 0 eV.

The curves do not show any significant differences among each other. So the
mass density does not influence the qualitative course of the EDOS significantly.
Neither does the applied functional as the comparison with the classical grown
model demonstrates. The valence band maximum consists primarily of contri-
butions from Op orbitals, while the conduction band edge stems mainly of Hfd
orbitals. We like to point out, that these orbital characters do not change sig-
nificantly for the different mass densities. It should be noted, that all structures
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consistently show clean energy band gaps, so no defects caused by direct Hf-Hf
or O-O bonds occur, thus providing well-defined HOMO-LUMO gaps. The re-
sulting band gaps are summarized in table 7.12 and compared to values obtained
in other theoretical works. There is a clear influence of the density visible, how-

Method x Egap [eV]

DFTB 0.25 4.49
DFTB 0.50 4.73
DFTB 0.75 3.97
DFT 0.25 6.38
DFT 0.50 6.24
DFT 0.75 6.08

TABLE 7.12: Calculated band gaps for the amorphous structures.

ever, a trend cannot be identified. The obtained values are constantly below the
DFT counterparts. A possible explanation is the applied functional in the DFT
simulations. The authors in [194] used the PBE0 functional, whereas the obtained
DFTB band gaps would probably agree better with PBE values. Ultimately mean-
ing, that more models and stoichiometric ratios need to be investigated to get a
more complete picture.

7.3 GaN

As described in Chapter 5, GaN is of huge interest for biomedical and optoelec-
tronic applications [115–118]. Employing ab-initio methods leads to an accurate
description of structural and optical properties, however, they are computation-
ally very time-consuming and therefore limit the possible model size to a few
hundred atoms at most, depending on the applied functional. If hybrid function-
als are needed, the possible system size shrinks even more. In order to discuss
larger systems and real molecules for surface functionalization purposes, a dif-
ferent approach is needed. Since DFTB allows the simulation of thousands of
atoms, a parametrization needs to be created for the description of GaN. This
Section covers the parametrization procedure and its evaluation on bulk and sur-
face systems in order to approve it for further applications in the future.

7.3.1 Creating the reference data

Analogous to the parametrization procedure for hafnia, ab initio reference data
had to be generated for parametrizing GaN. The computational details are the
same. Table 7.13 gives details about the geometric parameters of the Ga and GaN
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model phase parameter value

Ga ortho a 4.52 Å
Ga ortho b 7.66 Å
Ga ortho c 4.53 Å
Ga fcc a 4.08 Å
Ga mono a 2.77 Å
Ga mono b 8.05 Å
Ga mono c 3.33 Å
Ga mono γ 92.0 °
Ga tetra a 2.80 Å
Ga tetra a 4.45 Å

GaN wurtz a 3.19 Å
GaN wurtz c 5.19 Å
GaN zinc a 4.50 Å
GaN rock a 4.18 Å

TABLE 7.13: Geometric parameters for the crystal phases of Ga and
GaN.

crystal phases [197–202]. The calculations for gallium and gallium nitride were
performed on a 12× 12× 12 and 4× 4× 4 Monkhorst-pack k-point mesh, respec-
tively [21]. Furthermore, a plane wave basis with an energy cutoff of Ec = 400 eV
has been used [19, 20]. The atomic structures were optimized using the PBE func-
tional [33].

7.3.2 The parametrization procedure

In order to create the parameters which are needed for the DFTB application, both
the electronic and the repulsive part of the interatomic interactions between two
elements have to be computed as described in Chapter 3. The required data for
the nitrogen-nitrogen interaction was taken from the established 3ob set for or-
ganic and biological systems [203]. Since one purpose of this GaN parametriza-
tion is the investigation of functionalized surfaces with organic molecules, this
opens up the possibility to add the remaining elements in the 3ob set in a future
work.

Electronic part

The electronic part contains Hamilton and overlap matrix integrals, which were
calculated analogous to the procedure described for hafnia. In this case the same
confinement radii were chosen for the orbitals and the density with a minimal
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basis of only s and p orbitals. Unoccupied d orbitals were also considered dur-
ing the process, but it turned out that this does not improve the resulting band
structure. As a consequence, the final sk set uses only a minimal basis consisting
of s and p orbitals in order to save computational effort. The resulting optimal
confinement radius is 3.2 a0.

Repulsive part

To generate the repulsive part for the Ga-Ga interaction, several systems were
considered as the reference crystalline system. It turned out that the best results
were obtained when an artificially constructed cubic cell was used. By doing this,
only one bond length had to be considered, which simplified the process tremen-
dously. A geometry optimized tetragonal Ga system was compressed along the
c-axis to achieve this. The resulting cell was then compressed and expanded
isotropically from 80 % to 130 % of that reference to obtain an array of target
systems. The fitting procedure itself was done analogous to the described pro-
cedure for hafnium. The cutoff radius of the repulsive potential can be seen in
Table 7.14.

For the generation of the GaN repulsive, the zincblende phase has been used,
since it also contains only one nearest-neighbour bond length. The reference cell
was compressed and extended isotropically from 80 % to 150 %. This range
turned out to be optimal in order to describe a representative range of bond
lengths in the systems. The cutoff radii are displayed in Table 7.14.

Interaction Reference system Cutoff radius [Å]

Ga-Ga cubic 4.6
Ga-N zinc 3.4

TABLE 7.14: Obtained cutoff values for the repulsive potentials of
the different interactions.

7.3.3 Results

The created DFTB parametrization has to be evaluated in order to approve it for
applications in the future. Its performance is tested for four crystal phases of gal-
lium as well as for all three crystal phases of gallium nitride. Since the purpose
of this GaN parametrization is the ability to describe surface systems and charge
transfer phenomena correctly, it needs to describe the structural and energetic
properties of the most important bulk phases of Ga and GaN accurately enough.
Furthermore, the surface of interest also needs to be described well.
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The figures 7.14 and 7.15 provide a comparison between the band structures
calculated with PBE and DFTB for orthorhombic and fcc gallium as well as for
wurtzite and zincblende gallium nitride.
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FIGURE 7.14: Band structures for orthorhombic and fcc gallium.
Comparison between PBE (red) and DFTB (black). The fermi level

was set to 0 eV.

For Ga, the DFTB band structures show an acceptable agreement with the PBE
calculations. In the case of orthorhombic Ga, the qualitative shape of the bands
is well described up until 0 eV, the higher energetic bands then begin to devi-
ate strongly. For fcc Ga, a different picture is found. The whole band structure
is strongly compressed, it covers a smaller energy interval compared to the PBE
counterpart. However, the general shape of the PBE band structure is somewhat
being reproduced. The aim of this parametrization is primarily the correct de-
scription of GaN and in order to obtain the best possible result, the Ga orbitals
had to be compressed quite considerably. Whereas this leads to good results for
GaN, the Ga band structures are too strongly compressed as a consequence, but
the qualitative description is still acceptable for Gallium.

The DFTB band structures for GaN show an excellent agreement with the PBE
equivalents especially for the valence bands. In addition, the first conduction
band is also described well, which is important to be able to obtain an accurate
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FIGURE 7.15: Band structures for wurtzite and zincblende gallium
nitride. Comparison between PBE (red) and DFTB (black). The VBM

has been shifted to 0 eV.

band gap. However, the effect of the strong compression can be seen here as well,
since the conduction bands are a bit too flat in comparison to PBE.

Similar to the case of HfO2, DFT-GGA underestimates the band gap for wurtzite
GaN considerably with Egap = 2.4 eV compared to the experimentally found gap
of E

exp
gap = 3.4 eV [106]. In order to match the experimental gap, an uniform shift

of the conduction bands was performed to obtain a band gap of Egap = 3.40 eV in
the DFT reference structure. The resulting DFTB band gap for wurtzite gallium
nitride is Egap = 3.45 eV.

The next step is to compare the formation energies and bond lengths for all phases
in order to assess the performance of the SK files. Table 7.15 displays the results.
DFTB identifies the most stable phases correctly. However, the energy differ-
ences are very slim for PBE, the formation energy of the least stable tetragonal
Ga phase is only 0.013 eV higher than the one for the most stable orthorhombic
phase. Therefore, reproducing the correct phase ordering is a challenging task
for a parameter-based method like DFTB. As a consequence, the fcc and mono-
clinic phases are exchanged. It is also important to mention, that for DFTB, the
orthorhombic phase is the most stable with a margin of 0.128 eV, in contrast to
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Eformation [eV] d [Å]
model phase VASP DFTB VASP DFTB

Ga ortho 0 0 2.537-2.814 2.716-2.820
Ga fcc +0.004 +0.315 2.993 2.990
Ga mono +0.008 +0.128 2.760-2.911 2.819-2.916
Ga tetra +0.013 +0.327 2.878-3.078 2.889-3.084

GaN wurtz 0 0 1.985-1.991 2.049-2.050
GaN zinc +0.014 +0.026 1.987 2.048
GaN rock +0.801 +1.695 2.139 2.212

TABLE 7.15: Formation energies per atom (for GaN per Ga-N unit)
and bond lengths compared between PBE and DFTB. Formation en-

ergies of the most stable phases are set to 0 by definition.

0.004 eV for PBE. For GaN the phase ordering is correct, even though the wurtzite
and zincblende phases are of comparable stability.
Only the rocksalt phase is with 0.801 eV (PBE) and 1.695 eV (DFTB) energy dif-
ference significantly less stable. The bond lengths are in general well reproduced.
With one exception for the orthorhombic phase with 7.1 %, the deviation is be-
tween 0.1 % and 3.4 % and therefore above acceptability. During the parametriza-
tion process it turned out to be apparently impossible to reproduce the geometric
properties of the orthorhombic phases as well as the other Gallium phases with-
out letting the results for GaN suffer considerably. Since an accurate description
of the latter is more important for this study, it is a necessary and worthwhile
tradeoff.

The final step for the assessment of the parametrization is a comparison between
PBE and DFTB for a surface slab model of GaN. For this purpose the bare GaN-
(101̄0) surface model of Chapter 5 is used as the reference system. Figure 7.16
shows the respective band structures.
The band structures show a similar result as the bulk ones. While the valence
bands are described very well, the conduction bands are too flat. Nevertheless
the qualitative shape of the first conduction bands is acceptable in comparison to
the reference.

Similar to the formation energies for bulk crystalline systems, an important value
to evaluate the stability of surface models is the cleavage energy Ec. It basically
describes how strong the bonds in the slab are. It can be calculated as follows

Ec = Esurface − nEbulk, (7.2)

where n is the number of bulk unit cells in the slab. Table 7.16 presents the calcu-
lated cleavage energies as well as the bond lengths for interactions inside the slab
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Ec [eV] d [Å]
model VASP DFTB VASP DFTB

GaN-(101̄0) 0.665 0.884 1.983-2.061 (i) 2.015-2.115 (i)
1.858 (o) 1.910 (o)

TABLE 7.16: Cleavage energy per Ga-N unit and bond lengths com-
pared between PBE and DFTB for the GaN-(101̄0) surface. i denotes
bonds inside the slab, whereas o describes the Ga-N bond at the top

of the slab.

(i) and on top of it (o). In this work, a DFT cleavage energy of EDFT
c = 0.665 eV

was calculated, whereas in the literature values up to EDFT
c = 0.975 eV can be

found [204]. The obtained DFTB value is EDFTB
c = 0.885 eV and thus agrees very

well with that range. The obtained bond lengths do also agree very well with the
reference values. The deviation is between 1.61 % and 2.79 %. It is also important
to point out that DFTB reproduces specific PBE results. For example does the Ga-
N bond length directly on the surface (o) shrink from the bulk value of 1.99 Å to
1.86 Å. DFTB describes this behaviour qualitatively correctly.
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Concluding remarks

8.1 Summary

In this thesis, different DFT-based methods were employed to investigate crys-
talline and amorphous wide-bandgap semiconductors.

In Chapter 5, semilocal and hybrid functionals were employed to investigate the
functionalization of ZnO and GaN surfaces. MPA-derived molecules with differ-
ent carbon chain lengths have been attached to a slab model of ZnO in order to
discuss the binding and optical properties. The monodentate mode was found
to be the most stable one for all investigated chain lengths. Furthermore, intra-
gap states appeared for all models. But the chain length does not influence the
electronic and optical properties of the systems significantly, indicating that even
small molecules could be used to tune the dielectric properties of such systems.
Additionally, TDDFT was employed to validate these results on a more sophisti-
cated level of accuracy. These findings agree well with experimental results.

This Chapter also presented the results for the functionalization of GaN surfaces
with thiol, carboxyl, and amine groups. All groups were found to bind strongly
to the surface. While a modification with carboxyl or amine groups did not in-
fluence the electronic properties of the systems in a significant way, functional-
ization with thiol groups lead to the appearance of intra-gap states. However, in
contrast to the results for functionalized ZnO surfaces, these states are optically
inactive.

The results for cobalt-doped ZnO nanostructures were discussed in Chapter 6.
Standard DFT and the GW0 approximation were employed to investigate the
thermodynamical, structural, and electronic properties of different defect com-
plexes in Co-doped ZnO. CoZn+Znint and CoZn+Oint complexes were identified
as possible sources for the optical activity of Co in ZnO. However, due to a very
high formation energy of the CoZn+Znint defect complex, the optical activity was
attributed to CoZn+Oint complexes.

Chapter 7 discussed the results for DFTB parametrizations and respective ap-
plications for HfO2, HfxSi1−xO2, and GaN. A new parametrization for HfO2 is
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presented and validated against DFT reference data. The resulting band struc-
tures showed a very good agreement with the DFT counterparts and the band
gap of 5.40 eV lies within the experimental range. Furthermore, the obtained
bond lengths for all crystal phases of hafnium and hafnia deviated up to 1.4 %
from reference values, which is a very good agreement. That parametrization
was then used to calculate amorphous HfO2 structures with different densities
in order to see, how the density influences the resulting structural and electronic
properties. These results were compared to DFT data from the literature and
classically obtained models, which were provided by collaboration partners from
hannover, with good agreement.

This Chapter also extended the parametrization by silicon in order to be able to
describe HfxSi1−xO2 systems. The results for three different stoichiometric ratios
agreed well with DFT and classical MD results, making this set of sk files promis-
ing for further studies in the future.

Finally, a new parametrization for GaN was presented and validated against DFT
reference data. Compared to the HfO2 parametrization, the obtained results are
not of the same quality, however, the GaN band structures showed a good qual-
itative agreement with DFT equivalents. Calculated bond lengths differed by 0.1
% to 7.1 %.

8.2 Outlook

This work could stimulate further projects in the future. Intra-gap states for thiol
groups on GaN surfaces were found to be optically inactive. More functional
groups need to be investigated in order to obtain more knowledge about the pos-
sibility to tune optical properties of GaN-based nanostructures. Additionally, as a
follow-up, GaN nanowires could be investigated using the aforementioned func-
tional groups, once suitable ligands are identified.

Furthermore the GaN parametrization for DFTB could be combined with other
elements of the corresponding DFTB data set for in order to enable functionaliza-
tion of GaN surfaces with organic molecules in DFTB. Ultimately this could be
extended to the description of nanowires of reasonable sizes, which is nowadays
still impossible with standard DFT methods. This field of research is still less ad-
vanced than the investigation of ZnO nanostructures. DFT and DFTB approaches
could be combined at this point for a more complete and efficient study.

The functionalization of ZnO surfaces with MPA molecules showed very promis-
ing results for optoelectronic applications. This opens up the possibility to extend
this study to more complex systems.
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