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Digestion of crude membrane preparations with
papain releases the extracellular portion of major
histocompatibility complex (MHC) class I molecules.
MHC class I molecules are integral membrane glyco-
protein complexes formed by the noncovalent asso-
ciation of 2 invariant molecules, the heavy chain and
the b2-microglobulin (b2-m), to a wide array of
peptides. The cleaved soluble moiety retains the
antigenic properties of the intact membrane-bound
complex. Here we show that MHC class I digestion
may be carried out on living cells, and we quantitate
the surface expression of MHC complexes by a
combined cytometric/high performance liquid chro-
matographic (HPLC) approach. Papain digestion re-
sults in time- and dose-dependent disappearance of
membrane MHC-associatedfluorescence as detected

by FACS analysis withMHC-specific monoclonal anti-
bodies (mAbs). b2-m and peptides became detectable
by HPLC analysis and western blotting in the diges-
tion buffer and were quantitated by comparison
with purified standards. The cytometric assessment
of the digestion allows one to simultaneously moni-
tor efficacy and toxicity of the treatment. The proce-
dure we describe allows to selectively retrieve by
affinity chromatography MHC from the cell mem-
brane, avoiding any contamination due to intracellu-
lar, ‘‘immature’’ MHC molecules. Cytometry 27:77–
83, 1997. r 1997 Wiley-Liss, Inc.

Key terms: cytometry; HPLC; MHC molecules; pa-
pain; peptides; b2-microglobulin

CD81, ab1 T lymphocytes recognize peptide antigens
in the context of MHC class I molecules. Antigen recogni-
tion may result in T-cell activation, with lysis of the class I
positive cell, in T-cell programmed death by apoptosis or
in T-cell functional paralysis, known as clonal anergy (19).
MHC class I molecules are integral membrane glycopro-

teins, expressed on most nucleated cells and consisting of
a 43–45 kDa polymorphic heavy chain, noncovalently
associated with b2-m (11–12 kDa). The complex is stabi-
lized by the presence of an 8–10 aminoacid peptide that is
required both for the correct folding of the heavy chain
and for b2-m to remain associated to the complex at 37°C
(1, 13, 28, 15). The dissociation rate of b2-m reflects the
stability of the heterotrimer that also depends on the
length and composition of the bound peptide (4, 25).
Papain cleaves the heavy chain at the residue 271,

thirteen aminoacids from the transmembrane region (35),
thus releasing the heavy chain amino terminal extracellu-
lar part, still assembled with the b2-m and the peptide.
Soluble complexes retain the immunogenic properties of
membrane-bound receptors (24) and, due to the lack of
the hydrophobic membrane spanning region, provided

suitable material for MHC crystallisation and X-ray diffrac-
tion (3).
Heavy chain/b2-m/peptide soluble heterotrimers, lack-

ing transmembrane and intracellular domains of the heavy
chain, have been purified from biological fluids: these
soluble complexes may be generated by alternative splic-
ing, with excision of hydrophobic regions, or may be shed
from cell membranes upon cleavage by so far only partially
characterized proteases, whose cleavage site, however,
must be close to the papain cleavage site (5, 6, 28). Soluble
MHC molecules may interfere with T-cell activation (30–
33, 40, 14) by competition with membrane-bound MHC
molecules for T-cell receptor recognition.
In recent years the hierarchy of the peptide-MHC

association, as well as the influence of chaperonins on the
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assembly of the heterotrimer, have been the object of
many investigations (15, 2, 20). It would be useful to
devise procedures to discriminate and selectively purify
‘‘mature’’ cell-bound molecules from their intracellular
‘‘immature,’’ putatively chaperonin-associated precursors.
Flow cytometry analysis of cell membrane antigen

expression, combined with the use of calibrated mi-
crobead standards bearing known amounts of bound
antibodies, proved valuable to quantitatively compare the
relative membrane expression of different antigens (27,
23, 7, 34, 16, 17, 36, 8). This technique converts the
cytometric assessment of the membrane fluorescence in
numbers of bound antibodies per cell. The results may be
biased in the case of complex antigens like MHC mol-
ecules, as different peptides assemble with b2-m and the
heavy chain, and contribute to the overall structure of the
complex (12). Here we provide an alternative approach to
quantitative cytometry that allows one to convert the
membrane fluorescence in absolute amount of MHC mol-
ecules per cell.

MATERIALS AND METHODS
Cell Lines

The RMA line is derived from a Rauscher leukaemia
virus-induced T-cell lymphoma of B6 origin. The line was
kindly provided by Vincenzo Cerundolo and Alain
Townsend ( John Radcliffe Hospital, Oxford, GB). B16F1
cell line, a melanoma which had spontaneously arisen in
B6 mice and stabilized in vitro, was purchased from ATCC
(Rockville, MA). The M14 cell line, a human melanoma
spontaneously stabilized in vitro, was obtained from S.
Ferrini (IST, Genova). The Jurkat cell line, a human acute
T-cell leukaemia, was purchased from ATCC (Rockville,
MA). Cells were maintained in RPMI 1640 medium supple-
mented with 10% FCS, and penicillin-streptomycin at 37°C
and 5% CO2.

Antibodies

W6/32 (anti-human MHC class I), BBM.1 (anti human
b2-microglobulin), and 28.8.6S (anti-mouse MHC class I H2
KbDb) hybridomas were obtained from ATCC and main-
tained in RPMI 1640 medium supplemented with 10% FCS
and penicillin-streptomycin. Monoclonal antibodies (mAbs)
were purified by protein-A affinity chromatography and
dialysed in PBS, pH 7.4. MHC class II expression was
evaluated with the L243 anti human DR mAb (ATCC) or
with the anti-I-Ab mAb (Pharmingen, San Diego, CA). Anti
CD95 mAb was purchased from MBL (Nagoya, Japan) and
anti CD3 (OK-T3) from Ortho Diagnostic (Raritan, NJ).

Enzymatic Digestion of MHC Class I Molecule and
MHC Class I Purification

Cells were extensively washed in PBS, resuspended in
80 mM Na2HPO4 (pH 8.0) to a concentration of 10 3 106

cells/ml. Papain (0.5–4 mg/ml), cystein (20 mM), and
EDTA (1 mM) (all reagents from Sigma, Saint Louis, MO)
were added. After digestion at 37°C, cells were retrieved
by centrifugation. Digestion time was different for differ-
ent cell lines: as treatment efficiency was similar, digestion

times were decided mainly based on cell sensitivity to
toxicity of the treatment and unless otherwise indicated
were 6 h for RMA cells and 2 h for B16, Jurkat, and M14
cells. The supernatant was cleared at 25,000 3 g for 30
min at 4°C and concentrated by ultrafiltration (500 3 g for
2h at 4°C) through an Amicon YM-30 membrane. The
retentate, containing papain and solubilized proteins, was
further analyzed by HPLC (see below), used for western
blotting after precipitation with 10% TCA overnight at 4°C,
or further purified by affinity chromatography with the
mAb W6/32 coupled to the Affi-Gel Hz resin (Bio-Rad) as
described in (18). When indicated, Brefeldin A (5 µg/ml)
(Sigma, Saint Louis, MO) was added 1 h before digestion
and maintained at the same concentration throughout the
digestion.

HPLC Analysis

The HPLC analytical conditions for peptide analysis
were set up with a mixture of 40 synthetic peptides (Mr

1–2 kDa) kindly provided by the laboratory of Dr. B. M.
Conti-Fine (Department of Biochemistry, University of
Minnesota). Lyophilized peptides were resuspended in
water to a final concentration of 240 µg/ml for each
peptide. Mobile phase was constituted by A:0.1% trifluor-
acetic acid (TFA) (Fluka Chemie AG, Buchs, Switzerland)
and B: acetonitrile:eluent A (80:20, v:v), and flow rate was
0.25 ml/min, monitoring the absorbance at 210 nm. The
analysis was carried out using the following gradient: from
0 to 15 min, 10–25% B; from 15 to 40 min, 25–35% B, from
40 to 90 min, 35–100% B. The column was then recondi-
tioned at 10% B.
The HPLC system was a Beckman System Gold (Beck-

man Instruments Inc., Palo Alto, CA), assembled with 2
dual-piston pumps (model 126) and a variable double-
beam UV detector (model 168). The whole apparatus was
computer controlled with the System Gold software for
storage and handling of data. A Delta Pak column C18, 300
Å pore size (15 cm 3 2.0 mm i.d.) (Waters Associates, Inc.,
Milford, MA) was employed.
Temporized fractions (0.5 ml) were collected during

HPLC analysis in the peptide elution zone, hydrolyzed, and
used for aminoacid analysis (10).
Before HPLC analysis, heavy chain/b2-m/peptide com-

plexes were disrupted, bringing the pH of the retentate
from the ultrafiltration to 2.1 by addition of TFA. Quantita-
tion of MHC molecules was made on the base of the
area/pmole value obtained analyzing human purified b2-m
(Sigma, Saint Louis, MO).

Western Blotting

SDS-PAGE was performed under reducing conditions on
a 15% SDS-gel polyacrilamide. The gels were blotted to
nitrocellulose membranes (Schleicher & Schuell, Dassel,
Germany) and subsequently blocked with 3% nonfat dry
milk. After washing three times in PBS supplemented with
0.1% Tween 20, gels were blotted for 1 h at room
temperature with the mAb BBM.1 (anti-b2 microglobulin).
The blots were washed again 3 times and further incu-
bated with an alkaline phosphate-conjugated goat anti-
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mouse antibody (DAKO A/S, Denmark), 1:1000 diluted,
for 1 h at room temperature. b2-m molecules were
visualized by addition of alkaline phosphatase substrate
solution. As a positive control, 1 µg of purified human b2-m
was blotted.

Flow Cytometry

Cells were labelled by indirect immunofluorescence
either before (nondigested sample) or after different times
of enzymatic digestion, usingW6/32, OKT3, BBM.1, 28.8.6S
(1µg/106 cells, 30 min at 4°C) or anti-CD95 CH11 (500
ng/106 cells, 30 min at 4°C) mAbs. A fluorescein isothiocya-
nate (FITC)-labelled goat antimouse IgG1 or IgM (Southern
Biotechnology Associates, Birmingham, AL) was used as a
second-step reagent. Negative control was obtained by
treating the cells with the second-step reagent only. Flow
cytometric analysis was performed using a fluorescence
activated cell sorter (FACSstarPlus, Becton Dickinson, San
Jose, CA). Cell vitality after different times of digestion was
evaluated according to physical parameters [as described
in (11) and (26)]. Statistical analysis was performed using
the Kolmogorov-Smirnov Two-Sample Test (39).

RESULTS
To quantitate MHC class I membrane expression by flow

cytometry, we first investigated whether papain digestion
could be carried out on living cells. The results of this
treatment on MHC associated fluorescence of different cell
lines are illustrated in Figure 1. Papain digestion was
carried out at 37°C, pH 8, on melanoma, thymoma, and
leukaemia cells. The analysis was performed on unfixed
specimens both before or after 2 h papain treatment, with
mAbs recognizing epitopes of either human or murine
MHC complexes, followed by staining with FITC-labelled
goat antimouse IgG1 Abs as second-step reagents. The
negative control (fluorescence background) was obtained
by incubation with the second-step reagent only.
Although cells were heterogeneous in terms of species,

embryological origin, or MHC expression, the treatment
consistently resulted in a decrease of the basal MHC
associated fluorescence. The decrease of MHC associated
fluorescence upon papain digestion is highly reproduc-
ible: when digestion was performed in quadruplicate,
standard deviations ranged between 4.48% and 6.24%,
while standard errors ranged between 2.24% and 3.06% of
the resulting data. Papain digestion significantly affected
the amount of MHC associated fluorescence, as assessed
by the Kolmogorov-Smirnov two-sample test (Fig. 1).
However, it did not influence the expression of other
unrelated membrane molecules, like the CD3 or the CD95
(Fas, APO-1) molecules (Fig. 2), constitutively expressed
by activated T cells [e.g., see (30)]. The MHC turnover
during the enzymatic digestion does not substantially
influence the phenomenon, as digestion was unaffected by
treatment with Brefeldin A, an agent that interrupts the
cell secretory pathway, thus preventing the expression of
newly synthesized molecules at a the cell surface while
allowing membrane recycling (21, 38) (Fig. 2 C and D).
Cell vitality was assessed by staining with vital dies (trypan

blue, propidium iodide) or by evaluation of their physical
parameters. Only for treatments longer than 2 h did
physical characteristics occasionally change, assuming
apoptotic features [low Foward SCatter (FSC) and high
Side SCatter (SSC); see (11), (26)] (not shown). In the
experiments described in this study, however, these
parameters were not affected (e.g., see Fig. 2, dot plots).
The MHC-associated fluorescence decreased in a dose-

(Fig. 3) and time-dependent (Fig. 4, top) fashion. The
calculated correlation coefficient of linear regression (diges-
tion time versus MFI) was always higher than 0.985.
We did not observe any variation in the time kinetic of

MHC digestion when mAbs recognizing different epitopes
on the MHC complex were used (Fig. 4, bottom).

b2-m and peptides became detectable by HPLC in the
digestion buffer when its pH was brought to 2.1 (Fig. 5,
top panel). On the contrary, neither b2-m nor peptides
were detected in the supernatants of cells incubated in the
digestion buffer without papain (Fig. 5, top, dotted line).

FIG. 1. Papain digestion results in the loss of MHC class I-associated
fluorescence. RMA (panel A), B16F1 (panel B), Jurkat (panel C), and M14
(panel D) cells were stained by indirect immunofluorescence with
saturating amounts of antihuman or murine MHC class I mAbs, followed
by saturating amounts of FITC conjugated goat antimouse IgG1 mAb, in
the absence (solid line) or in the presence (dashed line) of papain (1
mg/ml). Background fluorescence was obtained with the second-step
reagent only (dotted line). The difference between papain-treated and
untreated cells was always statistically significant, based on the Kol-
mogorov-Smirnov algorithms: the D/s(n) values were respectively 66.61
(RMA), 28.55 (B16F1), 66.58 (Jurkat), and 67.96 (M14). X axis: fluores-
cence intensity (Arbitrary Units). Y axis: cell number.
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The above data support the notion that papain releases
MHC complexes from the cell membrane, as detected by
the decrease of the MHC associated fluorescence evalu-
ated by flow cytometry. Fig. 5 (bottom panels) illustrates
the comparison of the HPLC analysis of the digestion
buffer with synthetic peptide standards or with purified
b2-m. The availability of purified b2-m allowed to quanti-
tate the yield of MHC complexes after papain digestion,
based on the area/pmol of injected b2-m. In the experi-
ment shown in Fig. 5, a hundred pmoles of b2-m (and
therefore of MHC soluble complexes) were recovered
after digestion of 125 million cells, providing a yield of 0.8
attomoles per cell. As the fluorescence per cell value
changed upon digestion from 120 to 64. Each fluorescence
unit accounted for 0.0143 attomoles of MHC. Amino acid
analysis of the material obtained by collection of the
peptide-containing region of the chromatogram confirmed
the peptidic nature of the material and provided a further
tool for quantification of the purified MHC complexes (not
shown).

Solubilized MHC molecules in the papain-treated cell
supernatant were purified by affinity chromatography. Fig.
6 (top) shows the western blot of the acid-treated diges-
tion buffer and of the material eluted from the MHC-
specific affinity column. b2-m was present in the digestion
buffer andwas quantitatively retrieved after affinity chroma-
tography. In Fig. 6 (bottom), total papain released pep-
tides were analyzed either before (solid line) or after
(dotted line) affinity chromatography. HPLC profiles of the
peptides were strikingly similar.

DISCUSSION
In this report we describe a novel procedure for the

quantitative analysis of MHC class I molecules by flow
cytometry. MHC class I molecules are peculiar membrane
receptors in that they are heterotrimers composed of 2
invariant molecules, the heavy chain and the b2-m, nonco-
valently associated to a wide array of different peptides (1,
13, 2, 15, 29). The immunogenicity of spontaneous neo-
plasms correlates with the amount of MHC class I mol-
ecules on the cell surface; their down-regulation favors the
escape of tumors from the immune surveillance and will
probably influence the results of antineoplastic vaccina-
tion procedures. Current approaches for quantitation of
membrane molecules by flow cytometry relies on the
quantitation of bound antibodies per cell (36, 37, 8). This
implies that every membrane molecule bound the anti-
body with identical affinity. This may not be the case for
MHC molecules, as data derived by crystallization and
X-ray diffraction of ‘‘empty’’ MHC molecules complexed
with different synthetic peptides demonstrate that associ-
ated peptides contribute to the MHC complex conforma-
tion (12). Quantitation by flow cytometry of the total MHC
class I and class II membrane expression per cell is
therefore a challenge, because MHC complexes stabilized

FIG. 2. Papain treatment results in MHC class I digestion but does not
affect CD3 or CD95 membrane expression. CD3, CD95, and MHC class I
membrane expression was assessed before (solid line) or after (dashed
line) papain digestion of Jurkat cells. In the bottom panel, MHC class I
digestion was carried out in the presence of Brefeldin A (5 µg/ml). X axis:
fluorescence intensity (Arbitrary Units). Y axis: cell number. Dot plots
illustrate the physical characteristics (FSC versus SSC) of the cells before
or after the papain digestion.

FIG. 3. MHC digestion depends on the concentration of papain. B16-F1
cells were digested in the absence (dashed line) or in the presence of 4
mg/ml (solid line) or of 0.5 mg/ml papain (heavily dotted line). Back-
ground fluorescence was obtained with the second-step reagent only
(lightly dotted line). X axis: fluorescence intensity (Arbitrary Units). Y axis:
cell number.
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by different peptides may be differently recognized by
MHC-specific mAbs (22; see also 9). The mere assessment
of the antibody-bound fluorescence may therefore bias the
results, due to the loss of poorly recognized complexes. It
would therefore be convenient to be able to correlate the
cytometric assessment of the antibody-bound fluores-
cence with the biochemical quantitation of the amount of
membrane MHC molecules.
To address this issue we used a combined cytometric/

HPLC procedure that allows one to convert the MHC-
associated fluorescence in amount of MHC molecules per
cell. We relied on the well-described property of the
enzyme papain to cleave the extracellular hydrophilic
portion of MHC complexes from crudemembrane prepara-
tions (35, 24). We speculated that papain digestion of
living cells could result in a quantitative decrease of the
MHC-associatedmembrane fluorescence, obtained by stain-

ing with specific mAbs. The decrease should, in this
scenario, be accompanied by the release of cleaved MHC
molecules in the digestion buffer. Our speculation indeed
proved correct, and soluble MHC molecules could easily
be quantitated by HPLC analysis and comparison with
purified b2-m standards.
Papain is a nonspecific protease that may potentially

affect other molecules on the cell membrane and particu-
larly MHC class II molecules and B cell receptors. The lines
we used in this study, however, are not of B cell origin;
neither are they express class II molecules, as detected by
staining with human and murine class II specific mAbs
(not shown). Furthermore, papain digestion does not
influence the fluorescence associated to MHC-unrelated
membrane molecules, like the CD3 complex or the CD95

FIG. 4. MHC digestion is time dependent. Top panels: B16-F1 cells
were stained in the absence (solid line) or in the presence of 2 mg/ml
papain for 1208 (heavily dotted line), for 1808 (dashed line), for 3008
(lightly dotted line). The background fluorescence value was obtained
with the second-step reagent only. X axis: fluorescence intensity (Arbi-
trary Units). Y axis: cell number. Bottom panels: to assess the time
kinetic of the digestion with mAbs specific for different epitopes on the
MHC complex, Jurkat cells were stained by indirect immunofluorescence
with saturating amounts of the W6/32 mAb, recognizing a conformational
epitope of the heavy chain/b2-m complex (left panel) or with the BBM.1
mAb recognizing an epitope on the b2-m (right panel), followed by
saturating amounts of FITC conjugated goat antimouse IgG1 mAb. MFI
values were assessed after 608 and 1008 digestion.

FIG. 5. Papain digestion releases complexes containing b2-m and
peptides from the cell membrane. HPLC analysis was performed on the
digestion buffer, either in the presence (solid line) or in the absence
(dotted line) of 2 mg/ml papain, as described in the Materials and Methods
section (top panel). Peptides and the b2-m retention times were
identified by comparison with synthetic peptide mixtures and of purified
b2-m. Bottom left panel, comparison of the 10–40 min range digestion
buffer (solid line) with a mixture of 41 synthetic peptides 1–2 kDa (dotted
line). Bottom right panel, comparison of the digestion buffer (solid line)
with purified b2-m standard (dotted line). Standard b2-m retention time: 56
min.

81FLOW CYTOMETRY OF MHC ENZYMATIC DIGESTION



receptor; in turn, it is not affected by the turnover of MHC
class I molecules, as the digestion gives similar results in
the absence or in the presence of Brefeldin A, an agent that
interferes with the intracellular protein trafficking trough
the Golgi complex, preventing the expression of newly
synthesized MHC molecules on the cell membrane.
Cleaved MHC complexes can be dissociated in the

single components by acid treatment, giving raise to b2-m

and peptides. They are unlikely to derive from material
secreted or expelled from ruptured cells, because neither
b2-m nor peptides could be detected in the absence of the
enzyme (Fig. 5, dotted line). Finally, cleaved complexes
can be retrieved by MHC class-I specific affinity chromatog-
raphy of the digestion buffer. The affinity-purified complex
had an apparent molecular weight of 45 kDa (not shown),
compatible with the molecular weight reported for papain
cleaved MHC class I molecules (3, 24). Affinity-purified
acid-treated complexes still gave origin to b2-m and pep-
tides (see western blot and HPLC analysis shown in Fig. 6).
This also makes it unlikely that further proteolytic diges-
tion of the complex may take place in the experimental
conditions we describe.
Quantitation of released b2-m provides information on

the actual MHC expressed on the membrane, indepen-
dently of the affinity of antibodies for MHC complexes
stabilized by different peptides; the ratio between the
retrieved MHC molar amount and the loss of MHC-
associated fluorescence upon enzymatic digestion pro-
vides a novel ‘‘conversion factor’’ to transform the qualita-
tive measurement of a fluorescence (arbitrary units) in
numbers of membrane MHC molecules per cell.
The procedure we describe is relevant for quantitation

of total membrane MHC molecules. It may also potentially
be extended to the assessment of the relative peptide
occupancy of the total MHC molecule repertoire, using
synthetic peptide sequences as standards in association
with the purified b2-m after affinity chromatography purifi-
cation of the cleaved MHC moieties. Finally, it provides an
easy tool to monitor by flow cytometry the enzymatic
digestion of cells: it allows one to stop the reaction before
cell death occurs and to prevent the release of ‘‘imma-
ture,’’ putatively chaperonin-associated MHC molecules.
After papain solubilization, MHC complexes can be puri-
fied by affinity chromatography and provide an optimal
substrate for further physicochemical analysis of mature
MHCmolecule-associated peptides by capillary electropho-
resis and mass spectrometry in the absence of any deter-
gent contaminant.
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