
J Autom Reasoning (2012) 48:43–105
DOI 10.1007/s10817-010-9194-x

Hybrid
A Definitional Two-Level Approach to Reasoning
with Higher-Order Abstract Syntax

Amy Felty · Alberto Momigliano

Received: 19 September 2008 / Accepted: 19 July 2010 / Published online: 7 August 2010
© Springer Science+Business Media B.V. 2010

Abstract Combining higher-order abstract syntax and (co)-induction in a logical
framework is well known to be problematic. We describe the theory and the practice
of a tool called Hybrid, within Isabelle/HOL and Coq, which aims to address many
of these difficulties. It allows object logics to be represented using higher-order
abstract syntax, and reasoned about using tactical theorem proving and principles
of (co)induction. Moreover, it is definitional, which guarantees consistency within
a classical type theory. The idea is to have a de Bruijn representation of λ-terms
providing a definitional layer that allows the user to represent object languages using
higher-order abstract syntax, while offering tools for reasoning about them at the
higher level. In this paper we describe how to use Hybrid in a multi-level reasoning
fashion, similar in spirit to other systems such as Twelf and Abella. By explicitly
referencing provability in a middle layer called a specification logic, we solve the
problem of reasoning by (co)induction in the presence of non-stratifiable hypothet-
ical judgments, which allow very elegant and succinct specifications of object logic
inference rules. We first demonstrate the method on a simple example, formally
proving type soundness (subject reduction) for a fragment of a pure functional
language, using a minimal intuitionistic logic as the specification logic. We then
prove an analogous result for a continuation-machine presentation of the operational

Felty was supported in part by the Natural Sciences and Engineering Research Council of
Canada Discovery program. Momigliano was supported by EPSRC grant GR/M98555 and
partially by the MRG project (IST-2001-33149), funded by the EC under the FET proactive
initiative on Global Computing.

A. Felty (B)
School of Information Technology and Engineering,
University of Ottawa, Ottawa, ON K1N 6N5, Canada
e-mail: afelty@site.uottawa.ca

A. Momigliano
Laboratory for the Foundations of Computer Science, School of Informatics,
University of Edinburgh, Edinburgh EH9 3JZ, Scotland
e-mail: amomigl1@inf.ed.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187870899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

44 A. Felty, A. Momigliano

semantics of the same language, encoded this time in an ordered linear logic that
serves as the specification layer. This example demonstrates the ease with which
we can incorporate new specification logics, and also illustrates a significantly more
complex object logic whose encoding is elegantly expressed using features of the new
specification logic.

Keywords Logical frameworks · Higher-order abstract syntax ·
Interactive theorem proving · Induction · Variable binding · Isabelle/HOL · Coq

1 Introduction

Logical frameworks provide general languages in which it is possible to represent a
wide variety of logics, programming languages, and other formal systems. They are
designed to capture uniformities of the deductive systems of these object logics and
to provide support for implementing and reasoning about them. One application of
particular interest of such frameworks is the specification of programming languages
and the formalization of their semantics in view of formal reasoning about important
properties of these languages, such as their soundness. Programming languages that
enjoy such properties provide a solid basis for building software systems that avoid a
variety of harmful defects, leading to systems that are significantly more reliable and
trustworthy.

The mechanism by which object logics are represented in a logical framework
has a paramount importance on the success of a formalization. A naive choice of
representation can seriously endanger a project almost from the start, making it
almost impossible to move beyond the very first step of the developments of a case
study (see [69], which barely goes beyond encoding the syntax of the π -calculus).

Higher-Order Abstract Syntax (HOAS) is a representation technique used in
some logical frameworks. Using HOAS, whose idea dates back to Church [22],
binding constructs in an object logic are encoded within the function space pro-
vided by a meta-language based on a λ-calculus. For example, consider encoding
a simple functional programming language such as Mini-ML [24] in a typed meta-
language, where object-level programs are represented as meta-level terms of type
expr. We can introduce a constant fun of type (expr → expr) → expr to represent
functions of one argument. Using such a representation allows us to delegate to
the meta-language α-conversion and capture-avoiding substitution. Further, object
logic substitution can be rendered as meta-level β-conversion. However, experiments
such as the one reported in [77] suggest that the full benefits of HOAS can be
enjoyed only when the latter is paired with support for hypothetical and parametric
judgments [49, 64, 88]. Such judgments are used, for example, in the well-known
encoding of inference rules assigning simple types to Mini-ML programs. Both the
encoding of programs and the encoding of the typing predicate typically contain
negative occurrences of the type or predicate being defined (e.g., the underlined
occurrence of expr in the type of fun above). This rules out any naive approach
to view those set-theoretically as least fixed points [47, 87] or type-theoretically as
inductive types, which employ strict positivity [86] to enforce strong normalization.
As much as HOAS sounds appealing, it raises the question(s): how are we going

Hybrid: Reasoning with HOAS 45

to reason about such encodings, in particular are there induction and case analysis
principles available?

Among the many proposals—that we will survey in Section 6—one solution
that has emerged in the last decade stands out: specif ication and (inductive) meta-
reasoning should be handled within a single system but at different levels. The first
example of such a meta-logic was FOλ�IN [67], soon to be followed by its successor,
Linc [107].1 They are both based on intuitionistic logic augmented with introduction
and elimination rules for def ined atoms (partial inductive definitions, PIDs [48]), in
particular def initional ref lection (defL), which provides support for case analysis.
While FOλ�IN has only induction on natural numbers as the primitive form of
inductive reasoning, the latter generalizes that to standard forms of induction and
co-induction [80]; Linc also introduces the so-called “nabla” quantifier ∇ [74] to
deal with parametric judgments. This quantifier accounts for the dual properties of
eigenvariables, namely freshness (when viewed as constants introduced by the quan-
tifier right rule) and instantiability as a consequence of the left rule and case analysis.
Consistency and viability of proof search are ensured by cut-elimination [66, 107].
Inside the meta-language, a specif ication logic (SL) is developed that is in turn
used to specify and (inductively) reason about the object logic/language (OL) under
study. This partition avoids the issue of inductive meta-reasoning in the presence of
negative occurrences in OL judgments, since hypothetical judgments are intension-
ally read in terms of object-level provability. The price to pay is coping with this
additional layer where we explicitly reference the latter. Were we to work with only
a bare proof-checker, this price could be indeed deemed too high; however, if we
could rely on some form of automation such as tactical theorem proving, the picture
would be significantly different.

The first author has proposed in [34] that, rather than implementing an inter-
active theorem prover for such meta-logics from scratch, they can be simulated
within a modern proof assistant. (Coq [13] in that case.) The correspondence is
roughly as follows: the ambient logic of the proof assistant in place of the basic
(logical) inference rules of FOλ�IN , introduction and elimination (inversion) rules
of inductive types (definitions) in place of the defR and defL rules of PIDs.2 Both
approaches introduce a minimal sequent calculus [57] as a SL, and a Prolog-like set
of clauses for the OL. Nevertheless, in a traditional inductive setting, this is not quite
enough, as reasoning by inversion crucially depends on simplifying in the presence of
constructors. When such constructors are non-inductive, which is typically the case
with variable-binding operators, this presents a serious problem. The approach used
in that work was axiomatic: encode the HOAS signature with a set of constants and
add a set of axioms stating the freeness and extensionality properties of the constants.

1This is by no way the end of the story; on the contrary, the development of these ambient logics is
very much a work in progress: Tiu [108] introduced the system LGω to get rid of the local signatures
required by Linc’s ∇ quantifier. Even more recently Gacek, Miller & Nadathur presented the logic
G to ease reasoning on open terms and implemented it in the Abella system [40–42]. However,
as this overdue report of our approach describes with an undeniable tardiness a system that was
developed before the aforementioned new contributions, we will take the liberty to refer to Linc as
the “canonical” two-level system. We will discuss new developments in more depth in Section 6.1.
2The defL rule for PIDs may use full higher-order unification, while inversion in an inductive proof
assistant typically generates equations that may or may not be further simplified, especially at higher-
order types.

46 A. Felty, A. Momigliano

Fig. 1 Architecture of the Hybrid system

With the critical use of those axioms, it was shown that it is possible to replicate,
in the well-understood and interactive setting of Coq, the style of proofs typical of
FOλ�IN . In particular, subject reduction for Mini-ML is formalized in [34] following
this style very closely; this means that the theorem is proved immediately without
any “technical” lemmas required by the choice of encoding technique or results
that may be trivial but are intrinsically foreign to the mathematics of the problem.
Moreover, HOAS proofs of subject reduction typically do not require weakening or
substitutions lemmas, as they are implicit in the higher-order nature of the encoding.
However, this approach did not offer any formal justification to the axiomatic
approach and it is better seen as a proof-of-concept more than foundational work.

The Hybrid tool [3] was developed around the same time: it implements a higher-
order meta-language within Isabelle/HOL [82] that provides a form of HOAS for
the user to represent OLs. The user level is separated from the infrastructure, in
which HOAS is implemented def initionally via a de Bruijn style encoding. Lemmas
stating properties such as freeness and extensionality of constructors are proved and
no additional axioms are required.

It was therefore natural to combine the HOAS meta-language provided by
Hybrid with Miller & McDowell’s two-level approach, modified for inductive proof
assistants. We implement this combined architecture in both Isabelle/HOL and Coq,
but we speculate that the approach also works for other tactic-based inductive proof
assistants, such as PVS [85], LEGO [60] etc. We describe mainly the Isabelle/HOL
version here, though we compare it in some detail with the Coq implementation.3 A
graphical depiction of the architecture is shown in Fig. 1. We often refer to the Hybrid
and Isabelle/HOL levels together as the meta-logic. When we need to distinguish the
Isabelle/HOL level on its own, we call it the meta-meta-logic. When we say two-level
reasoning, we are referring to the object and specification levels, to emphasize that
there are two separate reasoning levels in addition to the meta-level.

Moreover, we suggest a further departure in design (Section 4.4) from the original
two-level approach [67]: when possible, i.e., when the structural properties of the
meta-logic are coherent with the style of encoding of the OL, we may reserve for
the specification level only those judgments that cannot be adequately encoded

3We also compare it with a constructive version implemented in Coq [17], which we describe in
Section 6.5.

Hybrid: Reasoning with HOAS 47

inductively and leave the rest at the Isabelle/HOL level. We claim that this frame-
work with or without this variation has several advantages:

– The system is more trustworthy: freeness of constructors and, more importantly,
extensionality properties at higher-order types are not assumed, but proved
via the related properties of the infrastructure, as we show in Section 3 (MC-
Theorem 9).

– The mixing of meta-level and specification-level judgments makes proofs more
easily mechanizable; more generally, there is a fruitful interaction between (co)-
induction principles, meta-logic datatypes, classical reasoning, and hypothetical
judgments, which lends itself to a good deal of automation.

– We are not committed to a single monolithic SL, but we may adopt different
ones (linear, relevant, bunched, etc.) according to the properties of the OL we
are encoding. The only requirement is consistency, to be established with a
formalized cut-elimination argument. We exemplify this methodology using non-
commutative linear logic to reason about continuation machines (Section 5).

Our architecture could also be seen as an approximation of Twelf [102], but it
has a much lower mathematical overhead, simply consisting of a small set of theories
(modules) on top of a proof assistant. In a sense, we could look at Hybrid as a way to
“represent” Twelf’s meta-proofs in the well-understood setting of higher-order logic
as implemented in Isabelle/HOL (or the calculus of (co)inductive constructions as
implemented in Coq). Note that by using a well-understood logic and system, and
working in a purely definitional way, we avoid the need to justify consistency by
syntactic or semantic means. For example, we do not need to show a cut-elimination
theorem for a new logic as in [41], nor prove results such as strong normalization of
calculi of the Mω family [101] or about the correctness of the totality checker behind
Twelf [104]. Hence our proofs are easier to trust, as far as one trusts Isabelle/HOL
and Coq.

Additionally, we can view our realization of the two-level approach as a way
of “fast prototyping” HOAS logical frameworks. We can quickly implement and
experiment with a potentially interesting SL; in particular we can do meta-reasoning
in the style of tactical theorem proving in a way compatible with induction. For
example, as we will see in Section 5, when experimenting with a different logic, such
as a sub-structural one, we do not need to develop all the building blocks of a usable
new framework, such as unification algorithms, type inference or proof search, but
we can rely on the ones provided by the proof assistant. The price to pay is, again, the
additional layer where we explicitly reference provability, requiring a sort of meta-
interpreter (the SL logic) to drive it. This indirectness can be alleviated, as we shall
see, by defining appropriate tactics, but this is intrinsic to the design choice of relying
on a general ambient logic (here Isabelle/HOL or Coq, in [67, 107] some variation
of Linc). This contrasts with the architecture proposed in [65], where the meta-meta-
logic is itself sub-structural (linear in this case) and, as such, explicitly tailored to the
automation of a specific framework.

We demonstrate the methodology by first formally verifying the subject reduction
property for the standard simply-typed call-by-value λ-calculus, enriched with a
recursion operator. While this property (and the calculus as well) has been criticized
as too trivial to be meaningful [6]—and, to a degree, we agree with that—we feel
that the familiarity of the set-up will ease the understanding of the several layers of

48 A. Felty, A. Momigliano

our architecture. Secondly we tackle a more complex form of subject reduction, that
of a continuation machine, whose operational semantics is encoded sub-structurally,
namely in non-commutative linear logic.

Outline The paper is organized as follows: Section 2 recalls some basic notions of
Hybrid and its implementation in Isabelle/HOL and Coq. Section 3 shows how it can
be used as a logical framework. In Section 4 we introduce a two-level architecture and
present the first example SL and subject reduction proof, while Section 5 introduces a
sub-structural SL and uses it for encoding continuation machines. We follow that up
with an extensive review and comparison of related work in Section 6, and conclude
in Section 7. This paper is an archival documentation of Hybrid 0.1 (see Section 6.5
for the terminology), extending previous joint work with Simon Ambler and Roy
Crole [2, 3, 75–77], Jeff Polakow [79] and Venanzio Capretta [17].

Notation 1 (Isabelle/HOL) We use a pretty-printed version of Isabelle/HOL con-
crete syntax. A type declaration has the form s : : [t1, . . . tn] ⇒ t. We stick to the
usual logical symbols for Isabelle/HOL connectives and quantifiers (¬, ∧, ∨, −→,
∀, ∃). Free variables (upper-case) are implicitly universally quantified (from the
outside) as in logic programming. The sign == (Isabelle meta-equality) is used for
equality by def inition, and

∧
for Isabelle universal meta-quantification. A rule (a

sequent) of the schematic form:

H1 . . . Hn

C

is represented as [[H1; . . . ; Hn]] =⇒ C. A rule with discharged assumptions such
as conjunction elimination is represented as [[P ∧ Q; [[P; Q]] =⇒ R]] =⇒ R. The
keyword MC-Theorem (Lemma) denotes a machine-checked theorem (lemma),
while Inductive introduces an inductive relation in Isabelle/HOL, and datatype in-
troduces a new datatype. We freely use infix notations, without explicit declarations.
We have tried to use the same notation for mathematical and formalized judgments.
The proof scripts underlying this paper are written in the so-called “Isabelle old
style”, i.e., they are exclusively in the tactical-style, e.g., sequences of commands.
This was still fashionable and supported by Isabelle/HOL 2005, as opposed to
the now required ISAR [56] idioms of the new Isabelle/HOL versions. However,
in the interest of time, intellectual honesty (and also consistency with Coq), we
have decided to base the paper on the original code of the project, which had
as a fundamental goal the automation of two-level reasoning. Naturally, some of
the comments that we make about concrete features of the system, (as well as
interactions with it) are by now relevant only to that version. When those happen
to be obsolete, we will try to make this clear to the reader. We expect, however
(and indeed we already are in the process, see Section 6.5) to carry over this work to
the current version of Isabelle/HOL, possibly enhanced by the new features of the
system.

Notation 2 (Coq) We keep Coq’s notation similar to Isabelle/HOL’s where possible.
We use the same syntax for type declarations, though of course the allowable
types are different in the two languages. We also use == for equality by definition

Hybrid: Reasoning with HOAS 49

and = for equality. There is no distinction between a functional type arrow and
logical implication in Coq, though we use both ⇒ and =⇒ depending on the context.
In Isabelle/HOL, there is a distinction between notation at the Isabelle meta-level
and the HOL object-level, which we do not have in Coq. Whenever an Isabelle/HOL
formula has the form [[H1; . . . ; Hn]] =⇒ C, and we say that the Coq version is
the same, we mean that the Coq version has the form H1 =⇒ · · · =⇒ Hn =⇒ C, or
equivalently H1 ⇒ · · · ⇒ Hn ⇒ C, where implication is right-associative as usual.

Source files for the Isabelle/HOL and Coq code can be found at hybrid.dsi.
unimi.it/jar [55].

2 Introducing Hybrid

The description of the Hybrid layer of our architecture is taken fairly directly from
previous work, viz. [3]. Central to our approach is the introduction of a binding
operator that (1) allows a direct expression of λ-abstraction, and (2) is def ined in
such a way that expanding its definition results in the conversion of a term to its
de Bruijn representation. The basic idea is inspired by the work of Gordon [45], and
also appears in collaborative work with Melham [46]. Gordon introduces a λ-calculus
with constants where free and bound variables are named by strings; in particular, in a
term of the form (dLAMv t), v is a string representing a variable bound in t, and dLAM
is a function of two arguments, which when applied, converts free occurrences of v
in t to the appropriate de Bruijn indices and includes an outer de Bruijn abstraction
operator. Not only does this approach provide a good mechanism through which one
may work with named bound variables under α-renaming, but it can be used as a
meta-logic by building it into an Isabelle/HOL type, say of proper terms, from which
other binding signatures can be defined, as exemplified by Gillard’s encoding of the
object calculus [43]. As in the logical framework tradition, every OL binding operator
is reduced to the λ-abstraction provided by the type of proper terms.

Our approach takes this a step further and exploits the built in HOAS which
is available in systems such as Isabelle/HOL and Coq. Hybrid’s LAM constructor
is similar to Gordon’s dLAM except that LAM is a binding operator. The syntax
(LAM v. t) is actually notation for (lambda λ v. t), which makes explicit the use of
bound variables in the meta-language to represent bound variables in the OL. Thus
the v in (LAM v. t) is a meta-variable (and not a string as in Gordon’s approach).

At the base level, we start with an inductive definition of de Bruijn expressions, as
Gordon does.

datatype expr = CON con | VAR var | BND bnd | expr $ expr | ABS expr

In our setting, bnd and var are defined to be the natural numbers, and con provides
names for constants. The latter type is used to represent the constants of an OL, as
each OL introduces its own set of constants.

To illustrate the central ideas, we start with the λ-calculus as an OL. To avoid
confusion with the meta-language (i.e., λ-abstraction at the level of Isabelle/HOL
or Coq), we use upper case letters for variables and a capital � for abstraction. For
example, consider the object-level term T0 = �V1.(�V2.V1V2)V1V3. The terms TG

http://hybrid.dsi.unimi.it/jar
http://hybrid.dsi.unimi.it/jar

50 A. Felty, A. Momigliano

and TH below illustrate how this term is represented using Gordon’s approach and
Hybrid, respectively.

TG = dLAM v1 (dAPP (dAPP (dLAM v2 (dAPP (dVAR v1)

(dVAR v2))) (dVAR v1)) (dVAR v3))

TH = LAM v1.(((LAM v2.(v1 $ v2)) $ v1) $ VAR 3)

In Hybrid we also choose to denote object-level free variables by terms of the form
(VAR i), though this is not essential. In either case, the abstraction operator (dLAM
or LAM) is defined, and expanding definitions in both TG and TH results in the same
term, shown below using our de Bruijn notation.

ABS (((ABS (BND 1 $ BND 0)) $ BND 0) $ VAR 3)

In the above term all the variable occurrences bound by the first ABS, which
corresponds to the bound variable V1 in the object-level term, are underlined. The
lambda operator is central to this approach and its definition includes determining
correct indices. We return to its definition in Section 2.1.

In summary, Hybrid provides a form of HOAS where object-level:

– free variables correspond to Hybrid expressions of the form (VAR i);
– bound variables correspond to (bound) meta-variables;
– abstractions � V. E correspond to expressions (LAM v. e), defined as

(lambda λ v. e);
– applications E1 E2 correspond to expressions (e1 $ e2).

2.1 Definition of Hybrid in Isabelle/HOL

Hybrid consists of a small number of Isabelle/HOL theories (actually two, for a total
of about 130 lines of definitions and 80 lemmas and theorems), which introduce the
basic definition for de Bruijn expressions (expr) given above and provide operations
and lemmas on them, building up to those that hide the details of de Bruijn syntax
and permit reasoning on HOAS representations of OLs. In this section we outline the
remaining definitions, and give some examples. Note that our Isabelle/HOL theories
do not contain any axioms which require external justification,4 as in some other
approaches such as the Theory of Contexts [53].

As mentioned, the operator lambda : : [expr ⇒ expr] ⇒ expr is central to our
approach, and we begin by considering what is required to fill in its definition. Clearly
(lambda e) must expand to a term with ABS at the head. Furthermore, we must
define a function f such that (lambda e) is (ABS (f e)) where f replaces occurrences
of the bound variable in e with de Bruijn index 0, taking care to increment the index
as it descends through inner abstractions. In particular, we will define a function lbind
of two arguments such that formally:

lambda e == ABS (lbind 0 e)

and (lbind i e) replaces occurrences of the bound variable in e with de Bruijn index
i, where recursive calls on inner abstractions will increase the index. As an example,

4We will keep emphasizing this point: the package is a definitional extension of Isabelle/HOL and
could be brought back to HOL primitives, if one so wishes.

Hybrid: Reasoning with HOAS 51

consider the function λ v.ABS (BND 0 $ v). In this case, application of lbind with
argument index 0 should result in a level 1 expression:

lbind 0 (λ v.ABS (BND 0 $ v)) = . . . = ABS (BND 0 $ BND 1)

and thus:

lambda (λ v.ABS (BND 0 $ v)) = ABS (ABS (BND 0 $ BND 1)).

We define lbind as a total function operating on all functions of type (expr ⇒
expr), even exotic ones that do not encode λ-terms. For example, we could have
e = (λx.count x) where (count x) counts the total number of variables and constants
occurring in x. Only functions that behave uniformly or parametrically on their
arguments represent λ-terms. We refer the reader to the careful analysis of this
phenomenon (in the context of Coq) given in [30] and to Section 6 for more
background. We will return to this idea shortly and discuss how to rule out non-
uniform functions in our setting. For now, we define lbind so that it maps non-uniform
subterms to a default value. The subterms we aim to rule out are those that do not
satisfy the predicate ordinary : : [expr ⇒ expr] ⇒ bool, defined as follows:5

ordinary e == (∃a. e = (λ v.CON a) ∨
e = (λ v. v) ∨
∃n. e = (λ v.VAR n) ∨
∃ j. e = (λ v.BND j) ∨
∃ f g. e = (λ v. f v $ g v) ∨
∃ f. e = (λ v.ABS (f v)))

We do not define lbind directly, but instead define a relation
lbnd : : [bnd, expr ⇒ expr, expr] ⇒ bool and prove that this relation defines
a function mapping the first two arguments to the third.

Inductive lbnd : : [bnd, expr ⇒ expr, expr] ⇒ bool
=⇒ lbnd i (λ v.CON a) (CON a)

=⇒ lbnd i (λ v. v) (BND i)
=⇒ lbnd i (λ v.VAR n) (VAR n)

=⇒ lbnd i (λ v.BND j) (BND j)
[[lbnd i f s; lbnd i g t]] =⇒ lbnd i (λ v. f v $ g v) (s $ t)

lbnd (i + 1) f s =⇒ lbnd i (λ v.ABS (f v)) (ABS s)
¬(ordinary e) =⇒ lbnd i e (BND 0)

In showing that this relation is a function, uniqueness is an easy structural induction.
Existence is proved using the following abstraction induction principle.

MC-Theorem 1 (abstraction_induct)

[[∧
a. P (λ v.CON a); P (λ v. v); ∧

n. P (λ v.VAR n); ∧
j. P (λ v.BND j);∧

f g. [[P f ; P g]] =⇒ P (λ v. f v $ g v);∧
f. [[P f]] =⇒ P (λ v.ABS (f v));∧
f. [[¬ordinary f]] =⇒ P f]] =⇒ P e

5This definition is one of the points where the Isabelle/HOL and Coq implementations of Hybrid
diverge. See Section 2.2.

52 A. Felty, A. Momigliano

The proof of this induction principle is by measure induction (
∧

x. [[∀y. [[f y <

f x −→ P y]] =⇒ P x]] =⇒ P a), where we instantiate f with rank and set rank
e == size (e (VAR 0)).

We now define lbind : : [bnd, expr ⇒ expr] ⇒ expr as follows, thus completing
the definition of lambda:

lbind i e == THE s. lbnd i e s

where THE is Isabelle’s notation for the definite description operator ι. From these
definitions, it is easy to prove a “rewrite rule” for every de Bruijn constructor. For
example, the rule for ABS is:

MC-Lemma 2 (lbind_ABS)

lbind i (λ v.ABS (e v)) = ABS (lbind (i + 1) e)

These rules are collected under the name lbind_simps, and thus can be used
directly in simplification.

Ruling out non-uniform functions, which was mentioned before, will turn out
to be important for a variety of reasons. For example, it is necessary for proving
that our encoding adequately represents the λ-calculus. To prove adequacy, we
identify a subset of the terms of type expr such that there is a bijection between
this subset and the λ-terms that we are encoding. There are two aspects we must
consider in defining a predicate to identify this subset. First, recall that (BND i)
corresponds to a bound variable in the λ-calculus, and (VAR i) to a free variable;
we refer to bound and free indices respectively. We call a bound index i dangling
if i or less ABS labels occur between the index i and the root of the expression
tree. We must rule out terms with dangling indices. Second, in the presence of
the LAM constructor, we may have functions of type (expr ⇒ expr) that do not
behave uniformly on their arguments. We must rule out such functions. We define
a predicate proper, which rules out dangling indices from terms of type expr, and a
predicate abstr, which rules out dangling indices and exotic terms in functions of type
(expr ⇒ expr).

To define proper we first define level. Expression e is said to be at level l ≥ 0, if
enclosing e inside l ABS nodes ensures that the resulting expression has no dangling
indices.

Inductive level : : [bnd, expr] ⇒ bool
=⇒ level i (CON a)

=⇒ level i (VAR n)

j < i =⇒ level i (BND j)
[[level i s; level i t]] =⇒ level i (s $ t)

level (i + 1) s =⇒ level i (ABS s)

Then, proper : : expr ⇒ bool is defined simply as:

proper e == level 0 e.

Hybrid: Reasoning with HOAS 53

To define abstr, we first define abst : : [bnd, expr ⇒ expr] ⇒ bool as follows:

Inductive abst : : [bnd, expr ⇒ expr] ⇒ bool
=⇒ abst i (λ v.CON a)

=⇒ abst i (λ v. v)

=⇒ abst i (λ v.VAR n)

j < i =⇒ abst i (λ v.BND j)
[[abst i f ;abst i g]] =⇒ abst i (λ v. f v $ g v)

abst (i + 1) f =⇒ abst i (λ v.ABS (f v))

Given abstr : : [expr ⇒ expr] ⇒ bool, we set:

abstr e == abst 0 e.

When an expression e of type expr ⇒ expr satisfies this predicate, we say it is
an abstraction.6 In addition to being important for adequacy, the notion of an
abstraction is central to the formulation of induction principles at the meta-level.7

It’s easy to prove the analogue of abst introduction rules in terms of abstr, for
example:

abst 1 f =⇒ abstr (λ v.ABS (f v))

A simple, yet important lemma is:

MC-Lemma 3 (proper_abst)

proper t =⇒ abstr (λ v. t)

So any function is a legal abstraction if its body is a proper expression. This
strongly suggests that were we to turn the predicate proper into a type prpr, then
any function with source type prpr ⇒ prpr would be de facto a legal abstraction.8

It follows directly from the inductive definition of de Bruijn expressions that
the functions CON, VAR, $, and ABS are injective, with disjoint images. With the
introduction of abstr, we can now also prove the following fundamental theorem:

MC-Theorem 4 (abstr_lam_simp)

[[abstr e; abstr f]] =⇒ (LAM x. e x = LAM y. f y) = (e = f)

which says that lambda is injective on the set of abstractions. This follows directly
from an analogous property of lbind:

6This is akin to the valid and valid1 predicates present in weak HOAS formalizations such as [30]
(discussed further in Section 6.4), although this formalization has, in our notation, the “weaker” type
(var ⇒ expr) ⇒ bool.
7And so much more for the purpose of this paper: it allows inversion on inductive second-order
predicates, simplification in presence of higher-order functions, and, roughly said, it ensures the
consistency of those relations with the ambient logic.
8This is indeed the case as we have shown in [78] and briefly comment on at the end of Section 6.

54 A. Felty, A. Momigliano

MC-Lemma 5 (abst_lbind_simp_lemma)

[[abst i e; abst i f]] =⇒ (lbind i e = lbind i f) = (e = f)

This is proved by structural induction on the abst predicate using simplification
with lbind_simps.

Finally, it is possible to perform induction over the quasi-datatype of proper terms.

MC-Theorem 6 (proper_VAR_induct)

[[proper u;∧
a. P (CON a);∧
n. P (VAR n);∧
s t. [[proper s; proper t; P t]] =⇒ P (s $ t);∧
e. [[abstr e; ∀n. P (e (VAR n))]] =⇒ P (LAM x. e x)]] =⇒ P u

The proof is by induction on the size of e, and follows from the following two
lemmas.

MC-Lemma 7 (level_lbind_abst, proper_lambda_abstr)

1. level (i + 1) e =⇒ ∃ f. (lbind i f = e) ∧ abst i f
2. proper (ABS e) =⇒ ∃ f. (LAM x. f x = ABS e) ∧ abstr f

MC-Lemma 8 (abstr_size_lbind)

abstr e =⇒ size (lbind i e) = size (e (VAR n))

Note that MC-Theorem 6 does not play any active role in the two-level architec-
ture, as induction will be performed on the derivability of judgments.

2.2 Remarks on Hybrid in Coq

In this section we comment briefly on the differences between the Isabelle/HOL
and Coq implementations of Hybrid, which arise mainly from the differences in
the meta-languages. Isabelle/HOL implements a polymorphic version of Church’s
higher-order (classical) logic plus facilities for axiomatic classes and local reasoning
in the form of locales [8]. Coq implements a constructive higher-order type theory,
but includes libraries for reasoning classically, which we used in order to keep the
implementations as similar as possible.

Note that the definition of lbind uses Isabelle/HOL’s definite description operator,
which is not available in Coq. The use of this operator is the main reason for
the differences in the two libraries. In Coq, we instead use the description axiom
available in Coq’s classical libraries:9

∀A B : : Type. ∀R : : [A, B] ⇒ Prop.

(∀x. ∃y. (R x y ∧ ∀y′. R x y′ =⇒ y = y′)) =⇒ ∃ f. ∀x. R x (f x)

9In the Coq libraries, a dependent-type version of this axiom is stated, from which the version here
follows directly.

Hybrid: Reasoning with HOAS 55

with lbnd as relation R. The Coq version of Hybrid is larger than the Isabelle/HOL
version, mainly due to showing uniqueness for the lbnd relation. We then eliminate
the existential quantifier in the description theorem to get a function that serves as
the Coq version of lbind.10

In more detail, if we consider the Isabelle/HOL theory just described, the opera-
tions and predicates ordinary, lbnd, level, proper, abst, and abstr are defined nearly
the same as in the Isabelle/HOL version. For predicates such as level, we have a
choice that we did not have in Isabelle/HOL. In Coq, Prop is the type of logical
propositions, whereas Set is the type of datatypes. Prop and Set allow us to distinguish
logical aspects from computational ones w.r.t. our libraries. The datatype bool for
example, distinct from Prop, is defined inductively in the Coq standard library as a
member of Set. One option in defining level is to define it as a function with target
type bool, which evaluates via conversion to true or f alse. The other is to define it
as an inductive predicate (in Prop), and then we will need to provide proofs of level
subgoals instead of reducing them to true. We chose the latter option, using Prop in
the definition of level and all other predicates. This allowed us to define inductive
predicates in Coq that have the same structure as the Isabelle/HOL definitions,
keeping the two versions as close as possible. For our purposes, however, the other
option should have worked equally well.

For predicates ordinary, lbnd, abst, and abstr, which each have an argument of
functional type, there is one further difference in the Coq definitions. Equality in
Isabelle/HOL is extensional, while in Coq, it is not. Thus, it was necessary to define
extensional equality on type (expr ⇒ expr) explicitly and use that equality whenever
it is expressed on this type, viz.

=ext : : [expr ⇒ expr, expr ⇒ expr] ⇒ Prop

Formally, (f =ext g) == ∀x.(f x = gx). For example, this new equality appears in the
definition of abst. In the Coq version, we first define an auxiliary predicate abst_aux
defined exactly as abst in Isabelle/HOL, and then define abst as:

abst i e == ∃e′. e′ =ext e ∧ abst_aux i e′.

The predicate abstr has the same definition as in Isabelle/HOL, via this new version
of abst. The definition of lbnd parallels the one for abst, in this case using lbnd_aux.
For the ordinary predicate, we obtain the Coq version from the Isabelle/HOL
definition simply by replacing = with =ext.

The proof that lbnd is a total relation is by induction on rank and the induction
case uses a proof by cases on whether or not a term of type (expr ⇒ expr) is ordinary.
Note that the ordinary property is not decidable, and thus this proof requires classical
reasoning, which is a second reason for using Coq’s classical libraries.

Coq provides a module which helps to automate proofs using user-defined
equalities that are declared as setoids. A setoid is a pair consisting of a type
and an equivalence relation on that type. To use this module, we first show

10Although this elimination is not always justified, it is in our case since we define the type expr to
be a Coq Set.

56 A. Felty, A. Momigliano

that =ext is reflexive, symmetric, and transitive. We then declare certain predicates as
morphisms. A morphism is a predicate in which it is allowable to replace an argument
by one that is equivalent according to the user-defined equality. Such replacement is
possible as long as the corresponding compatibility lemma is proved. For example,
we declare ordinary, lbnd, abst, and abstr as morphisms. In particular, the lemma
for lbnd proves that if (lbnd i e t), then for all terms e′ that are extensionally equal
to e, we also have (lbnd i e′ t). Setoid rewriting then allows us to replace the second
argument of lbnd by extensionally equal terms, and is especially useful in the proof
that every e is related to a unique t by lbnd.

As stated above, we obtain lbind by eliminating the existential quantifier in
the description theorem. Once we have this function, we can define lambda
as in Isabelle/HOL and prove the Coq version of the abstr_lam_simp theorem
(MC-Theorem 4):

abstr e =⇒ abstr f =⇒ [(LAM x. e x = LAM y. f y) ←→ (e =ext f)]
Note the use of logical equivalence (←→) between elements of Prop. Extensional
equality is used between elements of type (expr ⇒ expr) and Coq equality is used
between other terms whose types are in Set. Similarly, extensional equality replaces
equality in other theorems involving expressions of type (expr ⇒ expr). For example
abstraction_induct (MC-Theorem 1) is stated as follows:

[[∀e a. [[e =ext (λ v.CON a)]] =⇒ P e;
∀e [[e =ext (λ v. v)]] =⇒ P e;
∀e n. [[e =ext (λ v.VAR n)]] =⇒ P e;
∀e j. [[e =ext (λ v.BND j)]] =⇒ P e;
∀e f g. [[e =ext (λ v. f v $ g v); P f ; P g]] =⇒ P e;
∀e f. [[e =ext (λ v.ABS (f v)); P f]] =⇒ P e;
∀e. [[¬ordinary e]] =⇒ P e]] =⇒ P e

3 Hybrid as a Logical Framework

In this section we show how to use Hybrid as a logical framework, first by introducing
our first OL (Section 3.1) and discussing the adequacy of the encoding of its syntax
(Section 3.2). Representation and adequacy of syntax are aspects of encoding OLs
that are independent of the two-level architecture. We then show that some object-
level judgments can be represented directly as inductive definitions (Section 3.3).
We also discuss the limitations of encoding OL judgments in this way, motivating the
need for the two-level architecture of Section 4.

The system at this level provides:

– A suite of theorems: roughly three or four dozens propositions, most of which
are only intermediate lemmas leading to the few that are relevant to our present
purpose: namely, injectivity and distinctness properties of Hybrid constants.

– Definitions proper and abstr, which are important for Hybrid’s adequate repre-
sentation of OLs.

– A very small number of automatic tactics: for example proper_tac (resp.
abstr_tac) automatically recognizes whether a given term is indeed proper (resp.
an abstraction).

Hybrid: Reasoning with HOAS 57

We report here the (slightly simplified) code for abstr_tac, to give an idea of how
lightweight such tactics are:

fun abstr_tac defs =
simp_tac (simpset()

addsimps defs @ [abstr_def,lambda_def]
@ lbind_simps)

THEN’
fast_tac(claset()

addDs [abst_level_lbind]
addIs abstSet.intrs
addEs [abstr_abst, proper_abst]);

First the goal is simplified (simp_tac) using the definition of abstr, lambda,
other user-provided lemmas (defs), and more importantly the lbind “rewrite rules”
(lbind_simps). At this point, it is merely a question of resolution with the introduc-
tion rules for abst (abstSet.intrs) and a few key lemmas, such as MC-Lemma 3,
possibly as elimination rules. In Isabelle/HOL 2005, a tactic, even a user defined one,
could also be “packaged” into a solver. In this way, it can be combined with the other
automatic tools, such as the simplifier or user defined tactics, viz. 2lprolog_tac. (See
Section 4.3.)

3.1 Coding the Syntax of an OL in Hybrid

The OL we consider here is a fragment of a pure functional language known as Mini-
ML. As mentioned, we concentrate on a λ-calculus augmented with a fixed point
operator, although this OL could be easily generalized as in [89]. This fragment is
sufficient to illustrate the main ideas without cluttering the presentation with too
many details.

The types and terms of the source language are given respectively by:

Types τ ::= i | τ → τ ′
Terms e ::= x | fun x. e | e • e′ | fix x. e

We begin by showing how to represent the syntax in HOAS format using Hybrid.
Since types for this language have no bindings, they are represented with a standard
datatype, named tp and defined in the obvious way; more interestingly, as far as terms
are concerned, we need constants for abstraction, application and fixed point, say
cABS, cAPP, and cFIX. Recall that in the meta-language, application is denoted by
infix $, and abstraction by LAM.

The above grammar is coded in Hybrid verbatim, provided that we declare these
constants to belong to the enumerated datatype con

datatype con = cABS | cAPP | cFIX

add the type abbreviation

uexp == con expr

58 A. Felty, A. Momigliano

and the following def initions:

@ : : [uexp, uexp] ⇒ uexp
fun : : [uexp ⇒ uexp] ⇒ uexp
fix : : [uexp ⇒ uexp] ⇒ uexp

E1 @ E2 == CON cAPP $ E1 $ E2

fun x. E x == CON cABS $ LAM x. E x
fix x . E x == CON cF I X $ LAM x. E x

where fun (resp. fix) is indeed an Isabelle/HOL binder, e.g., (fix x . E x) is a syntax
translation for (fix(λx. E x)). For example, (fix x . fun y. x @ y) abbreviates:

(CON cF I X $ (LAM x.CON cABS $ (LAM y. (CON cAPP $ x $ y))))

Note again that the above are only def initions and by themselves would not inherit
any of the properties of the constructors of a datatype. However, thanks to the thin
infra-structural layer that we have interposed between the λ-calculus natively offered
by Isabelle and the rich logical structure provided by the axioms of Isabelle/HOL, it
is now possible to prove the freeness properties of those definitions as if they were
the constructors of what Isabelle/HOL would ordinarily consider an “impossible”
datatype as discussed earlier. More formally:

MC-Theorem 9 (“Freeness” properties of constructors) Consider the constructors11

fun, fix, @:

– The constructors have distinct images. For example:

fun x. E x �= (E1 @ E2) (FA_clash)

– Every non binding constructor is injective.
– Every binding constructor is injective on abstractions. For example:

[[abstr E; abstr E′]] =⇒ (fix x . E x = fix x . E′ x) = (E = E′)

Proof By a call to Isabelle/HOL’s standard simplification, augmented with the left-
to-right direction of the crucial property abstr_lam_simp (MC-Theorem 4). �

This result will hold for any signature containing at most second-order con-
structors, provided they are encoded as we have exhibited. These “quasi-freeness”
properties—meaning freeness conditionally on whether the function in a binding
construct is indeed an abstraction—are added to Isabelle/HOL’s standard simplifier,
so that they will be automatically applied in all reasoning contexts that concern the
constructors. In particular, clash theorems are best encoded in the guise of elimi-
nation rules, already incorporating the “ex falso quodlibet” theorem. For example,
FA_clash of MC-Theorem 9 is equivalent to:

[[fun x. E x = (E1 @ E2)]] =⇒ P

11By abuse of language, we call constructors what are more precisely Isabelle/HOL constant
definitions.

Hybrid: Reasoning with HOAS 59

3.2 Adequacy of the Encoding

It is a customary proof obligation (at least) w.r.t. higher-order encoding to show
that the syntax (and later the judgments) of an OL such as Mini-ML are adequately
represented in the framework. While this is quite well-understood in a framework
such as LF, the “atypical” nature of Hybrid requires a discussion and some additional
work. We take for granted (as suggested in [3], then painstakingly detailed in [26])
that Hybrid provides an adequate representation of the λ-calculus. Yet, it would not
be possible to provide a “complete” proof of the adequacy of Hybrid as a theory
running on a complex tool such as Isabelle/HOL. Here we take a more narrow
approach, by working with a convenient fiction, i.e., a model of Hybrid as a simply-
typed λ-calculus presented as a logical framework. This includes:

– a “first-order” λ-calculus (i.e., where bool can only occur as the target of a legal
arrow type) as our term language;

– introduction and elimination rules for atoms generated by their inductive
definition;

– simplification on the Hybrid level and modulo other decidable theories such as
linear arithmetic.

We can use this as our framework to represent OLs; further this model is what we
consider when we state meta-theoretical properties of OL encodings and prove them
adequate.

We follow quite closely Pfenning’s account in the Handbook of Automated
Reasoning [88]. By adequacy of a language representation we mean that there is
an encoding function ε�(·) from OL terms with free variables in � to the canonical
forms of the framework in an appropriate signature, as well as its inverse δ�(·)
such that:

1. validity: for every mathematical object t with free variables in �, ε�(t) is a canon-
ical (and thus unique, modulo α-conversion) representation in the framework.
Note that we use � both for the Hybrid and the OL’s variables context;

2. completeness: for every canonical term E over �, δ�(E), results in a unique OL
term t; furthermore ε�(δ�(E)) = E and δ�(ε�(t)) = t.

3. compositionality: the bijection induced by ε·(·) and δ·(·) commutes with
substitution; formally ε�([t1/x]t2) = [ε�(t1)/x] ε�(t2) and δ�([E1/x]E2) =
[δ�(E1)/x] δ�(E2).

Clearly the first requirement seems easier to satisfy, while the second one tends to be
more problematic.12 In general, there could be two main obstacles when representing
an OL’s signature with some form of HOAS in a logical framework, both related

12Incidentally, some f irst-order encodings, which are traditionally assumed not to be troublesome,
may fail to satisfy the second requirement in the most spectacular way. Case in point are encodings
typical of the Boyer-Moore theorem prover, e.g., case studies concerning the properties of the Java
Virtual Machine [61]. Since the framework’s language consists of S-expressions, a decoding function
does not really exist: in fact, it is only informally understood how to connect a list of pairs of
S-exp to an informal function in, say, the operational semantics of the JVM, assuming that the code
maintains the invariants of association lists. Within Hybrid we can do much better, although we will
fall somewhat short of LF’s standards.

60 A. Felty, A. Momigliano

to the existence of “undesirable” canonical terms in the framework, i.e., honest-to-
goodness terms that are not in the image of the desired encoding:

1. If the framework is uni-typed, we need predicates to express the well-formedness
of the encoding of expressions of the OL. Such well-formedness properties must
now be proved, differently from settings such as LF, where such properties
are handled by type-checking. In particular, Hybrid constants are not part of
a datatype, so they do not enjoy the usual closure condition. Moreover there are
proper Hybrid terms such as LAM x. x $ (VAR 0) that are not in the image of the
encoding, but are still canonical forms of type expr.

2. If the framework is strong enough, in particular if its type system supports at
least a primitive recursive function space, exotic terms do arise, as discussed
earlier, i.e., terms containing irreducible functions that are not parametric on
their arguments, e.g., fix x . fun y. if x = y then x else y.

As far as the second issue is concerned, we use abstr annotations to get rid of
such “non-parametric” functions. As mentioned by [88] and is standard practice
in concrete approaches (e.g., the vclosed and term predicate in the “locally
named/nameless” representation of [5, 68]), we introduce well-formedness predi-
cates (as inductive definitions in Isabelle/HOL) to represent OL types.

To make clear the correspondence between the OL and its encoding, we re-
formulate the BNF grammar for Mini-ML terms as a well-formedness judgment:

�, x � x

� � t1 � � t2

� � t1 • t2

�, x � t

� � fun x. t

�, x � t

� � fix x. t

Based on this formulation, the definition of encoding of a Mini-ML term into Hybrid
and its decoding is unsurprising [89]. Notation-wise, we overload the comma so that
�, x means � ∪ {x}; we also use � for both the context of OL variables and of Hybrid
variables of type uexp:

ε�,x(x) = x ε�(t1 • t2) = ε�(t1) @ ε�(t2)
ε�(fun x. t) = fun x. ε�,x(t) ε�(fix x. t) = fix x . ε�,x(t)

δ�,x(x) = x δ�(E1 @ E2) = δ�(E1) • δ�(E2)

δ�(fun x. E) = fun x. δ�,x(E) δ�(fix x . E) = fix x. δ�,x(E)

We then introduce an inductive predicate _ ||= isterm _ of type [uexp set, uexp] ⇒
bool, which addresses at the same time the two aforementioned issues. It identifies
the subset of uexp that corresponds to the open terms of Mini-ML over a set of (free)
variables.

Inductive _ ||= isterm _ : : [uexp set, uexp] ⇒ bool

[[x ∈ �]] =⇒ � ||= isterm (x)

[[� ||= isterm E1; � ||= isterm E2]] =⇒ � ||= isterm (E1 @ E2)

[[∀x. proper x −→ �, x ||= isterm (E x); abstr E]] =⇒ � ||= isterm (fun x. E x)

[[∀x. proper x −→ �, x ||= isterm (E x); abstr E]] =⇒ � ||= isterm (fix x . E x)

We can now proceed to show the validity of the encoding in the sense that
� � t entails that � ||= isterm ε�(t) is provable in Isabelle/HOL. However, there is

Hybrid: Reasoning with HOAS 61

an additional issue: the obvious inductive proof requires, in the binding case, the
derivability of the following fact:

abstr(λx. ε�,x(t)) (1)

A proof by induction on the structure of t relies on

abstr(λx. LAM y. ε�,x,y(t))

This holds once λxy. ε�,x,y(t) is a biabstraction, namely:

biAbstr(λxy. E x y) =⇒ abstr(λx. LAM y. E x y)

Biabstractions are the generalization of abstractions to functions of type (expr ⇒
expr ⇒ expr) ⇒ expr. The inductive definition of this notion simply replays that of
abst and we skip it for the sake of space. We note however that the above theorem
follows by structural induction using only introduction and elimination rules for abst.
We therefore consider proven the above fact (1).

If � = {x1, . . . , xn}, we write (proper �) to denote the Isabelle/HOL context
[[proper x1; . . . ; proper xn]].

Lemma 10 (Validity of Representation) If � � t, then (proper � =⇒ � ||=
isterm ε�(t)) is provable in Isabelle/HOL.

Proof By the standard induction on the derivation of � � t, using fact (1) in the
binding cases. �

As far as the converse of Lemma 10 goes, we need an additional consideration.
As opposed to intentionally weak frameworks [29], Isabelle/HOL has considerable
expressive power; various features of the underlying logic, such as classical reasoning
and the axiom of choice, can be used to construct proofs about an OL that do not
correspond to the informal constructive proofs we aim to formalize. We therefore
need to restrict ourselves to a second-order intuitionistic logic. The issue here
is guaranteeing that inverting on hypothetical judgments respects the operational
interpretation of the latter, i.e., the deduction theorem, rather than viewing them
as classical tautologies. We call such a derivation minimal. Since Isabelle/HOL does
have proof terms [11], this notion is in principle checkable.13

Lemma 11 (Completeness of Representation) Let � be the set {x1 : uexp, . . . , xn :
uexp}; if (proper � =⇒ � ||= isterm E) has a minimal derivation in Isabelle/HOL,
then δ�(E) is def ined and yields a Mini-ML expression t such that � � t and
ε�(δ�(E)) = E. Furthermore, δ�(ε�(t)) = t.

Proof The main statement goes by induction on the minimal derivation of
proper � =⇒ � ||= isterm E; we sketch one case: assume proper � =⇒ � ||=
isterm (fix x . E x); by inversion, �, x ||= isterm (E x) holds for a parameter x under
the assumption proper (�, x). By definition δ�(fix x . (E x)) = fix x. δ�,x(E x). By the

13Note that Isabelle/HOL provides a basic intuitionistic prover iprover, and it could be connected to
an external more efficient one via the sledgehammer protocol.

62 A. Felty, A. Momigliano

Fig. 2 Big step semantics and
typing rules for a fragment of
Mini-ML

I.H. the term δ�,x(E x) is defined and there is a t s.t. t = δ�,x(E x) and �, x � t. By the
BNF rule for fix, � � fix x. t and again by the I.H. and definition, ε�(δ�(fix x . E x)) =
fix x . E x. Finally, δ�(ε�(t)) = t follows by a straightforward induction on t. �

Lemma 12 (Compositionality)

1. ε�([t1/x]t2) = [ε�(t1)/x] ε�(t2), where x may occur in �.
2. If δ�(E1) and δ�(E2) are def ined, then δ�([E1/x]E2) = [δ�(E1)/x] δ�(E2).

Proof The first result may be proved by induction on t2 as in Lemma 3.5 of [89], since
the encoding function is the same, or we can appeal to the compositionality property
of Hybrid, proved as Theorem 4.3 of [26], by unfolding the Hybrid definition of the
constructors. The proof of the second part is a similar induction on E2. �

Note that completeness and compositionality do not depend on fact (1).

3.3 Encoding Object-Level Judgments

We now turn to the encoding of object-level judgments. In this and the next sec-
tion, we will consider the standard judgments for big-step call-by-value operational
semantics (e ⇓ v) and type inference (� � e : τ), depicted in Fig. 2. Evaluation can
be directly expressed as an inductive relation (Fig. 3) in full HOAS style. Note that
substitution is encoded via meta-level β-conversion in clauses for ev_app and ev_fix.

This definition is an honest to goodness inductive relation that can be used as any
other one in an HOL-like setting: for example, queried in the style of Prolog, as in
∃t. fix x . fun y. x @ y ⇓ t, by using only its introduction rules and abstraction solving.
Further this kind of relation can be reasoned about using standard induction and

Fig. 3 Encoding of big step evaluation in Mini-ML

Hybrid: Reasoning with HOAS 63

case analysis. In fact, the very fact that evaluation is recognized by Isabelle/HOL
as inductive yields inversion principles in the form of elimination rules. This would
correspond, in meta-logics such as Linc, to applications of def initional ref lection.
In Isabelle/HOL (as well as in Coq) case analysis is particularly well-supported as
part of the datatype/inductive package. Each predicate p has a general inversion
principle p.elim, which can be specialized to a given instance (p t) by an ML built-
in function p.mk_cases that operates on the current simplification set; specific to
our architecture, note again the abstraction annotations as meta-logical premises
in rules mentioning binding constructs. To take this into account, we call this ML
function modulo the quasi-freeness properties of Hybrid constructors so that it
makes the appropriate discrimination. For example the value of meval_mk_cases
(fun x. E ⇓ V) is:

(meval_fun_E) [[fun x. E x ⇓ V;
∧

F [[∅ ||= isterm (fun x. F x); abstr F

lambda E = lambda F; V = fun x. F x]] =⇒ P]] =⇒ P

Note also that the inversion principle has an explicit equation lambda E = lambda F
(whereas definitional reflection employs full higher-order unification) and such
equations are solvable only under the assumption that the body of a λ-term is well-
behaved (i.e., is an abstraction).

Finally, using such elimination rules, and more importantly the structural induc-
tion principle provided by Isabelle/HOL’s inductive package, we can prove standard
meta-theorems, for instance uniqueness of evaluation.

MC-Theorem 13 (eval_unique) E ⇓ F =⇒ ∀G. E ⇓ G −→ F = G.

Proof By induction on the structure of the derivation of E ⇓ F and inversion on
E ⇓ G. �

The mechanized proof does not appeal, as expected, to the functionality of
substitution, as the latter is inherited by the meta-logic, contrary to first-order and
“weak” HOAS encodings (see Section 6.4). Compare this also with the standard
paper and pencil proof, which usually ignores this property.

We can also prove some “hygiene” results, showing that the encoding of evalua-
tion preserves properness and well-formedness of terms:

MC-Lemma 14 (eval_proper, eval_isterm)

1. E ⇓ V =⇒ proper E ∧ proper V
2. E ⇓ V =⇒ ∅ ||= isterm E ∧ ∅ ||= isterm V

Note the absence in Fig. 3 of any proper assumptions at all: only the isterm
assumptions in the function and fixed point cases are needed. We have included just
enough assumptions to prove the above results. In general, this kind of result must
be proven for each new OL, but the proofs are simple and the reasoning steps follow
a similar pattern for all such proofs.

With respect to the adequacy of object-level judgments, we can establish first the
usual statements, for example soundness and completeness of the representation; for
the sake of clarity as well as brevity in the statement and proof of the lemma we drop

64 A. Felty, A. Momigliano

the infix syntax in the Isabelle/HOL definition of evaluation, and omit the obvious
definition of the encoding of said judgment:

Lemma 15 (Soundness of the encoding of evaluation) Let e and v be closed Mini-ML
expressions such that e ⇓ v; then we can prove in Isabelle/HOL (eval ε∅(e) ε∅(v)).

Proof By induction on the derivation of e ⇓ v. Consider the ev_fun case: by
definition of the encoding on expressions and its soundness (Lemma 10) we have that
∅ ||= isterm ε∅(fun x. e) is provable in Isabelle/HOL; by definition and inversion
∅ ||= isterm (fun x. εx(e)) and abstr (λx. εx(e)) holds, hence by the introduction rules
of the inductive definition of evaluation (eval fun x. εx(e) fun x. εx(e)) is provable,
that is, by definition, (eval ε∅(fun x. e) ε∅(fun x. e)). The other two cases also use
compositionality (Lemma 12) and the induction hypothesis. �

Lemma 16 (Completeness of the encoding of evaluation) If (eval E V) has a minimal
derivation in Isabelle/HOL, then δ∅(E) and δ∅(V) are def ined and yield Mini-ML
expressions e and v such that e ⇓ v.

Proof It follows from MC-Lemma 14 that ∅ ||= isterm E and ∅ ||= isterm V, and
thus from Lemma 11 that δ∅(E) and δ∅(V) are defined. The proof of e ⇓ v follows
directly by induction on the minimal derivation of (eval E V), using compositionality
(Lemma 12). �

Now that we have achieved this, does that mean that all the advantages of HOAS
are now available in a well-understood system such as Isabelle/HOL? The answer is,
unfortunately, a qualified “no”. Recall the three “tenets” of HOAS:

1. α-renaming for free, inherited from the ambient λ-calculus identifying meta-level
and object-level bound variables;

2. object-level substitution as meta-level β-reduction;
3. object-level contexts as meta-level assumptions.

As of now, we have achieved only the first two. However, while accomplishing in a
consistent and relatively painless way the first two points above is no little feat,14 the
second one, in particular, being in every sense novel, no HOAS system can really be
worth its name without an accounting and exploiting of reasoning in the presence
of hypothetical and parametric judgments. We consider the standard example of
encoding type inference (Fig. 2) in a language such as Twelf. Using Isabelle/HOL-
like syntax (where we use bool for Twelf’s type, the tp_app, tp_fun, and tp_fix rules
would be represented as follows:

_ : _ :: [uexp, tp] ⇒ bool
[[E1 : (T ′ → T); E2 : T ′]] =⇒ (E1 @ E2) : T

[[∀x (x : T −→ (E x) : T ′)]] =⇒ (fun x. E x) : (T → T ′)
[[∀x (x : T −→ (E x) : T)]] =⇒ (fix x . E x) : T

14Compare this to other methods of obtaining α-conversion by constructing equivalence classes
[36, 111] in a proof assistant.

Hybrid: Reasoning with HOAS 65

Each typing judgment x : τ in an object-level context (� in Fig. 2) is represented
as a logical assumption of the form x : T. In the spirit of higher-order encoding,
there is no explicit representation of contexts and no need to encode the tp_var
rule. However, because of the underlined negative recursive occurrences in the above
formulas, there is simply no way to encode this directly in an inductive setting, short
of betraying its higher-order nature by introducing ad-hoc datatypes (in this case lists
for environments) and, what’s worse, all the theory they require. The latter may be
trivial on paper, but it is time-consuming and has little to do with the mathematics of
the problem.15

Moreover, at the level of the meta-theory, it is only the coupling of items 2 and 3
above that makes HOAS encodings—and thus proofs—so elegant and concise; while
it is nice not to have to encode substitution for every new signature, it is certainly
much nicer not to have to prove the related substitution lemmas. This is precisely
what the pervasive use of hypothetical and parametric judgments makes possible—
one of the many lessons by Martin-Löf.

Even when hypothetical judgments are stratified and therefore inductive, using
Hybrid directly within Isabelle/HOL (i.e., at a single level as will become clear
shortly) has been only successful in dealing with predicates over closed terms (such
as simulation). However, it is necessary to resort to a more traditional encoding,
i.e., via explicit environments, when dealing with judgments involving open objects.
These issues became particularly clear in the case-study reported in [77], where
the Hybrid syntax allowed the following elegant encoding of closed applicative
(bi)simulation [1]:

[[∀T. R ⇓ fun x. T x −→ (abstr T −→
∃U. S ⇓ fun x. U x ∧ abstr U ∧ ∀p. (T p) � (U p))]]

=⇒ R � S

together with easy proofs of its basic properties (for example, being a pre-order).
Yet, dealing with open (bi)simulation required the duplication of analogous work in
a much less elegant way.

This does not mean that results of some interest cannot be proved working
at one level. For example, the aforementioned paper (painfully) succeeded in
checking non-trivial results such as a Howe-style proof of congruence of applicative
(bi)simulation [54].16 Another example [2] is the quite intricate verification of
subject reduction of MIL-LITE [9], the intermediate language of the MLj com-
piler [10].

In those experiments, HOAS in Isabelle/HOL seemed only a nice interlude, soon
to be overwhelmed by tedious and non-trivial (at least mechanically) proofs of list-
based properties of open judgments and by a number of substitutions lemmas that
we had hoped to have eliminated for good. These are the kinds of issues we address
with the two-level architecture, discussed next.

15A compromise is the “weak” HOAS view mentioned earlier and discussed in Section 6.4.
16However, it would take a significant investment in man-months to extend the result from the lazy
λ-calculus to more interesting calculi such as [58].

66 A. Felty, A. Momigliano

4 A Two-Level Architecture

The specif ication level mentioned earlier (see Fig. 1) is introduced to solve the
problems discussed in the previous section of reasoning in the presence of negative
occurrences of OL judgments and reasoning about open terms. A specif ication logic
(SL) is defined inductively, and used to encode OL judgments. Since hypothetical
judgments are encapsulated within the SL, they are not required to be inductive
themselves. In addition, SL contexts can encode assumptions about OL variables,
which allows reasoning about open terms of the OL. We introduce our first ex-
ample SL in Section 4.1. Then, in Section 4.2, we continue the discussion of the
sample OL introduced in Section 3, this time illustrating the encoding of judgments
at the SL level. In Section 4.3, we discuss proof automation and in Section 4.4
we present a variant of the proof in Section 4.2 that illustrates the flexibility of
the system.

4.1 Encoding the Specification Logic

We introduce our first SL, namely a fragment of second-order hereditary Harrop
formulas [73]. This is sufficient for the encoding of our first case-study: subject
reduction for the sub-language of Mini-ML that we have introduced before (Fig. 2).
The SL language is defined as follows, where τ is a ground type and A is an atomic
formula.

Clauses D ::= � | A | D1 ∧ D2 | G → A | ∀τ x. D | ∀τ→τ x. D
Goals G ::= � | A | G1 ∧ G2 | A → G | ∀τ x. G

Context � ::= ∅ | A, �

The τ in the grammar for goals is instantiated with expr in this case. Thus, quan-
tification is over a ground type whose exact elements depend on the instantiation
of con, which, as discussed in Section 4.2, is defined at the OL level. Quantification
in clauses includes second-order variables. We will use it, for instance, to encode
variables E of type expr ⇒ expr that appear in terms such as fun x. E x. Quan-
tification in clauses may also be over first-order variables of type expr, as well as
over variables of other ground types such as tp. In this logic, we view contexts as sets,
where we overload the comma to denote adjoining an element to a set. Not only
does this representation make mechanical proofs of the standard proof-theoretic
properties easier compared to using lists, but it is also appropriate for a sequent
calculus that enjoys contraction and exchange, and designed so that weakening is an
admissible property. This approach will also better motivate the use of lists in sub-
structural logics in the next section. Further, in our setting, contexts are particularly
simple, namely sets of atoms, since only atoms are legal antecedents in implications
in goals.

The syntax of theorem formulas can be directly rendered with an Isabelle/HOL
datatype:

datatype oo = tt | 〈atm〉 | oo and oo | atm imp oo | all (expr ⇒ oo)

We write atm to represent the type of atoms; 〈_〉 coerces atoms into propositions.
The definition of atm is left as an implicit parameter at this stage, because various
instantiations will yield the signature of different OLs, specifically predicates used to
encode their judgments.

Hybrid: Reasoning with HOAS 67

Fig. 4 A minimal sequent
calculus with backchaining

This language is so simple that its sequent calculus is analogous to a logic program-
ming interpreter. All clauses allowed by the above grammar can be normalized to (a
set of) clauses of the form:

Clauses D ::= ∀σ1 x1 . . .∀σn xn (G → A)

where n ≥ 0, and for i = 1, . . . , n, σi is either a ground type, or has the form τ1 → τ2

where τ1 and τ2 are ground types. In analogy with logic programming, when writing
clauses, outermost universal quantifiers will be omitted, as those variables are implic-
itly quantified by the meta-logic; implication will be written in the reverse direction,
i.e., we write simply A ←− G,17 or when we need to be explicit about the quantified
variables, we write ∀�(A ←− G) where � = {x1, . . . , xn}. This notation yields a
more proof-search oriented notion of clauses. In fact, we can write inference rules
so that the only left rule is similar to Prolog’s backchaining. Sequents have the form
�; � −→� G, where � is the current signature of eigenvariables and we distinguish
clauses belonging to a static database, written �, from atoms introduced via the right
implication rule, written �. The rules for this logic are given in Fig. 4. In the bc
rule, [�] is the set of all possible instances of clauses in � obtained by instantiating
outermost universal quantifiers with all closed terms of appropriate types.

This inference system is equivalent to the standard presentation of minimal
logic [57], where the right rules are the same and the left rules (given below) for
conjunction, implication and universal quantification replace the bc rule.

�; �, D1, D2 −→� G ∧L
�; �, D1 ∧ D2 −→� G

�; �, D[t/x] −→� G ∀L
�; �,∀x. D −→� G

�; � −→� G �; �, B −→� A →L
�; �, (G → B) −→� A

17This is also why we can dispose of the mutual definition of clauses and goals and avoid using
a mutually inductive datatype, which, in the absence of some form of subtyping, would make the
encoding redundant.

68 A. Felty, A. Momigliano

Fig. 5 Encoding of a minimal
specification logic

In fact, the bc rule is derivable by eliminating the universal quantifiers until the
head of a clause matches the atom on the right and then applying →L. The reader
should remember that we are working in an ambient logic modulo some equational
theory (in the case of Isabelle =αβη) and that both atomic rules (init and bc) are
applicable in the case when an atom on the right appears as an assumption and
unifies with the head of a definite clause in the program �. Thus, we can inherit the
completeness of uniform provability [73] w.r.t. an ordinary sequent calculus, which
holds for a much more expressive conservative extension of our SL, namely higher-
order Harrop formulas.

We encode this SL in Fig. 5. We use the symbol � for the sequent arrow, in
this case decorated with natural numbers that represent the height of a proof; this
measure allows us to reason by complete induction.18 For convenience we write
� � G if there exists an n such that � �n G, and furthermore we simply write � G
when ∅ � G. The first four clauses of the definition directly encode the introduction
(R) rules of the figure. In the encoding of the ∀R rule, when we introduce new
eigenvariables of type expr, we need to assume that they are proper. This assumption
might be required for proving subgoals of the form (abstr E) for subterms E ::
expr ⇒ expr that appear in the goal as arguments to binding constructors; see MC-
Lemma 3 (proper_abst).

We remark that the only dependence on Hybrid in this layer is on the definition of
proper. This will also be true of the SL we consider in Section 5. Although we do not
discuss it here, we could use SLs with (different) kinds of quantifiers that could not
be implemented via a datatype but only with Hybrid constants; for example universal
quantification in higher-order logic. In this case, the specification layer would have a
much greater dependence on Hybrid. On the other hand, if we take the alternative
solution to proper terms mentioned earlier (when discussing MC-Lemma 3) and
replace expr with a type prpr containing exactly the terms that satisfy proper, and
consider only the SLs presented in this paper, then these SLs can be parameterized
by the type of terms used in quantification, and can be instantiated with types other
than prpr.

In the last two rules in Fig. 5, atoms are provable either by assumption or via
backchaining over a set of Prolog-like rules, which encode the properties of the OL
in question as an inductive definition of the predicate prog of type [atm, oo] ⇒ bool,
which will be instantiated in Section 4.2. The sequent calculus is parametric in those

18Proven in the Isabelle/HOL’s library in the form (
∧

n. ∀m < n. P m =⇒ P n) =⇒ P x.

Hybrid: Reasoning with HOAS 69

clauses and so are its meta-theoretical properties. Because prog is static it will
be mentioned explicitly only in adequacy proofs. The notation A ←− G in Fig. 5
represents an instance of one of the clauses of the inductive definition of prog.

As a matter of fact our encoding of the judgment � �n G can be seen as a
simple extension of the so-called “vanilla” Prolog meta-interpreter, often known as
demo [51]; similarly, the bc rule would correspond to the following clause, using the
predicate prog in place of Prolog’s built-in clause:

demo(Gamma,s(N),A) : − prog(A,G), demo(Gamma,N,G).

Existential quantification could be added to the grammar of goals, as follows:

[[∃x. � �n (G x)]] =⇒ � �n+1 (ex x. G x)

but this yields no real increase in expressivity, as existentials in the body of goals
can be safely transformed to outermost universal quantifiers, while (continuing the
logic programming analogy) the above rule simply delegates the witness choice to
the ambient logic unification algorithm.

As before, the fact that provability is inductive yields inversion principles as
elimination rules. For example the inversion theorem that analyzes the shape of a
derivation ending in an atom from the empty context is obtained simply with a call to
the standard mk_cases function, namely mk_cases “ � j 〈A〉” is:

[[� j 〈A〉;
∧

G i. [[A ←− G; �i G; j = Suc i]] =⇒ P]] =⇒ P

The adequacy of the encoding of the SL can be established adapting the analogous
proof in [67]. To do so, we overload the decoding function in several ways. First, we
need to decode terms of types other than expr. For example, decoding terms of type
expr ⇒ expr is required for most OLs. For Mini-ML, we also need to decode terms
of type tp. The decoding is extended in the obvious way. For example, for decoding
second-order terms, we define δ�(λ x. E x) = λ x. δ�,x(E x). Second, to decode both
goals and clauses, we extend � to allow both first- and second-order variables. We
can then extend the decoding so that if G is a term of type oo with free variables in �,
then δ�(G) is its translation to a formula of minimal logic, and if � is a set of terms of
type atm set, then δ�(�) is its translation to a set of atomic formulas of minimal logic.
In addition, we restrict the form of the definition of prog so that every clause of the
inductive definition is a closed formula of the form:

∧
�

(
[[abstr E1; . . . ; abstr En]] =⇒ (A ←− G)

)

where � is a set of variables including at least E1, . . . , En, each of type expr ⇒ expr,
with n ≥ 0. To obtain a theory in minimal logic that corresponds to the definition of
prog, we decode each clause to a formula of minimal logic of the form ∀�(δ�(G) →
δ�(A)). For SL adequacy, we also need to introduce two conditions, which become
additional proof obligations when establishing OL adequacy. They are:

1. It is only ever possible to instantiate universal quantifiers in prog clauses with
terms for which the decoding is defined.

2. For every term E :: expr ⇒ expr used to instantiate universal quantifiers in prog
clauses, (abstr E) holds.

70 A. Felty, A. Momigliano

The latter will follow from the former and the fact that for all terms E :: expr ⇒ expr
for which the decoding is defined, (abstr E) holds.

Lemma 17 (Soundness and completeness of the encoding of the specification logic)
Let prog be an inductive def inition of the restricted form described above, and let �

be the corresponding theory in minimal logic. Let G be a formula of type oo and let
� be a set of atoms. Let � be a set of variables of type expr that contains all the free
variables in � and G. Then the sequent proper � =⇒ � � G has a minimal derivation
in Isabelle/HOL (satisfying conditions 1 and 2 above) if and only if there is a derivation
of �; δ�(�) −→� δ�(G) according to the rules of Fig. 4.

Proof The proof of the forward direction follows directly by induction on the
minimal derivation of proper � =⇒ � � G. Compositionality (Lemma 12) is needed
for the case when � � G is proved by the last clause of Fig. 5. The proof of the
backward direction is by direct induction on the derivation of �; δ�(�) −→� δ�(G).
Compositionality (Lemma 12) and conditions 1 and 2 are needed for the bc case. �

MC-Theorem 18 (Structural Rules) The following rules are admissible:

1. Height weakening: [[� �n G; n < m]] =⇒ � �m G.19

2. Context weakening: [[� �n G; � ⊆ �′]] =⇒ �′ �n G.
3. Atomic cut: [[A, � � G; � � 〈A〉]] =⇒ � � G.

Proof

1. The proof, by structural induction on sequents, consists of a one-line call to an
automatic tactic using the elimination rule for successor (from the Isabelle/HOL
library) and the introduction rules for the sequent calculus.

2. By a similar fully automated induction on the structure of the sequent derivation,
combining resolution on the sequent introduction rules with simplification in
order to discharge some easy set-theoretic subgoals.

3. Atomic cut is a corollary of the following lemma:

[[A, � �i G; � � j 〈A〉]] =⇒ � �i+ j G

easily proved by complete induction on the height of the derivation of A, � �i G.
The whole proof consists of two dozen instructions, with very little ingenuity
required from the human collaborator. �

4.2 The Object Logic

Recall the rules for call-by-value operational semantics (e ⇓ v) and type inference
(� � e : τ) given in Fig. 2. The subject reduction for this source language is stated as
usual.

Theorem 19 (Subject Reduction) If e ⇓ v and � e : τ , then � v : τ .

19This lemma turns out to be fairly useful, as it permits manipulation as appropriate of the height of
two sub-derivations, such as in the ∧R rule.

Hybrid: Reasoning with HOAS 71

Proof By structural induction on evaluation and inversion on typing, using weaken-
ing and a substitution lemma in the ev_app and ev_fix cases. �

We now return to the encoding of the OL, this time using the SL to encode
judgments. The encoding of OL syntax is unchanged. (See Section 3) Recall that
it involved introducing a specific type for con. Here, we will also instantiate type atm
and predicate prog. In this section and the next, we now also make full use of the
definitions and theorems in both Hybrid and the SL layers.

Type atm is instantiated as expected, defining the atomic formulas of the OL.

datatype atm = isterm uexp | uexp ⇓ uexp | uexp : tp

The clauses for the OL deductive systems are given as rules of the inductive definition
prog in Fig. 6 (recall the notation _ ←− _). Recall that the encoding of evaluation in
Fig. 3 and the encoding of the isterm predicate for adequacy purposes both used
inductive definitions. Here we define them both at the SL level along with the OL
level typing judgment. Note that no explicit variable context is needed for this version
of isterm. They are handled implicitly by the contexts of atomic assumptions of the
SL, resulting in a more direct encoding. As before, in the evaluation clauses, there
are no proper assumptions and two isterm assumptions. Neither kind of assumption
appears in the clauses for the typing rules. None is required to prove the analogue of
MC-Lemma 14 for both evaluation and typing.

MC-Lemma 20 (eval_proper, eval_isterm, hastype_proper, hastype_isterm)

1. � 〈E ⇓ V〉 =⇒ proper E ∧ proper V
2. � 〈E ⇓ V〉 =⇒ � 〈isterm E〉 ∧ � 〈isterm V〉
3. � 〈E : T〉 =⇒ proper E
4. � 〈E : T〉 =⇒ � 〈isterm E〉

Fig. 6 OL clauses: encoding of well-formedness, evaluation and typing

72 A. Felty, A. Momigliano

Proof All the proofs are by standard induction on the given derivation, except the
last one, whose statement needs to be generalized as follows:

[[∀E, T. (E : T) ∈ � −→ (isterm E) ∈ �′; � �i 〈E : T〉]] =⇒ �′ �i 〈isterm E〉

�

With the new version of isterm, we restate the Validity and Completeness of
Representation lemmas (Lemmas 10 and 11). Let � be the set {x1 : uexp, . . . , xn :
uexp} and let � be the set of atoms {isterm x1, . . . , isterm xn}.

Lemma 21 (Two-level Validity of Representation) If � � e, then the following is
provable in Isabelle/HOL:

proper � =⇒ � � 〈isterm ε�(e)〉

Lemma 22 (Two-level Completeness of Representation) If there is a minimal deriva-
tion in Isabelle/HOL of proper � =⇒ � � 〈isterm E〉, then δ�(E) is def ined and
yields a Mini-ML expression t such that � � t and ε�(δ�(E)) = E. Furthermore,
δ�(ε�(t)) = t.

We will skip the statement and proof of two-level adequacy of the other OL
judgments, hoping that the reader will spot the similarity with the above two lemmas.
Note that, although we do not state it formally, condition 1 of Lemma 17 follows from
completeness lemmas such as Lemma 22. The isterm and abstr assumptions added
to the clauses of Fig. 6 are exactly the ones needed to establish this fact for this OL.

We remark again that the combination of Hybrid with the use of an SL allows us
to simulate definitional reflection [48] via the built-in elimination rules of the prog
inductive definition without the use of additional axioms. For example the inversion
principle of the function typing rule is:

[[(fun x. (E x) :τ)←−G;
∧

F T1 T2. [[abstr F; G=all x. (x : T1) imp 〈(F x) : T2〉);
lambdaE= lambdaF; τ =(T1 →T2)]]=⇒ P]]=⇒ P

Before turning to the proof of Theorem 19, we first illustrate the use of this
encoding with the following simple OL typing judgment.

MC-Lemma 23 ∃T. � 〈fun x. fun y. x @ y : T〉

Proof This goal is equivalent to: ∃T.∃n.∅ �n 〈fun x. fun y. x @ y : T〉. It can be
proved fully automatically by a simple tactic described below. Here, we describe
the main steps in detail to acquaint the reader with the OL/SL dichotomy and in
particular to show how the two levels interact. We use the instantiations for T and n
that would be generated by the tactic and show:

∅ �8 〈fun x. fun y. x @ y : (i → i) → (i → i)〉.

Hybrid: Reasoning with HOAS 73

We apply the last rule of the SL in Fig. 5, instantiating the first premise with the
OL clause from Fig. 6 encoding the tp_fun rule for typing abstractions, leaving two
premises to be proved:

(fun x. fun y. x @ y) : (i → i) → (i → i) ←− all x. (x : i → i) imp 〈fun y. x @ y : i → i〉;
∅ �7 all x. (x : i → i) imp 〈fun y. x @ y : i → i〉.
The first now matches directly the clause in Fig. 6 for tp_fun, resulting in the
proof obligation (abstr λx.fun y. x @ y) which is handled automatically by abstr_tac
discussed in Section 3. To prove the second, we apply further rules of the SL to obtain
the goal:

[[proper x]] =⇒ {x : i → i} �5 〈fun y. x @ y : i → i〉.
We now have a subgoal of the same “shape” as the original theorem. Repeating the
same steps, we obtain:

[[proper x; proper y]] =⇒ {x : i → i, y : i} �2 〈x @ y : i〉.
Along the way, the proof obligation (abstr λy.x @ y) is proved by abstr_tac. The
assumption (proper x) is needed to complete this proof. At this point, we again apply
the SL backchain rule using the OL clause for tp_app, obtaining two subgoals, the
first of which is again directly provable from the OL definition. The second:

[[proper x; proper y]] =⇒ {x : i → i, y : i} �1 〈x : i → i〉 and 〈y : i〉.
is completed by applying the rules in Fig. 5 encoding the ∧R and init rules of
the SL. �

The code for the 2lprolog_tac tactic automating this proof and others involving
OL goals using the SL is a simple modification of the standard fast_tac tactic:

fun 2lprolog_tac defs i =
fast_tac(HOL_cs addIs seq.intrs @ prog.intrs

(simpset() addSolver (abstr_solver defs))) i;

It is based on logic programming style depth-first search (although we could switch
to breadth-first or iterative deepening) using a small set of initial axioms for the
core of higher-order logic (HOL_cs), the rules of the SL (seq.intrs) and of the
OL (prog.intrs). Additionally, it also employs simplification augmented with
abstr_tac as discussed in Section 3.

Now we have all the elements in place for a formal HOAS proof of Theorem 19.
Note that while a substitution lemma for typing plays a central role in the informal
subject reduction proof, here, in the HOAS tradition, it will be subsumed by the use
of the cut rule on the hypothetical encoding of the typing of an abstraction.

MC-Theorem 24 (OL_subject_reduction)

∀n. �n 〈E ⇓ V〉 =⇒ (∀T. � 〈E : T〉 → � 〈V : T〉)

Proof The proof is by complete induction on the height of the derivation of eval-
uation. It follows closely the proofs in [34, 67], although those theorems are for

74 A. Felty, A. Momigliano

the lazy λ-calculus, while here we consider eager evaluation. Applying meta-level
introduction rules and induction on n, we obtain the sequent:

[[I H; �n 〈E ⇓ V〉, � 〈E : T〉]] =⇒ � 〈V : T〉

where I H is the induction hypothesis:

∀m < n. E, V. �m 〈E ⇓ V〉 −→ (∀T. � 〈E : T〉 −→ � 〈V : T〉).

Since the right side of the SL sequent in the middle hypothesis is an atom and the left
side is empty, any proof of this sequent must end with the last rule of the SL in Fig. 5,
which implements the bc rule. Also, since the right side is an evaluation judgment,
backchaining must occur on one of the middle three clauses of the OL in Fig. 6, thus
breaking the proof into three cases. In the formal proof, we obtain these three cases
by applying standard inversion tactics:

[[I H[i+1/n]; abstr E′
1; (�i〈E1 ⇓ fun x. E′

1 x〉 and〈E2 ⇓ V2〉 and〈(E′
1 V2) ⇓ V〉);

� 〈(E1 @ E2) : T〉]] =⇒ � 〈V : T〉 (2)

[[I H[i + 1/n]; abstr E; �i 〈isterm (fun x. E x)〉; � 〈(fun x. E x) : T〉]]
=⇒ � 〈(fun x. E x) : T〉

[[I H[i + 1/n]; abstr E; (�i 〈E (fix x . E x) ⇓ V〉 and 〈isterm (fix x . E x)〉);
� 〈(fix x . E x) : T〉]] =⇒ � 〈V : T〉

where I H[i + 1/n] denotes I H with the single occurrence of n replaced by i + 1. The
theorems mentioned earlier about injectivity and distinctness of the constructors fun,
@, and fix are used by the inversion tactics. In contrast, in the proof in [34], because
these constructors were not defined inductively, specialized inversion theorems were
proved from axioms stating the necessary injectivity and distinctness properties, and
then applied by hand. The second subgoal above is directly provable. We illustrate
the first one further. Applying inversion to both the third and fourth hypotheses of
the first subgoal, the subgoal reduces it to:

[[I H[i + 3/n]; abstr E′
1; �i+1 〈E1 ⇓ fun x. E′

1 x〉; �i+1 〈E2 ⇓ V2〉;�i 〈(E′
1 V2) ⇓ V〉;� 〈E1 : T ′ → T〉; � 〈E2 : T ′〉]]

=⇒ � 〈V : T〉.

It is now possible to apply the induction hypothesis to the typing and evaluation
judgments for E1 and E2 to obtain:

[[I H[i + 3/n]; abstr E′
1; �i+1 〈E1 ⇓ fun x. E′

1 x〉; �i 〈E2 ⇓ V2〉;
�i 〈(E′

1 V2) ⇓ V〉; . . . ;
� 〈fun x. E′

1 x : T ′ → T〉; � 〈V2 : T ′〉]]
=⇒ � 〈V : T〉.

Hybrid: Reasoning with HOAS 75

We can now apply inversion to the hypothesis with the arrow typing judgment
involving both the fun constructor of the OL and the all constructor of the SL.
Inversion at the OL level gives:

[[I H[i + 3/n]; abstr E′
1; �i+1 〈E1 ⇓ fun x. E′

1 x〉; �i 〈E2 ⇓ V2〉;
�i 〈(E′

1 V2) ⇓ V〉; . . . ;
� 〈V2 : T ′〉; abstr E; lambda E = lambda E′

1; � all x. (x : T ′ imp 〈(E x) : T〉)]]
=⇒ � 〈V : T〉.

The application of the inversion principle prog.mkH_cases similar to the one from
Section 3 is evident here. MC-Theorem 4 can be applied to conclude that E = E′

1.
Applying inversion at the SL level gives:

[[I H[i + 3/n]; abstr E; �i+1 〈E1 ⇓ fun x. E x〉; �i 〈E2 ⇓ V2〉;
�i 〈(E V2) ⇓ V〉; . . . ;

� 〈V2 : T ′〉; ∀x. (proper x −→ � x : T ′ imp 〈(E x) : T〉)]]
=⇒ � 〈V : T〉.

Inversion cannot be applied directly under the universal quantification and implica-
tion of the last premise, so we prove the following inversion lemma, which is also
useful for the fix case of this proof.

[[∀x.proper x −→ � �i (x : T1 imp 〈(E x) : T2〉)]] =⇒ ∃ j. i = j + 1 ∧
∀x. proper x −→
(x : T1, � � j 〈(E x) : T2〉)

(3)

From this lemma, and the fact that (proper V2) holds by MC-Lemma 14, we obtain:

[[I H[i + 3/n]; abstr E; �i+1 〈E1 ⇓ fun x. E x〉; �i 〈E2 ⇓ V2〉;
�i 〈(E V2) ⇓ V〉; . . . ;

� 〈V2 : T ′〉; ((V2 : T ′) � j 〈(E V2) : T〉)]]
=⇒ � 〈V : T〉.

Applying the cut rule of MC-Theorem 18 allows us to conclude � 〈(E V2) : T〉. We
can then complete the proof by applying the induction hypothesis a third time using
this fact and �i 〈(E V2) ⇓ V〉. �

A key point in this section, perhaps worth repeating, is that the clauses for typing
are not inductive and would be rejected in an inductive-based proof assistant, or at
best, asserted with no guarantee of consistency. Here, instead, the typing rules are
encapsulated into the OL level (the prog predicate) and executed via the SL, so that
OL contexts are implicitly represented as SL contexts. Therefore, we are able to
reproduce full HOAS proofs, at the price of a small degree of indirectness—the need
for an interpreter (the SL) for the prog clauses (the OL). One may argue that this
seems at first sight a high price to pay, since we lose the possibility of attacking the

76 A. Felty, A. Momigliano

given problem directly within the base calculus and its tools. However, very simple
tactics, including a few safe additions to Isabelle/HOL’s default simplifier and rule
set20 make the use of the SL in OL proofs hardly noticeable, as we explain next.

4.3 Tactical Support

We chose to develop Hybrid as a package, rather than a stand-alone system mainly
to exploit all the reasoning capabilities that a mature proof assistant can provide:
decision procedures, rewrite rules, counter-model checking, extensive libraries, and
support for interactive theorem proving. Contrast this with a system such as Twelf,
where proofs are manually coded and post-hoc checked for correctness. Moreover,
in Twelf as well as in Abella, any domain specific knowledge has to be coded as logic
programming theories and all the relevant theorems proven about them.21 At the
same time, our aim is to try to retain some of the conciseness of a language such
as LF, which for us means hiding most of the administrative reasoning concerning
variable binding and contexts. Because of the “hybrid” nature of our approach,
this cannot be completely achieved, but some simple-minded tactics go a long way
toward mechanizing most of boilerplate scripting. We have already explained how
to use specific tactics to recognize proper terms and abstractions. Now, we can
concentrate on assisting two-level reasoning, which would otherwise be encumbered
by the indirection in accessing OL specifications via the SL. Luckily, Twelf-like
reasoning22 consists, at a high-level, of three basic steps: inversion, which subsumes
instantiation of (meta-level) eigenvariables as well as (case) analysis on the shape of
a given judgment, backchaining (filling, in Twelf’s terminology) and recursion. This
corresponds to highly stereotyped proof scripts that we have abstracted into:

1. an inversion tactic defL_tac, which goes through the SL inverting on the bc rule
and applies as an elimination rule one of the OL clauses. This is complemented
by the eager application of other safe elimination rules (viz. invertible SL rules
such as conjunction elimination). This contributes to keeping the SL overhead to
a minimum;

2. a dual backchaining tactic defR_tac, that calls bc and the applicable prog rule.
The latter is the basic single step into the tactic 2lprolog_tac, which performs
automatic depth first search (or other searches supported by Isabelle) on Prolog-
like goals;

3. a complete induction tactic, to be fired when given the appropriate derivation
height by the user and yielding as additional premise the result of the application
of the IH.

4.4 A Variation

As mentioned, the main reason to explicitly encode a separate notion of provabil-
ity is the intrinsic incompatibility of induction with non-stratifiable hypothetical

20In Isabelle a rule is considered safe roughly if it does not involve backtracking on instantiation of
unknowns.
21Twelf does have constraint domains such as the rationals, but those are currently incompatible with
totality checking, making meta-proofs very hard to trust.
22In Abella this is even more apparent.

Hybrid: Reasoning with HOAS 77

judgments. On the other hand, as remarked in [75], our definition of OL evaluation,
though it exploits Hybrid’s HOAS to implement OL substitution, makes no use of
hypothetical judgments. In fact, our encoding in Fig. 3 showed that it is perfectly
acceptable to define evaluation of the OL at the meta-level. Now, we can give a
modified version of this definition using the new isterm defined at the SL level. The
new definition is given in Fig. 7. Moreover, it is easy to show (formally) that the
encoding in Fig. 7 is equivalent to the one in Fig. 6:

MC-Theorem 25 E ⇓ V if and only if �n 〈E ⇓ V〉.

Proof Left-to right holds by straightforward structural induction on evaluation using
introduction rules over sequents and prog clauses. The converse is a slightly more
delicate complete induction on the height of the derivation, requiring some manual
instantiations. �

The same remark applies also to hypothetical and parametric judgments, provided
they are stratified (see the previously cited definition of applicative bisimulation).
This suggests that we can, in this case, take a different approach from McDowell &
Miller’s architecture [67] and opt to delegate to the OL level only those judgments,
such as typing, that would not be inductive at the meta-level. This has the benefit
of limiting the indirectness of using an explicit SL. Moreover, it has the further
advantage of replacing complete induction with structural induction, which is better
behaved from a proof-search point of view. Complete induction, in fact, places an
additional burden on the user by requiring him/her to provide the correct instanti-
ation for the height of the derivation in question, so that the inductive hypothesis
can be fired. While this is not an intellectual issue, it often limits the possibility of a
complete, i.e., without user intervention, mechanization of a proof via the automatic
tools provided by the proof assistant.

As it turns out, this approach is again reminiscent of a fairly old idea from the
theory of logic programming, namely the amalgamation of object and meta-language
as initially suggested in [14], where clauses can be written interspersing ordinary
Prolog predicates with calls to a specific meta-interpreter of the demo sort. This
clearly also pertains to goals, i.e., in our setting, theorems: subject reduction at the
meta-level (i.e., amalgamated subject reduction) has the form:

MC-Theorem 26 (meta_subject_reduction)

E ⇓ V =⇒ ∀T. (� 〈E : T〉) −→ (� 〈V : T〉)

Fig. 7 Alternate HOAS encoding of big step evaluation

78 A. Felty, A. Momigliano

Proof The proof is similar but slightly simpler than the proof of MC-Theorem 24.
Instead of complete induction, we proceed by structural induction on the evaluation
judgment, which breaks the proof into three cases. We again consider the application
case:

[[I H1; I H2; I H3; abstr E′
1; (E1 ⇓ fun x. E′

1 x); (E2 ⇓ V2);
((E′

1 V2) ⇓ V); � 〈(E1 @ E2) : T〉]] =⇒ � 〈V : T〉

where I H1, I H2, and I H3 are the following three induction hypotheses:

I H1 : ∀T. � 〈E1 : T〉 =⇒ � 〈(fun x. E′
1 x) : T〉

I H2 : ∀T. � 〈E2 : T〉 =⇒ � 〈V2 : T〉
I H3 : ∀T. � 〈(E′

1 V2) : T〉 =⇒ � 〈V : T〉

This subgoal corresponds to subgoal (2) in the proof of MC-Theorem 24, with several
differences. For instance, subgoal (2) was obtained by an application of complete
induction followed by inversion on the OL and SL, while the above subgoal is a
direct result of applying structural induction. Also, although both subgoals have
three evaluation premises, in (2) they are inside conjunction at the SL level. Finally,
the general induction hypothesis I H on natural numbers in (2) is replaced by three
induction hypotheses here, generated from the premises of the meta-level definition
of the evaluation rule for application. The remaining steps of the proof of this case
are essentially the same as the steps for MC-Theorem 24. Inversion on the typing
judgment is used exactly as before since in both proofs, typing is expressed via the
SL. Also, the three induction hypotheses in this proof are used to reach the same
conclusions as were obtained using the single induction hypothesis three times in the
previous proof. �

Now that we have seen some proofs of properties of OLs, we can ask what
the minimal set of theorems and tactics is that the two-level architecture needs
from Hybrid. The answer is: very little. Essentially all we need is the quasi-freeness
properties of the Hybrid type, which are inherited from the OL:

– clash rules to rule out impossible cases in elimination rules;
– injectivity facts, all going back to abstr_lam_simp to simplify equations of the

form lambda E = lambda F for second-order functions E and F;
– an abstraction solver.23

The reader may find in [75] other examples, such as the verification of properties
of compilation, of encoding OLs using inductive predicates (types) at the meta-level
for all stratifiable object-level judgments. However, this style of reasoning is viable
only when there is a substantial coincidence between the meta-logical properties of
the SL and the ambient (meta-) logic. Were such properties to clash with an encoding
that could benefit from being driven by a more exotic logic, then all OL predicates
will have to be embedded as prog clauses. This, it may be argued, is a relatively

23Again, this is not needed anymore in a newer version of Isabelle/HOL and of our package [78].

Hybrid: Reasoning with HOAS 79

small price to pay for the possibility of adopting an SL that better fits the logical
peculiarities of interesting OLs, as we investigate next.

5 Ordered Linear Logic as a Specification Logic

In this section we aim to show the flexibility of the two-level architecture by
changing SL in order to have a better match with the encoding on hand; the case-
study we consider here is the operational semantics of a continuation-based abstract
machine, where evaluation is sequentialized: an instruction is executed in the context
of a continuation describing the rest of the computation and eventually returning
an answer. We will adopt an ordered logical framework (OLF) [94]. The general
methodology consists of refining a logical framework in a conservative way, so
as to capture different object-level phenomena at the right level of abstraction.
Conservativity here guarantees that if a new feature (such as order) is not required,
it does not interfere with the original system.

Although frameworks based on intuitionistic logic have been fairly fruitful, it so
happens that the structural properties of the framework, namely weakening, contrac-
tion and exchange, are inherited by the object-level encodings. We have argued that
one of the keys to the success of an encoding lies in the ability of specifying judgments
“in-a-context” exploiting the context of the SL itself; however those properties may
not always be appropriate for every domain we want to investigate. Another case
in point is the meta-theory of languages with imperative features, where the notion
of (updatable) state is paramount. It has been frequently observed that an elegant
representation of the store may rely on a volatile notion of context. Linear logic is
then the natural choice, since it offers a notion of context where each assumption
must be used exactly once; a declarative encoding of store update can be obtained
via linear operations that, by accessing the context, consume the old assumption and
insert the new one. This is one of the motivations for proposing frameworks based on
linear logics (see [72] for an overview) such as Lolli [52], Forum [71], and LLF [18],
a conservative extension of LF with multiplicative implication, additive conjunction,
and unit. Yet, at the time of writing this article, work on the automation of reasoning
in such frameworks is still in its infancy [65] and may take other directions, such
as hybrid logics [100]. The literature offers only a few formalized meta-theoretical
investigations with linear logic as a framework, an impressive one being the elegant
encoding of type preservation of Mini-ML with references (MLR) in LLF [18].
However, none of them comes with anything like a formal certification of correctness
that would make people believe they are in the presence of a proof. Encoding in LLF
lacks an analogue of Twelf’s totality checker. Moreover this effort may be reserved
to LLF’s extension, the Concurrent Logical Framework [113]. A FOλ�INproof of
a similar result is claimed in [67], but not only the proof is not available, but it
has been implemented with Eriksson’s Pi, a proof checker [32] for the theory of
partial inductive definitions, another software system that seems not to be available
anymore.

This alone would more than justify the use of a fragment of linear logic as an
SL on top of Hybrid, whose foundation, we have argued, is not under discussion.
However, we want to go beyond the logic of state, towards a logic of order. In fact,
a continuation-based abstract machine follows an order, viz. a stack-like discipline;

80 A. Felty, A. Momigliano

were we able to also internalize this notion, we would be able to simplify the
presentation, and hence, the verification of properties of the machine itself, taking
an additional step on the declarative ladder. Our contribution here to the semantics
of continuation machines is, somewhat paradoxically, to dispose of the notion of
continuation itself via internalization in an ordered context, in analogy with how the
notion of state is realized in the linear context. In particular, the ordered context
is used to encode directly the stack of continuations to be evaluated, rather than
building an explicit stack-like structure. While this is theoretically non-problematic,
it introduces entities that are foreign to the mathematics of the problem and which
bring their own numerous, albeit trivial, proof obligations.24 Further and more
importantly, machine states are mapped not into OL data, but OL provability.

Ordered (formerly known as non-commutative) linear logic [96] combines reason-
ing with unrestricted, linear and ordered hypotheses. Unrestricted (i.e., intuitionistic)
hypotheses may be used arbitrarily often, or not at all regardless of the order in which
they were assumed. Linear hypotheses must be used exactly once, also without regard
to the order of their assumption. Ordered hypotheses must be used exactly once,
subject to the order in which they are assumed.

This additional expressive power allows the logic to handle directly the notion
of stack. Stacks of course are ubiquitous in computer science and in particular
when dealing with abstract and virtual machines. OLF has been previously ap-
plied to the meta-theory of programming languages, but only in paper and pencil
proofs: Polakow and Pfenning [97] have used OLF to formally show that terms
resulting from a CPS translation obey “stackability” and linearity properties [28].
Polakow and Yi [98] later extended these techniques to languages with excep-
tions. Remarkably, the formalization in OLF provides a simple proof of what is
usually demonstrated via more complex means, i.e., an argument by logical re-
lations. Polakow [94] has also investigated proof-search and defined a first-order
logic programming language with ordered hypotheses, called Olli, based on the
paradigm of abstract logic programming and uniform proofs, from which we draw
inspiration for our ordered SL, i.e., a second-order minimal ordered linear sequent
calculus.

We exemplify this approach by implementing a fragment of Polakow’s ordered
logic as an SL and test it with a proof of type preservation of a continuation machine
for Mini-ML, as we sketched in [79]. For the sake of presentation we shall deal with
a call-by-name operational semantics. It would not have been be unreasonable to
use MLR as a test case, where all the three different contexts would play a part.
However, linearity has already been thoroughly studied, while we wish to analyze
ordered assumptions in isolation, and for that aim, a basic continuation machine
will suffice (but see [63] for an investigation of the full case). Further, although the
SL implementation handles all of second-order Olli and in particular proves cut-
elimination for the whole calculus, we will omit references to the (unordered) linear

24This is not meant to say that intuitionistic meta-logic, (full) HOAS and list-based techniques cannot
cope with mutable data: in fact, significant case studies have been tackled: for example, Crary and
Sarkar’s proof of soundness for foundational certified code in typed assembly language for the x86
architecture [25] as well the more recent attempt by Lee et al. [59] to verify an internal language for
full SML.

Hybrid: Reasoning with HOAS 81

context and linear implication, as well as to the ordered left implication, since they
do not play any role in this case-study.

5.1 Encoding the Specification Logic

We call our specification logic Olli2�, as it corresponds to the aforementioned
fragment of Olli, where ’�’ denotes right-ordered implication. We follow [79] again
in representing the syntax as:

Goals G ::= A | A → G | A � G | G1 ∧ G2 | � | ∀τ x. G
Clauses P ::= ∀(A ←− [G1, . . . , Gm] | [G′

1, . . . , G′
n])

The body of a clause ∀(A ←− [G1, . . . , Gm] | [G′
1, . . . , G′

n]) consists of two lists,
the first one of intuitionistic goals, the other of ordered ones. It represents the
“logical compilation” of the formula ∀(Gm → . . . → G1 → G′

n � . . . � G′
1 � A).

We choose this compilation to emphasize that if one views the calculus as a non-
deterministic logic programming interpreter, the latter would solve subgoals from
innermost to outermost. Note also that this notion of clause makes additive conjunc-
tion useless, although we allow it in goals for a matter of style and consistency with
the previous sections.

Our sequents have the form:

�; � −→� G

where � contains the program clauses, which are unrestricted (i.e., they can be used
an arbitrary number of times), � contains unrestricted atoms, � contains ordered
atoms and G is the formula to be derived. Contexts are lists of hypotheses, where we
overload the comma to denote adjoining an element to a list at both ends. To simplify
matters further, we leave eigenvariable signatures implicit. One may think of the
two contexts as one big context where the ordered hypotheses are in a fixed relative
order, while the intuitionistic ones may float, copy or delete themselves. The calculus
is depicted in Fig. 8. Again in this fragment of the logic, implications have only atomic
antecedents. There are obviously two implication introduction rules, where in rule
�R the antecedent A is appended to the right of �, while in the other rule we have
(A, �), but it could have been the other way around, since here the order does not
matter. Then, we have all the other usual right sequent rules to break down the goal
and they all behave additively. Note how the �R rule can be used in discharging any
unused ordered assumptions. For atomic goals there are two initial sequent rules, for
the leaves of the derivation: init� enforces linearity requiring � to be a singleton list,
while init� demands that all ordered assumptions have been consumed. Additionally,
there is a single backchaining rule that simultaneously chooses a program formula to
focus uponand derives all the ensuing subgoals; rule (bc) is applied provided there
is an instance A ←− [G1 . . . Gm] | [G′

1 . . . G′
n] of a clause in the program �. Note

that the rule assumes that every program clause must be placed to the left of the
ordered context. This assumption is valid for our fragment of the logic because it
only contains right ordered implications (�) and the ordered context is restricted to
atomic formulas. Furthermore, the ordering of the �i in the conclusion of the rule is
forced by our compilation of the program clauses. We leave to the keen reader the
task to connect formally our backchain rule to the focused uniform proof system of
op. cit. [94].

82 A. Felty, A. Momigliano

Fig. 8 Sequent rules for Olli2�

We encode this logical language extending the datatype from Section 4.1 with
right implication, where again outermost universal quantifiers will be left implicit in
clauses.

datatype oo = · · · | atm � oo

Our encoding of the Olli2� sequent calculus uses three mutually inductive
definitions, motivated by the compilation of the body of clauses into additive and
multiplicative lists:25

� | � �n G :: [atm list, atm list, nat, oo] ⇒ bool
goal G has an ordered linear derivation from � and � of height n

� �n Gs :: [atm list, nat, oo list] ⇒ bool
list of goals Gs is additively provable from � etc

� | � �n Gs :: [atm list, atm list, nat, oo list] ⇒ bool
list of goals Gs is multiplicatively consumable given � and � etc

The rendering of the first judgment is completely unsurprising,26 except, perhaps, for
the backchain rule, which calls the list predicates required to recur on the body of a
clause:

[[(A ←− OL | IL) ; � | � �n OL ; � �n IL]] =⇒ � | � �n+1 〈A〉
The notation A ←− OL | IL corresponds to the inductive definition of a set prog
this time of type [atm, oo list, oo list] ⇒ bool, see Fig. 12. Backchaining uses the two
list judgments to encode, as we anticipated, execution of the (compiled) body of the

25Note that � could have easily been a set, as in Section 4.
26As a further simplification, the encoding of the ∀R rule will not introduce the proper assumption,
but the reader should keep in mind the fact that morally every eigenvariable is indeed proper.

Hybrid: Reasoning with HOAS 83

focused clause. Intuitionistic list provability is just an additive recursion through the
list of intuitionistic subgoals:

=⇒ � �n []
[[� | [] �n G ; � �n Gs]] =⇒ � �n+1 (G, Gs)

Ordered list consumption involves an analogous recursion, but it behaves multiplica-
tively w.r.t. the ordered context. Reading the rule bottom up, the current ordered
context � is non-deterministically split into two ordered parts, one for the head �G

and one �R for the rest of the list of subgoals.

=⇒ � | [] �n []
[[osplit � �R �G ; � | �G �n G ; � | �R �n Gs]]

=⇒ � | � �n+1 (G, Gs)

Therefore the judgment relies on the inductive definition of a predicate for order-
preserving splitting of a context. This corresponds to the usual logic programming
predicate append(�R, �G, �) called with mode append(−, −,+).

=⇒ osplit � [] �

osplit �1 �2 �3 =⇒ osplit (A, �1) (A, �2) �3

The rest of the sequent rules are encoded similarly to the previous SL (Fig. 5)
and the details are here omitted (and left to the web appendix of the paper, see
hybrid.dsi.unimi.it/jar). Again we define � | � � G iff there exists an n such that
� | � �n G and simply � G iff [] | [] � G. Similarly for the other judgments.

MC-Theorem 27 (Structural Rules) The following rules are admissible:

– Weakening for numerical bounds:

1. [[� | � �n G; n < m]] =⇒ � | � �m G
2. [[� | � �n Gs; n < m]] =⇒ � | � �m Gs
3. [[� �n Gs; n < m]] =⇒ � �m Gs.

– Context weakening, where (set �) denotes the set underlying the context �.

1. [[� | � � G; set � ⊆ set �′]] =⇒ �′ | � � G
2. [[� | � � Gs; set � ⊆ set �′]] =⇒ �′ | � � Gs
3. [[� � Gs; set � ⊆ set �′]] =⇒ �′ � Gs.

– Intuitionistic atomic cut:

1. [[� | � �i G; set � = set (A, �′); �′ | [] � j 〈A〉]] =⇒ �′ | � �i+ j G.
2. [[� | � �i Gs; set � = set (A, �′); �′ | [] � j 〈A〉]] =⇒ �′ | � �i+ j Gs.
3. [[� �i Gs; set � = set (A, �′); �′ | [] � j 〈A〉]] =⇒ �′ �i+ j Gs.

Proof All the proofs are by mutual structural induction on the three sequents judg-
ments. For the two forms of weakening, all it takes is a call to Isabelle/HOL’s classical
reasoner. Cut requires a little care in the implicational cases, but nevertheless it does
not involve more then two dozens instructions. �

http://hybrid.dsi.unimi.it/jar

84 A. Felty, A. Momigliano

Although the sequent calculus in [94] enjoys other forms of cut-elimination, the
following:

MC-Corollary 28 (seq_cut)

[[A, � | � � G; � � 〈A〉]] =⇒ � | � � G

is enough for the sake of the type preservation proof (MC-Theorem 32). Further, ad-
missibility of contraction and exchange for the intuitionistic context is a consequence
of context weakening.

5.2 A Continuation Machine and its Operational Semantics

We avail ourselves of the continuation machine for Mini-ML formulated in [89]
(Chapters 6.5 and 6.6), which we refer to for motivation and additional details. We
use the same language and we repeat it here for convenience:

Types τ ::= i | τ → τ ′
Expressions e ::= x | fun x. e | e1 • e2 | fix x. e

The main judgment s ↪→ s′ (Fig. 9) describes how the state of the machine evolves
into a successor state s′ in a small-step style. The machine selects an expression
to be executed and a continuation K, which contains all the information required
to carry on the execution. To achieve this we use the notion of instruction, e.g.,
an intermediate command that links an expression to its value. The continuation
is either empty (init) or it has the form of a stack (K; λ x. i), each item of which
(but the top) is a function from values to instructions. Instruction (ev e) starts
the first step of the computation, while (return v) tells the current continuation to
apply to the top element on the continuation stack the newly found value. Other
instructions sequentialize the evaluation of subexpressions of constructs with more
than one argument; in our language, in the case of application, the second argument is
postponed until the first is evaluated completely. This yields the following categories
for the syntax of the machine:

Instructions i ::= ev e | return v | app1 v1 e2

Continuations K ::= init | K; λ x. i

Machine States s ::= K � i | answer v

Fig. 9 Transition rules for
machine states

Hybrid: Reasoning with HOAS 85

The formulation of the subject reduction property of this machine follows the
statement in [18], although we consider sequences of transitions by taking the
reflexive-transitive closure ↪→∗ of the small-step relation, and a top level initializa-
tion rule cev (Fig. 10). Of course, we need to add typing judgments for the new
syntactic categories, namely instructions, continuations and states. These can be
found in Fig. 11, whereas we refer the reader to Fig. 2 as far as typing of expressions
goes.

Theorem 29 K � i ↪→∗ answer v and · �i i : τ1 and �K K : τ1 → τ2 implies · �e v :
τ2.

Proof By induction on the length of the execution path using inversion properties of
the typing judgments. �

Corollary 30 (Subject Reduction) e
c

↪→ v and · �e e : τ entails · �e v : τ .

As a matter of fact we could have obtained the same result by showing the
soundness of the operational semantics of the continuation machine w.r.t. big step
evaluation, viz. that e

c
↪→ v entails e ⇓ v (see Theorem 6.25 in [89]) and then

appealing to type preservation of the latter. That would be another interesting case
study: the equivalence of the two operational semantics (thoroughly investigated by
Pfenning in Chapter 6 op. cit. but in the intuitionistic setting of LF), to gauge what
the “Olli” approach would buy us.

5.3 Encoding the Object Logic

We now show how to write the operational semantics of the continuation machine
as an Olli program, or more precisely as Olli2� OL clauses. Rather than representing
the continuation K an explicit stack, we will simply store instructions in the ordered
context. This is particularly striking as we map machine states not into OL data,
but OL provability. In particular we will use the following representation to encode
machine states:

K � i � [] | �K� � 〈ex �i�〉
where �K� is the representation, described below, of the continuation (stack) K and
�i� the obvious representation of the instruction.27 In fact, if we retain the usual
abbreviation

uexp == con expr

27The reader may be relieved to learn that, at this late stage of the paper, we will be much more
informal with the issue of the adequacy of this encoding, mainly trying to convey the general intuition.
This is also notationally signaled by dropping the somewhat heavy notation ε·(·) for the lighter �·�.
The faithfulness of our representation could be obtained following the approach in [18]—see in
particular Theorem 3.4 ibid.

86 A. Felty, A. Momigliano

Fig. 10 Top level transition
rules

the encoding of instructions can be simply realized with an Isabelle/HOL datatype,
whose adequacy is standard:

datatype instr = ev uexp | return uexp | app1 uexp uexp

To describe the encoding of continuations, we use our datatype atm, which
describes the atomic formulas of the OL. This time, it is more interesting and con-
sists of:

datatype atm = ceval uexp uexp | ex instr | init uexp
| cont (uexp ⇒ instr) | uexp : tp
| ofI instr tp | ofK tp

We have atoms to describe the initial continuation “init ” of type uexp ⇒ atm,
the continuation that simply returns its value. Otherwise K is an ordered context
of atoms “cont K” of type (uexp ⇒ instr) ⇒ atm. The top level of evaluation
(ceval �e� �v�) unfolds to the initial goal init �v� � ex (ev �e�); our program will
evaluate the expression �e� and instantiate �v� with the resulting value. In other
words, we evaluate e with the initial continuation. The other instructions are treated
as follows: the goal ex (return �v�) means: pass v to the top continuation on the

Fig. 11 Typing rules for the continuation machine

Hybrid: Reasoning with HOAS 87

stack (i.e., the rightmost element in the ordered context): the instruction in the goal
ex (app1 �v1� �e2�) sequentializes the evaluation of application.

We have the following representations of machine states:

init � return v � [] | [init W] � 〈ex (return �v�)〉
where the logic variable W will be instantiated to the final answer;

K; λ x. i � return v � [] | (�K�, cont (λ x. �i�)) � 〈ex (return �v�)〉
where the ordering constraints force the proof of ex (return �v�) to focus on the
rightmost ordered formula.

We can now give the clauses for the OL deductive systems in Fig. 12, starting
with typing. These judgments are intuitionistic, except typing of continuations.
The judgments for expressions and instructions directly encode the corresponding
judgments and derivation rules. The judgments for continuations differ from their
analogs in Fig. 11 in that there is no explicit continuation to type; instead, the
continuation to be typed is in the ordered context. Thus, these judgments must first
get a continuation from the ordered context and then proceed to type it.

The evaluation clauses of the program fully take advantage of ordered contexts.
The first one corresponds to the cev rule. The rest directly mirror the machine
transition rules.

Fig. 12 Hybrid’s encoding of the OL deductive systems of the continuation machine

88 A. Felty, A. Momigliano

A sample derivation is probably in order and so it follows as MC-Lemma 31.
Note that as far as examples of evaluations go, this is not far away from total
triviality, being the evaluation of something which is already a value. However, our
intention here is not to illustrate the sequentialization of evaluation steps typical of a
continuation machine (for which we refer again to [89]); rather we aim to emphasize
the role of the ordered context, in particular the effect of non-deterministic splitting
on the complexity of proof search.

MC-Lemma 31 ∃V. � 〈ceval (fun x. x) V〉

Proof After introducing the logic variable ?V (here we pay no attention to the height
of the derivation) we apply rule bc, i.e., backchaining, obtaining the following 3 goals:

1. ceval (fun x. x) ?V ←− [init ?V � ex (ev (fun x. x))] | []
2. [] | [] � [init ?V � ex (ev (fun x. x))]
3. [] � []
Goals such as the third one (the base case of intuitionistic list evaluation) will always
arise when back-chaining on evaluation, as the intuitionistic context plays no role,
i.e., it is empty; since they are trivially true, they will be resolved away without any
further mention. So we have retrieved the body of the relevant clause and passed it
to ordered list evaluation:

[] | [] � [init ?V � ex (ev (fun x. x))]
This leads to splitting the ordered context, i.e.,

1. osplit [] Og Or
2. [] | Og � init ?V � 〈ex (ev (fun x. x))〉
3. [] | Or � []
In this case, ordered splitting is deterministic as it can only match the base case and
the two resulting contexts Og and Or are both set to empty:

[] | [] � init ?V � 〈ex (ev (fun x. x))〉
The introduction rule for ordered implication (and simplification) puts the goal in
the form:

[] | [init ?V] � 〈ex (ev (fun x. x))〉
which corresponds to the execution of the identity function with the initial continua-
tion. Another backchain yields:

1. abstr (λx. x)

2. osplit [init ?V] Og1 Or1

3. [] | Og1 � 〈ex (return (fun x. x))〉
As usual, abstr_tac takes care of the first goal, while now we encounter the first
interesting splitting case. To be able to solve the goal by assumption in the SL, we
need to pass the (singleton) context to the left context Og1. One way to achieve this is

Hybrid: Reasoning with HOAS 89

to gently push the system by proving the simple lemma ∃A. osplit [A] [A] []. Using
the latter as an introduction rule for subgoal 2, we get:

[] | [init ?V] � 〈ex (return (fun x. x))〉
More backchaining yields:

[] | [init ?V] � [〈init (fun x. x)〉]
and with another similar ordered split to the left we have

[] | [init ?V] � 〈init (fun x. x)〉
which is true by the init� rule. This concludes the derivation, instantiating ?V with
fun x. x. �

If we collect in sig_def all the definitions pertaining to the signature in question
and bundle up in olli_intrs all the introduction rules for the sequent calculus,
(ordered) splitting and the program database:

fast_tac(claset() addIs olli_intrs
(simpset() addSolver (abstr_solver sig_defs)));

the above tactic will automatically and very quickly prove the above lemma, by
backtracking on all the possible ordered splittings, which are, in the present case,
preciously few. However, this will not be the case for practically any other goal
evaluation, since splitting is highly non-deterministic in so far as all the possible
partitions of the contexts need to be considered. To remedy this, we could encode
a variant of the input-output sequent calculus described in [94] and further refined in
[95], which describes efficient resource management—and hence search—in linear
logic programming. Then, it would be a matter of showing it equivalent to the base
calculus, which may be far from trivial. In the end, our system will do fine for its aim,
i.e., investigation of the meta-theoretic properties of our case study.

The example may have shed some light about this peculiarity: the operational
semantics of the continuation machine is small-step; a sequence of transitions are
connected (via rules for its reflexive transitive closure) to compute a value, whereas
our implementation looks at first sight big-step, or, at least, shows no sign of transitive
closure. In fact, informally, for every transition that a machine makes from some state
si to si+1, there is a bijective function that maps the derivation of �si�, i.e., the sequent
encoding si to the derivation of �si+1�. The Olli2� interpreter essentially simulates the
informal trace of the machine obtained by transitive closure of each step K � i ↪→
s′ for some s′ with a tree of attempts to establish [] | �K� � 〈�i�〉 by appropriate
usage of the available ordered resources (the rest of �K�). In the above example, the
paper and pencil proof is a tree with cev at the root, linked by the step rule to the
st_fun and st_init axioms. This corresponds to the Olli2� proof we have described,
whose skeleton consists of the statement of the lemma as root and ending with the
axiom init�.

[] | [init ?V] � 〈ex (ev (fun x. x))〉 �
[] | [init ?V] � 〈ex (return (fun x. x))〉 �

[] | [init ?V] � 〈init (fun x. x)〉

90 A. Felty, A. Momigliano

Now we can address the meta-theory, namely the subject reduction theorem:

MC-Theorem 32 (sub_red_aux)

[] | (init V, �) �i 〈ex I〉 =⇒
∀T1T2. � 〈ofI I T1〉 −→
([] | (init V, �) � 〈ofK (T1 → T2)〉) −→ � 〈V :T2〉)

The proof of subject reduction again follows from first principles and does
not need any weakening or substitution lemmas. The proof and proof scripts are
considerably more manageable if we first establish some simple facts about typing
of various syntax categories and instruct the system to aggressively apply every
deterministic splitting, e.g.,

[[osplit [] Og Or; [[Og = []; Or = []]] =⇒ P]] =⇒ P

as well as a number of elimination rules stating the impossibility of some inversions
such as

[[cont K ←− Ol | Il]] =⇒ P

The human intervention that is required is limited to providing the correct splitting
of the ordered hypotheses and selecting the correct instantiations of the heights of
sub-derivations in order to apply the IH.

Proof The proof is by complete induction on the height of the derivation of the
premise. The inductive hypothesis is:

∀m. m < n −→
(∀I V �.

[] | (init V, �) � 〈ex I〉 −→
∀T1 T2.

[] � 〈ofI I T1〉 ∧
(init V, �) � 〈ofK T1 → T2〉 −→ � 〈V :T2〉)

Not only we will omit the IH in the following, but we will also gloss over the actual
height of the derivations, hoping that the reader will trust Isabelle/HOL to apply the
IH correctly. We again remark that in contexts we overload the comma to denote
adjoining an element to a list at both ends.

We begin by inverting on [] | (init V, �) � 〈ex I〉 and then on the prog clauses
defining execution, yielding several goals, one for each evaluation clause. The
statement for the st_return case is as follows:

[[. . . ; abstr K;
[] | [] � 〈ofI (return V ′) T1〉;
[] | (init V, �) � 〈ofK T1 → T2〉;
[] | (init V, �) � [〈ex (K V ′)〉, 〈cont K〉]]]

=⇒ � 〈V :T2〉
We start by applying the typing lemma:

[] | [] � 〈ofI (return V) T〉 =⇒ � 〈ofI V T〉

Hybrid: Reasoning with HOAS 91

Inverting on the derivation of [] | init V, � � [〈ex (K V ′)〉, 〈cont K〉] yields:

[[. . . ; osplit (init V, �) Og [cont K];
[] | Og � 〈ex K V ′〉;
[] | [] � 〈V ′ :T1〉]]

=⇒ � 〈V :T2〉
Now, there is only one viable splitting of the first premise, where∧

L. [[osplit � L [cont K]; Og = (init V, L)]] =⇒ P, as the impossibility of
the first one, entailing cont K = init V, is ruled out by the freeness properties of the
encoding of atomic formulas. This results in

[[. . . ; [] | (init V, L) � 〈ex K V ′〉;
[] | (init V, �) � 〈ofK T1 → T2〉;
[] | [] � 〈V ′ :T1〉;
osplit � L [cont K]]]

=⇒ � 〈V :T2〉
We now use the reading of ordered split as “reversed” append to force � to be the
concatenation of L and [cont K], denoted here as in the SL logic, e.g. (L, cont K):

[[. . . ; [] | (init V, L) � 〈ex K V ′〉;
[] | (init V, L, cont K) � 〈ofK T1 → T2〉;
[] | [] � 〈V ′ :T1〉]]

=⇒ � 〈V :T2〉
we now invert on the typing of continuation:

[[. . . ; [] | [] � [all v. v :T1 imp 〈ofI (K′ v) T〉];
[] | [] � 〈V ′ :T1〉;
[] | (init V, L, cont K) � [〈ofK T → T2〉, 〈cont K′〉];
[] | (init V, L) � 〈ex (K V ′)〉]]

=⇒ � 〈V :T2〉
The informal proof would require an application of the substitution lemma. Instead
here we use cut to infer:

[] | [] � 〈ofI (K′ V ′) T〉
We first have to invert on the hypothetical statement all v. v :T1 imp 〈ofI (K′ v) T〉
and instantiate v with V ′:

[[. . . ; [] | [] � 〈V ′ :T1〉;
[] | (init V, L) � 〈ex (K V ′)〉;
[] | (init V, L, cont K) � [〈ofK T → T2〉, 〈cont K′〉];
[V ′ :T1] | [] � 〈ofI (K′ V ′) T〉]]
=⇒ � 〈V :T2〉

92 A. Felty, A. Momigliano

Now one more inversion on [] | (init V, L, cont K) � [〈ofK T → T2〉, 〈cont K′〉]
brings us to split osplit (init V, L, cont K) Og [cont K′] so that (init V, L) = Og and
K = K′:

[[. . . ; [] | [] � 〈V ′ :T1〉;
[] | (init V, L) � 〈ex (K′ V ′)〉;
[] | [] � 〈ofI (K′ V ′) T〉;
[] | (init V, L) � 〈ofK T → T2〉]]

=⇒ � 〈V :T2〉

This final sequent follows from complete induction for height i. �

MC-Corollary 33 (subject_reduction) [[� ceval E V; � E :T]] =⇒ � V :T

6 Related Work

There is nowadays extensive literature on approaches to representing and reasoning
about what we have called “object logics,” where the notion of variable bindings
is paramount. These approaches are supported by implementations in the form of
proof checkers, proof assistants and theorem provers. We will compare our approach
to others according to two categories: whether the system uses different levels for
different forms of reasoning and whether it is relational (i.e., related to proof search)
or functional (based on evaluation).

6.1 Two-level, Relational Approaches

Our work started as a way of porting most of the ideas of FOλ�IN [67] into the
mainstream of current proof assistants, so that they can enjoy the facilities and
support that such assistants provide. As mentioned in the introduction, Isabelle/HOL
or Coq plays the role of FOλ�IN , the introduction/elimination rules of inductive
definitions (types) simulate the defR and defL rules of PIDs and the Hybrid meta-
language provides FOλ�IN’s λ-calculus. In addition, our approach went beyond
FOλ�IN , featuring meta-level induction and co-induction, which were later proved
consistent with the theory of (partial) inductive definitions [80]. These features are
now standard in FOλ�IN’s successor, Linc [107].

One of the more crucial advances given by Linc-like logic lies in the treatment
of induction over open terms, offered by the proof-theory of [74, 107]. The latter
has been recently modified [108] to simplify the theory of ∇-quantification by
removing local contexts of ∇-bounded variables so as to enjoy properties closer
to the fresh quantifier of nominal logic, such as strengthening and permutation
(see later in this section). Finally the G logic [41] brings fully together PIDs and
∇-quantification by allowing the latter to occur in the head of definitions. This
gives excellent new expressive power, allowing for example to def ine the notion of
freshness. Furthermore it eases induction over open terms and even gives a logical
reading to the notion of “regular worlds” that are crucial in the meta-theory of Twelf.

Hybrid: Reasoning with HOAS 93

Recently, Linc-like meta-logics and the two-level approach have received a
new implementation from first principles. Firstly, Bedwyr [7] is a model-checker
of higher-order specifications, based on a logic programming interpretation of ∇-
quantification and case analysis. Coinductive reasoning is achieved via tabling,
although no formal justification of the latter is given. Typical applications are in pro-
cess calculi, such as bisimilarity in π -calculus. The already cited Abella [40] is
emerging as a real contender in this category: it implements a large part of the G logic
and sports a significant library of theories, including an elegant proof of the
PoplMark challenge [6] as well as a proof of strong normalization by logical relations
[42], an issue which has been contentious in the theorem proving world. This proof
is based on a notion of arbitrarily cascading substitutions, and it shares with nominal
logic encodings the problem that once nominal constants have been introduced,
the user often needs to spend some effort controlling their spread. In fact, there is
currently some need to control occurrences of names in terms and thus to rely on
“technical” lemmas that have no counterpart in the informal proof. This is not a
problem of the prover itself, but it is induced by the nominal flavor that logics such
as Linc’s successors LG� and G have introduced. More details can be found in [35].

The so far more established competitor in the two-level relational approach is
Twelf [102]. Here, the LF type theory is used to encode OLs as judgments and to
specify meta-theorems as relations (type families) among them; a logic programming-
like interpretation provides an operational semantics to those relations, so that an
external check for totality (incorporating termination, well-modedness, coverage [90,
104]) verifies that the given relation is indeed a realizer for that theorem. In this
sense the Twelf totality checker can be seen to work at a different level than the OL
specifications.

Hickey et al. [50] built a theory for two-level reasoning within the MetaPRL
system, based on reflection. A HOAS representation is used at the level of reflected
terms. A computationally equivalent de Bruijn representation is also defined. Prin-
ciples of induction are automatically generated for a reflected theory, but it is stated
that they are difficult to use interactively because of their size. In fact, there is little
experience using the system for reasoning about OLs.

6.2 Two-level, Functional Approaches

There exists a second approach to reasoning in LF that is built on the idea of devising
an explicit (meta-)meta-logic for reasoning (inductively) about the framework, in a
fully automated way [101]. Mω can be seen as a constructive first-order inductive type
theory, whose quantifiers range over possibly open LF objects over a signature. In
this calculus it is possible to express and inductively prove meta-logical properties of
an OL. By the adequacy of the encoding, the proof of the existence of the appropriate
LF object(s) guarantees the proof of the corresponding object-level property. Mω

can be also seen as a dependently-typed functional programming language, and as
such it has been refined first into the Elphin programming language [105] and finally
in Delphin [99]. ATSLF [27] is an instantiation of Xi’s applied type systems combining
programming with proofs and can be used as a logical framework. In a similar vein
the contextual modal logic of Pientka, Pfenning and Naneski [81] provides a basis
for a different foundation for programming with HOAS and dependent types. This
has been explicitly formulated as the programming language Beluga [91]. Because all

94 A. Felty, A. Momigliano

of these systems are programming languages, we refrain from a deeper discussion.
See [33] for a comparison of Twelf, Beluga, and Hybrid on some benchmark
examples.

6.3 One-level, Functional Approaches

Modal λ-calculi were formulated in the early attempts by Schürmann, Despeyroux,
and Pfenning [103] to develop a calculus that allows the combination of HOAS with
a primitive recursion principle in the same framework, while preserving the adequacy
of representations. For every type A there is a type �A of closed objects of type A.
In addition to the regular function type A ⇒ B, there is a more restricted type A →
B ≡ �A ⇒ B of “parametric” functions. Functions used as arguments for higher-
order constructors are of this kind and thus roughly correspond to our notion of
abstraction. The dependently-typed case is considered in [31] but the approach seems
to have been abandoned in view of [81]. Washburn and Weirich [112] show how
standard first-class polymorphism can be used instead of a special modal operator to
restrict the function space to “parametric” functions. They encode and reason about
higher-order iteration operators.

We have mentioned earlier the work by Gordon and Melham [45, 46], which we
used as a starting point for Hybrid. Building on this work, Norrish improves the
recursion principles [84], allowing greater flexibility in defining recursive functions
on this syntax.

6.4 Other One-level Approaches

Weak28 higher-order abstract syntax [30] is an approach that strives to co-exist with
an inductive setting, where the positivity condition for datatypes and hypothetical
judgments must be obeyed. In weak HOAS, the problem of negative occurrences
in datatypes is handled by replacing them with a new type. For example, the fun
constructor for Mini-ML introduced in Section 3 has type (var ⇒ uexp) ⇒ uexp,
where var is a type of variables, isomorphic to natural numbers. Validity predicates
are required to weed out exotic terms, stemming from case analysis on the var type,
which at times is inconvenient. The approach is extended to hypothetical judgments
by introducing distinct predicates for the negative occurrences. Some axioms are
needed to reason about hypothetical judgments, to mimic what is inferred by the cut
rule in our architecture. Miculan et al.’s framework [23, 53, 70] embraces an axiomatic
approach to meta-reasoning with weak HOAS in an inductive setting. It has been
used within Coq, extended with a “theory of contexts” (ToC), which includes a set
of axioms parametric to an HOAS signature. The theory includes the reification of
key properties of names akin to freshness. Exotic terms are avoided by taking the var
to be a parameter and assuming axiomatically the relevant properties. Furthermore,
higher-order induction and recursion schemata on expressions are also assumed. To
date, the consistency with respect to a categorical semantics has been investigated for
higher-order logic [15], rather than w.r.t. a (co)inductive dependent type theory such
as the one underlying Coq [44].

28For the record, the by now standard terminology “weak” HOAS was coined by the second author
of the present paper in [76].

Hybrid: Reasoning with HOAS 95

From our perspective, ToC can be seen as a stepping stone towards Gabbay and
Pitts nominal logic, which aims to be a foundation of programming and reasoning
with names, in a one-level architecture. This framework started as a variant of the
Frankel-Mostowski set theory based on permutations [37], but it is now presented as
a first-order theory [92], which includes primitives for variable renaming and variable
freshness, and a (derived) new “freshness” quantifier. Using this theory, it is possible
to prove properties by structural induction and also to define functions by recursion
over syntax [93]. The proof-theory of nominal logic has been thoroughly investigated
in [19, 38], and the latter also investigates the proof-theoretical relationships between
the ∇ and the “freshness” quantifier, by providing a translation of the former to the
latter.

Gabbay has tried to implement nominal sets on top of Isabelle [39]. A better
approach has turned out to be Urban et al.’s; namely to engineer a nominal datatype
package inside Isabelle/HOL [83, 110] analogous to the standard datatype package
but defining equivalence classes of term constructors. In more recent versions,
principles of primitive recursion and strong induction have been added [109] and
many case studies tackled successfully, such as proofs by logical relations (see [83]
for more examples). The approach has also been compared in detail with de Bruijn
syntax [12] and in hindsight owes to McKinna and Pollack’s “nameless” syntax [68].
Nominal logic is beginning to make its way into Coq; see [4].

It is fair to say that while Urban’s nominal package allows the implementation
of informal proofs obeying the Barendregt convention almost literally, a certain
number of lemmas that the convention conveniently hides must still be proved
w.r.t. the judgment involved; for example to choose a fresh atom for an object x,
one has to show that x has f inite support, which may be tricky for x of functional
type, notwithstanding the aid of general tactics implemented in the package. HOAS,
instead, aims to make α-conversion disappear and tries to extract the abstract higher-
order nature of calculi and proofs thereof, rather than follow line-by-line the informal
development. On the other hand, it would be interesting to look at versions of
the freshness quantifier at the SL level, especially for those applications where
the behavior of the OL binder is not faithfully mirrored by HOAS, namely with
the traditional universal quantification at the SL-level; well known examples of
this case include (mis)match in the π -calculus and closure-conversion in functional
programming.

Chlipala [21] recently introduced an alternate axiomatic approach to reasoning
with weak HOAS. Object-level terms are identified as meta-terms belonging to an
inductive type family, where the type of terms is parameterized by the type of vari-
ables. Exotic terms are ruled out by parametricity properties of these polymorphic
types. Clever encodings of OLs are achieved by instantiating these type variables in
different ways, allowing data to be recorded inside object-level variables (a technique
borrowed from [112]). Example proofs developed with this technique include type
preservation and semantic preservation of program transformations on functional
programming languages.

6.5 Hybrid Variants

Some of our own related work has involved alternative versions of Hybrid as well as
improvements to Hybrid, which we describe here.

96 A. Felty, A. Momigliano

Constructive Hybrid A constructive version of Hybrid implemented in Coq [17]
provides an alternative that could also serve as the basis for a two-level architecture.
This version provides a new approach to defining induction and non-dependent
recursion principles aimed at simplifying reasoning about OLs. In contrast to [105],
where built-in primitives are provided for the reduction equations for the higher-
order case, the recursion principle is defined on top of the base de Bruijn encoding,
and the reduction equations proved as lemmas.

In order to define induction and recursion principles for particular OLs, terms of
type expr are paired with proofs showing that they are in a form that can represent
an object-level term. A dependent type is used to store such pairs; here we omit
the details and just call it expr′, and sometimes oversimplify and equate expr′ with
expr. For terms of Mini-ML for example, in addition to free variables and bound
variables, terms of the forms (CON cAPP $ E1 $ E2), (CON cABS $ LAM x. E x)

and (CON cF I X $ LAM x. E x), which correspond to the bodies of the definitions of
@, fun, and fix, are the only ones that can be paired with such a proof. Analogues
of the definitions for constructing object-level terms of type expr are defined for
type expr′. For example, (e1@e2) is defined to be the dependent term whose first
component is an application (using @) formed from the first components of e1 and
e2, and whose second component is formed from the proof components of e1 and e2.

Instead of defining a general lambda operator, a version of lbind that does not
rely on classical constructs is defined for each OL. Roughly, (lbind e) is obtained
by applying e to a new free variable and then replacing it with de Bruijn index
0. A new variable for a term e of type expr ⇒ expr is defined by adding 1 to the
maximum index in subterms of the form (VAR x) in (e(BND 0)). Note that terms that
do not satisfy abstr may have a different set of free variables for every argument,
but for those which do satisfy abstr, choosing (BND 0) as the argument to which
e is applied does give an authentic free variable. Replacing free variable (VAR n)

in (e(VAR n)) with (BND 0) involves defining a substitution operator that increases
bound indices as appropriate as it descends through ABS operators. This description
of lbind is informal and hides the fact that these definitions are actually given on
dependent pairs, i.e., e has type expr′ → expr′. Thus, the definition of lbind depends
on the OL because expr′ is defined for each OL. Induction and recursion are also
defined directly on type expr′. To obtain a recursion principle, it is shown that for
any type t, a function f of type expr′ → t can be defined by specifying its results on
each “constructor” of the OL. For example, for the @ and fun cases of Mini-ML,
defining f involves defining Happ and Hfun of the following types:

Happ : expr′ → expr′ → B → B → B
Hfun : (expr′ → expr′) → B → B

and then the following reduction equations hold.

f (e1@e2) = Happ e1 e2 (f e1) (f e2)

f (fun λx. f x) = Hfun (canon(λx. f x)) (f (lbind (λx. f x)))

In these equations we oversimplify, showing functions f, Happ, and Hfun applied
to terms of type expr; in the actual equations, proofs paired with terms on the left
are used to build proofs of terms appearing on the right. The canon function in the
equation for fun uses another substitution operator to obtain a “canonical form,”

Hybrid: Reasoning with HOAS 97

computed by replacing de Bruijn index 0 in (lbind (λx. f x)) with x. This function is
the identity function on terms that satisfy abstr.

Another version of constructive Hybrid [16] in Coq has been proposed, in which
theorems such as induction and recursion principles are proved once at a general
level, and then can be applied directly to each OL. An OL is specified by a signature,
which can include sets of sorts, operation names, and even built-in typing rules.
A signature specifies the binding structure of the operators, and the recursion and
induction principles are formulated directly on the higher-order syntax.

Hybrid 0.2 During the write-up of this report, the infrastructure of Hybrid has
developed significantly, thanks to the work by Alan Martin (see [78]), so that we
informally talk of Hybrid 0.2. Because those changes have been recent and only
relatively influence the two-level approach, we have decided not to update the whole
paper, but mention here the relevant differences.

The main improvement concerns an overall reorganization of the infrastructure
described in Section 2, based on the internalization as a type of the set of proper
terms. Using Isabelle/HOL’s typedef mechanism, the type prpr is defined as a
bijective image of the set { s : : expr | level 0 s }, with inverse bijections expr : :
prpr ⇒ expr and prpr : : expr ⇒ prpr. In effect, typedef makes prpr a subtype of
expr, but since Isabelle/HOL’s type system does not have subtyping, the conversion
function must be explicit. Now that OL terms can only be well-formed de Bruijn
terms, we can replace the proper_abst property (MC-Lemma 3) with the new lemma

MC-Lemma 34 (abstr_const)

abstr (λ v. t :: prpr)

From the standpoint of two-level reasoning this lemma allows us to dispose of all
proper assumptions: in particular the SL universal quantification has type (prpr ⇒
oo) ⇒ oo and the relative SL clause (Fig. 5) becomes:

[[∀x. � �n (G x)]] =⇒ � �n+1 (all x. G x)

Therefore, in the proof of MC-Lemma 23 no proper assumptions are generated.
The proof of OL Subject Reduction (MC-Theorem 24) does not need to appeal to
property (3) or, more importantly, to part 1 of MC-Lemma 14. While this is helpful, it
does not eliminate the need for adding well-formedness annotations in OL judgments
for the sake of establishing adequacy of the encoding.

Further, a structural definition of abstraction allows us to state the crucial quasi-
injectivity property of the Hybrid binder LAM, strengthening MC-Theorem 4 by
requiring only one of e and f to satisfy this condition (instead of both), thus
simplifying the elimination rules for inductively defined OL judgments:

MC-Theorem 35 (strong_lambda_inject)

abstr e =⇒ (LAM x. e x = LAM y. f y) = (e = f)

The new definition allows us to drop abstr_tac for plain Isabelle/HOL sim-
plification, and the same applies, a fortiori to proper_tac.

98 A. Felty, A. Momigliano

A significant case study using this infrastructure has being tackled by Alan
Martin [62, 63] and consists of an investigation of the meta-theory of a functional
programming language with references using a variety of approaches, culminating
with the usage of a linearly ordered SL. This study extends the work in Section 5
and [79], as well as offering a different encoding of Mini-ML with references than
the one analyzed with a linear logical framework [18].29

Martin’s forthcoming doctoral thesis [62] also illustrates that it is possible to
use alternate techniques for induction at the SL level. Instead of natural number
induction, some proofs of the case study are carried out by structural induction on
the definition of the SL. In these proofs, it was necessary to strengthen the desired
properties to properties of arbitrary sequents, and to define specialized weakening
operators for contexts along with lemmas supporting reasoning in such contexts. It
is not clear how well this technique generalizes; this is the subject of future work. In
another technique, natural numbers are replaced by ordinals in the definition of the
SL, and natural number induction is replaced by transfinite induction. This technique
is quite general and simplifies proofs by induction that involve relating the proof
height of one derivation in the SL to one or more others.

Induction over Open Terms In this paper’s examples, proofs by induction over
derivations were always on closed judgment such as evaluation, be it encoded as a
direct inductive definition at the meta-level or as prog clauses used by the SL. In both
cases, this judgment was encoded without the use of hypothetical and parametric
judgments, and thus induction was over closed terms, although we essentially used
case analysis on open terms. Inducting over open terms and hypothetical judgments
is a challenge that has required major theoretical work [41, 101]. Statements have to
be generalized to non-empty contexts, and these contexts have to be of a certain
form, which must enforce the property in question. In [35] we showed how to
accomplish this in Hybrid with only a surprisingly minimal amount of additional
infrastructure: we can use the VAR constructor to encode free variables of OLs, and
simply add a definition (newvar) that provides the capability of creating a variable
which is fresh, in particular w.r.t. a context. We express the induction hypothesis as
a “context invariant,” which is a property that must be preserved when adding a
fresh variable to the context. The general infrastructure we build is designed so that
it is straightforward to express context invariants and prove that they are preserved
when adding a fresh variable. Very little overhead is required, namely a small library
of simple lemmas, where no reasoning about substitution or α-conversion is needed
as in first-order approaches. Yet the reasoning power of the system and the class of
properties that can be proved is significantly increased.

7 Conclusions and Future Work

We have presented a multi-level architecture that allows reasoning about objects
encoded using HOAS in well-known systems such as Isabelle/HOL and Coq that

29We remark that this approach is exempt from the problems connected to verifying meta-theoretical
sub-structural properties in LF-style, as pointed out in [100].

Hybrid: Reasoning with HOAS 99

implement well-understood logics. The support for reasoning includes induction
and co-induction as well as various forms of automation available in such systems
such as tactical-style reasoning and decision procedures. We have presented several
examples of its use, including an arguably innovative case study. As we have
demonstrated, there are a variety of advantages of this kind of approach:

– It is possible to replicate in a well-understood and interactive setting the style of
proof used in systems such as Linc designed specially for reasoning using higher-
order encodings. The reasoning can be done in such a way that theorems such as
subject reduction proofs are proven without “technical” lemmas foreign to the
mathematics of the problem.

– Results about the intermediate layer of specification logics, such as cut elimi-
nation, are proven once and for all; in fact it is possible to work with different
specification logics without changing the infrastructure.

– It is possible to use this architecture as a way of “fast prototyping” HOAS logical
frameworks since we can quickly implement and experiment with a potentially
interesting SL, rather than building a new system from scratch.

Since our architecture is based on a very small set of theories that definitionally
builds an HOAS meta-language on top of a standard proof-assistant, this allows us to
do without any axiomatic assumptions, in particular freeness of HOAS constructors
and extensionality properties at higher-order types, which in our setting are now the-
orems. Furthermore, we have shown that the mix of meta-level and OL specifications
make proofs more easily mechanizable. Finally, by the simple reason that the Hybrid
system sits on top of Isabelle/HOL or Coq, we benefit from the higher degree of
automation of those systems.

Some of our current and future work will concentrate on the practical side, such
as continuing the development and the testing of the new infrastructure to which we
have referred as Hybrid 0.2 (see Section 6.5 and [78]), especially to exploit the new
features offered by Isabelle/HOL 2010. Further, we envisage developing a package
similar in spirit to Urban’s nominal datatype package for Isabelle/HOL [83]. For
Hybrid, such a package would automatically supply a variety of support from a user
specification of an OL, such as validity predicates like isterm, a series of theorems
expressing freeness of the constructors of such a type including injectivity and clash
theorems, and an induction principle on the shape of expressions analogous to MC-
Theorem 6. To work at two levels, such a package would include a number of pre-
compiled SLs (including cut-elimination proofs and other properties) as well as some
lightweight tactics to help with two-level inference. Ideally, the output of the package
could be in itself generated by a tool such as OTT ([106]) so as to exploit the tool’s
capabilities of supporting work on large programming language definitions, where
“the scale makes it hard to keep a definition internally consistent, and hard to keep
a tight correspondence between a definition and implementations”, op. cit.

We clearly need to explore how general our techniques for induction over open
terms [35] are, both by attempting other typical case studies such as the POPLMark
challenge or the Church-Rosser theorem, as well as analyzing the relationship
with theoretical counterpart such as the regular world assumptions and context
invariants in Abella. This may also have the benefit of a better understanding and

100 A. Felty, A. Momigliano

“popularization” of proofs in those less known frameworks. In Twelf, in particular,
much of the work in constructing proofs is currently handled by an external check for
properties such as termination and coverage [90, 104]. We are investigating Hybrid
as the target of a sort of “compilation” of such proofs into the well-understood
higher-order logic of Isabelle/HOL. More in-depth comparisons with nominal logic
ideas such as freshness and the Gabbay-Pitts quantifier are also in order. In fact,
any concrete representation of bound variables does not fit well with HOAS, where
the former have no independent identities. However, there are relevant applications
(e.g., mismatch in the π -calculus, see [20] for other examples) where names of bound
variables do matter.

Acknowledgements Most of the material in this paper is based on previous joint work with Simon
Ambler and Roy Crole [2, 3, 75–77], Jeff Polakow [79] and Venanzio Capretta [17], whose contribu-
tions we gratefully acknowledge. The paper has also benefited from discussions with Andy Gordon,
Alan Martin, Marino Miculan, Dale Miller, Brigitte Pientka, Randy Pollack, Frank Pfenning and
Carsten Schürman. We thank the anonymous reviewers for many useful suggestions.

References

1. Abramsky, S., Ong, C.-H.L.: Full abstraction in the lazy lambda calculus. Inf. Comput. 105(2),
159–267 (1993)

2. Ambler, S.J., Crole, R.L., Momigliano, A.: A definitional approach to primitive recursion
over higher order abstract syntax. In: MERλIN ’03: Proceedings of the 2003 ACM SIGPLAN
Workshop on MEchanized Reasoning About Languages with Variable Binding. pp. 1–11. ACM
Press, New York (2003)

3. Ambler, S., Crole, R.L., Momigliano, A.: Combining higher order abstract syntax with tactical
theorem proving and (co)induction. In: Carreño, V., Muñoz, C., Tashar, S. (eds.) Theorem
Proving in Higher Order Logics, 15th International Conference, TPHOLs 2002, Hampton,
VA, USA, 20–23 August 2002, Proceedings. Lecture Notes in Computer Science, vol. 2410,
pp. 13–30. Springer (2002)

4. Aydemir, B., Bohannon, A., Weirich, S.: Nominal reasoning techniques in Coq. Electr. Notes
Theor. Comput. Sci. 174(5), 69–77 (2007)

5. Aydemir, B., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering formal
metatheory. SIGPLAN Not. 43(1), 3–15 (2008)

6. Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P., Vytiniotis,
D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized metatheory for the masses: the
poplmark challenge. In: Hurd, J., Melham, T. (eds.) Theorem Proving in Higher Order Log-
ics, 18th International Conference. Lecture Notes in Computer Science, pp. 50–65. Springer
(2005)

7. Baelde, D., Gacek, A., Miller, D., Nadathur, G., Tiu, A.: The Bedwyr system for model checking
over syntactic expressions. In: Pfenning, F. (ed.) CADE. Lecture Notes in Computer Science,
vol. 4603, pp. 391–397. Springer (2007)

8. Ballarin, C.: Locales and locale expressions in Isabelle/Isar. In: Berardi, S., Coppo, M., Damiani,
F. (eds.) Types for Proofs and Programs, International Workshop, TYPES 2003, Torino, Italy,
30 April–4 May 2003, Revised Selected Papers. Lecture Notes in Computer Science, vol. 3085,
pp. 34–50. Springer (2004)

9. Benton, N., Kennedy, A.: Monads, effects and transformations. Electr. Notes Theor. Comput.
Sci. 26, 3–20 (1999)

10. Benton, N., Kennedy, A., Russell, G.: Compiling standard ML to Java bytecodes. In: ICFP 1998,
pp. 129–140 (1998)

11. Berghofer, S., Nipkow, T.: Proof terms for simply typed higher order logic. In: Harrison, J.,
Aagaard, M. (eds.) Theorem Proving in Higher Order Logics. LNCS, vol. 1869, pp. 38–52.
Springer (2000)

12. Berghofer, S., Urban, C.: A head-to-head comparison of de Bruijn indices and names. Electr.
Notes Theor. Comput. Sci. 174(5), 53–67 (2007)

Hybrid: Reasoning with HOAS 101

13. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Coq’Art:
The Calculus of Inductive Constructions. Springer (2004)

14. Bowen, K.A., Kowalski, R.A.: Amalgamating language and metalanguage in logic program-
ming. In: Clark, K.L., Tarnlund, S.A. (eds.) Logic Programming. APIC Studies in Data Process-
ing, vol. 16, pp. 153–172. Academic (1982)

15. Bucalo, A., Honsell, F., Miculan, M., Scagnetto, I., Hoffman, M.: Consistency of the theory of
contexts. J. Funct. Program. 16(3), 327–372 (2006)

16. Capretta, V., Felty, A.P.: Higher-order abstract syntax in type theory. In: Logic Colloquium ’06.
ASL Lecture Notes in Logic, vol. 32 (2008)

17. Capretta, V., Felty, A.P.: Combining de Bruijn indices and higher-order abstract syntax in Coq.
In: Altenkirch, T., McBride, C. (eds.) TYPES. Lecture Notes in Computer Science, vol. 4502,
pp. 63–77. Springer (2006)

18. Cervesato, I., Pfenning, F.: A linear logical framework. Inf. Comput. 179(1), 19–75 (2002)
19. Cheney, J.: A simpler proof theory for nominal logic. In: Sassone, V. (ed.) FoSSaCS. Lecture

Notes in Computer Science, vol. 3441, pp. 379–394. Springer (2005)
20. Cheney, J.: A simple nominal type theory. Electr. Notes Theor. Comput. Sci. 228, 37–52 (2009)
21. Chlipala, A.: Parametric higher-order abstract syntax for mechanized semantics. In: 13th ACM

SIGPLAN International Conference on Functional Programming (2008)
22. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5, 56–68 (1940)
23. Ciaffaglione, A., Liquori, L., Miculan, M.: Reasoning about object-based calculi in (co)inductive

type theory and the theory of contexts. J. Autom. Reason. 39(1), 1–47 (2007)
24. Clement, D., Despeyroux, J., Despeyroux, T., Kahn, G.: A simple applicative language: Mini-

ML. In: Proceedings of the 1986 ACM Conference on Lisp and Functional Programming, pp.
13–27. ACM (1986)

25. Crary, K., Sarkar, S.: Foundational certified code in a metalogical framework. In: Baader, F.
(ed.) CADE. Lecture Notes in Computer Science, vol. 2741, pp. 106–120. Springer (2003)

26. Crole, R.: Hybrid adequacy. Technical Report CS-06-011, School of Mathematics and Com-
puter Sience, University of Leicester (2006)

27. Cui, S., Donnelly, K., Xi, H.: ATS: a language that combines programming with theorem
proving. In: Gramlich, B. (ed.) FroCos. Lecture Notes in Computer Science, vol. 3717,
pp. 310–320. Springer (2005)

28. Danvy, O., Dzafic, B., Pfenning, F.: On proving syntactic properties of CPS programs. In:
Gordon, A., Pitts, A. (eds.) Proceedings of HOOTS’99, Paris. Electronic Notes in Theoretical
Computer Science, vol. 26 (1999)

29. de Bruijn, N.G.: A plea for weaker frameworks. In: Huet, G., Plotkin, G. (eds.) Logical Frame-
works, pp. 40–67. Cambridge University Press (1991)

30. Despeyroux, J., Felty, A., Hirschowitz, A.: Higher-order abstract syntax in Coq. In: Second
International Conference on Typed Lambda Calculi and Applications, pp. 124–138. Lecture
Notes in Computer Science. Springer (1995)

31. Despeyroux, J., Leleu, P.: Metatheoretic results for a modal λ-calculus. J. Funct. Logic Program.
2000(1) (2000)

32. Eriksson, L.-H.: Pi: an interactive derivation editor for the calculus of partial inductive
definitions. In: Bundy, A. (ed.) CADE. Lecture Notes in Computer Science, vol. 814,
pp. 821–825. Springer (1994)

33. Felty, A., Pientka, B.: Reasoning with higher-order abstract syntax and contexts: a comparison.
In: Kaufmann, M., Paulson, L. (eds.) International Conference on Interactive Theorem Proving.
Lecture Notes in Computer Science, vol. 6172, pp. 228–243. Springer (2010)

34. Felty, A.P.: Two-level meta-reasoning in Coq. In: Carreño, V., Muñoz, C., Tashar, S. (eds.)
Theorem Proving in Higher Order Logics, 15th International Conference, TPHOLs 2002,
Hampton, VA, USA, 20–23 August 2002, Proceedings. Lecture Notes in Computer Science,
vol. 2410, pp. 198–213. Springer (2002)

35. Felty, A.P., Momigliano, A.: Reasoning with hypothetical judgments and open terms in Hybrid.
In: Porto, A., López-Fraguas, F.J. (eds.) PPDP, pp. 83–92. ACM (2009)

36. Ford, J., Mason, I.A.: Formal foundations of operational semantics. Higher-Order and Symbolic
Computation 16(3), 161–202 (2003)

37. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Form. Asp.
Comput. 13, 341–363 (2001)

38. Gabbay, M., Cheney, J.: A sequent calculus for nominal logic. In: LICS, pp. 139–148. IEEE
Computer Society (2004)

102 A. Felty, A. Momigliano

39. Gabbay, M.J.: Automating Fraenkel-Mostowski syntax. Technical Report CP-2002-211736,
NASA (2002). Track B Proceedings of TPHOLs’02

40. Gacek, A.: The Abella interactive theorem prover (system description). In: Armando, A.,
Baumgartner, P., Dowek, G. (eds.) IJCAR. Lecture Notes in Computer Science, vol. 5195, pp.
154–161. Springer (2008)

41. Gacek, A., Miller, D., Nadathur, G.: Combining generic judgments with recursive definitions.
In: LICS, pp. 33–44. IEEE Computer Society (2008)

42. Gacek, A., Miller, D., Nadathur, G.: Reasoning in Abella about structural operational semantics
specifications. Electr. Notes Theor. Comput. Sci. 228, 85–100 (2009)

43. Gillard, G.: A formalization of a concurrent object calculus up to α-conversion. In: McAllester,
D.A. (ed.) CADE. Lecture Notes in Computer Science, vol. 1831, pp. 417–432. Springer (2000)

44. Gimenez, E.: A tutorial on recursive types in Coq. Technical Report RT-0221, Inria (1998)
45. Gordon, A.: A mechanisation of name-carrying syntax up to α-conversion. In: Joyce, J.J.,

Seger, C.-J.H. (eds.) International Workshop on Higher Order Logic Theorem Proving and its
Applications. Lecture Notes in Computer Science, vol. 780, pp. 414–427. Vancouver, Canada,
August 1994. University of British Columbia, Springer (1994)

46. Gordon, A.D., Melham, T.: Five axioms of α-conversion. In: von Wright, J., Grundy, J.,
Harrison, J. (eds.) Proceedings of the 9th International Conference on Theorem Proving in
Higher Order Logics (TPHOLs’96), pp. 173–191, Turku, Finland, August 1996. LNCS 1125.
Springer (1996)

47. Gunter, E.L.: Why we can’t have SML-style datatype declarations in HOL. In: Claesen, L.J.M.,
Gordon, M.J.C. (eds) TPHOLs. IFIP Transactions, vol. A-20, pp. 561–568. Elsevier, North-
Holland (1992)

48. Hallnas, L.: Partial inductive definitions. Theor. Comp. Sci. 87(1), 115–147 (1991)
49. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. Assoc. Comput. Mach.

40(1), 143–184 (1993)
50. Hickey, J., Nogin, A., Yu, X., Kopylov, A.: Mechanized meta-reasoning using a hybrid

HOAS/de Bruijn representation and reflection. In: Reppy, J.H., Lawall, J.L. (eds.) ICFP 2006,
pp. 172–183. ACM Press (2006)

51. Hill, P.M., Gallagher, J.: Meta-programming in logic programming. In: Gabbay, D., Hogger,
C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Program-
ming, Volume 5: Logic Programming, pp. 421–498. Oxford University Press, Oxford (1998)

52. Hodas, J.S., Miller, D.: Logic programming in a fragment of intuitionistic linear logic. Inf.
Comput. 110(2), 327–365 (1994)

53. Honsell, F., Miculan, M., Scagnetto, I.: An axiomatic approach to metareasoning on nominal
algebras in HOAS. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP. Lecture Notes
in Computer Science, vol. 2076, pp. 963–978. Springer (2001)

54. Howe, D.J.: Proving congruence of bisimulation in functional programming languages. Inf.
Comput. 124(2), 103–112 (1996)

55. Hybrid Group: Hybrid: a package for higher-order syntax in Isabelle and Coq.
hybrid.dsi.unimi.it (2008). Accessed 20 May 2010

56. Isar Group: Isar—Intelligible semi-automated reasoning. http://isabelle.in.tum.de/Isar (2000).
Accessed 13 May 2010

57. Johansson, I.: Der Minimalkalkl, ein reduzierter intuitionistischer Formalismus. Compos. Math.
4, 119–136 (1937)

58. Lassen, S.B.: Head normal form bisimulation for pairs and the λμ-calculus. In: LICS, pp.
297–306. IEEE Computer Society (2006)

59. Lee, D.K., Crary, K., Harper, R.: Towards a mechanized metatheory of standard ML. In: POPL
’07: Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 173–184. ACM Press, New York (2007)

60. LEGO Group: The LEGO proof assistant. www.dcs.ed.ac.uk/home/lego/ (2001). Accessed 18
May 2010

61. Liu, H., Moore, J.S.: Executable JVM model for analytical reasoning: a study. Sci. Comput.
Program. 57(3), 253–274 (2005)

62. Martin, A.: Higher-Order Abstract Syntax in Isabelle/HOL. Ph.D. thesis, University of Ottawa
(2010, forthcoming)

63. Martin, A.J.: Case study: subject reduction for Mini-ML with references,in Isabelle/HOL +
Hybrid. Workshop on Mechanizing Metatheory. www.cis.upenn.edu/∼sweirich/wmm/wmm08/
martin.pdf (2008). Retrieved 7 January 2010

http://hybrid.dsi.unimi.it
http://isabelle.in.tum.de/Isar
http://www.dcs.ed.ac.uk/home/lego/
http://www.cis.upenn.edu/~sweirich/wmm/wmm08/martin.pdf
http://www.cis.upenn.edu/~sweirich/wmm/wmm08/martin.pdf

Hybrid: Reasoning with HOAS 103

64. Martin-Löf, P.: On the meanings of the logical constants and the justifications of the logical
laws. Nord. J. Philos. Log. 1(1), 11–60 (1996)

65. McCreight, A., Schürmann, C.: A meta linear logical framework. Informal Proceedings of
LFM’04 (2004)

66. McDowell, R., Miller, D.: Cut-elimination for a logic with definitions and induction. Theor.
Comp. Sci. 232, 91–119 (2000)

67. McDowell, R., Miller, D.: Reasoning with higher-order abstract syntax in a logical framework.
ACM Trans. Comput. Log. 3(1), 80–136 (2002)

68. McKinna, J., Pollack, R.: Some lambda calculus and type theory formalized. J. Autom. Reason.
23(3-4), 373–409 (1999)

69. Melham, T.F.: A mechanized theory of the π-calculus in HOL. Nord. J. Comput. 1(1), 50–76
(1994)

70. Miculan, M.: On the formalization of the modal μ-calculus in the calculus of inductive construc-
tions. Inf. Comput. 164(1), 199–231 (2001)

71. Miller, D.: Forum: a multiple-conclusion specification logic. Theor. Comput. Sci. 165(1),
201–232 (1996)

72. Miller, D.: Overview of linear logic programming. In: Ehrhard, T., Girard, J.-Y., Ruet, P., Scott,
P. (eds.) Linear Logic in Computer Science. London Mathematical Society Lecture Note, vol.
316, pp. 119–150. Cambridge University Press (2004)

73. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic
programming. Ann. Pure Appl. Logic 51, 125–157 (1991)

74. Miller, D., Tiu, A.: A proof theory for generic judgments. ACM Trans. Comput. Log. 6(4),
749–783 (2005)

75. Momigliano, A., Ambler, S.: Multi-level meta-reasoning with higher order abstract syntax. In:
Gordon, A. (ed.) FOSSACS’03. LNCS, vol. 2620, pp. 375–392. Springer (2003)

76. Momigliano, A., Ambler, S., Crole, R.: A comparison of formalisations of the meta-theory of
a language with variable binding in Isabelle. In: Boulton, R.J., Jackson, P. (eds.) 14th Interna-
tional Conference on Theorem Proving in Higher Order Logics (TPHOLs01), Supplemental
Proceedings, pp. 267–282. Informatics Research Report EDI-INF-RR-01-23 (2001)

77. Momigliano, A., Ambler, S., Crole, R.L.: A Hybrid encoding of Howe’s method for establishing
congruence of bisimilarity. Electr. Notes Theor. Comput. Sci. 70(2), 60–75 (2002)

78. Momigliano, A., Martin, A.J., Felty, A.P.: Two-level Hybrid: A system for reasoning using
higher-order abstract syntax. Electr. Notes Theor. Comput. Sci. 196, 85–93 (2008)

79. Momigliano, A., Polakow, J.: A formalization of an ordered logical framework in Hybrid
with applications to continuation machines. In: MERLIN ’03: Proceedings of the 2003 ACM
SIGPLAN Workshop on Mechanized Reasoning about Languages with Variable Binding, pp.
1–9. Uppsala, Sweden (2003)

80. Momigliano, A., Tiu, A.F.: Induction and co-induction in sequent calculus. In: Berardi, S.,
Coppo, M., Damiani, F. (eds.) Types for Proofs and Programs, International Workshop, TYPES
2003, Torino, Italy, 30 April–4 May 2003, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 3085, pp. 293–308. Springer (2004)

81. Nanevski, A., Pfenning, F., Pientka, B.: Contextual modal type theory. ACM Trans. Comput.
Log. 9(3), 1–49 (2008)

82. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order
Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002)

83. Nominal Methods Group: Nominal Isabelle. isabelle.in.tum.de/nominal (2008). Accessed 15
May 2010

84. Norrish, M.: Recursive function definition for types with binders. In: Seventeenth International
Conference on Theorem Proving in Higher Order Logics, pp. 241–256. Lecture Notes in Com-
puter Science. Springer (2004)

85. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In: Kapur, D.
(ed.) Proceedings of the 11th International Conference on Automated Deduction, pp. 748–752.
LNAI 607. Springer (1992)

86. Pauli–Mohring, C.: Inductive definitions in the system Coq: rules and properties. In: Bezem, M.,
Groote, J.F. (eds.) Proceedings of the International Conference on Typed Lambda Calculi and
Applications, pp. 328–345, Utrecht, The Netherlands. LNCS 664. Springer (1993)

87. Paulson, L.C.: A fixedpoint approach to implementing (co)inductive definitions. In: Bundy, A.
(ed.) Proceedings of the 12th International Conference on Automated Deduction, pp. 148–161,
Nancy, France. LNAI 814. Springer (1994)

http://isabelle.in.tum.de/nominal

104 A. Felty, A. Momigliano

88. Pfenning, F.: Logical frameworks. In: Robinson, A., Voronkov, A. (eds.) Handbook of Auto-
mated Reasoning. Elsevier Science Publishers (1999)

89. Pfenning, F.: Computation and Deduction. Cambridge University Press. Draft from March
2001 available at www.cs.cmu.edu/∼fp/courses/comp-ded/handouts/cd.pdf. Accessed 30 April
2010

90. Pientka, B.: Verifying termination and reduction properties about higher-order logic programs.
J. Autom. Reason. 34(2), 179–207 (2005)

91. Pientka, B.: Beluga: programming with dependent types, contextual data, and contexts. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS. Lecture Notes in Computer Science, vol.
6009, pp. 1–12. Springer (2010)

92. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. Comput. 186(2),
165–193 (2003)

93. Pitts, A.M.: Alpha-structural recursion and induction. J. ACM 53(3), 459–506 (2006)
94. Polakow, J.: Ordered linear logic and applications. Ph.D. thesis, CMU (2001)
95. Polakow, J.: Linearity constraints as bounded intervals in linear logic programming. J. Log.

Comput. 16(1), 135–155 (2006)
96. Polakow, J., Pfenning, F.: Relating natural deduction and sequent calculus for intuitionistic non-

commutative linear logic. In: Scedrov, A., Jung, A. (eds.) Proceedings of the 15th Conference
on Mathematical Foundations of Programming Semantics, New Orleans, Louisiana. Electronic
Notes in Theoretical Computer Science, vol. 20 (1999)

97. Polakow, J., Pfenning, F.: Properties of terms in continuation-passing style in an ordered
logical framework. In: Despeyroux, J. (ed.) 2nd Workshop on Logical Frameworks and Meta-
languages (LFM’00), Santa Barbara, California. Proceedings available as INRIA Technical
Report (2000)

98. Polakow, J., Yi, K.: Proving syntactic properties of exceptions in an ordered logical framework.
In: Kuchen, H., Ueda, K. (eds.) Proceedings of the 5th International Symposium on Func-
tional and Logic Programming (FLOPS’01), pp. 61–77, Tokyo, Japan. LNCS 2024. Springer
(2001)

99. Poswolsky, A., Schürmann, C.: Practical programming with higher-order encodings and depen-
dent types. In: Drossopoulou, S. (ed.) ESOP. Lecture Notes in Computer Science, vol. 4960, pp.
93–107. Springer (2008)

100. Reed, J.: Hybridizing a logical framework. Electr. Notes Theor. Comput. Sci. 174(6), 135–148
(2007)

101. Schürmann, C.: Automating the Meta-Theory of Deductive Systems. Ph.D. thesis, Carnegie-
Mellon University, CMU-CS-00-146 (2000)

102. Schürmann, C.: The Twelf proof assistant. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M.
(eds.) TPHOLs. Lecture Notes in Computer Science, vol. 5674, pp. 79–83. Springer (2009)

103. Schürmann, C., Despeyroux, J., Pfenning, F.: Primitive recursion for higher-order abstract
syntax. Theor. Comput. Sci. 266(1–2), 1–57 (2001)

104. Schürmann, C., Pfenning, F.: A coverage checking algorithm for LF. In: Basin, D.A., Wolff, B.
(eds.) TPHOLs. Lecture Notes in Computer Science, vol. 2758, pp. 120–135. Springer (2003)

105. Schürmann, C., Poswolsky, A., Sarnat, J.: The �-calculus. Functional programming with higher-
order encodings. In: Seventh International Conference on Typed Lambda Calculi and Applica-
tions, pp. 339–353. Lecture Notes in Computer Science. Springer (2005)

106. Sewell, P., Nardelli, F.Z., Owens, S., Peskine, G., Ridge, T., Sarkar, S., Strnisa, R.: Ott: effective
tool support for the working semanticist. In: Hinze, R., Ramsey, N. (eds.) ICFP 2007, pp. 1–12.
ACM (2007)

107. Tiu, A.: A logical framework for reasoning about logical specifications. Ph.D. thesis, Pennsyl-
vania State University (2004)

108. Tiu, A.: A logic for reasoning about generic judgments. Electr. Notes Theor. Comput. Sci.
174(5), 3–18 (2007)

109. Urban, C., Berghofer, S.: A recursion combinator for nominal datatypes implemented in Is-
abelle/HOL. In: Furbach, U., Shankar, N. (eds.) IJCAR. Lecture Notes in Computer Science,
vol. 4130, pp. 498–512. Springer (2006)

110. Urban, C., Tasson, C.: Nominal techniques in Isabelle/HOL. In: Nieuwenhuis, R. (ed.) Proceed-
ings of the 20th International Conference on Automated Deduction (CADE). LNCS, vol. 3632,
pp. 38–53. Springer (2005)

111. Vestergaard, R., Brotherston, J.: A formalised first-order confluence proof for the λ-calculus
using one-sorted variable names. Inf. Comput. 183(2), 212–244 (2003)

http://www.cs.cmu.edu/~fp/courses/comp-ded/handouts/cd.pdf

Hybrid: Reasoning with HOAS 105

112. Washburn, G., Weirich, S.: Boxes go bananas: encoding higher-order abstract syntax with
parametric polymorphism. J. Funct. Program. 18(1), 87–140 (2008)

113. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical framework: The
propositional fragment. In: Berardi, S., Coppo, M., Damiani, F. (eds.) Types for Proofs and
Programs, International Workshop, TYPES 2003, Torino, Italy, 30 April–4 May 2003, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 3085, pp. 355–377. Springer (2004)

	Hybrid
	Abstract
	Introduction
	Introducing Hybrid
	Definition of Hybrid in Isabelle/HOL
	Remarks on Hybrid in Coq

	Hybrid as a Logical Framework
	Coding the Syntax of an OL in Hybrid
	Adequacy of the Encoding
	Encoding Object-Level Judgments

	A Two-Level Architecture
	Encoding the Specification Logic
	The Object Logic
	Tactical Support
	A Variation

	Ordered Linear Logic as a Specification Logic
	Encoding the Specification Logic
	A Continuation Machine and its Operational Semantics
	Encoding the Object Logic

	Related Work
	Two-level, Relational Approaches
	Two-level, Functional Approaches
	One-level, Functional Approaches
	Other One-level Approaches
	Hybrid Variants

	Conclusions and Future Work
	References

