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Abstract A model describing the evolution of a liquid crystal substance in the nematic
phase is investigated in terms of two basic state variables: the velocity field u and the director
field d, representing the preferred orientation of molecules in a neighborhood of any point
in a reference domain. After recalling a known existence result, we investigate the long-
time behavior of weak solutions. In particular, we show that any solution trajectory admits
a non-empty ω-limit set containing only stationary solutions. Moreover, we give a number
of sufficient conditions in order that the ω-limit set contains a single point. Our approach
improves and generalizes existing results on the same problem.
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1 Introduction

In this paper we analyze the long-time behavior of weak solutions to the system

ut + div(u ⊗ u)− ν�u = div (−pI − L(∇d � ∇d)− δ(L�d − f (d))⊗ d) , (1)

div u = 0, (2)

d t + u · ∇d − δd · ∇u − L�d + f (d) = 0, (3)

describing the evolutionary behavior of nematic liquid crystal flows (we refer to the mono-
graphs [5,6] for a detailed presentation of the physical foundations of continuum theories
of liquid crystals). Actually, system (1–3) can be seen as a simplification of the original
Ericksen–Leslie model [7,13], that still keeps a good level of compliance with experimen-
tal results. The model couples the Navier-Stokes Eq. 1 for the macroscopic velocity u (p
denoting as usual the pressure), with the incompressibility condition (2) and with the Eq. 3
ruling the behavior of the local orientation vector d of the liquid crystal. Here, the function
f represents the gradient w.r.t. d of the configuration energy F of the crystal. We choose
F to be a double well potential having minima for |d| = 1 and growing at infinity at most
as a fourth order polynomial. This provides a standard relaxation of the physical constraint
|d| = 1, which is very difficult to treat mathematically.

In this paper, the system is complemented with the homogeneous Dirichlet boundary con-
dition for u, the no-flux condition for d, and with initial conditions. It is settled in a smooth
bounded domain � ⊂ R

d for d = 2 or d = 3. No restriction is assumed on the viscosity
coefficient ν.

Regarding the parameter δ, we will take δ ≥ 0, with the case δ > 0 denoting the presence
of a stretching effect on the molecules of the crystal. Some of our results, however, hold
only for δ = 0. Actually, the situation δ > 0 is more difficult to be treated mathematically
since the term δd · ∇u prevents from using maximum principle arguments in (3). For this
reason, even if the initial datum d0 satisfies the (relaxed) physical constraint |d0| ≤ 1 almost
everywhere, the same may not be true for d(t), for positive times, if δ > 0.

A mathematical analysis of system (1–3) has been first addressed in the papers [14] and
[15] (in this second work, an even more general model is taken into account). There, the
authors consider the case δ = 0 and prove existence of a unique classical solution for d = 2,
and also in dimension d = 3 under the additional assumption that the viscosity ν is suffi-
ciently large. These results have been extended to the case δ > 0 in the paper [19]. Finally,
the restriction on the viscosity has been recently dropped in [2], where weak solutions are
considered and a global existence result for the 3D system (1–3) is proved in that regularity
frame. Of course, uniqueness is not known to hold in that regularity setting. A similar result
is essentially contained also in the recent paper [3], where analogous estimates are derived
but no formal statement of an existence result is provided.

The Dirichlet boundary condition for u and either a nonhomogeneous Dirichlet or the
no-flux boundary condition for d are treated there. Moreover, let us quote the recent paper
[9], where these results have been extended to a more general system (1–3), where also
temperature effects are taken into account. We note, however, that the results of [9] require
different boundary conditions for u (namely, the so-called complete slip conditions).

The long-time behavior of system (1–3) has been analyzed in the recent work [20], still
considering the case d = 2 or the case d = 3 with the large viscosity ν, and periodic bound-
ary conditions. More precisely, in [20] the authors show existence of a nonempty ω-limit set
for any strong bounded solution emanating from smooth initial data. Moreover, by using the
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Simon-Łojasiewicz inequality, they prove that, for the nonlinearity f = (|d|2 − 1)d, this
ω-limit set contains only one point.

Stability and asymptotic stability properties of this model (actually, with even more com-
plete stretching terms) have also been studied in [3], where the long-time behavior of solutions
is analyzed in the case of periodic boundary conditions. More precisely, the authors prove, by
means of formal estimates, that weak solutions become eventually smoother for large times,
which suffices to have existence of non-empty ω-limit sets.

Finally, in the recent contribution [12], the existence of a smooth global attractor of finite
fractal dimension is obtained in two dimensions of space.

Our aim in this paper is to extend the results of [3,20] in the following directions:

(i) we address the case d = 3 without the large viscosity assumption considering weak
solutions;

(ii) we consider more general C1 functions f ;
(iii) we use different boundary conditions and weaker initial data;
(iv) we discuss convergence, as t tends to ∞, of strong solutions in some particular

situations.

To get (i), we prove convergence of weak solutions, and, in some situations, we get strong
convergence using the fact that weak solutions to the system become eventually smoother
for times t larger than some T . This property is well-known for the (uncoupled) three-dimen-
sional N-S system, and we find conditions under which it holds also for the coupled system
(1–3). Note that this result is still true for periodic boundary conditions, and so it improves
the study done in [20]. In turn, this property (cf. 74–75 below) enables us to obtain prop-
erties sufficient to characterize the ω-limit set. Assuming that f is analytic, we apply the
generalized Łojasiewicz theorem to get convergence of the variable d.

To address question (ii), in particular, to remove the analyticity condition, we make the
basic observation that the set of global minimizers of the configuration energy of the crystal
coincides with the set of constant unit vectors of R

d . Then, it is easy to prove that any global
minimizer d satisfies the so-called normal hyperbolicity condition. Based on this fact, we can
prove that, if the ω-limit set contains a global minimizer, then it coincides with it (i.e., it does
not contain any other point). We can also give two precise conditions ensuring the fact that
the ω-limit set contains global minimizers, which, unfortunately, require δ = 0. Namely, this
happens when either the diffusion coefficient L is large enough, or when the initial energy
is very small compared with L (in particular, the initial datum d0 is already close enough to
the set of global minimizers in a suitable norm).

The paper is organized as follows. In the next section, we present our assumptions, state
the main results, and, for the reader’s convenience, we briefly sketch the basic estimates at
the core of the existence proof. The proofs of the new results on the long-time behavior are
given in Sect. 3.

2 Main results

We let� be a smooth, bounded, and connected domain in R
d , d ∈ {2, 3}, with the boundary

�. For simplicity, we also assume |�| = 1. We set H := L2(�),H := L2(�)d , and denote
by (·, ·) the scalar product both in H and in H and by ‖ · ‖ the related norms. Next, we set
V := H1(�),V := H1(�)d and V0 := H1

0 (�)
d . The duality between V ′ and V , as well

as those between V ′ and V and between V ′
0 and V0, will be indicated by 〈·, ·〉. Identifying

H with H ′ through the scalar product of H , it is then well known that V ⊂ H ⊂ V ′ with
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continuous and dense inclusions. In other words, (V, H, V ′) constitutes a Hilbert triplet
(see, e.g., [16]). Correspondingly, we also have the vectorial analogues (V ,H ,V ′) and
(V0,H ,V

′
0). The symbol ‖ · ‖X will indicate the norm in the generic (real) Banach space X

and 〈·, ·〉X will stand for the duality between X ′ and X .
We consider f in the form

f (d) = (
ψ(|d|2)− 1

)
d = 1

2
∂d

(
ψ̂(|d|2)− |d|2) , (4)

where

ψ ∈ C1 ([0,+∞); [0,+∞)) , with ψ(0) = 0, ψ(1) = 1 and ψ ′(1) > 0, (5)

is an increasing function, and the convex function ψ̂ is defined by

ψ̂ ′ = ψ, ψ̂(1) = 1. (6)

We also assume that there exists a constant cψ > 0 such that

ψ ′(r) ≤ cψ for all r ∈ [0,+∞). (7)

Given L > 0, we define the configuration energy of the liquid crystal flow as

E(d) := 1

2

∫

�

(
L|∇d|2 + ψ̂(|d|2)− |d|2) . (8)

The total energy is then given by adding to E the “macroscopic” kinetic energy; namely,
we set

E(u, d) := 1

2
‖u‖2 + E(d) = 1

2

∫

�

(|u|2 + L|∇d|2 + ψ̂(|d|2)− |d|2) . (9)

Let us notice that, thanks to the above assumptions (5–7), E(d) = 0 if and only if d is a
(constant) unit vector (cf. Lemma 2.13 below for a simple proof).

We will address the following system of PDE’s:

ut + div(u ⊗ u)− ν�u = div S, (10)

S = −pI − L(∇d � ∇d)− δ(L�d − f (d))⊗ d, (11)

div u = 0, (12)

d t + u · ∇d − δd · ∇u − L�d + f (d) = 0, (13)

where the coefficients ν, L , δ satisfy ν, L > 0 and δ ≥ 0. Notice that, by (7), f (d) grows
at infinity at most as the third power of |d|.

The system, supplemented with the boundary and initial conditions

u = 0 a.e. on (0, T )× �, (14)

∂nd = 0 a.e. on (0, T )× �, (15)

u|t=0 = u0, d|t=0 = d0, a.e. in �, (16)

will be called Problem (P).
We introduce a precise definition of weak solutions:

123



Nematic liquid crystals

Definition 2.1 A weak solution to Problem (P) is a couple (u, d) such that

u ∈ L∞(0, T ;H ) ∩ L2(0, T ;V0), (17)

d ∈ H1(0, T ; L3/2(�)d) ∩ L∞(0, T ;V ) ∩ L2(0, T ; H2(�)d), (18)

for all T > 0,u, d satisfy initial and boundary conditions (16, 15), the Eqs. 11–13 are
satisfied for a.e. t ∈ (0, T ), and

〈ut ,φ〉 −
∫

�

(u ⊗ u) : ∇φ + ν

∫

�

∇u : ∇φ = −
∫

�

S : ∇φ, (19)

holds for any test function φ ∈ W
1,3
0,div(�) (i.e., the subspace of W 1,3

0 (�)d consisting of
divergence-free functions).

Remark 2.2 The regularity of the test function φ can be justified thanks to (17, 18 and 13).
We have in any case (also if δ > 0)

u ⊗ u, ∇d � ∇d, (L�d − f (d))⊗ d ∈ L2(0, T ; L3/2(�))d×d , (20)

whence their (distributional) divergence belongs to the space L2(0, T ; W −1,3/2(�))d . Note
also that the boundary condition (14) is in fact “embedded” into the weak formulation (19).

It is known that Problem (P) admits at least one weak solution (u, d). This has been
proved in [14] for the case δ = 0 and in [2] for the case δ = 1 (cf. also [3] for the formal
computations). Namely, we have

Theorem 2.3 Let (4–7) hold and let

u0 ∈ H , div u0 = 0, (21)

d0 ∈ V . (22)

Then, Problem (P) possesses a global in time weak solution (u, d), satisfying, for a.a. t >
0, the energy inequality

d

dt
E(u, d)+ ‖−L�d + f (d)‖2 + ν‖∇u‖2 ≤ 0. (23)

We point out that assumptions (21–22) are equivalent to asking that the initial energy
E0 := E(u0, d0) is finite.

Remark 2.4 The proof of the above theorem relies on a rather tricky approximation scheme
and on refined compactness methods to pass to the limit. It is then worth pointing out that,
due to nonuniqueness, our subsequent results on the long-time behavior hold only for those
solutions satisfying the energy inequality, in particular for the limit points of the approximate
scheme, and not necessarily for all solutions in the regularity frame (17–18). Actually, there
may exist “spurious” weak solutions not satisfying the energy inequality (23) which is crucial
for investigating the long-time behavior. As a convention, in the sequel we shall restrict the
terminology “weak solutions” to those solutions which satisfy (23). Spurious solutions are
thus excluded.

As noted above, in the case δ = 0 a maximum principle holds for the d-component of any
weak solution. For the reader’s convenience, we recall the statement and the (simple) proof.

123



H. Petzeltová et al.

Theorem 2.5 Let the assumptions of Theorem 2.3 hold and let

δ = 0, and |d0(x)| ≤ 1 for a.a. x ∈ �.
Then any weak solution (u, d) to Problem (P) satisfies

|d(t, x)| ≤ 1 for a.a. (t, x) ∈ (0,∞)×�. (24)

Proof Testing Eq. 13 by d one obtains

1

2

d

dt
|d|2 + u · ∇|d|2 − L

2
�|d|2 + L|∇d|2 + (

ψ(|d|2)− 1
) |d|2 = 0. (25)

Then, we notice that, by (5),

(ψ(r)− 1)r ≥ 0 ∀ r ≥ 1. (26)

Thus, (25) represents a parabolic equation for |d|2 (which still satisfies the no-flux b.c.).
It is clear that the maximum principle applies, yielding (24). ��

Unfortunately, (24) is not known (and not expected) to hold in the case δ > 0.
Although the next result is essentially contained in the paper [20], for completeness it is

worth stating and proving existence of (nonempty) ω-limit sets of weak solutions.

Theorem 2.6 Let the assumptions of Theorem 2.3 hold, and let (u, d) be a weak solution
of Problem (P). Then, the ω-limit set of (u, d) is nonempty. More precisely, we have

lim
t↗+∞ u(t) = 0 weakly in H , (27)

and any diverging sequence {tn} ⊂ [0,+∞) admits a subsequence, not relabeled, such that

lim
n↗+∞ d(tn) = d∞ weakly in V and strongly in H , (28)

for some d∞ ∈ V . Moreover, any such limit point d∞ is a solution of the stationary problem

− L�z + f (z) = 0 in �, ∂nz = 0 on �. (29)

Proof Let {tn} ⊂ [0,+∞) be a diverging sequence. Then, the energy estimate implies that,
at least for a (nonrelabeled) subsequence of n,

u(tn) → u∞ weakly in H , d(tn) → d∞ weakly in V , (30)

for suitable limit functions u∞ and d∞. Let us consider the initial and boundary value prob-
lem associated to (10–13) on the time interval [tn, tn + 1] with “initial values” u(tn) and
d(tn). It is clear that, setting, un(t) := u(t + tn) and dn(t) := d(t + tn), t ∈ [0, 1], we get a
weak solution to the problem on the time interval [0, 1]. Then, (23) implies that

∇un → 0 strongly in L2(0, 1;H d), (31)

whence, by Poincaré’s inequality and (23) again, we have also

un → 0 strongly in L2(0, 1;V0) and weakly star in L∞(0, 1;H ). (32)

Moreover, we have

dn → d weakly star in L∞(0, 1;V ) ∩ L2(0, 1; H2(�)d), (33)
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for a suitable limit function d. The growth condition (7) and a comparison argument in (13)
then entail

dn,t → d t weakly in L2(0, 1; L3/2(�)d). (34)

Hence, by the Aubin-Lions lemma, we obtain

dn → d strongly in L2(0, 1;V ). (35)

To proceed, we take φ ∈ W
1,3
0,div(�) and test (10) by φ. Noting that, by (11),

∫

�

Sn : ∇φ = −L
∫

�

(∇dn � ∇dn) : ∇φ − δ

∫

�

((L�dn − f (dn))⊗ dn) : ∇φ, (36)

and recalling (32, 33), and Remark 2.2, we arrive at

‖un,t‖L2(0,1;W−1,3/2
div (�))

≤ c, (37)

where W
−1,3/2
div (�) denotes the dual space to W

1,3
0,div(�) and c denotes a positive constant

independent of n.
Thus, from (32, 37), and the Aubin-Lions lemma, we obtain that

un → 0 strongly in C0([0, 1];V ′
0), (38)

so that, in particular, u∞ = 0, and (32, 38) imply (27). On the other hand, by the energy
estimate, we obtain

− L�dn + f (dn) → 0 strongly in L2(0, 1;H ), (39)

whereas, by (32–35),

un · ∇dn − δdn · ∇un → 0 weakly in L2(0, 1; L3/2(�)d). (40)

Thus, comparing terms in (13), we also have that dn,t → 0 in a suitable way. This entails
that d is constant in time and, therefore, it coincides with d∞ for all times in [0, 1]. Moreover,
taking the limit in (13), we obtain that d∞ is a solution to (29), as desired. This completes
the proof. ��

We now present the main results of this paper, which characterize the ω-limit set of our
system as a singleton under a number of different conditions.

Theorem 2.7 Let the assumptions of Theorem 2.3 hold, and, in addition, let ψ be analytic.
Then the ω-limit set of the component d of any weak solution consists of a single point, and
we have

lim
t↗+∞ d(t) = d∞ strongly in H (41)

for the whole trajectory d, where d∞ is a solution to (29).

Remark 2.8 As usually, when applying the Łojasiewicz inequality, we can also get the rate
of convergence of the form

‖d(t)− d∞‖H ≤ C(1 + t)−
θ

1−2θ ,

where θ is the Łojasiewicz exponent, and C is a suitably chosen constant depending on the
initial energy and on the limit function.

123



H. Petzeltová et al.

In particular situations, we can also prove a stronger convergence result:

Theorem 2.9 Under the hypotheses of Theorem 2.7, let, in addition,

δ = 0. (42)

Then,

u(t) → 0 strongly in V , (43)

lim
t↗+∞ d(t) = d∞ strongly in H2(�)d . (44)

Remark 2.10 The same result was proved in [20] for periodic boundary conditions for u and
d, large viscosity coefficient, and smooth initial data. Actually, it is easy to check that our
argument holds true also in the case of periodic B.C., when δ ≥ 0. Hence, the same result
of [20] holds without the requirement of large viscosity, and for initial data as in (21, 22).
On the other hand, in the case δ > 0 with boundary conditions (14–15), it does not seem
possible to repeat the strong estimates required for the proof of (43–44) (some additional
boundary terms appear, which is not clear how to control). Hence, extending the statement
of Theorem 2.9 to this situation remains an open question.

As in [20, Theorem 1.2] the proofs rely on a suitable version of the Simon-Łojasiewicz
inequality, proved in [11, Theorem 6]. For the reader’s convenience, we report here the state-
ment of a particular case of the (more general) result of [11], in a form suitable for our
application:

Theorem 2.11 Let the energy functional E be given by (8) with ψ̂ analytic. Let p ∈ V be a
critical point of E . Then there exist constants θ ∈ (0, 1/2),� > 0 and ε1 > 0 such that the
inequality

|E(v)− E(p)|1−θ ≤ � ‖−L�v + f (v)‖V ′ (45)

holds for any v such that

‖v − p‖V < ε1. (46)

To apply the preceding Theorem in our situation, we have to show that the inequality (45)
holds for v = d(t) in a small H -neighbourhood of d∞:

Lemma 2.12 Let the energy functional E be given by (8) with ψ̂ analytic. Let d∞ ∈ V be a
solution of (29). Let K , P > 0 be constants. Then there exist ε > 0 and � > 0 such that
(45) holds for any v such that

‖v‖V ≤ K , ‖v − d∞‖H ≤ ε, and |E(v)− E(d∞)| ≤ P. (47)

Proof We argue by contradiction. Assume that there is a sequence vn such that

‖vn‖V ≤ K , vn → d∞ in H , |E(vn)− E(d∞)| ≤ P

and

|E(vn)− E(d∞)|1−θ ≥ n‖ − L�vn + f (vn)‖V ′ , n = 1, 2, 3, ... (48)

Then

f (vn) → f (d∞) in V ′, and �vn → �d∞ in V ′.
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This implies that

∇vn → ∇d∞ in H , and, consequently, vn → d∞ in V .

Hence, at least for n sufficiently large, (46) holds for v = vn,p = d∞. Consequently, also
(45) is valid. This contradicts (48). ��

In the case that f does not satisfy the analyticity condition, we can show that the
ω-limit set is a singleton only in particular situations. For this purpose, we first state a
simple property:

Lemma 2.13 Let (5–7) hold. Then, d is a global minimizer of E if and only if d is a constant
unit vector.

Proof Thanks to (5–7) the function r �→ ψ̂(r) − r has a minimum at r = 1; moreover,
ψ̂(1)− 1 = 0. Thus, E(d) is always nonnegative and E(d) = 0 if and only if ∇d = 0 a.e. in
� and |d| = 1 a.e. in �, whence the claim follows immediately. ��

Our next result is of conditional type and states that, if the ω-limit set of d(t) contains
at least one global minimizer d of the free energy, then it has to coincide with the set {d}.
This is a consequence of the facts that the set of global minimizers of the free energy is a
(d − 1)-dimensional smooth manifold and, on the other hand, the kernel of the linearized
operator z �→ −�z + ∂df (d)z is also a (d − 1)-dimensional manifold. In other words, the
so-called normal hyperbolicity condition is satisfied at d, which implies convergence of the
whole trajectory to d.

Theorem 2.14 Let the assumptions of Theorem 2.3 hold and let us assume that there exist
a constant unit vector d ∈ S

d−1 and a diverging sequence {tn} such that

lim
tn↗+∞ d(tn) = d weakly in V . (49)

Then, ω − lim d = {d} and the whole trajectory d(t) converges to d strongly in H as
t ↗ ∞. If, in addition, (42) holds, then d(t) → d in H2(�)d .

Remark 2.15 Let us note that the same convergence result for d in H2(�)d holds true in
case δ > 0 with periodic boundary conditions for u and d.

The next results only hold in the case δ = 0. Actually, their proofs rely on the maximum
principle proved in Theorem 2.5. In this setting, convergence to a single equilibrium takes
place if either the diffusion coefficient L in (13) is large enough, or the “initial energy”
E0 := E(u0, d0) (cf. 21–22) is small enough (in other words, if the initial datum d0 is
sufficiently close to the set of global minimizers). Indeed, we can prove the following two
results:

Theorem 2.16 Let the assumptions of Theorem 2.5 hold and, in particular, let δ = 0.
Assume that L in (13) satisfies

L > c2
�, where c� is the best constant in the Poincaré-Wirtinger inequality. (50)

Then, the ω-limit set of any weak solution starting from (u0, d0) consists of a single point
(0, d∞).
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Theorem 2.17 Let the assumptions of Theorem 2.5 hold and, in particular, let δ = 0.
Assume that there exist κ > 0 and σ ≥ 1 such that

ψ̂(r)− r ≥ κ(1 − r)σ ∀ r ∈ [0, 1]. (51)

Then, there exists ε > 0 such that, if (u0, d0) satisfy E0 ≤ ε, then, the ω-limit set of any
weak solution starting from (u0, d0) consists of a single point (0, d∞).

3 Proofs

All proofs will be presented in the case d = 3, the case d = 2 being clearly simpler.

3.1 Proof of Theorem 2.7

Energy estimate. We test (10) by u and (13) by −L�d + f (d). Performing standard com-
putations and using, in particular, the incompressibility constraint (12), we readily obtain the
energy inequality (23). In particular, we get that the function t �→ E(u(t), d(t)) is nonin-
creasing, whence it tends to some (finite) value E∞. Moreover, thanks to (27–28), we get

E∞ − E0 = −
+∞∫

0

D(s) ds ≤ 0, (52)

where D denotes the sum of the dissipative terms, namely

D := ‖−L�d + f (d)‖2 + ν‖∇u‖2. (53)

We deduce from the energy inequality (23 and 5–7) that

u ∈ L∞(0,∞;H ) ∩ L2(0,∞;V0), (54)

d ∈ L∞(0,∞;V ), (55)

−L�d + f (d) ∈ L2(0,∞;H ). (56)

Relations (54, 55) imply

u · ∇d − δd · ∇u ∈ L2(0,∞; L3/2(�)d) (57)

which, together with (56), yield (cf. 13)

d t ∈ L2(0,∞; L3/2(�)d). (58)

Application of the Łojasiewicz inequality. Our aim is to show that there exists T > 0
such that

d t ∈ L1(T,∞; L3/2(�)d), (59)

which implies convergence of d in L3/2(�)d . The pre-compactness of the trajectory in H

then concludes the proof of Theorem 2.7.
To this end, we first realize that there exists a constant C such that

‖u(t)‖2 ≤ C‖∇u(t)‖ 1
1−θ for a.a. t > 0, (60)

where θ ∈ (0, 1
2 ) is the same as in (45). Indeed, if ‖∇u‖ ≤ 1, then (60) follows by the

Poincaré inequality, and if ‖∇u‖ ≥ 1, the interpolation between V 0 and V ′
0 together with

the boundedness of u in V ′ gives the same estimate.

123



Nematic liquid crystals

Now, let d∞ be an element of the ω-limit set of d. Then, integrating (23) from 0 to +∞,
we infer that

D ∈ L1(0,∞), (61)

and, from Lemma 2.12 and (60), we get

+∞∫

t

D(s) ds = E(d(t))− E(d∞)+ 1

2
‖u(t)‖2 ≤ CD(t) 1

2(1−θ) , (62)

for all t > 0 such that (47) holds. Denoting by M this set, we obtain that D1/2 ∈ L1(M),
see [10, Lemma 7.1]. Then also

u ∈ L1(M;V0), − L�d + f (d) ∈ L1(M;H ), (63)

and so, taking into account the growth of f , we get

u · ∇d − δd · ∇u ∈ L1(M, L
3
2 (�)d),

which implies (cf. 13)

d t ∈ L1(M, L
3
2 (�)d). (64)

This fact, combined with the pre-compactness of the trajectory of d in H and a simple con-
tradiction argument (see [10]), yields the existence of a large T such that (cf. Lemma 2.12)

‖d(t)− d∞‖ < ε, ∀t ≥ T .

In other words, the solution d remains in the ε−neighbourhood of d∞ in the space H for
t ≥ T , and Lemma 2.12 applies to d(t) in the whole interval (T,∞). In other words,
M ⊃ (T,∞), and (59) holds. This fact, together with pre-compactness of the trajectory
yields

d(t) → d∞ strongly in H . (65)

Theorem 2.7 has been proved.

3.2 Proof of Theorem 2.9

The proof follows the lines of the argument developed in [3, Sect. 3.2]. In particular, we can
derive the differential inequality for the dissipative term D defined in (53) (cf. [3, formula
(8)], which is still valid with our boundary conditions in case δ = 0 or with periodic boundary
conditions in case δ > 0):

d

dt
D ≤ C∗

(D3 + 1
)
, (66)

where the computable constant C∗ depends on the parameters of the problem and on the
“initial energy” E0, but is independent of time. We point out that the formal computations
in the proof of (66) are valid for the classical solutions, but the result can be justified by a
proper approximation.

Next, we show that there is T1 > 0 such that D ∈ L∞(T1,∞). To prove this, we consider
the differential inequality

y′ ≤ C∗
(
y3 + 1

)
, y(t0) = 1. (67)
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Then, there exist (a small) τ (independent of t0) and (a large) K > 0 such that the solution
y satisfies

‖y‖C0([t0,t0+τ ]) ≤ K . (68)

On the other hand, according to (61), we have

lim
t↗+∞

+∞∫

t

D(s) ds = 0. (69)

Thus, for any ε > 0 there exists T > 0 such that

+∞∫

T

D(s) ds ≤ ε. (70)

Choosing ε = τ/2 and T correspondingly, we obtain that, for all t ≥ T , there exists
t0 ∈ [t, t + τ/2] such that

D(t0) ≤ 2

τ

t+τ/2∫

t

D(s) ds ≤ 2ε

τ
= 1. (71)

Comparing solutions of (66 and 67) and recalling the choice of t0, we get from (68) that

|D(s)| ≤ K ∀ s ∈ [T + τ/2,+∞). (72)

Setting T1 := T + τ/2, we deduce from (66) that d
dt D is bounded on (T1,∞), which

together with (61) yields

D(t) → 0 as t → ∞. (73)

This implies (using the Poincaré inequality) that,

u(t) → 0, strongly in V . (74)

Taking into account the growth of f , we get from (72)

‖d‖L∞(T1,∞;H2(�)d ) ≤ K . (75)

To show that d converges to a single point d∞, we make again use of the Łojasiewicz
inequality (45). The same argument applies this time to the strong solution and time t ≥ T1.
This gives

d t ∈ L1(T,∞;H ) for some T > T1. (76)

It follows that

d(t) → d∞ strongly in H . (77)

Moreover, by (75) and the growth conditions on f ,

f (d(t)) → f (d∞) strongly in H , (78)

whence, using (73 and 74),

�d(t) → �d∞ strongly in H , (79)

which concludes the proof.
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3.3 Proof of Theorem 2.14

In this section, we show that the energy functional E satisfies the Łojasiewicz inequality (45)
with the exponent 1

2 . Then, arguing as in the proof of Theorem 2.7, we obtain the strong
convergence of d in H . Moreover, if (42) holds (or we have periodic boundary conditions,
cf. Remark 2.10), we have the strong convergence in H2(�)d (cf. the proof of Theorem 2.9).

Let us consider the linearized problem associated to (29) at the element d of the ω-limit
set, i.e.,

L(d)z := −L�z + ψ(|d|2)z + 2ψ ′(|d|2)(d ⊗ d)z − z = 0, ∂nz = 0 on �. (80)

Let d be a global minimizer of E , i.e., a constant unit vector (by Lemma 2.13). We aim
to apply the result proved by Simon and reported in [4, Cor. 3.12]. To this end, we introduce
the following notation:

U is a V -neighbourhood of d ∈ V ,

V0 is the kernel of L(d),
S0 = {d ∈ V ; E ′(d) = 0},

S = {h ∈ U ; E ′(d + h) ∈ V ′
0}.

In our situation, [4, Cor. 3.12] reads as follows:

Lemma 3.1 Let d ∈ S0 and assume the following hypotheses:

(i) The kernel V0 of the linearization L(d) is a complemented subspace of V , i.e., there
exists a projection P ∈ B(V ) such that V0 = RgP.

(ii) There exists a neighbourhood U of d in V such that E ′ ∈ C1(U,V ′). Moreover, the
range of L(d) coincides with V ′

1, the space of the elements of V ′ belonging to the the
kernel of the adjoint projection P ′ ∈ B(V ′).

(iii) (S0 − d) ∩ S is a neighbourhood of 0 in the critical manifold S.

Then E satisfies the Łojasiewicz inequality near d with the exponent θ = 1
2 .

To verify the assumption (i), we test (80) by z and use the condition ψ(1) = 1 to obtain

L‖∇z‖2 + 2
∫

�

ψ ′(1)|d · z|2 = 0. (81)

Hence, taking into account the last condition in (5), we get

∇z = 0 and d · z = 0 a.e. in �. (82)

Consequently, any solution z to (80), i.e., any element of the kernel, is a constant vector
orthogonal to d (conversely, it is apparent that any such vector is a solution to (80)). Thus,
the kernel of the linearized operator L(d) is a (d −1)-dimensional plane orthogonal to d and
containing the origin, which trivially permits to define the projection P .

The first condition in (ii) is obvious since f is C1 and, by hypotheses, has at most cubic
growth. To verify the second condition, we observe that V ′

1 is the subspace of V ′ consisting
of the elements that are orthogonal (w.r.t. the duality between V ′ and V ) to the plane V0.
Then, computing 〈L(d)z, v0〉 for generic z ∈ V and v0 ∈ V0, we obtain (cf. (80) and recall
that ψ(1) = 1), using (82),

〈L(d)z, v0〉 = 2
∫

�

ψ ′(|d|2)(d · z)(d · v0) = 0, (83)
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the last equality following from the fact that v0 ⊥ d. Thus, L(d)V ⊂ V ′
1. To show the con-

verse inclusion, we choose ζ ∈ V ′
1 and prove that there exists at least one z ∈ V such that

L(d)z = −L�z + 2ψ ′(1)(d ⊗ d)z = ζ , ∂nz = 0 on �. (84)

This can be seen by approximation. Actually, it is clear that, for any k ∈ N, there is a
solution zk to

− L�zk + k−1zk + 2ψ ′(1)(d ⊗ d)zk = ζ , ∂nz = 0 on �. (85)

Testing by zk , we have

L‖∇zk‖2 + k−1‖zk‖2 + 2ψ ′(1)‖d · zk‖2 = (ζ , zk) = (ζ , zk − Pzk). (86)

Indeed, ζ ⊥ Pzk by assumption. Using the Poincaré-Wirtinger inequality it is then appar-
ent that the right-hand side can be estimated. Then, standard methods permit to check that
zk tend to a solution z to (84), as desired.

The third assumption is satisfied because 0 ∈ S0 − d ⊂ S, and both S0 − d and S have
the same dimension (see [4, Proposition 3.6]).

Lemma 3.1 then yields that the Łojasiewicz inequality (45) holds near d with the exponent
θ = 1/2. If δ = 0 or in case of periodic boundary conditions, repeating the computations
leading to (75), we obtain the strong convergence of d in H , and, proceeding as in (78, 79),
the strong convergence in H2(�)d , which completes the proof of Theorem 2.14.

3.4 Proof of Theorem 2.16

Let d∞ be an element of the ω-limit set of the d-component of some weak solution. Then,
by Theorem 2.6, d∞ solves the stationary problem, which we rewrite as

− L�d∞ + (
ψ(|d∞|2)− 1

)
d∞ = 0. (87)

Testing (87) by d∞ − (d∞)�, where (d∞)� = ∫
�

d∞, we get

L‖∇d∞‖2 +
∫

�

ψ(|d∞|2)d∞ · (d∞ − (d∞)�)=‖d∞ − (d∞)�‖2 ≤ c2
�‖∇d∞‖2, (88)

where c� is the (best) constant in the Poincaré–Wirtinger inequality. Thus, being L is large
(precisely, we need L > c2

�), the latter term can be controlled.
In what follows, we denote

�(d) = 1

2
ψ̂(|d|2). (89)

A direct check (e.g., computing the Hessian matrix) shows that� is convex, and we notice
that ∂d�(d) = ψ(|d|2)d. Thus, we have

∫

�

ψ(|d∞|2)d∞ · (d∞ − (d∞)�) = (
∂d�(d∞), d∞ − (d∞)�

)
H

≥
∫

�

(�(d∞)−�((d∞)�))

=
∫

�

�(d∞)−�

⎛

⎝
∫

�

d∞

⎞

⎠ ≥ 0, (90)
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where the latter inequality follows from Jensen’s inequality.
From (88) to (90), we obtain that d∞ is a constant vector. Thus, taking into account

that ψ is monotone and ψ(1) = 1, we readily obtain from Eq. 87 that either d∞ = 0 or
|d∞| = 1. Hence the set of stationary solutions is disconnected and consists of the isolated
point and the two-dimensional manifold. Consequently, either Theorem 2.14 applies, or the
whole trajectory tends to 0. In both cases, the ω-limit set is a singleton, as desired.

3.5 Proof of Theorem 2.17

Let us first note that, by (52 and 51), we have

ε ≥ E0 ≥ E∞ = 1

2

∫

�

(
L|∇d∞|2 + ψ̂(|d∞|2)− |d∞|2) . (91)

Rewriting the stationary problem (87) and testing it by d∞, we obtain

L‖∇d∞‖2 +
∫

�

(
ψ(|d∞|2)|d∞|2 − |d∞|2) = 0. (92)

Dividing (92) by 2 and subtracting the result from (91), we obtain

1

2

∫

�

(
ψ̂(|d∞|2)− ψ(|d∞|2)|d∞|2) ≤ ε. (93)

On the other hand, thanks to (6, 5 and 51),

1

2

∫

�

(
ψ̂(|d∞|2)− ψ(|d∞|2)|d∞|2)≥ 1

2

∫

�

(
ψ̂(|d∞|2)−|d∞|2) ≥ κ

2

∫

�

∣∣1−|d∞|2∣∣σ ,

(94)

where also the maximum principle (24) has been used. Thus,

∥∥1 − |d∞|2∥∥L1(�)
≤ ∥∥1 − |d∞|2∥∥Lσ (�) ≤

(
2ε

κ

)1/σ

. (95)

To proceed, we notice that, by standard elliptic regularity results applied to (29), there
exists a constant K0 > 0 such that, for any solution d of (29) it holds

∥∥∥d

∥∥∥
H2(�)

≤ K0. (96)

Consequently, for some K > 0 depending on K0, we have
∥∥∥1 − |d|2

∥∥∥
H2(�)

≤ K . (97)

In particular, d∞ satisfies (97). Thus, by the Gagliardo–Nirenberg interpolation inequality
(we refer, for simplicity, to the case d = 3, the case d = 2 is even better),

∥∥1 − |d∞|2∥∥L∞(�) ≤ ∥∥1 − |d∞|2∥∥6/7
H2(�)

∥∥1 − |d∞|2∥∥1/7
L1(�)

+ ∥∥1 − |d∞|2∥∥L1(�)

≤ K 6/7
(

2ε

κ

)1/7σ

+
(

2ε

κ

)1/σ

< η, (98)

where η > 0 is a small constant to be chosen later and the last inequality holds provided that
ε is small enough.
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To conclude the proof, we set

α := ψ(|d∞|2)− 1 (99)

and notice that α ≤ 0 because of (5–6). Moreover, d∞ can be interpreted as a solution of the
linear elliptic system

− L�d∞ + αd∞ = 0 in �, ∂nd∞ = 0 on �. (100)

Testing the above equation by 1, we obtain
∫

�

αd∞ = 0. (101)

Then, multiplying (100) by d∞ − (d∞)� and using (101), we infer

L‖∇d∞‖2 = −
∫

�

α |d∞ − (d∞)�|2 − (d∞)� ·
∫

�

α (d∞ − (d∞)�)

≤ c2
�‖α‖L∞(�)‖∇d∞‖2 + |(d∞)�|2

∫

�

α. (102)

The latter term is nonpositive, while the first term on the right-hand side can be controlled
provided that η is small enough. Indeed,

‖α‖L∞(�) = ∥∥ψ(|d∞|2)− 1
∥∥

L∞(�) = ∥∥ψ(|d∞|2)− ψ(1)
∥∥

L∞(�)

≤ cψ
∥∥|d∞|2 − 1

∥∥
L∞(�) ≤ cψη, (103)

thanks to (98) and (7). If L > c2
�cψη, we see, in the same way as above, that d∞ is a constant

unit vector. Finally, we take ε such that (98) holds, and the proof follows again by applying
Theorem 2.14.
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