Differential responsiveness to constitutive vs. inducible
chemokines of immmature and mature mouse dendritic cells

Annunciata Vecchi,*! Lucia Massimiliano,* Simona Ramponi,* Walter Luini,* Sergio Bernasconi,*
Raffaella Bonecchi,* Paola Allavena,* Marc Parmentier,’ Alberto Mantovani,** and Silvano Sozzani*

*|stituto di Ricerche Farmacologiche Mario Negri, Milan, Italy; TI.R.1.B.H.N., Université Libre de Bruxelles, Brussels,
Belgium; and *Department Biotechnology, Section of General Pathology, University of Brescia, Italy

Abstract Upon exposure to immune or inflamma-
tory stimuli, dendritic cells (DC) migrate from
peripheral tissues to lymphoid organs, where they
present antigen. The molecular basis for the pecu-
liar trafficking properties of DC is largely un-
known. In this study, mouse DC were generated
from CD34* bone marrow precursors and cultured
with granulocyte-macrophage-CSF and FIt3 ligand
for 9 days. Chemokines active on immature DC
include MIP1la, RANTES, MIP1B, MCP-1, MCP-3,
and the constitutively expressed SDF1, MDC, and
ELC. TNF-a-induced DC maturation caused reduc-
tion of migration to inducible chemokines (MIP1lea,
RANTES, MIP1B, MCP-1, and MCP-3) and in-
creased migration to SDF1, MDC, and ELC. Simi-
lar results were obtained by CD40 ligation or
culture in the presence of bacterial lipopolysaccha-
ride. TNF-« down-regulated CC chemokine recep-
tor (CCR)1, CCR2, and CCR5 and up-regulated
CCR7 mRNA levels, in agreement with functional
data. This study shows that selective responsiveness
of mature and immature DC to inducible vs. consti-
tutively produced chemokines can contribute to
the regulated trafficking of DC. J. Leukoc. Biol.
66: 489-494; 1999.
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INTRODUCTION

Dendritic cells (DC) are bone marrow (BM)-derived profes-
sional antigen-presenting cells (APCs). BM and blood DC
progenitors seed nonlymphoid tissues, where they develop into
immature DC with a high ability to capture antigens. The
specific role of DC is to capture, process, and present antigens
to T cells and to migrate through tissues to lymphoid compart-
ments where immune responses initiate [1-4]. Immune and
inflammatory signals have been shown to induce mobilization of
DC from the periphery to lymph nodes or spleen T cell areas:
these physiological processes cause a shift from a ‘processing’
to a ‘presenting’ stage, characterized by an increased capacity
to stimulate T lymphocytes [5-11].

Chemotactic agonists are currently believed to be key
effector molecules in the multistep process of leukocyte

recruitment into tissues [12—14]. Chemokines are a superfamily
of chemotactic proteins divided in four groups on the basis of a
cysteine structural motif. The subfamilies of the « (or CXC)
chemokines, mainly active on neutrophils and lymphocytes,
and of the B (or CC) chemokines, active on multiple subsets of
mononuclear cells, including DC, contain most of the chemotac-
tic proteins. Lymphotactin (y or C chemokines) and fractalkine
(d or CX3C chemokines) are two additional molecules in this
superfamily [14, 15]. Most chemokines are inducible proteins
that are secreted in response to inflammatory signals [e.g.,
interleukin 1 (IL-1), tumor necrosis factor (TNF), and endo-
toxin]. However, a subset of chemokines can also be secreted in
an apparent constitutive way and may regulate trafficking of
leukocytes under physiological conditions [14-16].

In previous studies it has been reported that a set of
chemokines and bioactive lipids are able to induce chemotactic
and transendothelial migration in human DC generated in vitro
[17-28]. The migratory potential of mouse DC to chemotactic
stimuli in vitro has not been studied.

We investigated the ability of a set of chemokines to induce
migration of mouse DC generated in vitro from CD34" bone
marrow cells. Moreover, we explored how immune and inflam-
matory signals, which stimulate the antigen presenting function
of DC and concomitantly their trafficking to lymphoid organs,
affect DC migration and chemokine receptor expression.

MATERIALS AND METHODS

Cytokines.

All the cytokine and chemokine used were recombinant proteins. Human
monocyte chemoattractant protein 3 (MCP-3) was a kind gift from Dr. A. Minty
(Sanofi EIf Bio Recherches, Labege, France); human microphage inflammatory
protein la (MIP-1a), MIP-1B, SDF1, and murine RANTES were from
PeproTech Inc. (Rocky Hill, NJ); mouse macrophage-derived chemokine
(MDC) was a kind gift from Pat Gray (ICOS Corporation, Bothell, WA), mouse
MCP-1 was a kind gift from B. Rollins (Dana Farber Cancer Institute, Boston
MA), and EBI1 ligand chemokine (ELC) was a kind gift from Osamu Yoshie
(Shionogi Institute for Medical Science, Osaka, Japan). Mouse granulocyte-
macrophage-colony-stimulating factor (GM-CSF) and TNF-a were a generous
gift from Sandoz (Basel, Switzerland) and BASF (Knoll, Germany), respectively.
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Human FIt3 ligand was a generous gift from Immunex (Seattle, WA). Cytokines
were endotoxin free as assessed by Limulus amebocyte assay. Lipopolysaccha-
ride (LPS; E. coli 055:B5) was from Sigma (St. Louis, MO).

DC cultures

CD34* bone marrow cells from femurs and tibias of DBA/2 mice were prepared
by positive immunoselection using MACS microbeads coated with goat anti-rat
19G (Miltenyi Biotec Inc. Auburn, CA), using the rat mAb MEC14.7 [29] to
mouse CD34 as selecting agent. Cells were separated following the manufactur-
er's instructions. CD34 " positive cells (2 10% /mL) were cultured in RPMI1640
medium with 10% fetal calf serum, 2x10~5 2-ME, GM-CSF (40 ng/mL), and
FIt3 ligand (100 ng/mL) [30]. Cells were diluted 1:2-1:3 every 2 or 3 days.
Cultured cells were collected after 9 days and used in the different assays. DC
were characterized in terms of membrane phenotype (expression of DEC205,
MHC class I, CD11lc, CD86), pinocytosis, and antigen presentation in
allogeneic MLR.

Where specified, DC were cultured with 20 ng/mL TNF-c or 1 ng/mL LPS for
the last 24 h of culture. J558L cells transfected with the gene encoding CD40L
[31] (kindly provided by Dr. Peter Lane, Basel Institute for Immunology,
Switzerland) were co-cultured with DC at 1:5 ratio for the last 48 h of culture.

Analysis of the chemokine receptors

For Northern blot analysis, total RNA was extracted by the guanidinium
thiocyanate method, blotted, and hybridized as described [18]. Probes were
labeled by Megaprime DNA labeling system (Amersham, Buckinghamshire,
U.K.) with a%2P-dCTP (3000 Ci/mmol, Amersham). CC chemokine receptor 1
(CCR1) cDNA was kindly donated by Dr. Philip Murphy (LHD, NIAID, NIH,
Bethesda, MD). CCR2 cDNA was generated by reverse transcriptase-
polymerase chain reaction from elicited peritoneal macrophage total RNA.
CCR5 and CCR7 cDNA were prepared as described [32, 33]. RNAse protection
assays were performed using the mCR-5 and mCR-6 Kits, following manufactur-
er’s instructions (PharMingen, San Diego, CA).

Migration assay

Cell migration was evaluated using a chemotaxis chamber (Neuroprobe,
Pleasanton, CA) and polycarbonate filter (5 um pore size; Neuroprobe) as
previously described [17]. Fifty microliters of cell suspensions (1.5X108/mL)
were incubated at 37°C for 90 min. Results are expressed as the mean number
of migrated cells in five high-power fields (100X). Each experiment was
performed in triplicate.

Transmigration assay

Transendothelial migration was performed in polycarbonate transwell inserts (5
um pore, Corning, Costar, Cambridge, MA) as previously described [22], with
minor modifications. The microvascular mouse endothelial cell line 1G11 [34]
was grown as monolayer on fibronectin-coated inserts. Cr-labeled DC
(5x10%well in 0.1 mL) were seeded in the upper compartment and chemoat-
tractants were placed in the lower compartment. After 1 h of incubation at
37°C, the radioactivity in the lower compartment was evaluated. Results are
reported as percentage of input, as in the following formula: (cpm in the lower
compartment/cpm of the input) X 100.

RESULTS

Basal and maturation-induced chemotactic
response of DC to chemokines

Immature DC efficiently migrated in response to the inducible
chemokines MIP1a, RANTES, MIP183, MCP-1, and MCP-3 in
the dose range evaluated (10-100 ng/mL) (Fig. 1). Immature
DC did not migrate in response to eotaxin. MIPla was
consistently the most efficient chemokine for immature DC,
evaluated as number of migrated cells. Constitutively produced
chemokines such as MDC, SDF1, and ELC were also chemotac-
tic for immature DC (Fig. 2); MDC was the most potent
stimulus: 1 ng/mL consistently was able to induce migration
(1.3- to 1.8-fold the control value) of immature DC. Data
reported in Figures 1 and 2 are from one representative
experiment of the three to five performed with each chemokine.

Previous studies have shown that inflammatory cytokines
(e.g., IL-1 and TNF-a), microbial products (e.g., LPS), and
CD40 ligation induce DC maturation [1-4]. The effect of DC
maturation induced by TNF-a exposure for 24 h was next
evaluated. TNF-a caused a marked decrease in the chemotac-
tic response of DC to MIP1a, RANTES, MIP1B, MCP-1, and
MCP-3 (Fig. 1). TNF-a-exposed DC became weakly responsive
to eotaxin (Fig. 1): the effect, though small, was consistently
seen in all three experiments performed. TNF-a-induced matu-
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Fig. 2. Effect of constitutively produced chemokines on chemotaxis of
immature and mature DC. Experimental conditions as in Fig. 1.
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ration increased the DC chemotactic response to MDC and
SDF1; at 100 ng/mL, migration was increased 167+15%, and
153+17%, respectively, in four experiments (Fig. 2). The
sensitivity of DC to MDC was increased 10-fold by TNF-a-
induced maturation: 0.1 ng/mL of MDC was consistently
sufficient to induce DC migration. ELC was the most efficient
chemokine on TNF-a-matured DC (Fig. 2), inducing a chemo-
tactic response about threefold higher (251=25% in three
experiments) than that of immature DC. In one experiment, the
kinetics of the differential effect of TNF-c on the DC chemotac-
tic response to inducible vs. constitutive chemokines was
examined. Chemotaxis to RANTES (100 ng/mL) after 1 h
exposure of DC to TNF-a was 60% of the control, whereas
chemotaxis to ELC (100 ng/mL) was not modified. At 6 h,
response to RANTES was further decreased (45% of control)
and that to ELC started to increase (145% of control) to reach
maximum at 24 h (342% of control). Maturation stimuli other
than TNF-a (LPS and CD40) were then examined. Mouse DC
were stimulated with CD40L for 72 h and TNF-« or LPS for 24
h. All the three maturation stimuli modified DC migration
capacity; their responsiveness to MIP1? and RANTES was
strongly decreased, but they migrated better in response to ELC
and SDF1 (Fig. 3).

Transendothelial migration of DC

Transendothelial migration was then investigated using the
1G11 mouse endothelial cell line [34]. MIP1a, RANTES, and
SDF1, but not ELC, tested at concentrations active in chemo-
taxis increased DC transmigration across the endothelial mono-
layer (Fig. 4). TNF-a-induced maturation decreased DC
ability to transmigrate in response to MIP1? and RANTES and
increased transmigration in response to SDF1 and ELC (Fig. 4).
Experiments with DC matured by CD40 ligation gave similar
results, with decreased transmigration to MIP1a and RANTES
and increased transmigration to SDF1 and ELC, in agreement
with the data on chemotaxis (data not shown).
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Fig. 3. Effect of different maturation stimuli on chemotaxis of immature and
mature DC. DC were cultured with TNF-« (20 ng/mL) or LPS (1 ng/mL) for 24
h or with CD40L-transfected J558L cells for 48 h. Other experimental
conditions were as in Fig. 1.
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Fig. 4. Effect of chemokines on transendothelial migration of immature and
mature DC. Polycarbonate transwell inserts were coated with a monolayer of
mouse endothelial cells. DC were treated with 20 ng/mL of TNF-« for 24 h.
5 X 10*51Cr labeled DC were put in 0.1 mL in the upper part of the trans-well
system and chemokines at the reported concentrations were put in 0.6 mL in
the lower part. Transmigration is reported as percentage of the input, as
detailed in Materials and Methods. Standard deviations were always = 15%
of the mean and are not reported. Data presented are from one representative
experiment of the 3-5 performed for each cytokine.

Receptor expression on DC

Expression of the receptors CCR1, CCR2, CCR5, CCR4,
CCR7, and CXC chemokine receptor (CXCR4), which bind the
chemokines (MIP1a, RANTES, MCP-3, MCP-1, MIP1R, MDC,
ELC, and SDF1) whose effects were modulated by maturation,
was investigated at the mRNA level. CCR1, CCR2, CCR5, and
CXCR4, as evaluated by both Northern blot assay and RNAse
protection, were constitutively expressed in control DC (Fig.
5A, B). On the contrary, CCR7 was undetectable in control DC
(Fig. 5A). Exposure of DC to TNF-« for 24 h decreased CCR1,
CCR2, and CCR5 mRNA levels (Fig. 5A, B), whereas CCR7
was strongly induced (Fig. 5A). CXCR4 mRNA levels (cor-
rected for the expression of the housekeeping genes) were
unaffected (2/4 experiments) or slightly increased, as already
reported in human DC [35]. The expression of CCR4, the only
characterized receptor for MDC [36], was never detected in our
preparations of immature or mature DC (Fig. 5B). This result,
along with recent evidence [37, 38] strongly suggests that MDC
can interact with a still uncharacterized receptor also expressed
on DC.

CONCLUDING REMARKS

This study shows that mouse BM-derived DC respond to a
defined set of chemokines and that maturation differentially
affects responsiveness to constitutive vs. inducible chemo-
kines. Results presented here represent the first characteriza-
tion of the response of mouse BM-derived DC to chemokines
and extend previous observations obtained with human DC [17,
18, 22, 28, 33, 35, 39]. Although we used human chemokines in
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some experiments, the characterization of mouse DC migration
permits a direct comparison of in vitro chemotactic responsive-
ness to in vivo migration and provides the rationale for the
design of new immune experimental strategies based on the
selective recruitment of mature or immature DC.

Human immature DC showed little chemotaxis in response to
MCP-1 [17, 18, 28] even though CCR2 was expressed as
mRNA, and specific binding and calcium flux were observed
[18, 35]. These in vitro results with human DC seem at odds
with the finding that keratinocyte transgenic expression of
MCP-1 resulted in increased accumulation of DC [40]. The
finding that MCP-1 is an attractant for mouse DC now provides
an in vitro correlate for these in vivo observations.

MCP-3 is a potent attractant for immature mouse and human
DC [17, 18; present results]. It is of interest that human MCP-3
gene transfer in a mouse tumor resulted in perivascular
accumulation of DC in peritumoral tissues [41], a finding
consistent with the in vivo relevance of DC attraction by this
chemokine.

Immune and inflammatory stimuli or microbial products (i.e.,
CD40L, IL-1, TNF-a) promote the production of a set of
chemokines that includes MCPs, MIPs, and RANTES. The
same signals also induce maturation [1-4] and trafficking of DC
to lymph nodes or spleen, where they present antigen [5-11].
Recent observations on migration of human cells to ELC [33,
35, 39] and the present extensive analysis with mouse cells
indicate that TNF-«, LPS, and CD40 ligation differentially
regulate responsiveness of DC to inducible vs. constitutively
produced chemokines and concomitantly modulate receptor
mRNA expression.
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Fig. 5. Effect of TNF-a on chemokine receptor expression. DC were
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Activation of DC with TNF-a, LPS, and CD40L strongly
augmented the chemotactic response to ELC, SDF1, and MDC,
chemokines that are constitutively expressed in lymphoid
organs and would be instrumental to recruit and arrest DC at
these sites [42]. The same inflammatory stimuli or bacterial
products inhibit responsiveness to inducible chemokines pro-
duced locally, and would allow antigen-loaded DC to leave the
sites of infection and inflammation and reach lymphoid organs.
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