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ABSTRACT

Molecular classification of malignancies can potentially
stratify patients into distinct subclasses not detectable
using traditional classification of tumors, opening new
perspectives on the diagnosis and personalized therapy
of polygenic diseases. In this paper we present a brief
overview of our work on gene expression based predic-
tion of malignancies, starting from the dichotomic clas-
sification problem of normal versus tumoural tissues, to
multiclass cancer diagnosis and to functional class dis-
covery and gene selection problems. The last part of this
work present preliminary results about the application
of ensembles of SVMs based on bias-variance decompo-
sition of the error to the analysis of gene expression data
of malignant tissues.

1 Introduction

DNA microarray technology [14] opens new prospects
to the traditional classification of human malignancies
based on morphological and clinical parameters. In fact,
information obtained by gene expression data gives a
snapshot of the overall functional status of a cell, offer-
ing new insights into potential different types of malig-
nant tumours, based on functional and molecular dis-
crimination. Although this technology does not take
into account the information available at the transla-
tional and post-translational levels, it provides funda-
mental insights into the mRNA levels of all the genes,
offering in such a way an approximate picture of the
proteins of a cell or tissue at one time.
The large amount of gene expression data require statis-
tical and machine learning methods to analyze and ex-
tract significant knowledge from DNA microarray data.
After image analysis and preprocessing steps have been
performed, data are usually collected in matrices: each
row corresponds to a different microarray experiment,
(or to an average between replicated microarray experi-
ments), and columns to the expression levels of the genes
involved in the experiment.
Typical problems arising from gene expression data
analysis range from prediction of malignancies [28, 23]

(a classification problem from a machine learning point
of view) to functional discovery of new classes or sub-
classes of diseases [1] (an unsupervised machine learning
problem), to the identification of groups of genes re-
sponsible or correlated with malignancies or polygenic
diseases [12] (a feature selection machine learning prob-
lem).
In a typical unsupervised approach, no or limited a pri-
ori knowledge is available: only gene expression levels
of the genes across different microarray experiments are
available. In this case we can group together sets of
genes (columns of the data matrix), or different cells
or different functional status of the same tissue (rows
of the data matrix), in order to discover similar pat-
terns between gene expression levels of sets of genes or
groups of samples (tissues) considering the overall ex-
pression of all the genes involved in the experimenta-
tion. Clustering algorithms are used to group together
similar expression patterns: sets of genes, or different
cells or different functional status of the cell are grouped
together. Typical ensemble methods used in the liter-
ature are hierarchical clustering [9], k-means [22], self-
organizing maps [20], graph-based algorithms [19] and
biclustering methods [21].
On the other hand, supervised methods exploit a priori
biological and medical knowledge on the problem do-
main. For instance, learning algorithms with labeled
examples are used to associate gene expression data
with classes, in order to separate normal form cancerous
tissues or to classify different classes of cells on func-
tional basis, or to predict the functional class of un-
known genes. Several supervised methods have been
applied to the analysis of cDNA microarrays and high
density oligonucleotide chips. These methods include
decision trees, Fisher linear discriminant, Multi-Layer
Perceptrons (MLP), Nearest-Neighbours classifiers, lin-
ear discriminant analysis, Parzen windows and others
[11, 8, 3, 17, 13]. In particular Support Vector Ma-
chines (SVM) have been recently applied to the analy-
sis of DNA microarray gene expression data in order to
classify functional groups of genes, normal and malig-
nant tissues and multiple tumor types [3, 10, 28].
In this paper we summarize our research on the pre-
diction of malignancies using supervised machine learn-
ing methods (Sect. 2), including ECOC ensembles of
learning machines for multiple tumor types predic-
tion (Sect. 3). Then we outline our present research
items about the application of SVM ensembles to gene
expression-based prediction of malignancies, and in par-
ticular we summarize our present work on bias-variance
decomposition based methods for gene expression data
analysis (Sect. 4).

2 Gene expression-based prediction of
malignancies with SVMs and MLPs

We tried to separate malignant from normal lymphoid
cells using data of a specialized DNA microarray, named
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”Lymphochip”, developed at Stanford University School
of Medicine [1], specifically designed to study lymphoid
and malignant development related genes. These data
are very challenging from a machine learning standpoint,
considering that they are constituted by a small number
(96) of 4026-dimensional samples.
Considering the high dimensional input space we applied
SVMs with L1-norm soft-margin as they are well-suited
to work with high dimensional data. In fact they repre-
sent an implementation of the Vapnik’s structural risk
minimization induction principle [27], or can be equiva-
lently interpreted as regularized learning machines that
address the trade-off between the accuracy on the learn-
ing set through the minimization of the number of mis-
classified patterns and the generalization capabilities
through the maximization of the margin separating the
classes.
Three different types of SVMs, with linear, polynomial
and radial basis kernel functions have been applied to
the separation of malignant from normal lymphoid cells.
Moreover we used also as baseline classifiers a Multi-
Layer Perceptrons (MLP) with one hidden layer and a
simple perceptron (LP) [25].
MLP with 10 hidden neurons showed an estimated gen-
eralization error of about 2% (using 10-fold cross valida-
tion), while SVM-linear achieved the best results (about
1% error) for a large range of values of the regulariza-
tion parameter (1 ≤ C ≤ 1000). Comparing our results
with those obtained in [1] using hierarchical clustering,
we achieved, as expected, a significant improvement of
the classification accuracy.
In several classification tasks, the accuracy is not a suffi-
cient criterion to evaluate the performance of a classifier.
For instance, in this case, considering the detection of
seriously diseased patients, it is preferable to avoid false
negative results rather than false positive ones. In order
to address this problem the Receiver Operating Charac-
teristic (ROC) analysis offers a suitable tool to jointly
evaluate the relationships between the rate of true neg-
ative and false positive examples. Performing a ROC
analysis we concluded that supervised machine learn-
ing methods correctly separate malignant from normal
lymphoid tissues, but only linear SVM and MLP can
be used to build classifiers with a high-sensitivity and
a low rate of false positives. Indeed Fig. 1 shows that
the ROC curve of SVM-linear is ideal (that is the area
under the curve is 1), and nearly optimal is also the
MLP ROC curve, while the linear perceptron shows a
worse ROC curve, but with reasonable values lying on
the highest and leftmost part of the ROC plane. How-
ever, for medical applications, the sensitivity of the LP
is surely too low.
We proposed also a two stage unsupervised/supervised
approach [24, 23] performing an experimental analy-
sis that supports the hypothesis of Alizadeh et al. [1]
about the existence of two distinct subgroups of Dif-
fuse Large B-Cell Lymphoma (DLBCL) using subsets
of functionally correlated genes (expression signatures)
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Figure 1: Comparison of ROC curves between SVM,
LP and MLP for the classification problem of separating
malignant from normal tissues.

individuated by clustering algorithms and by the a pri-
ori biological knowledge of their functions. Among the
selected expression signatures, we identified a group of
coordinately expressed genes specifically related to this
separation using a supervised approach [23].

3 Gene expression-based prediction of
multiple tumor types with ECOC en-
semble methods

Molecular multiple-class classification of tumors using
gene expression data is a particularly hard task, as it is
characterized by a large dimensionality of the datasets,
a small number of examples, a small but significant un-
certainty in the original labels, the noise in the experi-
mental and measurement processes and the intrinsic bi-
ological variation from specimen to specimen. Previous
works try to use ensembles of SVMs using a One-Versus-
All and an All Pairs approach [28, 18], achieving quite
encouraging results, but exploiting only in part the error
recovering capabilities of Output Coding (OC) decompo-
sition methods [5].
We tried to directly classify different types of lymphoma
(a multi-class problem) using OC ensembles. OC meth-
ods are characterized by a divide-et-impera approach to
multi-class classification: a multi-class problem is de-
composed in a set of L two-class subproblems, then the
resulting ensemble of dichotomizers is trained and subse-
quently the outputs of the L dichotomizers are combined
to predict the class label.
ECOC methods improve the accuracy of the multi-
classifier systems as they enhance the error recovering
capabilities of the system itself (e.g., even if the out-
come of some classifier of the ensemble is wrong, the
overall prediction of the system can be correct, espe-



cially if the codewords coding the classes are dissim-
ilar [6]. Considering that recent studies show clearly
that there is a trade-off between the error recovering ca-
pabilities of ECOC and the complexity of the induced
dichotomies [15], we used MLPs as base learners for
ECOC ensembles. In principle also other ”strong” learn-
ers could be used, but, with SVMs for instance, output
normalization and correct decoding functions must be
carefully selected in order to fully exploit the error re-
covering capabilities of ECOC.
In particular we used One-Per-Class Parallel Non lin-
ear Dichotomizers (OPC-PND) and Error-Correcting-
Output-Coding Parallel Non linear Dichotomizers
(ECOC-PND) ensembles based on output coding meth-
ods [16] (Fig. 2) and a multi-class MLP as reference.
Each MLP of the ensemble was independently trained

Dico2 Dico3 DicoL

out1 out2 out3 outL

Dico1

de
co

m
po

si
tio

n 
un

it
de

ci
si

on
 u

ni
t

Reconstruction (decoding)

Computed class

Input pattern

Figure 2: Schematic architecture of a PND ensemble of
dichotomizers.

to learn each individual bit of the codeword coding the
classes. The decision unit was implemented using the
L1 norm distance between the outputs of the decompo-
sition unit (that is the vector of the continuous outputs
of the base dichotomic MLP learners) and the codeword
of the classes.
OPC and ECOC PND outperformed the multiclass
MLP, showing also less sensitivity to model parameters:
we obtained good results varying the number of hidden
units and the parameters of the learning algorithms for
a relatively large range of values. For instance, with
ECOC PND we obtained the best results using base
classifiers with 8 hidden units, but varying the number
of the hidden units from 3 to 15 the predicted error
ranges from 0.052 to 0.062, while with multiclass MLP,
varying the number of hidden units, the error ranged
from 0.062 to 0.094 [23]. Interestingly enough, an esti-
mated accuracy of about 0.95 has been achieved using
all the available genes, without applying any feature se-
lection method.

4 Ensembles of SVMs for gene expres-
sion data analysis

Ensembles of learning machines are well-suited for gene
expression data analysis, as they can reduce variance
due to the low cardinality of the available training
sets [2]. Indeed, in recent works, bagging and boost-
ing, that are ensemble methods based on resampling
techniques, one-versus-all and all-pairs combinations
of binary classifiers and ECOC ensembles of MLP
have been applied to the analysis of DNA microarray
data [8, 28, 23].
Bias–variance decomposition of the error has been re-
cently proposed as a tool to gain insights into the be-
havior of learning algorithms, in order to properly de-
sign ensemble methods well-tuned to the properties of
a specific base learner [26]. For instance, analyzing how
does vary the error, bias, and variance of SVMs with
respect to the kernel parameters and the regularization
term (see, for instance Fig. 3), we can gain insights to
develop ensemble methods specific for a particular base
learner. In the context of gene expression data analysis,
considering that Support Vector Machines (SVM) can
easily manage high dimensional data [4], a promising
line of research consists in using them as base learners
in ensemble methods well-tuned to their bias-variance
characteristics analyzed through Domingos’ unified the-
ory on bias-variance decomposition of the error [7]. Ac-
cording to this general approach, we are studying en-
semble methods to join the low bias properties of SVM
with the low unbiased variance properties of bagging.
Indeed in our analysis of the bias-variance decomposi-
tion of the error in SVMs we found, as expected, that
properly tuned SVMs show a relatively low bias at the
expenses of a relatively high unbiased variance, espe-
cially with low sized data sets, as DNA microarray data
usually are. In order to exploit this general behaviour of
the SVM learning algorithm, we proposed a basic high–
level algorithm for a general Bagged ensemble of selected
low-biased SVM:

1. Estimate bias-variance decomposition of the error
for different SVM models

2. Select the SVM model with the lowest bias

3. Perform bagging using as base learner the SVM
with the estimated lowest bias.

Depending on the type of kernel and parameters con-
sidered, and on the way the bias is estimated for the
different SVM models, different implementations can be
given. Preliminary results on a data set of 300 nor-
mal and tumor specimens spanning 14 different tumor
classes, obtained from the Whitehead Institute - Mas-
sachusetts Institute of Technology Center for Genome
Research, show that this approach works, outperform-
ing both single SVMs and bagged ensembles of SVMs.
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Figure 3: An example of the bias-variance decomposition of the error in SVMs with gaussian kernel, varying the
spread parameter σ and for a fixed value of the regularization parameter C = 100 for a small sized data set. The
graph shows the estimated generalization error (avg. error), the bias, and the two components of the variance
(unbiased and biased variance, according to the theory proposed by Domingos), and the net-variance expressed as
unbiased minus biased variance. Note that the minimum of the estimated error, bias and unbiased variance occur
for different values of the kernel parameter σ.
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